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RESUMO 

 

 Mudanças no uso e cobertura da terra têm resultado em alterações globais, 

especialmente em ecossistemas tropicais. Investigar fatores que podem estar 

relacionados a estes distúrbios é essencial para mitigar danos causados à 

biodiversidade e aos serviços ecossistêmicos. Isso é especialmente importante no 

caso de biomas tropicais mega-diversos e extremamente ameaçados, como a Mata 

Atlântica, considerada hotspot de biodiversidade. As relações entre as principais 

ameaças à Mata Atlântica – desflorestamento e fragmentação florestal – e fatores 

externos não são atualmente bem compreendidas, e compreendê-las é vital para a 

conservação de sua área remanescente. Igualmente importante, é identificar áreas 

prioritárias que necessitam de proteção. Compreender a distribuição potencial de 

espécies ameaçadas, o que também não é bem compreendido atualmente, é 

fundamental para identificar tais áreas. Esta tese tem como objetivo investigar 

relações entre desflorestamento e fragmentação florestal, e fatores 

socioeconômicos e bio-geofísicos na Mata Atlântica no Estado de Minas Gerais, 

Brasil, e modelar distribuições potenciais de espécies de plantas ameaçadas, que 

ocorrem neste bioma, no Cerrado e na Caatinga de Minas Gerais. 

No Capítulo 2 utilizei a análise de Random Forest (RF) para identificar relações 

entre fatores socioeconômicos e bio-geofísicos, e métricas de desflorestamento e 

fragmentação florestal na Mata Atlântica. No capítulo 3, usei RF para investigar 

como essas relações mudaram quando analisadas em diferentes escalas espaciais. 

No capítulo 4, eu usei o MaxEnt para investigar a distribuição potencial de 

espécies de plantas ameaçadas em Minas Gerais, a fim de recomendar áreas 

prioritárias para conservação com base na maior adequabilidade ambiental das 

espécies modeladas. Dois projetos em escala ampla realizados em Minas Gerais – 

o Zoneamento ecológico-econômico de Minas Gerais, ZEE-MG, e o Inventário 

Florestal – forneceram mais de 300 fatores, métricas de desflorestamento e 

fragmentação florestal, e parte dos pontos de ocorrência das espécies de plantas 

ameaçadas. Compilei demais pontos de ocorrência do site SpeciesLink e do banco 

de dados NeoTropTree. 

RF provou ser uma ferramenta eficaz para elucidar as relações entre fatores e 

métricas, tanto em comparação com a abordagem clássica, como quando usada 

em múltiplas escalas. No geral, um conjunto de fatores de diferentes categorias 

foi identificado como tendo relações relativamente fortes com os padrões de 

desflorestamento e fragmentação florestal. A densidade de estradas foi o fator 

mais comumente selecionado nos modelos de RF. Observei grande variação nos 

modelos de RF em diferentes escalas, em que algumas métricas forneceram níveis 

mais elevados de explicação em escalas mais finas, enquanto outras em escalas 

mais amplas. Ainda, eu mostrei que os processos de desflorestamento ainda 

ocorrem na Mata Atlântica de Minas Gerais, mesmo com legislação específica 



 

que o torna ilegal neste bioma. Finalmente, eu identifiquei lacunas significativas 

na proteção das espécies ameaçadas, principalmente na Mata Atlântica. 

Juntamente com áreas identificadas nos biomas Cerrado e Caatinga, estes locais 

devem ser considerados como prioridades para a realização de inventários e, após 

a confirmação de distribuição das espécies existentes, propor novas reservas 

naturais. 

 

Palavras-chave: Mudanças no uso e cobertura da terra. Fatores socioeconômicos 

e bio-geofísicos. Florestas tropicais. Random Forest. MaxEnt. Áreas prioritárias 

para Conservação. Minas Gerais. 



 

ABSTRACT 

 

 Land use and cover change are resulting in changes across the globe, and 

especially in tropical ecosystems. Investigating factors that relate to these 

disturbances is essential if we are to mitigate the damage they are causing to 

biodiversity and ecosystem services. This is especially important in the case of 

megadiverse and threatened tropical biomes, such as the Brazilian Atlantic Forest, 

considered a biodiversity hotspot. The relationships between the greatest threats 

to the Atlantic Forest – deforestation and forest fragmentation – and external 

factors that might be related to them are not currently well understood, and 

comprehending them is vital for the conservation of the forest’s remaining area. 

Equally important is identification of priority areas that need protection. 

Understanding the potential distribution of threatened species is a key tool for 

identifying those areas. This thesis aims to investigate the relationships between 

deforestation and forest fragmentation, and socio-economic and bio-geophysical 

factors in the Atlantic Forest in the state of Minas Gerais, Brazil, and to model the 

potential distributions of red-listed plant species, which occur in this biome, and 

Cerrado and Caatinga of Minas Gerais. 

In Chapter 2 I used random forest analysis (RF) to identify relationships between 

socio-economic and bio-geophysical factors, and deforestation and forest 

fragmentation metrics in the Atlantic Forest. In chapter 3, I used RF to investigate 

how those relationships changed when they were analysed at different spatial 

scales. In Chapter 4, I used MaxEnt to investigate the potential distribution of red-

listed plant species in Minas Gerais, in order to recommend priority areas for 

conservation based on the highest environmental suitability for the species 

modelled. Two broader-scale projects carried out in Minas Gerais – the ecologic-

economical zoning of Minas Gerais, and the vegetation monitoring system dataset 

– provided the factors, which number more than 300, deforestation and forest 

fragmentation metrics, and some of the occurrence points of threatened plant 

species. I compiled further occurrence points from the SpeciesLink Website, and 

NeoTropTree database.  

RF analysis proved to be an effective tool for elucidating the relationships 

between factors and metrics, both in comparison to the classical approach and 

when used at multiple scales. Overall, a set of factors from different categories 

was identified as having relatively strong relationships with patterns of 

deforestation and forest fragmentation. Road density was the most commonly 

selected factor in the RF models. I observed extensive variation in the RF models 

at different scales, with some metrics providing higher levels of explanation at 

finer scales, while others at larger scales. Additionally, I have shown that 

deforestation processes are still occurring in the Atlantic Forest of Minas Gerais, 

even with specific legislation that makes deforestation in this biome illegal. 



 

Finally, I identified significant gaps in the protection of threatened plant species, 

mainly in the Atlantic Forest. Together with areas identified in the Cerrado and 

Caatinga, these must be considered as priorities for conducting inventories and, 

after confirmation of existing species distributions, proposing new natural 

reserves. 

 

Keywords: Land use and land cover change. Socio-economic and bio-

geophysical factors. Tropical Forests. Random Forest. MaxEnt. Priority areas for 

Conservation. Minas Gerais. 
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1 INTRODUCTION 

 

1.1 The Atlantic Forest, the Cerrado, and the Caatinga: human-dominated 

tropical biomes 

 

1.1.1 The Atlantic Forest 

 

The Brazilian Atlantic Forest constitutes an extremely heterogeneous and 

unique biome, composed of a set of forest types, as well as natural grasslands, salt 

marshes, mangroves and associated ecosystems (Ribeiro et al. 2011). It is also a 

mega-diverse tropical forest, hosting large numbers of species of plants (20,000) 

mammals (263), birds (936), reptiles (306) and amphibians (475) (Mittermeier et 

al. 2005). It also has the largest number of endemic species per unit area of any 

biome in the world, and a notably high diversity of vertebrates (IUCN 2008). For 

this reason, the Atlantic Forest is considered one of the largest and most important 

forests in the world (Malhi et al. 2008). 

In the 16th century, the Atlantic Forest covered 1.5 million km2 along the 

Brazilian coast, and extended west in small islands in Paraguay and Argentina 

(Galindo-Leal and Câmara 2003, Ribeiro et al. 2009). However, its area has been 

greatly reduced since then. There is evidence that, even before the Europeans’ 

arrival in Brazil in the early 16th century, the Atlantic Forest was already subject 

to some level of anthropogenic disturbance by indigenous populations (Dean 

1996). The Tupi indigenous group dominated the biome for over 1000 years, 

practicing nomadic slash-and-burn agriculture, but their cultivation system did not 

impact the Atlantic Forest significantly, and it was able to re-grow vigorously 

after the collapse of Tupi populations (Dean 1996). 

Once the Portuguese settlers arrived in Brazil in 1500, they ushered in a 

resource exploitation chain. Firstly, they overexploited Brazilwood trees 
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(Caesalpinia echinata – currently severely threatened by extinction) impacting 

nearly 600,000 ha of forest in the first century of European occupation (Dean 

1996; Young 2003). They then provided land concessions, encouraging Brazil’s 

occupation and expansion of sugarcane plantations to consolidate their dominance 

over the territory (Dean 1996). The third economic cycle was gold mining, 

followed by agricultural expansion to feed the growing population; another 3 

million ha of forests were destroyed in the 18th century (Dean 1996). The historical 

deforestation of the Atlantic Forest culminated with expansion of coffee 

plantations in the southeastern region of Brazil, from the mid-19th century to the 

beginning of the  20th century (Dean 1996), followed by expansion of cattle 

ranching (Young 2003). 

In summary, the biome has suffered the consequences of deforestation 

and fragmentation over five centuries of intense human occupation. Many 

anthropogenic activities have contributed to the Atlantic Forest degradation (Dean 

1996, Young 2003). Recently, disturbances in the biome have been due to 

anthropogenic activities such as a transition from previous agricultural activities 

to soybean plantations and forest crops (Campanili and Schaffer 2010), as well as 

industrialization and urban development (Ribeiro et al. 2011). Over 3000 urban 

centres built amongst the Atlantic Forest house more than 110 million Brazilians 

(Pinto et al. 2014). These centres range in size from small villages with simple 

socio-economic structures to some of the major conurbations of the world (Pinto 

et al. 2014), where legal and cultural aspects related to the use and dependence on 

forests also vary from one region to another (Young 2003). Investigating those 

activities and associated factors is crucial to mitigating further damage to the 

Atlantic Forest. 

The Atlantic Forest is now so highly fragmented and subject to severe 

anthropic pressure that it is recognized as one of the top-five global biodiversity 

hotspots (Laurance 2009).The extent of the remaining area of Atlantic Forest is 
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debated, but all studies agree that the amount of remaining area is critically low 

(about 7-8% of its extent in the 16th century, according to SOS Mata Atlânticaand 

INPE (2008); and about 12% according to Ribeiro et al. (2009) who incorporated 

patches smaller than 50 ha. Trying to reverse this critical scenario, restoration 

initiatives are under development (Rodrigues et al. 2009, Pinto et al. 2014) in 

conjunction with the establishment of specific legislation created in 2000 – the 

Atlantic Forest Law (Law N. 11.428, Brazil2006), to control exploitation and 

suppression of Atlantic Forest remnants. However, these initiatives seem not to 

be sufficient to safeguard and restore this biome. Hence, the Atlantic Forest 

remains at present asa mosaic of forest patches dispersed in a matrix of 

environments modified by humans. This makes it a perfect example of a 

fragmented landscape (Ribeiro et al. 2009), which can serve as a test bed for 

looking for patterns of land use and land cover changes, especially those related 

to forest fragmentation. 

 

1.1.2 The Cerrado 

 

The Brazilian savanna vegetation is called Cerrado and is the second 

largest Brazil’s major biome, after the Amazon forest (Ratter et al. 1997, Ribeiro 

and Walter 1998). The Cerrado domain covers more than 2 million km2 (the same 

size as Western Europe) along the central Brazilian Plateau, extending marginally 

to Paraguay and Bolivia (Ratter et al. 1997, Alho 2005). Cerrado is composed of 

unique vegetation types determined primarily by fire or the distribution of soil 

types (Coutinho 1982), or by a combination of factors such as climate, soil, 

availability of water and nutrients, geomorphology and topography, latitude, and 

grazing impact of human activities (Ribeiro and Walter 1998). 

The cerrado is one of the richest terrestrial biomes on Earth (Mittermeier 

et al. 2005). It has a unique fauna and the largest diversity of all savanna floras in 
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the world (ca. 10,000 species) (Ratter et al. 1997, Mittermeier et al. 2005). Overall 

biodiversity for the Cerrado biome, including all its physiognomic forms, is 

estimated at 160,000 species of plants, animals, and fungi. Endemicity of cerrado 

higher plants has recently been estimated at 4,400 species, representing 1.5% of 

the world’s total vascular plant species (Mittermeier et al. 2005). Endemic 

vertebrates range from 3% (birds) to 28% (amphibians) of the species recorded 

(Mittermeier et al. 2005). The Cerrados are also unique in that they serve as 

corridors for species inhabiting neighbouring biomes such as the Amazonian and 

Atlantic rainforests (Oliveira and Marquis 2002). 

Cerrado is the second Brazilian biome that has suffered most severely 

changes due to human actions, behind the Atlantic Forest (Brazil 2014). The 

growing pressure to increase the production of meat and grains for exportation has 

led to a progressive depletion of natural resources of the Cerrado. In the last three 

decades, the biome has been heavily degraded due to the expansion of the 

Brazilian agricultural frontier (Brazil 2014). This large-scale transformation of the 

cerrado landscapes is endangering its biodiversity with habitat fragmentation and 

even animal extinction. Likewise the Atlantic Forest, the Cerrado is considered a 

hotspot of biodiversity (Mittermeier et al. 2005). 

 

1.1.3 The Caatinga 

 

Caatinga is a type of tropical seasonal forest, an exclusive biome in Brazil, 

which biological heritage is unique and not found in any other region in the world. 

This biome covers an area of about 844.453 km² (11% of the country’s territory), 

covering part of the nine northeastern states and the north of Minas Gerais (Brazil 

2014). Hot semi-arid climates (type "BSh" under the Köppen climate 

classification) are predominant in the Caatinga. However, this biome has strong 

climate irregularity, recording the most extreme weather values in the country. 
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The Caatinga has the strongest insolation, the lowest cloud cover, the highest 

average temperature (between 25 ° C and 30 ° C), the highest evaporation rates, 

and the lowest rainfall (around 500 and 700 mm annually), with wide spatial and 

temporal variability (Reddy 1983, Sampaio 2003). This irregular rainfall system 

along the years generates periodical severe drought issues (Krol et al. 2001). 

The Caatinga is divided into ecoregions and has two main vegetation 

types associated with the heterogeneity of the relief, the climate and the soil of 

northeast Brazil: forest and non-forest formations. These vegetation types vary 

accordingly to the leaf deciduousness from evergreen, semi-deciduous to 

deciduous. Non-forest formations are represented by the thorny deciduous woody 

vegetation (caatinga stricto sensu), cerrado enclaves, carrasco and other shrub 

types (Brazil 2005). 

In the Caatinga, the pressure of dry weather selected vegetation with 

protective structures. Several of the woody species store water in their swollen 

trunks, e.g., Cavanillesia arborea (Lentz 2000). Other plants have their roots 

practically on the soil surface, to absorb as much rain as possible, as the root 

effective depth lies among the most sensitive hydrological parameters in water-

scarce environments (Güntner and Bronstert 2004). 

For a long time, the Caatinga was considered poor in biodiversity and its 

richness was underestimated due to the recognized gaps in knowledge of this 

region (Tabarelli and Vicente 2002, Tabarelli and Vicente 2004, Barbosa et al. 

2005). However, the number of studies on Caatinga biodiversity has increased 

considerably over the past decades, and currently, it is known that besides its 

extreme climate conditions, the Caatinga hosts an impressive faunal and floristic 

biodiversity and has a high degree of endemism (Albuquerque et al. 2012). 

The Caatinga is one of the most often neglected biomes and was for a long 

time forgotten. Only recently there was a greater concern about the serious 

situation of biome, because the need for conservation its natural systems, and the 
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wide lack of scientific knowledge (Veloso at al. 2001). Despite its importance, 

this biome has been extensively modified by human action, and has undergone an 

intense process of degradation, consequent to the expansion of extensive 

agriculture and livestock (Tabarelli et al. 2000). Today, less than 2% of the area 

of Caatinga is protected fully protected conservation units (Tabarelli et al. 2000). 

 

1.2 Land use and cover change: deforestation and forest fragmentation 

 

Land use and cover change (LUCC) is the study of land surface change 

(Turner II et al. 1990, Lambin et al. 1999). Land cover describes the biophysical 

attributes of the Earth’s surface, while land use defines the human purpose or 

intent applied to these attributes (Turner II et al. 1990, Lambin et al. 1999). 

Examples of land cover are forest or desert (Lambin et al. 1999). Agriculture, 

pasture, or plantations are examples of land use (Geist and Lambin 2002).Land 

use and cover changes (LUCC) resulting from human activities have transformed 

the Earth’s landscapes for many years, intensifying rapidly over the last three 

centuries, and accelerating in particular over the last three decades (Lambin and 

Geist 2006). Tropical deforestation is one of the primary causes of global 

environmental change (Geist and Lambin 2002). Deforestation occurs when the 

entire plant biota of an area is removed (Fahrig 2003). It brings negative effects 

such as biodiversity loss, reduction of genetic potential, scarcity of timber and 

firewood, climate change, reduction of soil fertility, increased soil erosion, 

changes in the water regime (Fearnside 2005) and exotic species invasions (Puig 

2009). 

A major consequence of deforestation is forest fragmentation (Fahrig 

2003). Fragmentation refers to the degree of disruption of an originally continuous 

landscape unit (Metzger 2004) and changes in the habitat configuration as a result 

of this subdivision and isolation (Fahrig 2003). According to Fahrig (2003), the 
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definition of habitat fragmentation implies four effects of the fragmentation 

process: (i) reduction in habitat amount (ii) increase in number of habitat patches, 

(iii) decrease in sizes of habitat patches and (iv) increase in isolation of patches. 

When the process of anthropogenic habitat fragmentation occurs (caused 

by the breakdown of a landscape unit, for example), the landscape structure is 

modified, resulting in changes in community composition and diversity (Metzger 

1999). Habitat loss results in reduction of its total area without it necessarily being 

broken down. On the other hand, fragmentation leads to the decrease in size, and 

increases in the number and isolation of remaining patches, but not to the removal 

of large amounts of habitat (Fahrig 2003). In real landscapes, such as the Atlantic 

Forest, these processes are often correlated (Fahrig 2003). They change the spatial 

structure of the landscape and directly affect the persistence of many species 

(Saunders et al. 1991).  

 

1.3 Landscape ecology: landscape structure and metrics 

 

Landscape ecology can contribute to the understanding of fragmented 

landscapes (Wu 2006). Landscape ecology is the area within ecology that 

emphasizes the importance of spatial context for ecological processes and the 

importance of spatial relations in terms of conservation biology (Metzger 

2001).The focus of this approach concerns the effects of landscape spatial 

structure on ecological processes (Turner 1989). 

According to the principles of landscape ecology and the patch-corridor-

matrix model, a fragmented landscape presents some basic components such as 

the matrix, patches and corridors or connecting elements (Forman 1995). The 

matrix is the most abundant element in the landscape (Forman and Godron 1986, 

Forman 1995), and is the landscape unit that controls landscape dynamics 

(Forman 1995). In the Atlantic Forest, the main matrices are extensive areas of 
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pastures, monocultures and urban areas (SOS Mata Atlântica and INPE 

2008).Patches are homogeneous areas (at a certain scale) of a landscape unit, 

which are distinguished from neighbouring units and have reduced spatial extent 

(Metzger 2001). In this study, the habitat patches of interest are the forest 

remnants left after human colonization. Corridors are homogeneous areas (at a 

certain scale) of a landscape unit, which are distinguished from neighbouring units 

and have a linear spatial structure (Metzger 2001). Habitat corridors and stepping-

stones are elements that maintain connectivity in a fragmented landscape. 

Vegetation corridors are strips of vegetation that connect isolated remnants 

(Bennett 2003) and stepping-stones are isolated, small groups of trees scattered 

across the matrix (Boscolo et al. 2008). These structures are essential for 

controlling biological flows in landscapes because they reduce the risk of local 

extinction and promote new colonization (Metzger 2004). Despite having some 

potentially negative effects (Hobbs 1992, Lidicker 1999, Anderson and Jenkins 

2006), there is no evidence that corridors are consistently detrimental in a way 

that overcomes their established benefits (Haddah et al. 2014). 

Studies of landscape ecology often employ remote sensing data (Turner 

2005) that are used to derive land cover maps and to monitor land cover changes 

(Purkis and Klemas 2011). Landscape structure patterns are analysed by applying 

metrics (Tischendorf 2001, Turner 1989).These metrics can be quantified for both 

individual patches and classes, or for the whole landscape (McGarigal and Marks 

1995). They are important and useful tools for describing and comparing 

landscape spatial patterns (Rutledge 2003). Metrics provide valuable information 

for different applications, serving as tools in environmental monitoring programs 

(Ståhl et al. 2011); acting as the quantitative linkage between landscape pattern 

and ecological processes (Dramstad 2009); and allowing for comparisons of 

different landscapes or studies (Ji et al. 2006). They also are key tools for 



29 
 

measuring landscape composition or configuration, and analysing fragmentation 

and connectivity/isolation of landscape units (Hargis et al. 1998). 

Despite being widely used, landscape metrics have some limitations. 

They are often sensitive to the thematic resolution (i.e. the number of land cover 

types identified; Bailey et al. 2007), the spatial resolution (i.e., pixel size and 

extent) (Turner et al. 2001) and classification errors (Hoechstetter et al. 2008). 

Further, a single metric cannot capture all aspects of landscape patterns (Turner 

2005), and one metric may have similar numerical values for different patterns 

(Tischendorf 2001). 

 

1.4 Deforestation and forest fragmentation related factors 

 

Deforestation remains one of the primary causes of global environmental 

change (Lambin and Geist 2006), but the question of what drives deforestation 

remains incompletely answered (NCR 1999). There is evidence from empirical 

case studies that there is no universal relationship between cause and effect in this 

respect (Geist and Lambin 2002). Instead, these studies show that deforestation is 

determined by different combinations of various proximate causes and underlying 

driving forces in varying geographical and historical contexts (Geist and Lambin 

2002), where some of the combinations are robust geographically (e.g. the 

development of market economies), whereas most of them are region-specific. 

The same can be expected for forest fragmentation, as it is a consequence of 

deforestation (Fahrig 2003) 

A detailed understanding of the complex set of proximate causes and 

underlying driving forces affecting forest cover changes in a given location is 

required prior to any policy intervention (Geist and Lambin 2002). Geist and 

Lambin (2002) defined underlying causes as comprising regional patterns of 

economic factors, institutions, national policies, and remote influences, which in 
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turn, drive agricultural expansion, wood extraction, and infrastructure expansion 

(Geist and Lambin 2002). 

They identified four broad clusters of proximate causes: agricultural expansion, 

wood extraction, infrastructure extension, and other factors (Figure1.1), and five 

broad clusters of underlying driving forces: demographic, economic, 

technological, policy and institutional and cultural factors (Figure1.1).In this 

study, I have accessed information on proximate and underlying causes from a 

broader-scale project that collected a very large dataset covering a variety of 

socio-economic and bio-geophysical variables: the ecological-economical zoning 

of Minas Gerais (ZEE-MG; Scolforo et al. 2008). This project was intended to 

provide information to government agencies, covering areas of knowledge 

ranging from poverty indices to fauna vulnerability indices. This dataset has not 

previously been used to analyse the driving forces of deforestation and forest 

fragmentation in the Atlantic Forest of Minas Gerais, in spite of the lack of 

knowledge concerning these matters for guiding conservation and restoration 

policies. 
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Figure 1.1  Causes of forest decline organized by Geist and Lanbim (2002): five broad clusters of underlying driving forces 

(or fundamental social processes) underpin the proximate causes of tropical deforestation, which are immediate 

human actions directly impacting forest cover. 
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1.5  How to relate deforestation and forest fragmentation to underlying and 

proximate causes? 

