
PIV and WPIV: Two New Performance Indices for Heterogeneous

Systems Evaluation

KALINKA R. L. J. CASTELO BRANCO1

MARCOS JOSÉ SANTANA2

REGINA H. C. SANTANA2

SARITA MAZZINI BRUSCHI2

CÉLIA LEIKO OGAWA KAWABATA3

EDWARD DAVID MORENO ORDONEZ1

UNIVEM - Fundação de Ensino Eurípides Soares da Rocha de Marília

Av. Hygino Muzzi Filho, 529 - Campus Universitário, Marília, SP
1(kalinka,edmoreno)@univem.edu.br

ICMC / USP - Univesidade de São Paulo

Av. Trabalhador Sancarlense, 400, São Carlos, SP, Brasil
2(mjs,rcs,sarita)@icmc.usp.br

UNICEP – Centro Universitário Central Paulista

Rua Miguel Petroni, 5111 São Carlos, SP, Brasil
3celiak@gmail.com

Abstract. Two new performance indices (PIV - Performance Index Vector and WPIV – Weighted
Performance Index Vector) are presented in this article. Those indices to evaluate heterogeneous
computing systems are based on a Euclidian metric. Aiming to maximize the use of the machines, the
proposed indices are a combination of several usual indices and the results of their evaluation through a
simulator show an appropriate behavior for different kinds of applications.

Keywords: Performance Index, Load Index, Load Balancing, Distributed System, Heterogeneous
Systems.

(Received January 27/2006 / Accepted August 03, 2006)

1 INTRODUCTION

The distributed computing systems have been showing
through the years its advantages over the centralized
systems, achieving a prominence place in the computing
scenery in a very short time. That class of systems has
been getting more improved in order to provide better
performance, at a rather low cost.

Although the advantages obtained with the
distributed parallel computing are evident, several new
problems emerge from that new approach. Several
researches have been developed considering the existing
problems in the use of the distributed parallel

computing. Problems with the means of interconnection,
with the application portability, with the communication
protocols, with the scheduling of processes and its
applications in the final development of the system,
among others, are approached on most of those
researches. Scheduling of processes constitutes a theme
of great importance, mainly for directly influencing the
system performance.

The complexity in treating the heterogeneity of the
systems concerning load indices leaves a quite attractive
gap for the researches development opened. Filling in
that gap may allow better performance levels to be
reached and established when the simplified solutions,

already consolidated concerning homogeneous systems,
may be successfully adopted for heterogeneous systems.

A novel way of treating the distributed computing
systems heterogeneity, leading it to new performance
indices establishment (replacing load indices) that may
be used efficiently in that kind of system, basing itself on
the famous rules in the literature [1-11] is presented in
this article.

The performance indices here presented (PIV and
WPIV) are based on a Euclidian metric and they use
vectors to obtain the machine and the system load status
characteristics. Once those indices match the different
load indices presented in literature, results presented by
them are far better than the ones presented by each
individualized load index.

The purpose of this work is to contribute with the
researches development both in scheduling of processes
and in heterogeneous computing, using load indices
already consolidated and individual characteristics of
each machine or system to be evaluated through the use
of those new performance indices.

2 RELATED WORK

A good performance index, as well as in the load
indices, should have ways of estimating the future
through current values and past factor, so that for a good
performance index to be obtained, its bases should be
founded in load indices. As it has been noticed, load
indices are really volatile, showing the instability of the
considered metric. That instability happens due to
working loads flotation.

Although many researches have focused on process
scheduling using load indices to improve performance,
little has actually been achieved within the ambit of
process scheduling in architecturally and
configurationally heterogeneous systems. To date, the
reference used in this area is [1]. The authors propose
the use of a load index obtained from the linear
combination of service time sj, required by a task for its
execution in a given resource rj, where the length of the
queue of the resource rj is given by qj, such that the load
index li is obtained through:

∑
=

×=
N

j

jj qsli
1 Equation 1

where N is the total number of resources having
queues. This model considers environments composed
of configurationally and architecturally homogeneous
machines. Wolffe at al. [12] proposes the use of Load
Capacity as a load index for heterogeneous
environments. Load capacity is understood here as the
effective use of the processor. It is considered a load
index for heterogeneous environments because it

normalizes the speed of each CPU in relation to the
others.

