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ABSTRACT 

In soil surveys, several sampling systems can be used to define the most 

representative sites for sample collection and description of soil profiles. In 

recent years, the conditioned Latin hypercube sampling system has gained 

prominence for soil surveys. In Brazil, most of the soil maps are at small scales 

and in paper format, which hinders their refinement. The objectives of this work 

include: (i) to compare two sampling systems by conditioned Latin hypercube to 

map soil classes and soil properties; (II) to retrieve information from a detailed 

scale soil map of a pilot watershed for its refinement, comparing two data 

mining tools, and validation of the new soil map; and (III) to create and validate 

a soil map of a much larger and similar area from the extrapolation of 

information extracted from the existing soil map. Two sampling systems were 

created by conditioned Latin hypercube and by the cost-constrained conditioned 

Latin hypercube. At each prospection place, soil classification and measurement 

of the A horizon thickness were performed. Maps were generated and validated 

for each sampling system, comparing the efficiency of these methods. The 

conditioned Latin hypercube captured greater variability of soils and properties 

than the cost-constrained conditioned Latin hypercube, despite the former 

provided greater difficulty in field work. The conditioned Latin hypercube can 

capture greater soil variability and the cost-constrained conditioned Latin 

hypercube presents great potential for use in soil surveys, especially in areas of 

difficult access. From an existing detailed scale soil map of a pilot watershed, 

topographical information for each soil class was extracted from a Digital 

Elevation Model and its derivatives, by two data mining tools. Maps were 

generated using each tool. The more accurate of these tools was used for 

extrapolation of soil information for a much larger and similar area and the 

generated map was validated. It was possible to retrieve the existing soil map 

information and apply it on a larger area containing similar soil forming factors, 

at much low financial cost. The KnowledgeMiner tool for data mining, and 

ArcSIE, used to create the soil map, presented better results and enabled the use 

of existing soil map to extract soil information and its application in similar 

larger areas at reduced costs, which is especially important in development 

countries with limited financial resources for such activities, such as Brazil. 

 

Keywords: Pedology. Digital soil maps. Soil surveys. 

 

 

 

 



RESUMO 

 

Em levantamentos de solos, diversos sistemas de amostragem podem ser 

empregados para a definição dos locais mais representativos para coleta de 

amostras e descrição de perfis. Nos últimos anos, o hipercubo latino 

condicionado tem ganhado destaque como sistema de amostragem em 

levantamentos de solos. No Brasil, a maioria dos mapas contém escalas menores 

e está em formato impresso, o que dificulta o seu refinamento. Os objetivos 

deste trabalho contemplam: (I) comparar dois sistemas de amostragem pelo 

hipercubo latino condicionado para mapear classes e atributos de solos; (II) 

resgatar informações de mapa de solos detalhado de sub-bacia hidrográfica 

piloto para o seu refinamento, comparando-se duas ferramentas de mineração de 

dados, e validação do novo mapa de solos; e (III) criar e validar um mapa de 

solos de área maior e similar a partir da extrapolação das informações extraídas 

do mapa de solos existente. Foram criados dois sistemas de amostragem pelo 

hipercubo latino condicionado e pelo hipercubo latino condicionado restrito pelo 

custo. Em cada local de prospecção, foram realizadas a classificação do solo e 

mensurada a espessura do horizonte A. Mapas foram gerados e validados para 

cada sistema de amostragem, comparando-se a eficiência desses métodos. O 

sistema do hipercubo latino condicionado capturou maior variabilidade de solos 

e atributos que o sistema restrito pelo custo, apesar daquele ter proporcionado 

maior dificuldade nos trabalhos de campo. O hipercubo latino condicionado 

padrão consegue capturar maior variabilidade dos solos da área de interesse e o 

hipercubo latino condicionado restrito pelo custo apresenta grande potencial 

para uso em levantamentos de solos, principalmente em áreas de difícil acesso. 

A partir de um mapa de solos em escala detalhada existente para uma sub-bacia 

hidrográfica piloto, foram extraídas as informações topográficas de cada classe 

de solo, a partir de um Modelo Digital de Elevação e seus derivados, por 

ferramentas de mineração de dados. Mapas foram gerados utilizando-se cada 

metodologia. A melhor delas foi utilizada para extrapolação de informações de 

solos para a área muito maior e similar e o mapa gerado foi validado. Foi 

possível recuperar informações do mapa de solos existente e aplicá-las em área 

maior, que apresenta fatores de formação do solo semelhantes, a mais baixo 

custo financeiro. A ferramenta KnowledgeMiner, para mineração de dados, e o 

ArcSIE, para criar o mapa de solos, apresentaram melhores resultados e 

possibilitaram o uso de mapa de solos existente para extrair informações de 

solos e aplicá-las em áreas maiores, com baixo custo financeiro, o que é 

importante principalmente em países em desenvolvimento com escassez de 

recursos para tais atividades, como o Brasil. 

 

Palavras-chave: Pedologia. Mapas digitais de solos. Levantamento de solos. 
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1 INTRODUCTION  

 

1.1 General introduction 

 

 
Soil surveys, activities that aim to identify and classify soils of an area 

of interest (RESENDE et al., 2014), require field work that includes description 

of soil profiles and collection of samples at different portions of the landscape. 

However, it is common for the pedologists to face some difficulties regarding 

the collection of samples, since many areas are difficult to be reached. This fact 

constrains the sampling sites to places of easy access. 

Soil surveys generate several products, such as reports containing the 

description of the study area, including the native vegetation, climate, 

geographical expression, the methodology employed on the field works, the soil 

classes found, soil-landscape relationships, parent materials, and the final soil 

map at a determined scale (MOTTA et al., 2001). 

Soil maps provide information on the spatial distribution of a soil class 

or property, allowing for planning soil management and defining the most 

appropriate land use for each location. This information is related to the scale of 

the final map: the greater the scale, the more details are provided. In Brazil, most 

of the existing soil maps are at small scales, which hinders a more detailed 

planning of activities (COELHO; GIASSON, 2010), in addition to being in press 

(paper-based format), making their refinement more difficult. 

However, due to the advent of digital soil mapping, some alternatives 

have emerged to get through those refinement limitations. Digital soil mapping 

refers to the creation of spatial information systems, using numerical models to 

infer spatial and temporal variations about soil types and properties, from field 
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observations and expert knowledge, and also correlated environmental variables, 

such as satellite data and the so-called terrain attributes (LAGACHERIE; 

MCBRATNEY, 2007), which are derivatives of digital elevation models, a 

raster-based representation of topography composed of pixels that inform the 

local elevation value. Digital elevation models and terrain attributes are widely 

used for prediction of soil classes and properties, besides being of great help to 

define sampling places in areas of interest (ADHIKARI et al., 2013). 

Furthermore, this information can be used in addition to existing soil maps in 

order to retrieve mental models embedded on the map to be used in soil mapping 

models (BUI, 2004). In this sense, those technological advances are contributing 

to obtaining soil information at greater scales. 

 

1.2 Objectives 

  

 The objectives of this work include: (i) to compare two sampling 

systems by conditioned Latin hypercube to map soil classes and soil properties; 

(II) to retrieve information from a detailed scale soil map of a pilot watershed for 

its refinement, comparing two data mining tools, and validation of the new soil 

map; and (III) to create and validate a soil map of a much larger and similar the 

area from the extrapolation of information extracted from the existing soil map. 

 

2 REVIEW 

 

2.1 Conditioned Latin hypercube 
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Various sampling systems can be employed to assist in defining the 

most suitable places for soil observations in the field, besides collections of 

samples and other measurements. Among the various sampling systems, the 

conditioned Latin hypercube (CLH) has gained prominence in recent years 

(MINASNY; MCBRATNEY, 2006; BRUNGARD; BOETTINGER, 2010; 

MULDER et al., 2012). 

The CLH is derived from Monte Carlo sampling system, combining 

powerful stratification, randomness and efficient allocation of samples 

(MINASNY; MCBRATNEY, 2006). This system defines the sampling sites 

based on information related to the property to be mapped, for example, Digital 

Elevation Model (DEM) and its derivatives, satellite images and other available 

maps of both continuous and categorical variables. 

However, CLH usually chooses sample sites throughout the study area. 

In some regions, especially those containing dense vegetation cover, lack of 

roads, steep relief, outcrops, swamps, and rivers, it is not possible to reach every 

place of the study area and, thus, sampling is constrained to places that can be 

reached. 

Roudier et al. (2012) improved CLH adding to this algorithm a factor 

that favors the choice of samples in more easily accessible locations, which 

saves time and financial resources for field work, resulting in the cost-

constrained conditioned Latin hypercube (CCLH). In addition to facilitating the 

field work, the CCLH considers the information related to the property to be 

mapped in the process of allocation of samples, which tends to increase the 

sampling representativeness. However, it is known that soil maps generated 

from a field survey are dependent on the sampling locations and their 

distribution over the area, which means that different sampling schemes may 
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result in different soil maps. Thus, a careful analysis have to be performed in 

order to define the most adequate sampling system to be used in a soil survey, 

keeping in mind that some extra samples might be necessary to be collected at 

places besides those determined by the sampling system in order to better 

capture soils variability across the area. 

 

2.2 Legacy soil data 

 

Legacy soil data are considered important sources of information about 

soils. They represent available information about soils of an area of interest and 

their major sources are soil maps and reports of soil surveys. Diverse works have 

used legacy soil data as source of information to refine soil class and property 

maps worldwide (BUI; MORAN, 2001; SUN et al., 2011; MALONE et al., 

2014). 

In Brazil, where most existing soil maps for large areas were created 

prior to the advent of digital soil mapping and there is a current lack of resources 

for soil surveys, the use of available information becomes a low cost alternative 

to obtain data to help to create more detailed soil maps. 

Since most available maps were published in a paper-based format, the 

use of such information is dependent on its transformation into digital data. 

Thus, using geoprocessing techniques, one may convert those maps to be used in 

a digital environment. Furthermore, through digital soil mapping techniques, one 

can retrieve information embedded on the map, which actually reflects the 

pedologist’s mental model used to define the boundaries among soil classes 

(BUI, 2004). With these techniques, for example, it can be used a digital 

elevation model and other terrain maps derived from it (e.g., slope, topographic 
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wetness index, and curvature) to study the relation between soil classes and 

topographical attributes (MOORE et al., 1993; GESSLER et al., 1995; 

MCBRATNEY et al., 2003; IWASHITA et al., 2012;. BROWN et al., 2012; 

MENEZES et al., 2013; HENGL et al., 2015). Thus, it is possible to retrieve the 

pedologist’s mental model and use it for refinement of both the existing soil map 

and the maps of larger areas under similar soil forming factors (climate, 

organisms, parent material, relief and time) (JENNY, 1941) to the mapped area, 

requiring much lesser costs to perform such activities. 
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2. ARTICLE 1. Evaluation of conditioned Latin hypercube sampling as a 

support for soil mapping and spatial variability of soil properties 

 

*Article prepared according to the rules of Soil Science Society of America 

Journal. 