 

The significant progress in the development of statistical modelling tools 

in recent years has offered a variety of different techniques for investigating 

factors associated with land use changes. Some studies have used relatively 

simplistic approaches, such as Mann-Whitney and Kruskal-Wallis tests (Quezada 

et al. 2013), correlation analyses (Beilin et al. 2014), or statistical redundancy 

analyses (Parcerisas et al. 2012). Others have applied more robust approaches, 

combining or comparing different methods. Jaimes et al. (2010) and Gao and Li 

(2011) compared ordinary least squares regression (OLS) and geographically 

weighted regression (GWR) to explore factors related to the loss of forest areas 

and landscape fragmentation. Freitas et al. (2013) combined canonical 

correspondence analysis (CCA), OLS, GWR and spatial clustering to investigate 

relationships between land use and land cover changes and environmental and 

socio-economic variables. Gong et al. (2013) used stepwise multiple regression to 

examine relationships between urban forest fragmentation metrics and selected 

socio-economic factors. Bonilla-Moheno et al. (2012) applied a recently 

developed technique, random forest regression analysis (hereafter, RF; Breiman 

2001) to evaluate the effect of environmental, socioeconomic, and demographic 

variables on woody vegetation trends in Mexican municipalities. However, they 

did not explore the performance of RF models in this study. 

Despite a significant improvement in our understanding of the impacts of 

LUCC on tropical environments recently (Malhi et al. 2014), there is still no 

optimal tool for understanding relationships between deforestation/forest 

fragmentation and socio-economic or bio-geophysical factors. RF analysis has 

great potential in this respect, since it is capable of identifying complex interactive 

and non-linear response-predictor relationships, and has excellent predictive 
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performance (Prasad et al. 2006, Smith et al. 2011). Thus, application of RF 

analysis to disentangle these sorts of relationships may be particularly useful. 

Furthermore, because many statistical approaches require that variables are 

normally distributed, most of the research in this field to date has considered only 

a limited number of independent variables as their starting point. Therefore, 

modelling approaches need to be further evaluated in terms of the choice of 

independent and dependent variables, as well as the selection and interpretation 

of appropriate statistical methods. There is also a need for further studies that 

include a large number of factors encompassing, as much as possible, all aspects 

of the socio-economic and bio-geophysical dimensions. 

 

1.5.1 Random forest analysis (RF) 

 

RF (Breiman 2001) is a data mining method widely used in disciplines 

like bioinformatics (Cutler and Stevens 2006), which has recently gained 

popularity in ecology (Prasad et al. 2006, Cutler et al. 2007, Wei et al. 2010, 

Gilbert and Chakraborty 2011). As the name suggests, it uses an ensemble of 

decision trees with binary divisions, each capable of producing a response when 

presented with a set of predictor values (Cutler et al. 2007). The available data 

sets are fed into these decision trees, after which RF uses a classification or 

regression tree (also known as "CART", Breiman et al. 1984) approach (Prasad et 

al. 2006) to combine the predictions from all the trees (Cutler et al. 2007). For 

regression modelling problems, such as the case we considered in this study, the 

outcome of the RF process that I am primarily concerned with in this study is a 

measure of the importance of each independent variable for accurate estimation 

of each dependent variable. 

RF has advantages over other methods of identifying relationships between 

predictor and response (or independent and dependent) variables, in that it does 
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not assume any data distribution, does not require formal selection of predictors, 

does not over-fit the data (i.e. avoids having noise contaminate the fitting process) 

and is robust with respect to outliers and unbalanced data (Cutler and Stevens 

2006, Prasad et al. 2006). RF is able to analyse large numbers of potential 

independent variables, and incorporates a method for calculating the importance 

of each independent variable in the model it provides (Smith et al. 2011). Its main 

limitations are that its intrinsic flexibility make it somewhat of a "black box" 

approach (Prasad et al. 2006), but many parameters can be adjusted when 

performing a modeling. Additionally, it can be very demanding in terms of 

computational time and resource requirements (Prasad et al. 2006). Nevertheless, 

recent computational developments have dealt with this limitation. 

 

1.6 Studies in the Brazilian Atlantic Forest: a contextualization 

 

A few studies have attempted to investigate drivers and associated factors 

of land use and cover changes in the Brazilian Atlantic Forest. Silva et al. (2007) 

conducted a local scale study and found an indirect influence of topographic relief 

on forest cover. Teixeira et al. (2009) showed that proximate causes influence the 

dynamics of deforestation and forest re-growth. They identified that losses in 

young secondary vegetation and forest were far from rivers, on gentle slopes and 

near urban areas, while higher forest re-growth rates were near rivers, on steep 

slopes and far from dirt roads. Freitas et al. (2010) analysed the effects of roads, 

topography, and land use on forest cover dynamics and demonstrated that forest 

dynamics were directly related to past road density, past land use (buildings and 

agriculture expansion), and slope variation. Lira et al. (2012) described LUCC in 

three Atlantic Forest fragmented landscapes (in São Paulo state) over time and 

found that LUCC deviated from a random trajectory. Their results also suggested 

a forest transition in some Atlantic Forest regions. Freitas et al. (2013) used a 
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combination of statistical approaches – multivariate data analysis (CCA), linear 

regression models (OLS), local spatial regression models (GWR) and spatial 

clustering procedures (SKATER) – to investigate relationships between LUCC 

processes and environmental and socio-economic variables in an Atlantic Forest 

region with an area of ~12,000 km2 in the state of Rio Grande do Sul. Their 

findings revealed a competitive and inter-related set of LUCC processes, due to 

the landscape complexity. More recently, Ferreira et al. (2015) investigated how 

forest cover and agricultural land use varied in an area of Atlantic Forest in São 

Paulo state, emphasizing sugarcane expansion. 

 

1.7 Conservation strategies – Protected Areas (PAs) 

 

Of equal importance with studying LUCC effects upon natural 

environments and the biodiversity and ecosystem services associated, is investing 

in conservation strategies, which are essential for the maintenance of these 

environments and the survival of species. Conservation issues are often related to 

the establishment of PAs, which are considered to be a key strategy of 

conservation (Butchart et al. 2010). PA design depends on systematic planning, 

including several steps (Margules and Pressey 2000). Among these, we highlight 

the identification of threatened species (e.g: Biodiversitas 2005, MMA 2008, 

IUCN 2014), the identification of hotspots - mega-diversity regions (in terms of 

species richness, endemism or genetics) which are under greatest threat (e.g. 

Mittermeier et al. 2005, Mittermeier et al. 2011, Zachos and Habel 2011), and the 

investigations on the geographical distribution of biodiversity and their current 

conservation status (Rey Benayas and de la Montana 2003). 

Setting aside areas for the preservation of natural values is an old and 

generalized human practice (Margules and Pressey 2000). These areas are 

increasingly being established, principally for the protection of biodiversity, 
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including ecosystems, biological assemblages, species and populations (Global 

Biodiversity Strategy 1992). Although the extent of PA coverage has increased as 

a response to the biodiversity crisis, the rate of biodiversity loss does not appear 

to be reducing (Butchart et al. 2010). More efforts are needed to expand PA 

networks and make conservation initiatives more effective. To do so, basic 

information such as the geographical distribution of endemic, endangered and 

exotic species is essential (Whittaker et al. 2005). 

 

1.8 Species distribution modelling 

 

Species distribution models (hereafter, SDM) are considered an important 

technique that guide conservation practices (Guisan and Zimmermann 2000, 

Guisan and Thuiller 2005), as the actual geographical distribution of many taxa is 

little known and most species have only a few occurrence records (Peterson 2006). 

In the last two decades, SDM received a lot of attention as a tool guiding studies 

in biogeography, evolution and, more recently, in conservation biology and 

studies of climate change effects (Guisan and Thuiller 2005). 

SDM are obtained through statistical tools that generate the potential 

geographical distribution of a given group or species based on its occurrence 

points (Phillips et al. 2006). These models relate points of presence of the species 

to environmental variables (e.g. temperature, rainfall, altitude and soil types) to 

predict suitable environments where, in theory, a population can exist and remain 

viable (Anderson et al. 2003, Guisan and Thuiller 2005). Points of presence are 

georeferenced coordinates indicating the location where a specimen was collected 

and/or registered (Anderson et al. 2003). In short, those models can predict, at 

different scales, sites with environmental characteristics appropriate to the 

occurrence of this group or species (Phillips et al. 2006). Studies using this 

modelling approach focused initially on species that are widely distributed, due to 
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the relatively large amount of data available for them (Anderson et al. 2002, 

Peterson et al. 2008). Recently, they have been expanded to rare, endemic and 

endangered or threatened species, mainly due to the development of information 

technology and the availability of a variety of spatial data in different resolutions 

and scientific collection databases over the internet (Guisan et al. 2006, Williams 

et al. 2009). 

Today, there is a large number of algorithms available for modelling 

species distributions (Guisan and Zimmermann 2000, Guisan and Thuiller 2005, 

Elith et al. 2006, Muñoz et al. 2009). Therefore, it is important to select the most 

appropriate method for modelling (Jimenez-Valverde and Lobo 2007), having a 

well-defined goal, because for each goal, there are different algorithms, modelling 

and validation techniques.  

Amongst all of the techniques available, the maximum entropy approach, 

"MaxEnt" (Phillips et al. 2004, Phillips et al. 2006) has provided strong evidence 

of performing better than other methods (Elith et al. 2006, Ortega-Huerta and 

Peterson 2008). It is able to deal with small sample sizes while remaining 

effective, and is thus particularly applicable to threatened species, which may have 

only a few recorded points of occurrence in any given study area (Pearson et al. 

2007, Elith at al. 2011). MaxEnt is one of the most commonly used methods for 

inference of species distributions and environmental tolerances from occurrence 

data (Phillips et al. 2006). MaxEnt is a maximum entropy based machine-learning 

algorithm that estimates the probability distribution of a species’ occurrence based 

on environmental constraints (Phillips et al. 2006). 

 

1.9 Thesis’ structure and objectives 

 

This thesis is divided into five chapters, comprising an introductory 

chapter, three chapters detailing substantive pieces of research, and a concluding, 
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synthesis chapter. The thesis was submitted for obtaining the degree of Doctor of 

Philosophy to satisfy the requirements from the Dual PhD scheme between the 

Universidade Federal de Lavras – UFLA, Brazil and Lancaster University, 

England. Thesis’ structure follows the formatting guidelines from the Graduate 

Program of Applied Ecology from UFLA. The three central chapters have all been 

written in the form of research papers and are intended for individual publication 

in the peer-reviewed literature: chapter 2 is a multi-authored paper in preparation 

for submission to Ecological Indicators, chapters 3 and 4 will be submitted for 

review and publication (target journals are Landscape Ecology,and Biological 

Conservation, respectively). The thesis is therefore made up of interrelated but 

stand-alone chapters. The overlap in the text content between chapters has been 

kept to a minimum; however, there is some common material presented, 

particularly in the introductions to the papers, methods and references. The 

specific formatting requirements of the journals have resulted in some minor 

formatting differences between chapters.  

 The content of each chapter is summarized as follows: 

 

 - Chapter 1 – Introduction. The introductory chapter presents a general 

introduction covering all themes explored in the thesis. The purpose of this chapter 

is to provide the reader with an understanding of the broad contextual and 

theoretical issues that frame this thesis, including introductions to the statistical 

approaches used to analyse deforestation and forest fragmentation and species 

distributions. 

 

 - Chapter 2 – Random forests explain forest contraction. This chapter 

presents a comparison between random forest analysis and stepwise multiple 

regression to investigate factors associated with deforestation and forest 

fragmentation in the Brazilian Atlantic Forest biome within the state of Minas 
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Gerais, Brazil.The aims were: (i) to apply random forest analysis in order to 

elucidate the relationships between deforestation/fragmentation metrics and 

socio-economic/bio-geophysical factors in the Brazilian Atlantic Forest; and (ii) 

to compare the performance of random forest analysis with that of multiple linear 

(stepwise) regression approach to generating understanding of these relationships. 

 

 - Chapter 3 – Multi-Scale Random Forest Analysis for Modelling 

Relationships between Landscape Pattern and Associated Factors. In this 

chapter, random forest analysis was applied at different spatial scales to 

investigate the relationships between socio-economic/bio-geophysical factors and 

deforestation/fragmentation metrics. The main aims were: (i) to quantify and 

compare deforestation and fragmentation metrics at biome, regional and sub-

regional scales in the Atlantic Forest using land-cover maps, and to estimate 

deforestation rates from 2003 to 2011, and (ii) to identify the forces driving forest 

fragmentation and deforestation at these different spatial scales in the Atlantic 

Forest of Minas Gerais, Brazil. 

 

 - Chapter 4 –Species distribution modelling demonstrates the need for 

expansion of protected areas in biodiversity hotspots of Minas Gerais, Brazil. In 

this chapter, I model endangered plant species distribution, and overlap the models 

produced with forest remnant data and protected area boundaries. The intention 

was to evaluate the protection status of these species. The specific aims were: (i) 

to determine the potential distribution of selected endangered plant species in the 

Atlantic Forest, Cerrado and Caatinga biomes in Minas Gerais, based on measures 

of environmental suitability; (ii) to combine state-wide potential distribution 

models with maps of forest remnants and protected area, in order to assess gaps 

in the protection of the species studied; and (3) to recommend priority areas for 
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conservation based on the identification of environmentally suitable areas for the 

species considered in this study. 

 

 - Chapter 5 – Concluding remarks. This final chapter provides a 

summary and synthesis of the findings from each of the preceding three chapters, 

and considers their importance for science and conservation policies in human-

modified tropical forests regions, as well as highlighting future research needs.
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ABSTRACT 

 

 Context: Anthropogenic transformations of land cover have changed the 

Earth’s surface globally. Mitigating the damage caused by these changes to the 

natural environment requires understanding of relationships between spatial 

distributions of land cover and socio-economic and bio-geophysical parameters. 

Objective: To assess the value of applying random forest analysis (RF), a recently 

developed machine-learning technique, to relating deforestation and forest 

fragmentation to socio-economic and bio-geophysical variables, in the Brazilian 

Atlantic Forest of Minas Gerais, Brazil.  

Method: A vegetation-monitoring project provided land cover maps, from which 

we derived deforestation and forest fragmentation metrics. An ecologic-

economical zoning project provided more than 300 socio-economic and bio-

geophysical variables. We used RF to identify relationships between these sets of 

variables, and compared its performance in this task to that of a more traditional 

multiple linear regression approach. 

Results: Our investigation showed that RF modelled relatively well variance in 

metrics describing the density and isolation of forest patches, but was relatively 

poor at modelling variance of overall rates of deforestation and forest patch 

shapes, where the multiple linear regression performed better. RF also identified 

variables describing distances of forest patches from elements of natural and man-

made infrastructure, accessibility and topography as being most closely associated 

with patterns of deforestation and forest fragmentation. In contrast, it found 

variables associated with economic productivity and social institutions to have 

little relationship with these patterns. 

Conclusions: We found that RF was better at explaining variations in metrics 

describing patch patterns, while it appears to have been less robust at capturing 

variations in metrics describing broader landscape structure, possibly due to 

differences in how these metrics vary in space. We conclude that RF provides a 

promising methodology for elucidating the relationships between socio-

economic/ bio-geophysical factors and patterns of deforestation/forest 

fragmentation. 

 

Keywords: Land use and land cover change. Deforestation. Forest fragmentation. 

Socio-economic and bio-geophysical factors. Brazilian Atlantic Forest. Tropical 

forests. Machine-learning technique. Stepwise Multiple Regression. Minas Gerais 

State. 
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2.1  Introduction 

 

A large proportion of the Earth’s surface has been transformed by 

anthropogenic land use activities in recent centuries. Land use and land cover 

change (hereafter, LUCC) was once considered a local environmental issue, but 

is becoming globally important due to its increasingly widespread effects upon 

natural environments. Comprehending these effects requires, in part, the 

understanding of relationships between variations in socio-economic and bio-

geophysical factors associated with the LUCC with which they co-occur. 

However, comprehending these relationships is difficult because LUCC is 

influenced by multiple factors acting across different scales of space and time 

(Geist and Lambin 2002). Therefore, it is necessary to design studies of these 

relationships carefully so that inferences are reliable. Unreliable conclusions can 

lead to distorted management recommendations, resulting in missed conservation 

opportunities, and a waste of resources and time. 

Several studies have investigated relationships between LUCC and a wide 

variety of socio-economic and environmental factors, using a range of statistical 

techniques. Some studies have used relatively simplistic approaches, such as 

Mann-Whitney and Kruskal-Wallis tests (Quezada et al. 2013), or correlation 

analyses (Beilin et al. 2014). Others have applied more robust approaches, 

combining or comparing different methods.Parcerisas et al. (2012) used statistical 

redundancy analyses (RDA) to analyse drivers of land cover changes, and 

consequently, changes in both structural and functional landscape properties. 

Jaimes et al. (2010) compared ordinary least squares regression (OLS) and 

geographically weighted regression (GWR) to explore factors related to the loss 

of forest areas in Mexico and concluded that GWR models represent a significant 

improvement over OLS models for this purpose. The results from Gao and Li 

(2011) comparing OLS and GWR to investigate the relationships between 
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landscape fragmentation and related factors agreed with this conclusion. Freitas 

et al. (2013) presented a combination of canonical correspondence analysis 

(CCA), OLS, GWR and spatial clustering procedures in order to investigate the 

relationships between LUCC and environmental and socio-economic variables. 

Gong et al. (2013) used stepwise multiple regression models to examine 

relationships between urban forest fragmentation metrics and selected socio-

economic factors. Most of the aforementioned studies considered a limited 

number of potential independent variables that have normal distribution, as this is 

the basic requirement for using the respective parametric approaches. Therefore, 

modelling approaches must be further evaluated in terms of the choice of 

independent and dependent variables, as well as the selection and interpretation 

of appropriate statistical methods. There is also a need for further studies that 

include a large number of factors encompassing, as much as possible, all aspects 

of the socio-economic and bio-geophysical context within which LUCC is taking 

place. 

In this study, we investigate the application of a relatively novel statistical 

technique – the machine learning algorithm known as "random forest analysis" 

(RF hereafter, Breiman 2001) – to the task of identifying relationships between a 

large set of socio-economic and bio-geophysical candidate independent variables, 

and dependent variables which quantify the current patterns of deforestation and 

forest fragmentation of the Brazilian Atlantic Forest in the state of Minas Gerais, 

Brazil. To our knowledge, only one previous study (Bonilla-Moheno et al. 2012) 

has investigated relationships between LUCC and socio-economic factors using 

RF. They found it to be a promising statistical approach for this type of study, but 

used it only to investigate patterns of overall distribution of land cover classes. 

Here, we extend the application of RF to consider its ability to identify 

relationships with variables that describe patterns of forest fragmentation. 

Moreover, this study considers an unusually large set of more than 300 socio-
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economic and geo-biophysical independent variables. In order to assess the 

performance of RF, we compared its results with stepwise multiple linear 

regression, a classical statistical approach, to the same datasets.  

 

2.2  Methods 

 

2.2.1 Study area 

 

The state of Minas Gerais is located in South-eastern Brazil between 

latitudes 14º 03' 28" S and 23º 07' 02" S and longitudes 51º 07' 02" W and 39º 49' 

58" W. It covers an area of 58,652,212 ha and is split into 853 municipalities, 

ranging in area from 285 ha to 1,071,696 ha. It has three biomes within its limits: 

Cerrado, Caatinga and Atlantic Forest (IBGE 2004). The study area comprises the 

518 municipalities which fall entirely within the largest contiguous area of the 

Atlantic Forest biome within the state, and encompasses 34% (19,904,146 ha) of 

Minas Gerais (Figure 2.1) (IBGE 2015). This study site is appropriate for the 

purposes of this project as there is a wide variability across the municipalities in 

the magnitude of deforestation and fragmentation and in the socio-economic and 

bio-geophysical variable values. Indeed, Minas Gerais is oneof the few Brazilian 

states that has estimates of both forest cover change, and most of the socio-

economic/bio-geophysical variables available at the municipality scale. 
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Figure 2.1  Atlantic Forest Biome (Minas Gerais, BR) and the 518 municipalities 

used in this study. Elevation in metres. The inset maps on the left show 

the location of Brazil in the South America in the upper map, and the 

Minas Gerais State within Brazil in the lower map. 

 

2.2.2 Variable selection 

 

This work used large datasets provided by two broader-scale projects 

carried out in Minas Gerais State, Brazil. The deforestation and forest 

fragmentation metrics were derived from the vegetation monitoring system 

dataset (Scolforo and Carvalho 2006, Carvalho and Scolforo 2008,Carvalho and 

Scolforo - unpublished data), which comprises land cover maps from 2003 to 



58 
 

 

2011. The socio-economic and bio-geophysical variables were derived from the 

ecologic-economical zoning of Minas Gerais, ZEE-MG (Scolforo et al. 2008). 

A deforestation metric (DEFOR, hectares – Table 2.1) – the total area of 

land deforested between 2003 and 2011 – was calculated for each municipality 

using digital change detection applied to Landsat images from the vegetation 

monitoring system dataset (Scolforo and Carvalho 2006, Carvalho and Scolforo 

2008, Carvalho and Scolforo – unpublished data).DEFOR was normalized to the 

remaining forest area within each municipality. 

To quantify forest fragmentation, we used the 2011 land cover map from 

the vegetation monitoring system dataset (Scolforo and Carvalho 2006, Carvalho 

and Scolforo - unpublished data). A set of 225 landscape metrics from class and 

landscape levels from all of the different categories available in FragStats 4.0 

(McGarigal et al. 2012) were calculated for each of the 518 municipalities 

considering the forest cover configuration in 2011. These were then passed 

through a three-stage filtering process to provide a tractable set of dependent 

variables for use in our analysis of statistical approaches. Firstly, noting that 

metrics in datasets such as this can be highly correlated (Riitters et al. 1995), we 

selected a subset of uncorrelated metrics based on correlation analyses with a 

confidence threshold of 0.01, discarding those which were strongly correlated 

with selected variables (and therefore deemed to be redundant) after careful 

consideration of their ecological meaning. When two or more variables were 

significantly correlated, the selection criteria to choose one of them were 

mathematical simplicity and an intuitive judgment of their explanatory power in 

terms of ecological meaning. Secondly, we chose metrics from the remaining 

subset that were commonly used in literature found via a search on the Web of 

Knowledge website (http://wok.mimas.ac.uk/). The search was carried out from 

2011 to June 2013, using the key-words "landscape metrics" and/or "landscape 

indices". This search yielded 48 papers, of which four were found, on inspection, 
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to be out of scope, and we had no access to another five. The papers consulted in 

the review can be seen in the Appendix Chapter 2 (A2 – List S1). Finally, we 

verified the normality of the residuals from linear models (see the section 2.2.4 

Stepwise multiple linear regression for more details) and those metrics which had 

non-normally distributed residuals were discarded to enable comparative analysis 

of the random forest method with classical, parametric multiple regression, which 

requires normally distributed variables. The result of this filtering process was 

selection of three landscape metrics representing fragmentation: the mean 

Euclidean nearest-neighbour distance (ENN), a measure of patch’s isolation from 

each other; the landscape shape index (LSI), a measure of forest patch shape 

complexity; and the patch density (PD), a measure of forest spatial structure 

(Table 2.1). 

 

Table 2.1  Descriptions of deforestation and forest fragmentation metrics 

(dependent variables). 
Metric Category Formulae Description (unit)a 

Total 

deforestation 

(DEFOR) 

 

Deforestation 

quantification 
DEFOR

=  ∑ 𝑎𝑖𝑗

𝑛

𝑗=1

 

 

DEFOR equals the sum of the 

areas of all patches of 

deforestation between 2003 and 

2011, in hectares. aij = area (m2) 

of patch number j of cover type i 

(in this case deforested land); n = 

total number of patches.DEFOR 

was normalized to the remaining 

forest area within each 

municipality. 

Mean 

Euclidean 

Nearest-

Neighbour 

(ENN) 

Forest patch 

isolation 
  ENN

=
∑ ℎ𝑖𝑗

𝑛
𝑗=1

𝑛𝑖
 

ENN equals the mean distance to 

the nearest neighbouring patch 

of forest, based on shortest edge-

to-edge distance. hij = distance 

(m) from patch j to nearest 

neighbouring patch of the same 

type (i, in this case forest). ni = 

number of patches of cover type 

i (forest). 
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"Table 2.1, conclusion." 