(1–Use_of_CPU)*Relative_Speed_of_the_CPU

This metric represents the processing capacity
effectively remaining in the processing resource, but
does not take into account the other resources that are
involved in processing as a whole, such as memory, disk,
and network, rendering it a very specific index with little
flexibility. In addition to the considerations about this
index, it should be pointed out that the experiments
involving load indices (the execution of applications to
obtain the final response time) were carried out on
architecturally homogeneous machines.

On the other hand, Fontlupt at al. [13] proposes
obtaining the load as the number of data items existing
in the queue of the processor. The function of load is
denoted by w. The system’s total load is given by W,
which is obtained through:

∑
−

=

=
1

1

][
P

i

iwW

 Equation 2

Considering a set of P processors that are completely
homogeneous, and considering the also homogeneous
tasks to be executed in these processors, one finds that
the total average in these systems is given by W/P and is
denoted by w.

In general, one finds that researches in the area are
still ongoing, especially with regard to load indices and
simulation models to verify the performance resulting
from the adoption of the respective index.

The simulation models used in most cases involving
studies of the implication of load indices on the final
results of applications are simplified models, which have
so far not taken into account the characteristics of
heterogeneity of the studied platform [1, 12-14], and
have focused mostly on parameters relating only to
homogeneous machines and applications.

3 PIV - PERFORMANCE INDEX VECTOR

A good performance index, as well as in load indices,
should have means of estimating the future through
current values and past factors and, thus, for a good
performance index to be obtained, its bases should be
founded in load indices.

As it has been noticed, load indices are really
volatile, showing the instability of the considered
metrics. That instability happens due to the working
loads flotation. If determinism does not exist, the need of
elaborating models that reflect that characteristic and

that consider the load flotation over a period of time will
exist.

The challenge of the non-determinism is in the
learning strategy to discover heuristic rules that allow
the choice of the "best" alternative, without needing to
explore all of them.

Considering the four basic resources to be analyzed
in a machine, the function presented in Equation 3 can
be obtained:

),,,(NetworkDiskMemoryCPU IIIIfID =
 Equation 3

The function presented in Equation 3 can, still, use
weights for each one of the specific indices of the
resources:

 Where ID is the performance index that considers
the four basic resources. W1, W2, W3 and W4 are the
weights that will be given to the indices according to the
characteristic of the application to be scheduled [15].
ICPU is a combination of the CPU indices that more adapt
to applications strictly CPU-Bound. IMemory is the
combination of the Memory indices that are more
adapted to applications strictly Memory-Bound, Idisk is
the combination of the Disk indices that are more
adapted to applications strictly Disk-Bound and Inetwork
is the combination of the Network indices that are more
adapted to applications strictly Network-Bound.

Each load index is calculated independently and it
considers a specific benchmark. Once the measures are
presented with values that cannot be directly combined
and compared, normalization should be used. Each
measure operates in an open scale, what implicates that
the minimum value is zero. However, the maximum
value cannot be determined because it depends on the
use and capacity of each machine.

Thus, each measure is normalized separately so that
each specific index of CPU, Disk, Memory and Network
resources has its value presented between 0 and 1 (ICPU,
IDisk, IMemory and INetwork indices can be elaborated starting
from a weighted average of several load indices,
regarding several visions of the resource use).

Once each measure is normalized according to the
relative benchmarks (allowing the comparison among
machines in equality), and that the machines may be
disposed according to a classification with values that
range from 0 to 1, the values of each one of the different
resources measures may be simply added and weighted.

