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The epidemic threshold of the susceptible-infected-susceptible (SIS) dynamics on random networks
having a power law degree distribution with exponent γ > 3 has been investigated using different
mean-field approaches, which predict different outcomes. We performed extensive simulations in
the quasistationary state for a comparison with these mean-field theories. We observed concomitant
multiple transitions in individual networks presenting large gaps in the degree distribution and
the obtained multiple epidemic thresholds are well described by different mean-field theories. We
observed that the transitions involving thresholds which vanishes at the thermodynamic limit involve
localized states, in which a vanishing fraction of the network effectively contribute to epidemic
activity, whereas an endemic state, with a finite density of infected vertices, occurs at a finite
threshold. The multiple transitions are related to the activations of distinct sub-domains of the
network, which are not directly connected.

PACS numbers: 89.75.Hc, 05.70.Jk, 05.10.Gg, 64.60.an

I. INTRODUCTION

Phase transitions involving equilibrium and non-
equilibrium processes on complex networks have begun
drawing an increasing interest soon after the boom of
network science at late 90’s [1]. Percolation [2], epi-
demic spreading [3], and spin systems [4] are only a few
examples of breakthrough in the investigation of criti-
cal phenomena in complex networks. Absorbing state
phase transitions [5] have become a paradigmatic issue
in the interplay between nonequilibrium systems and
complex networks [6–10], being the epidemic spreading
a prominent example where high complexity emerges
from very simple dynamical rules on heterogeneous sub-
strates [3, 11–15].

The existence or absence of finite epidemic thresholds
involving an endemic phase of the susceptible-infected-
susceptible (SIS) model on scale-free (SF) networks with
a degree distribution P (k) ∼ k−γ , where γ is the degree
exponent, has been target of a recent and intense inves-
tigation [11–17]. In the SIS epidemic model, individuals
can only be in one of two states: infected or suscepti-
ble. Infected individuals become spontaneously healthy
at rate 1 (this choice fixes the time scale), while the sus-
ceptible ones are infected at rate λni, where ni is the
number of infected contacts of a vertex i.

Distinct theoretical approaches for the SIS model were
devised to determine an epidemic threshold λc separating
an absorbing, disease-free state from an active phase [11–
19]. The quenched mean-field (QMF) theory [18] explic-
itly includes the entire structure of the network through
its adjacency matrix while the heterogeneous mean-field
(HMF) theory [3] performs a coarse-graining of the net-
work grouping vertices accordingly their degrees. The
HMF theory predicts a vanishing threshold for the SIS
model for the range 2 < γ ≤ 3 while a finite threshold is
expected for γ > 3. Conversely, the QMF theory states
a threshold inversely proportional to the largest eigen-

value of the adjacency matrix, implying that the thresh-
old vanishes for any value of γ [11]. However, Goltsev et
al. [12] proposed that QMF theory predicts the thresh-
old for an endemic phase, in which a finite fraction of
the network is infected, only if the principal eigenvec-
tor of adjacency matrix is delocalized. In the case of a
localized principal eigenvector, that usually happens for
large random networks with γ > 3 [20], the epidemic
threshold is associated to the eigenvalue of the first delo-
calized eigenvector. For γ < 3, there exists a consensus
for SIS thresholds: both HMF and QMF are equivalent
and accurate for γ < 2.5 while QMF works better for
2.5 < γ < 3 [13, 19].

Lee et al. [15] proposed that for a range λQMF
c < λ <

λc with a nonzero λc, the hubs in a random network be-
come infected generating epidemic activity in their neigh-
borhoods but high-degree vertices produce independent
active domains only when they are not directly con-
nected. These independent domains were classified as
rare-regions, in which activity can last for very long times
(increasing exponentially with the domain size [21]), gen-
erating Griffiths phases (GPs) [21, 22]. The sizes of these
active domains increase for increasing λ leading to the
overlap among them and, finally, to an endemic phase
for λ > λc. However, on networks where almost all hubs
are directly connected, it is possible to sustain an en-
demic state even in the limit λ → 0 due to the mutual
reinfection of connected hubs. Inspired in the appeal-
ing arguments of Lee et al. [15], Boguñá, Castellano and
Pastor-Satorras (BCPS) [14] proposed a semi-analytical
approach taking into account a long-range reinfection
mechanism and found a vanishing epidemic threshold for
γ > 3. They compared their theoretical predictions with
simulations starting from a single infected vertex and a
diverging epidemic lifespan was used as a criterion to
determine the thresholds. However, the applicability of
BCPS theory to determine a phase transition involving
an endemic phase has been debated [23].