Metric Category Formulae Description (unit)a 

Landscape 

shape index 

(LSI) 

Shape 

complexity 

of forest 

patches 

LSI

=
0.25 ∑ 𝑒𝑖𝑘

∗𝑚
𝑘=1

√𝐴
 

 

Landscape shape index (LSI) 

reflects the shape and complexity 

of the patches by measuring the 

perimeter-to-area ratio for the 

landscape as a whole, which 

increases with fragmentation. 𝑒𝑖𝑘
∗  

= total length (m) of edge in 

landscape between patches of 

cover types i and k; m = number 

of different cover types; A = total 

landscape area (m2).  

Patch 

density 

(PD) 

Forest 

spatial 

structure 

PD

=
𝑛𝑖

𝐴
(10,00000) 

 

Patch density increases with a 

greater number of patches within 

a reference area and therefore 

reflects landscape fragmentation. 
a Details can be found in McGarigal et al. (2012). 

 

Socio-economic and bio-geophysical variables were obtained from the 

ZEE-MG database. The years for which these variables were collected were 

limited by the availability of information from national agencies, and ranged from 

2003 to 2006. Based on data availability, and following Scolforo et al. (2008), 

socio-economic variables from four categories – production, natural, human and 

institutional – were used. Variables from further three categories of bio-

geophysical factors – topography, distance and accessibility – were also selected. 

This gave an initial list of more than 300 candidate independent variables. 

Descriptions of how these variables were calculated can be found in Scolforo et 

al. (2008). From this list, a tractable sub-set of variables was derived using the 

first step from the filtering process described above for the forest fragmentation 

variables. As a result, a total of 32 socio-economic and bio-geophysical variables 

were selected as independent variables for use in our comparative analysis of 

statistical approaches (Table 2.2). 
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Table 2.2   Socio-economic and bio-geophysical variables that will be used as 

independent variables. 
Category Acronym Descriptiona 

Productive 

component 

VA_agri Value added by agriculture sector adjusted by inflation in 

2004 (R$b) 

GGR_GPM Geometric growth rate of total gross product per 

municipality (1999-2003) 

GPM Total gross product per municipality in 2004 (R$) 

Natural 

component 

For_crops* Amount of forest crops per municipality in hectares 

Perm_crops* Amount of permanent crops per municipality in hectares 

Annu_crops* Amount of annual crops per municipality in hectares 

Cov_areas* Amount of area covered by reservoirs per municipality in 

hectares 

Prot_areas* Amount of protected areas per municipality in hectares 

Rural_fam* Number of rural family farms per municipality. Rural 

family farms are those in which labour is performed by 

family members only. 

Min_comp Index of financial compensation for mineral extraction in 

2005 (R$) 

ICMS_eco Financial compensation given to municipalities that have 

land use restrictions due to protected areas (Ecological 

ICMS) in 2005 (R$) 

Min_conc Number of mines in operation by municipality 

Human 

component 

Occu_rate Intensity of usage of available land for economic use, 

obtained from the total area of the municipality available 

for economic activities minus protected and flooded 

areas. 

Unemp Unemployment rate per municipality in 2005 

Emp Geometric growth rate of formal employment  per 

municipality between 2000 and 2005 

Den_pop Population density per municipality in 2004 

Urb_pop Percentage of urban population per municipality in 2004 

Income Per capita income per municipality (R$ / per capita) 

Institutional 

component 

Law_enf Law Enforcement Capacity measures the ratio between 

the number of citizens and the number of Military and 

Civil Policemen, Judges, District Attorneys and Public 

Defenders in the municipality. It ranges from 0 to 1 (0 - 

no capacity; 1 - best capacity) 
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Category Acronym Descriptiona 

Topography Alt_mean Mean altitude per municipality in meters 

Slo_min Minimum slope per municipality in degrees 

Slo_mean Mean slope per municipality in degrees 

Slo_mean_d Mean slope of areas deforested between 2003 and 2011, 

per municipality in degrees 

Rock Predominant rock type covered by forests in the 

municipality  

Soil Predominant soil type covered by forests in the 

municipality 

Accessibility Roads_den Road density per municipality (km/1.000 km2) 

Rail_den Railway density per municipality (km/1.000 km2) 

Distance 

factors 

MinDist_sm Mean distance of forest patches within the municipality 

to the closest steel mill in kilometres 

MinDist_ri Mean distance of forest patches within the municipality 

to the closest river in kilometres 

MinDist_nr Mean distance of forest patches within the municipality 

to the closest protected area in kilometres 

MinDist_ro Mean distance of forest patches within the municipality 

to the closest road (highway) in kilometres 

MinDist_re Mean distance of forest patches within the municipality 

to the closest reservoir in kilometres 
a The full description on how the variable were calculated and their description can be 

found in Scolforo et al. (2008). 
b Brazilian real currency 

*Variables scaled to the municipality area prior modelling to allow comparison. 

 

2.2.3 Random forest analysis (RF) 

 

Random forest analysis is a machine-learning technique that may be used 

for predictive modelling of multiple outputs from large input datasets. It is used 

widely in bioinformatics (Cutler and Stevens 2006), and has recently gained 

popularity in ecology (Prasad et al. 2006, Cutler et al. 2007, Wei et al. 2010, 

Gilbert and Chakraborty 2011). In short, RF, as the name suggests, uses an 

ensemble of decision trees with binary divisions, each capable of producing an 

output when presented with a set of input values (Cutler et al. 2007). For 

regression modelling problems, such as the case we considered in this study, the 
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tree response is an estimate of dependent (output) variable values derived from 

the given values of a set of independent (input) variables.  

RF uses a classification or regression tree approach (also known as 

"CART"; Breiman et al. 1984), to build a number of decision tree models from 

randomly selected subsets of training samples and independent variables (Cutler 

et al. 2007). Model fitness is then examined using validation data that is not in the 

training sub-sample; hence, cross-validation with external data is not necessary. 

The outputs from all of the trees are then averaged, which provides predictive 

accuracy and low bias (Breiman 2001). RF has further advantages in that it does 

not assume any data distribution, does not require formal selection of predictors, 

does not over-fit the data (i.e. avoids having noise contaminate the fitting process) 

and is robust with respect to outliers and unbalanced data (Cutler and Stevens 

2006,Prasad et al. 2006). Its main limitations are that its intrinsic flexibility make 

it somewhat of a "black box" approach, but many parameters can be adjusted when 

performing a modeling. Additionally, it can be very demanding in terms of 

computational time and resource requirements (Prasad et al. 2006). Nevertheless, 

recent computational developments have dealt with this limitation. 

We used the R package "extendedForest" provided by the Gradient Forest 

project (Smith et al. 2011, Ellis et al. 2012) to carry out RF analysis. This package 

was developed for use in ecological studies of species distributions. It integrates 

results from RF analyses for a number of individual species distributions into 

results that enable prediction of multiple species distributions (Smith et al. 2011, 

Ellis et al. 2012). In addition, it is able to analyse large numbers of potential 

independent variables, and incorporates a method for calculating the importance 

of each independent variable in the model it provides (Smith et al. 2011). In our 

study, we extended the application of the extendedForest package by using the 

deforestation and forest fragmentation metrics described above (i.e. DEFOR, 
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ENN, LSI, and PD) as our dependent variables, in place of the species 

distributions used in the application for which it was originally developed. 

 

2.2.4  Stepwise multiple linear regression 

 

From a wide range of possible approaches, we selected stepwise multiple 

linear regression (hereafter, STEP) as a comparator method against which to 

assess the performance of RF. This type of technique is arguably the most 

common approach to data-based prediction and simulation tasks. For situations in 

which the number of variables is high, as is the case here, it is appropriate to 

incorporate into the modelling process a method for selecting only those 

independent variables that contribute most strongly to the predictive model 

delivered. The STEP approach to multiple regression is a routine technique for 

achieving this (see, for example, Efroymson 1960, Hocking and Mar 1976, 

Furundzic 1998, James et al. 2013). Despite having a number of weaknesses, 

notably bias in parameter estimation, inconsistencies among model selection 

algorithms, and an inappropriate focus on a single best model (Burnham and 

Anderson 2002, Kadane and Lazar 2004, Whittingham et al. 2006), it is used 

widely within ecology and landscape studies (Whittingham et al. 2006).  

The stepwise method combines forward selection and backward 

elimination procedures (Venables and Ripley 2002, James et al. 2013). It 

proceeded by first setting up an initial model incorporating a subset of the 

candidate independent variables. Then, this model was iteratively altered by 

adding significant variables and/or removing insignificant ones, in a process 

called the stepping procedure. A variable that entered at an early stage may have 

become superfluous at later stages because of its relationship with other variables 

subsequently added to the model (Kleinbaum et al. 1998). To check this 

possibility, at each step a partial F test is carried out for each variable currently in 
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the model, regardless of the stage at which it was entered. The whole process is 

repeated until no more variables could be added or removed, which means that 

the model is optimized, or when a specified maximum number of steps is reached. 

Many statistical methods are available to test the stability and validity of the final 

regression model. We used the adjusted square of the correlation coefficient 

(adjusted R2) and the AIC (Akaike Information Criteria) to assess our final model. 

The AIC was also used to calculate relative variable importance. Implementation 

was based on the dredge function for automated model selection, which is 

available as an R package MuMIn (Barton 2014). It calculates AIC values for 

models with all possible combinations of predictor variables and ranks the models 

based on the calculated values. We determined the relative importance (Burnham 

and Anderson 2002) of each independent variable selected in the STEP models 

based on AIC weights (importance function in MuMIn). The relative importance 

values were converted to percentages for comparison. 

 

2.3 Results 

 

2.3.1 Random forest analysis 

 

The RF analysis provides evidence of relevant relationships between the 

independent variables (socio-economic and bio-geophysical factors – Table 2.3; 

Figure 2.2) and the dependent variables (deforestation and forest fragmentation 

metrics). However, the outputs also imply that there is restricted explanatory 

power in the independent variables and reasonable variability in the dependent 

variables across the municipalities that is not explained by the independent 

variables considered here. 
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Table 2.3 Summary of the outputs from the random forest (RF), and stepwise 

multiple regression (STEP) analyses. Independent variables (shown in 

the body of the table) are defined in Table 2.2, and dependent variables 

(shown on the left hand side) are defined in the text. 

  RF STEP  

  Variables +/-a %impb %varc Variables +/- %imp %var 

D
E

F
O

R
d
 

Min_comp - 1.35 11.23 MinDist_sm - 3.40 30.9 

Roads_den + 1.24  Income - 3.40  

MinDist_sm - 1.23  Prot_areas + 3.33  

Slo_mean - 1.20  MinDist_nr + 3.26  

ICMS_eco + 1.08  MinDist_re - 2.99  

MinDist_nr - 0.93  Slo_mean - 2.85  

For_crops + 0.86  Rural_fam - 2.55  

Income - 0.85  Min_comp - 2.51  

MinDist_re - 0.83  MinDist_ro - 2.31  

Prot_areas - 0.83  Rock - 2.21  

Urb_pop + 0.83  Annu_crops - 2.11  

E
N

N
e
 

Alt_mean - 9.72 36.83 Alt_mean - 4.35 33.1 

Slo_mean - 3.75  Slo_mean - 3.91  

MinDist_nr + 2.87  Income - 3.91  

MinDist_sm + 2.76  Law_enf - 3.87  

Slo_mean_d - 2.56  Rural_fam - 3.87  

Urb_pop - 2.38  MinDist_re - 3.87  

Income - 2.24  Prot_areas - 3.68  

MinDist_re - 1.97  Min_comp - 3.56  

Perm_crops + 1.76  GPM - 2.50  

ICMS_eco - 1.58      

Rural_fam - 1.57      

Law_enf - 1.46      

Roads_den - 1.21      

Cov_areas - 1.00       
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 RF  STEP 

 Variables +/-a %impb %varc Variables +/- %imp %var 

L
S

If  

Prot_areas + 1.41 10.57 Rural_fam - 3.49 36.2 

MinDist_sm + 1.28  Slo_mean - 3.49  

Min_comp + 1.11  MinDist_sm - 3.49  

MinDist_nr + 0.96  Prot_areas - 3.49  

Den_pop - 0.86  Alt_mean - 3.49  

Income + 0.82  Min_comp - 3.49  

Perm_crops - 0.74  MinDist_nr - 3.49  

MinDist_ro + 0.71  Urb_pop - 3.35  

MinDist_re + 0.65  Cov_areas - 2.97  

Soil + 0.55  Perm_crops - 2.90  

Urb_pop + 0.51  MinDist_re - 2.55  

ICMS_eco + 0.48  

 

   

Rail_den + 0.48  
  

   

P
D

g
 

Roads_den + 14.10 59.41 MinDist_ro - 4.24 39.24 

Slo_mean_d - 7.02  Slo_mean_d - 4.24  

MinDist_ro + 4.14  Slo_min - 4.24  

Alt_mean + 3.88  MinDist_sm - 4.11  

Income + 3.24  Rural_fam - 4.11  

MinDist_sm + 2.76  Law_enf - 3.94  

Den_pop + 2.73  Rail_den - 3.73  

Urb_pop + 2.72  MinDist_re - 3.69  

MinDist_nr + 2.16  Emp - 2.84  

MinDist_ri - 2.11  Den_pop + 2.29  

Rail_den - 1.82  Urb_pop - 1.82  

Annu_crops + 1.60      

Perm_crops - 1.51  

 

   

Min_conc + 1.38  

 

   

MinDist_re + 1.38  

 

   

Law_enf + 1.36  

 

   

Rural_fam + 1.32      

ICMS_eco + 1.26  

 

   

Slo_min + 1.14      

Slo_mean + 0.92  

 

   

Emp + 0.84  

 

     
a The symbol "-" indicates the relationship is negatively correlated (low values of 

independent variable go with high values of dependent variable), while the symbol "+" 

indicates the relationship is "positively correlated" (high values of independent variable 

go with high values of dependent variable). bRelative importance of each variable 

measured as a percentage of its contribution to explain the variance (%var). 
cPercentage of variance explained. For STEP the %var was calculated based on the r2 value 

of the final output model, multiplied by 100 to turn it into a percentage value. 
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Figure 2.2  Relative importance plots for independent variables from (A) random 

forest (RF) and (B) stepwise multiple regression (STEP) analyses. See 

text and Table 2.2 for variable definitions. 
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Of the four dependent variables, the RF model performed best for patch 

density (PD), explaining 59.41% of its variance. A large number of independent 

variables were identified as having some role in explaining PD variations between 

municipalities; those with the highest importance were associated with the road 

network (the density of roads, Roads_den, and the minimum distance of forest 

patches to the nearest road, MinDist_ro) or were topographic (the mean slope in 

deforested patches, Slo_mean_d, and the mean altitude of each municipality, 

Alt_mean). 

The mean euclidean nearest-neighbour distance between forest patches 

(ENN) had the second highest amount of its variation explained by RF (36.83%). 

The mean altitude of each municipality was the most important independent 

variable here, and other topographic variables (the mean slope across each whole 

municipality, Slo_mean, and the mean slope within deforested areas, 

Slo_mean_d) were also relatively important, as were distance factors (the mean 

distance of forest patches within the municipality to the nearest protected area, 

MinDist_nr, and the nearest steel mill, MinDist_sm). 

In contrast, only 10.57% of variation in the landscape shape index (LSI) 

was explained by RF. Distance variables were again amongst the most important 

here, but unlike PD and ENN, natural component independent variables (the 

amount of protected area in each municipality, Prot_areas, and the index of 

financial compensation for mineral extraction, Min_comp) are also identified as 

relatively important for explaining LSI. 

RF was also relatively poor at explaining variation in the total amount of 

deforestation (DEFOR, only 11.23% of variance explained), as it was not linked 

temporally. No variables have importance measures above 20% here, and the most 

important ones are a mix of natural components, accessibility, minimum distances 

and topographic factors. 
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Overall, five independent variables appeared in the RF models for all four 

dependent variables: the minimum distance from forest patches to the nearest steel 

mill (MinDist_sm), the financial compensation for the total amount of protected 

area (ICMS_eco), the per capita income, the minimum distance to the nearest 

reservoir (MinDist_re), and the percentage of population categorised as urban 

(Urb_pop). 

 

2.3.2 Comparisons of RF with STEP 

 

Outcomes from the STEP analysis are shown alongside those for RF, in 

as comparable a form as possible (Table 2.3, Figure 2.2). Note that, although 

"percentage importance" values are quoted for both the RF and STEP outputs, 

these values are not quantitatively comparable between these two methods’ 

outputs. Rather, these values allow us to rank the independent variables in terms 

of their relative importance for explaining the variability of each dependent 

variable in each analysis. The percentages of variance explained by the two 

models are, however, comparable. Both approaches provided evidence of relevant 

relationships between the dependent variables (deforestation and forest 

fragmentation metrics) and the independent variables (socio-economic and bio-

geophysical factors), but the results are mixed in terms of the independent 

variables selected as being most important by each analysis. 

Like RF, STEP performed best for patch density (PD), but explained less 

(39.24% c.f. 59.41% for RF) of PD variation between municipalities. There was 

also a strong similarity between the independent variables selected by the two 

approaches for the PD models, since all of the independent variables selected in 

the STEP model were also selected in the RF model. Nine independent variables 

were found to be of importance by the two approaches; of these, two were 

topographic (the mean slope of deforestation patches, Slo_mean_d, and the 
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minimum slope within each municipality, Slo_min), three were minimum 

distances (to the nearest road, MinDist_ro, steel mill, MinDist_sm, and reservoir, 

MinDist_re), two were human component variables (population density, 

Den_pop, employment, Emp, and urban population, Urb_pop), and one was a 

natural component variable (the number of rural family farms, Rural_fam). The 

density of roads (Roads_den) was the variable identified as being most important 

by RF, while a similar variable, the minimum distance to the nearest road 

(MinDist_ro) had the highest importance in the STEP model.  

The STEP analysis also followed RF in finding the second highest value 

of explained variance for ENN (36.83% variance explained by RF, 33.10% by 

STEP). Six independent variables were found by both approaches to be important 

for explaining variance in ENN, namely mean altitude (Alt_mean), income 

(Income), the law enforcement capacity (Law_enf), the minimum distance to the 

closest reservoir (MinDist_re), the number of rural family farms (Rural_fam), and 

the mean slope of each municipality (Slo_mean). As for RF, the mean altitude had 

the highest value of importance in the STEP analysis. 

The STEP analysis performed relatively well (36.20% of variance 

explained) for the landscape shape index (LSI). This is in contrast to RF, which 

performed worst for this variable (10.57% of variance explained). However, 

similar independent variables were selected by both statistical approaches, there 

being seven common to them: three were minimum distances (to the nearest 

protected area, Min_Dist_nr, reservoir, Min_Dist_re, and steel mill, 

Min_Dist_sm), three others were natural components (the amount of permanent 

crops, Perm_crops, the amount of protected area, Prot_areas, and the financial 

compensation for mineral extraction, Min_comp), and the seventh was a human 

component variable (urban population, Urb_pop). The amount of protected area 

was the most important variable for RF, while there were seven equally important 

variables in the STEP models (Table 2.3).  
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The STEP analysis also performed relatively well (30.90% of variance 

explained) in modelling the variation of the total amount of deforestation 

(DEFOR), compared to RF (11.23% of variance explained). Seven independent 

variables were found to be of importance in the outputs of both approaches: three 

minimum distances (the minimum distance to the nearest protected area, 

MinDist_nr, steel mill, MinDist_sm, and reservoir, Min_Dis_re), two natural 

components (financial compensation for mineral extraction, Min_comp, and the 

amount of protected area, Prot_area) one human component (income), and one 

topographic variable (the mean slope within each municipality, Slo_mean). The 

most important variables were financial compensation for mineral extraction 

(Min_comp) for RF, and the minimum distance to the nearest steel mill 

(MinDist_sm) for STEP.  

A single common independent variable, the minimum distance to the 

nearest reservoir (Min_Dist_re) was selected in the models for all of the dependent 

variables by both statistical approaches. Whereas five independent variables were 

common across the four RF models (see above), only one was common across all 

of the STEP models (the minimum distance to the nearest reservoir (MinDist_re). 

Notwithstanding these differences, we identified a strong similarity between the 

independent variables selected in the corresponding RF and STEP models. 

 

2. 4  Discussion 

 

2.4.1 Random forest analysis 

 

In the RF models’ outputs, we observed that there are some strong 

relationships between the the socio-economic and bio-geophysical parameters 

(our independent variables) and deforestation and forest fragmentation metrics 

(our dependent variables). RF performed best for patch density (PD), explaining 
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almost 60% of its variance – a relatively high value for ecological studies. It also 

performed relatively well for patch isolation (mean Euclidean nearest neighbour 

distance – ENN), explaining 36.83% of its variance, but relatively poorly for the 

landscape shape index (LSI) and the deforestation (DEFOR), explaining only 

10.57% and 11.23% of their variance, respectively. In terms of model 

performance, this may suggest that the random forest approach is good at 

identifying parameters that describe the distribution of patches within a landscape 

(their density and mean separation from each other), but weaker at describing both 

more macro-scale factors (the overall amount of deforestation) and more micro-

scale factors (the shapes of the individual patches). Alternatively, these results 

could be interpreted as indicating that the patch-distribution scale variables (PD 

and ENN) are more closely linked to the independent variables we have 

considered here than are either the bulk amount of deforestation (DEFOR) or the 

patch shape (LSI). It is important to mention that, even using a very large dataset 

comprising many independent variables, much of the variance in all of the 

dependent variables was not accounted by our models. In addition, the question 

of whether it is primarily the nature of the model or the nature of the independent 

variables that has led to this finding is not answerable by this first application of 

RF to this type of data, and remains to be addressed by further investigation. 

Turning now to consideration of the independent variables, we found that 

some of them were particularly strongly related to some of the dependent 

variables, for example road density and PD, and mean altitude and ENN. 

However, neither the nature of, nor the reason (i.e. whether they are causatively-

linked or simply co-vary) for these links are elucidated by RF. Despite these cases 

of strong individual-variable links, no single independent variable was found to 

be related to all of the dependent variables. Geist and Lambin (2002), who 

investigated the causes of deforestation of tropical forests, also did not find a 

single important factor. They concluded that forest loss is due to a combination of 
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factors that vary with historical and geographical context. We conclude from the 

present study that we can expect the same for forest fragmentation. 

At the level of independent variable categories, we found that those from 

the Distance, Accessibility, Natural, and Topography categories contributed most 

to explaining variance in the RF outputs. Variables from the Human component 

made less contribution, and variables from the Productivity and Institutional 

components made hardly any contribution. Additionally, we found that 

independent variables from Accessibility, Natural, and Topography categories 

were the most-important independent variable explaining each dependent variable 

in RF models. This suggests that the physical environment is more important to 

determine variations in forest fragmentation between municipalities, than social 

or economic issues. This finding has important implications for management 

policies aimed at conserving the Atlantic forest, and possibly other biomes that 

are fragmenting under anthropogenic pressures, although it requires further 

evidence to be confirmed. Thus, although this ordering of importance of the 

different types of variables is quite coherent across the RF model outputs, the 

question remains as to whether it is "true". Claims to this effect are supported by 

noting that variables that random forest-type methods have identified as most 

important for classification have been found to coincide with ecological 

expectations in the literature (Cutler et al. 2007, Wei et al. 2010, Ellis et al. 2012). 

 

2.4.2 Comparisons of RF with STEP 

 

Like RF, the STEP analyses found some strong relationships between the 

socio-economic and bio-geophysical independent variables, and the deforestation 

and forest fragmentation dependent variables. STEP followed RF in finding the 

most explained variance and strongest relationships for PD. STEP also followed 

RF in finding the second highest explained variance for ENN. Unlike RF, 



75 
 

 

however, there was less difference in the performances of STEP across the four 

dependent variables: while the explained variances from RF ranged from 10.57% 

to 59.41%, STEP explained between 30 and 40% of the variance of all four 

dependent variables. 

