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ABSTRACT

In sensory studies, the analysis of variance is one of the most often em-
ployed statistical methods to study differences between products. However, the
analysis of variance often focus just on the p-values. Therefore, it would be valu-
able to supplement the F-testing with some good measures of overall effect size
(ES). In this thesis, a visual tool based on effect size measures is proposed to im-
prove the F-test results interpretations of mixed model ANOVA for sensory data.
The basic and straightforward idea is to interpret effects relative to the residual er-
ror and to choose the proper effect size measure. The close link between Cohen’s
d, the effect size in an ANOVA framework, and the Thurstonian (Signal detection)
d-prime are used to suggest the delta-tilde barplot as a better visual tool to inter-
pret sensory and consumer data mixed model results. For multi-attribute barplots
of F-statistics in balanced settings, this amounts to a simple transformation of the
bar heights to get them depicting, what can be seen as approximately the aver-
age pairwise d-primes among products levels. The delta-tilde barplot becomes
more important for multi-way product models, since the transformation depends
on the number of observations within product levels. Then, for extensions into
multi-way models, a similar transformation is suggested, in order to make valid
the comparison of bar heights for factors with differences in number of levels. The
methods are illustrated on a multifactorial sensory profile data set and compared
to actual d-prime calculations based on Thurstonian regression modelling through
the ordinal R-package. A generic implementation of the method is available on the
R-package SensMixed. The use of the delta-tilde barplot can be viewed as good a
and relevant additional tools for interpretation of the ANOVA table, particularly in
situations with more than a single factor and with several attributes.

Keywords: Mixed Model, delta-tilde, Sensory Analysis.

Guidance Committee: Dr. Renato Ribeiro de Lima - (Supervisor) - UFLA.



RESUMO

A análise de variância é um dos métodos estatísticos mais utilizados para
investigar as diferenças entre os produtos em estudos sensoriais. Entretanto, os
resultados da análise de variância geralmente focam apenas nos valores-p. Do
ponto de vista prático, é relevante complementar os resultados do teste F com al-
guma estimativa do tamanho do efeito. O objetivo deste trabalho é apresentar um
método gráfico baseado nas estimativas de tamanho do efeito (delta-tilde) como
uma maneira de aprimorar a interpretação dos resultados do teste F. Para propor
o barplot baseado na estimativa delta-tilde, utilizou-se a estreita relação entre o d-
prime dos modelos da teoria de detecção de sinais, conhecidos como modelos de
Thurstone e a medida d de Cohen, o tamanho do efeito para análise de variância.
Para o caso de dados balanceados, a estimativa do delta-tilde é obtida por meio
de uma simples transformação da estatística F. A utilização do gráfico baseado no
delta-tilde torna-se ainda mais relevante em situações em que os produtos são com-
postos por mais de um fator, uma vez que a transformação depende do número de
observações nos níveis de cada fator. Uma transformação similar é sugerida para
modelos multifatoriais, com objetivo de permitir a comparação entre o tamanho do
efeito para fatores com níveis diferentes. Apresentou-se um exemplo do uso dos
gráficos baseado na estimativa do delta-tilde para interpretar os resultados de uma
análise de dados multifatorial. Comparou-se os valores da estimativa do tamanho
do efeito (delta-tilde) com o d-prime obtido por meio de uma regressão de Thur-
stone, utilizando o pacote ordinal, do programa R. Uma implementação geral do
método, que permite estimar o tamanho do efeito para casos mais complexos, onde
existe desbalanceamento ou dados faltosos, é apresentada no pacote SensMixed,
do programa R. Uma das principais vantagens de avaliar os resultados da análise
de variância utilizando o gráfico delta-tilde é permitir a comparação do tamanho
do efeito entre os fatores, principalmente em situações em que há mais um fator e
muitos atributos em estudo.

Palavras-chave: Modelo misto, delta-tilde, Análise sensorial

Comitê Orientador: Dr. Renato Ribeiro de Lima - (Orientador) - UFLA.
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1 INTRODUCTION

1.1 Challenges for sensory and consumer data analysis

Data analysis within the sensory and consumer science fields can be par-

ticularly challenging due to use of human as the measurement instrument. Un-

derstanding how responses change due to product differences versus change due

to subject differences is important. Analysis of variance (ANOVA) is one of the

most often employed statistical tools to study differences between products when

they are scored by either categorical rating (ordinal) scales and/or unstructured line

scales (NÆS; BROCKHOFF; TOMIC, 2010). A number of relevant post hoc analysis,

also called multiple comparison tests, usually characterizes analysis of variance

based data analysis within the sensory field. However, it is still valuable to be able

to supplement the initial overall ANOVA F-testing, often with highest focus on the

p-values with some good measures of overall effect size.

1.2 Using effect size to improve data analysis

Effect size (ES) is a name given to a family of indices that measure the

magnitude of a treatment effect. It can be as simple as a mean, a percentage in-

crease, or a correlation; or it may be a standardized measure of a difference, a

regression weight, or the percentage of variance accounted for. For a two-group

setting, the ES quantifies the size of the difference between two groups, and may

therefore be said to be a true measure of the significance of the difference (COE,

2002).

An important class of ES measures is defined by using the standardized

effect size. In this class is included the Cohen’s d, which is the difference mea-

sured in units of some relevant standard deviation (SD) (CUMMING; FINCH, 2005).

The main purpose of the present study is to improve research interpretation of the

results of standard sensory and consumer data mixed model ANOVA suggesting a

visual tool based on effect size measures.
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1.3 Overview of the thesis

The remainder of this thesis is organized as follows. In Chapter 2 a liter-

ature review is presented. In chapter 3 we define the effect size delta-tilde and

discuss why effects size are good measure to improve ANOVA interpretation.

Plots based on effect size delta-tilde are suggested to supplement the initial overall

ANOVA F-testing. The method proposed here is illustrated on a multifactorial sen-

sory profile data set and the delta-tilde proposed here is compared with the actual

d-prime based on Thurstonian modelling. Chapter 4 is a review about tools re-

cently developed to improve sensory and consumer data analysis. We focus on the

new open source softwares as PanelCheck (NOFIMA; ÅS, 2008), ConsumerCheck

(TOMIC et al., 2015) and the two new R-packages lmerTest (KUZNETSOVA; BROCK-

HOFF; CHRISTENSEN, 2014a) and SensMixed (KUZNETSOVA; BROCKHOFF; CHRIS-

TENSEN, 2014b). These packages provide nice and visual multi-attribute plots with

the purpose of improve the interpretation of the results of the (mixed) ANOVA in

a best possible way. A plot based on delta-tilde effect size is one of the options

provided on SensMixed R-package. In the general discussion of Chapter 5, we

will discuss the main contributions and provide recommendations for further re-

searches.



18

2 STATISTICS FOR SENSORY AND CONSUMER DATA

2.1 Sensory Science and Sensometrics

Sensory science is a cross-disciplinary scientific field dealing with human

perception of stimuli and the way they act upon sensory input. In this field the use

of humans as measurement instrument play an important role in product develop-

ment and user-driven innovation in many industries (BROCKHOFF, 2011).

The term sensory science is frequently used to comprise all types of test

where human senses are used. According with Næs, Brockhoff and Tomic (2010),

the difference between sensory tests using a trained panel and tests using con-

sumers is the way they are used. Sensory panel studies is either used for describ-

ing the degree of product similarities and differences in terms of a set of sen-

sory attributes, so-called sensory profiling, or for detecting differences between

products, so-called sensory difference testing (MEILGAARD; CIVILLE; CARR, 2006;

O’MAHONY, 1986). For consumer studies, the products are tested by a represen-

tative group of consumers who are asked to assess their degree of liking, their

preferences or their purchase intent for a number of products. These tests are often

called hedonic or affective tests (LAWLESS; HEYMANN, 2010).

Sensory and consumer data are produced and applied as the base for de-

cision making in food industry and within many no-food areas, for instance in

the automotive, fragrance, mobiles phones, high end TV and audio industries or

whatever. The production and interpretation of such data is also an integral part

of production development and quality control. The development and application

of statistics and data analysis within this area is called sensometrics (BROCKHOFF,

2011), a scientific field that grew out of and is still closely linked, to sensory sci-

ence.

Sensometrics began with inferential statistics during the 1930s and contin-

ued in that direction into 1940s and 1950s. At the early development of the field,

one of the key functions of sensory analysis was to test products and to provide

an informed opinion about whether or not the product met or failed the acceptance

standards (MOSKOWITZ; SILCHER, 2006). We can say that Sensometrics began its
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life as simple tests of significance and treatment effects, been strongly influenced

on the one hand by trends in experimental psychology and on the other by agri-

cultural statistics. Indeed, Fisher′s classic paper on a “The Mathematics of a Lady

Tasting Tea” (FISHER, 1956) illustrates this type of interrelationship of statistics

(or at least quantitative methods) and sensory analysis.

Rose Marie Pangborn (1932 - 1990) is considered one of the pioneers of

sensory of food and there is an international scientific conference in sensory sci-

ence, the Pangborn Sensory Science Symposium, dedicated to her memory. She is

co-author of the first exposition of the modern sensory science (AMERINE; PANG-

BORN; RESSSLER, 1965) which served as the definitive textbook for an entire gen-

eration of sensory scientists.

The beginning workers in the food industry were occasionally in contact

with psychologists who studies the senses and had developed techniques for as-

sessing sensory functions (MOSKOWITZ, 1983). While psychologists focus on un-

derstanding how the human sense works, the sensory scientists focus on better

understanding of how the senses react during food intake, and also how human

senses can be used in quality control and innovative product development, both

using statistical methods. In that way, Sensometrics - the “metric” side of sen-

sory science field (BROCKHOFF, 2011), received the influence of different fields

mainly statistics, chemometrics and experimental psychology. The use of Thursto-

nian modelling to form the theoretical basis for sensory discrimination protocols

and models for preferential choice (BROCKHOFF; CHRISTENSEN, 2010) are good

examples of what can be realized when there is interaction between experimen-

tal psychology, statistics and food science methods. According with Lawless and

Heymann (2010), differences in language, goals, and experimental focus are some

of the difficulties that explain why this interchanges were not more sustained and

productive.

We can be optimistic about the future of the sensory science. Judging the

number of industries and the many companies that are expanding their sensory

test capabilities the future of sensory science is bright. According with Stone and

Sidel (2004), there is no question that sensory evaluation is a profitable investment.

We could say it in terms of one-to-ten ratio; that is, for every dollar invested in
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sensory, it will return ten to the business. The development and use of predictive

models of consumer-product behaviour has had and will continue to have a salutary

impact, not only because of this specific and immediate value to a company but

also because of effectiveness in demonstrating a higher degree of sophistication

than was realized possible for sensory evaluation.

2.2 Analysis of Variance Model for Sensory Profiling

Sensory profiling or so-called descriptive sensory analysis is the most so-

phisticated of the methodologies available to the sensory professional (LAWLESS;

HEYMANN, 2010; STONE; SIDEL, 2004) and probably the most important method

in sensory analysis (NÆS; BROCKHOFF; TOMIC, 2010). These techniques are used

for describing products in terms of the perceived sensory attributes and identify

differences between products by the use of trained sensory assessors. This is the

case for both product development situations and for quality control.

In sensory profiling, a group of trained assessors, so-called sensory panel,

develop a test vocabulary (defining attributes) for the product category and rate

the intensity of these attributes for a set of different samples within the category.

Thus, a sensory profile of each product is provide for each of the assessors, and

most often this is replicated (LAWLESS; HEYMANN, 2010). According with Lawless

and Heymann (2010) descriptive analysis techniques should never be used with

consumers, because in all descriptive methods, the assessor should be trained at

the very least to be consistent and reproducible.

2.2.1 Mixed Analysis of Variance Model

The Analysis of Variance (ANOVA) is the most appropriate statistical pro-

cedure for analysing data from descriptive sensory tests and other sensory tests

where more than two products are compared using scaled responses (LAWLESS;

HEYMANN, 2010; STONE; SIDEL, 2004). In this situation, the proper analysis of

variance will typically evaluate the statistical significance of product differences

by using the assessor-by-product interaction as error structure (LAWLESS; HEY-
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MANN, 2010). In statistics, this is generally called a mixed effect model, as both

fixed-effect (products) and random-effects (assessor and assessor-by-product in-

teraction) are presented in the modelling and analysis approach (KUZNETSOVA et

al., 2015).

Let Yijk be the kth replicate evaluation of product j, j = 1, 2, ..., J , by

assessor i, i = 1, 2, ..., I . The simple 2-way mixed analysis of variance model is

given by

Yijk = µ+ ai + νj + gij + εijk, (1)

where ai is the assessor effect, the νj is the product effect the gij is the assessor-by-

product interaction and εijk is the residual error. The assessor effect and therefore

also the assessor-by-product interaction are assumed random effects. That means

ai ∼ N(0, σ2assessor),

gij ∼ N(0,σ2assessorXproduct),

εijk ∼ N(0,σ2error),

where all the random-effects are independent of each other.

The model (1) is frequently used as the basis for doing univariate statistical

analysis of sensory profile data (NÆS; BROCKHOFF; TOMIC, 2010). The hypothesis

of interest in model (1) is

H0 : ν1 = ν2 = ... = νj = 0 (2)

which corresponds to no average differences between the main effect for the prod-

ucts. The alternative hypothesis is usually that, at least, two means of the products

are different. In the mixed model (1), the null hypothesis (2) refers to the average

differences between products for the whole population of potential assessors rather

than to specific assessors. If the H0 is rejected, one should be interested in which

products are responsible for the rejection.

ANOVA includes a particular form of null hypothesis statistical testing

(NHST) used to identify and to quantify the factors that are responsible for the

variability of the response. The null hypothesis for ANOVA is that the means of

the factors are the same for all groups. The alternative hypothesis is that at least

one mean is different from the others. An F -statistic is obtained in the ANOVA
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and the F distribution is used to calculate the p-value. A predefined α, called

significance level, is considered as decision criterion, and the null hypothesis is

rejected if the p-value is smaller than the value of the α.

In other words, NHST assesses the probability of obtaining the sample

data (D) if the null hypothesis (H0) is true, that is, p(D|H0). If the p(D|H0) is

sufficiently small (smaller than the decision criterion, α), the null hypothesis will

be considered not viable and will be rejected. The rejection of the null hypothesis

indicates that the random sampling variability is the unlikely explanation for the

observed statistics. We could simply interpret the rejection of the null hypothe-

sis as: given the observed magnitude of difference between the two samples it is

highly unlikely that sampling error could have been the cause for the observed data

(FAN, 2010).