 

ABSTRACT 

 

In soil surveys, the number of collected samples is commonly reduced 

by factors that hamper the field activities, such as rugged terrain and lack of 

roads. Conditioned Latin hypercube (CLH) sampling scheme has been used to 

choose the most representative places to be sampled and properly capture soils 

variability across the landscape, whereas cost-constrained conditioned Latin 

hypercube (CCLH) limits the sampling to areas of easy access. The objectives of 

this work were: (a) to compare the efficiency of CLH and CCLH sampling 

systems to create soil maps, considering the number of soil classes covered per 

system; (b) to compare both systems to map soil A horizon thickness; and (c) to 

generate a detailed soil map of the study area to assist in decision makings. The 

study was carried out in Minas Gerais State, Brazil. A digital elevation model 

(DEM) and its terrain derivatives were the basis for CLH and CCLH to 

determine the sampling points. CCLH also required a cost map that represents 

the difficulty of reaching every place in the area. At the sampling places, soil 

information was observed, allowing for the creation of those maps that were 

further validated in the field. Kappa index, global index, RMSE, 1:1 ratio 

graphic and R² were the comparison parameters. CLH presented higher accuracy 
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than CCLH to represent both soil classes and soil attributes, although the 

samples were spread out in the area. CCLH was less representative than CLH, 

but it may contribute to soil sampling in areas of difficult access, requiring less 

time and investments to accomplish the field works, situations that are common 

in developing countries, such as Brazil. 

 

Index terms: digital soil mapping, soil prediction, soil sampling, soil survey. 

 

2.1 INTRODUCTION 

 

Soil surveys provide the baseline information for planning and properly 

utilizing the soil resource. Soil maps allow for the spatial representation, 

identification and classification of soils across the landscape in order to organize 

and represent soils into more homogeneous units. Understanding the soil 

resources provides the basic infrastructure for nations to provide planning for 

conserving the soil resource, accounting for water storage and transmission.  

Soil survey technology has advanced rapidly in the past two decades 

going from a paper-based mapping process to a digital soil mapping process. In 

soil surveys, the number of collected samples is commonly constrained by time 

and cost restrictions to thoroughly visit the area, especially in places where there 

is a deficiency of roads, dense vegetation and rugged terrain. This situation 

provides the impetus for more efficient sampling methods that are able to 

capture the spatial variability of soils and their properties to reduce the number 

of samples, time and investments needed for fieldwork, however, ensuring a 

good quality of the final maps.  
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In the new era of digital soil mapping, there is an increasing number of 

widely available digital information that aids field activities. Digital Elevation 

Models (DEMs) are important tools because they provide means for representing 

the terrain features that have commonly been linked with soil catenas, which are 

mappable units at varying scales. Some of the terrain attributes derived from a 

DEM have demonstrated correlations between soil mapping units and slope 

gradient, curvatures and topographic wetness index (Zhu et al., 1997; Lagacherie 

and Voltz, 2000; Mendonça-Santos et al., 2007; Ashtekar and Owens, 2013).  

Due to the ease access to such kind of information, Digital Soil Mapping 

(DSM) has emerged as an important set of tools for the production of more 

detailed soil maps, based on quantitative relationships between soils and 

environments (McBratney et al., 2003). In addition, to ensure the final quality of 

the maps, sampling systems that represent the variability of soils across the 

landscape in combination with the expertise of soil scientists familiar with soil-

landscape relationships in the study area can be employed.  

One of the sampling methods that has been increasingly used in soil 

surveys is the so-called Conditioned Latin Hypercube (CLH) (Minasny and 

McBratney, 2006). This tool is derived from Monte Carlo sampling system, 

combining the power of stratification, randomness and efficient allocation of 

samples from multivariate distributions (McKay et al., 1979; Minasny and 

McBratney, 2006). Thus, from a set of information that is related to the soil 

property to be mapped, points are chosen at the sampling locations possibly 

more representative of the soil variability over the area. 

The CLH assumes that the locations to be sampled must actually exist 

on the landscape (Brungard and Boettinger, 2010) and the tool produces a 

representative distribution of points according to the number of possible points 
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for sampling. Minasny and McBratney (2006) compared the efficiency of simple 

random sampling, stratified sampling and spatial CLH and concluded that the 

latter showed the best results. Xu et al. (2005), by combining the stochastic 

simulation with the CLH, found that this latter captured greater variability of the 

area than the simple random sampling, particularly when the sampling density 

(samples / unit area) was low. 

Although the CLH has proven to be very efficient in selecting sampling 

locations, some study areas are difficult to access, especially in tropical 

countries, such as Brazil, due to lack of roads and dense vegetation. These 

factors culminate in a difficulty to use the CLH in certain areas. In this context, 

Roudier et al. (2012) have proposed an alternative to improve this sampling 

scheme by conditioning the locations chosen for sampling according to the 

difficulty (cost) that one may face to reach that place, being named Cost-

constrained Conditioned Latin Hypercube (CCLH). This system takes into 

account factors that hinder or even make impossible sampling in certain places, 

such as distance from roads, slope gradient, vegetation, water courses, and so 

forth, characterizing them as being of "high cost". Thus, the sampling scheme 

prioritizes sites that are easy to access still taking into account the variability of 

attributes that may influence soil properties to make a representative sampling of 

the study area. Besides, a comparison between these two sampling systems 

applied in a soil survey for tropical conditions is needed. 

With the advent of these new sampling technologies for digital soil 

mapping, the objectives of this work were: (a) to compare the efficiency of 

Conditioned Latin Hypercube and Cost-constrained Conditioned Latin 

Hypercube sampling systems to create soil maps, considering the number of 

different soil classes covered by each system, to validate both of them in the 



 

 

 

 
24 

 
field and to assess their effectiveness; (b) to compare the sampling systems to 

map soil A horizon thickness; and (c) to generate a detailed soil map of the study 

area to assist in finding out the most appropriate use and management for each 

segment of the landscape. 

 

 

2.2 MATERIALS AND METHODS 

2.2.1 Study Area 

 

The study area is located in Bom Sucesso county, Minas Gerais State, 

Brazil, at coordinates 21°06'50''S and 44°49'22"W, with altitudes ranging from 

858 to 890 m, and average slope of 25% (Figure 1). The climate is Cwb, 

according to the Köppen classification system, represented by cold and dry 

winters and warm and rainy summers, with average annual rainfall of 1,500 mm. 

The mapped location covers an area of 1.6 ha which has been used with 

Australian cedar (Toona ciliata) plantation for 2 years. Prior to Australian cedar, 

the area had been characterized as a degraded pasture of Urochloa decumbens. 
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Figure 1 - Local of the 1.6 ha study area in Minas Gerais, Brazil. 

 

2.2.2 Sampling Systems 

 
The overall goal of the research was to compare the efficiency of 

Conditioned Latin Hypercube (CLH) and Cost-constrained Conditioned Latin 

Hypercube (CCLH) systems evaluating the gain of information for mapping 

both soil classes (detailed soil survey) and a soil property (A horizon thickness), 

and the reduction of the time required for the fieldwork. Through the detailed 

soil survey, it was possible to compare the number of soil classes contemplated 
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by each sampling system and to retrieve information about A horizon thickness, 

in order to also compare both systems to map a soil property. The thickness of 

the A horizon was selected for comparison because this soil property can serve 

as initial benchmark considering it can be a highly variable soil property over an 

area. Furthermore, it generally reflects the influence of both management and 

terrain attributes (Zhu et al., 1997). For that, two sampling schemes based on the 

aforementioned sampling systems were carried out. 

Prospections were performed in the field to compare the CLH with the 

CCLH to map soils at a detailed scale. Their location were defined by using the 

software R (R Development Core Team, 2009) and clhs package (Roudier, 

2012). The CLH locations were determined based on the method proposed by 

Minasny and McBratney (2006), derived from Latin Hypercube proposed by 

McKay et al. (1979). While the CLH provides sampling point locations 

throughout the study area, based on the variability of the terrain attributes 

employed to predict the soil properties to be mapped, CCLH conditions the 

samples for easy-to-access sites, identified by a "cost" raster, but still taking into 

account the variability of the terrain attributes in this task. 

The terrain attributes used by both sampling systems to choose the 

locations to be sampled were elevation, Digital Elevation Model (DEM) created 

from contour lines from planialtimetric survey of the study area, slope and 

SAGA wetness index (Figure 2). The last two terrain attributes were created in 

SAGA GIS (Böhner et al., 2006) and were derived from the aforementioned 

digital elevation model. 
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Figure 2 - Terrain attributes used to select the points to be sampled by CLH and 

CCLH, and distance from the road, which, in association with the slope, will 

originate the cost raster that constrains the sampling sites in the CCLH to easy-

to-reach places. 

 

The cost raster necessary to discriminate sites of easy and difficult 

access was generated from the slope and distance from the road rasters (Fig. 2), 

and the latter was calculated using the Euclidean Distance function in ArcGIS 

software (ESRI). Values (weights) were assigned to these two rasters, 

reclassifying their original values in order to represent the difficulty of accessing 

each local on the landscape, as shown in Table 1. Accordingly, to each pixel of 

these two raster layers it was assigned a value (weight) and a pixel-by-pixel 
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addition of these two rasters was performed to create the cost raster, representing 

the difficulty of reaching the location of each pixel on the landscape (Figure 2). 

For example, a location that is 60 m away from the road (weight 5) and on a hill 

of 30% slope (weight 7) will have a final cost of 12 (5 +7), more difficult to 

access than a weight 2 place (flat and close to roads). 

 

Table 1 - Weights assigned to each class of raster values employed on the 

creation of the cost raster. 

Distance from roads (m) Weight Slope gradient (%) Weight 

0-25 1 0-3 1 

25-50 3 3-8 3 

50-75 5 8-20 5 

75-100 7 20-45 7 

> 100 9 >45 9 

 

 

To quantify the representativeness of the two sampling systems, 

descriptive statistics analyses were performed to describe the variability of the 

terrain attributes for the entire study area and these parameters were compared 

with those values assessed by each sampling system. 

  

2.2.3 Soil Mapping 

 

The soil survey was conducted through investigations within the whole 

area, with 12 trenches whose places were chosen by each of the sampling 
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systems, CLH or CCLH, and description of three modal profiles and collection 

of soil samples, as proposed by Santos et al. (2013). Twelve trenches for a soil 

survey of a 1.6 ha area are considered to be sufficient to generate a detailed soil 

map according to Normative Procedures for Pedological Survey (EMBRAPA, 

1995) and Brazilian Pedology Technical Manual (IBGE, 2007), which are the 

guidance books for tropical conditions for such activity. According to those 

books, a detailed soil survey must contain from 0.2 to 4 observations per 

hectare. However, this study performed 7.5 observations per hectare, making up 

a total of 12 observations, in order to improve the comparisons of soils 

variability captured by each sampling system. Soils were classified according to 

the Brazilian Soil Classification System (Embrapa, 2013) and US Soil 

Taxonomy (Soil Survey Staff, 1999). 