Like load indices, a good performance index must be
able to estimate the future based on current values and
on past factors. Therefore, to obtain a good performance
index, its bases must be founded on load indices. In this
paper, a performance index is understood as the metric
that can provide an image of the work capacity, or even
better, that constitutes an order of magnitude capable of

clearly illustrating what can be expected, in terms of
performance, from the element under analysis [1]. On
the other hand, the load index can be formally defined as
a non-negative numerical variable, assuming the value
zero when the resource is idle and having its value
incremented positively when the load of this resource
increases [1, 2]. Thus, the performance indices PIV and
WPIV are presented below.

3.1 A Performance Index Variant

An interesting characteristic of the function presented in
the Equation 3 is its possible use as a specific load index
for each resource, CPU, Disk, Network, Memory, where
each one of them may be seen as a vector base. This
way, considering in the vector representation the order
<CPU, Disk, Network, Memory>, the vector base
<1,0,0,0> represents a 100% CPU application. In the
same way, <0,1,0,0> can be had from 100% Disk
application, <0,0,1,0> from 100% network application
and <0,0,0,1> from 100% memory application.

The resources n that a machine can provide may be
considered to form an n dimensional space. If a machine
provides the CPU, Network, Disk and Memory
resources then a four dimensional space is formed, in
which a point locates the current state of this machine.

Once those resources strip of values are concentrated
between 0 and 1, and that those resources are treated in a
vector way, then an idle machine is located in the origin
<0,0,0,0> and a completely overloaded machine is
located in the opposite vertex <1,1,1,1>.

For instance, Figure 1 presents a three-dimensional
space, once four-dimensional spaces are complex in
terms of graphic and hypercube representations, it would
turn the visualization very complex.

In Figure 2, three peculiar points of load can be
observed in a machine. Situation A represents a machine
with great use of CPU, that does not use memory and
with an average use of network. Similarly, it can be
observed that situation B makes an average use of the
memory and of the network while situation C makes a
great use of CPU, memory and network.

Through that representation two kinds of information
may be obtained. The angle between the machine vector
use and the x axis shows the relative percentage of each
resource use. The length of the vector represents how
much of each resource is used.

Considering two resources (1 and 2), the Load
Balancing can be observed through θ angle, and when £
≈ 45º, both resources are equally loaded; when £ >> 45º,
it indicates that the resource 1 is predominant and when
£ << 45º, it indicates that the resource 2 is the
predominant one.

Figure 1: Three-dimensional space used to describe the
current load of a machine and the three points indicating
potential loads of the machine.

Once the length of the vectors is the same, in spite of
the fact that machine b is balanced (|45º -£ | = 0)
concerning 1 and 2 resources, it is equally classified to
the machine A that is less overloaded than b regarding
resource 2.

So that the overload conditions are noticed, £ angle
and the length of the vector should be checked
simultaneously. If £ ≈ 0 and length tends to 1, then
resource 2 is close to saturation; in the same way, if £ ≈
90 and length tends to 1, then resource 1 is close to
saturation.

Figure 2: Different areas for two vectors with the same length
(different angles)

Once the length of the vectors is the same, in spite of
the fact that machine b is balanced (|45º -£ | = 0)
concerning 1 and 2 resources, it is equally classified to
the machine A that is less overloaded than b regarding
resource 2.

So that the overload conditions are noticed, £ angle
and the length of the vector should be checked
simultaneously. If £ ≈ 0 and length tends to 1, then
resource 2 is close to saturation; in the same way, if £ ≈
90 and length tends to 1, then resource 1 is close to
saturation.

Figure 3 illustrates the arrival of a Process P, that
uses only resource 1 (R1 bound) in two different
machines, but machines that are equally loaded.

Resource 1 is more loaded in machine M1 while
resource 2 is more loaded in machine M2 concerning
their use. Process P (that is resource 1 bound) can be
allocated in M1 and M2. It should be determined in
which situation a better result is obtained. A metric that
can be adopted, in this case, is the Euclidian distance
between the point and the origin, that is, the length of the

vector from the origin to the point. Therefore Equation 3
can be written again as

ID = 2222
NetworkMemoryDiskCpu IIII +++

For the example presented in Figure 3, vectors C1
and C2 are obtained. The result of length C2 is lower than
length C1 and this way, Process P is allocated in M2.