Considering the assessors as random effects is a proper approach in sen-

sory field (LAWLESS; HEYMANN, 2010) where the main interest is in the population

of assessors rather than the actual assessors at hand. According to (KUZNETSOVA

et al., 2015) this means that we want to know the variation among assessors rather

than estimates of effects of each assessors and to be able to properly account

for that. It statistically means that in model (1) we are interested in estimating

σ2assessor and σ2assessorXproduct.

Still an ongoing discussion whether sensory assessors are ever considered

as fixed effects (LAWLESS, 1998; LUNDAHL; MACDANIEL, 1988; NÆS; LANGSRUD,

1996; O’MAHONY, 1986). Even though behavioural science suggests that human

beings are random effects as they are used in sensory science, unfortunately, the

fixed effect model persisted in the literature (LAWLESS; HEYMANN, 2010). Ac-

cording with Brockhoff, Schlich and Skovgaard (2015) both types of analysis can

be done with the proper interpretations of the results. In fact, Næs and Langsrud

(1996) showed that in the case with no interaction, the two approaches give the

same results. However, in the situations with significant interactions between as-

sessors and products, considering assessors as fixed effects may lead to a conclu-

sion that differences between products are larger than they really are. For that

reason, the most appropriate assumption is to treat assessors as a random effect.

Furthermore, as pointed out in Brockhoff, Schlich and Skovgaard (2015), the ran-
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dom assessor type of interpretation resembles better the usual purpose of perform-

ing a description sensory experiment: to achieve at some results for the products

in question that may be generalized to a larger setting than merely the assessors

that are in panel.

By considering assessors as random effect, we have the appropriate F-

test for investigating product difference recommended by Lawless and Heymann

(2010):

FProd =
MS(Product)

MS(AssessorXProduct)

According with Næs, Brockhoff and Tomic (2010) if an attribute has no

significant main product effect or interaction, it can be safely claimed that the panel

as a whole is not able to distinguish between the products for this attribute.

2.2.2 Mixed Assessor Model

Lawless and Heymann (2010) pointed out that the use of an interaction

term as the denominator for error has important consequences for the analysis and

its sensitivity. It was also indicated by Næs and Langsrud (1996) that a large por-

tion of the interaction effect may be due to individual differences in use of the

scale. In the standard mixed model analysis of variance (1) approach, this differ-

ence has entered the resulting assessor-by-product error term but pooled together

with potential disagreement variability. Another approach is to use the Mixed As-

sessor Model (MAM) recently developed by Brockhoff, Schlich and Skovgaard

(2015) which is based on doing a more elaborate modelling of the interaction. In

the MAM, the interaction term is modelling the potential individual differences

between the assessors in their scoring of the product differences. This includes

as well differences in individual ranges of scale use (scale effect), as the real dif-

ferences in perception of product differences (disagreement effect) (BROCKHOFF;

SCHLICH; SKOVGAARD, 2015). If strong scaling effect are present, the assumptions

behind the general ANOVA approach, where the interaction are assumed to be

independently distributed, become less realistic. Therefore, MAM gives a more

powerful analysis by removing the scaling difference from the interaction term.
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In the MAM, the scaling part of the interaction is modeled by incorpo-

rating the product effect also as a covariate. In this case, the covariate identify

and remove the scaling heterogeneity from the interaction term, and it should not

be seen as an analysis of covariance in the usual meaning (BROCKHOFF; SCHLICH;

SKOVGAARD, 2015). The Mixed Assessor Model (MAM) is given by

Yijk = µ+ ai + νj + βixj + dij + εijk (3)

with

ai ∼ N(0, σ2assessor),

dij ∼ N(0,σ2D),

εijk ∼ N(0,σ2),

where ai is the assessor main effect, i = 1, 2, ..., I , the νj the product main effect,

j = 1, 2, ..., J , xj = y.j. − y... are the centered product averages inserted as

a covariate, and hence βi is the individual (scaling) slope (with
∑I

i=1 βi = 0),

the dij takes the role of the random interaction term gij in the standard mixed

model in (1) but now the term captures interactions that are not scale differences

hence “disagreements”. Brockhoff, Schlich and Skovgaard (2015) has shown that

MAM produces valid and improved hypothesis tests for as well overall product

differences as post hoc product difference testing restricted to the two-way setting.

The main overall hypothesis of interest in model (3) is that there is no

product difference:

H0 : ν1 = ν2 = ... = νj = 0 (4)

The advantage of using the MAM rather than the simple mixed model

(1) is that it is taken into account that the interaction can be due to scaling dif-

ference or due to disagreements. The MAM removes the scaling effect from the

interaction term. The consequence for the test of product differences is that the

disagreement mean square becomes the one to use in the denominator, improving

hypothesis tests for product effects. The appropriate F-statistic for investigating

product differences became (BROCKHOFF; SCHLICH; SKOVGAARD, 2015):
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FProd =
MS(Product)

MS(Disagreement)

By removing the scaling effect from the interaction term, the scaling part

of the variance structure in the model disappear under the null hypothesis. This is

exactly why this novel approach proposed by Brockhoff, Schlich and Skovgaard

(2015) provides increased power for detecting product differences: the error used

for deciding about product differences has been cleaned out for potential scaling

structure.

In addition, Brockhoff, Schlich and Skovgaard (2015) present the F-tests

for scaling differences and disagreement:

FScaling =
MS(Scaling)

MS(Disagreement)

Fdisagreement =
MS(Disagreement)

MS(Error)

The former investigates whether the scaling are different from individual

to individual. And the hypothesis to test the presence of scaling is given by:

H0 : β1 = β2 = ... = βj = 1

2.2.3 Extending the Mixed Assessor Model

Brockhoff, Schlich and Skovgaard (2015) showed that MAM produces

valid and improved hypothesis tests for as well overall product differences as post

hoc product difference testing. However, sensory studies are frequently made in

replicates/sessions and the MAM given by Equation (3) considers a rather simple

2-way structure. Therefore, it is sensible to consider more complex structures such

as 3-way, where the replicate/session effect is also accounted for. Kuznetsova et

al. (2015) presented an extended version of MAM, where scaling effect can be part

of a more complicated linear mixed effects model and provide a tool to construct
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and visualize the results. The 3-way linear mixed assessor model presented by

Kuznetsova et al. (2015) is specified in the following form:

yijkl = µ+ ai + νj + βixj + dij + rk + arik + νrjk + εijkl (5)

ai ∼ N(0, σ2assessor),

dij ∼ N(0, σ2disagreement),

rk ∼ N(0, σ2replicate),

arik ∼ N(0, σ2assessor×replicate),

νrjk ∼ N(0, σ2product×replicate),

εijk ∼ N(0, σ2)

From the Equation (5) we may notice that three more random effects are

included in the MAM: rk corresponding to the replication/session and the remains

effects arik and νrjk corresponding to the interactions between assessor and repli-

cation and assessor and product, respectively. The product effect is represented

again by νj , the assessor main effect is represented by ai and xj = y.j. − y... are

the centered product averages inserted as a covariate, and βi is the individual (scal-

ing) slope (with
∑I

i=1 βi = 0) and the dij is the disagreement term. Kuznetsova et

al. (2015) also proposed an extended versions of MAM where a possible multi-way

product structure can be accounted for together with the three-way error structure,

where a replicate effect is also accounted for.

The main overall hypothesis of interest in model (5) is that no product

difference:

H0 : ν1 = ν2 = ... = νj = 0, (6)

and the appropriate F-statistic for investigating this hypothesis is given by:

FProd =
MS(Product)

MS(Disagreement)

The ANOVA F-table, where product effects are found significant, is com-

plemented with post hoc test, also called multiple comparison tests. We will show

in the next section that it is still valuable to be able to supplement the initial over-
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all ANOVA F-testing, often with highest focus on the p-values with some good

measures of overall effect size.

2.3 P -values and Effect Size

Analysis of Variance (ANOVA) provides a very sensitive tool for seeing

whether treatment variable such as changes in ingredients, processes, or packaging

had an effect on the sensory properties of the product (LAWLESS; HEYMANN, 2010).

The Analysis of Variance procedure includes a particular form of null hypothesis

statistical testing (NHST) used to identify and quantify the factors that are respon-

sible for the variability of the response. The null hypothesis for ANOVA is that

the means of the factors are the same for all groups. To test this null hypothesis,

the variance or squared deviations due to each factor and the variance or squared

deviation due to error are estimated. The error can be thought of as the variability

caused by the variables that are not under control in an experiment. Then a ratio

of the factor variance and the error variance is constructed. This ratio follows the

distribution of an F-statistics, which is used to obtain the p-value. A predefined α,

called significance level, is considered as decision criterion, and the null hypothe-

sis is rejected if the p-value is smaller than the value of the α. A significant F-ratio

for a given factor implies that, at least, one mean is different from the others.

The NHST is a direct form and an easy way to conclude about the sta-

tistical significance of a factor, by considering a significance level and a p-value.

However, no single statistical concept is probably more often misunderstood and

so often abused as the obtained p-value (HUBBARD; LINDSAY, 2008). Most impor-

tantly, the p-value does not provide us a crucial piece of information: the magni-

tude of an effect of interest. According with Lawless and Heymann (2010) it is

important to keep in mind that the p-value is based on a hypothetical curve for the

test statistic that is obtained under the assumption that the null hypothesis is true.

Therefore, the obtained p-value is taken from the very situation that we are trying

to reject or eliminate as a possibility (LAWLESS; HEYMANN, 2010). Therefore, the

NHST only informs us of the probability of the observed or more extreme data

given the null hypothesis true.



28

As pointed out by Lawless and Heymann (2010) the NHST by itself is

somewhat impoverished manner of performing scientific research. It can be thought

of as a starting point or a kind of necessary hurdle that is a part of experimenta-

tion in order to help rule out the effect of chance. However, it is not the end of

the story, only the beginning. In addition to statistical significance, the sensory

science must always describe the effect. The recommendation reporting results

(COHEN, 1990, 1992, 1994; DEVANEY, 2001; FAN, 2010; GRISSOM; KIM, 2012;

KELLEY; PREACHER, 2012; SUN; PAN; WANG, 2010) is that instead of only reporting

p-values, the researchers should also provide estimates of effect size. According

with Cohen (1990) the purpose of the research should be to measure the magni-

tude of an effect rather than simply its statistical significance; thus, reporting and

interpreting the effect size is crucial. Therefore, researchers should consider both

p-value and effect size (COHEN, 1990).

The term “effect size” (ES) is a name given to a family of indices that mea-

sure the magnitude of a treatment. It can be simple as a mean, a mean difference,

or a correlation; or it may be a standardized measure of a difference, a regression

weight, or the percentage of variance account for. These indices sometimes are

called effect size measurement or effect statistics. An effect size can also refers to

the actual values calculated from certain effect size measurement, i.e., the effect

size value. In other words, an effect size is a relevant interpretation of an esti-

mated magnitude of treatment effect obtained from an effect size statistics. This is

sometimes referred as the practical importance of the effect.

An important class of ES measures is defined by using the standardized ef-

fect size. In this class is included the Cohen’s d, which is the difference measured

in units of some relevant standard deviation (SD) (CUMMING; FINCH, 2005). Co-

hen’s d is the ES index for the t-test of the difference between independent means

expressed in units of (i.e., divided by) the within-population standard deviation,

which is given by:

d =
µa − µb

σ

where µa and µb are independent means and σ is the within-population standard

deviation.
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In other words, the effect size for the general t-test can be seen as the dis-

tance between the mean of the t-distribution (usually zero) under the null hypothe-

sis and the means of the t-distribution under some fixed alternative hypothesis. In

sensory discrimination test, we can think of this as the distance between the means

of a control product and the mean of a test product under the alternative hypothe-

sis, in standard deviation units. Then the values of the effect size can be set on the

basis of d′ (d-prime) estimates from signal detection theory (LAWLESS; HEYMANN,

2010), represented by δ when it refers to the population effect size (ENNIS, 1993).

As standardized metric, any effect reported in form of d′ can be compared with

any other.

There are several effect size measures to use in the context of an F-test for

ANOVA. Cohen (1992) defined the effect size for one-way ANOVA as the standard

deviation of the K population means divided by the common within-population

standard deviation:

f =
σm
σ

(7)

where σm is the standard deviation of the K population mean and σ is the within-

population standard deviation.

In fact, the analysis of variance is a way to address multiple treatments

or levels, i.e., to compare several means at the same time, while in the t-test we

compare only two means. That means, there is an obvious relationship between

F and t-statistics: in a simply two-level experiment with only one variable, the

F-statistics is simply the square of the t-value (LAWLESS; HEYMANN, 2010). As

t-statistics, the F ratio can be seen as an effect size itself. However, the F -statistic

is not the best measure of effect size as it depends on the number of observations

for each product. In addition, the various ANOVA mixed models, that we often

use for such analysis also complicates the relative effect size handling. For exam-

ple in mixed models, different effects may have different noise structures, that is,

different factors may be tested using different F -test denominators. The main aim

of this thesis is to present a visual tool to interpret mixed models ANOVA results

based on a more proper effect size measure.

A very similar measure of standard ES for ANOVA is the root-mean-
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square standardized effect (Ψ) presented by Steiger (2004). Considering the one-

way, fixed-effects ANOVA, in whichK means are compared for equality, and there

are n observations per group the root-mean-square standardized effect is defined

by

Ψ =

√√√√√√ 1

K − 1

K∑
i=1

(µi − µ)2

σ2
(8)

where σ2 is the mean square error. In fact, this could be just an interpretation of

what the Cohen’s f really is using K − 1 for expressing the standard deviation as

opposed to using K as others might do.

2.4 Thurstonian d′ and Cohen’s d

Cohen’s d, the effect size used to indicate the standardized difference be-

tween two means, has a close link with the Thurstonian d′, a signal-to-noise ratio

from Signal Detection Theory (SDT), which is widely used in sensory science.

The Thurstonian d′ is the statistic used to estimate the value for δ, the fundamental

measure of sensory difference in the Thurstonian model. Mathematically speaking

Cohen’s d and the Thurstonian d′ are exactly the same: the difference between two

means relative to a standard deviation. Only the contexts are usually different. The

Thurstonian d′ is a key parameter quantifying the sensory difference between the

stimuli for sensory discrimination test (e.g. the duo-trio, triangle, 2-AFC, 3-AFC)

(MEILGAARD; CIVILLE; CARR, 2006), while the Cohen’s d is used as a simply way

to quantifying the size of the difference between two groups (COE, 2002).