In this work, we performed extensive simulations and
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found that the SIS dynamics on SF networks with expo-
nent γ > 3 can exhibit multiple transitions, with multiple
thresholds, which are clearly resolved when the degree
distribution presents outliers separated by large gaps.
These gaps permits the formation of non directly con-
nected domains centered on hubs with different connec-
tivity and thus having distinct local activation thresh-
olds. Thresholds consistent with those predicted by
QMF, HMF and BCPS theories were found in our anal-
ysis. Moreover, our finds indicate that the vanishing
thresholds, as those predicted by QMF [11] and BCPS
theories [14], involve long-term but still localized epi-
demics rather than an endemic state, in which a finite
fraction of the network has non-vanishing probability to
be infected in the thermodynamic limit. We propose
that this localized long-term epidemics takes place in do-
mains involving a few hubs with very large degree and
their nearest-neighbors. Finally, our numerical results
show a transition to the endemic state occurring at a fi-
nite threshold, which is intriguingly well described by the
classic and simpler HMF theory [3].

Our paper is organized as follows: in Sec. II we
present simulation procedures, discuss important tech-
nical details of the quasistationary (QS) method used in
this work and provide a comparison between QS method
and the lifespan simulation method proposed in Ref. [14].
Section III is devoted to describe the numerical results
obtained from QS simulations and in Sec. IV we draw
our concluding remarks. Finally, an example where the
lifespan method does not determine the endemic phase in
systems with multiple transitions while the QS method
does is presented in Appendix A.

II. SIMULATION METHODS

We implement the SIS model using a modified Gille-
spie simulation scheme [24] provided in Ref. [13]: At each
time step, the number of infected nodes Ni and edges
emanating from them Nk are computed and time is in-
cremented by1 ∆t = 1/(Ni + λNk). With probability
Ni/(Ni + λNk) one infected node is selected at random
and becomes susceptible. With the complementary prob-
ability λNk/(Ni+λNk) an infection attempt is performed
in two steps: (i) A infected vertex j is selected with prob-
ability proportional to its degree. (ii) A nearest neighbor
of j is selected with equal chance and, if susceptible, is
infected. If the chosen neighbor is infected nothing hap-
pens and simulation runs to the next time step. Notice
that λNk is the total infection rate emanating from in-
fected vertices and the frustrated attempts compensate

1 In the original Gillespie algorithm for the simulation of stochastic
processes [24], the time increment is drawn from an exponential
distribution with mean dt. However, this stochasticity in time
increment did not play an important rule in our analysis due to
the large averaging used.

this exceeding rate. The frustrated attempts constitute
the central alteration in relation to original Gillespie al-
gorithm. The numbers of infected nodes and related links
are updated accordingly, and the whole process is iter-
ated.

The simulations were performed using the QS method
[10, 25] that, to our knowledge, is the most robust
approach to overcome the difficulties intrinsic to the
stationary simulations of finite systems with absorbing
states. In this method, every time the system tries to
visit an absorbing state it jumps to an active configu-
ration previously visited during the simulation (a new
initial condition). This method reproduces very accu-
rately the standard QS method where averages are per-
formed only over samples that did not visit the absorbing
state [25, 26] and its convergence to the real QS state was
proved [27]. To implement the method, a list containing
M = 70 configurations is stored and constantly updated.
The updating is done by randomly picking up a stored
configuration and replacing it by the current one with
probability pr∆t. We fixed pr ' 10−2 since no signif-
icant dependence on this parameter was detected for a
wide range of simulation parameters. After a relaxation
time tr, the averages are computed over a time tav.

The characteristic relaxation time is always short for
epidemics on random networks due to the very small av-
erage shortest path [28]. Typically, a QS state is reached
for t > 104 for the simulation parameters investigated.
So, we used tr = 105. The averaging time, on the
other hand, must be large enough to guaranty that epi-
demics over the whole network was suitably averaged.
It means that very long times are required for very low
QS density (sub-critical phase in phase transition jar-
gon) whereas relatively short times are sufficient for high
density states. Since long times are computationally pro-
hibitive for highly infected QS states, we used averaging
times from 105 to 109, being the larger the average time
the smaller the infection rate. Notice that the simulation
time step becomes tiny for a very supercritical system
(large number of infected vertices) and a huge number
of configurations are visited during a unity of time. It
is important to notice that the QS method becomes ex-
pendable for a large part of our simulations since the
system never visits the absorbing state for the consid-
ered simulation times.