Overall, there was more agreement than disagreement in terms of the 

selection and importance of the independent variables between the two 

approaches. A reasonable number of independent variables was selected as 

important and shared by them. Considering the categories of independent 

variables, both approaches found that variables from the Productivity and 

Institutional components were of little importance, and variables from the Human 

and Accessibility components were of intermediate importance. Variables from 

the Distance, Natural and Topography categories were considered of higher 

importance in models from both methods. In the STEP models, we found that the 

most-important independent variable explaining each dependent variable model 

also belonged to those categories. 

Only one variable was selected in all deforestation and fragmentation 

models by both statistical approaches: the minimum distance to the nearest 

reservoir (MinDist_re). This finding reflects the existence of a large number of 

reservoirs in the state of Minas Gerais, and the resulting high level of channel 

fragmentation of important river systems, such as the São Francisco and Paraiba 

do Sul (Nilsson et al. 2005).  

Notwithstanding these similarities between the outcomes of the two 

modelling approaches, differences between them are evident. However, the 

reasons for these differences are not clear from our results, and require further 

investigation. Nonetheless, in theory, one would expect the RF outputs to identify 

more reliably than STEP the factors that have greatest influence over deforestation 

and forest fragmentation. This expectation arises from the greater robustness of 

random-forest type methods compared to traditional regression approaches. 
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Unlike traditional regression, which has well known weaknesses, despite still 

being widely used in ecology (Whittingham et al. 2006), random forest methods 

make no assumptions about the distributions of variables and are robust to outliers 

in predictor variables. They can also handle situations where the number of 

predictor variables exceeds the number of observations and have a novel variable 

importance measure, which does not suffer the shortcomings of traditional 

variable selection methods, such as selecting only one or two variables among a 

group of equally good but highly correlated predictors (Cutler et al. 2007). Thus, 

the greater range of values of explained variance in the RF outputs compared to 

the STEP outputs, may be indicative of their greater robustness and ability to 

distinguish meaningfulness relationships. Furthermore, many studies that have 

applied classical regression approaches to understand the drivers of forest cover 

changes (e.g. Jaimes et al. 2010,Gao and Li 2011, Freitas et al. 2013, Gong et al. 

2013) may have had to use a restricted number of independent variables to be able 

to satisfy requirements of normality, which could have hindered the analyses, 

whereas the flexibility and robustness of RF overcomes such limitations. 

However, despite its advantages, RF has limitations. The main one is that, 

unlike traditional regression methods, it does not produce relationships between 

independent and dependent variables that have simple representations (such as 

linear equations), and this can make ecological interpretation difficult (Cutler et 

al. 2007). Therefore, the RF outcomes, and the inferences we make from them, 

cannot be converted into equations for quantitatively predicting changes in the 

deforestation and forest fragmentation metrics that might arise from changes in 

the bio-geophysical and socio-economic variables considered here. That is not the 

intention here, and we argue that it would be over-simplistic to expect that 

predictive equations of this kind would be at all useful. Instead, RF has exploited 

structure in our high-dimensional data set not "visible" to STEP in the PD and 

ENN models to provide an apparently clearer picture of these metrics’ 
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relationships to the independent variables. In the cases of the LSI and DEFOR 

models, we infer from the poorer performance of RF compared to the STEP 

method that this exploitation of additional structure can reduce the explanatory 

power of the models produced in some situations, whilst improving it in others. 

 

2.5 Conclusion 

 

Understanding spatial relationships between patterns of deforestation and 

forest fragmentation and socio-economic and bio-geophysical factors is important 

for land use management. The main contribution of this study is the testing of a 

relatively new method for detecting this kind of relationship (RF), its application 

to a very large dataset, and its comparison with a traditional multiple linear 

regression method. We found that RF performs better than multiple regression at 

explaining metrics describing forest patch patterns (PD and ENN), while it 

appears to be less capable of capturing the variations of metrics describing a both 

broader landscape structure (DEFOR) and finer, patch-scale characteristics (LSI). 

The reasons for these differences in performance remain uncertain. However, 

given the well-established advantages of decision-tree-based methods over those 

of classical multiple regression, we suggest that the reasons for these differences 

are likely to be because the patch-pattern metrics vary in less smooth or monotonic 

ways – ways that RF is able to capture, but multiple regression is not. In contrast, 

DEFOR and LSI may vary more smoothly and monotonically in relation to the 

independent variables, i.e. in ways that traditional regression methods are able to 

pick up more easily, although why the performance of RF for these variables is 

relatively weak remains unexplained. Nevertheless, we have shown that RF 

provides a promising methodology for identifying these relationships, and that it 

has the potential to be an effective tool for providing essential information for 

aiding land use management decisions, not only in terms of planning, but also for 
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conservation actions, as proposed by Zanella et al. (2012), in cases of high rates 

of anthropogenic biodiversity loss.  

The initial investigation reported in the present study is, however, only a 

first step in exploiting this method’s potential. One aspect that requires further 

consideration is the scale of the study area and the very wide variety of socio-

economic and bio-geophysical contexts, which it encompasses. Even in relatively 

small areas, a multitude of diverse factors are at work (Qasim et al. 2013), and 

variations in contexts may have influenced model performance in the present 

study. Landscape pattern is scale-sensitive (Gao and Li 2011) and the unusually 

large degree of heterogeneity in the Atlantic forest biome is likely only to 

exacerbate this issue. Policies need to be crafted at appropriate spatial scales and 

with specific contexts in mind. Thus, an important development of this initial 

study of RF application to cases of deforestation and forest fragmentation would 

be to repeat it at different spatial scales, to identify more precisely the socio-

economic and bio-geophysical factors associated with these processes. 
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ABSTRACT 

 

 Deforestation and forest fragmentation are considered to be major threats 

to biodiversity in the tropics. The Brazilian Atlantic Forest (Minas Gerais state, 

Brazil), which is located within the tropics at 14-23° S, is a hotspot of biodiversity 

and is severely threatened by anthropogenic deforestation. This study uses a multi-

scale approach to investigate deforestation and forest fragmentation in the 

Brazilian Atlantic Forest and to elucidate the relationships between these 

processes and a wide variety of socio-economic and bio-geophysical factors. We 

considered these relationships at the whole biome scale, and at regional and sub-

regional scales within the biome. We used a recently developed, machine-learning 

technique, Random Forests (RF) analysis. We found that 1.69% of the current 

remaining area of Atlantic Forest in Minas Gerais was lost between 2003 and 

2011. We also verified that RF analysis can be used effectively in this context, 

providing explanations of 67% of variance in deforestation and forest 

fragmentation metrics. We found that the relationships between these metrics and 

the socio-economic and bio-geophysical factors used in the models varied from 

place to place and across spatial scales, and that some metrics were better 

explained by the RF models at the largest (biome) scale and others at the smallest 

(sub-regional) scale. Road density emerged as the factor that appeared most 

commonly in the models explaining variance in the metrics and, in general, factors 

describing the spatial distribution of the natural, agricultural and infrastructural 

elements of the landscape occurred more commonly in the models that those 

describing patterns of population, employment and legal institutions. Given that 

previous studies identify social and economic factors as being important 

determinants of landscape structure, we infer that the relative lack of importance 

of variables of this sort we identify may be due to asynchronous relationships 

between socio-economic drivers and patterns of deforestation and forest 

fragmentation. 

 

Keywords: Socio-economic and bio-geophysical factors. Land use and land cover 

change. Random Forest Regression. Machine-learning technique. Landscape 

metrics. Deforestation. Forest fragmentation. Brazilian Atlantic Forest. Tropical 

forests. Minas Gerais State. 
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3.1  Introduction 

 

Anthropogenic activities have been triggering unprecedented land use and 

cover changes (LUCC) throughout the world in recent decades (Lambin and Geist 

2006). It is estimated that 13 million ha/year of forest were altered worldwide 

between 1990 and 2005 (Food and Agriculture Organization of The United 

Nations - FAO 2008). Deforestation and forest fragmentation in the tropics have 

been reported to be major threats to biodiversity conservation (Brooks et al. 2006), 

affecting irreversibly a large number of key ecosystem services (Musaoglu et al. 

2005, Heistermann et al. 2006). The Brazilian Atlantic Forest, a highly diverse 

tropical forest (Mittermeier et al. 2005), is a primary example of a biome that has 

suffered the consequences of anthropogenic activities. This biome formerly 

covered 1.5 million km2 along the Brazilian coast (Galindo-Leal and Câmara 

2003, Ribeiro et al. 2009), but the current amount of its remaining area is critically 

small; estimates vary between 7-8% (SOS Mata Atlântica and INPE 2008) and 

12% (Ribeiro et al. 2009) of its extent at the time of the arrival of the first 

Europeans in South America in the 16th century. The Atlantic Forest is also 

considered to be a biodiversity hotspot (Mittermeier et al. 2011, Zachos and 

Habel, 2011), and one of the most threatened tropical forests in the world. 

LUCC is considered to be the result of complex interactions among social, 

economic, and environmental factors (Lambin et al. 2001, Geist and Lambin 

2002). Socio-economic processes are thought to be the primary factors associated 

with LUCC, which in turn determine the structure, function, and dynamics of most 

landscapes, so that changes in social structures and processes lead to alterations 

in the environment (Lorenzoni et al. 2000, Wang and Zhang 2001, Wu and Hobbs 

2002). It is also recognised that underlying bio-geophysical factors have also to 

be taken into account when attempting to understanding the nature of LUCC 

(Turner II et al. 1995). Hence, conservation actions in the Atlantic Forest need to 
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be formulated on the basis of a clear understanding of the ways in which socio-

economic and bio-geophysical factors determine the spatial structure of LUCC. 

Understanding these relationships is difficult, because of the multiplicity of 

potentially important factors, and the ways in which they act differently at 

different scales of space and time (Lambin et al. 2001, Geist and Lambin 2002). 

Thus, in attempting to make reliable inferences about relationships between these 

factors and LUCC, it is necessary to account carefully for scale variations, as well 

as selecting appropriate statistical approaches. 

Several previous studies have attempted to explore LUCC at different 

scales. While large scale studies have tended to report negative LUCC patterns 

(e.g., loss of forest cover in parts of Mexico (García-Barrios et al. 2009), and in 

the Brazilian Amazon (Deng et al. 2014)), some local studies within regions have 

reported positive trends (e.g., increase in forest cover in specific Mexican 

municipalities (Bonilla-Moheno et al. 2012), and forest transitions in three 

10,000ha plots in the Brazilian Atlantic Forest of São Paulo (Lira et al. 2012). 

Fully understanding and replicating such local studies can help place local trends 

into a regional context. Local-scale analyses are needed to identify the proximate 

(e.g., agriculture or pastureland expansion) and underlying (e.g., socioeconomic 

or demographic) factors driving deforestation and fragmentation (Geist and 

Lambin 2002, Lambin et al. 2003, Scrieciu 2007). However, local-scale analyses 

are limited because they are usually geographically constrained and may include 

only a few case studies, so their results cannot easily be generalized to larger 

spatial scales. Thus, studies that integrate analyses at different spatial scales are 

needed. Multi-scale approaches have not yet been implemented in studies of the 

effects of socio-economic and bio-geophysical factors on deforestation and 

fragmentation in the Brazilian Atlantic Forest. 

This paper attempts to fill this gap in knowledge and to elucidate the 

relationships between deforestation and forest fragmentation and a very wide 
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variety of socio-economic and bio-geophysical factors at multiple spatial scales 

in the Brazilian Atlantic Forest of Minas Gerais. Our main objectives are to 

answer the following questions: (1) How well can deforestation and forest 

fragmentation patterns be explained by models based on socio-economic and bio-

geophysical factors?; (2) To what extent do these models vary across the study 

area and at different spatial scales?; (3) Which socio-economic and/or bio-

geophysical factors are most important across the study area and at different 

spatial scales for explaining variations in deforestation/fragmentation?  

 

3.2  Methods 

 

3.2.1 Study area 

 

The state of Minas Gerais is located in South-eastern Brazil, between 

latitudes 14º 03' 28" S and 23º 07' 02" S and longitudes 51º 07' 02" W and 39º 49' 

58" W. It covers an area of 58,652,212 ha and is split into 853 municipalities, 

ranging in area from 285 ha to 1,071,696 ha. It has three biomes within its limits: 

Cerrado, Caatinga and Atlantic Forest (IBGE 2004). The area with which the 

present study is concerned comprises the 518 municipalities that fall entirely 

within the largest contiguous area of the Atlantic Forest biome, and encompasses 

34% (19,904,146 ha – total area of the Atlantic Forest in the state covers 41% 

(24,047,660 ha)) of Minas Gerais (Figure 3.1) (IBGE 2015). This study site was 

chosen for the purposes of this project, as there is a wide variability across the 

municipalities in terms of deforestation/fragmentation and in the socio-

economic/bio-geophysical variables. In terms of data availability, Minas Gerais is 

one of the few Brazilian states that has estimates of both forest cover change, and 

most of the socio-economic/bio-geophysical variables available at the 

municipality scale.  
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Figure 3.1 Multiple spatial scales considered in this study: A) the Atlantic Forest Biome (Minas Gerais, Bra); B) Regions; 

C) Sub-regions. 
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3.2.2  Multiple spatial scales: grouping units 

  

The available demographic and socio-economic data were derived within 

political administrative units at the scale of municipalities, the smallest 

administrative units in Brazil. Neighbouring municipalities share a number of 

potential drivers of land-cover change (e.g., political and economic programs, 

environmental conditions, social and demographic contexts), which make them 

relatively easy to group and thus a useful unit for multi-scale land change analyses 

(Bonilla-Moheno et al. 2012). In our multi-scale approach, the municipalities 

were grouped into spatial units at different spatial scales as follows. Three scales 

of municipalities groupings were used: i) sub-regions, our finest scale; ii) regions, 

the intermediate scale; and iii) biome, the largest scale. Sub-region delimitation 

was based on administrative groupings of municipalities established by the Forest 

State Institute of Minas Gerais (IEF), which identifies 22 sub-regions. These vary 

in area from 353,523 ha to 1,543,000 ha and contain between 9 and 44 

municipalities. Region delimitation used existing political regional boundaries, 

since political decisions are taken within these limits, and also because there is a 

certain coincidence between them and the distribution of bio-geophysical factors 

(e.g. homogeneity of relief, soil types, geology, hydrological basins, the amount 

of remaining forest area, as well as historical occupation). We grouped 

municipalities within four regions. These vary in area from 3,258,197 ha to 

6,475,025 ha and contain between 32 and 189 municipalities. At the biome scale 

level, we considered the entire study area as a single spatial unit, which groups all 

518 municipalities within the Atlantic Forest Biome in Minas Gerais. The 

historical context of the Minas Gerais colonization provides some evidence of the 

current differences among the regions and sub-regions we studied, starting with 

the arrival of Portuguese explorers in the 16th century (Carrato 1968) who first 

reached the southern region of the area known currently as Minas Gerais State 
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(literal translation: General Mines), looking for gold and gemstones (Carrato 

1968). This can be related to the fact that this southern region (Region 4 in our 

study, containing Sub-regions 1, 4, 5, 12, 17, 18, 19 and, partially, 20) is currently 

the most populated in the state (population density 0.75 people per km2 while in 

the northeast region it is 0.15 people per km2; IBGE 2015). In the 19th century, 

once mining started to decline and was no longer economically sustainable, 

miners were forced to move to other economic activities or to other areas, 

expanding the state boundaries (Carrato 1968). Some ex-miners remained in the 

south and most of them became coffee producers, increasing the regional 

economy greatly (Carrato 1968). Other ex-miners moved towards the northeast of 

the state where they found vast uninhabited areas and became mainly cattle 

ranchers (Carrato 1968). Nowadays, this region is known for its low socio-

economic indicators (IBGE 2015), and in our study is divided into Regions 1 

(made up of Sub-regions 9 and 14) and 2 (made up of Sub-regions 2, 3, 6, 7, 8, 

10, 16, and 21). Towards the east, settlement was driven strongly throughout the 

19th century by the expansion of coffee plantations (Carrato 1968) and followed 

the southeast in developing a strong economy (IBGE 2015). This region is defined 

as Region 3 in our study, and contains Sub-regions 3, 11, 13, 15, 22 and, partially, 

20.  

 

3.2.3 Variable selection 

 

A large dataset provided by two broader-scale projects developed in the 

state of Minas Gerais, Brazil, was used in this work: the vegetation monitoring 

system (Scolforo and Carvalho 2006), and the ecologic-economical zoning of 

Minas Gerais – ZEE-MG (Scolforo et al. 2008). The dataset comprises land-cover 

maps from 2003 to 2011, deforestation rate estimates, and measurements of more 

than 300 socio-economic and bio-geophysical variables.  
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We calculated deforestation rates from forest cover data recorded every 

two years between 2003 and 2011 (Scolforo and Carvalho 2006, Carvalho and 

Scolforo 2008, Carvalho and Scolforo – unpublished data), at the whole-biome 

and regional scales. Deforestation rates at the municipality scale were calculated 

using radiometric change detection applied to Landsat images. All deforestation 

metrics were normalized to the remaining forest area within each 

municipality/region.Table 3.1 shows the deforestation variables used in this study. 

 

Table  3.1  Deforestation metrics including deforestation rates between 2003 and 

2011 for every two years (DEFOR0305; DEFOR0705; DEFOR0709; 

and DEFOR0911); and, the total area deforested between 2003 and 

2011 (DEFOR), as a measurement of deforestation. 
Abbreviation Description (unit) 

DEFOR0305 Area deforested between 2003 and 2005. Hectares 

DEFOR0507 Area deforested between 2005 and 2007. Hectares 

DEFOR0709 Area deforested between 2007 and 2009. Hectares 

DEFOR0911 Area deforested between 2009 and 2011. Hectares 

DEFOR Area deforested between 2003 and 2011. Hectares 

 

We quantified forest fragmentation in the study area by using a land use 

map from 2011, also provided by the vegetation monitoring system (Scolforo and 

Carvalho 2006, Carvalho and Scolforo 2008, Carvalho and Scolforo – 

unpublished data). FragStats 4.0 (McGarigal et al. 2012) was used to calculate a 

set of 225 landscape metrics for each of the 518 municipalities. These were then 

passed through a two-stage filtering process to provide a tractable set of dependent 

variables for use in our analysis. Firstly, we addressed multicollinearity, which 

can often be found in landscape metrics (Riitters et al. 1995), by identifying 

metrics that correlated with each other at a significance level of p < 0.01. In each 

case, we discarded one of the variables and retained the other, taking in account 

their ecological meaning. The selection criteria used to determine which variable 

to retain were mathematical simplicity and an intuitive judgment of their 

explanatory power in terms of ecological meaning. Secondly, we chose metrics 
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from the remaining subset that were commonly used in literature found via a 

search on the Web of Knowledge website (http://wok.mimas.ac.uk/). The search 

was carried out for papers published from January 2011 to June 2013, using the 

key-words "landscape metrics" and/or "landscape indices". This search yielded 48 

papers, of which four were found, on inspection, to be out of scope, and five were 

unavailable to us. The papers consulted in the review can be seen in Zanella (in 

prep. – Chapter 2). The result of this filtering process provided four meaningful 

metrics representing forest fragmentation: the aggregation index (AI), a measure 

of the degree to which forested areas are clumped together; the connectance index 

(CONNECT), a measure of the degree to which forested areas are within a user-

specified threshold distance of each other; the mean Euclidean nearest-neighbour 

distance (ENN), a measure of forest patches’ separation from each other; and the 

patch density (PD), a measure of the degree to which the forest is broken up into 

individual patches (Table 3.2).Figure 3.2 shows the variability of dependent 

variables across the municipalities. 

Socio-economic and bio-geophysical variables were obtained from the 

ZEE-MG database. The years for which these variables were collected were 

limited by the availability of information from national agencies, and ranged from 

2003 to 2006. Based on data availability, and following Scolforo et al. (2008), 

socio-economic variables from four categories – production, natural, human and 

institutional – were used. Variables from a further three categories of bio-

geophysical factors – topographic, distance and accessibility – were also selected. 

This gave an initial list of more than 300 candidate independent variables. 

Descriptions of how these variables were calculated can be found in Scolforo et 

al. (2008). From this list, a tractable sub-set of variables was derived using the 

process for addressing multicollinearity described above. As a result, a total of 34 

socio-economic and bio-geophysical variables were selected as independent 

variables for use in our multi-scale analysis of deforestation and forest 
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fragmentation drivers (Table 3.3). Some of these variables (highlighted with ‘*’ 

in Table 3.3) were normalised by the municipality area prior to modelling to allow 

comparison among municipalities. 

 

Table 3.2  Descriptions of deforestation and forest fragmentation metrics used as  

dependent variables. 
Metric Category Formulae Description (unit)a 

Aggregatio

n index 

(AI) 

 

Forest 

aggregation 
𝐴𝐼

= [
𝑔𝑖𝑖

𝑚𝑎𝑥 → 𝑔𝑖𝑖
] (100) 

AI equals the number of like adjacencies 

involving the corresponding class, divided 

by the maximum possible number of like 

adjacencies involving the corresponding 

class, which is achieved when the class is 

maximally clumped into a single, compact 

patch; multiplied by 100 (to convert to a 

percentage). If Ai is the area of class i (in 

terms of number of cells) and n is the side 

of a largest integer square smaller than Ai, 

and m = Ai - n2, then the largest number of 

shared edges for class i, max-gii will take 

one of the three forms: 

max-gii = 2n(n-1) , when m = 0, or max-

gii= 2n(n-1) + 2m -1, when m = n, or 

max-gii = 2n(n-1) + 2m -2, when m > n. 

Note, because of the design of the metric, 

like adjacencies are tallied using the 

single-count method and all landscape 

boundary edge segments are ignored, even 

if a border is provided. 

0 ≦ AI ≦ 100 

Given any Pi, AI equals 0 when the focal 

patch type is maximally disaggregated 

(i.e., when there are no like adjacencies); 

AI increases as the focal patch type is 

increasingly aggregated and equals 100 

when the patch type is maximally 

aggregated into a single, compact patch. gii 

= number of like adjacencies (joins) 

between pixels of patch type (class) i based 

on the single-count method. max-gii= 

maximum number of like adjacencies 

(joins) between pixels of patch type (class) 

i (see below) based on the single-count 

method. Percent. 
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"Table 3.2, conclusion." 

Metric Category Formulae Description (unit)a 

Connectance 

index 

(CONNECT) 

Forest 

patch 

connectanc

e 

𝐶𝑂𝑁𝑁𝐸𝐶𝑇

=
∑ 𝐶𝑖𝑗𝑘

𝑛
𝑗=𝑘

𝑛𝑖(𝑛𝑖−1)

2

(100) 

CONNECT equals the number of 

functional joinings between all patches 

of the corresponding patch type (sum of 

cijk where cijk = 0 if patch j and k are not 

within the specified distance of each 

other and cijk = 1 if patch j and k are 

within the specified distance), divided 

by the total number of possible joinings 

between all patches of the corresponding 

patch type, multiplied by 100 to convert 

to a percentage. 

0 ≦ CONNECT ≦ 100.  

CONNECT = 0 when either the focal 

class consists of a single patch or none of 

the patches of the focal class are 

"connected" (i.e., within the user-

specified threshold distance of another 

patch of the same type). CONNECT = 

100 when every patch of the focal class 

is "connected". Connectance is defined 

on the number of functional joinings 

between patches of the corresponding 

patch type, where each pair of patches is 

either connected or not based on a user-

specified distance criterion. 

Connectance is reported as a percentage 

of the maximum possible connectance 

given the number of patches. 

Connectance can be based on either 

Euclidean distance or functional 

distance. cijk = joining between patch j 

and k (0 = unjoined, 1 = joined) of the 

corresponding patch type (i), based on a 

user specified threshold distance. ni = 

number of patches in the landscape of 

the corresponding patch type 

(class).Percent. 