Psychophysics, a branch of experimental psychology devoted to study-

ing the relationships between sensory stimuli and human responses, has a strong

influence in sensory science. Perhaps the most widely applied and influential the-

ory in all of the experimental psychology has been signal detection theory (SDT)

(LAWLESS; HEYMANN, 2010). SDT approach was first introduced in sensory sci-

ence with focus on exploring the factors influencing the perceptual process that

integrates the information from the senses and the decision process (O’MAHONY,

1972, 1979), leading to more effect test designs (O’MAHONY, 1995). After this
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the focus shifted towards understanding and optimizing the decision processes in

sensory tests leading to the development of more effective tests that are more pre-

dictive of consumer’s reality (HAUTUS; O’MAHONY; LEE, 2008).

The framework Thurstonian modelling (THURSTONE, 1927) is a more elab-

orated model of human behaviour used to understand better the results observed in

discrimination test. The Thurstonian approach is responsible for the biggest impact

on the development of sensory difference discrimination methods. The statistical

methods needed for analysing such data can be found among methods based on the

binomial distribution and standard methods for analysing tables of counts, since

this kind of tests produce binary data. As pointed out by Ennis (1993) one of the

weaknesses of working on the count scale is that it is a test protocol dependent:

the number of expected correct answers for the same products depend heavily on

which test that is carried out. By transforming the number of correct answers into

an estimate of the underlying (relative) sensory difference, the Thurstonian model

estimates the size of a sensory difference from a particular test, the so-called d-

prime (d′). This measure can be seen as generalized measure of sensory difference

that expresses size of sensory differences. Since the d′ is independent of the test

method used, it can be used to accurately and systematically compare sensory tests

and study the effects of changes in test design and instructions on the performance

of the test (HOUT, 2014).

Although the Thurstonian approach is the most well-known for its use for

sensory discrimination test protocols with binary or ordered categorical outcomes,

it has also been suggested and used for ratings data, see e.g. Ennis (1999) and

Warnock, Shumaker and Delwiche (2006) and also in the context of multivariate

analysis of ratings data as e.g. probabilistic multidimensional scaling, cf. MacKay

and Zinnes (1986). Brockhoff and Christensen (2010) and Christensen, Cleaver

and Brockhoff (2011) showed how the Thurstonian approach in many cases can

be viewed as and embedded into the so-called generalized linear model and/or or-

dinal regression theory and framework. One benefit of this is the ability to handle

regression and ANOVA type analysis within the framework of a Thurstonian ap-

proach, where otherwise the most common Thurstonian approach would be to do

repeated one- and two-sample computations on various subsets of the data.
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Abstract

We utilize the close link between Cohen’s d, the effect size in an ANOVA

framework, and the Thurstonian (Signal detection) d-prime to suggest better visu-

alizations and interpretations of standard sensory and consumer data mixed model

ANOVA results. The basic and straightforward idea is to interpret effects rela-

tive to the residual error and to choose the proper effect size measure. For multi-

attribute bar plots of F -statistics this amounts, in balanced settings, to a simple

transformation of the bar heights to get them transformed into depicting what can

be seen as approximately the average pairwise d-primes between products. For

extensions of such multi-attribute bar plots into more complex models, a similar

transformation is suggested and becomes more important as the transformation

depends on the number of observations within factor levels, and hence makes bar

heights better comparable for factors with differences in number of levels. For

mixed models, where in general the relevant error terms for the fixed effects are

not the pure residual error, it is suggested to base the d-prime-like interpretation on

the residual error. The methods are illustrated on a multi-factorial sensory profile

data set and compared to actual d-prime calculations based on Thurstonian regres-

sion modelling through the ordinal package. For more challenging cases we offer

a generic implementation of the method as part of the R-package SensMixed.

Keyword: Effect Size, Analysis of Variance, F test, d-prime
3Paper submitted to Food Quality and Preference
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3.1 Introduction

Data analysis within the sensory and consumer science fields can be par-

ticularly challenging due to use of humans as the measurement instrument. Un-

derstanding how responses change due to product differences versus change due

to subject differences is important. Analysis of variance (ANOVA) is one of the

most often employed statistical tools to study differences between products when

they are scored by either categorical rating (ordinal) scales and/or unstructured

line scales. If for instance one finds that the main product effect is significant, one

will be interested in knowing more about which products that are different from

each other. To complement the ANOVA F -table, post hoc tests are performed.

These procedures, also called multiple comparison tests, are generally based on

adjusting the critical values of the individual tests in such a way that the overall

significance level is controlled. An often used of these tests is the Tukey’s test

based on comparing differences between pair of means with an adjusted critical

value. Other methods that can be used for post hoc analysis are the Bonferroni

method, Newman-Keul’s test and Ducan’s test (NÆS; BROCKHOFF; TOMIC, 2010).

Data analysis based on analysis of variance within the sensory field is usu-

ally characterized by a number of such relevant post hoc analysis. To some extend

this then handles the effect interpretation part of the analysis. However, it is still

valuable to be able to supplement the initial overall ANOVA F -testing, often with

highest focus on the p-values with some good measures of overall effect size. In

the widely used open source software PanelCheck (NOFIMA; ÅS, 2008) the inbuilt

ANOVA results are visualized by multi-attribute bar plots of F -statistics combined

with colour coding of the significance results. In this way the F -statistic is used

as a kind of effect size measure. This can be a good approach, especially within

PanelCheck, where the multi-attribute bar plot of the overall product differences

are used only for single-factor product effects and with the same choice of F -test

denominator across all the attributes of a plot.

However, the F -statistic itself is generally not the best measure of effect

size as it depends on the number of observations for each product. And the various

ANOVA mixed models, that we often use for such analysis also complicates the
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relative effect size handling as generally in mixed models, different effects may

have different noise structures, that is, different factors may be tested using dif-

ferent F -test denominators. Moreover, as was pointed out in Kuznetsova et al.

(2015), it is important, specifically within the sensory and consumer field to be

able to also handle more complicated settings than the most simple ones.

More recently, a number of new open source software tools with, among

other things, focus on more extended type of mixed model ANOVA for sensory

and consumer data have appeared. The ConsumerCheck (TOMIC et al., 2015),

a tool developed in the same spirit as PanelCheck, offers quite general mixed

model analysis of consumer data based on the newly developed more generic

R-package lmerTest (KUZNETSOVA; BROCKHOFF; CHRISTENSEN, 2014a). In ad-

dition, in the still developing R-package SensMixed (KUZNETSOVA et al., 2015)

and (KUZNETSOVA; BROCKHOFF; CHRISTENSEN, 2014b) one of the main purposes

is to provide nice and visual multi-attribute interpretations of more complicated

analysis. The resulting multi-attribute bar plots will then involve different factors

with different number of levels and different number of observations within the

levels. It may also involve different mixed model error terms for different factors.

All of this calls for some careful thoughts on how to visualize the results of the

(mixed) ANOVA results in the best possible way.

The purpose of the present study is to suggest better multi-attribute ANOVA

plots for sensory and consumer data based on an effect size expressed in terms

of relative pairwise comparisons. We will show how this has a close link to the

Thurstonian d-prime, and as such is a generic measure that can be interpreted and

compared across any attribute and situation. For balanced data settings, the mea-

sure is a simple transformation of an F -statistic making the approach easily appli-

cable for anyone for these cases. For more challenging cases we offer a generic im-

plementation of the method as part of the R-package SensMixed (KUZNETSOVA;

BROCKHOFF; CHRISTENSEN, 2014b).

The paper is organized such that first, in Section 3.2, we introduce the

basic notion of effect size (ES) in ANOVA framework and the concepts of d-prime.

Then in Section 3.3, we define the effect size δ̃. Next, in Section 3.4 it is shown

how to estimate the δ̃ ES measure for the standard mixed model with possible bias
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correction. After this, in section 3.5 we illustrate the method on a multi-factorial

sensory profile data set and compare the δ̃ proposed here with the actual d-prime

based on Thurstonian modelling. The paper ends with discussions in Section 3.6.

3.2 Cohen’s d and d-prime - important effect size measures

Analysis of variance (ANOVA) is one of the most used and the most im-

portant methodologies when focus is on investigating product differences in sen-

sory and consumer studies (NÆS; BROCKHOFF; TOMIC, 2010). ANOVA includes a

particular form of null hypothesis statistical testing (NHST) used to identify and

to quantify the factors that are responsible for the variability of the response. The

null hypothesis for ANOVA is that the means of the factors are the same for all

groups. The alternative hypothesis is that, at least, one mean is different from the

others. An F -statistic is obtained in the ANOVA and the F distribution is used to

calculate the p-value.

The NHST is a direct form and an easy way to conclude about the sta-

tistical significance of a factor, by considering a significance level and a p-value.

However, it gets a lot of criticism from researchers of different fields. Yates (1951)

observed that researchers paid undue attention to the results of the tests of sig-

nificance and too little attention to the magnitudes of the effects, which they are

estimating. NHST addresses whether observed effects stand out above sampling

error by using a test statistic and its p-values, though it is not as useful for estimat-

ing the magnitude of these effects (CHOW, 1998).

As Sun, Pan and Wang (2010) observed, the fundamental problem with

NHST is not that it is methodologically wrong; the misuse of NHST is the fault.

Cohen (1994) pointed out that the NHST does not tell us what we want to know,

and we so much want to know what we want to know, that, out of desperation, we

nevertheless believe that it does!

The ongoing debate over statistical significance tests has resulted in alter-

native or supplemental methods for analysing and reporting data. One of the most

frequent recommendations is to consider the effect size estimates to supplement

p-values and to improve research interpretation (COE, 2002; COHEN, 1990, 1992,
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1994; CUMMING; FINCH, 2005; DEVANEY, 2001; FAN, 2010; GRISSOM; KIM, 2012;

KELLEY; PREACHER, 2012; STEIGER, 2004; SUN; PAN; WANG, 2010). Cohen (1990)

affirms that the purpose should be to measure the magnitude of an effect rather than

simply its statistical significance; thus, reporting and interpreting the effect size is

crucial. Fan (2010) shows that p-value and effect size complement each other, but

they do not substitute for each other. Therefore, researchers should consider both

p-value and effect size.

Cohen (1992) established a relation between the effect size (ES) and NHST

definitions: the ES corresponds to the degree in which the H0 is false, i.e., it is a

measure of the discrepancy between H0 and H1. Grissom and Kim (2012) states

that whereas a test of statistical significance is traditionally used to provide evi-

dence (attained p−value) that the null hypothesis is wrong; an ES measures the

degree to which such a null hypothesis is wrong (if it is false).

In other words, an effect size is a name given to a family of indices that

measure the magnitude of a treatment effect. It can be as simple as a mean, a

percentage increase, a correlation; or it may be a standardized measure of a dif-

ference, a regression weight, or the percentage of variance accounted for. For a

two-group setting, the ES quantifies the size of the difference between two groups,

and may therefore be said to be a true measure of the significance of the difference

(COE, 2002).

An important class of ES measures is defined by using the standardized ef-

fect size. In this class are included the Cohen’s d, which is the difference measured

in units of some relevant standard deviation (SD) (CUMMING; FINCH, 2005). Co-

hen’s d is the ES index for the t test of the difference between independent means

expressed in units of (i.e., divided by) the within-population standard deviation,

which is given by:

d =
µa − µb

σ

where µa and µb are independent means and σ is the within-population standard

deviation.

There are several effect size measures to use in the context of an F -test for

ANOVA. Cohen (1992) defined the effect size for one-way ANOVA as the standard

deviation of the K population means divided by the common within-population
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standard deviation:

f =
σm
σ

(9)

where σm is the standard deviation of theK population means and σ is the within-

population standard deviation.

A very similar measure of standard ES for ANOVA is the root-mean-

square standardized effect (Ψ) presented by Steiger (2004). Considering the one-

way, fixed-effects ANOVA, in whichK means are compared for equality, and there

are n observations per group the root-mean-square standardized effect is defined

by

Ψ =

√√√√√√ 1

K − 1

K∑
i=1

(µi − µ)2

σ2
(10)

where σ2 is the mean square error. In fact, this could be just an interpretation of

what the Cohen’s f really is using K − 1 for expressing the standard deviation

as opposed to using K as others might do. For the remainder of this paper we

allow ourselves to consider the Ψ to be our version of the Cohen′s standardized

ES measure for one-way ANOVA, such that for us “Cohen’s f = Ψ".

The field of ES measures and estimation thereof is characterized by a cer-

tain level of confusion in the choice and use of the various ES measure names,

where different names are used for almost the same measures. And, some names

are used and defined for population versions of the measures whereas others for

sample versions. In addition, the confusion is not diminished by the fact that many

of these sample version measures will be biased estimates of the population ver-

sions, so often several alternative sample versions of the same population measure

exist. It is not the aim of this paper to uncover and review this entire field. Rather

we will be clear on exactly how we define the measures we use in both the popula-

tion versions and the sample versions. Also, sometimes such ES measures are used

for power and sample size computations in the planning phase, and at other times

they are used for the actual data analysis. We will use it purely for data analysis

interpretation.

Cohen’s d for a two-sample setting has a close link with the Thurstonian

d-prime, a signal-to-noise ratio from Signal Detection Theory (SDT), which is
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widely used in sensory science. Mathematically speaking they are exactly the

same: the difference between two means relative to a standard deviation. Only

the contexts are usually different. The framework of SDT (GREEN; SWETS, 1966)

and Thurstonian modelling (THURSTONE, 1927) make it possible to investigate the

internal and external factors in sensory test and study how these factors influence

subjects’ test performance (HOUT, 2014).

The SDT approach was first introduced in sensory science with focus on

exploring the factors influencing the perceptual process that integrates the informa-

tion from the senses and the decision process (O’MAHONY, 1972, 1979), leading to

more effective test designs (O’MAHONY, 1995). After this the focus shifted towards

understanding and optimizing the decision processes in sensory tests leading to the

development of more effective tests that are more predictive of consumer’s reality

(HAUTUS; O’MAHONY; LEE, 2008).

The Thurstonian approach is responsible for the biggest impact on the de-

velopment of sensory difference discrimination test methods (e.g. the duo-trio,

triangle, 2-AFC, 3-AFC). Since this kind of tests produce binary data, the statis-

tical methods needed for analysing such data can be found among methods based

on the binomial distribution and standard methods for analysing tables of counts.

As pointed out by Ennis (1993) one of the weaknesses of working on the count

scale is that it is test protocol dependent: the number of expected correct answers

for the same products depend heavily on which test protocol that is carried out.