It demonstrates that, in spite of the machines being
equally loaded, the load distinction regarding the
resources that are being used and the kind of task that
will be allocated allows a better allocation of the task.
This load identification by resource is provided by the
metric here proposed.

The example presented in Figure 3 illustrates a
simple example, because the process uses only one
resource. A more complex example can be given by an
application that uses more than a resource, as shown in
Figure 4.

In this Figure, Process P uses more than one resource
in two different machines but that are, again, equally
loaded.

Resource 1 is more loaded in the machine M1 while
resource 2 is more loaded in the machine M2 in terms of
use. Process P can be allocated in M1 and M2. It should
be determined; however, in which machine a better
result is obtained, and the resulting vector is used for
that. The resulting vector that presents shorter length
indicates to which machine process P should be
allocated. In this case, it is noticed that the process
should be allocated in the machine M2 so that a better
performance can be obtained.

R
e
s
o
u
c
e
 1

Resource 2

R
e
c
u
rs
o
 1

R
e
s
o
u
rc
e
 1

Resource 2

M1

M2

P

P

C2

C1

Resource 2

M2

PC2

M1

P

C1

Machine 1

Machine 2

Machine 1 + Machine 2

Figure 3: Two-dimensional space formed by resources 1 and
2, and two machines with the same loadings (process limited

by a resource).

From the analyses made, it can be noticed that the
proposal presented in this paper does not consider
peculiar values of each resource, but the existing
relationship among the different resources that compose
a machine, allowing the allocation of the processes to be
made in a more balanced way.

R
e
s
o
u
rc
e
 1

Resource 2

a

b

£

<1,1,1>

<0,0,0>

CPU

Memory

N
et
w
or
k

C

A

B

This way, the performance index presented in this
article bases itself on the Euclidian distance between the
origin point (where the machine is idle) and the resulting
point among the load vectors of the machine before
receiving particular application, plus the vector of the
load imposed by that application. The most appropriate
machine to receive the application is that one where the
shortest Euclidian distance is obtained. That index,
based on load vectors, will be referenced in this paper
remaining as PIV (Performance Index Vector).

PIV considers that weights defined in the Equation 3
will be the same for all resources. Other PIV variants
may be established with different weights where WPIV
is obtained. PIV can present better results for the cases
in which there are some knowledge from the kind of
application to be considered or when the use of an
adaptive index is possible.

Figure 4: Two-dimensional space formed by resources 1 and
2, and two machines with the same loadings (process limited
by two resources).

4 METHODOLOGY FOR THE

PERFORMANCE EVALUATION

DEVELOPMENT THROUGH MODELING

TECHNIQUES

Several load indices execute tests were accomplished in
the environment AMIGO (dynAMical flexIble
schedulinG envirOnment) [16]. Due to the amount of
tests and the need to perform tests that would take a long
time, the development of a queue network model and the
use of simulation for the metric new proposal evaluation
were chosen.

The representation of the system through a model
that represents the load and performance indices and the
solution of this model through simulation become
attractive especially when one wants to insert
modifications and obtain results. The analysis of load
and performance indices is complex, mainly from the
machines configuration and the scheduling environment
that will be used point of view.

The process of a simulation development involves
several stages. First, it is necessary to specify the model,
abstracting the most important characteristics of the
system. When the system is modeled, it is necessary to
transform the model in a simulation program. In
stochastic simulations, due to the randomness of the
input data, the program should be executed several times
in order to guarantee that the randomness influence in
the final results is minimized.

The performance study methodology through the
modeling techniques is composed of several steps that
include model development, tests to guarantee that this
one is correct and the results obtaining through the
model experimentation. The first step in a performance
evaluation study, no matter the technique used to solve
the model, consists in identifying the problem that
generated the need of a performance evaluation. Done
that, the system that will be evaluated in the study should
be analyzed and the goal to be reached should be
established. Those steps, applied to load and
performance indices study will be soon described.