Mean 

Euclidean 

Nearest-

Neighbour 

(ENN) 

Forest 

patch 

isolation 

  ENN =
∑ ℎ𝑖𝑗

𝑛
𝑗=1

𝑛𝑖
 

ENN equals the mean distance to the 

nearest neighbouring patch of forest, 

based on shortest edge-to-edge distance. 

hij = distance (m) from patch j to nearest 

neighbouring patch of the same type (i, 

in this case forest). ni = number of 

patches of cover type i (forest). Meters. 

Patch density 

(PD) 

Forest 

spatial 

structure 

PD

=
𝑛𝑖

𝐴
(10,00000) 

 

Patch density increases with a greater 

number of patches within a reference 

area and therefore reflects landscape 

fragmentation. 

a Details can be found in McGarigal et al. (2012). 
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Figure 3.2  Spatial distribution of dependent variable values per municipalities 

along the Atlantic Forest Biome in Minas Gerais. A) Deforestation 

(DEFOR); B) Patch density (PD); C) Forest aggregation (AI); D) Patch 

connectance (CONNECT); E) Forest patch isolation (ENN). 

A B 

C D 

E 



100 

 

Table 3.3 Socio-economic and bio-geophysical factors used as independent 

variables. 
Category Acronym Descriptiona 

Productive 

component 

VA_agri Value added by agriculture sector adjusted by 

inflation in 2004 (R$b) 

GGR_GPM Geometric growth rate of total gross product per 

municipality (1999-2003) 

GPM Total gross product per municipality in 2004 (R$) 

Natural 

component 

For_crops* Amount of forest crops per municipality in hectares 

Perm_crops* Amount of permanent crops per municipality in 

hectares 

Annu_crops* Amount of annual crops per municipality in hectares 

Cov_areas* Amount of area covered by reservoirs per 

municipality in hectares 

Prot_areas* Amount of protected areas per municipality in 

hectares 

Rural_fam* Number of rural family farms per municipality. 

Rural family farms are those in which labour is 

performed by family members only. 

Min_comp Index of financial compensation for mineral 

extraction in 2005 (R$) 

ICMS_eco Financial compensation given to municipalities that 

have land use restrictions due to protected areas 

(Ecological ICMS) in 2005 (R$) 

Min_conc Number of mines in operation by municipality 

Human 

component 

Occu_rate Intensity of usage of available land for economic use, 

obtained from the total area of the municipality 

available for economic activities minus protected and 

covered areas. 

Unemp Unemployment rate per municipality in 2005 

Emp Geometric growth rate of formal employment per 

municipality between 2000 and 2005 

Den_pop Population density per municipality in 2004 

Urb_pop Percentage of urban population per municipality in 

2004 

Income Per capita income per municipality (R$ / per capita) 

Institutional 

component 

Law_enf Law Enforcement Capacity measures the ratio 

between the number of citizens and the number of 

Military and Civil Policemen, Judges, District 

Attorneys and Public Defenders in the municipality. 

It ranges from 0 to 1 (0 - no capacity; 1 - best 

capacity) 
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"Table 3.3, conclusion." 

Category Acronym Descriptiona 

Topography Alt_mean Mean altitude per municipality in meters 

Slo_min Minimum slope per municipality in degrees 

Slo_mean Mean slope per municipality in degrees 

Slo_mean_d Mean slope of areas deforested between 2003 and 

2011, per municipality in degrees 

Rock Predominant rock type covered by forests in the 

municipality  

Soil Predominant soil type covered by forests in the 

municipality 

Accessibility Roads_den Road density per municipality (km/1.000 km2) 

Rail_den Railway density per municipality (km/1.000 km2) 

Distance 

factors 

MinDist_sm Mean distance of forest patches within the 

municipality to the closest steel mill in kilometres 

MinDist_ri Mean distance of forest patches within the 

municipality to the closest river in kilometres 

MinDist_nr Mean distance of forest patches within the 

municipality to the closest protected area in 

kilometres 

MinDist_ro Mean distance of forest patches within the 

municipality to the closest road (highway) in 

kilometres 

MinDist_re Mean distance of forest patches within the 

municipality to the closest reservoir in kilometres 

Geographical 

location 

Point_X Longitude of the centroid of the municipality 

Point_Y Latitude of the centroid of the municipality 

a The full description on how the variables were calculated and their description are found 

in Scolforo et al. (2008). 
b Brazilian currency 

*Variables scaled to the municipality area prior to modelling to allow comparison. 

 

3.2.4 Random Forests analysis 

 

To investigate in detail the relationships between deforestation/forest 

fragmentation metrics and socio-economic/bio-geophysical variables at the 

different spatial scales specified above, we applied random forest analysis 

(hereafter, RF; Breiman 2001). RF is a recently developed, machine-learning 

technique that may be used for predictive modelling of multiple outputs from large 
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input datasets. We executed this analysis using the R package ‘extendedForest’ 

(Smith et al. 2011), which is an updated version of the R package ‘randomForest’ 

and reduces bias when predictors are correlated. RF is a non-parametric technique 

derived from classification and regression trees (CART) (Breiman et al. 1984, 

Prasad et al. 2006). It uses an ensemble of decision trees with binary divisions, 

each capable of producing an output when presented with a set of input values 

(Cutler et al. 2007). Each tree is generated by bootstrap samples, leaving about a 

third of the overall sample for validation (the out-of-bag predictions – OOB). For 

regression modelling problems, such as the case we considered in this study, the 

tree response is the average of the results of all the trees (Breiman 2001, Cutler et 

al. 2007). As it uses the OOB samples (which are observations independent from 

those used to grow the trees), to calculate error rates and variable importance, no 

test data or cross-validation is required. However, the individual trees cannot be 

examined separately (Prasad et al. 2006) and RF calculates neither regression 

coefficients nor confidence intervals (Cutler et al. 2007), but instead provides a 

percentage of variance explained (%var) for each input independent variable. In 

addition, it is able to analyse large numbers of potential independent variables, 

and incorporates a method for calculating the importance of each independent 

variable in the final model that it provides (%imp; Smith et al. 2011). Previous 

analyses linking socioeconomic and environmental data to forest fragmentation 

or LUCC at the regional scale in other locations (e.g. Butler et al. 2004) and at the 

sub-regional level (e.g. Tyrell et al. 2004) have applied multiple linear regression 

using only one component of fragmentation (e.g., perimeter to area ratio) or 

LUCC change (e.g., forest loss). We found only one study (Bonilla-Moheno et al. 

2012) that applied RF analysis to address similar relationships and investigated its 

application as different spatial scales, however it only considered changes in land 

cover types, and not in landscape fragmentation metrics. In the study reported 

here, we applied RF to one metric related to deforestation (DEFOR) and four to 
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forest fragmentation (AI, CONNECT, ENN, and PD) as our dependent variables, 

linking them to socio-economic and bio-geophysical factors at the three spatial 

scales described above. Our data contained numerous cases in which variables are 

non-normally distributed, making this novel, non-parametric modelling approach 

a necessity. 

 

3.3  Results 

 

3.3.1 Deforestation and forest fragmentation quantification 

 

The Atlantic Forest in Minas Gerais is estimated to have covered an area 

of 24,047,660 ha at the time of Europeans’ first arrival in Brazil in the early 16th 

century (Galindo-Leal and Câmara 2003, Ribeiro et al. 2009). In 2003, less than 

20% (19.19% = 4,615,811 ha) of this area of forest remained in the state. This is 

spread across the 19,904,945 ha covered by the 518 municipalities considered in 

this study. Deforestation data for the period that we studied, 2003-2011, are 

presented in Table 3.4 and Figure 3.3. 
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Figure 3.3 Area deforested in different periods of time across regions. 
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Table 3.4 shows the area deforested every two years between 2003 and 

2011 in each of the four regions defined in Fig. 1B. The rate of deforestation 

generally (but not monotonically) decreased over this time period in Regions 2, 3 

and 4, but increased in Region 1 (the northeastern-most part of the study area). 

Overall, there was a decrease in total deforested area, from 25,226 ha in 2003-

2005 to 13,436 ha in 2009-2011 (a drop of 46.76%), but this difference fluctuated 

between positive and negative values in the intervening periods. In total, 77,968 

ha of Atlantic Forest were deforested during the study period (4.538.843 ha of 

remaining forest area in 2011). This figure represents 1.69% of the remaining 

forest area in 2003 (4,615,811 ha). 

Region 1 also experienced more deforestation than the other regions, in 

terms of both raw area values, and percentages of 2003 forested area (1.25% for 

Region 1 compared to 0.12–0.33% for Regions 2, 3 and 4). There is a monotonic 

decrease in both raw area and percentage of 2003 values of total deforestation 

from Region 1 to Region 4 (northeast to southwest).  

In terms of landscape metrics patterns (Table 3.5), PD and AI decreased 

from Region 1 to Region 4, with the exception of Region 3, which had the smallest 

value of PD. Conversely, CONNECT and ENN showed no patterns in their north-

south distribution, since the intermediate regions had the highest values of both 

metrics. 
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Table 3.4 Official deforested area figures obtained from the ecologic-economical zoning of Minas Gerais – ZEE-MG 

(Scolforo et al. 2008), including total deforested area (in hectares - ha and percentage - %) per year, regions and 

the entire Atlantic Forest (biome) in Minas Gerais. 

Regions 
Region 

area (ha)  

Total area deforested 

2003-2005 2005-2007 2007-2009 2009-2011 2003-2011 (DEFOR) 

ha % ha % ha % ha % ha % 

1 3,258,197 9,814.50 0.0030 7,067.79 0.0022 11,018.61 0.0034 12,648.69 0.0039 40,549.59 0.0124 

2 6,475,025 10,414.80 0.0016 5,112.81 0.0008 5,312.34 0.0008 679.95 0.0001 21,519.90 0.0033 

3 4,341,869 3,226.23 0.0007 1,952.19 0.0004 2,727.99 0.0006 27.99 0.0000 7,934.40 0.0018 

4 5,829,054 1,770.47 0.0003 3,632.31 0.0006 1,483.11 0.0003 78.93 0.0000 6,964.82 0.0012 

Biome 19,904,146 25,226.00 0.0013 17,765.10 0.0009 20,542.05 0.0010 13,435.56 0.0007 76,968.71 0.0039 

 

 

Table 3.5 Mean values of landscape metrics across regions and the entire Atlantic Forest (biome) in Minas Gerais. 

 

Regions PD AI (%) CONNECT (%) ENN (m) 

1 46.89 89.56 0.24 194.31 

2 31.64 87.37 0.38 254.83 

3 25.63 87.36 0.47 217.73 

4 28.29 84.68 0.34 227.01 

Biome 29.48 86.52 0.39 229.34 
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3.3.2  Deforestation and forest fragmentation metrics at multiple spatial 

scales Variance explained 

 

The RF analysis provides strong evidence of patterns of co-variance 

between the independent variables (the socio-economic and bio-geophysical 

factors) and dependent variables (the deforestation and forest fragmentation 

metrics) at all of the spatial scales considered here (Table 3.6; Figure 3.4). Most 

of the models give high values of variance explained (up to 67.00% - see Figure 

3.7). 

 

Table 3.6  Independent variable abundance for each dependent variable across the 

multiple spatial scales: all scales; regions and biome combined; and 

sub-regions. 

A
I 

All Scales Regions/Biome Sub-regions 

Ranking Count Ranking Count Ranking Count 

Point_X 20 MinDist_nr 5 Point_X 15 

Point_Y 19 MinDist_re 5 Point_Y 14 

MinDist_re 17 MinDist_sm 5 Slo_mean 14 

MinDist_sm 17 Point_X 5 Annu_crops 12 

Slo_mean 17 Point_Y 5 MinDist_re 12 

    MinDist_sm 12 

        Rural_farms 12 

  
  

  
  

  
C

O
N

N
E

C
T

 

Roads_dens 24 MinDist_ri 5 Roads_dens 19 

MinDist_ro 18 MinDist_ro 5 MinDist_ro 13 

MinDist_ri 17 Point_Y 5 MinDist_ri 12 

Alt_mean 15 Roads_dens 5 Alt_mean 11 

Point_Y 15   Slo_mean_d 11 
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"Table 3.6, conclusion." 
D

E
F

O
R

 
All Scales Regions/Biome Sub-regions 

Ranking Count Ranking Count Ranking Count 

Perm_crops 18 For_crops 5 Roads_dens 14 

Slo_mean_d 14 MinDist_nr 5 Slo_mean_d 11 

Min_comp 13 MinDist_sm 5 Alt_mean 9 

Den_pop 12 Point_X 5 Point_Y 9 

VA_agri04 12 Roads_dens 5   

Unemp 12         

  
  

  
  

  
  

E
N

N
 

Alt_mean 22 MinDist_nr 5 Alt_mean 18 

MinDist_re 20 MinDist_re 5 Point_Y 16 

Point_Y 20 Perm_crops 5 Slo_mean 16 

Slo_mean 20 Point_X 5 MinDist_re 15 

MinDist_sm 19 Alt_mean 4 MinDist_sm 15 

Point_X 19 Income 4     

      

  
  

  
  

  
  

 P
D

 

Roads_dens 27 Roads_dens 5 Roads_dens 22 

Income 17 Alt_mean 4 Income 13 

Alt_mean 15 Income 4 Alt_mean 11 

MinDist_ri 15 MinDist_ri 4 MinDist_ri 11 

  MinDist_sm 4   

  Perm_crops 4   
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Figure 3.4 Ranking of aggregation units (sub-regions, regions, and biome)   

according to the percentage of variance explained considering all sub-

regions, regions and the whole biome for the five dependent variables 

studied: AI - aggregation index; CONNECT - connectance index; 

DEFOR - the total amount of area deforested; ENN - mean Euclidean 

nearest-neighbour distance; PD - patch density. 

 

The percentage of the variance of the deforestation and fragmentation 

metrics explained by our models varied across spatial scales, as well as between 

the metrics. For the total amount of area deforested (DEFOR), the mean value of 

variance explained stays approximately constant across all spatial scales, but the 

range of values spreads out as the spatial scale becomes finer. As a result, the 
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models with both the highest and lowest percentages of variance explained occur 

at the sub-regional scale. 

Patch density (PD) has arguably the clearest pattern of change in 

percentage variance explained with spatial scale, in that the highest values of 

variance explained occur for this variable at the largest (biome) scale, and 

decrease as the spatial scale becomes finer in a fairly consistent manner both in 

general and within each region. 

Regarding the aggregation index (AI), there is, overall, a tendency for 

variance explained to increase as the scale becomes finer. For the connectance 

index (CONNECT), the percentage of variance explained is approximately the 

same at the biome scale as the average value across the four regions, but is lower 

on average at the sub-regional scale. Thus, the pattern here is somewhat similar to 

that for PD. 

Finally, the mean Euclidean nearest-neighbour distance (ENN) presented 

a similar pattern to DEFOR, with the mean amount of variance explained being 

approximately the same across the three spatial scales, while the spread of values 

increases as one moves to finer spatial scales.  

Overall, therefore, the general pattern is that for PD and CONNECT, the 

highest percentages of variance explained occur at the larger spatial scales, 

whereas for DEFOR, AI and ENN there is less of a monotonic trend with spatial 

scale, with both the highest and lowest percentages of variance explained 

occurring at the sub-regional scale.  

 

3.3.3 Main factors and factor abundance 

 

The relationships between deforestation/fragmentation metrics and socio-

economic/bio-geophysical factors identified by RF analysis showed no single 

factor to be prominent in the models for all metrics at all spatial scales. 
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Nevertheless, a small number of factors appeared, with varying degrees of 

importance, across many of these models. Road density was among the most 

important factors in several models, and latitude, longitude, mean altitude, mean 

slope, and the minimum distance to the nearest reservoirs and steel mills were also 

common factors (Table 3.6). 

Furthermore, we can identify patterns when we look at the most important 

factor affecting each metric individually at different spatial scales (Table 3.7). 

This is especially the case for the patch density (PD), for which the road density 

is the main factor in the large majority of models at all scales. Similarly, the road 

density was the most important variable in many of the models for the connectance 

index (CONNECT), especially at the larger scales (the biome-scale model and 

three of the four region-scale models), but also in several sub-regional models. 

There was less consistency in terms of the most important factor across the models 

for the other deforestation and fragmentation metrics. Each of the models at biome 

and regional scales for the aggregation index (AI) had different most-important 

factors. However, the latitude (Point_Y) and longitude (Point_X) of the centroid 

of each municipality appeared as the most important factor in several models for 

this metric at regional and sub-regional scales, especially the latitude. The 

deforestation metric (DEFOR) also had no robust pattern of the most important 

factor across scales, but again the road density was the most common most-

important-factor for this metric. Other factors that were also important in the 

DEFOR models were: forest crops, mean slope of areas deforested and latitude. 

Latitude was the most important factor in the biome-scale DEFOR model. Finally, 

in the ENN models, the mean altitude was the most important factor at biome 

scale and in two of the four regional scale models, and was also important in many 

sub-regional scale models, along with mean slope, latitude, and the minimum 

distance to the nearest reservoir. 
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Table 3.7  The most important socio-economic or bio-geophysical variable in the models generated by random forest 

regression analyses (RF) for each deforestation and forest fragmentation metric at the whole-biome, regional 

and sub-regional scales. See Tables 2 and 3 for explanations of abbreviations. 

Spatial scales 

  

AI CONNECT DEFOR ENN PD 

Variable %var %imp Variable %var %imp Variable %var %imp Variable %var %imp Variable %var %imp 

Biome MinDist_sm 21.66 43.72 Roads_dens 44.51 115.65 Point_Y 19.41 31.2 Alt_mean 38.92 97.91 Roads_dens 61.47 200.45 

Region 1 MinDist_nr 29.29 33.9 Roads_dens 26.47 37.08 ICMS_ecos 12.56 41.37 MinDist_re 12.51 21.31 Roads_dens 48.92 78.87 

Region 2 Point_X 38.18 96.98 MinDist_ro 48.19 59.65 Roads_dens 18.33 60.11 Alt_mean 45.24 68.34 Roads_dens 55.31 111.01 

Region 3 Point_Y 49.08 110.02 Roads_dens 29.9 60.58 Roads_dens 25.22 28.91 Alt_mean 44.38 79.43 Roads_dens 46.52 113.15 

Region 4 Slo_mean 14.51 34.34 Roads_dens 54.96 90.59 Min_conc 32.47 44.71 Slo_mean 33.05 77.51 Roads_dens 52.67 142.71 

Sub-region 1 Rural_fams 55.1 27.96 Den_pop 33.39 34.51 Min_comp 20.18 23.03 Slo_mean 30.54 33.41 Roads_dens 45.51 37.69 

Sub-region 10 Emp 24.55 32.19 Rail_dens 24.48 21.38 Law_enf 35.71 35.49 Den_pop -9.62 12.22 Roads_dens 39.36 40.09 

Sub-region 11 Point_Y 56.89 52.01 Slo_min 34.86 53.67 For_crops 4.18 19.45 Point_X 40.48 50.64 Roads_dens 39.23 46.94 

Sub-region 12 MinDist_ri 19 21.91 GPM_04 17.58 27.15 Roads_dens 34.32 33.46 Emp 37.93 27.8 Roads_dens 48.59 45.99 

Sub-region 13 Rural_fams 19.62 19.72 ICMS_ecos -9.25 8.82 MinDist_ro -9.38 16.98 GGR_GPM 22.27 44.24 Roads_dens 4.19 26.8 

Sub-region 14 MinDist_re 14.76 17.07 Roads_dens -6.32 15.67 MinDist_ri -5.03 12.69 Soil 55.91 42.45 Min_conc 44.84 36.93 

Sub-region 15 Point_Y 48.73 52.34 Roads_dens 35.39 31.15 Income 27.79 32.95 Point_X 40.48 50.64 Roads_dens 45.68 44.76 

Sub-region 16 Emp 32.61 21.71 MinDist_sm 18.97 28.75 Roads_dens 14.52 31.45 MinDist_nr 58.63 27.31 MinDist_re 56.82 29.56 

Sub-region 17 Perm_crops 45.19 73.05 Roads_dens 31.09 82.87 Point_Y 28.72 39.29 Alt_mean 50.57 67.92 Roads_dens 52.13 101.58 

Sub-region 18 Point_Y 33.58 35.08 Roads_dens 26.08 49.85 Slo_mean_d 53.26 34.44 Point_X 56.16 67.16 Roads_dens 44.53 58.69 

Sub-region 19 Point_X 56.85 48.25 Roads_dens 41.26 36.7 For_crops 7.73 31.08 Point_X 49.9 47.98 Roads_dens 37.01 59.95 

Sub-region 2 Alt_mean 26.07 20.17 Point_X -16.02 8.04 Emp 55.79 19.19 Income 50.37 4.78 Soil 28.37 3.37 

Sub-region 20 MinDist_sm -1.2 13.06 Roads_dens 45.47 40.63 VA_agri04 49.37 43.12 Slo_mean 32.74 35.44 Roads_dens 53.49 57.38 

Sub-region 21 Point_Y 42.16 34.57 MinDist_sm 44.57 37.93 Rural_fams 22.91 31.07 Annu_crops -20.28 19.03 Roads_dens 15.05 23.89 
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"Table 3.7, concluison." 

Spatial scales 

  

AI CONNECT DEFOR ENN PD 

Variable %var %imp Variable %var %imp Variable %var %imp Variable %var %imp Variable %var %imp 

Sub-region 22 Annu_crops 28.72 46.19 Roads_dens 24.18 29.8 Slo_mean_d 39.68 60.22 Alt_mean 35.71 42.68 Roads_dens 36.72 25.17 

Sub-region 3 Point_Y 18.55 23.69 Roads_dens 37.97 56.1 For_crops -8.98 23.14 Point_Y 58.55 62.04 Roads_dens 34.86 55.46 

Sub-region 4 Point_Y 49.14 31.17 Law_enf 36.79 42.63 Slo_mean_d 32.17 35.84 MinDist_re 23.08 31.35 Roads_dens 46.62 37.09 

Sub-region 5 MinDist_sm 55.84 37.14 Unemp -6.18 19.47 Rural_fams 33.01 24.86 Slo_mean 66.53 42.73 Rural_fams 39.8 34.28 

Sub-region 6 MinDist_re 37.54 34.11 MinDist_ro 37.11 34.48 Point_Y 48.69 43.46 Perm_crops 21.99 36.16 Income 50.51 39.55 

Sub-region 7 Point_X 63.9 55.12 GGR_GPM 14.87 19.59 MinDist_ro 16.77 23.52 MinDist_re 12.64 33.97 Income 21.3 26.34 

Sub-region 8 GPM_04 45.16 33.84 Roads_dens 2.12 17.23 GPM_04 59.42 38.98 Alt_mean 30.4 32.65 GGR_GPM 30.37 29.14 

Sub-region 9 Point_Y 47.69 32.98 Point_Y 49.01 30.83 Roads_dens -27.09 24.56 MinDist_re 39.58 33.94 Roads_dens 41.66 46.54 
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We also quantified how often each factor appeared in the models for each 

metric (Table 3.6). In this sense, the PD models once again presented the strongest 

pattern, in that the road density appeared in every model across all spatial scales. 

The DEFOR and CONNECT models showed a pattern similar to the PD models, 

in that the road density was also the most common factor in these models across 

all spatial scales. Other factors common in the DEFOR models were forest crops, 

the minimum distances to the nearest natural reserves and steel mills, and 

longitude at larger spatial scales, and mean slope of areas deforested, mean 

altitude and latitude at the sub-regional scale. In the CONNECT models, the 

minimum distance to the nearest river was also a common factor. 

The models of the other metrics were also similar in terms of the most 

common factors. The most common factors in the AI models were the minimum 

distances to the nearest reservoirs and steel mills, latitude and longitude. The 

minimum distance to the nearest protected area was also abundant in the models 

at biome and regional scales while mean slope, the amount of annual crops and 

the number of rural family farms were common factors in the sub-regional scale 

models. Finally, the most common factor in the ENN models was the mean 

altitude. The minimum distance to the nearest reservoir was also a common factor 

across ENN models at all spatial scales. The minimum distance to the nearest 

natural reserve, the amount of permanent crops, and longitude were more common 

in the biome and regional-scale models, while latitude and mean slope were the 

most common factors in the sub-regional scale ENN models. 
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3.4  Discussion 

 

3.4.1 Deforestation and forest fragmentation quantification 

 

Our study shows the ongoing occurrence of deforestation processes in the 

Atlantic Forest of Minas Gerais. The total area deforested during the period 

investigated (2003-2011) represents 1.69% of the current remaining forest area. 