By transforming the number of correct answers into an estimate of the un-

derlying (relative) sensory difference, the Thurstonian model gives the so-called

d-prime (d′). The d-prime, which was defined to quantify the effect size, is the

estimate of the size of a sensory difference from a particular test. This measure

can be seen as generalized measure of sensory difference that expresses size of

sensory differences. Since the d′ is independent of the test method used, it can

be used to accurately and systematically compare sensory tests and study the ef-

fects of changes in test design and instructions on the performance of the test

(HOUT, 2014). Although maybe the Thurstonian approach is most well-known for

its use for sensory discrimination test protocols with binary or ordered categori-

cal outcomes, it has also been suggested and used for ratings data, see e.g. Ennis
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(1999) and Warnock, Shumaker and Delwiche (2006) and also in the context of

multivariate analysis of ratings data as e.g. probabilistic multidimensional scal-

ing, cf. (MACKAY; ZINNES, 1986). Brockhoff and Christensen (2010) and Chris-

tensen, Cleaver and Brockhoff (2011) showed how the Thurstonian approach in

many cases could be viewed as and embedded into the so-called generalized linear

model and/or ordinal regression theory and framework. One benefit of this is the

ability to handle regression and ANOVA type analysis within the framework of a

Thurstonian approach; where otherwise the most common Thurstonian approach

would be to do repeated one- and two-sample computations on various subsets of

the data.

3.3 Methods

We suggest using an ES measure that measures the average pairwise dif-

ferences between the products or factor levels in question. More specifically, we

define it as the root mean square of standardized pairwise differences, which in the

balanced one-way ANOVA setting (I groups with n observations in each group),

can be expressed as:

δ̃ =

√√√√ 2

I(I − 1)

I∑
i1<i2

(
µi1 − µi2

σ

)2

(11)

where
I∑

i1<i2

means the sum of all unique combinations of the two indices. The sum

hence includes I(I − 1)/2 terms, and it is clear that we have expressed the square

root of the average of all standardized squared pairwise differences.

The first thing to notice is that the only difference to the Cohen’s f or Ψ

measures, defined above, is that products - usually in sensory and consumer ap-

plications the groups would represent different products - are compared pairwise

rather than with the overall mean. This means that we have the following rela-

tion between δ̃ and (our version of) Cohen’s f in this balanced one-way ANOVA
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setting:

δ̃ =
√

2Ψ =
√

2f

The formal (and short) proof of this is given in the Appendix A.

We need to use our δ̃ ES measure also for multi-factorial settings as this

will be an important part of the applications of this. Even though it may be more

or less straightforward how this can be done, we believe that it is clarifying to at

least express this formally in one of the simplest non-trivial extensions. For the

replicated two-factor factorial design, the ANOVA model with main effects of A

(αi, i = 1, . . . , I) and B (βj , j = 1, . . . , J) and interaction effects A×B (γij), we

define the δ̃ ES measures as:

δ̃A =

√√√√ 2

I(I − 1)

I∑
i1<i2

(
αi1 − αi2

σ

)2

(12)

δ̃B =

√√√√ 2

J(J − 1)

J∑
j1<j2

(
βj1 − βj2

σ

)2

(13)

δ̃A×B =

√√√√ 2

IJ(IJ − 1)

IJ∑
ij<i′j′

(
γij − γi′j′

σ

)2

(14)

where the sum
∑

ij<i′j′

means all unique pairwise combinations of all IJ levels.

Note, how this definition of the interaction ES measure is a “pure" interaction

measure, where indeed all of the many combined levels are compared with each

other, but only the real interaction effects are included, that is, the main effects

have been removed from this measure. In this way, the size of the interaction ES

measure is directly comparable with the size of the main ES measures.

Inspired by the 2-way interaction expression we can formulate a version

of δ̃ that would be applicable for any order of interaction effect F = F1 × F2 ×
· · · × FM :

δ̃F =

√√√√ 2

K(K − 1)

∑
k<k′

(
γk − γk′

σ

)2

(15)
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where the sum
∑
k<k′

means the unique pairwise combination of all combinations of

the levels of all the factors in F = F1 × F2 × · · · × FM , and γk is the interaction

effect for the k’th of all these combinations, where k = 1, . . . ,K and K is the

total number of combinations in the interaction effect. In addition, as above: the

effects of all lower order effects have then been removed from the measure.

Finally, it is important to realize that these definitions also apply to situa-

tions where at the same time we are having yet other effects in the model including

the possibility of these being regression (covariate) effects or any combination of

such. With this is place we are now ready to begin the discussion of how to com-

pute these measures in practice.

3.4 The sample estimation of the δ̃ ES measures

3.4.1 The independent two- and multi-group one-way ANOVA case

In the two-independent-samples case with n1 = n2 = n, the absolute

value of the pooled t-test statistic is:

|t| = |x̄1 − x̄2|√
2s/
√
n

=

√
n

2

|x̄1 − x̄2|
s

where s =
√
MSE is the pooled standard deviation estimate. When there are

only two means to compare, the t-test and the ANOVA F -test are equivalent; the

relation between ANOVA and t is given by F = t2. So a simple rescaling of the

root-F statistics will correspond to the “plug-in" sample version of δ̃ in this case

(as there is only one term in the sum that defines δ̃):√
2

n

√
F =

|x̄1 − x̄2|
s

Similarly for the balanced K-group one-way ANOVA setting, we can ob-

tain a “plug-in"-sample estimate of δ̃ by the same back transformation of the F -
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statistic:
ˆ̃
δ =

√
2

n

√
F

This is almost directly clear from the definition of Ψ above.

3.4.2 Bias of sample estimates and possible bias corrections

The simple plug-in sample estimate that appeared in a natural way above

is in fact not an unbiased estimate of the population δ̃-value. And even though

this may not necessarily prevent us from using such a plug-in approach for the

visualization purposes, that are the main focus of the current paper, it is valuable

to have some understanding of the bias mechanisms. Some way to possible bias

corrections, at least in cases where this will be straightforward, would be valuable.

Assuming the standard normal based one-way ANOVA model, formally

the F -statistic:

F =
MSProduct

MSE

will have a non-central F -distribution as its sampling distribution. The mean of

the F can then be found from basic probability and is well-known to be:

E(F ) =
nK

nK − 2

(
n
∑K

i=1(µi − µ)2/(K − 1) + σ2

σ2

)
=

nK

nK − 2

(n
2
δ̃2 + 1

)
where we have re-expressed it in terms of our δ̃ ES measure. We see that using the

plugin sample estimate by the above given back transformation of the F -statistic

will over-estimate the δ̃ in two ways. Firstly, the fraction nK
nK−2 is always larger

than 1. This bias mechanism comes from the fact that the mean of the fraction

of two random variables is not the fraction of the means. Since in general for

reasonably sized experiments, the number
√

nK
nK−2 will be rather small, this bias

will most often not be important, and for most of what we do from here this will

be ignored. But if wanted, a simple correction by the factor could be applied.

Secondly, and more importantly, we can see that the less biased back trans-
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formation of the F -statistic would be to subtract 1 from it:

ˆ̃
δ =

√
2

n

√
F − 1

The bias mechanism behind this effect comes from fact that when com-

puting the variability between the sample means we also get some residual error

as part of it, which is seen from the classical expected mean square expression for

the expected value of the numerator of the F -statistic:

E(MSproduct) = n
K∑
i=1

(µi − µ)2/(K − 1) + σ2

As this bias can be non-trivial, and the smaller theF , the higher the relative

bias, we recommend to correct for this whenever feasible.

3.4.3 Some standard mixed model sensory and consumer cases

For most sensory and consumer applications the proper model to use would

be a mixed model of some kind, where at least effects related to assessors or

consumers would be considered random, see e.g. Kuznetsova et al. (2015) and

Næs, Brockhoff and Tomic (2010). Three such examples are the complete con-

sumer preference study corresponding to a completely randomized block setting,

the randomized replicated quantitative descriptive Sensory analysis (QDA) corre-

sponding to a multi-attribute two-way (products-by-assessor) mixed ANOVA or

the batched/sessioned replicated QDA corresponding to a three-way (products-

by-assessor-by-batches) mixed ANOVA. These are the three cases that for single

factor product study design and complete data can be handled by the PanelCheck

tool, leading to either of the following three F -tests for product differences:

Fprod =
MSprod
MSE

Fprod =
MSprod

MSproduct×assessor

Fprod =
MSprod

MSproduct×assessor +MSproduct×session −MSE
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Even though the significance statements in the latter two cases are based

on the shown “mixed" error terms, the definition of δ̃ can be interpreted as mea-

suring the effects relative to the residual standard deviation. Clearly, there could

be some potential additional interpretations of considering effect sizes in mixed

models relative to other error components than the residual error, but we leave that

for future research. In the current paper, we interpret effects relative to the best

estimate of the average within individual and within-product variability, that is,

the residual error estimate. This means that the back transformation of F -statistics

only work for the first case. However there is an easy way to obtain bias corrected

estimates of δ̃ for the two other cases: simply run the fully fixed effect version of

the models and then apply the back transformation on the product F -tests coming

from these models:

ˆ̃
δ =

√
2

n

√
FFIXED − 1 (16)

Remember, that the fully fixed model should only be run to get the ES

measure estimates - everything else, including the significance information, should

be extracted from the proper mixed model.

3.4.4 Back transforming F -statistics more generally

The back transformation formula we have given only holds for balanced

main effects. For balanced interaction effects, the proper more general bias-corrected

back transformation formula becomes:

ˆ̃
δ =

√
2

n

√
DF

K − 1

√
F − 1 (17)

where n is the (same) number of observations for each level of the interaction,

DF is the degrees of freedom for the interaction effect and K is the number of

combined levels of the interaction factor. The proof is given in the Appendix A.

These back transformations formulas can then be applied to any balanced situation

for any main and interaction effect in cases where a fully fixed version of the

relevant model is run.
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It is possible to find back transformations formulas for other situations,

e.g. covariate effects, non-balanced settings or even a general contrast effect. An

alternative that can always be used is to simply extract the relevant effects from

the model fit and then use the defining formula directly. In practice, this can be

done e.g. by extracting so-called lsmeans and/or model parameter estimates from

the model and use those in the defining formula. This is the approach used in

the R-package SensMixed providing a method that works for any setting. The

downside of this is the lack of bias correction in the estimates.

3.4.5 More general mixed models

For more general mixed models in sensory and consumer applications the

product F -statistics can have a more complex form and the effects are estimated

by complex weighted averages of the data making the approach of formulating a

corresponding fully fixed model followed by a back transformation of a fixed F

unfeasible as the effects could be differently estimated in the fixed model.

We suggest instead the general “plug-in" approach implemented in the

Sensmixed package, Kuznetsova, Brockhoff and Christensen (2014b) for these

situations - these work similarly for mixed models.

3.5 Examples

This section will contain an example to illustrate the method on a multi-

factorial sensory profile data set. We also present a simple example to compare the

δ̃ with the actual d-prime calculations based on Thurstonian regression modelling.

The analysis was performed using the SensMixed package. The R-code of the

first example is given in the Appendix B. The TVbo data set are available in the

SensMixed package.
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3.5.1 Example 1: Multi-way product structures in sensory profile data

The TVbo data set comes from the high-end HIFI company Bang & Olufsen

A/S, Struer, Denmark. The main purpose was to test products, specified by two

features: Picture (factor with four levels) and TVset (factor with three levels).

The 12 combinations of TVset and Picture were assessed by a sensory panel

composed by eight trained panelists for a list of 15 different response variables

(characteristics of the product) in two replications. The data is available in the

SensMixed package named TVbo.

To specify the mixed model, the main effect Assessor plus interactions

between Assessor and product effects (TVset and Picture and the interaction

TVset:Picture) are considered random effects. The fixed part contains a multi-

way product structure: two main effect TVset and Picture and an interaction be-

tween them. The 15 attributes (Color Saturation, Colour Balance, Noise, Depth,

Sharpness, Light Level, Contrast, Sharpness Movement, Flickering Stationary,

Flickering Movement, Distortion, Div Glass Effect, Cutting, Flossy Edges, Elastic

Effect) can be analysed all together using the SensMixed package.

In Figure 1 a multi-attribute bar plot based on the F -values from the mixed

model is presented combined with colour coding of the significance results. Since

the mixed model specified here has three fixed effects (TVset, Picture and in-

teraction), the F -tests have different mixed model error term for each effect. In

this way the F -statistic is not comparable because the F -test denominators are

different across the attributes.

Looking into the multi product structure given by Figure 1 we can see that

the main effect TVset is significant for 13 of 15 attributes; the main effect Picture
and the interaction are significant for 11 of 15 attributes. For the attributes 2, 4 and

13 for instance, the main effect TVset is significant and Picture is not significant.

It means that, for these attributes the products differ mostly due to the effect of

TVset. In that way, for the attribute 8 the products differ mostly due to Picture.

For the attribute 10, all fixed effects are not significant, that means the assessors

were not able to discriminate the products for this attribute. For the remainder

attributes, 1, 3, 5, 6, 7, 11, 12, 14 and 15, both main effects are significant and also
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the interaction, except for the attribute 12. Since the number of levels of the two

main effects are different, the F test are not comparable.

In Figure 2 is presented the alternative bar plot to visualize the (mixed)

ANOVA results based on the ˆ̃
δ, the effect size measure obtained from the back

transformation on the product F -tests coming from the fixed model for TVbo data.

Comparing the bars of the delta-tilde plot (Figure 2), it can be seen that the effect

of TVset is stronger than the effect of Picture for the attributes 1, 2, 4, 5, 6, 7 and

13. The effect of TVset for attribute 6, for instance, is much stronger than all the

effects for the other attributes. The effect of Picture is stronger for the attributes

3, 8, 9, 11, 12, 14 and 15 than for the other attributes. The effect of interaction

is stronger for the attribute 11 than for the other attributes. It is important to note

that the Figure 2 gives us relevant information regarding the size of each effect.

Furthermore the plot presented in Figure 2, based on the delta-tilde estimates,

makes the bar heights better comparable, especially when the effects have different

number of levels.

Even when the levels of the effects are the same, the delta-tilde plot can

be a better visual tool, especially when there are a F-statistics much larger than

the others, e.g. the F-statistics for the TVset effect for the attributes 6 and 15

given in Figure 1. It makes the small values difficult to visualize. With the back

transformation, the ES estimates presented in the Figure 2 has a much smaller

range which makes the bar heights better comparable.

For extensions of such multi-attribute bar plots into more complex models,

a similar transformation is suggested and becomes more important as the transfor-

mation depends on the number of observations within factor levels, and hence

makes bar heights better comparable for factors with differences in number of lev-

els.