Once having the goals of the performance analysis,
the system is carefully studied so that the main
characteristics for the construction of a representative
model can be abstracted. A relatively difficult task in
this phase consists in making a decision on which
elements of the system should be included in the model
and how to include them. The detailing level should be
based on the purpose for which it is being built.

Model formulating step generates the requirements
for the input data that will serve as its parameters. When
the modeling is made on an existing system, model
parameters can be measured, otherwise, they should be
estimated.

Then, the technique for the model solution should be
chosen, as presented in the previous section. The choice
of the simulation involves the model computing
representation development, which should be checked to
guarantee that it is free from programming and logic
mistakes. Verification compares the computing
representation with the model representation, trying to
guarantee that the model was faithfully represented.
There are no specific rules in performing this task, but
some approaches that can be followed, for instance,
inspection, simulating comparison and modeling
program [17]. In that case specifically, the tests executed
in real platform allowed the parameters obtaining, and
they are being of great value in the modeling validation.

The last step before the beginning of the model
experiment to obtain the results involves the validation,
which is used to show that the model represents the
system in study, that is, reproduces its behavior. When
the system in study exists and it can be used for
measurements, the validation can base itself on the

Resource 2

Machine 2

R
e
s
o
u
rc
e
 1

Machine 1

P

C1
M1

Resource 2

R
e
s
o
u
rc
e
 1

M2

PC2

Machine 1 + Machine 2

R
e
s
o
u
rc
e
 1

P

C1
M1

M2

PC2

Resource 2

comparison between the model results and those ones
obtained by the measurements made in the real system.
If there is no system, the use of some form of the
conceptual modeling validation is necessary.

Being the model verified and validated, it can be
experimented to obtain the expected results, selecting the
measures that will be used to evaluate the performance.
They should be careful with obtaining and analyzing the
simulation results because it is a stochastic simulation.
For that, output analysis techniques are used, which aid
in obtaining a precise estimative of the performance
measures.

The following sections describe the performance
study through a representative model of the scheduler of
processes behavior, according to the steps of a
simulation. This scheduling uses only one politics;
however, it evaluates different load and performance
indices. The first step was taken in previous chapters that
described the behavior of a scheduling of processes

4.1 Queue Network Model Development

There are several techniques to represent a model, for
instance Queue Network [18], Petri-net, Statechart,
Estelle. Queue Networks are more appropriate in
situations where there are customers being assisted by a
service company, like in the model to be implemented.

The simulating environment ASIA [19], developed at
ICMC-USP was used as a tool for the model
implementation. This environment uses SMPL language
[18] which allows the model specification in a graphic
and interactive way. The necessary base for the model
construction was possible to be obtained taking as base
the accomplished experiments with the load indices from
the acquired experience concerning those indices and the
scheduling environment used (AMIGO).

 Figure 5: Queue Network model of Load and Performance
Indices Simulator

The four main resources are modeled: CPU,
Network, Disk and Memory. Load index model is
projected to be used in heterogeneous environments.

The flow of each application (process or task) starts
from the scheduling resource to the processor line. In
this resource, the process stays the necessary time for
processing until another resource is requested or the
quantum expires. Processes move themselves through
the system resources and come back to the end of the
processing resource queue until it is concluded.

Figure 5 presents a macro vision of the implemented
model in queue network. In this article, both for the
verification stage and for the validation stage, the
concepts proposed by Sargent [20] were used.

4.2 Parameters of the Model

To finalize the definition of the model, the parameters to
be used in the service centers must be defined. The
parameters and their meaning are listed in Table 1.

The processing elements have service times relative
to each other that are measured according to each one’s
capacity. The disk element will be defined by t = seek
time + file/bandwidth size [21]. For the network
elements, the size of the message/80Mb/s will be used
(considering a network interconnected by a switch that
ensures this transmission capacity [22]).