Both equilibrium and non-equilibrium critical phenom-
ena are hallmarked by simultaneous diverging correlation
length and time, which microscopically reflect the diver-
gence of the spatial and temporal fluctuations [5], re-
spectively. Even tough a diverging correlation length has
little sense on complex networks due to the small-world
property [29], the diverging temporal fluctuation concept
is still applicable. We used different criteria to determine
the thresholds, relied on the fluctuations or singularities
of the order parameters, as explained below.

The QS probability P̄ (n), defined as the probability
that the system has n occupied vertices in the QS regime,
is computed during the averaging time and basic QS
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quantities, as lifespan and density of infected vertices,
are derived form P̄ (n) [25]. Thus, thresholds for finite
networks can be estimated using the modified suscepti-
bility [13]

χ ≡ 〈n
2〉 − 〈n〉2

〈n〉
=
N(〈ρ2〉 − 〈ρ〉2)

〈ρ〉
, (1)

that does exhibit a divergence at the transition point
for SIS [13, 15, 19] and contact process [9, 30] mod-
els on networks. The choice of the alternative defi-
nition, Eq. (1), instead of the standard susceptibility
χ̃ = N(〈ρ2〉 − 〈ρ2〉) [5] is due to the peculiarities of dy-
namical processes on the top of complex networks2.

It is expected that the QS state does not depend on
the initial condition. Figure 1 shows a comparison of
QS simulations for the same network with different ini-
tial densities ρ(0) = 10−3 to 0.5, randomly distributed.
The network was generated with the uncorrelated con-
figuration model (UCM) [31], where vertex degree is se-
lected from a power-law distribution3 with a lower bound
k0 = 3. The results are independent of the initial con-
dition. Also, the QS method was compared with the
so-called ε-SIS model [33] where a small rate ε of sponta-
neous infection is assumed for each network vertex. The
thresholds involving long-term epidemics are the same as
those of the QS method [34].
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FIG. 1. (Color online) Susceptibility against infection rate
for SIS model on a single network with different fraction of
initially infected vertices, which are randomly distributed in
the network. The network parameters are γ = 3.5, k0 = 3
and N = 106.

Reference [14] claimed that the QS method is unreli-
able4 for networks with degree exponents γ > 3 and pro-

2 See discussion in Ref. [9], section 3.
3 To generate the degree distribution we used the improved rejec-

tion method provided in Ref. [32].
4 In private communications, authors of Ref. [14] clarified that

the multiple peaks observed in the susceptibility curves cannot
unambiguously define the lifespan divergence. However, they
passed over the fact that a lifespan is easily extracted from QS
simulations using Eq. (2).

posed a new simulation strategy, which is referred here as
lifespan simulation method. In order to draw a compar-
ison with the QS method, we implemented the lifespan
method exactly as in Ref. [14]: The simulation starts
with a single infected vertex located at the most con-
nected vertex of the network and stops when either the
system visits the absorbing state or 50% of all vertices
(the epidemic coverage) were infected at least once along
the simulation. The duration of the epidemic outbreak is
computed and only runs that visited the absorbing state
are used to compute the average lifespan since those that
reached 50% of coverage are assumed as having an infi-
nite lifespan. The number of runs varies from 103, for
largest N and λ, to 106, for the smallest λ.

We applied both methods to the SIS model on UCM
networks with γ = 3.50, minimum degree k0 = 3, and up-
per cutoff kmax = 〈kmax〉, in which 〈kmax〉 is the analyt-
ically determined mean value of the most connected ver-
tex kmax of a random degree sequence with distribution
P (k) without upper bounds, to compare with the results
of Ref. [14]. The constraint kmax = 〈kmax〉 avoids fluc-
tuations in the most connected vertex and, consequently,
in the largest eigenvalue of the adjacency matrix and is
useful for comparisons with the QMF theory [13]. We
remark that the constraint kmax = 〈kmax〉 is only used
in this comparison.
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FIG. 2. (Color online) Numerical determination of the
thresholds for the SIS model on UCM networks with γ =
3.50, k0 = 3 and kmax = 〈kmax〉 for network sizes N =
103, 104, 105, 106, 107, 3 × 107, and 108, increasing from the
right. A same network sample for each size was used in both
methods. Both (a) lifespan calculated using the method of
Ref. [14] and (b) susceptibility via QS method are shown in
the top panels. (c) Peak positions as functions of the network
size estimated with both methods.