Now let us look more closely into an attribute to see how the ˆ̃
δ was calcu-

lated for each effect. Considering the Attribute 7 as an example. To obtain the bias

corrected estimates of δ̃ we first run the fully fixed effect version of the model and

then we apply the back transformation on the product F -test from this model, cf.

Table 1. It is important to keep in mind that the fixed effect model is used only to

get the product F -tests to apply the back transformation to obtain the ES measure
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Figure 1 Bar plot for F values for fixed effects of TVbo data.

Figure 2 Bar plot based on delta-tilde for fixed effects of TVbo data.
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estimates. The significance information should be extracted from the proper mixed

model.

Table 1 ANOVA table for the fixed effect model for attribute 7 of TVbo data

Df Sum Sq Mean Sq F value Pr(>F)
TVset 2 247.41 123.70 70.01 0.0000
Picture 3 19.84 6.61 3.74 0.0136
TVset:Picture 6 44.98 7.50 4.24 0.0007
Assessor 7 130.87 18.70 10.58 0.0000
TVset:Assessor 14 137.93 9.85 5.58 0.0000
Picture:Assessor 21 22.51 1.07 0.60 0.9047
TVset:Picture:Assessor 42 99.83 2.38 1.35 0.1183
Residuals 96 169.64 1.77

The back transformation of the F -statistics for the main effect is calculated

according to the formula (16):

ˆ̃
δTV =

√
2

64

√
70.0045− 1 = 1.47

ˆ̃
δPicture =

√
2

48

√
3.7421− 1 = 0.34

For the interaction effect, we get the back transformation of theF -statistics

from the more general bias-corrected transformation given by the formula (17):

ˆ̃
δTV ∗Picture =

√
2

16

√
6

11

√
4.2422− 1 = 0.47

The delta-tilde estimates for the product effects (TVset, Picture and the

interaction TVset:Picture) for the attribute 7 is presented in Figure 3. Since the

delta-tilde estimates represents the effect size, the heights of the bars can be com-

parable between each other. From the Figure 3 we can see that the delta-tilde

estimate for TVset is much larger than the others, which means that the effect of

TVset is stronger than the effect of Picture for the attribute 7. So the impact of

TVset effect on the ability to discriminate between products is higher than the im-
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Figure 3 Bar plot for delta-tilde based on F-statistics from fixed effects model
for attribute 7.

pact of Picture. When interpreting the δ̃-values we must remember that these are

expressing average pairwise differences. This means that if there is only a single

product that differs from the rest, say, and the remaining ones are really the same,

it will tend to appear as a small average effect in the plot - but potentially still

statistically significant. These plots cannot substitute a good post hoc analysis of

product differences.

3.5.2 Example 2: Comparison with d-prime from Thurstonian model - sim-
ple example

To compare the δ̃ with the d-prime from Thurstonian model we will use

the simplest example considering a subset of the TVbo data. Taking the average of

TVset1 and TVset2 by Picture for the 8 Assessors we get the subset described

in the table 2. Table 3 gives the ANOVA table for the subset of TVbo data.

The ES measure estimates for this situation is given by the difference be-
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Table 2 Subset of TVbo data

Assessor 1 2 3 4 5 6 7 8 Mean
TVset1 3.7 5.5 7.1 2.6 11.3 9.1 8.8 8.3 7.0500
TVset2 1.4 4.0 4.8 2.1 7.4 5.2 2.1 4.1 3.8875

Table 3 ANOVA table for subset of TVbo data

Df Sum Sq Mean Sq F value Pr(>F)
Tvset 1 40.01 40.01 6.38 0.0243
Residuals 14 87.85 6.27

tween the independent means divided by residual error estimate.

ˆ̃
δ =

7.05− 3.8875√
6.27

= 1.26

To calculate the “real” d-prime from Thurstonian model we use the ordi-
nal package (CHRISTENSEN, 2014). First the subset presented in the table 2 are

categorized from 1 to 10, since the response in the cumulative link model (CLM)

is usually interpreted as an ordinal response with levels ordered. The categorized

data is presented in table 4. Then we obtain the d-prime from the cumulative link

model function (see Appendix B) which is equal to 1.26.

Table 4 Categorized data for subset of TVbo data

Assessor 1 2 3 4 5 6 7 8
TVset1 3 5 6 2 10 8 8 8
TVset2 1 3 4 2 7 5 2 4

We can see that the close link between delta-tilde, the effect size in an

ANOVA framework, and the Thurstonian d-prime, discussed in the section 3.2,

can be confirmed by a comparison between the real d-prime calculation and the

delta-tilde estimate.
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3.6 Discussion

In this paper we have suggested the use of ES measures as a visual tool to

improve the interpretation of the ANOVA table in Analysis of Variance. In spite of

having been discussed in literature for decades, ES measures have not been used

extensively for this purpose. Instead, more focus has been on the post hoc part of

the ANOVA data analysis. We believe that even though the ES plots suggested here

cannot substitute a good post hoc analysis, they are valuable additional tools for

a good and relevant interpretation of the ANOVA table, and can help to move the

focus a bit away from purely looking at p-values but rather focusing on the size of

the effects (but still using the p-value information). And this becomes particularly

useful in situations with more than a single factor and with several attributes.

It could be a relevant next step to work in the development of significance

statements and effect confidence intervals. For now, we suggest a simple trans-

formation on the F -statistics from ANOVA to obtain the ES measures. We also

mentioned that one could pursue various explicit extended versions of how to back

transform F -statistics to give the δ̃-measure, but here we just use the simple trans-

formation with the purpose of improving the visual interpretation. The approach

transforms the bar plots of F -statistics by re-scaling the bar heights and gives the

average pairwise d-tilde between products. This has the same interpretation as the

real d-prime calculation from Thurstonian approach.
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4 TOOLS FOR MIXED MODELLING OF SENSORY DATA

4.1 Introduction

In the half of last century many scientists had dreamed of the day when

there would be possible to improve their statistical analysis by using computers.

We would be glad to realize that we are living in these days. Actually, the anal-

ysis of data using softwares have brought enormous contribution for the science.

Among the commercial and open source softwares for statistical analysis, the free

available software R plays an important role. With numerous packages devel-

oped by the advanced users, the software R has become the most powerful and

most widely used statistical software nowadays. Due to its elegance and power in

academy, the software R has exploded in popularity and functionality, emerging as

the data scientist’s tool of choice. The sensometric scientists have also embraced R

to solve their most challenging problems in fields ranging from mixed modelling

analysis of variance to more complex as the Bradley-Terry and Thurstonian mod-

els, as well as multivariate methods, as Correspondence Analysis (CA), Multiple

Correspondence Analysis (MCA), Principal Component Analysis (PCA) and Mul-

tiple Factor Analysis (MFA). The result has been many R packages developed spe-

cially for sensory science data such as sensR (CHRISTENSEN; BROCKHOFF, 2015),

SensoMineR (HUSSON; LE; CADORET, 2014), lmerTest (KUZNETSOVA; BROCK-

HOFF; CHRISTENSEN, 2014a) and SensMixed (KUZNETSOVA; BROCKHOFF; CHRIS-

TENSEN, 2014b).

In this Chapter, we present a review about the R packages lmerTest and

SensMixed, both developed for mixed modelling of sensory data. We will focus

more on the second one, which has an implementation of the delta-tilde method

described in Chapter 3.

Another open source tool, which deserves attention, is the user-friendly

software PanelCheck (NOFIMA; ÅS, 2008), widely used for high throughput analy-

sis of sensory quantitative descriptive analysis (QDA) data (AMORIM et al., 2014).

This software includes visual tools for simple linear mixed model (DAHL; TOMIC;

NÆS, 2008) and due to its simplicity in use, it became very popular among the
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sensory practitioners. An example of a mixed model for sensory study using the

tools will be presented in this Chapter.

4.2 Overview of the recently developed tools for fitting mixed models to sen-
sory data

Mixed effects models are used as an appropriate choice for analysing sen-

sory and consumer data. In order to extract important attribute-wise product dif-

ference information, the analysis of variance (ANOVA) methods are generally ap-

plied (LAWLESS; HEYMANN, 2010; NÆS; BROCKHOFF; TOMIC, 2010). There are

several commercial and open source softwares for fitting mixed models to sen-

sory and consumer data. Still applying such models may be challenging for a

sensory practitioner. The challenges arise as to which model to consider, which

effects should be chosen as random and what are the interpretations of the results

(KUZNETSOVA et al., 2015). In this Chapter we focus on the most recently tools de-

veloped for helping sensory practitioners to apply mixed models for sensory and

consumer data. This include the PanelCheck software (NOFIMA; ÅS, 2008) and the

two R packages lmerTest (KUZNETSOVA; BROCKHOFF; CHRISTENSEN, 2014a) and

SensMixed (KUZNETSOVA; BROCKHOFF; CHRISTENSEN, 2014b).

4.2.1 PanelCheck software

PanelCheck, an open source software, was developed in collaboration be-

tween Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research)

and the Technical University of Denmark (DTU) for analysis of sensory data

(NOFIMA; ÅS, 2008). It includes univariate and multivariate methods, which pro-

vide plots for both panel performance monitoring and analysis of product differ-

ence. By visualizing different type of information in a set of various plots, the

panel leader can investigate the performance of individual assessors and can de-

tect individual differences among assessors. PanelCheck also includes visual tools

for simple mixed models for multi-attribute data. By using graphical methods,

PanelCheck provides an easy approach for the interpretation of results of sensory
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data.

PanelCheck has a graphical user interface (GUI) and due to the simplicity

in use, it is now used extensively. However, as pointed out by Amorim et al. (2014)

the scope of the mixed modelling in PanelCheck is limited in several ways. For

instance, it cannot handle with 2-(or higher) way product structure. Furthermore,

PanelCheck works just for situations where the data are balanced. In sensory and

consumer data is common situations where we deal with missing values due to one

or more assessors who did not complete all replication. The software PanelCheck

can still be a valuable tool to provide relevant ANOVA information if we consider

products as single factor and use missing values imputation or exclude the asses-

sors with missing values. Kuznetsova et al. (2015) pointed out many situations

that really call for a more complex analysis, for instance:

• Unbalanced sensory profile data (due, for example, to missing observations).

• Incomplete consumer preference data.

• 2-(or higher) way product structure in sensory profile data.

• 2-(or higher) way product structure in consumer preference data (Conjoint

analysis).

• Extending Conjoint analysis to include consumer background/design vari-

able or factors/covariates.

• Complex blocking, product, replication, product batch structures in as well

sensory as consumer preference data.

• Extending external preference mapping to include product and consumer

background/design variables factors/covariates.

The R package lmerTest was developed by Kuznetsova, Brockhoff

and Christensen (2014) in order to help to answer the questions above.
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4.2.2 lmerTest package

In order to gain in exibility, the software R can be used. The main R
package, which proposed functions that allows integrating mixed models is the

lme4 package (BATES et al., 2014). Even with all advantages from lme4 package,

which make it be the most used R package for fitting mixed effect models, it

comes with one drawback: it does not provide every useful results (KUZNETSOVA

et al., 2015). For instance, it does not provide p-values associated with parameters

estimates and models terms based on F -statistics in ANOVA table.

The lmerTest (KUZNETSOVA; BROCKHOFF; CHRISTENSEN, 2014a) package

builds on top of the lme4 and extends it performing different kinds of tests on lmer

objects. An ANOVA table with corrected F -tests of type III hypotheses for fixed

effect terms and parameters using Satterthwaite or Kenward-Roger approxima-

tions to the denominator degrees of freedom is provide by the lmerTest package

(KUZNETSOVA et al., 2015). The package also provides the log-likelihood ratio tests

for the random part of the model with one degree of freedom, which means, test-

ing one effect in a time. As post hoc analysis, the least square means (population

means) and differences of least squares means for the factors of the fixed part are

presented with corresponding plots (KUZNETSOVA et al., 2015).

To use the lmerTest package, it is necessary to install and to load the

package by typing in the R console the following lines:

install.packages("lmerTest")

library(lmerTest)

One of the purpose of lmerTest package is to investigate the mixed model,

in an automated way, and incorporate the necessary random-effects by sequen-

tially removing non-significant random terms in the model, and similarly test and

remove fixed effects (KUZNETSOVA et al., 2015). The step function can be used

to perform this automated complex mixed model selection. The step function in-

vestigates the random and fixed terms in the mixed model performing a backward

elimination of non-significant effects, starting from the random effects, and then

the fixed ones (KUZNETSOVA et al., 2015). As a result, the step function gives a list

of effects that should be kept in the model in terms of significance and gives the
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best, by principle of parsimony, model together with post hoc analysis presented

in tables and plots. According to Kuznetsova et al. (2015) the automated model

selection involves three steps:

1. Specification of the model (by the user).

2. Simplification of the random effects structure.

3. Simplification of the fixed effects structure.

Step 1: Specification of the model
First, the user needs to construct the initial mixed effects model. It is nec-

essary to specify the initial (maximal) model where the fixed and random parts

contain all explanatory variables and as many interactions as possible. To spec-

ify the mixed effect model the lmer function from lme4 package is used. The

arguments to a lmer call are as follow:

lmer(formula, data=NULL, REML=TRUE,

control=lmerControl(), start=NULL, verbose=0L,

subset, weights, na.action, offset, contrasts=NULL,

devFunOnly=FALSE, ...)

The user can specify the formula of the model using the lmer syntaxes and

call the data set. The mixed model formula can be specified to lmer function as,

e.g.:

response variable ~ product + (1|assessor)

+ (1|product:assessor)

where product specify a fixed effect, (1|assessor) is a random effect and

(1|product:assessor) is the random interaction between the fixed and the

random effects. To specify the interactions we have two basic variants:

• a:b for an interaction between a and b effects

• a*b which expands to a + b + a:b
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For random factors, you have three basic variants:

• Intercepts only by random factor:

(1|random.factor)

• Slopes only by random factor:

(0 + fixed.factor|random.factor)

• Intercepts and slopes by random factor:

(1 + fixed.factor|random.factor)

Note that variant 3 has the slope and the intercept calculated in the same

grouping, i.e. at the same time. If we want the slope and the intercept calculated

independently, i.e. without any assumed correlation between the two, we need a

fourth variant:

• Intercept and slope, separately, by random factor:

(1|random.factor) + (0 + fixed.factor|random.factor).