Two spatially explicit detailed soil maps were created using the field 

information obtained by each sampling system. In this procedure, pedological 

mapping units (PMUs) were created, according to Santos et al. (2014) standards, 

using, in addition to soil order and suborder levels, the soil fertility (dystrophic 

or eutrophic, base saturation <50% and ≥50%, respectively), A horizon type, soil 

texture, presence or absence of gravels, native vegetation, and relief phase 

because these are some factors that can influence crop development and aid 

decision makers in regard to soil management and installation of future scientific 

experiments. 

The soil maps created from each sampling system were validated in the 

field, with 13 validation points (additional observations) chosen at places where 

the maps differed most. To find out the sampling system that best accessed the 

soils variability in the area, it were calculated both the global index (ratio 

between the number of corrected classified and the total number of samples) and 
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Kappa index, calculated through a confusion matrix taking into account the 

number of classes and the proportion between the correctly classified samples 

and the total number of samples (Congalton and Green, 2009). With the 

information from the two sampling systems, a final soil map of the study area 

was created using all the sampled points to support the choices of adequate sites 

for installing future scientific experiments. 

  

 

2.2.4 Mapping of soil A horizon thickness 

 

From the soil survey information (CLH and CCLH sampling schemes), 

A horizon thickness data was retrieved in order to create spatial maps of this soil 

property, according to each sampling system, by the inverse distance weighting 

(IDW) interpolation. Kriging and splines were tested as interpolation methods, 

but kriging did not have an adequate adjust and splines presented less accuracy 

than IDW. The assumption to predict a value for any non-sampled location is 

that a measured point has a local influence that decreases with distance. The 

values at non-sampled points are estimated using linear combination of values at 

the sampled points, weighted by an inverse function of the distance from the 

point of interest to the sample points. The weights (  ) can be expressed as: 

   

 

  
 

∑
 

  
 

 
   

 

where    is the distance between    and   , p is a power parameter and n 

represents the number of sampled points used for the estimation (Li and Heap, 
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2008). This interpolation was carried out in ArcGIS 10.0 (Esri), where the power 

parameter equals to 2 (default) was chosen.  

To define the sampling method that best represented the A horizon 

thickness spatial variability along the area, those maps were validated in the 

field at 13 sites (additional observations). Statistical analysis was performed 

based on the root mean square error (RMSE) (formula presented below), graphic 

1:1 between real (field) and estimated values, and R².  

      √
 

 
∑        
 

   

 

where: n is the number of observations (12), ei is the estimated value of the A 

horizon thickness and the mi is the real value of the A horizon thickness. 

 

2.3 RESULTS AND DISCUSSION 

2.3.1 Differences Between the Sampling Systems 

 

Samples were allocated using the CLH and the CCLH methods. 

Analyzing the allocation of points for both sampling systems, the CCLH 

samples were placed close to roads and in easy-to-access sites, which means that 

the low-cost sampling locations were achieved. Silva et al. (2014), using CCLH 

in a watershed of difficult access in Minas Gerais State, Brazil, found that the 

samples had been allocated in places relatively easier to access and the 

representativeness of soil properties was considerably contemplated. On the 

other hand, the CLH samples were well distributed over the whole area (Figure 

3). Minasny and McBratney (2006) noted that the CLH, as well as the spatial 



 

 

 

 
32 

 
stratified sampling, showed adequate sample point coverage of the study area 

demonstrating that this is a promising system to access the sampling variability 

using ancillary data (terrain attributes). 

 

Figure 3 - Points allocation through both CLH and CCLH sampling systems 

over the cost raster that shows the difficulty (cost) to reach every place on the 

landscape. 

 

By analyzing the variability of the terrain attributes employed in the 

sampling systems, it was verified that, in general, the CLH compared with 

CCLH, both with only 12 sampling points, showed values of mean, standard 

deviation and median closer to the ones calculated considering all the pixels of 
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the study area (Table 2). These results indicate that the CLH, with a reduced 

number of samples, was able to better represent the variability of the terrain 

attributes, and, hence, the soil properties. Minasny and McBratney (2006), 

comparing the CLH with simple random sampling and with stratified spatial 

sampling also found out that the CLH, with the same number of samples, better 

accessed the variability of the attributes used for defining the sampling places.  

 

Table 2 - Comparison between CLH and CCLH sampling systems through 

terrain attributes data for the entire study area. 

System 
Sampled 

Pixels  

25% 

Quartil 
Median 

75% 

Quartil 
Mean 

Standard 

Deviation 

----------------------------------------Slope gradient---------------------------------- 

All pixels 15919 10.68 16.89 26.96 21.65 16.707 

CCLH1 12 5.74 11.94 19.11 13.56 11.495 

CLH2 12 11.01 16.71 26.58 20.85 15.563 

----------------------------------------Elevation--------------------------------------- 

All pixels 15919 862.5 865 870.9 868.1 7.682 

CCLH 12 862.6 864.1 867.9 865.8 4.815 

CLH 12 862.9 864.2 868.8 866.1 4.926 

------------------------------------------SWI-------------------------------------------- 

All pixels 15919 3.434 4.304 5.615 4.73 1.876 

CCLH 12 3.421 4.621 5.172 6.531 2.54 

CLH 12 3.77 4.82 5.667 4.938 1.868 

1Cost-constrained Conditioned Latin Hypercube; 2Conditioned Latin Hypercube. 

SWI - Saga Wetness Index. 
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2.3.2 Mapping Soils Through CLH and CCLH 

 
The spatially explicit detailed soil maps were created in order to 

compare the efficiency of both sampling systems involving various soil 

properties, since soil maps provide further basis to support planning and 

decisions than maps of just one property. These maps are shown in Figure 4. 

 

 

Figure 4 - Soil maps generated with a support of CLH and CCLH. 
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According to the soil map created with support of the sampling locations 

indicated by the CLH, 13 pedological mapping units (PMUs) were identified, 

against 8 by CCLH (PMUs discussed later), being none of these latter different 

from the ones found by CLH. It demonstrates that CLH was able to capture a 

greater variability of soil properties than CCLH due to its characteristic of 

allocating the samples with no cost constrain. 

In addition, to validate the maps, confusion matrices were used to 

calculate the global index (GI) and Kappa index. The soil maps with support of 

CLH showed GI of 84.6% (10 correctly classified samples out of 13) and Kappa 

index of 81.2, which corresponds to an excellent classification, according to 

Landis and Koch (1977). In contrast, the map created from CCLH samples 

presented GI of 69.2% (9 correctly classified samples) and Kappa index of 60.6, 

equivalent to a substantial classification, as proposed by Landis and Koch 

(1977). These results confirm that the sampling systems influenced the resultant 

final maps, which may probably lead to inappropriate uses of soils where the 

information shown on the maps differs from the reality.  

  

2.3.3 Mapping of Soil A Horizon Thickness Through CLH and CCLH 

Systems 

 
In both maps generated according to the sampling systems, the higher 

and steeper areas (Figure 2) presented thin horizon thickness (Figure 5). In most 

gentle slope places, A horizon is often thicker than those of the steepest 

locations. These results are in agreement with Świtoniak (2014), who found out 

that the most intensive removal of topsoil has occurred in the highest, steep and 

convex parts of the hill. However, on the map generated from the CLH there is a 
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region with estimated thicker A horizon (around 40 cm of thickness) than the 

same region on the map generated from the CCLH (around 20 cm). This 

difference has probably occurred due to the sampling by CLH covers areas of 

more difficult access, which were not contemplated by the CCLH sampling 

sites. 

 

 

Figure 5 - Soil A horizon thickness maps per sampling system and the validation 

points highlighting the places where the A horizon thickness values were more 

divergent between both maps.  

 

Figure 5 also represents a map of the difference between the two others 

originated from each sampling system. It is noted that these differences (in red 

and blue on the map) are mainly explained by the presence of samples at these 
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sites in only one of the sampling systems. This fact led to different estimates of 

the thickness values by IDW, which takes into account the distance among 

observations to spatialize information (to estimate data for the non-observed 

places based on the observed places). Thus, as the distance from a certain 

observation site to a non-observed site, whose information will be estimated, 

increases, the similarity between the characteristics of those locales decreases, 

thus being the estimates sensitive to distance (Webster and Oliver, 2007).  

Through the field validation points to assess the accuracy of each map 

generated by the two sampling systems, the real values of the A horizon 

thickness were obtained and compared with the estimated values for their 

respective locations (Figure 6). CLH information spatialized by IDW method 

provided the greatest power to represent the data (R² = 0.902) and the lowest 

RMSE (5.65) in relation to CCLH (R² = 0.539; RMSE = 7.952). Furthermore, it 

was observed that the values of real and estimated thickness by IDW based on 

CLH are closer to 1:1 ratio than in the corresponding graph for CCLH (Figure 

6), constituting a lower error across the whole range of observed values. On this 

graphic for CCLH, it can be noticed that for values of A horizon thickness 

smaller than 20 cm, there was an overestimation of this soil property and for 

values greater than 20 cm, there was an underestimation of values. 
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Figure 6 - 1:1 ratio for real and estimated A horizon thickness obtained by 

means of CCLH (above) and CLH (below). 

 

According to the data in Figure 6, CLH tends to show better results from 

a practical point of view, for both aiding decision-making on the most 
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appropriate management for each segment of the landscape and directing 

strategies for practices of soil and water conservation, especially where the A 

horizon is thin. This detailed information is critical, particularly in Brazil, where, 

due to the intense weathering-leaching processes suffered by most soils, organic 

matter is the most important fraction in generation of soil charges, due to its 

direct relationship with effective CEC and potential yield of soils (Goedert, 

1983; Lopes and Cox, 1977). 

Furthermore, assessing the variability of the terrain attributes included in 

the sampling for each system (Table 2), it was found that the CCLH 

encompassed a smaller range of values of slope, elevation and wetness index 

than the CLH. Thus, analyzing the statistical parameters representing the 

variability of data on the thickness of A horizon obtained by each system, both 

the coefficient of variation (CV) and standard deviation (SD) were higher for the 

CLH, by not having any restriction in regard to the difficulty of sampling in 

some locations on the landscape (Table 3). This resulted, for this system, in 

greater representativeness of the variability of the terrain attributes that tend to 

influence soil properties, which is reflected in the maps of A horizon thickness 

made for each sampling system (Figure 5). However, there was no statistical 

difference in the mean values of the A horizon thickness in both systems (p 

value = 0.577, CV = 50.98), by analysis of variance with sampling system as 

factor of variation (Table 3). 
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Table 3 - Variability and comparison between the sampling systems to assess 

soils A horizon thickness. 

 
Mean (cm) 

Standard 

Deviation (cm) 
CV (%) 

CCLH1 16.67a 6.01 36.03 

CLH2 18.75a 11.27 60.09 

1Cost-constrained Conditioned Latin Hypercube; 2Conditioned Latin Hypercube. 

Means followed by the same letter in column do not differ statistically according 

to Scott Knot test at 5% of probability (CV=50.98% and n=24). Standard 

deviation and coefficient of variation were calculated per sampling system 

(n=12). 