Figures 2(a) and (b) show the lifespan and susceptibil-
ity against infection rate for networks of different sizes.
The peak positions against network size are compared
in Fig 2(c). As can be clearly seen, the right suscep-
tibility peaks are very close to the lifespan ones show-
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ing that the susceptibility method is able to capture the
same transitions as the lifespan method does but going
beyond as discussed in the rest of the paper. It is worth
noticing that if larger values of λ are simulated, other
peaks will emerge in susceptibility curves even using the
cutoff k ≤ 〈kmax〉. These multiple peaks were not re-
ported in previous works dealing with the same network
model [13, 14, 19].

Moreover, a lifespan is also obtained in the QS method
as [25]

τqs =
1

P̄ (1)
. (2)

We checked that the lifespans obtained in the QS method
and those of Ref. [14] diverge around the same threshold;
the basic difference is that the former is “infinite” above
the threshold whereas the latter remains finite.

In a partial summary, we verified that the lifespan
method predicts an epidemic threshold when an activ-
ity survives for long times, but there is no guaranty that
it is necessarily an endemic phase (see appendix A for a
concrete counter-example). On the other hand, the QS
analysis is able to simultaneously determine transitions
involving endemic as well as localized states and the one
involving a diverging lifespan is resolved using Eq. (2).
So, we conclude that lifespan method must not be used
alone in systems with multiple transitions since it cap-
tures the first transition with a long-term activity.

III. NUMERICAL RESULTS

Two-peaks on susceptibility against infection rate for
SIS were firstly reported in Ref. [13], which focused on
the analysis of the peak at low λ and showed that it is well
described by the QMF theory (see also Ref. [19]) but did
not realize that the peak at higher λ is the one associated
to a diverging lifespan (Fig. 2). However, depending on
the network realization, the susceptibility curves can ex-
hibit much more complex behaviors with multiple peaks
for values of λ larger than those reported in Refs. [13, 19].
These complex behaviors become very frequent for large
networks. From now on, we scrutinize such a complex
behavior to unveil its origin and implications to the epi-
demic activity.

Figure 3(a) shows a typical susceptibility curve (black)
exhibiting such a complex behavior for an UCM network.
The degree distribution is shown in Fig. 3(d). Multiple
peaks are observed only if the degree distribution ex-
hibits a few large gaps, in particular in the tails. These
few vertices5 with degree k & 〈kmax〉 are hereafter called
outliers. Notice that the multiple peaks are not detected

5 The number of outliers can estimated as N
∫
k&〈kmax〉 P (k)dk ∼

O(1).
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FIG. 3. (Color online) (a) Susceptibility, (b) stationary den-
sity and (c) its logarithmic derivative versus infection rate for
a SF network with 3× 107 vertices, degree exponent γ = 3.5,
minimum degree k0 = 3 and kmax unconstrained. The degree
distribution is shown in panel (d). Different immunization
strategies are shown: Black circles represent no immuniza-
tion; red squares represent the immunization of three largest
outliers (inner box in panel (d)); blue triangles represent the
immunization of eight most connected vertices (outer box in
panel (d)).

by the lifespan simulation method [14]. The role played
by outliers is evidenced by their immunizations6 as il-
lustrated in Fig. 3. For instance, the immunization of
the three most connected vertices is sufficient to destroy
two peaks and to enhance others. The stationary den-
sity varies abruptly close to the thresholds determined
via susceptibility peaks, Figs. 3(b) and (c), which is an
evidence of the singular behavior of the order parameter
ρ.

The presence of gaps is a characteristics of large de-
gree sequences with a power law distribution. The sta-
tistical representativity of specific properties of a finite
set of networks, generated under the same conditions, in
relation to the entire ensemble is a complex issue [35],
but the existence of gaps can be understood with a sim-
ple non-rigorous reasoning. Using extreme value theory
one can show that the most connected vertex has an
average 〈kmax〉 ∼ N1/(γ−1) [36]. However, this mean
value is not representative of the highest degree since
the dispersion σmax =

√
〈k2max〉 − 〈kmax〉2 diverges as7

σmax ∼ N1/(γ−1) for γ > 3. Outliers should behave in
this same way and therefore we expect larger dispersion
in outlier connectivity as network size increases.