While this could be thought as a small percentage it is, nevertheless, alarming, 

since this biome is considered a hotspot of biodiversity (Mittermeier et al. 2005, 

Zachos and Habel 2011), and there is specific legislation prohibiting its 

deforestation (Law n.11.428; Brazil 2006). According to the Atlantic Forest Law 

(Brazil 2006), exploitation and suppression of Atlantic forest remnants are 

permissible only by decision of the environmental agencies, such as the Brazilian 

Institute of Environment and Renewable Natural Resources – IBAMA or the State 

Department of Environment and Sustainable Development (SEMAD) at the state 

level. In addition, the Forest State Institute of Minas Gerais – IEF (2013), which 

is linked to SEMAD, has identified illegal deforestation within the state's borders, 

and most deforested areas appear to correspond to illegal actions. It was not 

possible, however, for us to identify which of the deforestation processes were 

illegal. 

We observed an overall declining trend in the rate of deforestation during 

the period under study (Table 3.4; Figure 3.3), possibly because of more intense 

surveillance resulting from the Atlantic Forest Law (Brazil 2006). There was a 

trend of deforestation being higher in the North of the state (Region 4), and 

declining southwards through Regions 3, 2 and 1. This trend becomes stronger 

over the time period for which data is presented in Table 3.4. This trend is also 

evident when the data is presented in terms of the percentage of remaining forest 
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area deforested in each 2-year period, but it may still reflect a correlation between 

the area deforested and the amount of remaining forest area, since the latter is also 

higher towards Northern (Carvalho and Scolforo – unpublished data), in that law 

enforcement may be more strictly applied where there is less remaining forest. 

The spatial structure of the remaining forest showed a northwards trend 

of increasing patch density (PD). We observed trends in the same direction for 

forest aggregation (AI). However, there was no clear pattern of values distribution 

for forest connectance (CONNECT) and isolation (ENN). 

 

3.4.2 Deforestation and forest fragmentation associated factors at multiple 

spatial scales 

 

This study is the first multi-scale assessment of relationships between 

deforestation and forest fragmentation metrics and socio-economic and bio-

geophysical factors in the Brazilian Atlantic Forest. To our knowledge, this is also 

the first time that Random Forest (RF) analysis has been used to identify 

relationships between these types of metrics and factors, using a multi-scale 

approach (but see Bonilla-Moheno et al. 2012 for a previous two-scale RF study 

of land cover changes). We discuss our findings, firstly, by comparing the 

variance explained by the models produced by our analysis across spatial scales 

and between metrics, and, subsequently, by interpreting the implications of the 

most common and important factors found by these models. 

The deforestation and fragmentation metrics follow different patterns at 

different spatial scales in terms of the amount of their variance that the RF output 

models explain. There is a tendency for some metrics to be best explained in some 

of the sub-regions, while others are better explained at larger spatial scales. 

Deforestation (DEFOR), forest patch isolation (ENN), and forest aggregation (AI) 

had the highest percentages of variance explained in some of their sub-regions. 
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Forest patch connectance (CONNECT) and patch density (PD) had higher 

percentages of variance explained at the biome and regional scales. This variation 

in metrics variance explanation across scales highlights the presence of the 

modifiable areal unit scale problem (MAUP; Openshaw and Taylor, 1979) in our 

modelling. This consists of a "variation in results that may be obtained when the 

same areal data are combined into sets of increasingly larger areal units of 

analysis" (Openshaw and Taylor, 1979). In our investigation, we were able to 

address this issue, identifying the metrics that can be affected by the MAUP scale 

problem. While the MAUP reflects the nature of hierarchically-structured systems 

in the real world, there is no real impediment to understanding spatial phenomena 

if MAUP is adequately recognized and dealt with explicitly (Jelinski and Wu 

1996). We reinforce, then, that the MAUP must be investigated, since we have 

demonstrated here that different relationships between the factors related to 

deforestation and forest fragmentation may arise at different spatial scales.We 

used the same spatial unit (municipalities) across the scales. 

Different arguments can be made as to why the deforestation metric 

(DEFOR) is best explained in some sub-regions in the Atlantic Forest of Minas 

Gerais. Firstly, this biome covers a huge area, so a large degree of difference in 

practices across the entire biome might make for an unclear set of relationships at 

the biome and regional scales (Ribeiro et al. 2011). A more spatially-varied 

pattern of deforestation and of its relationship to socio-economic and bio-

geophysical factors across the biome, and from sub-region to sub-region may be 

caused by a combination of factors: the long-term background of degradation and 

deforestation in the Atlantic Forest, and the resultant unevenness of its remaining 

area, together with regional differences in the way that controls on deforestation 

have been enforced. In specific sub-regions that have a larger deforested area, we 

observed a stronger connection between DEFOR and these factors than in sub-

regions where the amount of deforestation was very low or even non-existent. 
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This may explain the wide variability in the percentage of variance explained 

across the sub-regions. Furthermore, we found that the main factor explaining 

deforestation at the biome scale was the geographical location of municipalities. 

This also reinforces the idea that the patterns and drivers of deforestation are 

highly spatially specific and therefore is best explained at finer spatial scales 

(Geist and Lambin 2002). 

Forest aggregation (AI) and isolation (ENN) were also best explained in 

some of the sub-regions. These fragmentation measurements are negatively 

correlated with each other, since the higher the forest aggregation, the lower the 

patch isolation (McGarigal et al. 2012). Both followed trends similar to that 

observed for deforestation, since deforestation is also associated with where the 

remaining forest is, and consequently with forest aggregation. This is consistent 

with the idea that the deforestation that has been undertaken in the Atlantic Forest 

has resulted in a spatially-aggregated pattern of remaining forest. Thus, at larger 

spatial scales relationships between deforestation and forest fragmentation metrics 

and socio-economic and bio-geophysical variables are likely to be distorted by 

spatial variations in historical patterns of deforestation, whereby it was more 

intense in the south of the state than the north (Carvalho and Scolforo – 

unpublished data). At sub-regional scales, however, the historical pattern of 

deforestation is likely to be more homogeneous, implying that the relationships 

will have greater explanatory capability. On the other hand, forest patch density 

(PD) and connectance (CONNECT) had greater values of variance explained in 

the models at larger spatial scales, implying that these variables are less affected 

by local differences in the underlying historical pattern of deforestation. 

Note that, in some models, a substantial part of the variance was not 

explained by the factors considered, even though we used a very large dataset 

covering a great variety of independent variables. Thus, there are clearly attributes 
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of municipalities that remain uncaptured in our data that influence the nature of 

deforestation of the Atlantic Forest.  

In summary, our results suggest that deforestation, forest aggregation and 

isolation have patterns that are less predictable from our set of socio-economic 

and bio-geophysical variables at the full biome and regional scales than they are 

at sub-regional scales in some areas of the Atlantic Forest in Minas Gerais. Thus, 

they can be thought of as having more coherent and comprehensible patterns of 

spatial variation at smaller spatial scales. Conversely, patch density and 

connectance present more predictable patterns at the biome scale than they do at 

sub-regional scales. 

 

3.4.3  Main factors and factor abundance 

 

In accordance with our expectations and the findings of other studies, we 

found that there is no single factor influencing all of the deforestation and 

fragmentation metrics, but a set of different factors affecting each one. Geist and 

Lambin (2002) obtained similar results when they investigated the causes of 

deforestation of tropical forests. They concluded that a combination of factors 

causes forest loss, and that these depend on historical and geographical context. 

Here, we find that this is the case for metrics that quantify the spatial structure of 

forest fragmentation due to deforestation as well as simple measures of the amount 

of deforestation. According to Seabloom et al. (2002), deforestation (and 

consequently forest fragmentation) is recognized worldwide as a process that 

follows non-random patterns. Endorsing the results of other studies, our study 

supports the theory that deforestation and fragmentation are influenced by a wide 

variety of factors in tropical regions (Geist and Lambin 2002, Bonilla-Moheno et 

al. 2012). These factors are found, to a certain extent, to be specific to the area 

and scale of the study. Laurance et al. (2001) and Gardner et al. (2009) found that 
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soil fertility, economic interests, proximity to urban settlements and roads are 

among the important factors that drive deforestation and fragmentation in tropical 

regions. Other studies in the Atlantic Forest found that deforestation and 

regeneration processes are influenced by factors such as topography, land use, and 

the distribution of urban areas (Silva et al. 2007, Teixeira et al. 2009, Freitas et al. 

2010). Our study partially agrees with these studies: we found that factors from 

different categories, mainly from Accessibility, Geographical location, 

Topography, and Distance categories influence deforestation and fragmentation 

most.  

We identified specific factors influencing each metric, the importance of 

which varied across scales and between regions and sub-regions. Accessibility, 

specifically the road density, was the most important and abundant category 

affecting patch density, deforestation and forest patch connectance across all 

spatial scales. This finding is consistent with intuition, since roads serve as 

fragmenting features (Forman and Alexander 1998, Butler et al. 2004), 

subdividing forests, increasing the number of forest patches, and reducing forest 

connectance. Roads have few positive, neutral and numerous negative 

environmental impacts. Positive impacts include increasing accessibility 

(Leinbach 1995), which can also be negative since this facilitates deforestation 

(Laurance et al. 2001). Negative impacts include habitat loss, degradation, and 

fragmentation, direct wildlife mortality, and road avoidance behaviours by 

wildlife (Forman and Alexander 1998). 

Beyond this identification of road density and accessibility being the most 

important element in our models, a complex and varying mix of factors from most 

of the categories in Table 3.3 are found to be important. The variables that are 

most often identified as being of importance in these models are from the 

Distance, Geographical, Topographic and Natural categories, with the Human and 

Institutional categories contributing to the models less commonly. This implies 



122 
 

 

that it is the spatial distribution of the forest in relation to the underlying landscape 

structure i.e. the layout of the natural and man-made infrastructure (rivers, 

reservoirs, roads, steel mills etc.), the underlying topography and the distribution 

of agricultural and protected land, that is more important in determining the 

patterns of deforestation and forest fragmentation, and that human demographic, 

employment, income and institutional factors are less important in determining 

these patterns. This appears at first sight to conflict with the view mentioned in 

the introduction, that socio-economic processes are thought to be the primary 

factors associated with LUCC, and that these determine the structure, function and 

dynamics of most landscapes (Lorenzoni et al. 2000, Wang and Zhang 2001, Wu 

and Hobbs 2002). Our findings can be reconciled with this view by noting that it 

is the structure, function and dynamics of the landscape that is represented in the 

independent variables that our analysis has found to be important in models of 

deforestation and fragmentation, and that these will have been determined by past 

socio-economic activities. Thus, there appears to be an asynchronicity in the way 

in which socio-economic drivers are related to patterns of deforestation, in that 

their current nature (which is what is represented in our input dataset) is not 

strongly related to these patterns, but their past nature may well have been, albeit 

indirectly via the way in which it may have governed landscape development. 

 

3.5 Conclusions 

 

Our study has provided a multi-scale assessment showing the 

relationships between deforestation/forest fragmentation metrics and socio-

economic/bio-geophysical factors in the Atlantic Forest, using Random Forests 

(RF) analysis and a very large dataset. We have shown that RF analysis can be 

used to identify links between these sorts of metrics and factors. We have found 

that the metrics behave differently at different spatial scales in terms of the amount 
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of their variance that can be explained by the factors in our dataset, evidencing the 

presence of the modifiable areal unit problem across the spatial scales we 

investigated. We found deforestation and forest patch aggregation and isolation to 

be best explained at the finest scale we considered (sub-regional scale). We infer 

that this is due to their more coherent relationships with socio-economic and bio-

geophysical factors at this relatively local scale than at the regional or biome scale, 

where historical and geographical differences may alter these relationships from 

place to place. Conversely, we found patch density and forest connectance to be 

best explained at larger scales, and infer that these metrics are more coherently 

related to socio-economic and bio-geophysical factors at these scales. We also 

found that there is no unique factor affecting all metrics across all spatial scales, 

but a set of factors from different categories. Nevertheless, road density was found 

to be the single most prevalent factors in the models generated by our RF analysis, 

and other common factors came from categories describing the spatial distribution 

of the natural, agricultural and infrastructural elements of the landscape. Factors 

describing patterns of population, employment and legal institutions were found 

to be less important in our models. Finally, we have also shown that deforestation 

processes are still occurring in the Atlantic Forest of Minas Gerais, despite 

specific legislation making this illegal. 
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ABSTRACT 

 

 We combined potential distribution data of threatened plant species with 

remaining forest fragments and protected areas (PAs) in Minas Gerais, Brazil, in 

order to assess the effectiveness and representativeness of PAs for threatened 

species. We performed potential distribution models for eight red-listed plant 

species, according to the International Union for Conservation of Nature (IUCN). 

Data from the Vegetation Monitoring System held in Minas Gerais and 

complementarily from SpeciesLink and NeoTropTree databases were used to 

model the potential distribution of the species, based on the Maximum Entropy 

(MaxEnt) method. We combined maps showing areas with > 50% of 

environmental suitability for the occurrence of the studied species and the maps 

of natural vegetation remnants and the PAs. Areas with the highest potential 

occurrence of threatened species that did not overlay with PAs were considered 

as gaps in protection, and therefore, priority areas for conservation. A variety of 

environmental variables explained habitat suitability, according to the species 

considered. The map of environmental suitability for all species combined showed 

significant gaps in the network of PAs. We recognized at least three sites of high 

environmental suitability for most of the species we studied: one in the Southeast, 

one Central and another one in the North of Minas Gerais. The total area under 

protection in Minas Gerais represents less than 7% of its territory. The total 

potentially suitable area for at least one of the threatened species we considered 

that within the 246 PAs corresponds to 4.61% of the total area of the state. 

Therefore, the amount of land under protection is considered to be far from 

sufficient for adequate conservation of the species. The main gaps of protection 

are in the Atlantic Forest biome, which also has the highest number of PAs. We 

believe that this result is related to the geographic distribution of species studied, 

as they all occur in the Atlantic Forest. The Atlantic Forest has also been 

considered as an object of study in several studies, so it is possible that many 

species from the Cerrado and Caatinga biomes are missing from the red lists due 

to lack of studies. As these two biomes have only a few PAs in Minas Gerais, they 

are also a priority for conducting inventories and creating natural reserves. 

 

Keywords: Brazilian Atlantic Forest. Cerrado. Caatinga. Tropical environments. 

Maximum entropy modeling. Minas Gerais State. Potential distribution. Species 

Distribution Modeling – SDM. Environmental suitability. 
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4.1  Introduction 

 

Impacts of human activities upon biodiversity are increasing at 

unprecedented rates, resulting in widespread species extinctions (Dirzo et al. 

2014, Pimm et al. 2014). The great majority of species respond negatively to 

human disturbances triggering rapid changes to ecosystems worldwide (Baillie et 

al. 2004, Fahrig and Rytwinski 2009). Habitat destruction, and associated 

degradation and fragmentation, are considered the main threats faced by most 

species (Baillie et al. 2004, Brooks et al. 2006).  

Several strategies for nature conservation have emerged in response to the 

biodiversity crisis. The establishment of Protected Areas (hereafter, PAs) is a key 

strategy (Butchart et al. 2010), and their proposition must follows systematic 

conservation planning carried out in several stages (Margules and Pressey 2000). 

The identification of species under threat from extinction (e.g. Biodiversitas 2005, 

MMA 2008, IUCN 2014), and the identification of regions of mega-diversity (in 

terms of species richness, endemism and/or genetics) which are under the greatest 

threat (e.g. Mittermeier et al. 2005, Mittermeier et al. 2011, Zachos and Habel 

2011) are examples of the issues that should be assessed before proposing a new 

PA, issues that models of species’ potential distributions can help to overcome. 

Species distribution models (hereafter, SDM) are considered important 

tools for identifying priority areas to be protected (Ferrier et al. 2002). These 

models are based on species’ environmental requirements, and assume that the 

higher the suitability of an environment is for a species, the more persistent 

populations of that species will be within that environment, at least in the short 

term (Araújo et al. 2002). They have been found to provide information that is 

essential to guiding conservation and recovery efforts (Elith et al. 2006, Phillips 

et al. 2006). The application of such models to threatened species has contributed 

strongly to improving the effectiveness of more protected area networks (Gaston 
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1996). However, occurrence data on threatened species is sparse (Ferrier et al. 

2002, Engler et al. 2004), making it difficult to model their potential distribution. 

SDM’s have become increasingly popular tools for predicting the 

potential distributions of species. SDM’s have been used for a variety of purposes, 

such as: improving detection of new areas of occurrence of species by guiding 

field surveys (Bourg et al. 2005), assessing possible impacts arising from climate 

change (Thuiller et al. 2005a), estimating risks of biological invasions (Thuiller 

et al. 2005b) and supporting conservation decisions (Ferrier et al. 2002, Lemes et 

al. 2014, Ferro et al. 2014). These models relate data on the occurrence of species 

with environmental layers from the area of interest. Several alternative methods 

of modelling species distributions have been proposed (Guisan and Zimmermann 

2000, Guisan and Thuiller 2005, Elith et al. 2006, Wisz et al. 2008). The outcomes 

of these models have shown great potential across a large range of applications. 

However, only a few modelling efforts have been applied to threatened species 

(Engler et al. 2004) or to assess the extent to which existing protected areas 

support their conservation. 

The state of Minas Gerais, Brazil, host three important biomes: Atlantic 

Forest, Cerrado and Caatinga (IBGE 2004), the first two of which are considered 

to be hotspots of biodiversity (Mittermeier et al. 2005, Mittermeier et al. 2011, 

Zachos and Habel 2011) because of their importance in terms of diversity, and 

because they are under serious threat. The third biome, the Caatinga, is also very 

diverse and is currently under threat (Castelletti et al. 2004). Threats to all three 

biomes include many anthropogenic factors, such as deforestation and forest 

fragmentation, fire, and expansion of agriculture and pasture (Mittermeier 2005, 

Mittermeier et al. 2011, Zachos and Habel 2011). As a result, Minas Gerais has 

400 threatened species within its boundaries (IUCN 2014). The geographical 

distribution of most of these species remains unknown. Application of SDM could 

provide essential information for an effective conservation planning for all of 
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these biomes. Therefore, the aim of this study was to assess the effectiveness of 

existing protected areas and the conservation status of threatened plant species in 

the Atlantic forest, Cerrado and Caatinga Biomes of Minas Gerais state, Brazil. 

Our specific objectives were: (1) to identify the potential distribution of threatened 

plant species in Minas Gerais, based on measures of environmental suitability; (2) 

to combine maps of these potential distributions with maps of remaining natural 

vegetation fragments and PAs, to assess gaps in the protection of the species 

studied; and (3) to recommend priority areas for conservation based on the 

identification of environmentally suitable areas for the species considered in this 

study. 

 

4.2 Methods 

 

4.2.1 Study area 

 

The state of Minas Gerais is located in Southeastern Brazil between 

latitudes 14º 03' 28" S and 23º 07' 02" S and longitudes 51º 07' 02" W and 39º 49' 

58" W. It covers an area of 58,652,212 ha and is split into 853 municipalities, 

ranging in area from 285 ha to 1,071,696 ha. It has three biomes within its limits: 

Cerrado, Caatinga and Atlantic Forest (IBGE 2004). The Cerrado and Atlantic 

Forest biomes are considered to be hotspots of biodiversity in Brazil (Mittermeier 

et al. 2005, Mittermeier et al. 2011, Zachos and Habel 2011) (Figure 4.1).  
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Figure 4.1 Study area location. The inset maps on the left show the location of 

Brazil in the South America in the upper map, and the Minas Gerais 

State within Brazil in the lower map. 

 

4.2.2 Species selection and occurrence data 

 

We selected all plant species red-listed by the IUCN (2014) in Minas 

Gerais that were also present in the lists of the Vegetation Monitoring System 

Project (Scolforo and Carvalho 2006). This project sampled 169 fragments of 

remaining natural vegetation across the state, where plants with diameters equal 

to or greater than 5 cm at human chest height were sampled in more than 4.400 
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parcels. In this study, 21 higher plant species were selected (Table 4.1). The 

locations of occurrence of each of these species were compiled from three sources: 

 

1. The inventory reports from the Vegetation Monitoring System Project 

(Scolforo and Carvalho 2006); 

2. A search of the database of the national Herbaria network (SpeciesLink, 

available at http://splink.cria.org.br/); 

3. A search of the Neo Trop Tree data base 

(http://prof.icb.ufmg.br/treeatlan/), which gathers data on biogeography, 

diversity and conservation of tree flora of the Neotropical Region. 

 

From the initial list, we selected only the species with at least ten points 

of occurrence in Minas Gerais (Table 4.2, Figure 4.2 and 4.3). We used all records 

from the Vegetation Monitoring System Project and the NeoTropTree database. 

Species in the national Herbaria network database that did not have geographical 

information associated with them were disregarded. This led to selection for 

modelling of a sub-set of eight threatened species from the initial 21 species. Of 

these, one species (Mimosa bimucronata (DC.) Kuntze), occurs exclusively in the 

Atlantic Forest; three species (Araucaria angustifolia (Bertol.) Kuntze, Pereskia 

aculeata Miller and Podocarpus lambertii Klotzsch) occur in both the Atlantic 

Forest and the Cerrado biomes; and four species (Andira fraxinifolia (Benth.), 

Cereus jamacaru DC, Pereskia grandifolia Haw., and Platypodium elegans 

Vogel) occur in all of the biomes in Minas Gerais. Most of the species are listed 

by IUCN as being of least concern, except A. angustifolia, which is considered 

critically threatened and P. lambertii, which is near to threat/endangered. More 

information on the species can be seen in Table 4.2.  
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Table 4.1   List of threatened species in Minas Gerais, Brazil red-listed by IUCN and present in the lists of the Vegetation 

Monitoring System Project. Species ordered by red list status. 

Code Class Order Family Genus Species Authority 
Red List 

status* 

Red List 

criteria** 

152699 Magnoliopsida Caryophyllales Cactaceae Arrojadoa rhodantha (Gürke) Britton & 

Rose 

LC  

152594 Magnoliopsida Caryophyllales Cactaceae Cereus hildmannianus K.Schum. LC  

152911 Magnoliopsida Caryophyllales Cactaceae Cereus jamacaru DC. LC  

151744 Magnoliopsida Caryophyllales Cactaceae Leocereus bahiensis Britton & Rose LC  

46518 Magnoliopsida Caryophyllales Cactaceae Opuntia monacantha Haw. LC  

46508 Magnoliopsida Caryophyllales Cactaceae Pereskia aculeata Mill. LC  

46509 Magnoliopsida Caryophyllales Cactaceae Pereskia grandifolia Haw. LC  

62374 Magnoliopsida Caryophyllales Cactaceae Pilosocereus aurisetus (Werderm.) Byles & 

G.D.Rowley 

LC  

62375 Magnoliopsida Caryophyllales Cactaceae Pilosocereus brasiliensis (Britton & Rose) 
Backeb. 

LC  

40893 Magnoliopsida Caryophyllales Cactaceae Pilosocereus floccosus Byles & G.D.Rowley LC  

152415 Magnoliopsida Caryophyllales Cactaceae Pilosocereus machrisii (E.Y.Dawson) Backeb. LC  

62377 Magnoliopsida Caryophyllales Cactaceae Pilosocereus pentaedrophorus (Cels) Byles & 

G.D.Rowley 

LC  

46512 Magnoliopsida Caryophyllales Cactaceae Quiabentia zehntneri (Britton & Rose) 

Britton & Rose 

LC  

19892939 Magnoliopsida Fabales Fabaceae 
Faboideae 

Andira fraxinifolia Benth. LC  

19891561 Magnoliopsida Fabales Fabaceae 

Mimosoideae 

Acacia piauhiensis Benth. LC  

19892097 Magnoliopsida Fabales Fabaceae 

Mimosoideae 

Mimosa bimucronata (DC.) Kuntze LC  

19892593 Magnoliopsida Fabales Fabaceae 
Faboideae 

Platypodium elegans Vogel LC  

40896 Magnoliopsida Caryophyllales Cactaceae Pilosocereus fulvilanatus (Buining & Brederoo) 

F.Ritter 

NT  
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"Table 4.1, conclusion." 