 

2.3.4 Final Detailed Soil Map  

 

From the field information provided by the two sampling systems, a 

final soil map of the study area was generated (Figure 7). Two soil classes at 

suborder level were found, Haplic Nitosols (NX) and Red-Yellow Argisols 

(PVA) (correspondent to Ustalfs and Ustults in US Soil Taxonomy, 

respectively), occurring in distinct positions on the landscape. While NX appears 

in high and sloping segments, PVA is located in the lower portions of the 

landscape with gentle topography. 
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Figure 7 - Soil map of the study area at ultra-detailed scale. PMUs description in 

Table 4. 

 

Both soil classes at the suborder level were divided into 13 PMUs 

according to the type of A horizon, presence or absence of gravel, fertility, 

texture, native vegetation, and relief phase (Table 4). The PMU NX on undulate 

(8-20% gradient) slope (NX_u) occupies 27% of the study area, followed by 

PVA2 on gentle slope (0-8% gradient) (PVA2_g), covering 21.1% of the area. It 

was also noted that both PMUs contain gravel, which can be taken as a common 

soil property in the study area. The fact that the PMU NX_u is found on the 

highest regions of the landscape and on undulate relief tends to favor the natural 

erosion of these soils, which is associated with the presence of weak (thin) A 

horizon at these sites. 
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Table 4 - Pedologic mapping units (PMUs) found in the study area. 

PMU_relief PMUs description Area (%) 

NX_u 
NX eutrophic, weak A, clayeytexture, gravelly, semiperennial 

tropical forest, undulated relief 
27.0 

NX2_g 
NX eutrophic, moderate A, clayey texture, semiperennial 

tropical forest, gentle relief 
4.2 

NX2_u 
NX eutrophic, moderate A, clayey texture, semiperennial 

tropical forest, undulated relief 
9.2 

NX2_su 
NX eutrophic, moderate A, clayey texture, semiperennial 

tropical forest, strongly undulated relief 
3.2 

NX3_g 
NX eutrophic, moderate A, clayey, gravelly, semiperennial 

tropical forest, gentle relief 
0.5 

NX3_u 
NX eutrophic, moderate A, clayey texture, gravelly, 

semiperennial tropical forest, undulated relief 
5.2 

NX3_su 
NX eutrophic, moderate A, clayey texture, gravelly, 

semiperennial tropical forest, strongly undulate relief 
8.4 

PVA_g 
PVA dystrophic, moderate A, sandy clay loam, semiperennial 

tropical forest, gentle relief  
8.0 

PVA_u 
PVA dystrophic, moderate A, sandy clay loam, semiperennial 

tropical forest, undulated relief 
2.6 

PVA2_g 
PVA dystrophic, moderate A, sandy clay loam, gravelly, 

semiperennial tropical forest, gentle relief  
21.1 

PVA2_u 
PVA dystrophic, moderate A, sandy clay loam, gravelly, 

semiperennial tropical forest, undulated relief  
5.4 

PVA3_g 
PVA dystrophic, prominent A, sandy clay loam, gravelly, 

semiperennial tropical forest, gentle relief  
3.6 

PVA3_u 
PVA dystrophic, prominent A, sandy clay loam, gravelly, 

semiperennial tropical forest, undulated relief  
1.6 

NX = Haplic Nitosol; PVA= Red-Yellow Argisol; g - gentle relief(0-8% slope); 

u - undulated (8-20% slope); su - strongly undulated relief (>45% slope). 
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The final soil map (Figure 7) was related to the A horizon thickness 

maps developed with support of the two sampling systems (Figure 8). It was 

noted that the A horizon thickness map generated by the support of CLH is 

closer to the PMUs data present in the soil map than the one generated according 

to CCLH. Only at the boundaries of the PMUs there were major differences 

between the types of A horizon. However, as the soils and their properties vary 

gradually along the landscape as a continuum, the boundaries between PMUs 

represent only transition trends of the properties, not the real (field) boundaries 

between them. 

 

Figure 8 - PMUs limits of the soil maps over the A horizon thickness maps 

generated according to CLH and CCLH information. WA = weak A; MA = 

moderate A; PA = prominent A. 
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By the fact that information obtained through the CLH is more 

representative of the variability of soils across the landscape, the soil class (or 

soil property) maps generated with support of this sampling system would allow 

for more accurate definitions of the potential uses of soils for each section of the 

landscape. This fact was also obtained by Rad et al. (2014) that employed CLH 

to map soils of 85,000 ha in Iran and concluded that a few samples were 

sufficient to capture great variability of soils and that the use of environmental 

variables as basis for CLH determine the sampling locales presented high 

correspondence with soil property variability.  

In contrast, the fact that the samples have been allocated throughout the 

area by CLH could turn into a difficulty because hilly and distant areas were 

covered, requiring more time and investments to conduct the field work. An 

aspect that diminished this limiting condition of sampling throughout the area 

was the fact of this study had been carried out in a reference area (Favrot, 1989), 

which means it is representative of the soils occurring on that region of study, 

where detailed soils surveys can be properly performed (Lagacherie et al., 2001). 

According to the field experience of the authors in tropical conditions, soil 

surveying in large regions normally includes areas of difficult or even 

impossible access, such as mountainous and/or swampy areas, which would not 

allow for a detailed sampling through the whole region. In this sense, the CCLH, 

although not being as representative as the CLH (Roudier et al., 2012), 

facilitated the fieldwork and also allocated the samples based on the variability 

of the terrain attributes. Mulder et al. (2013) used conditioned Latin hypercube 

constrained to places of easy access and found out that this sampling scheme 

could adequately represent variability of soil properties with small number of 

samples, although spatial correlation could not be found, being characterized as 
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a time and cost efficient scheme. This latter consideration consists an important 

aspect, especially for tropical conditions, where limited funds for field work and 

difficulties of access are quite common (Menezes et al., 2013), which commonly 

hamper or even makes it impossible to collect soil samples throughout the study 

area (Silva et al., 2014; Cambule et al, 2013).  

Finally, the authors do not know any study that employed a comparison 

between CLH and CCLH sampling systems in such comprehensive way to soil 

survey, which represents a practical alternative mainly for tropical conditions, 

where fundings for those activities are scarce (Ker et al., 2012).     

 

2.4 CONCLUSIONS 

 
Soil maps are necessary for infrastructure and best management 

practices for land-use. Soil surveys are expensive and time consuming because 

field evaluation and sampling are one of the most costly portions of the project. 

More low cost and efficient sampling methods are necessary while maintaining 

the statistical rigor. This research indicates that the CLH has better spatial 

representation of the variability of the A horizon thickness and enables greater 

accuracy in separating the pedological mapping units in the study area than 

CCLH. However, the CCLH, despite revealing lower accuracy than the CLH, 

reduces the time and investment required in the field work. A cost-benefit 

analyses may be necessary to identify the best method to use for an initial soil 

survey. 
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3. ARTICLE 2. Retrieving pedologist’s mental model from existing 

soil map and comparing data mining tools for refining a larger area map 

under similar environmental conditions in Southeastern Brazil 

*Article prepared according to the rules of Geoderma. 

 

ABSTRACT 

Diverse projects are being carried out worldwide focusing on development of 

more accurate soil maps and one of the most valuable sources of data are the 

existing soil maps. This work aimed to (i) compare two data mining tools, 

KnowledgeMiner and decision trees, to retrieve legacy soil data from a detailed 

soil map, (ii) to create and validate the predicted soil maps in the field with the 

objective to identify the best method for modeling and refining soil maps, (iii) 

extrapolating soils information to the surrounding similar areas and (iv) to assess 

the accuracy of this soil map. The study was carried out in Minas Gerais state, 

Southeastern Brazil. From a detailed soil map, information of 12 terrain 

attributes was retrieved from the entire polygon of each mapping unit of the map 

(MUP) and from a circular buffer around the sampled points (CBP). 

KnowledgeMiner and decision trees were employed to retrieve information per 

soil class and soil maps were created per method. A field validation of 20 

samples was chosen by a cost-constrained conditioned Latin hypercube 

sampling scheme and the accuracy of all maps was assessed using a global 

index, Kappa index, and errors of omission and commission. The 

KnowledgeMiner MUP map had a greater accuracy than the other methods, 
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being even more detailed than the original map, accounting for 80% of global 

index and a Kappa index of 0.6524. The information extracted by 

KnowledgeMiner provided rules for mapping the watershed surroundings with 

70.97% of global index and a kappa index of 0.5586. Legacy soil data extracted 

by KnowledgeMiner from a detailed soil map and used to model soil class 

distribution outperformed decision trees, promoted improvements on the 

existing soil map, and allows for the creation of a soil map for the surroundings 

of the study area. 

Keywords: Digital soil mapping; Knowledge acquisition; Fuzzy logic; Data 

mining; Tropical soils; Cost-constrained conditioned Latin hypercube sampling 

scheme. 

 

3.1 INTRODUCTION 

 

 The global search for more detailed soil maps has gained increasing 

importance in the last two decades (Mendonça-Santos and Santos, 2007; 

McBratney et al., 2006; Hartemink and McBratney, 2008). Diverse projects are 

being conducted and focusing on the development of more accurate soil maps 

than existing ones, such as the AfSoilGrids250m (Hengl et al., 2015) that is 

creating soil property maps for Africa at 250 m resolution, GlobalSoilMap 

(Arrouays et al., 2014), which aims to make a new digital soil map of the world 

at a fine resolution, and SoilGrids1Km (Hengl et al., 2014), the first output for a 

series of finer resolution maps of soil properties and classes to be produced in 

the future. This fact is associated with diverse technological advances in recent 



 

 

 

 
52 

 
years, such as powerful electronic devices, the ease of accessing digital 

information, and satellite data availability, from which pedologists can utilize to 

their advantage. 

 Some of the most useful tools available are digital elevation models 

(DEM) found at different resolutions that provide great information and from 

which terrain attributes, such as slope, curvature and topographic wetness index, 

can be derived. Many works have applied these parameters to predict soil 

properties and classes (Moore et al., 1993; McBratney et al., 2000; McBratney et 

al., 2003; Behrens et al., 2010; Jafari et al., 2014; Vaysse and Lagacherie, 2015). 

These works consisted of studying the relief as major driver for soil 

differentiation, considering the other soil forming factors (climate, organisms, 

parent material and time) (Jenny, 1941) as relatively constant in the study area.  

 A more recent advance from the Jenny's model for soil formation 

(clorpt) is the SCORPAN (soil = f (soil, climate, organisms, relief, parent 

material, age, n), in which soils can be predicted from the classic five factors 

proposed by Jenny (1941) plus available information about the soils (s), such as 

existing maps, and soils spatial position (n). This model proposed by McBratney 

et al. (2003) allows for a more quantitative description of the relationships 

between soil and other referenced factors and it stresses that existing soil 

information (legacy data) could also be used to refine soil maps. In accordance 

with this fact, Silva et al. (2014) suggested that maps are made with the best 

tools and data available at the time they are created, but it does not impede that 

they can be updated as soon as more information is acquired in the future. 

 From this point of view, existing soil maps in Brazil, of which most 

were created prior to the advent of digital soil mapping, could be refined with 
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current available tools. Soil maps represent the pedologist’s mental model about 

soils variability across the landscape (Bui, 2004). Many digital mapping tools 

can retrieve this knowledge from existing maps and correlate it with 

environmental factors, such as geology, topography, and vegetation 

(Taghizadeh-Mehrjardi et al., 2015).  