6 Immunized vertices cannot be infected, which is equivalent to
removing them from the network.

7 This result can be derived using the same steps to obtain 〈kmax〉
in Ref. [36].
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It is interesting to observe that while the peaks at small
λ can or not appear depending on the presence of outliers
and gaps, the rightmost one essentially does not change
its position from a network realization to another, such
that it should depend on network properties representa-
tive of the entire ensemble of networks with a specified
set of parameters. Indeed, later we will see that the be-
havior of the rightmost peak is qualitatively described by
the HMF threshold which depends only on 〈k2〉 and 〈k〉.

A deeper physical explanation for the multiple peaks
can be extracted using another order parameter in the
QS state, the participation ratio (PR), defined as

Φ =
1

N

(
∑
i ρi)

2∑
i ρ

2
i

, (3)

where ρi is the probability that the vertex i is infected
in the stationary state. The inverse of the PR is a stan-
dard measure for localization/delocalization of states in
condensed matter [37] and has been applied to statisti-
cal physics problems [38] including epidemic spreading
on networks [12, 39, 40]. The limiting cases of totally
delocalized (ρi = ρ ∀ i) and localized (ρi = ρδi,0 where 0
is the vertex where localization occurs) states are Φ = 1
and Φ = 1/N , respectively.

The PR as a function of the infection rate is shown
in Fig. 4. The PR is an estimate of the fraction of ver-
tices that effectively contribute to the present epidemic
activity. Thus, the multiple transitions are related to the
rapid delocalization processes of the epidemics as λ in-
creases, hallmarked by the singular behavior of Φ around
distinct values of λ. When the PR corresponds to a fi-
nite fraction of the network in an active phase one has an
authentic endemic state, since a finite fraction of nodes
has a non-vanishing probability of being infected at the
same time. The logarithmic derivative of the PR exhibits
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FIG. 4. (Color online) Main: PR as a function of the infection
rate for the same network and immunization strategies as in
Fig. 3. Symbols as in Fig. 3. Inset: Logarithmic derivative of
the PR as a function of the infection rate.

several peaks in analogy to susceptibility peaks, as shown
in the inset of Fig. 4. Indeed, PR can be seen as a sus-
ceptibility but from an origin different of χ. The latter

is a measure of stochastic fluctuations of the order pa-
rameter (density of infected vertices) whereas the former
is measure of stationary spatial fluctuations that make
sense only for heterogeneous substrates.

The PR against network size for a fixed distance to
either λlsp (the threshold marking the lifespan divergence)

and λrightp (the threshold referent to the rightmost peak
observed for susceptibility) are shown in Fig. 5(a). In the
presented size range, the PR decays as a power law for
a fixed distance to the lifespan peaks. Analogous results
are obtained for ρ̄ vs N curves (see Fig. 5(b)). The power
regressions yield approximately Φ ∼ N−0.8 and N−1 for
γ = 3.5 and 4, respectively, ρ ∼ N−0.8 for both γ = 3.5
and 4. These decays constitute a strong evidence for
epidemics localization at λ & λlsp whereas the constant

dependence on N observed for λ & λrightp represents an

endemic phase8.
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FIG. 5. (Color online) (a) PR against size for a fixed dis-
tance λ−λp = 0.012 to either lifespan (circles) and rightmost
(squares) peaks. (b) The same analysis of panel (a) for QS
density. Lines are power regressions. At least 10 network
samples were used to perform averages for λ > λrightp (top

curves) and at least 20 for λlsp < λ < λrightp (bottom curves).

Figure 6 shows the positions λleftp (the leftmost peak),

λrightp and λlsp against the network size. One can see that

λrightp reaches a constant value for large N whereas the
other ones neatly decays with N . In a nutshell, our re-
sults show that the case γ > 3 may concomitantly exhibit
transitions predicted by three competing mean-field theo-
ries: (i) At λ = λleftp , one has a transition to an epidemics
highly concentrated at the star subgraph containing the
most connected vertex and its nearest neighbors. The
threshold dependence on size is very well described by
QMF theories [11, 13, 19]. (ii) At λ = λlsp , a transition
with a threshold described by the BCPS theory [14] is ob-
served but, our numerics indicate that it is not endemic
since PR and ρ decays with N above this threshold. No-
tice that the threshold λlsp decays with N much slower