Step 2: Analysis of the random effects
The step function will do the automated simplification of the random

part and will present a table with the order in which one effect has been eliminated

from the initial model. Therefore, let M be the mixed model from the first step, for

example. To do elimination process the following R code can be used:

M <- lmer(attribute ~ Product +

(1|Assessor) +

(1|Assessor:Product) +

(1|Repeat) +

(1|Repeat:Product),

data = dataset)

s <- step(M)

For the simplification of the random effects done by the step function, the

p-values are based on likelihood ratio tests. The p-values for each random effect

are calculated and the one with the highest p-value that is less than the signifi-

cance level α is eliminated and a new model is constructed without this effect.
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The loop stops when there are no more non-significant effects or when there are

no more random effects to be tested (KUZNETSOVA; BROCKHOFF; CHRISTENSEN,

2014a). The table with the simplification of the random part of the model can be

extracted with the command:

s$rand.table

If the reduction of the random part is not required, just specify it including

the argument:

reduce.random = FALSE

Step 3: Analysis of the fixed effects
The step function will also do the automated analysis for fixed effects. In

the fixed effect elimination process, the p-values are calculated from F test based

on Satterthwaite’s (default) or Kenward-Roger approximation. The p-values for

each fixed effect are calculated and the one with the highest p-value that is less

than the significance level α is eliminated and a new model is constructed without

this effect. The loop stops when there are no more non-significant effects or when

there are no more effects to be fixed tested. The table with the simplification of the

fixed part of the model can be extracted with the command:

s$anova.table

The step function performs the backward elimination of the random part

following by the backward elimination of the fixed part. After that the LSMEANS

and differences of LSMEANS for the fixed part of the model are calculated. The

commands bellow extracts the LSMEANS with p-values and confident intervals

and the differences of LSMEANS with p-values and confident intervals respec-

tively.

s$lsmeans.table

s$diffs.lsmeans.table

The final model by the principle of the parsimony (KUZNETSOVA et al.,

2015) can be extracted using the command:
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s$model

The plots and post hoc analysis can be obtained with the command:

plot(s)

4.2.3 SensMixed package

Kuznetsova et al. (2015) gave a one-step forward in facilitating analysis of

sensory data in complex situations with the lmerTest and extended it developing

the SensMixed package (KUZNETSOVA; BROCKHOFF; CHRISTENSEN, 2014b). This

new package contains tools for advanced statistical methods within a mixed effects

framework using the same technique of the automated analysis as in Kuznetsova,

Brockhoff and Christensen (2014a) but applied simultaneously to all attributes and

presenting the results in a compact and efficient way (KUZNETSOVA et al., 2015).

The SensMixed package provides results of the analysis of random and fixed ef-

fects presented in tables and plots, including the new delta-tilde plot, present in

Chapter 3. Beyond that, the SensMixed provides a tool to analyse the extended

versions of the Mixed Assessor Model (MAM), a model that corrects for a pos-

sible scaling effect (BROCKHOFF; SCHLICH; SKOVGAARD, 2015). In this extended

version of the MAM, a possible multi-way product structure can be accounted for

together with the 3-way error structure, where a replicate effect is also accounted

for (KUZNETSOVA et al., 2015).

The SensMixed package provides an intuitive and easy-to-use graphical

interface implemented via the R package named shiny (CHANG et al., 2015). Apart

from providing this easy-to-use interface for advanced statistical methods within

a mixed effects framework, the application includes such crucial functionalities

as importing the data in different formats, presenting results in tables and plots

as well as saving them. This allows for efficient analysis of sensory data and en-

ables the sensory practitioner and non-statistician to focus on results of the statis-

tical analysis rather than spending time on trying to apply algorithms on the data

by themselves (KUZNETSOVA et al., 2015). Together with its application, all that

makes the SensMixed package a very valuable tool for sensory practitioners as

it requires no skills in R-programming and provides advanced statistical methods
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for analysing sensory and consumer data.

In order to run the application, one needs to install the SensMixed pack-

age and call the SensMixedUI function by typing in the R console the following

lines:

install.packages("SensMixed")

library(SensMixed)

SensMixedUI()

A number of modelling options that allow to easily constructing and anal-

ysing in a proper manner a broad range of complex mixed effects models are

provided. These options make the model building more flexible and advanced

(KUZNETSOVA et al., 2015). The results of the analysis are visualized in various

plots and tables, helping sensory practitioners to visually detect performance is-

sues without having to know all details on the statistical methods. The main mod-

elling controls of SensMixed are described by Kuznetsova et al. (2015) as the

following ones:

• error structure

No Rep: assessor effect and all possible interactions between assessors and

product effects

2-WAY: No Rep, replicate effect and interaction between assessor and

replicate effects

3-WAY: assessor and replicate effect and interaction between them and in-

teraction between them and Product effects

• product structure

1 main product effects

2 main product effects and 2-way interactions between them

3 main product effects and all possible interactions between them

• scaling correction

Yes
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No

These controls are responsible for the specification of the mixed effects

model. error structure stands for the specification of the random part of a mixed

effects model. error structure = 3-WAY produces the maximal possible ran-

dom structure. This option is advised in Kuznetsova et al. (2015). However if,

for example, from the studies it is known that there is no replication effect, then

the No-Rep option can be considered. If it is known that there is no interaction

between replication and product effects, then the 2-WAY option may be chosen,

which also conducts the analysis in a faster way (KUZNETSOVA et al., 2015).

The product structure is responsible for specification of the fixed part of

the mixed effects model. If there is no multi-way product structure in the data,

then all options produce the same fixed part. Otherwise, the option 3 produces the

maximal possible fixed structure (KUZNETSOVA et al., 2015).

If one chooses to correct for scaling, then the Mixed Assessor Model is

constructed. According to Brockhoff, Schlich and Skovgaard (2015) whenever the

scaling is significant it is advisable to correct for it, since the tests for the product

effects become more powerful.

According to the specified modelling controls the mixed effects models

are constructed for all attributes using the lme4 package (BATES et al., 2014) and

then the stepmethod of the lmerTest (KUZNETSOVA; BROCKHOFF; CHRISTENSEN,

2014a) is applied to each model. In all cases, the fixed part is not simplified. By

default the non-significant random effects are eliminated from the model according

to the specified by a user Type 1 error (0.1 the default one). However, one may

require not to eliminating the random effects, or specifying which effects should

be kept in the model even if not being significant (KUZNETSOVA et al., 2015).

4.3 Example: mixed model analysis of sensory study

In this section, we present a mixed model analysis of a sensory study using

the software PanelCheck and the R packages lmerTest and SensMixed. The

aim is to show the functionality of these tools and help the sensory practitioners

to apply advanced statistical techniques to get important information about their
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studies.

4.3.1 Sensory study of car audio system

The data presented here comes from the company Bang and Olufsen A/S,

Struer, Denmark. The purpose of this study was to rate products, specified by three

features: Car (sound system), SPL (reproduction of sound pressure level) and

Track (music program). The trained audio panel was composed by 10 assessors

(Participant) who evaluate 90 products (CLIP) for 8 different response variables

(Attributes) in 2 replications. Only 8 assessors completed both replications. Here

is a brief description of the car audio system data:

CLIP: factor with 90 levels specified by:

• Car: factor with 6 levels

• SPL: factor with 3 levels

• Track: factor with 5 levels

Participant: factor with 10 levels

Replicate: factor with 2 levels

Attributes: response variables (8)

The names of the 8 attributes were translated from Danish 4 as: continuous

noise, accuracy in the lower frequency range, accuracy in the upper frequency

range, reverberation, stereo effect, strength of the bass range, strength of the treble

range and strength of the mid-range. For simplicity we will call them att1, att2,

..., att8 and the dataset will be called SoundBO data.

4.3.2 One-way product analysis using PanelCheck

The modelling in PanelCheck consider product as fixed effect and both as-

sessor and assessor-by-product interaction as random effects, getting simple linear

mixed model. Due to its limitation, PanelCheck cannot handle with 2-(or higher)
4Kontinuerligstøj, Præcisioninedreområde, Præcisioniøvreområde, Rumklang, Stereovirkning,

Styrkenafbas, Styrkenafdiskant og Styrkenafmellemtone
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way product structure such as SoundBO data. Beyond that, the data must be

complete and balanced. So an approach to analyse such data could be considering

one product factor with 90 levels for the 2-way ANOVA mixed model with the

assessor-by-product interaction as the error structure (LAWLESS; HEYMANN, 2010)

and removing the assessors who did not complete both replications.

To analyse SoundBO data using PanelCheck, the assessors 1 and 6 were

removed from the data set to consider the data 100% complete and balanced (no

missing value). We also consider the 90 products (CLIP) formed by 6-by-3-by-5

combinations as a single factor since in PanelCheck, the model cannot take into

account this 3-way product structure. The simple one-way product mixed model

for one attribute yijk can be specify as:

yijk = µ+ ai + ρj + rk + bij + cik + djk + εijkl (18)

ai ∼N(0, σ2assessor),

rk ∼N(0, σ2replicate),

bij ∼N(0, σ2assessor×CLIP ),

cik ∼N(0, σ2assessor×replicate),

djk ∼N(0, σ2replicate×CLIP ),

εijkl ∼N(0,σ2error).

where yijk corresponds to the attribute in study. The Greek letters represent fixed

effects and the Latin letters represent the random effects. The main fixed effect of

product (CLIP) is represented by ρj , j = 1, 2, ..., J . The random part of the model

is compounded of the main effect Assessor, represented by ai, i = 1, 2, ..., I; the

main effect replicate, represented by rk, k = 1, 2, ...,K plus the interaction be-

tween Assessor and CLIP, represented by bij ; the interaction between Assessor
and replicate represented by cik and the interaction between replicate and CLIP
represented by djk. The hypothesis of interest in model (18) is that there is no

average product difference.

The results of the one-way product analysis using PanelCheck present a
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barplot for each effect across all attributes (Figure 4). The colour of the bars (yel-

low, orange, red) indicate that there is a significant effect and a gray bar means that

there is not. The bar size is equal to the F-statistic for each effect and the colour

of the bar indicates the corresponding p-value: Yellow: 0.01 < p-value < 0.05,

Orange: 0.001 < p-value < 0.01 and Red: p-value < 0.001.

From Figure 4 it can be seen that replicate effect is non-significant for

all attributes; the interaction between replicate and CLIP is significant only for

the attribute 1 (0.01 < p-value < 0.05); however there is a significant interaction

between assessors and replicate for all attributes, except for the attribute 3. The

product effect (CLIP) was highly significant (p < 0.001) for all attributes. That

means the assessors has been able to discriminate between the products; therefore,

we do not exclude any attributes from further analysis.

The product pairwise comparisons may be extracted, although, since there

are 90 levels in the CLIP factor, there are C2
90 = 4005 pairwise comparisons,

which are indeed hard to interpret. Hence, considering a multi-way product struc-

ture might simplify the analysis of product differences by comparing product fea-

tures plus some additional insight into the data might be gained. In such cases,

lmerTest and SensMixed packages can be used to analyse the data considering

the three effects Car, Track and SPL separately.

4.3.3 3-way product analysis using lmerTest

In the model (18), the combinations of Car, SPL and Track features form

the 90 products. In order to consider a multi-way product structure the three main

effects and all possible interactions between them should be consider instead of

one CLIP effect. According with Kuznetsova et al. (2015) it gives more insight

into the data. By using the lmerTest package, it is possible to fit a model that

account for that multi-way product structure. Furthermore, the ten assessors can

be considered in the analysis, since the lmerTest can deal with missing values.

To analyse data using lmerTest, the first step is to construct the maximal

possible model according to (KUZNETSOVA et al., 2015). From the one-way product

analysis in the previous section, we have deduced that Replicate effect and the
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Figure 4 PanelCheck plot: F statistics from 2-way ANOVA for Sound data.

interaction between Replicate are non-significant for all attributes and CLIP are

non-significant for all attributes, except for the attribute 1. However, there is a

significant interaction between assessors and replicate for all attributes, except

for the attribute 3. The non-significant effects identified in the PanelCheck analysis

does not need to enter in initial the model.

To construct the initial model for SoundBO data set assessor and

replicate are considered as random effects. The three main effects that con-

stitute the product structure (Car, SPL and Track) are considered as fixed effects.

The initial linear mixed model for one attribute yijklm, would be given by:

yijklm =µ+ δj + λk + θl + τjk + νjl + ρkl + γjkl+

ai + rm + bij + cik + dil + pim+

eijk + fijl + gikl + hijkl + εijklm

(19)
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ai ∼N(0, σ2assessor),

rm ∼N(0, σ2replication),

bij ∼N(0, σ2assessor×Car),

cik ∼N(0, σ2assessor×Track),

dil ∼N(0, σ2assessor×SPL),

pim ∼N(0, σ2assessor×replication),

eijk ∼N(0, σ2assessor×Car×Track),

fijl ∼N(0, σ2assessor×Car×SPL),

gikl ∼N(0, σ2assessor×Track×SPL),

hijkl ∼N(0, σ2assessor×Track×SPL×Track),

εijkl ∼N(0, σ2error).

where yijklm corresponds to the attribute in study and the Greek letters represent

fixed effects and Latin letters represent random effects. The main fixed effects Car,
Track and SPL are represented by δj , λk, θl accordingly; the two-way interactions

between the fixed effect are represented by τjk, νjl and ρkl; and the three-way in-

teraction is represented by γjkl. The random part of the model is compounded of

the main effect Assessor represented by ai plus the interactions between Asses-
sor and the fixed part of the model; and the main effect replicate represented by

rm and the interactions between replicate and Assessor.
The model (19) has a quite complex error structure. We observe that 10

random effects form the random part of the model. It might be that not all of these

effects contribute to the systematic variation in the data and therefore could be

excluded from the model (KUZNETSOVA et al., 2015). The step method from the

lmerTest package is used, that finds a parsimonious random structure by sequen-

tially removing non-significant random effects (KUZNETSOVA et al., 2015).

To specify the fixed part of the model (19) in lmerTest, the lmer syntaxes

can be used. Car∗SPL∗Track represents the three main fixed effect ( Car, SPL
and Track) and all possible interactions for them. The lmer syntaxes for the ran-

dom effects will be (1|Part) and (1|Rep). Finally we have to specify the

random interactions. In lmerTest as in lme4, the users must to specify one model



68

for each attribute. The command line in lmer to specify the mixed model for the

attribute 4 that corresponds to the mixed model (19) is given as an illustration:

M1 <- lmer(Att4 ~ Track*Car*SPL+

(1|Part) + (1|Rep) + (1|Rep:Part) +

(1|Part:Track)+(1|Part:Car)+(1|Part:SPL) +

(1|Part:Track:Car)+(1|Part:Track:SPL) +

(1|Part:Car:SPL)+(1|Part:Car:SPL:Track),

data = SoundBOdata)

The step function performs an automated selection of the terms to com-

pose the final model considering the backwards selection approach based on step-

wise deletion of model terms with high p-values (KUZNETSOVA et al., 2015; ZUUR

et al., 2009). The simplification of the random structure of the model is performed

based on likelihood ratio test (step 2). Non-significant effects are eliminated and

the optimal structure is used to form the simplest plausible model for each attribute

according to the principle of parsimony given by the default type I levels (α = 0.10

for the random-effects) (KUZNETSOVA et al., 2015).