 Among data mining tools, decision trees are one of the most commonly 

used for digital soil mapping (Lagacherie and Holmes, 1997; Giasson et al., 

2011; Häring et al., 2012; Kempen et al., 2015). They can identify the conditions 

that characterize each soil class according to different environmental variables 

with reasonable accuracy (e.g. 65-88% of overall accuracy, and a Kappa index 

of 0.44-0.51, according to Scull et al. (2005)), in which the data set is divided 

into more homogeneous subsets (Moran and Bui, 2002).  

 The procedure of decision trees starts at a root node, where the 

algorithm identifies the optimal split based on an exhaustive search of all 

possibilities, in order to maximize the average purity of the two nodes, 

employing the splitting or impurity function called Gini index (Loh, 2011). 

Nodes are locales where trees split the data set; terminal nodes are called leaves. 

A leaf node (predicted soil class, for example) is created when the decision tree 

reaches a stopping criterion (condition defined by the algorithm implemented in 

the trees, e.g. when the maximum tree depth is reached, when the splitting 

criteria is smaller than a threshold, among others (Rokach and Maimon (2008)), 

which makes the tree stops splitting nodes. Otherwise, the aforementioned step 

is, in turn, applied to each child node.  

 Decision trees are simple to understand and can identify the most 

representative variables for prediction (Bou Kheir et al., 2010). This results in a 
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consistent supervised way to aid in the comprehension of the pedologist’s 

mental model encrypted in soil maps. Also, no assumptions are made regarding 

the underlying distribution of values of the predictor variables (non-parametric) 

(Friedman et al., 2000) and decision trees are able to search all possible 

covariates as splitters in the decision nodes. However, this exhaustive search 

approach has disadvantages, such as the one reported by Loh (2011), which is 

the greater chance of selecting the covariates that have more distinct values, if 

everything else is equal, affecting the integrity of inferences drawn from the tree 

structure. Henderson et al. (2005) used decision trees in Australia to predict soil 

pH and other properties based on terrain and climatic variables, at a 250 m 

resolution, and Lacarce et al. (2012) combined regression trees with geostatistics 

to predict Pb stocks in soils in France.   

 Another tool more recently created is the KnowledgeMiner that is part 

of the Soil-Land Inference Model (SoLIM) software (Zhu et al., 2001). It 

employs Kernel density to extract environmental variables information from 

each polygon on the map and then provides statistical indexes, such as 

minimum, maximum, mean, mode, median and standard deviation, in order to 

characterize those polygons (map units) and help the user to define the optimal 

environmental conditions for each map unit to occur.  

 It considers each cell value of a terrain attribute raster and a numerical 

interval that contains that cell value. Then, it counts the number of cells within 

each polygon that has values contained in that interval (SoLIM, 2007). This 

number of cells will be used to generate the frequency distribution curves 

(Kernel density), which allow the user to identify the most appropriate value of 

terrain attributes (e.g. slope gradient values) to individualize each soil class. 
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These data mining procedures may contribute to disaggregate polygons of the 

original map to create more detailed soil maps (Bui and Moran, 2001; 

Thompson et al., 2010; Nauman and Thompson, 2014; Subburayalu et al., 

2014), however, a soil map whose polygons present more than one soil class 

(inclusions) may hinder these inferences. 

 Combining the need for more detailed soil maps in Brazil, where most 

of them are at a 1:750,000 scale due to increased funding limitations (Giasson et 

al., 2006), with the feasibility of using digital soil mapping tools, it has brought 

to light an economical alternative to obtain soil data: the usage of data mining 

tools to rescue information embedded on existing soil maps to improve those 

maps in a digital environment at a lower cost. Thus, this work had as objectives: 

(i) to compare two data mining tools, KnowledgeMiner and decision trees, to 

retrieve legacy soil data from a detailed soil map of a watershed in Minas 

Gerais, Southeastern Brazil; (ii) to create and validate these soil maps in the 

field, identifying the best method for refinement of soil maps; (iii) to extrapolate 

that extracted legacy data to the surrounding similar areas of this watershed, 

which present similar environmental conditions; and (iv) to validate this map. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Study area and source of data 

 

The study was developed at Marcela Creek Watershed, located in 

Nazareno county, state of Minas Gerais, Southeastern Brazil (Figure 1), between 
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the latitudes 21°14'27'' and 21°15'51'' S and longitudes 44°30'58'' and 44°29'29'' 

W. The climate of the study area is Cwa (warm temperate), according to Köppen 

classification, having dry winters and warm and rainy summers, presenting a 

mean annual precipitation of 1,300 mm, a mean annual temperature of 19.7°C 

and area of 485 ha.  

 

Figure 1 - Location of Marcela Creek Watershed in Minas Gerais state, 

Southeastern Brazil.  
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This watershed was chosen due to its great agricultural potential (Silva 

et al., 2013), high water yield capacity and potential for electric energy 

generation (Beskow et al., 2013), and for being representative of the Mantiqueira 

Fields physiographical region. Its water drains into the Itutinga/Camargos 

hydroelectric power plant reservoir, which is a very important source of electric 

energy for Southeastern Brazil. Whereas water management is a governmental 

concern, the knowledge of soils and their distribution are important since soils 

exert an influence on water movement in different ways (Mello and Curi, 2012). 

Additionally, there is an important environmental issue in this region: the native 

vegetation (cerrado and forest) has been rapidly replaced by extensive pasture or 

crops (more recently) promoting intense land degradation (Alvarenga et al., 

2012). This fact could impair the maintenance of hydrological functions of both 

the study area (Beskow et al., 2013) and its surroundings. 

This watershed was mapped by very experienced pedologists and 

published by Motta et al. (2001), at a scale of 1:12,500, through intensive field 

work, including description of soil profiles, collection and laboratory analyses of 

soil samples, making up the basic source of information for the development of 

this current work. The soil classes found were Hapludox (Hx), Acrudox (Ax), 

Dystrudept (Dt) and Endoaquent (Et), according to Soil Taxonomy (Soil Survey 

Staff, 1999).  

A 30 m Aster (version 2) DEM, which is the best DEM resolution freely 

available for Brazil, was obtained from the website 

http://gdem.ersdac.jspacesystems.or.jp/, preprocessed in order to make it 

hydrologically consistent, and used to create 12 terrain attributes (TA) on SAGA 

GIS software (Bohner et al., 2006): slope gradient, topographic wetness index 
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(WI) (Beven and Kirkby, 1979), longitudinal curvature, cross-sectional 

curvature, multiresolution index of valley bottom flatness (mrvbf) and 

multiresolution index of ridge top flatness (mrrtf) (Gallant and Dowling, 2003), 

vertical distance to channel network (VDCN), hillshade, slope aspect, valley 

depth, and SAGA wetness index (SWI), which differs from WI for being 

calculated based on a modified catchment area, resulting in a more realistic 

representation of water accumulation potential in some portions of the landscape 

than WI (Olaya and Conrad, 2009). These TA were selected based on works on 

digital soil mapping that evaluated them in modeling soil classes and properties 

(Moore et al., 1993; Kim and Zheng, 2011; Brown et al., 2012; Adhikari et al., 

2013; Malone et al., 2014; Vaysse and Lagacherie, 2015) and, thus, it was 

possible to learn the typical environmental conditions of each soil mapping unit 

from the soil map (legacy data).  

The soil classes distribution on the landscape (legacy data from the soil 

map) was related to the TA and extracted from the map in two different ways, 

considering: a) each mapping unit polygon entirely (MUP) (6221 training 

pixels) and b) a circular buffer created within a distance of 100 m of radius from 

the sampled points (CBP) (406 training pixels) of the soil map produced by 

Motta et al. (2001) (profile descriptions legacy data). Soil prospections at 97 

places were performed throughout the area and the collected samples were 

submitted to analyses of particle size distribution, soil fertility and sulfuric acid 

digestion, allowing for soil classification at those places and creation of the soil 

map (Motta et al., 2001). Then, at the most representative places of each soil 

class, chosen after an intensive field campaign throughout the area, 9 complete 

soil profile descriptions were performed, including collection of samples in each 
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soil horizon that were subjected to complete physical and chemical laboratory 

analyses. A GPS device was used for acquisition of the geographic coordinates 

at those locations. The buffers of the CBP method were created around the soil 

profiles because they were chosen in locales representative of each soil class, 

representing their typical forming conditions, while the other observations were 

mostly used to help in the delineations of the polygons on the soil map. That 

distance from the collected points was chosen in a way that most points could be 

sampled without crossing the border of the mapping unit to which it belonged.  

The assumption was that either the polygon or the buffer of the points 

should adequately represent the main characteristics of the terrain attributes for 

the soil class it represents. Polygons should represent the dominant soil class in 

the map units and, thus, the environmental conditions commonly associated with 

each soil class. Regarding the buffer of the points, the places where profile 

descriptions were made represent typical locales of each soil class. In this case, 

areas close to them should present the most appropriate conditions for each soil 

class to occur. 

 

3.2.2 KnowledgeMiner 

 

Box plots were generated to identify the terrain attributes that best 

distinguish each soil class in order to use only the best terrain attributes in 

KnowledgeMiner. They were created in R software (R Development Core Team, 

2009). Box plots represent the range of values, besides the median, minimum, 
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maximum, 1st and 3rd quartiles, and the inter-quartile range of the data set, 

which aid in the comparison of data (Brungard and Boettinger, 2010). In this 

work, box plots allow for the analyses of the variability of terrain attribute 

values for the soil classes. Thus, the more individualized the values of a terrain 

attribute are for a soil class in comparison to the other soil classes, shown on box 

plots, the better that terrain attribute is to distinguish that soil class from the 

others (Brown et al., 2012; Gessler et al., 1995).   

Afterwards, KnowledgeMiner, a tool set of the SoLIM project (Zhu et 

al., 2001), was employed to extract the pixel values of each terrain attribute for 

both MUP and CBP from the map. It consists of identifying the optimal (typical) 

value of each TA for each soil class through calculation of the frequency 

distribution curves from TA values occurring in each MUP or CBP of the map. 

Optimal values represent the typical environmental condition of each TA for 

each soil class to occur, and they are given by the mode of the TA values for 

each soil class. Then, the optimal values and those curves can show whether any 

of those environmental layers can explain the pedologist’s mental model 

employed to distinguish a soil class from another during the original mapping 

process (Menezes et al., 2013). KnowledgeMiner also provides statistical 

indexes for each polygon on the map, such as minimum, maximum, mean, and 

standard deviation besides the typical value (mode).  