8 Notice that a scaling ρ̄ ∼ (λ − λp)β , independent of the size, is
expected for an usual endemic phase transition in the thermody-
namic limit [5].
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than λleftp . This interval is characterized by the mutual
activation of stars sub-graphs centered on the outliers by
means of reinfection mechanism proposed in the BCSP
theory [14]. (iii) For λ = λrightp , a transition involving
an authentic endemic phase with a finite threshold is ob-
served as formerly, and now surprisingly, predicted by
the HMF theory [3]. Here, the bulk of the network acts
collectively in the epidemic spreading through the whole
network characterizing a real phase transition.
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results predicted by pair QMF [19] and pair HMF [9] theories
are shown as dashed and doted lines, respectively. Solid lines
are power law regressions. Averages were done over at least 5
samples for the statistics of the rightmost peaks and at least
20 samples for lifespan and leftmost peaks.
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FIG. 7. Left: Schematics of a double random regular network
(DRRN). Right: Susceptibility against infection rate for DR-
RNs with using m1 = 4, m2 = 6, α = 1/2 and different sizes.
Dashed lines are thresholds predicted for DRRNs.

The co-existence of localized and endemic transitions
in a same network can be explained in a double ran-
dom regular network (DRRN), Fig. 7. These networks
are formed by two random regular networks (RRNs)9 of
sizes N1 and N2 = Nα

1 (α < 1⇒ N2/N1 → 0 in the ther-
modynamical limit) and degree m1 and m2, respectively,

9 In a single RRN all vertices have the same degree m but con-
nections are done at random avoiding multiple and self connec-
tions [13].

connected by a single edge. The DRRN has two epi-
demic thresholds corresponding to the activations of sin-
gle RRNs. Choosing m1 = 4 and m2 = 6, the thresholds

determined for single RRNs are λ
(1)
c = 0.31452 (m1 = 4,

present work) and λ
(2)
c = 0.2026 (m2 = 6 [30]). By con-

struction, the former involves an endemic and latter a lo-
calized transition since the smaller RRN constitutes itself
a vanishing fraction of the whole network. Figure 7 shows
the susceptibility plots for α = 0.5 with peaks converg-
ing exactly to the expected thresholds. The threshold
obtained via lifespan method, which is in principle fitted
by the BCPS theory, converges to the localized one (see
appendix A for additional data and discussions). This
network model can be generalized to produce an arbi-
trary number of transitions providing a clearer analogy
with multiple transitions observed for random networks
with γ > 3.

An additional property can be derived for random net-
works with γ > 3: outliers have negligibly low probability
to be connected to each other. Due to the absence of de-
gree correlation, the probability that a vertex of degree
k is connected to an outlier of degree kout is given by
P (k|kout) = kP (k)/〈k〉 [41] irrespective of the outlier’s
degree. Therefore the probability that an outlier is con-
nected to other outlier is given by

Pout '
∫
k&〈kmax〉

P (k|kout)dk ∼ 〈kmax〉−γ+2,

which goes to zero for large networks permitting the for-
mation of non directly connected domains centered on the
outliers. This conclusion can be obtained rigorously us-
ing hidden variable formalism [42]. We have now a simple
physical explanation for multiple thresholds and its con-
nection with the lifespan simulation method: The core
containing the outliers plus its nearest neighbors form a
subgraph with N2 ∼

∑
k>〈kmax〉NP (k)k ∼ N1/(γ−1) �

N . This domain size diverges as network increases and is
able to sustain a long-term epidemic activity, but still
represents a vanishing fraction of the whole network.
Above the activation of this domain but still below the
endemic phase, the epidemics is eventually transmitted
to any other vertex of the network due to the small-world
property, but this activity dies out quickly outside this
core since there the process is locally sub-critical. How-
ever, all network vertices will be infected for some while
since the active central core acts as a reservoir of infec-
tiousness to the rest of the network.

Our conjecture is confirmed in Fig. 8 where SIS dy-
namics in a large network (N = 3× 107 vertices) is com-
pared with the dynamics restricted to either its core of
outliers (7 most connected vertices) plus their nearest
neighbors (≈ 13200 vertices) or to its outer shell exclud-
ing the core10. The multiple peaks for the core are ob-

10 To restrict the epidemics to the core we immunize the shell and
vice-versa.
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FIG. 8. (Color online) Susceptibility (top) and QS lifespan
(bottom) against infection rate for SIS dynamics on a network
with N = 3 × 107, k0 = 3 and degree exponent γ = 3.50
restricted to different domains (see text for definitions). The
lifespan is considered infinite if greater than the averaging
time tav = 107.

served approximately at the same places as those for the
whole network but the outer shell exhibits a single peak
around λrightp . However, the lifespan determined via QS

method (see section II) diverges at λ ≈ λlsp for both core
and whole network whereas the divergence coincides with
λrightp for the outer shell.