Code Class Order Family Genus Species Authority 
Red List 

status* 

Red List 

criteria** 

34086 Pinopsida Pinales Podocarpaceae Podocarpus lambertii Klotzsch NT  

151834 Magnoliopsida Caryophyllales Cactaceae Brasilicereus phaeacanthus (Gürke) Backeb. EN A2ac 

40858 Magnoliopsida Caryophyllales Cactaceae Pereskia aureiflora F.Ritter EN A2c+4c 

32975 Pinopsida Pinales Araucariaceae Araucaria angustifolia (Bertol.) Kuntze CR A2cd 

40888 Magnoliopsida Caryophyllales Cactaceae Pilosocereus azulensis N.P.Taylor & Zappi CR B1ab(iii) 

61926 Magnoliopsida Fabales Fabaceae 
Caesalpinioideae 

Dimorphandra wilsonii Rizzini CR B1ab(ii,v)+ 
2ab(ii,v); 

C2a(i,ii); D 

*Red list status description: LC - least concern; NT - near threatened; EN - endangered; CR - critically endangered. 

**Full description of red list criteria can be seen in http://jr.iucnredlist.org/documents/redlist_cats_crit_en.pdf; IUCN (2012).  
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Table 4.2  List of threatened species in Minas Gerais, Brazil selected for this 

study and their number of occurrences used to model the potential 

distribution. Species are sorted alphabetically by Genus. 

Family Genus Species Authority 
Red List 

status/criteria* 

Total 

record

s 

FABACEAE 

FABOIDEAE 
Andira fraxinifolia Benth. LC 136 

ARAUCARIACEAE Araucaria angustifolia 
(Bertol.) 

Kuntze 
CR + A2cd 28 

CACTACEAE Cereus jamacaru DC. LC 45 

FABACEAE 

MIMOSOIDEAE 
Mimosa bimucronata (DC.) Kuntze LC 32 

CACTACEAE Pereskia aculeata Mill. LC 23 

CACTACEAE Pereskia grandifolia Haw. LC 46 

FABACEAE 

FABOIDEAE 
Platypodium elegans Vogel LC 25 

PODOCARPACEAE Podocarpus lambertii Klotzsch NT 142 

*Red list status and criteria description: LC - least concern; NT - near threatened; EN - 

endangered; CR - critically endangered.Full description of red list criteria can be seen in 

http://jr.iucnredlist.org/documents/redlist_cats_crit_en.pdf; IUCN (2012). 
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Figure 4.2 The eight threatened species selected for the study. A. Andira fraxinifolia (Benth.) (by Ruiz, E., available at 

http://sites.unicentro.br/wp/manejoflorestal/10113-2/); B. Araucaria angustifolia (Bertol.) Kuntze (by Bagatini, 

J.A., available at http://www.ufrgs.br/fitoecologia/florars/open_sp.php?img=14358); C. Cereus jamacaru DC 

(available at http://community.fortunecity.ws/greenfield/swallowtail/785/cereus_jamacaru.jpg); D. Mimosa 

bimucronata (DC.) Kuntze (by Scheineider, A.A., available at www.ufrgs.br); E. Pereskia aculeata Miller (By 

Verdi, M., available at www.ufrgs.br); F. Pereskia grandifolia Haw. (by Benedeto, A., available at 

http://www.jardimdesuculentas.net76.net/fichas/cac/pereskia_ grandifolia.html); G. Platypodium elegans 

Vogel (available at ibflorestas.org.br); H. Podocarpus lambertii Klotzsch (by Schneider,A.A., available at 

www.ufrgs.br). 
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Figure 4.3 Occurrence points of the eight threatened species selected for the study. A. Andira fraxinifolia (Benth.); B. 

Araucaria angustifolia (Bertol.) Kuntze; C. Cereus jamacaru DC; D. Mimosa bimucronata (DC.) Kuntze; E. 

Pereskia aculeata Miller; F. Pereskia grandifolia Haw.; G. Platypodium elegans Vogel; H. Podocarpus 

lambertii Klotzsch. Three categories of protected areas (PAs) are also mapped (see descriptions in section 

Environmental suitability and Priority areas for conservation). 
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4.2.3  Environmental variables 

 

We obtained 20 bioclimatic variables related to temperature, precipitation 

and topography (Table 4.3) from the WorldClim dataset (Hijmans et al. 2005; 

http://www.worldclim.org/), which consists of a set of global climate layers 

generated through interpolation of climate data from weather stations onto a 30″ 

grid (c. 1 km2 resolution at the latitudes at which we were working). Eleven of the 

variables are temperature-derived, another eight are precipitation-derived and the 

last one is elevation (i.e. a Digital Elevation Model, DEM). We used the DEM 

data to generate slope values (in degrees) using the ‘Surface Analysis’ function in 

the GIS software package ArcGIS 10.1© (ESRI, Redlands, California, USA). We 

used another three variables related to soil characteristics (type, texture and 

organic matter) provided by the Ecological-economic Zoning of Minas Gerais 

Project – ZEE (Scolforo et al. 2008). All environmental variables were resampled 

to 1 km2 resolution and a GCS projection and WGS84 datum. In total, we 

assembled 24 environmental parameters. 

 

Table 4.3  Environmental variables selected to model the potential distribution of 

threatened species in Minas Gerais, Brazil, using the maximum 

entropy model. Data indicated as being sourced from "Worldclim" are 

from http://www.worldclim.org/bioclim. 

Variable Description Source/Reference 

BIO1 Annual Mean Temperature Worldclim 

BIO2 
Mean Diurnal Range (Mean of monthly (max temp - min 

temp)) 
Worldclim 

BIO3 Isothermality (BIO2/BIO7) (* 100) Worldclim 

BIO4 Temperature Seasonality (standard deviation *100) Worldclim 

BIO5 Max Temperature of Warmest Month Worldclim 

BIO6 Min Temperature of Coldest Month Worldclim 

BIO7 Temperature Annual Range (BIO5-BIO6) Worldclim 

BIO8 Mean Temperature of Wettest Quarter Worldclim 

BIO9 Mean Temperature of Driest Quarter Worldclim 
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"Table 4.3, conclusion." 

Variable Description Source/Reference 

BIO10 Mean Temperature of Warmest Quarter Worldclim 

BIO11 Mean Temperature of Coldest Quarter Worldclim 

BIO12 Annual Precipitation Worldclim 

BIO13 Precipitation of Wettest Month Worldclim 

BIO14 Precipitation of Driest Month Worldclim 

BIO15 Precipitation Seasonality (Coefficient of Variation) Worldclim 

BIO16 Precipitation of Wettest Quarter Worldclim 

BIO17 Precipitation of Driest Quarter Worldclim 

BIO18 Precipitation of Warmest Quarter Worldclim 

BIO19 Precipitation of Coldest Quarter Worldclim 

Altitude Elevation Worldclim 

Slope Slope by Authors 

Soil_type Soil type ZEE-MG 

Soil_text Soil texture ZEE-MG 

Org_mat Organic Matter ZEE-MG 

 

We removed redundancy from the set of predictor variables by testing for 

multicollinearity using cross-correlations (Pearson correlation coefficient, r) in 

ENMTools 1.3 software. This resulted in a matrix of pair-wise variable 

comparisons, where the variables were considered correlated when r > 0.85 (Zuur 

et al. 2007). We disregarded those variables that were strongly correlated and, 

therefore, deemed to be redundant. To do so, the selection criterion to choose one 

of them was an intuitive judgment on the potential biological relevance to the 

distribution of each species and the ease of interpretation. After removing 

correlated variables from the dataset, we ran a modelling test to analyse the 

performance of variables. We then removed variables that contributed less than 

10 % to the model explanation for each species. Despite being part of the set of 

highly cross-correlated variables identified by our testing for multicollinearity, 

some variables were included in the model based on the same selection criterion 

used to remove the redundant variables (Table 4.4).  
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Table 4.4 Maximum entropy model results showing the percentage contribution of each environmental variable 

(abbreviations explained in Table 4.3) to explanation of the spatial distribution of each species. 

  A. fraxinifolia A. angustifolia C. jamacaru M. bimucronata P. aculeata P. grandifolia P. elegans P. lambertii 

AUC 0.67 %  0.962 %  0.756 %  0.778 %  0.646 %  0.772 %  0.526 %  0.939 %  

V
a

ri
a

b
le

 s
el

ec
te

d
 

bio4 27.2 bio9 53.2 bio14 53.1 bio3 73.7 soil_type 59.2 bio12 17.5 bio6 22.5 bio9 66.7 

bio3 18.4 bio11 20.7 soil_type 21.3 soil_type 13.7 bio3 27.8 bio15 15.8 bio4 14.8 bio1 16.3 

bio14 11.3 bio14 10.4 bio17 19.5 bio14 2.9 bio12 5.4 altitude 13.9 soil_type 13.1 slope 5.5 

soil_type 10.9 bio17 6.2 bio5 2.8 slope 2.6 bio4 4.5 bio3 12.5 slope 11.7 soil_type 3.6 

bio2 7.9 soil_type 4.9 bio15 2.2 bio2 2.4 bio17 1.8 bio14 11.9 bio3 10.7 bio5 2.5 

bio15 7.9 bio12 2 bio19 0.4 bio4 1.5 bio14 1.3 bio19 11.8 bio1 10.3 bio16 2.4 

slope 6.2 bio8 0.9 bio12 0.3 org_mat 1.5 bio16 0.1 bio5 9.1 bio14 8.7 bio8 1.8 

bio9 3.4 bio10 0.9 bio11 0.2 bio19 1.1   bio10 3.2 bio8 8.1 bio11 0.7 

bio17 2.6 bio1 0.8 bio18 0.1 bio11 0.4   bio6 2.2   bio6 0.4 

bio11 2 bio6 0.7   bio9 0.1   bio8 1.5   bio10 0.1 

bio6 1.2 bio5 0.3   bio1 0   bio18 0.5   bio12 0.1 

bio1 1         bio1 0.2     

          bio11 0.1     

          bio17 0.1     

                    bio16 0         
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4.2.4 Modelling procedure 

 

To model the distributions of our species of interest, we used the well-

known maximum entropy method, MaxEnt (Phillips et al. 2004, Phillips et al. 

2006), which estimates the probability distribution for a species’ occurrence based 

on environmental constraints (Phillips et al. 2006). MaxEnt is one of the most 

commonly used methods for inference of species distributions and environmental 

tolerances from occurrence data (Phillips et al. 2006), and has provided strong 

evidence of best performance when tested against many different methods (Elith 

et al. 2006), mainly because it is able to remain effective even when dealing with 

small sample sizes (Pearson et al. 2007, Elith et al. 2011). It requires only species 

presence and values for the environmental variables, which may be continuous or 

categorical. We used the freely-available MaxEnt version 3.3.3k 

(http://www.cs.princeton.edu/ ~schapire/maxent/) to generate estimates of the 

probability of species presence at each location within the study area for the eight 

threatened species we had previously selected.We followedthese steps: firstly, 

after obtaining the species occurrence points from the three different databases, 

we removed those points that felt within a 1 km buffer area to avoid spatial 

autocorrelation. We resampled and re-projected the environment variables, and 

we then tested them for multicollinearity, and removed redundancy. Next step was 

applying the modelling algorithm (MaxEnt) to the modelling dataset, partitioning 

it into training and test dataset. After performing the model calibration, and 

selecting the most suitable parameters/predictors for each species in our dataset, 

we used the training data to model and create the maps of the species current 

distribution. The final step was using the test data to validate models and assess 

the classification accuracy by testing the predictive performance through the AUC 

(area under the curve). 
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We used the default parameters in MaxEnt, with some slight changes. We 

used the "auto features" option, which allows the environmental layers to be used 

to produce "features" that constrain the probability distribution that is being 

computed according to the number of presence records for the species being 

modelled using general empirically-derived rules (Elith et al. 2011). MaxEnt 

currently has six feature classes: linear, product, quadratic, hinge, threshold and 

categorical (further details in Elith et al. 2011). We used the "logistic" output 

format because it provides output values, which are probabilities (between 0 or 

1), scaled up in a non-linear way for easier interpretation (Phillips and Dudík 

2008, Elith et al. 2011). We defined the maximum number of background points 

to 20,000 as the number of pixels in the study area was large. The background 

corresponds to a collection of points of the covariates from the landscape of 

interest (study area) with associated covariates, determining the distribution of 

covariates in the landscape (Elith et al. 2011).  

We used the default value of 1 for the regularization multiplier. This 

parameter affects how focused or closely-fitted the output distribution is (Phillips 

and AT&T Research 2006). A value smaller than 1 will result in a more localized 

output distribution that is a closer fit to the given presence records, but can result 

in overfitting (fitting so close to the training data that the model does not 

generalize well to independent test data), while a larger regularization multiplier 

will give a more spread out, less localized prediction (Phillips and AT&T 

Research 2006). We set the maximum number of iterations to 5,000 and the 

convergence threshold to 0.0001 (Phillips and Dudík 2008). For each species, 

MaxEnt starts with a uniform distribution, and performs a number of iterations, 

each of which increases the probability of the sample locations for the species 

(Phillips and AT&T Research 2006). The probability is shown in terms of "gain", 

which starts at zero (the gain of the uniform distribution), and increases as MaxEnt 

increases the probabilities of the sample locations (Phillips and AT&T Research 
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2006). The gain increases iteration by iteration, until the change from one iteration 

to the next falls below the convergence threshold, or until maximum iterations 

have been performed (Phillips and AT&T Research 2006). 

We used the cross-validation test as the replicated run type, which uses 

selected random points during the analysis. The number of replicates was set to 

10. The "replicates" option can be used to do multiple runs for the same species 

(Phillips and AT&T Research 2006). The cross-validation test randomly splits the 

occurrence data into a number of equal-size groups called "folds", and models are 

created leaving out each fold in turn, so that the influence of the left-out folds can 

be evaluated (Phillips and AT&T Research 2006). Cross-validation has one big 

advantage over using a single training/test split: it uses all of the data for 

validation, thus making better use of small data sets (Phillips and AT&T Research 

2006).  

The threshold applied for environmental suitability was ‘10 percentile 

training presence’ (Liu et al. 2005), which discards those 10% of the records that 

have the lowest values of this index. We adopted this threshold as an extra 

precaution due to possible inaccuracies in geo-referenced data from different 

sources. To validate the models, we used the cross-validation method inspecting 

the area under the curve (AUC) value from the receiver operating characteristics 

curve (ROC), which measures the quality of a ranking of sites (Fielding and Bell 

1997), and expert knowledge on the species distribution to evaluate the models. 

The AUC is the probability that a randomly selected presence site will be ranked 

above a randomly chosen absence site (Elith et al. 2011). A perfect ranking 

achieves the best possible AUC of 1.0, while a random ranking has on average an 

AUC of 0.5. Models with AUC higher than 0.75 are considered potentially useful 

(Elith 2002). When using presence-only models, the AUC is calculated using 

background data (called pseudo-absences, Elith et al. 2011). The interpretation of 

the AUC is then based on the probability that a randomly chosen presence site is 
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ranked above a random background site (Phillips et al. 2006). Additionally, using 

presence-only data, we should interpret the grid cells with no occurrence localities 

as "negative examples" to use ROC curves, even if they support good 

environmental conditions for the species. In this case, the maximum AUC is 

therefore less than one, and is even smaller for wider-distributed species (Wiley 

et al. 2003). We used the jackknife estimator to assess the importance of each 

variable in the models and to determine how much exclusive information each 

variable provides alone or jointly with other variables (Elith et al. 2011, Phillips 

et al. 2006).  

 

4.2.5 Environmental suitability and Priority areas for conservation 

 

The outputs from the MaxEnt program were probabilistic maps of 

geographical distribution in ASCII format. These were converted into gridded 

data compatible with ArcGIS. We considered sites of low environmental 

suitability those with less than 50% probability of species presence, while sites 

with more than 50% probability of species presence were considered highly 

environmentally suitable locations (following Jimenez-Valverde et al. 2008). We 

then combined the potential distribution maps produced for each of the eight 

species into a single map in order to obtain the environmental suitability for all of 

the species together. We then calculated the environmental suitability at each 

location considering the presence of species that had occurrence probability 

values exceeding 50% in a given location. However, we found that a maximum 

of 6 species occurred together at any location. Therefore, the combined map 

consisted of values of environmental suitability that ranged from 0 – no 

occurrence of species, to 6 – occurrence of the six species at the same location. 

We overlaid the environmental suitability map with the protected area boundaries 

(CNUC/MMA 2015). This consisted of an ArcGIS shape file showing the 
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locations of 246 protected areas in Minas Gerais, which fell into three categories 

(Figure 4.3). The first category contained 63 protected areas classified as being of 

"integral protection" (where only restricted use is allowed, e.g. research). The 

second contained 159 protected areas, which are designated as being of 

"sustainable use" (which allows some types of intervention, e.g. collection and 

use of natural resources; privately-owned protected areas fall into this category). 

The final category contained 24 protected areas, which are classified as being 

under other types of protection (e.g. indigenous areas), about which we found no 

usage information (National Protected Areas System – Brazil 2000). The product 

of this procedure was a map containing the environmentally suitable areas for the 

eight species combined within the PAs. The next step consisted of overlaying the 

map of environmentally suitable areas for the eight species combined, within the 

PAs, with the existing natural vegetation remnants of Cerrado, Caatinga and 

Atlantic Forest. These remnants were obtained from a land use map of 2011 

provided by the Vegetation Monitoring System of Minas Gerais (Carvalho and 

Scolforo – unpublished data). The product obtained from this overlay procedure 

was a map containing the environmentally suitable areas for the eight species 

combined within the PAs that had not been converted into other land use/cover, 

but remain as natural vegetation fragments. In summary, we quantified 

environmentally suitable areas for threatened species within the PAs, and we also 

identified environmentally suitable areas after overlaying them with the existing 

natural vegetation remnants, giving a more realistic idea about their occurrence 

and protection status. This also allowed us to identify the gaps in protection, which 

consisted of those sites where the species environmental suitability was high but 

there is currently no PA. These sites were considered as priority areas for 

conservation. 
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4.3 Results 

 

4.3.1 Model accuracy and species potential distribution 

 

The accuracy of the models varied between the species; their AUC values 

ranged from 0.526 to 0.962. We observed that species with higher number of 

occurrence points (namely A. fraxinifolia and P. elegans) had the lowest values of 

AUC. A variety of environmental variables appeared in the habitat suitability 

models with varying importance for the species studied (Table 4.4). Considering 

only the most important variable in each model, the only consistency observed 

was that in the models for both of the species belonging to the order Pinales, A. 

angustifolia and P. lambertii, the mean temperature of the driest quarter of the 

year was the most important variable. The models for these two species were also 

similar in terms of their list of variables, sharing nine of the eleven variables in 

each model. The models for species from the other two orders were less similar. 

The three species from the order Fabales shared six environmental variables in 

total, while the number of variables used to build their models ranged between 8 

and 12. The most important variables in their models were those that related to 

temperature, namely the temperature seasonality (for A. fraxinifolia), the 

isothermality (for M. bimucronata), and the minimum temperature of coldest 

month (for P. elegans). Species from the order Caryophyllales presented the 

lowest similarity. The three species in this group only shared three variables 

among their models. The most important variables in the models of C. jamacaru, 

P. aculeate,P. grandifolia were precipitation in the driest month, soil type, and 

annual precipitation respectively. The contribution of the single most important 

environment variable to each model ranged from 17.5 to 73.7% of the variance 

explained (Table 4.4). 
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The distribution of suitable sites also varied between species, showing 

that some species are more environmentally restricted, while others have a wider 

distribution across the biomes in Minas Gerais (Figure 4.4). According to the 

models, species from the order Pinales (A. angustifolia, Araucariaceae; and P. 

lambertii, Podocarpaceae) are restricted to montane and sub-montane forests 

located in the higher altitudes of the Atlantic Forest in a region called Serra da 

Mantiqueira in Southern Minas Gerais. The potential distribution of four other 

species was higher in the core of the Atlantic Forest of Minas Gerais, two of them 

belonging to the family Fabaceae Faboideae, another to the family Fabaceae 

Mimosoideae, and the last one to the family Cactaceae (A. fraxinifolia, P. elegans, 

M. bimucronata, and P. aculeata, respectively). P. aculeata appears to be more 

restricted to the dry deciduous forests of Caatinga and Atlantic Forest in the North 

of Minas Gerais. 
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Figure 4.4  Probability of occurrenceof the eight threatened species selected for the study. A. Andira fraxinifolia (Benth.); 

B. Araucariaangustifolia (Bertol.) Kuntze; C. Cereus jamacaru DC; D. Mimosa bimucronata (DC.) Kuntze; E. 

Pereskia aculeata Miller; F. Pereskia grandifolia Haw.; G. Platypodium elegans Vogel; H. Podocarpus lambertii 

Klotzsch. 
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4.3.2 Environmental suitability and priority areas for conservation 

 

The map of environmental suitability for all species combined shows that 

a large majority of the suitable sites are located in the Atlantic Forest biome, a 

smaller number are in the Caatinga and fewest are in the Cerrado (Figure 4.5A). 

This map also shows that approximately 32.6 million hectares (55%) of Minas 

Gerais State are favourable for the occurrence of at least one of the species studied 

(Table 4.5). Table 4.5 shows the figures of the extent of environmentally 

suitability areas ranging from no species occurrence up to locations with the 

presence of six species together, considering the area of Minas Gerais (MG) and 

of PAs, the area of natural vegetation remnants within MG and within PAs. This 

table also shows some area-ratio relations, e.g. the relation between MG-remnants 

and MG-area showing the area-ratio between the areas of natural vegetation 

remnants in comparison to the state area. Similar relations are PA-remnants and 

PA-area – area-ratio between the areas of natural vegetation remnants within PAs 

in comparison to the PAs area, and the PA-remnants and MG-area – area-ratio 

between the areas of natural vegetation remnants within PAs in comparison to the 

state area.Furthermore, the highest environmental suitability values generated by 

the model represent the potential occurrence of a maximum of six species at any 

one location, and a maximum of five species at locations that are still covered by 

natural vegetation remnants within the PA’s boundaries (Figure 4.6). Figure 4.6 

A e B show the suitable or unsuitable areas for the threatened species considering 

a ranking of occurrence of these species combined, ranging from 0 (unsuitable) to 

6 (suitable for 6 species). Figure 4.6 A shows the percentages for the 

environmentally suitable areas for the whole State and PAs, and the relation 

between PA/MG shows area-ratio between the area of PAs in comparison to the 

State’s area. Figure 4.6 B shows the percentages for the environmentally suitable 

areas that are covered by natural vegetation in the State and within PAs. The 
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relation PA-remnants/MG-remnants show the area-ratio between the areas of 

natural vegetation remnants within PAs in comparison to areas of natural 

vegetation remnants in MG. In addition, a majority of sites identified by the model 

as suitable for the species studied are not available as natural habitats anymore, 

because they have been converted to other land uses, according to the land use 

map from the Vegetation Monitoring System of Minas Gerais (Carvalho and 

Scolforo – unpublished data). Thus, the actual area of suitable sites that were still 

natural habitat totalled less than a third (approximately 9.6 million hectares) of the 

area indicated as suitable for at least one species (32.6 million hectares). 
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Figure 4.5 The environmental suitability for all threatened species combined for: 

A) Minas Gerais State (MG); B) Remnants of natural vegetation in 

MG; C) Protected areas (PA) within MG; and D) Remnants of natural 

vegetation in the PAs of MG. Inset maps show the sites of high 

potential occurrence of the most threatened species combined that are 

currently unprotected, and where new protected areas can be created 

(for those locations areas of existing natural vegetation remnants) or 

for setting of priorities to restore naturalhabitat such as replanting 

projects (where forest was converted to other land uses). 
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Table 4.5  The extent of environmentally suitability areas in hectares and as a percentage of the total area of Minas Gerais 

State and the protected areas within its boundaries. The environmental suitability ranking indicates the number 

of species for which the maximum entropy model found an area to be environmentally suitable. MG = Minas 

Gerais; PA= Protected areas; MG-remnants = natural vegetation remnants in MG; PA-remnants = natural 

vegetation remnants in the PAs within MG. The relation MG-remnants/MG-area shows area-ratio between the 

area of natural vegetation remnants in comparison to the state area, while the relation PA-remnants/PA-area 

show the area-ratio between the areas of natural vegetation remnants within PAs in comparison to the PAs area. 