KnowledgeMiner employs the kernel density estimation method for 

calculating the frequency distribution curves, which show the frequency of 

different cell values of terrain attributes within each polygon (soil map unit) on 

the map (SoLIM, 2007). This method considers the value of each observation 

(e.g. a cell of a terrain attribute), a numerical range that contains that value and 
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the frequency of that value will be given by the number of cells having values 

that fall into that numerical interval. It can be expressed by the formula below 

(SoLIM, 2007): 

                             
 

  
∑   

     
    

 
                                                 (1) 

 

where: f(x) is the density, h is the degree of smearing or bandwidth, which is a 

number that defines a numerical range starting from a minimum value "A" in 

which the number of cells (pixels) that falls into this range will determine the 

frequency value for "A", K represents the kernel function, (x - xi) is the distance 

between two points, and n is the number of independent observations. Through 

this analysis, it is possible to identify the optimal values of terrain attributes for 

characterizing each soil class (modal value). 

After the selection of the most important attributes, based on analyses 

through the aforementioned box plots, the values extracted by KnowledgeMiner 

were inserted into ArcSIE (Shi et al., 2009), an ArcGIS extension that uses fuzzy 

logic to identify the places within the area of interest that corresponds to each 

soil class environmental condition. For each condition, ArcSIE generates a 

membership map showing the degree of similarity of each pixel to that condition 

through a similarity vector Sij (S1
ij, S

2
ij,...S

k
ij,...S

n
ij), where Sk

ij is the similarity 

value between the soil at (i,j) location and the soil class k, and n is the number of 

soil classes (Zhu et al., 2001). The degrees of similarity range from 0 (very 

different) to 1 (very similar). For that calculation, it is necessary to insert into 

ArcSIE the typical value of a TA for that soil class (v1), and the deviations of 

this value (w1 and w2), which are calculated by multiplying the standard 
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deviation of the TA values by 0.2 and represent the number to be subtracted 

(w1) or added (w2) to the typical value (v1) which will represent 50% of the 

degree of similarity with the typical conditions to that soil class to occur, while 

v1 represents the 100% of degree of similarity (typical condition to that soil 

class to occur). The greater is the similarity, the greater the chance of that place 

to contain the same soil class of the driving condition.  

After classifying each pixel according to their similarities to every soil 

class found in the area, the membership maps (one per soil class), which shows 

the degree of similarity of each pixel with every soil class, are generated and, in 

sequence, all of the membership maps are joined to form a final soil map. In this 

procedure, each pixel of the final map will represent the soil class that has the 

greatest similarity to that place in terms of TA values. 

 

3.2.3 Decision Trees for knowledge discovery 

 

Decision trees, another data mining technique commonly used to map 

soil classes and properties worldwide (Scull et al., 2005; Bou Kheir et al., 2010; 

Tehrany et al., 2013), were compared with KnowledgeMiner in terms of 

individualization of soil classes, since several works have employed this 

mapping technique to predict soil classes also in Brazil (Crivelenti et al., 2009; 

Giasson et al., 2011; Caten et al., 2012; Giasson et al., 2013). However, most of 

these studies were performed at a lesser detailed scale, in Southern Brazil, and 

few comparisons have been made with other methods, which is performed in 
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this current work with KnowledgeMiner, in a different region of the country, and 

based on a more detailed scale soil map.  

In this task, information of the 12 TA for both the MUP and CBP was 

collected.  With this set of data, decision trees were created using the 

software R (R Development Core Team, 2009), and the package rpart (Therneau 

et al., 2015) with the classification and regression trees (CART) algorithm 

(Breiman et al., 1984) to develop the instances for the occurrence of each soil 

class. Afterwards, from those instances the soils maps were created by algebra of 

maps in the software ArcGIS 10.1 (ESRI). 

 

3.2.4 Validation of the soil maps 

 

In order to validate the maps generated from KnowledgeMiner 

extraction, followed by spatialization using ArcSIE, and from decision trees for 

both the MUP and CBP methods, 20 field prospections were performed. The 

validation places were selected using the cost-constrained conditioned Latin 

hypercube sampling scheme (CCLH) (Roudier et al., 2012). The conditioned 

Latin hypercube (CLH) is a stratified random procedure, proposed by Minasny 

and McBratney (2006), consisting of an efficient method for defining sampling 

locations, taking into account the variability of environmental covariates that are 

related to the attribute to be mapped, such as terrain attributes related to soil 

classes, assuming that the location to be sampled must exist on the landscape 

(Brungard and Boettinger, 2010). However, the places to be sampled are 
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generally sparsely distributed in the area, which makes the field work more 

costly or impractical (Silva et al., 2015).  

In order to overcome this issue, Roudier et al. (2012) proposed the 

CCLH, which differs from the CLH for evaluating the difficulty that someone 

should face to reach the sampling locations in the field. Thus, this sampling 

system preferably chooses places of easy access, still taking into account the 

variability of environmental covariates (e.g. terrain attributes) in this procedure. 

The terrain attributes that were indicated as being important for distinguishing 

soil classes from the box plot analyses were used as basis for the CCLH to 

choose the location of validation samples, since the study area present regions 

that are difficult to access, mainly due to lack of roads.  

CCLH requires a map of the cost of reaching every place within the area 

in order to determine the sample locations in places of easy access. This map 

was created combining the slope gradient with the distance from the road, which 

were the most limiting factors to access the whole area. Distance from the road 

was created using the Euclidean distance tool in ArcGIS software (ESRI) using a 

set of roads created from analysis of a RapidEye satellite image as the input 

data. Then, to both distance from the road and slope gradient rasters, a weight 

(cost) was assigned to each pixel according to the distance (the farther from the 

road the pixel is, the greater the cost) and the slope gradient (the steeper the 

relief, the more time in reaching that place). Those rasters were added to each 

other using the Map Algebra tool in ArcGIS (ESRI) and the resulting map (cost 

map) showed the cost (difficulty) of reaching every pixel within the area. Thus, 

taking this cost map into account, CCLH determined the best places to be 
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sampled, preferring those with easy access (close to roads and presenting gentle 

relief).  

Aiming to assess the quality of the predictive maps, four indexes were 

calculated: global index, Kappa index, user's accuracy and producer's accuracy. 

Global index, also known as overall accuracy, represents the number of samples 

whose soil classes identified in the field matches the soil classes presented on 

the soil map divided by the total number of samples. Adhikari et al. (2014) 

employed global and other indexes to assess the accuracy of a soil class map of 

Denmark. 

Kappa index is calculated taking into account the number of soil classes, 

the number of correctly classified samples and the total number of samples 

(Congalton and Green, 1999), as follows: 

       
     

    
 

(2) 

 

where Po is the proportion of correctly classified samples, and Pe is the 

probability of random agreement. The results range from -1 to 1, although they 

commonly are found between 0 and 1, and they indicate increasing accuracy as 

the values get closer to 1 (Landis and Koch, 1977). Lacoste et al. (2011) used the 

Kappa index to assess the accuracy of soil parent material prediction maps and 

as well as Brungard et al. (2015) who mapped soil classes in western USA and 

used that index and others to evaluate machine learning techniques performance. 

User's accuracy shows the probability of a place classified as a soil class 

on the map to match the soil class found in the field, whereas, a producer's 

accuracy expresses the probability of a point of a soil class being correctly 
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classified on the map (Congalton, 1991), considering that an adequate map has 

values for those two accuracies close to one (100%) (Behrens et al., 2010). 

Those indexes are presented by the formulas below:  

 

 

                     
   

∑     
   

 (4) 

 

where Xii and Xjj indicate the number of correctly classified samples and 

Xij represents the sum of samples of a soil class in a row (user's accuracy) or 

column (producer's accuracy) of a confusion matrix. Those indexes were also 

used by Collard et al. (2014) to assess the accuracy of a soil class map in France 

created from a reconnaissance soil map using regression models, and by Bou 

Kheir et al. (2008) to verify the quality of distribution maps of soil and bedrock 

susceptible to gully erosion, based on a decision tree model. 

 

3.2.5 Extrapolation of the soil map information and its validation 

 

 After defining the best method for extracting soils information from the 

map through the field validation, the information obtained from the legacy data 

was extrapolated to an area of 1771.9 km², which surrounds the studied 

watershed (4.85 km²) (reference area) and that contains similar environmental 

                 
   

∑     
   

 

 

   (3) 
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conditions (Curi et al., 1994). The map of this area was also validated using 31 

profile descriptions obtained from Giarola (1994), Araújo (2006), UFV-CETEC-

UFLA-FEAM (2010), and the Brazilian Agricultural Research Corporation 

(EMBRAPA) data set (available at http://www.sisolos.cnptia.embrapa.br), 

which is the number of points available for this area. Global index and Kappa 

index were calculated in order to assess the accuracy of this extrapolation and, 

thus, the quality of the created soil map of the region. 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 KnowledgeMiner for mapping soils 

 

Figure 2 shows box plots generated from diverse TA for both MUP and 

CBP to help visualization to identify the best environmental covariates for 

individualizing each soil class. In box plots, the difference between soil classes 

and their respective TA values, even in studies of different nature, is assessed by 

visual analysis (Gessler et al., 1995; Brown et al., 2012; Caten et al., 2012; 

Teske et al., 2014), since box plots were designed for that. The more separated 

the values of a TA are for a soil class in relation to the other soil classes, the 

better that TA is for soil class individualization. Häring et al. (2012) also 

employed box plots to identify the differences between values of TA for two soil 

classes and then applied them to models. Contrary to decision trees, which select 

and use the most important covariates for predictions, KnowledgeMiner only 

determines the optimal value of each TA for each soil class, and the user is 
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responsible for selecting the most appropriate terrain attributes to distinguish 

each soil class from another, according to their environmental conditions.  
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Figure 2 - Box plots of the terrain attributes based on each soil class extracted 

from the entire polygon (a) and from the buffer of the points (b). 1 = Hapludox, 

2 = Acrudox, 3 = Dystrudept, 4 = Endoaquent. VDCN = vertical distance to 

channel network, WI- wetness index, SWI - SAGA wetness index, MRVBF - 

multiresolution index of valley bottom flatness, MRRTF - multiresolution index 

of ridge top flatness.  
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In Figure 2 it can be seen that for both MUP and CBP from the 12 TA, 

five of them (VDCN, valley depth, WI, slope, and elevation) presented greater 

potential to distinguish at least one soil class. VDCN and valley depth calculate 

the vertical distance from each pixel to the channel network through 

interpolation of the base level and subsequently subtraction of these values from 

the original elevation values (Conrad et al., 2015); WI takes into account the 

slope and specific catchment area, being defined by ln(a/tan b), where a = ratio 

of upslope contributing area per unit contour length and b = the local slope 

(Beven and Kirkby, 1979), and expresses the places with higher tendency of 

accumulating water; slope is the ratio of changes in elevation; and elevation is 

the representation of altitudes in the area. In this sense, since VDCN and valley 

depth have similar calculation procedures (Conrad et al., 2015), but VDCN still 

takes into account channel network information and has been more commonly 

reported as a good soil property predictor (Adhikari et al., 2013; Bishop et al., 

2015; Taghizadeh-Mehrjardi et al., 2015), contrary to valley depth, whereas 

elevation only represents variations of altitude without showing the proximity of 

each cell to channels, which is important for soil class prediction, only VDCN 

among these three TA was employed for the analyses. Thus, VDCN, slope, and 

WI were the TA considered most important for distinguishing the soil classes in 

the study area.  