We also analyzed the lifespan using the QS method,
Eq. (2), for a fixed distance to both leftmost and lifespan
peaks. For the investigated size range N < 108, the lifes-
pan values are relatively short (< 102) and increase alge-
braically with system size in the interval λleftp < λ < λlsp
while long and exponentially diverging lifespans, granting
long-term activity for large networks [43], are obtained
for λlsp < λ < λrightp . The algebraic dependence for the
former case is almost certainly a finite-size effect. We cal-
culated the lifespan for λleftp < λ < λlsp for the SIS model
on star graphs with k leaves and an algebraic growth of
the lifespan with N is also obtained for k < 2000 which
coincides with the range size of typical star subgraphs ob-
tained for UCM networks investigated here. However, a
crossover to an exponential growth is obtained for larger
star graphs (k > 104) showing that this structure is it-
self able to sustain alone a long-term epidemic activity.
So, if one could simulate SIS model on much larger UCM
networks (N > 1012) the threshold λleftp would define a
transition to a localized but long-term epidemics and the
lifespan method would detect the transition given by the
QMF theory.

Outliers play a central role even not being able to
produce separately a genuine endemic phase where the
whole network has a non-vanishing probability of being
infected. To highlight such a role, we introduce a hard
cutoff in the degree distribution as kmax = k0N

0.75/(γ−1),
which suppresses the emergence of outliers as shown in
Fig. 9(a). This choice is because random networks with-

out a rigid upper bound have a highly fluctuating natural
cutoff, as discussed above. Fig. 9(b) compares the QS
density for rigid and natural cutoffs. The infectiousness
for λ < λendemicc is highly reduced in the absence of out-
liers. The susceptibility no longer exhibits multiple peaks
for a hard cutoff, as can be seen in Fig. 10(a), confirming
the existence of a single transition. Also, the thresholds
for hard cutoff networks are quite close to λrightp obtained
with the natural cutoff, as shown in Fig. 10(b). Such an
observation is in agreement with the HMF theory where
the thresholds for γ > 3 are asymptotically independent
of how kc diverges [3, 9].
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FIG. 9. (Color online) (a) The tail of the degree distributions
for networks with γ = 4, k0 = 3, and N = 108 vertices and
either rigid or natural cutoff. The curve for rigid cutoff was
shifted to enhance visibility. (b) QS density against infection
rate for a network degree exponent γ = 4.0 using different
cutoffs.

IV. CONCLUSIONS

In summary, we thoroughly simulated the dynamics of
the SIS epidemic model on complex networks with power
law degree distributions with exponent γ > 3, for which
conflicting theories discussing the existence or not of a
finite epidemic threshold for the endemic phase have re-
cently been proposed [11, 12, 14, 15]. We show that the
SIS dynamics can indeed exhibit several transitions as-
sociated to different epidemiological scenarios. Our sim-
ulations support a picture where the threshold obtained
recently in the BCPS mean-field theory [14] represents a
transition to localized epidemics in random networks wih
γ > 3 and that the transition to an authentic endemic
state, in which a finite fraction of network is infected,
possibly occurs at a finite threshold as formerly and now
surprisingly foreseen by the HMF theory [3]. The mul-
tiple transitions are associated to large gaps in the de-
gree distribution with a few outliers, which permits the
formation of non-directly connected domains of activity
centered on these outliers. If the number of hubs is large,
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FIG. 10. (Color online) (a) Susceptibility curves for two
networks with rigid cutoff, k0 = 3, N = 108 vertices and
different degree exponent (symbols are the same used in panel
(b)). (b) Threshold against system size for rigid and natural
cutoffs. The averages were done over at least 6 samples for
rigid cutoff but error bars are smaller than symbols. Averages
for natural cutoffs are the same as in Fig. 6.

as in the case of SF networks with γ < 3, every vertex
of the network is “near” to some hub and the activation
of hubs implies in the activation of the whole network,
as previously reported in [13, 19]. Our finds are consis-
tent with the conjecture proposed by Lee et al. [15] since
the lifespans of independent domains involving outliers
grow exponentially fast with the domain sizes implying
that long-term epidemic activity is possible even in non-
endemic phase. Our finds also do not rule out the mean-
field analysis of Ref. [12]. The intermediary transitions
can be associated to distinct localized eigenvectors that
are centered on the outliers while the endemic threshold
involves a delocalized eigenvector with a finite eigenvalue.