The relation PA-remnants/MG-area shows the area-ratio between the areas of natural vegetation remnants 

within PAs in comparison to the state area. 

Environmental 

suitability 

ranking 

MG PA MG-remnants 
MG-remnants/ 

MG-area 
PA-remnants 

PA -remnants/ 

PA-area 

PA-remnants/ 

MG-area 

Area (ha) % Area (ha) % Area (ha) % % Area (ha) % % % 

0 26,040,043.20 44.40 1,114,086.77 29.19 8,748,134.00 47.80 14.92 611,763.60 33.19 16.0312 1.04 

1 17,526,678.02 29.88 825,141.38 21.62 4,978,818.00 27.20 8.49 359,013.50 19.48 9.40791 0.61 

2 8,623,382.49 14.70 1,066,647.21 27.95 2,822,845.00 15.42 4.81 505,503.10 27.42 13.2467 0.86 

3 4,202,180.46 7.17 525,264.96 13.76 1,214,030.00 6.63 2.07 239,515.00 12.99 6.27646 0.41 

4 1,886,093.15 3.22 257,856.18 6.76 478,202.40 2.61 0.82 119,064.80 6.46 3.12008 0.20 

5 368,967.70 0.63 27,085.93 0.71 61,276.89 0.33 0.10 8,486.83 0.46 0.2224 0.01 

6 158.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 

Total 58,647,503.97 100.00 3,816,082.42 100.00 18,303,306.41 100.00 31.21 1,843,346.83 100.00 48.3047 3.14 
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Figure 4.6 The area of environmental suitability in percentage based on the 

occurrence of threatened species for Minas Gerais State and for the 

protected areas within its boundaries. A) Environmental suitability 

considering the whole area of Minas Gerais; B) Environmental 

suitability considering remnants only. MG = Minas Gerais; PA= 

Protected areas. The relation PA/MG shows area-ratio between the 

area of PAs in comparison to the state area, while the relation PA-

remnants/MG-remnants show the area-ratio between the areas of 

natural vegetation remnants within PAs in comparison to areas of 

natural vegetation remnants in MG. 
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We verified that PAs from all three categories (integral protection, 

sustainable use, and other types of protection) protect an area of 4.1 million 

hectares, which corresponds to approximately 7% of Minas Gerais. However, 

when we count only areas of existing natural vegetation remnants within the PAs, 

this area drops to 3.14% of Minas Gerais (1.8 million hectares), less than half of 

the PAs’ combined area. 

The map of environmental suitability for all species combined also 

showed significant gaps in the protection offered by the PA network, regarding 

the protection of the species studied. Considering that the area under protection in 

Minas Gerais represents less than 7% of its territory and the area of natural 

vegetation remnants within the PAs correspond only to 3.14%, if we focus on sites 

where at least one threatened species occurs, the total suitable area under 

protection is reduced to an even smaller percentage (Figure 4.5 C and D). 

However, we identified at least three sites of high potential occurrence of the most 

threatened species that are currently unprotected: one site located in Southern 

Minas Gerais; a site in the central Atlantic Forest; and the third site located in the 

North of Minas Gerais (Figure 4.5A and B). 

 

4.4 Discussion 

 

4.4.1 Model accuracy and species potential distribution 

 

Considerable variation was present in the maximum entropy models. As 

expected, wider-ranging species (i.e. those with more occurrence points) had the 

lowest AUC values. A reason for this is precisely their wider distribution (Wiley 

et al. 2003). The widely-distributed species occupy a diverse set of environmental 

conditions which reduces the power of the MaxEnt modelling to predict species 

distributions based on environmental variation. The species from the order 
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Fabales, except for M. bimucronata, presented the most widespread distributions 

in Minas Gerais, and consequently the lowest values of AUC. Nevertheless, we 

kept these models in our analysis, since they showed consistent species 

distributions, as also observed by Anderson et al. (2003), and provided important 

information for their conservation. Species from the order Pinales showed the 

most restricted distributions, which were closely related to higher altitudes. This 

is consistent with the literature, since both Araucaria angustifolia and Podocarpus 

lambertii are indicator species of high altitudes (Veloso et al. 1991, Oliveira-Filho 

and Fontes 2000). They also had the highest values of AUC. Species from the 

family Cactaceae had an intermediate distribution, and consequently intermediate 

values of AUC. 

We expected that a variety of environmental variables would be important 

to explain the potential distribution of species, as we worked with a range of 

species from different orders. We also expected some similarity among species 

within the same order or family, but that was not always the case. We did observe 

a strong similarity in the distributions of species from the order Pinales, which 

reflects the characteristics they have in common, both of them being indicators of 

high altitudes, for example (Oliveira-Filho and Fontes 2000). In addition, the most 

important variable determining their distribution was the mean temperature of the 

driest quarter, which implies that these species might be particularly sensitive to 

relatively high temperatures in the dry season. They are associated with higher 

altitude sites, where the mean annual temperature is lower than 20º C (Lopes et 

al. 2013). These two species also occur together in other regions of the Atlantic 

Forest in Southeast and Southern Brazil, as well as in Argentina (Farjon 2013, 

Thomas 2013). 

Species from the order Fabales appear to have less in common than the 

species from the order Pinales, as they shared a smaller number of environmental 

variables among their models. However, while the main environmental variables 
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determining their distribution are different for each species model, all of them are 

temperature-derived variables. A. fraxinifolia is more sensitive to temperature 

seasonality, which is the standard deviation of the temperature multiplied by 100 

(Worldclim; Hijmans et al. 2005), and suggests this species cannot tolerate wide 

variations in temperature or extreme temperatures. Similarly, isothermality seems 

to regulate strongly M. bimucronata distribution, which means that this species 

requires the temperature to vary relatively little within individual months relative 

to its variation across the whole year (Worldclim; Hijmans et al. 2005, Carvalho 

2004). Lastly, P. elegans appears to be regulated by the minimum temperature of 

the coldest month: despite having widespread distribution, this species seems not 

to be able to tolerate very low temperatures. 

Species from the family Cactaceae showed the lowest similarity with 

regard the environmental variables shared in their models among all species 

studied. Although two of them belong to the same genus, P. aculeata and P. 

grandifolia, their distributions were influenced mainly by two very different 

variables: soil type and annual precipitation.C. jamacaru was also influenced most 

strongly by a precipitation-derived variable: the precipitation of the driest month. 

C. jamacaru is typical of dry deciduous forests of the Caatinga, in the Agreste (the 

ecotone between Caatinga and Atlantic Forest), and the Restinga, a mosaic of 

different coastal vegetation types, ranging from open scrub to forest (Henriques 

et al. 1986), which occurs in a narrow band between the sea and the Atlantic forest 

(Oliveira-Filho and Fontes 2000), and the Cerrado (Taylor and Zappi 2004). 

Although this species is tolerant to dry seasons, precipitation seems to be a 

limiting factor to its distribution.  

 

 

 



163 
 

 

4.4.2 Environmental suitability and priority areas for conservation 

 

We have shown that the amount of land under protection in Minas Gerais 

is far from being sufficient for adequate conservation of the species studied, 

through the comparison of the environmental suitability map with maps of natural 

vegetation remnants and PA boundaries. The main gaps in protection of areas of 

the highest environmental suitability for these species are located in the Atlantic 

Forest biome, which is also the biome with the highest number of PAs and the 

largest area under protection. In addition, all of the sites identified as being of high 

suitability are within the Atlantic Forest boundaries in Minas Gerais. This result 

may be related to the geographic distribution of the species considered in this 

study, as they all occur in the Atlantic Forest, while only few of them also occur 

in the Caatinga and Cerrado, but none of them is exclusive to the latter two 

biomes. Additionally, the Atlantic Forest has also been focussed upon in several 

studies, so it is possible that many species from the Cerrado and Caatinga are not 

in the IUCN red lists due to the lack of knowledge about them. As the Cerrado 

and Caatinga have only a few PAs in Minas Gerais, they should also be prioritised 

for conducting inventories and creating natural reserves. 

The information produced by this study is timely and highly relevant 

given the potential threats to the habitats of the species studied here and to overall 

biodiversity in Minas Gerais biomes due to anthropogenic actions (Groom 2012, 

Lopez-Poveda 2012a,b, Braun et al. 2013, Farjon 2013, Taylor et al. 2013a, Taylor 

et al. 2013b, Thomas 2013). Considering the huge losses incurred from the 

original land cover at the time of European arrival in South America in the 16th 

century, the current state of degradation of the three biomes studied here and the 

lack of knowledge in some regions (mainly in the Cerrado and Caatinga), the 

maximum entropy modelling approach is shown by the present study to be a useful 

tool for indicating environmentally suitable areas for reintroduction of species in 
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biodiversity restoration projects. Environmental suitability maps for threatened 

species, such as those presented here, can help land use planning and management 

around their existing populations, discovery of new populations, identification of 

top-priority survey sites, or setting of priorities to restore natural habitat such as 

aforestation projects. The modelling approach used here could also be applied to 

other threatened species, including fauna as well as flora. In particular, it has the 

potential to aid research that is needed to gain a better understanding of threatened 

species in the Cerrado and Caatinga. 

 

4.5 Conclusions 

 

This work demonstrates the success of the application of maximum 

entropy modelling to determination of potential distributions of threatened plant 

species in the Atlantic forest, Cerrado and Caatinga biomes within the state of 

Minas Gerais, Brazil. The outcomes of this modelling provide important 

information for the implementation of conservation efforts within these biomes. 

Our results support the development of conservation for the species studied, since 

they are IUCN red-listed species. Furthermore, we identified significant gaps in 

protection for these species, implying that the number and effectiveness of 

protected areas suitable for the species is currently less than adequate for their 

efficient conservation. These gaps occur mainly in the Atlantic Forest, in three 

specific locations in Southeast, Central and Northern Minas Gerais. This suggests 

that these areas should be considered as priorities for conducting inventories of 

species distributions and proposal of new natural reserves. Further research should 

also be prioritised in the Cerrado and Caatinga biomes, since relatively little is 

known about the current and potential distributions of threatened species in both. 
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SYNTHESIS AND RECOMMENDATIONS 
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5.1  Synthesis of key findings 

 

Prior to the studies that make up this thesis, there have been a few studies 

that investigated drivers and associated factors of land use and cover changes in 

the Brazilian Atlantic Forest (Silva et al. (2007), Teixeira et al. (2009), Freitas et 

al. (2010), Lira et al. (2012), Freitas et al. (2013), Ferreira et al. (2015)). However, 

to date there has been no comprehensive study of relationships between metrics 

quantifying the deforestation and fragmentation of the Atlantic Forest in Minas 

Gerais, and variables quantifying the socio-economic and bio-geophysical context 

within which these processes are occurring. This has been the one of the aim of 

the work that makes up this thesis. I tested a relatively novel method of statistical 

analysis and applied a multi-scale approach in order to disentangle and elucidate 

these relationships. In addition, I modelled the potential distribution of threatened 

plant species to assess the effectiveness of existing protected areas in conserving 

these species. This thesis provides, therefore, an important advance in our 

understanding of deforestation and forest fragmentation drivers and the efficiency 

of protected areas to protect threatened species in the Brazilian Atlantic Forest, 

supporting management and conservation planning with valuable information. 

The first two chapters of the thesis applied a recently developed machine-

learning technique, random forest analysis (Breiman 2001) to investigate 

relationships between deforestation/fragmentation and socio-economic/bio-

geophysical factors. In chapter 2, I selected an alternative from a wide range of 

possible approaches to provide an appropriate analytical comparator to RF: the 

classical stepwise multiple regression. I found that RF proved to be a promising 

methodology for identifying these relationships, and that it has the potential to be 

an effective tool for providing essential information for aiding land use 

management decisions. Building on the results of Chapter 2, I extended the 

application of RF using a multi-scale approach in Chapter 3, grouping 
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municipalities at sub-regional, regional, and biome scales. Additionally, in 

Chapter 2, I was limited to using only those landscape metrics that presented 

normally distributed residuals from linear models, since I was using a classical 

approach as a comparator. However, one of the advantages of RF is that it does 

not assume any particular frequency distribution in its input variables (Cutler and 

Stevens 2006, Prasad et al. 2006). Thus, in Chapter 3, where I was using only RF, 

I had greater flexibility in selecting independent and dependent variables. The 

relationships were found to vary from place to place and across spatial scales, and 

some metrics were better explained by the RF models at the largest (biome) scale, 

while others were better explained at the smallest (sub-regional) scale. Although 

I have shown that there is no unique factor driving deforestation and forest 

fragmentation across all scales, I identified road density as the most common 

factor in the models explaining deforestation and fragmentation metrics variance 

all scales. This supports the findings of the study conducted by Freitas et al. 

(2010). In addition, some categories of factors occurred more commonly in the 

models than others. For example, factors describing the spatial distribution of the 

natural, agricultural and infrastructural elements of the landscape were more 

common, while those describing patterns of population, employment and legal 

institutions appeared to be less important to explain the variance of the metrics. 

This is somewhat at odds with views expressed in the literature that landscape 

patterns in areas populated by humans are strongly determined by socio-economic 

drivers (Lambin et al. 2001, Geist and Lambin 2002). This apparent contradiction 

may be resolved by the suggestion that the landscape patterns observed today may 

be governed by historical patterns of socio-economic activity (as well as bio-

geophysical factors), that may not be reflected in the data on quasi-present day 

socio-economic conditions. Thus, there may be an asynchronous relationship 

between socio-economic drivers and patterns of deforestation and forest 

fragmentation. 
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Finally, in Chapter 4, I identified gaps in the protection of threatened plant 

species in three biomes in Minas Gerais (Atlantic Forest, Cerrado and Caatinga). 

To do so, I modelled species’ potential geographical distributions using species 

occurrence points from a large dataset provided by the Vegetation Monitoring 

System Project. In total, 169 fragments of remaining natural vegetation scattered 

across the three biomes. Additional points were obtained from two other 

databases: the national Herbaria network (SpeciesLink) and NeoTropTree 

database. I then superimposed the resulting map of potential species distributions 

onto maps of existing natural vegetation remnants and protected areas. Thus, I 

identified those areas that are environmentally suitable for the threatened species 

that do not coincide with existing protected areas as gaps in protection, and, 

therefore, proposed them as priority areas for conservation. As expected, I found 

significant gaps in the existing network of protected areas, especially in the 

Atlantic Forest biome, which reinforces the need to prioritise the expansion of 

protected areas in this biome. This chapter also concluded that it is likely that 

species from the Cerrado and Caatinga biomes are missing from the red lists due 

to a lack of studies in these areas. Thus, conducting inventories to identify and 

locate threatened species in these biomes also requires prioritisation. 

 

5.2 Challenges and limitations 

 

Through the research reported in this thesis, I have examined the 

challenges involved in disentangling and elucidating the relationships between 

deforestation and forest fragmentation and socio-economic and bio-geophysical 

factors, and in assessing the gaps in conservation of threatened plant species in 

Minas Gerais. The inherent complexity and heterogeneity of a megadiverse biome 

such as the Atlantic Forest has probably contributed to the high level of 
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unexplained variance in some of the models and affected the accuracy of some 

species distribution models 

The main limitations and challenges I found conducting this thesis are as 

follows: 

 

1. Despite using a huge dataset with a wide variety of independent 

variables, I still found a high level of unexplained variance in the RF 

models. This may be because important factors that drive 

deforestation and forest fragmentation are missing from the models. 

In particular, the relative lack of ‘information on change over time’ 

in the data implies that historical factors and asynchronous influences 

have not been identifiable by the modelling approach used here.  

2. This lack of temporal information is one of the main caveats in this 

thesis. The deforestation and forest fragmentation metrics were 

derived from the vegetation monitoring system dataset (Scolforo and 

Carvalho 2006, Carvalho and Scolforo 2008, Carvalho and Scolforo 

– unpublished data), which comprises land cover maps from 2003 to 

2011. Socio-economic and bio-geophysical variables were obtained 

from the ZEE-MG database, and the years for which these variables 

were collected were limited by the availability of information from 

national agencies, ranging from 2003 to 2006 (Chapters 2 and 3). 

This has undoubtedly limited exploration of the relationships 

between such variables. 

3. Despite the fact that a set of multiple factors drive anthropogenic land 

use and cover changes such as deforestation and forest 

fragmentation, there are some specific factors which are critical in 

determining the explanation of metric variance, even when they 
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present a low percentage of variable importance in some models 

(Chapter 2 and 3). 

4. I was limited to using landscape metrics that presented normally 

distributed residuals from linear models, since I was using a classical 

approach as a comparison method in Chapter 2, while in Chapter 3 I 

used only RF and therefore had a greater flexibility in choosing 

metrics. Thus, the metrics in Chapters 2 and 3 are not exactly the 

same, which limits comparisons between their findings. 

5. The lack of strong evidence of associations between factors and 

metrics does not mean that they do not exist. This may be due to an 

asynchronous relationship between socio-economic drivers and 

patterns of deforestation and forest fragmentation. Additionally, the 

same way that the ecological consequences of anthropogenic 

disturbances may take a long time to become fully apparent in 

ecosystems (Hylander and Ehrlén 2013), the effects of socio-

economic factors upon LUCC also may take a time to become 

apparent. Again, an examination across time would help to make this 

clear. 

6. One limitation in Chapter 4 was that I had to match the IUCN list of 

threatened species with the list of species sampled in the vegetation 

monitoring system dataset. I used this dataset because samples were 

collected using a well-designed and systematic protocol covering a 

large number of fragments in the three biomes of Minas Gerais. 

However, as only higher plant species were sampled in the vegetation 

monitoring system, many small threatened species were removed 

from my final list of threatened species. 

7. Not all areas indicated as suitable by the models will be occupied by 

the species (Anderson et al. 2003). This is because important factors 
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that determine the distribution of species are missing in the models, 

as are other abiotic factors, biotic interactions, scatter barriers, 

anthropogenic effects, populations extinction, stochastic events, and 

historical factors (Pearson and Dawson 2003, Soberón and Peterson 

2005). Therefore, care should be taken, as it is still not possible 

currently to include in the models all factors that may restrict the 

species distribution. 

 

5.3  Recommendations for Atlantic Forest management and conservation 

 

The results from the three studies reported in this thesis combine to 

illustrate some important findings that can be used to assist the development of 

management strategies and conservation plans for the Brazilian Atlantic Forest at 

multiple spatial scales. In this respect, the most significant outcome of this thesis 

is the identification of the need for conservation strategies that take into 

consideration the potential drivers of deforestation and forest fragmentation in the 

Atlantic Forest. Although I demonstrate in this thesis that a complex set of factors 

affects deforestation and forest fragmentation, I also identify categories of factors 

that are more commonly associated with both deforestation and fragmentation 

across all of the spatial scales studied. Another important outcome from this thesis 

is the fact the relationships between metrics and drivers of deforestation and 

fragmentation vary from place to place and across spatial scales. This needs to be 

taken into consideration by planning conservation actions in a scale-appropriate 

manner: some approaches need to be adopted at a biome-wide scale, while others 

need more locally-adapted conservation actions.  

Conservation planning should also account for the gaps in protection 

identified in this thesis. Considering the huge loss of original coverage of the three 

biomes of Minas Gerais, the current state of degradation of the Atlantic Forest and 
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the Cerrado, and with the lack of knowledge in some regions, especially in the 

Caatinga, the utility of species distribution modelling (SDM) is emphasised by 

my findings. SDM can aid indication of environmentally suitable areas for 

reintroduction of species in biodiversity restoration projects using the maps 

created for the plant species studied in this thesis, which have been overexploited 

in the past. 

It is noteworthy that the maps generated in this study are only one tool 

that can be used in biological conservation projects and other applications. There 

is also a pressing need for obtaining new field records of threatened species. These 

records will ensure the effective validation of SDM and the success of 

conservation strategies based on them. 

 

5.4 Future research priorities 

 

This thesis advances our knowledge on how socio-economic and bio-

geophysical factors can interact with deforestation and forest fragmentation in the 

Brazilian Atlantic Forest and identifies the main gaps in protection of threatened 

species in three biomes of Minas Gerais. However, it also identifies the need for 

new studies that further expand our understanding of subjects such as the effects 

of multi-scale drivers upon land use change in this biome, so that its conclusions 

can be extrapolated to other tropical biomes. Future work should also investigate 

such relationships across different temporal scales, thereby addressing historical 

factors. Further research should also account for patterns and processes 

throughout the biome, considering variations among all regions where the Atlantic 

Forest occurs. Species distribution modelling should also be expanded to cover 

entire biomes. This may help support efforts to draw more general conclusions 

and extrapolate them to larger spatial scales and other tropical biomes. I 

specifically recommend the use of approaches that: 
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1. Include other socio-economic and bio-geophysical factors, which are 

missing from our dataset, in order to try to cover a full set of potential 

drivers; 

2. Account for temporal investigations along with the multi-scale 

spatial approach introduced here, in order to capture associations 

between factors and metrics in more detail; 

3. Expand the multi-scale spatial approach I have introduced here to 

other regions of the Atlantic Forest in order to better understand the 

effects of regional context. Understanding the factors that define this 

contextual specificity is very important for extrapolating the 

conclusions presented here to the rest of the Atlantic Forest, thereby 

supporting conservation planning; and 

4. Expand species distribution modelling to cover the entire Atlantic 

Forest biome and thus identify biome-wide gaps in protection.  

5. Model species potential distribution considering future scenarios of 

climatic change. 

 

5.5 Concluding remarks 

 

The Brazilian Atlantic Forest is an extremely heterogeneous and unique 

biome currently under severe threat. Conservation actions in this biome are 

needed more than ever to mitigate the consequences of potential threats and 

protect the biodiversity that remains. A few studies have been developed recently 

trying to address the potential threats and related factors in the Atlantic Forest. 

However, to date there has been no comprehensive study of relationships between 

metrics quantifying the deforestation and fragmentation of the Atlantic Forest, and 

variables quantifying the socio-economic and bio-geophysical context within 

which these processes are occurring. This thesis provides a comprehensive, 
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quantitative and multi-scale assessment of such relationships, using a relatively 

novel statistical approach. It also provides strong evidence of the need for 

expansion of protected areas in the Atlantic Forest and other two biomes in Minas 

Gerais; based on gaps in protection identified by modelling the potential 

distribution of threatened plant species. This thesis expanded our understanding 

of related factors to the main threats to the Atlantic Forest in Minas Gerais. It also 

provided valuable information to support management and conservation planning 

in the Brazilian Atlantic Forest, Caatinga and Cerrado, assessing the efficiency of 

protected areas to protect threatened species. 

While the findings presented by this research has contributed significantly 

to address the problems highlighted above, there are still many challenges to face 

and need for new studies, in order to extrapolated the thesis findings to other 

tropical biomes, as detailed in section 5.4 Future research priorities. Improved 

management and conservation strategies are urgent due to the rapid rates of 

biodiversity loss. In this sense, future work should extend the investigation on the 

relationships addressed here incorporating historical factors and different 

temporal scales. In addition, new studies should investigate variations among all 

regions, accounting for patterns and processes throughout the Atlantic Forest, as 

well as, to expand the species distribution modelling to cover entire biomes and 

to simulate future scenarios of climatic change. 
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