Table 1 presents the optimal values of TA for each soil class extracted 

for MUP and CBP methods defined by KnowledgeMiner. The more 

individualized is the optimal value of a TA for a soil class, the better that TA is 

in distinguishing that soil class from others. This information is expressed as 

frequency distribution curves by KnowledgeMiner, whose peaks identify the 
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optimal value and these peaks assist the user to visualize the degree of 

overlapping of the TA values for each soil class. In Table 1 it can be observed 

that VDCN is the one TA that has more different optimal values for 

distinguishing soil classes, while slope and WI are more adequate to 

individualize the Et, since for the other soil classes the optimal values of these 

two TA are similar.  

For both MUP and CBP, it is noted that, as expected, Et occurs in the 

lowest portions of the landscape and closer to the channel network (MUP = 3.7 

m and CBP = 1.1 m), which is in agreement with the greatest wetness index 

compared to the other soils (15.4 and 16.9) and gentler slope (7% and 7.7%). 

The fact that Oxisols and Inceptisols tend to occur in an intricate pattern in the 

region of this study may have hindered their individualization, in accordance 

with the similar values of slope and wetness index found for those soils. Curi et 

al. (1994), characterizing the soils of the Mantiqueira Fields, region of this 

current study, identified that it is not uncommon to find Inceptisols associated 

with Oxisols in this area, where Oxisols tend to be shallower than typical 

Oxisols and sometimes having properties intermediate between Oxisols and 

Inceptisols. However, Inceptisols ideally tend to occur in areas with shorter 

slope lengths and more linear hills, which are common on the lower part of the 

backslope, right above the channel network. This could also be verified by 

VDCN values of this soil class, having them intermediate VDCN values 

between Et and the Oxisols (Table 1). 
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Table 1 - Optimal values of the terrain attributes extracted from 

KnowledgeMiner for each soil class. 

Soil Class 

MUP1 CBP2 

VDCN3 
Slope 

(%) 
WI4 VDCN 

Slope 

(%) 
WI 

Dystrudept 16.6 13.5 11.8 11.8 13.9 12.2 

Endoaquent 3.7 7.0 15.4 1.1 7.7 16.9 

Hapludox 25.5 14.0 11.4 22.8 16.8 11.6 

Acrudox 35.7 13.8 10.5 44.2 15.4 10.0 

1Entire mapping unit polygon extraction methods and 2Buffer around the 

sampled points extraction method, 3Vertical distance to channel network, 

4Wetness index. 

 

Both Ax and Hx presented similar values of slope and wetness index. In 

spite of that, Ax commonly occupies the highest areas of the landscape, 

implying a relatively better drainage than Hx, which is reflected by their color, 

since hematite requires a drier condition to form than goethite (Curi and 

Franzmeier, 1984). Thus, some TA could also capture this tendency: VDCN for 

Ax is greater than for Hx and wetness index for Ax is lesser, which indicates that 

the latter places have less tendency of accumulating water than those of Hx.     
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Table 2 - Values extracted from KnowledgeMiner and inserted into ArcSIE to 

predict the occurrence of soil classes. 

Soil Class 

 MUP2  CBP3 Curve 

shape TA1 v1 w1 w2  v1 w1 w2 

Dystrudept 

 

VDCN4 17 10 8  11.8 6.8 6.8 Bell 

WI5 -- -- --  12.2 1.9 1.9 Bell 

Endoaquent 

VDCN 

Slope 

3 

7 

-- 

-- 

2 

4 

 1.1 

-- 

-- 

-- 

1.5 

-- 

Z 

Z 

WI -- -- --  16.9 1.2 -- S 

Hapludox 

VDCN 25 10 10  22.8 5.1 5.1 Bell 

WI -- -- --  11.6 1.4 1.4 Bell 

Acrudox 

VDCN  

WI 

35 

10 

13 

2 

-- 

2 

 44.2 

10.0 

5.8 

0.3 

-- 

0.3 

S 

Bell 

1Terrain Attributes, 2Entire mapping unit polygon extraction method and 3Buffer 

around the sampled points extraction method, 4Vertical distance to channel 

network, 5Wetness index. 

 

Figure 3 illustrates the predicted soil maps of Marcela Creek Watershed 

for both the MUP and CBP methods by extracting data from the original soil 

map and Table 3 presents the areas occupied by each soil class. On both 
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predicted maps, the areas of Dt, Et, and Ax increased in relation to the original 

map (Figure 1), whereas, the area of Hx was reduced.  

Although some inconsistencies can be seen on the predicted map for 

MUP, such as the Dt crossing areas of Et in three places and the discontinuities 

of the Et in other places different from the ones already cut by Dt, the general 

distribution of the soil classes were more similar to the original map than that for 

the CBP predicted map. However, on the latter, the continuity of the Et was 

maintained, but the Dt area was considerably increased, while the Hx area was 

reduced (see validation of the maps in section below). Similar to these changes 

in soil class areas, Calderano Filho et al. (2014) found an overestimation of 

some soil class areas in the predicted map in comparison with the original soil 

map at Serra do Mar, Brazil, using geology, TA derived from a DEM and other 

remote sensing data as variables for predictions.  

 

Table 3 - Areas occupied by each soil class in the study area on the different 

maps. 

Soil class 
Area (ha) 

Original map Predicted MUP 

map 

Predicted CBP 

map Dystrudept 21.29 60.6 145.7 

Endoaquent 75.34 94.18 83.9 

Hapludox 325.38 221.83 132.1 

Acrudox 63.89 108.50 126.7 

1Entire mapping unit polygon and 2Buffer around the sampled points extraction 

methods. 
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Figure 3 - Predicted soil maps by extracting information based on the original 

map from the entire polygons -MUP- (a) and from the buffers of the sampled 

points -CBP- (b) using KnowledgeMiner for Marcela Creek Watershed. 

  

3.3.2 Decision Trees for mapping soils 

 

In order to use another method for data mining to express the thresholds 

for each soil class, decision trees were created for both the MUP and CBP 

methods (Figure 4). Although 12 TA were used as input data for the creation of 

decision trees, only 5 TA were chosen as adequate splitters by the decision tree 

algorithm for MUP to distinguish the soil classes, these included WI, VDCN, 

longitudinal curvature, aspect and valley depth, while only 2 (VDCN and valley 
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depth) were used as splitters by the CBP decision tree. The importance of each 

TA was calculated using the rpart package (Therneau  et al., 2015) in R and is 

presented in Table 4, in which the greater the importance, the better is that 

variable to distinguish the soil classes. Usage of lesser variables, chosen by 

models for predictions, rather than the total number of input variables is not 

uncommon (Henderson et al., 2005; Odgers et al., 2014). Bou Kheir et al. (2010) 

and Jafari et al. (2014), employing many environmental covariates for modeling 

and predicting soil properties, also found that the covariates have different 

importance in modeling and they stated that this is the reason for some 

covariates being more commonly used for predictions than others.  

 

Table 4 - Importance of the terrain attributes used on each decision tree. 

Terrain attribute MUP (%) CBP (%) 

Wetness Index 26 11 

Vertical distance to channel network 22 22 

Digital elevation model 17 24 

Valley depth 16 26 

Slope 7 2 

Aspect 5 2 

Multiresolution index of valley bottom flatness 3 3 

Longitudinal curvature 2 1 

Multiresolution index of top ridge flatness 1 2 

Cross-sectional curvature 1 7 

Hillshade 0 2 

Total 100 100 
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Comparing the CBP with MUP, the percentage of correctly classified 

points was 93.1% for CBP and 73.2% for MUP and root node errors were, 

respectively, 39.65% and 33.21%. Those values of correctly classified points are 

greater than the ones found by Caten et al. (2012) when evaluating different 

methods and amount of data to create decision trees for mapping soils in 

Southern Brazil. 

It was noticed that the Dt was not predicted by the MUP decision tree, 

probably because in this region Dt occurs in very similar landscapes with those 

where Oxisols are common. In the field, even the slight differences in their 

landforms are not very helpful for pedologists to distinguish those soil classes on 

the landscape. Oxisols and Dt, respectively, are related to convex and linear 

landforms, however, this trend is not very well defined in this region due to 

these soils occur in intimate geographical association on the landscape (Curi et 

al., 1994), where Inceptisols are developed from erosion of ancient Oxisols 

(Resende et al., 2014). The two TA representing the longitudinal and the cross-

sectional curvatures that were among the 12 TA available for modeling and that 

were expected to help the decision tree modeling could not capture a distinction 

of the landforms of both soils (Figures 2), whereas, those soils were 

distinguished by KnowledgeMiner. Caten et al. (2012) and Giasson et al. (2013) 

found that only the more complex decision trees were capable of predicting all 

the soil classes in their study areas. Contrary to these studies, the CBP decision 

tree, although simpler than the MUP, could individualize all the soil classes for 

capturing more specific environmental conditions of each soil class, even when 

considering that the Ax area predicted was very much reduced in comparison 

with the original map. 
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Figure 4 - Decision trees developed for predicting the soil classes for MUP (a) 

and CBP (b) methods in Marcela Creek Watershed. Percentage under the soil 

class symbols indicates the amount of correctly classified points in that instance. 

  

From the analysis of the decision trees, the predicted soil maps were 

created (Figure 5). As expected through the analysis of the MUP decision tree, 

the Dt was not represented in the predicted map. On both prediction maps, the 

areas of Ax and Et were reduced, while the Hx area increased (Table 5). Dt was 

not identified on the MUP map, as expected, but on the CBP map its area 

increased in comparison to the original map. The discontinuities observed for the 

Et (Figure 3a) in the predicted map made using KnowledgeMiner were also seen 

in this map, but with greater frequency and greater distances between polygons. 

This soil class on CBP map was constrained to the lowest areas of the 

watershed. Most of the area on both maps was occupied by Hx. Also, in general, 

both maps turned out very different from the original map. Visually comparing 
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them with the original map, KnowledgeMiner maps presented greater 

similarities to it than the decision tree maps.  

 

Table 5 - Areas of each soil class on the original and predicted maps created by 

decision trees. 

Soil class 
Area (ha) 

Original map Predicted MUP1 

map 

Predicted CBP2 

map Dystrudept 21.29 -- 43.9 

Endoaquent 75.34 56.3 33.6 

Hapludox 325.38 403.0 407.4 

Acrudox 63.89 19.1 0.78 

1Entire mapping unit polygon and 2Buffer around the sampled points extraction 

methods. 
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Figure 5 - Maps created from extraction of information of the original map by 

the entire polygon (a) and by buffers of the points (b) with thresholds identified 

by decision trees for Marcela Creek Watershed. 

 

3.3.3 Validation of the original and prediction maps 

 

Validation of the predicted maps was performed at 20 places defined by 

the cost-constrained conditioned Latin hypercube (Roudier et al., 2012). The 

places chosen by this sampling system captured considerable variability of the 

soils of the study area, which means that different environmental conditions and 

all the soil classes reported in previous works were observed, as found by Silva 

et al. (2015) and Mulder et al. (2012), who employed CCLH to map soil 
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properties. Furthermore, none of the soil classes found during the field 

validation differed from those represented in the original map.  