Our results are in consonance with a recent line of in-
vestigation, in which the topological disorder in networks
with heterogeneous degree distribution may produce rare
regions and Griffiths phases leading to anomalous be-
haviors in the subcritical phase [15, 40, 44, 45]. Such
anomaly is characterized by localized activity that sur-
vives for long times, even though the network is macro-
scopically absorbing. Very recently, the possibility of rare
regions effects from pure topological disorder in the SIS
dynamics on unweighted SF networks as well as multiple
transitions were suggested in Ref. [20]. Our results may,
thus, be a fingerprint of GPs. However, more detailed
analyses are demanded for a conclusive relation. Also,
very recently, multiple phase transitions were found in
percolation problems on SF networks with high cluster-
ing [46] and on networks of networks [47]. In both cases
transitions were hallmarked by multiple singular points
in the order parameter in analogy with our results for
epidemics.

Our final overview is that apparently competing mean-

field theories [3, 11, 12, 14, 15] can be considered, in
fact, complementary, describing distinct transitions that
may concomitantly emerge depending on the network
structure. In particular, the transitions involving local-
ized phases, as possibly the one predicted by the BCPS
theory [14], are not negligible since they become long-
term and an epidemic outbreak may eventually visit a
finite fraction of the network. This peculiar result is un-
thinkable for other substrates rather than complex net-
works sharing the small-world and scale-free properties.
Actually, it is well known that some computer viruses
can survive for long periods (years) in a very low den-
sity (below 10−4) [48], exemplifying the importance of
metastable non-endemic states. Our numerical results
call for general theoretical approaches to describe in an
unified framework the multiple transitions of the SIS dy-
namics on SF networks.
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Appendix A: Quasistationary versus lifespan
methods
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FIG. 11. (Color online) Threshold analysis for DRRN with
α = 1/2, m1 = 4, and m2 = 6. (a) The thresholds esti-
mated as the peaks in the susceptibility or lifespan curves.
The dashed lines are thresholds obtained on single RRNs
with the respective mi. (b) Difference between peaks and
the thresholds for single RRNs with m = 4 (lifespan and left
susceptibility peaks) or m = 6 (right susceptibility peak).

Lets show that the QS method succeeds whereas lifes-
pan method fails in predicting the endemic phase for a
DRRN (Fig. 7). The susceptibility peaks in Fig. 7 clearly
converge to the respective thresholds of single RRNs as
highlighted in Fig. 11(a) and (b). Notice that the mean-
field theory for the finite-size scaling of the contact pro-
cess, which in the case of strictly homogeneous networks
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vertical lines indicate the activation thresholds in each sub-
graph.

is exactly the same as SIS model with a rescaled infec-
tion rate λ/m, predicts that the threshold approaches its
asymptotic values as λp − λc ∼ S−1/2, where S is the
graph size [9]. So, the endemic threshold is expected to

scale as λp−λ(1)c ∼ N−1/21 ∼ N−1/2 and the localized one

as λp − λ(2)c ∼ N
−1/2
2 ∼ N−α/2. These power-laws are

confirmed in Fig. 11(b). The lifespan curves, obtained
using as initial condition only the most connected ver-
tex infected (the one connecting sub-graphs), have single
peaks that converge to the threshold corresponding to a
localized epidemic and interestingly following the same
scaling law as the left QS peak as shown in Figs. 11
and 12(a). The central point here is that the lifespan
method detected the first threshold where the absorbing
state becomes globally unstable (an exponentially long-
term activity) that, in this case, is not the endemic one
as shown in Fig. 12(b), in which the QS density is shown
as a function of the infection rate.

It is worth noticing that the QS simulations around
the peaks are orders of magnitude computationally more
efficient than the lifespan method.
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[31] M. Catanzaro, M. Boguñá, and R. Pastor-Satorras,

Phys. Rev. E 71, 027103 (2005).
[32] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and

B. P. Flannery, Numerical Recipes 3rd Edition: The Art
of Scientific Computing, 3rd ed. (Cambridge University
Press, New York, NY, USA, 2007).

[33] P. Van Mieghem and E. Cator, Phys. Rev. E 86, 016116
(2012).

[34] R. S. Sander and S. C. Fereira, in preparation.
[35] C. I. Del Genio, H. Kim, Z. Toroczkai, and K. E. Bassler,

PLoS ONE 5, e10012 (2010).
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