The step function finds the parsimonious random structure and this struc-

ture is considered to test the fixed effects (step 3). The fixed effects are incremen-

tally eliminated following the principle of marginality, that is the effect that are

contained in any other effects are retained in the model when the effects that they

are contained in are found to be significant according to the specified Type I level

(α = 0.05 for the fixed-effects) (KUZNETSOVA et al., 2015).

The tables from the automated analysis of the initial mixed model can be

extracted by typing the commands:

stepBO <-step(M1)

stepBO$rand.table

stepBO$anova.table

Table 5 and Table 6 present the results from the Step 2 and Step 3 of the

automated analysis for the random and fixed effects respectively, for the attribute

4. The column “Eliminated” in Table 5 and Table 6 gives the order on which the

effect was eliminated from the initial model. The effect that have the word “kept”

in this column are the ones that form the final model according to the principle of
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parsimony given by the default type I levels (α = 0.10 for the random effects and

α = 0.05 for the fixed-effects). Therefore, the practitioner should choose the final

model as it contains all the significant effects and the tests for these effects are the

most powerful.

It can be seen from the Table 5 that there are six significant random effects

that may be considered in our final model. From Table 6 it can be seen that there is

a significant interaction between Car, SPL and Track. Then all fixed effects have

to enter in our final best model. The final model for the attribute 4 is given by:

yijklm =µ+ δj + λk + θl + τjk + νjl + ρkl + γjkl+

ai + bij + cik + dil + pim + gikl + εijklm
(20)

ai ∼N(0, σ2assessor),

bij ∼N(0, σ2assessor×Car),

cik ∼N(0, σ2assessor×Track),

dil ∼N(0, σ2assessor×SPL),

pim ∼N(0, σ2assessor×replication),

gikl ∼N(0, σ2assessor×Track×SPL),

εijkl ∼N(0,σ2error).

The reduced model (20), which was selected by using the step function,

has quite a complex random structure and a multi-way product structure in the

fixed part. It would not possible to fit this model using PanelCheck. Probably

other packages or softwares would be able to fit it, but the practitioner does not

know in advance which model will be the best in terms of having the best estimates.

The step function from lmerTest package finds this model automated.

4.3.4 3-way product analysis using SensMixed

PanelCheck is a good tool for mixed modelling of sensory data in simple

situations. The lmerTest was a first step in the way to help sensory practitioner to

deal with the challenges of applying mixed modelling for situations that are more

complexes. However, it still a challenge for most people to deal with the syntax of
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Table 5 Likelihood ratio tests for the random effect and their order of elimination
for the automated analysis of SoundBO data.

χ2 DF Eliminated p-value
RepFixed 0.00 1 1 1.000

Part:Car:SPL:Track 0.00 1 2 1.000
Part:Track:Car 0.69 1 3 0.411

Part:Track:SPL 1.76 1 4 0.185
Part 10.90 1 kept 0.001

Part:Track 19.05 1 kept < 0.001
Part:Car 15.66 1 kept < 0.001

Part:SPL 8.86 1 kept 0.003
RepFixed:Part 7.61 1 kept 0.006
Part:Car:SPL 32.80 1 kept < 0.001

kept means the effect was not eliminated due to it’s significance.

Table 6 F-tests for the fixed-effects and their order of elimination of the auto-
mated analysis for SoundBO data.

SQ MS DF F Eliminated p-value
Track 0.42 0.11 4 10.54 kept < 0.001

Car 1.35 0.27 5 26.96 kept < 0.001
SPL 0.15 0.08 2 7.66 kept 0.004

Track:Car 1.16 0.06 20 5.80 kept < 0.001
Track:SPL 0.19 0.02 8 2.37 kept 0.016

Car:SPL 1.17 0.12 10 11.68 kept < 0.001
Track:Car:SPL 0.63 0.02 40 1.59 kept 0.019
kept means the effect was not eliminated due to it’s significance.
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the R packages. In the way to facilitate even more the mixed modelling for com-

plex situation, such as multi-way product structure, unbalanced data and complex

error structure, Kuznetsova et al. (2015) presented the new R package SensMixed.

With the same techniques as in lmerTest, the SensMixed is even better in sev-

eral ways. The new package SensMixed do the mixed modelling faster, analysing

all attributes simultaneously and present in the output the appropriate visual tool

based on effect size described in Chapter 3. Furthermore, the SensMixed pro-

vides an intuitive graphical user interface, which makes it an easy-to-use tool for

the sensory practitioners.

The initial linear mixed model is the same specified by model (19), but

using the intuitive interface of SensMixed the practitioner just need to click and

point to specify the model and analyse all attributes simultaneously. In order to

fit a mixed model using the SensMixed package, first type in the R console the

following lines:

library(SensMixed)

SensMixedUI()

Then an intuitive graphical user interface will offer a number of options

for the mixed effects model building. To specify the model (19) in SensMixed,

the following controls in should be selected:

• error structure = 2-WAY: replicate effect and interaction between assessor

and replication effects

• product structure = 3, main product effects and all possible interactions

between them;

• scaling correction = No

The sequential chi-squared values from the likelihood ratio tests for the ten

random effects for all attributes are presented in Table 7. Figure 5 represents the

barplot for the chi-squared values (from the stepwise selection process) followed

by level of significance of the effect given by the colour of the bar. The bar size is

equal to the chi-squared value from the likelihood ratio tests for each random effect

and the colour of the bar indicates the corresponding p-value: Yellow: 0.01 < p-



72

value< 0.05, Orange: 0.001 < p-value< 0.01 and Red: p-value< 0.001. A gray

bar means that the effect is non significant.

It can be seen from Figure 5 that the 2-way interactions Track:Part are

non-significant for 3 out of 8 attributes. The interactions Car:Part, SPL:Part and

3-way interactions Car:SPL:Part are significant for 7 attributes. It means that

the assessors (Part) disagree in scoring the products according to these features

for this attributes. We observe that the assessor effects (Part) are significant for

3 out of 8 attributes. The 3-way interactions Track:SPL:Part are significant for

6 out of 8 attributes and Track:Car:Part are non-significant for 4 attributes. The

Rep effect is non-significant for all attributes. The interactions between Rep and

assessors (Rep:Part) are significant for 7 attributes. The barplot presented in

Figure 5 and the Table 7 give information about the significance of the random

effects. The barplot is a valuable visual tool that helps to investigate quickly, for

instance, whether there is a significant effect according to the colours of the bars.

On the other hand, if one is interesting in the chi-square values, the table could be

very useful.

After the simplification of the random effects, the optimal random struc-

ture found for each attribute is used in the process of estimation of the fixed effects.

The mixed model (19) considers the multi-way product structure of the data, ac-

counting for the three main effects Car, SPL and Track. This model gives a better

insight into the products structure compared to the model 18 where was considered

one product effect with 90 levels. In Table 8 the results of F-test for the three main

effects (Car, SPL and Track) and all interactions are presented. To complement

the interpretation of the F-test results, the SensMixed provides the delta-tilde plot

presented in Chapter 3. As an effect size measurement, the delta-tilde estimate can

be compared across any attributes.

Table 8 presents the results of the F-test for the three main effects (Car,
SPL and Track) and all interactions. Looking into the multi product structure we

can see that the 3-way interaction Car:Track:SPL is significant for all attributes

except for the attribute 3. The main effect Car and its interactions with the other

effects are significant for all attributes. The main effect SPL is significant for 6 of

8 attributes and the main effect Track is significant for 5 attributes.
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Figure 5 Barplot for
√
χ2 for random effects of Sound data.



75

Ta
bl

e
8

F-
te

st
fo

rt
he

fix
ed

ef
fe

ct
s

fo
rS

ou
nd

B
O

da
ta

C
ar

Tr
ac

k
SP

L
C

ar
:T

ra
ck

C
ar

:S
PL

Tr
ac

k:
SP

L
C

ar
:T

ra
ck

:S
PL

A
tt1

41
.5

6
**

*
2.

03
20

.6
2*

**
6.

30
**

*
25

.9
1*

**
2.

75
**

1.
94

**
*

A
tt2

15
.7

6
**

*
1.

29
1.

85
1.

64
*

12
.6

0*
**

0.
59

1.
58

*
A

tt3
31

.7
1

**
*

2.
34

3.
98

*
6.

41
**

*
18

.8
7*

**
1.

42
1.

37
A

tt4
26

.9
6

**
*

10
.5

4*
**

7.
66

**
5.

79
**

*
11

.6
8*

**
2.

37
*

1.
59

*
A

tt5
18

.3
5

**
*

6.
70

**
*

2.
58

4.
35

**
*

9.
52

**
*

2.
73

*
1.

70
**

A
tt6

19
.7

5*
**

6.
32

**
*

4.
27

*
5.

38
**

*
10

.9
4*

**
0.

85
3.

57
**

*
A

tt7
48

.7
0*

**
3.

31
*

12
.4

5*
**

10
.0

5*
**

17
.4

8*
**

2.
58

*
2.

66
**

*
A

tt8
24

.8
5*

**
2.

95
*

23
.0

8*
**

6.
38

**
*

16
.7

0*
**

1.
61

1.
86

**
**

* p
<

0
.0
0
1

,**
p
<

0
.0
1

,* p
<

0
.0
5



76

Figure 4 presents the multi-attribute barplots of F -statistics for the fixed

effects of the model (18) combined with colour coding of the significance results

from the output of PanelCheck. In this way, the F -statistic was used as a kind of

effect size measure. This can be a good approach, especially within Panelcheck,

where the multi-attribute barplot of the overall product differences are used only

for single-factor product effects and with the same choice of F -test denominator

across all the attributes of a plot. However, the F -statistic itself is not gener-

ally the best measure of effect size as it depends on the number of observations

for each product. Furthermore, the various ANOVA mixed models, that we often

use for such analysis also complicates the relative effect size handling as gener-

ally in mixed models, different effects may have different noise structures, that is,

different factors may be tested using different F -test denominators. In this way,

SensMixed provide a better multi-attribute plot for sensory and consumer data

based on an effect size expressed in terms of relative pairwise comparisons, so-

called delta-tilde. It has been shown in Chapter 3 that the effect size used here has

a close link with the Thurstonian d-prime, and as such is a generic measure that

can be interpreted and compared across any attribute and situations. This visual

tool complements the interpretation of the F -test results when product are found

significant.

In Figure 6, the delta-tilde estimates for the three main effects (Car, SPL
and Track) and all interactions combining with the colour coding of the signifi-

cance results from the ANOVA output are presented. As we have shown in Chap-

ter 3, the delta-tilde estimates are effects size measures, and then the bars of the

delta-tilde plot can be compared. From the Figure 6, it can be seen that the heights

of the bars corresponding to the Track and SPL effects and the interaction between

them are lower than those pertaining to the Car effect, which means that, the size

of the Track and SPL effects are lower than the size of the Car effect. It means

that Car effect has a higher impact than Track and SPL on the ability of assessors

to discriminate between the products. However, the effect of SPL for the attribute

1 is highly significant and the size of its bar is much higher than for the other at-

tributes, so there is a high impact of the SPL feature on the ability to discriminate

between the products for this attribute.
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To complement the results of the mixed model analysis of variance, when

product effects are found significant, post hoc test are performed, also called mul-

tiple comparison tests. Figures 7, 8 and 9 present the barplots for multiple compar-

isons tests together with the 95% confidence intervals for attribute 4 to the main

effects Car, Track and SPL respectively.

The six levels of the Car effect are compared 2-by-2 and presented in

Figure 7. It is possible to identify which levels of Car are different. It can be seen

that all “products” with different levels for Car are different except for levels 1-2,

1-5 and 3-4. The five levels of Track effect are compared 2-by-2 and presented in

Figure 8. It can be seen that all “products” with level 4 differ from all other levels

of Track (1, 2, 3 and 5). The “products” with level 1 and 3 for Track effect also

differ. And the three levels of SPL are compared 2-by-2 and presented in Figure

9. It can be seen that the “products” with level 1 differ from the other levels (2 and

3) of SPL.

The parsimonious model provided by SensMixed for this example has

quite a complex random structure and a multi-product structure in the fixed part.

Considering the simple model (18) with one-way product structure (combination

of Car, Track and SPL, which would result in one fixed product effect CLIP)

would not provide this valuable insight into the data. Besides that, the delta-tilde

plot for the fixed effects makes the bar heights better comparable for factors with

differences in number of levels.

4.3.5 Advanced mixed modelling for sensory data using SensMixed

We can improve even more the analysis of SoundBO data accounting for

the scaling difference by using the Mixed Assessor Model (MAM). According

with Brockhoff, Schlich and Skovgaard (2015) whenever the scaling is significant

it is advisable to correct for it in order to obtain more powerful tests for products.

In Brockhoff, Schlich and Skovgaard (2015) the MAM was presented in a simple

2-way structure (cf. 2.2.2). SensMixed package provides an option to correct for

scaling, considering more complex structures such as 3-way, where replicate/ses-

sion effect forms also part of the model as well as multi-way product structures.
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Figure 6 Barplot for delta-tilde estimate of fixed effects of Sound data.

Figure 7 Barplot for differences of least squares means together with the 95%
confidence intervals for Car effect of Att 4.
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Figure 8 Barplot for differences of least squares means together with the 95%
confidence intervals for track effect of Att 4.

Figure 9 Barplot for differences of least squares means together with the 95%
confidence intervals for SPL effect of Att 4.
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The mixed assessor model (MAM) that takes individual scaling differ-

ences into account for SoundBO can be specified in the following form:

yijklm =µ+ ai + δj + λk + θl + τjk + νjl + ρkl + γjkl+

βixj + dij + rm + sim + tjm + εijklm
(21)

ai ∼N(0, σ2assessor),

rm ∼N(0, σ2replication),

dij ∼N(0, σ2disagreement),

sim ∼N(0, σ2assessor×replication),

tjm ∼N(0, σ2product×replication),

εijkl ∼N(0, σ2error).

where yijklm corresponds to the attribute in study. The main fixed effects Car,
Track and SPL are represented by δj , λk, θl accordingly; the two-way interactions

between the fixed effect are represented by τjk, νjl and ρkl; and the three-way in-

teraction is represented by γjkl. The random part of the model is compounded of

the main effect Assessor represented by ai; the main effect replicate represented

by rm; the interactions between replicate and Assessor represented by sim; plus

the interactions between replicate and “product” represented by tjm. We may ob-

serve that the random part does not account for the multi-way product structure.