In order to verify the accuracy of the original map, it was validated with 

20 prospections and presented a global index of 75% and Kappa index of 

0.4681, corresponding to a moderate classification, according to Landis and 

Koch (1977). According to the Brazilian Pedology Technical Manual (IBGE, 

2007), soil maps must have at least 70% accuracy and 30% of inclusions to be 

acceptable. These results confirm that this map represents well the variability of 

the soil classes in the watershed, being an adequate source of soils information 

for works that intend to extract and then apply this information in areas with 

similar soil and environmental patterns. 

In the MUP map created from KnowledgeMiner procedure, 16 out of the 

20 prospections (80%) were correctly predicted by the soil map and resulted in a 

Kappa index of 0.6537, equivalent to a substantial classification according to 

Landis and Koch (1977), while the CBP map had 50% of overall accuracy and a 

Kappa index of 0.2063, a fair classification. Overall, validating the maps 

generated based on decision trees, the MUP correctly predicted 11 out of 20 

prospections (55%) and had a Kappa index of 0.0674, whereas, the CBP map 

had a 50% global index and 0.0148 for the Kappa index, with both being 

classified as having a slight agreement between these maps and the original map.  

Producer and user accuracies as well as omission and commission errors 

were calculated as other parameters for comparison (Table 6). It is observed that 

the map generated from MUP with KnowledgeMiner had the greatest producer's 

and user's accuracy and the least errors for all the soil classes, in agreement with 

the other validation parameters.  
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Table 6 - Producer's and user's accuracy and omission and commission errors for 

the methods evaluated for mapping soils. 

Soil Map Soil Class 
Producer 

Accuracy 

Omission 

Error 

User 

Accuracy 

Commission 

Error 

KnowledgeMiner 

MUP 

Dt 100.0 0.0 50.0 50.0 

Hx 83.3 16.7 83.3 16.7 

Ax 100.0 0.0 80.0 20.0 

Et 33.3 66.7 100.0 0.0 

Mean  79.2 20.8 78.3 21.7 

KnowledgeMiner 

CBP 

Dt 16.7 83.3 50.0 50.0 

Hx 70.0 30.0 58.3 41.7 

Ax 66.7 33.3 40.0 60.0 

Et 0.0 100.0 0.0 100.0 

Mean  38.3 61.7 37.1 62.9 

Decision Trees 

MUP 

Dt 0.0 0.0 0.0 100.0 

Hx 58.8 41.2 83.3 16.7 

Ax 0.0 0.0 0.0 100.0 

Et 33.3 66.7 100.0 0.0 

Mean  23.0 27.0 45.8 54.2 

Decision Trees 

CBP 

Dt 0.0 100.0 0.0 100.0 

Hx 56.3 43.8 75.0 25.0 

Ax 0.0 0.0 0.0 100.0 

Et 33.3 66.7 100.0 0.0 

Mean 
 

22.4 52.6 43.8 56.3 

Dt - Dystrudept, Hx - Hapludox, Ax - Acrudox, Et - Endoaquent. 
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These results indicate that KnowledgeMiner in association with ArcSIE 

could predict the soil classes of the study area with greater accuracy than both 

the original map and the decision tree maps, which confirms a gain in details in 

comparison to the existing map and also in relation to the maps generated by 

decision trees, although being more time consuming to analyze than decision 

trees. Other works whose authors used SoLIM or ArcSIE to map soil classes and 

properties also obtained highly accurate maps as a result, such as Ashtekar and 

Owens (2013), who successfully utilized SoLIM software to map soil classes 

and loess depth in Indiana (USA) and compared the results with corn yield. 

Menezes et al. (2014) utilized ArcSIE to generate a soil class map and then a 

solum depth map for a watershed in Brazil, as a rule-based procedure aided by 

expert knowledge, to compare a digital with conventional soil maps and found a 

greater accuracy using the digital mapping procedure. Akumu et al. (2015) used 

fuzzy-logic in ArcSIE to map soil textural classes in Canada, with slope, 

wetness index, elevation, curvature and other TA as input variables, obtaining a 

fine resolution textural map for an area of 4,300 km². The authors could not find 

published works that used KnowledgeMiner, although this tool set is part of the 

SoLIM software (Zhu et al., 2001). 

Decision trees are dependent on the strength of the relationships between 

environmental variables and soil properties (Greve et al., 2010) and, taking into 

account the fact that Dystrudepts and Oxisols of the study area are located on 

very similar landscape positions, it may have contributed to their lesser quality 

of predictions found. Both the longitudinal and the cross-sectional curvatures 

included into the set of TA available for decision tree modeling in this work 

were not successful in capturing differences that enabled the distinction of these 
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soils, which are the TA that were expected to contribute to differentiate those 

soils, according to the knowledge of pedologists who performed soil surveys and 

mapping in this study region. This constraint was also encountered by Bui and 

Moran (2003), re-mapping soils from Murray-Darling basin, Australia, who 

stated that soil prediction becomes difficult in places where the spatial pattern of 

the soil units are not well captured by decision trees.  

The MUP extraction method had a better performance to express the soil 

patterns than CBP not only by the KnowledgeMiner, but also by the decision 

trees, resulting in greater accuracy indexes, although the MUP by decision trees 

could not predict the Dt. CBP was tested due to the fact that in soil surveys, 

profile descriptions and sample collections are performed at places where the 

local soil can represent the map unit, thus, its surrounding areas should reflect 

the common conditions for that soil class to occur, contrary to the polygon 

boundaries. It is in agreement with the catena concept (Milne, 1935) that soils 

occurring on similar landscape positions should be similar, as long as the other 

soil forming factors (Jenny, 1941) are the same, but it did not work well using 

the CBP method either by KnowledgeMiner or with decision trees. Future 

investigations on this method should include different buffer distances from the 

sampling places.  

 

3.3.4 Extrapolation of the soil information to surrounding areas with 

similar environmental conditions 

 



 

 

 

 
85 

 
The rules of soils occurrence obtained from the detailed soil map and 

extracted by KnowledgeMiner with MUP, for presenting the greatest accuracy, 

were used to extrapolate that information to an area of 1,771.9 km², which 

contained similar environmental conditions and parent material as the studied 

watershed (Curi et al., 1994). Decision trees were not used for the extrapolation 

procedure since the maps resulted from both MUP and CBP methods presented 

not only lower accuracy than the KnowledgeMiner MUP map, but also a lower 

global index than the 70% threshold recommended by the Brazilian Pedology 

Technical Manual (IBGE, 2007), and the best decision tree map (MUP) could 

not predict the occurrence of one of the soil classes (Dt) even within the 

reference watershed. The predicted soil map of the entire area is presented in 

Figure 6. 
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Figure 6 – Soil map of the region that is represented by Marcela Creek 

watershed generated by extrapolation of information extracted by 

KnowledgeMiner from the detailed soil map of the watershed. 

 

The dominant soil classes are Hx (31.53%), Et (26.11%), Dt (22.18%), 

and Ax (20.18%). The accuracy of this soil map accounted for 70.97% of global 

index and a Kappa index of 0.5586, equivalent to a moderate classification 

according to Landis and Koch (1977). These results are a little worse than those 

obtained for the Marcela Creek watershed (80% of global index and 0.6537 for a 

Kappa index), however, considering the maximum of 30% of inclusions 
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acceptable in soil maps according to the Brazilian Pedology Technical Manual 

(IBGE, 2007) and the extension of the area for extrapolation (1771.9 km²) being 

365 times larger than the reference area (4.85 km²), these results can be 

considered adequate. It indicates that this data mining tool associated with both 

ArcSIE and a good quality soil map as a source of data can create accurate soil 

maps for areas with similar conditions as the reference area. Reference areas 

(Favrot, 1989) contain soils representative of the surrounding areas and can be 

used to create soil surveys to help to understand the soils of the region of study 

where data are lacking. Lagacherie and Holmes (1997) found that a reference 

area, containing a large scale (detailed information) soil map, can be used as 

source of information to map other areas, however, this new map should not be 

expected to represent the scale as large as the one of the reference area map, but 

it can be used for future works and for guiding activities. These findings are 

important mainly for countries that have limited financial support for soil survey 

activities, such as Brazil (Mendonça-Santos et al., 2007; Silva et al., 2014).  

 

3.3.5 Final considerations 

 

It is known that polygon soil maps, in general, are not pure units, which 

means that the same polygon may contain more than one soil class (inclusions) 

(Soil Survey Staff, 1993). This could make it more difficult for the mapper to 

successfully use the tools tested in this work to obtain information from less 

detailed scale soil polygon maps in order to refine the existing map, mainly 

using decision trees, which are more adequate when there is more homogeneity 
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of soil classes within a map unit (polygon) (Bui and Moran, 2001). This fact 

may prevent the mapper from understanding in details not only the pedologist’s 

mental model embedded within the map, but also the relation between a soil 

class and its typical environmental conditions for future refinement of that map. 

In these cases, disaggregation of polygons may be an alternative to identify 

different patterns within the same polygon (Kerry et al., 2012; Holmes et al., 

2015). However, using KnowledgeMiner to determine the optimal values of 

environmental covariates for each map unit of Marcela Creek watershed soil 

map, it seems that inclusions are less considered and this tool could adequately 

capture the dominant conditions of the main soil class per polygon (MUP 

method), constituting an adequate alternative for data mining of soil legacy data.  

Furthermore, as the methods employed on this work rely on 

relationships among soil classes and terrain attribute rasters derived from a 

DEM, the quality of these spatial data is fundamental and, if not appropriate, can 

negatively influence the final results (Sorensen and Seibert, 2007; Thompson et 

al., 2001). It should also be taken into account the spatial resolution of the DEM. 

Hengl (2006) exposes several methods for determining the most appropriate 

pixel size of an area of interest, while Smith et al. (2006) stated that the best 

spatial resolutions and neighborhood sizes are variable according to terrain 

features. Cavazzi et al. (2013) found that not always very fine spatial resolution 

promotes the greatest accuracy and McBratney et al. (2003) presented the ranges 

of spatial resolutions for different soil mapping scales, being values between 10 

and 40 m appropriate for detailed soil maps, in accordance with the 30 m Aster 

DEM used in this work.  
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The findings of this work are in agreement with the statements of the 

GlobalSoilMap project (Arrouays et al., 2014) and Minasny and McBratney 

(2010) that the use of existing maps as source of information is one of the best 

alternatives to create more detailed digital soil maps in a faster and economic 

way.  

  

3.4. CONCLUSIONS 

 

Legacy soil data extracted by KnowledgeMiner from a detailed soil map 

and used to model soil classes distribution in Marcela Creek watershed 

outperformed decision trees and also made improvements on the existing soil 

map, due to helping to understand the pedologist’s mental model embedded on 

the map. 

This mapping technique allows creating a soil map of the area with 

similar environmental conditions surrounding the watershed, being this area 365 

times larger than the reference watershed, with reasonable accuracy and, 

furthermore, it can contribute to low cost detailed soil mapping of similar areas 

mainly in developing countries, where the lack of financial investments in soil 

surveys is not uncommon.  
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