The xj = y.j. − y... are the centered product averages inserted as a covariate, and

βi is the individual (scaling) slope (with
∑I

i=1 βi = 0), the dij is the random inter-

action term, that captures the disagreements between the assessors (BROCKHOFF;

SCHLICH; SKOVGAARD, 2015).

To specify the model (4.3.5) in SensMixed, the following controls in

should be selected:

• error structure = 3-WAY: assessor and replication effect and interaction

between them and interaction between them and product effects

• product structure = 3, main product effects and all possible interactions

between them;
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• scaling correction = YES

• One-way product MAM = YES

Figure 10 represents the barplot for the chi-squared values from the like-

lihood ratio tests for the random effects of the model (21), followed by level of

significance given by the colour of the bar. The colour of the bars (yellow, orange,

red) indicate that there is a significant effect and a gray bar means that there is

not. The bar size is equal to the chi-squared value from the likelihood ratio tests

for each random effect and the colour of the bar indicates the corresponding p-

value: Yellow: 0.01 < p-value < 0.05, Orange: 0.001 < p-value < 0.01 and

Red: p-value < 0.001. From Figure 10 it can be seen that the repetition effect

and its interaction with the “product” effect are non-significant for all attributes.

However, there is a significant interaction between assessors (Part) and replica-

tion for 7 attributes. We can observe as well that the interaction between assessor

and “product’ (Product:Part) is significant for all attributes. Since here the mixed

assessor models are considered, the Product:Part effect means the real disagree-

ment between participants in scoring the products.

Figure 11 shows the
√
F -plot for the scaling effects. From the Figure 11 it

is clear that the scaling effect is significant for all attributes, so the participants use

the scale differently. Since the MAM is considered, the scaling effect is corrected

for. The MAM removes the scaling effect from interaction between assessor and

“product” (Product:Part). The consequence for the test of product differences is

that the disagreement mean square becomes the one to use in the denominator,

improving hypothesis tests for product effects.

Figure 12 represents the delta-tilde estimates for the fixed effect. We can

observe that for the MAM (model 21)where the scaling is accounted for, the main

effects of Car, SPL and Track are significant for all attributes. The interaction

between Car and the other effects are highly significant for all attributes. The

heights of the bars corresponding to the SPL and Track effects and the interaction

between them are lower than those pertaining to the Car effect, which means that

the size of the SPL and Track effects are lower than the size of the Car effect.

However, for the attribute 1 the effect of SPL is highly significant and the size

of the bar is much higher than for the other attributes, so there is a high impact
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Figure 10 Barplot for
√
χ2 of likelihood ratio test for random-effects for

SoundBO data

Figure 11 Barplot for
√
F statistics for fixed-effects scaling for SoundBO data
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Figure 12 Barplot for delta-tilde estimates for fixed-effects for SoundBO data

Figure 13 Barplot for differences of least squares means together with the 95%
confidence intervals for Car effect of Att 4 for MAM.
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of the SPL feature on the ability to discriminate between the products for this

attribute. The 3-way interaction between Car, SPL and Track is significant for

only 2 attributes.

According to Brockhoff, Schlich and Skovgaard (2015) the MAM pro-

duces valid and improved hypothesis tests for as well overall product differences

as post hoc product difference testing. For instance, the barplots for multiple com-

parisons tests together with the 95% confidence intervals for attribute 4 to the main

effects Car is presented in Figure 13. The six levels of the Car effect are compared

2-by-2 and presented in Figure 13. It is possible to observe that in the MAM all

“products” with different levels for Car are different except for levels 3-4.

4.4 Discussion

In this Chapter the PanelCheck software and the two R packages lmerTest
and SensMixed were presented as important tools to facilitate the mixed mod-

elling analysis of sensory and consumer data.

PanelCheck can be seen as a very useful open source software to analyse

sensory data on simple situations, since the scope of the mixed modelling in Pan-

elCheck is limited in several ways. As we shown in the example, the PanelCheck

cannot handle with the multi-way product structure. As an alternative to anal-

yse more complex situations the lmerTest package developed by (KUZNETSOVA;

BROCKHOFF; CHRISTENSEN, 2014a) was presented.

In lmerTest, automated model selection procedures are available to facili-

tate the access to the proper mixed modelling for challenging structured situations.

We also showed that the lmerTest package provides different kinds of tests on lmer

objects (from lme4 package). The example have shown that by using lmerTest
the user can perform tests for random and fixed effects for linear mixed effect

models. The tests comprise type III and type I F-tests for fixed effects, likelihood

ratio tests for random effects and corresponding plots. The package also provides

the p-values calculated from F-statistics with Satterthwaite (default) or Kenward-

Roger approximations for denominator degrees of freedom . As we shown in the

example, the model considering the multi-way product structure has improved the
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analysis to achieve more insight of the data.

The lmerTest considerably facilitates the mixed modelling, which are

considered the most appropriate choice for a great range of consumer and sen-

sory studies. However, it remains a challenge for most sensory practitioner to deal

with the syntaxes of the R packages. In that sense, the new package SensMixed,

developed by Kuznetsova, Brockhoff and Christensen (2014b), is even better, since

it provides an intuitive graphical user-interface together with all generality of the

lmerTest. That makes the SensMixed an easy-to-use tool for the sensory prac-

titioners. As we have shown in the example, the SensMixed provides table and

plots to interpret the results, including the barplot for delta-tilde estimates, the ap-

propriate visual tool based on effect size presented in Chapter 3. Furthermore, the

SensMixed has the option to specify the Mixed Assessor Model (BROCKHOFF;

SCHLICH; SKOVGAARD, 2015), which does the correction for scaling, making the

analysis for product more powerful.

In that way, PanelCheck has shown to be a valuable tool for mixed mod-

elling, but just for simple cases. The lmerTest is more general, since it allows

for multi-way product structures, incomplete data and complex errors structures.

Beyond that it provides the type III ANOVA output with degrees of freedom

corrected F-tests for fixed-effects, which makes it the lmerTest unique among the

open source softwares. In order to facilitate even more the mixed modelling for

complex situation, the SensMixed can be used, as it requires no skills in R-

programming and provides advanced statistical methods for analysing sensory

data, such as multi-way product structure, unbalanced data and complex error

structure. Besides that,SensMixed analyse many attributes in a faster way,

since the package is programmed to do the calculation in parallel, which means

the analysis of all attributes is made simultaneously. Furthermore, the

SensMixed allows improving the interpretation of the ANOVA results with the

new visual tool based on the delta-tilde estimates. All that makes the SensMixed
package a very valuable tool for sensory practitioners.
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5 CONCLUSIONS AND FUTURE PERSPECTIVES

This thesis has a contribution to the field of experimental statistics in gen-

eral; and to complement results of ANOVA F-test for sensory data in particular.

The aim of this thesis was to develop a visual tool to supplement the initial overall

ANOVA F-testing, based on effect size estimates. Typically the ANOVA F-testing

focus only on the p-values to conclude about the significance of an effect. How-

ever, the p-values itself is not useful for estimating the magnitude of the effects.

The methodology presented in this thesis suggest the use of an effect size measure,

so called delta-tilde, as a visual tool to improve the interpretation of F-test results.

The delta-tilde, as an effect size measure, can be seen as a generic measure

that can be interpreted and compared across any attribute and situation. Although

the delta-tilde plot suggested here cannot substitute a good post hoc analysis, they

are valuable additional tools for a good and relevant interpretation of the ANOVA

results. In addition, the delta-tilde plot can help to move the focus a bit away

from purely looking at p-values but rather focusing on the size of the effect. The

application of the delta-tilde plot becomes particularly useful in situations with

more than a single factor, as it makes available the comparison of the bar heights

for factors with differences in number of levels.

For now, a simple transformation on the F-statistics from ANOVA was

used to obtain the effect size measures. Working in the development of significance

statements and confidence intervals for the effects could be a relevant following

step. The approach presented here transforms the bar plots of F-statistics by re-

scaling the bar heights and gives the average pairwise delta-tilde between product

levels. It has been showed that it has the same interpretation as the real d-prime

calculated from Thurstonian approach. The implications of this relation from the

sensmometric point of view, would be interesting to investigate further.

A simple and easy to reproduce methodology for analyzing sensory data

in complex mixed modelling framework was presented using flexible and graph-

ically oriented statistical softwares. In addition, an implementation of the delta-

tilde plot is available in the R package SensMixed (KUZNETSOVA; BROCKHOFF;

CHRISTENSEN, 2014b). The methodology presented in this work can be very help-
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ful to sensory practitioners interested in applying mixed models to analyse sensory

data.
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APPENDIX A

Proof of the relation between δ̃ and Cohen’s f in the balanced one-way ANOVA
setting:

From the basic relation between the sum of squared deviations from the mean and
the sum of squared pairwise differences, that we state here without proof:

I∑
i=1

(µ−µ̄)2 =

I∑
i1<i2

(µi1 − µi2)2/I,

it follows that the definition of δ̃:

δ̃ =

√√√√ 2

I(I − 1)

I∑
i1<i2

(
µi1 − µi2

σ

)2

,

also can be expressed as:

δ̃ =

√√√√√√ 2

(I − 1)

I∑
i=1

(µi − µ̄)2

σ2

Hence, we have proved that

δ̃ =
√

2Ψ =
√

2f.

Proof for the more general bias corrected back transformation for balanced
interaction effects:

Considering γij as the different interaction contributions, the interaction effect is
estimated by

γ̂ij = x̄ij − x̄i· − x̄·j + x̄··,

with K = I · J and n1 = · · · = nK = n.

F ≈

n
I∑

i=1

J∑
j=1

γ2ij/DF + σ2

σ2
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where DF is the interaction degrees of freedom defined by (I − 1)(J − 1).

= n
I∑

i=1

J∑
j=1

(γij
σ

)2
/DF + 1

We use the basic relation between squared paired differences and the sum of square
again:

I∑
i=1

J∑
j=1

(γ̂ij)
2 =

K∑
ij 6=i′j′

(γ̂ij − γ̂i′j′)2/(2K)

Taking only the lower triangular part of the difference matrix we have

I∑
i=1

J∑
j=1

(γ̂ij)
2 =

K∑
ij<i′j′

(γ̂ij − γ̂i′j′)2/(K)

And then

F ≈ n

2

DF

K − 1

K∑
ij<i′j′

(
γij − γi′j′

σ

)2

/ (K(K − 1)/2) + 1

=
n

2

K − 1

DF
(Average squared pairwise dprimes) + 1

And hence, for the interaction we have:

δ̃ =

√
2

n

√
DF

K − 1

√
F − 1.
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APPENDIX B

R-code for the analysis of the TVbo data set in SensMixed package

The mixed model for one attribute yijkl can be specify as:

yijkl = µ+ τj + ρk + γjk

+ ai + bij + cik + dijk + εijkl

(22)

ai ∼ N(0,σ2assessor)

bij ∼ N(0,σ2assessor×TV set)

cik ∼ N(0,σ2assessor×Picture)

dijk ∼ N(0,σ2assessor×TV set×Picture)

εijkl ∼ N(0,σ2error)

The fixed part of the model contains a multi-way product structure given by τj ,
ρk and γjk that represents the effect of TVset and Picture and the interaction
TVset:Picture respectively. The random part of the model is compounded of the
main effect Assessor represented by ai plus the interactions between Assessor
and fixed effects (TVset and Picture and the interaction TVset:Picture) given by
bij , cik and dijk.

Using the SensMixed package we can analyse the 15 attributes in TVbo data with
a few command lines. First we attach the SensMixed package (version 2.0-7) by
typing the following command in the R console:
library(SensMixed)

The TVbo data set is available in the SensMixed package. To access the TVbo
data use the command:

data(TVbo)

Then we use the function sensmixed to construct the mixed model for all at-
tributes:

resTV <- sensmixed(attributes=names(TVbo)[5:ncol(TVbo)],
Prod_effects=c("TVset", "Picture"),
individual="Assessor",
calc_post_hoc = TRUE,
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product_structure=3,
error_structure ="No_Rep",
reduce.random=FALSE,
parallel=FALSE,
data=TVbo)

The sensmixed function contains a lot of arguments, here we explain the argu-
ments used above:

•attributes: a vector containing the names of the sensory attributes

•Prod_effects: names of the variables related to the product

•individual: name of the column in the data that represent assessors

•data: data frame (data from sensory studies)

•product_structure: one of the values in 1, 2, 3.

–1: only main effects will enter the initial model.

–2: main effects and 2-way interaction.

–3: all main effects and all possible interaction.

•error_structure ="No_Rep": assessor effect and all possible interactions
between assessor and product effects.

The mixed models for each attribute are constructed using the lme4 package
(BATES et al., 2014) and then the step method from the lmerTest (KUZNETSOVA;

BROCKHOFF; CHRISTENSEN, 2014a) is applied to each model. By default the non-
significant random effects are eliminated from the model according to the specified
by a user Type 1 error (KUZNETSOVA et al., 2015). However to estimate the delta-
tilde and compare the bars of the plot, the elimination of the random effects is not
required. It can be done by the argument reduce.random=FALSE. By default
the computation is done in parallel Kuznetsova et al. (2015). Here we chose par-
allel=FALSE.

The sensmixed function provides us with the tables of the random and fixed part
of the model as well the bar plot presented in the section 3.5. To get the results we
simply type the following into R console:

resTV
plot(resTV, dprime=TRUE, isRand = FALSE)
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R-code to obtain the d-prime from Ordinal package
First we attach the packages by the typing the following command in the R con-
sole:

library(ordinal)

Then categorize the subset of TVbo data:

TVbo$Cutting_ord1=
as.integer((cut2((TVbo$Cutting-1)/(max(TVbo$Cutting)-1),
cuts=(0:10)/10)))

TVbo$Cutting_ord2=factor(TVbo$Cutting_ord1,ordered=TRUE)

And finally use the clm function to obtain the d-prime estimate:

clm <- clm(Cutting_ord2 ~ TVset,link="probit",
data = subset(TVbo, TVset != "TV2"))

coef(clm)[-(1:9)]
round(coef(clm2),2)