The result supplied by the simulator is the time the
application will take to be executed in the parallel
architecture.

With these specifications, one can carry out
experiments with different types of configurations of the
cluster (altering parameters 1, 3, 7, 8, 9 and 10), of the
applications (altering parameters 2, 12, 13, 14 and 15),
and of the indices (altering parameters 4, 5, 6 and 16).

The code of the simulation program developed to
carry out these tests uses the SMPL [18] and SMPLx
[23] libraries.

5 EVALUATION OF THE OBTAINED

RESULTS

The obtaining of the results for the performance index
analysis proposed based itself on several executions of
the model with the variation of several parameters,
among them the parameters regarding the applications.
To make the results become representative, executions
with 15 different seeds were used in the execution.

To carry out tests to prove the efficiency of the
performance index, several executions of the model were
made, using different load indices and different kinds of
applications submitted to it.

Schedulier

Aplic
ation

(C,D
,N,Q

m)

Qm Disc

Network

Processor

Qm Disc

Network

Processor

.

.

.

.

.

.

1

2

3

N

Qm Disc

Network

Processor

The load indices evaluated are: CPU, disk, network,
memory indices, round-robing scheduling, PIV and
WPIV performance indices.

Table 2 presents the result obtained through the
model simulation of the scheduler of processes (the
presented results represent the average of 30
executions).

Results presented in the tables demonstrate the
viability of the performance index use proposed in this
article, once the average times of response, when using it
in the three kinds of platforms evaluated, is always better
when compared to the traditional indices, being executed
the specific indices for each application.

Next, the graph is presented (Figures 6), to facilitate
the visualization of the several kinds of applications
behavior when submitted to the scheduling using several
load indices.

Table 2: Times of response in a heterogeneous machine
setting

CPU-

Bound

Disk-

Bound

Network

-Bound Mix 1 Mix 2

CPU 242,26 15332,33 49374,19 10800,79 10818,27

Mem. 2089,56 94195,76 115300,03 32792,78 32872,06

Disk 2089,56 6595,93 53405,00 6894,56 6894,65

Net. 2089,56 94195,76 13401,36 3628,12 3680,20

Round

-Robin 289,72 9751,98 22956,65 5238,52 5135,99

PIV 212,70 6625,70 13227,89 3598,37 3624,56

WPIV 220,83 6577,75 13285,48 3667,18 3693,19

Through the observation of the results presented in
the graphs, it can be noticed that in all the cases, the
performance index provides better results than the ones
presented by the other indices individually, executing the
appropriate private index for the kind of application.
However, when mixed applications are submitted, the
ones that explore several resources, the behavior of the
performance index is visibly better than the other indices
individually.

The analyzed and presented results also encounter
the results found in the literature, indicating that the
generic load indices, besides presenting a tendency to a
higher overload, should not present the same
representation quality of load task, when compared to
the specific indices used correctly [24] [1]. However, the
performance index proposed, in spite of being generic,
presents flexible characteristics, what makes it very close
to the specific indices of each application, besides
presenting very good results when submitted to mixed
applications.

The presented graphs refer to the configuration
where the machines are heterogeneous; however, the
results presented for that configuration are expandable to

other configurations, and they are not reproduced here
only because it would overload the text.

Results previously presented reflect the averages of
the simulation program executions with different seeds
of random numbers. The simulation was developed to
execute 5000 applications, no matter what kind of
application is considered. This way, CPU-Bound
applications will finalize in a real simulation time much
shorter than Disk-Bound or Network-Bound
applications.

That approach was adopted for providing more
appropriate results, once the same number of
applications will always be considered.

On the other hand, as the kinds of applications are
different, the final timings are also different and they
cannot be directly compared. This way, to make the
comparison possible, normalize the obtained values was
opted, basing itself on the index that generated the
shortest time of response.

The evaluation of the obtained results is divided in
two phases: I-Comparison among the traditional indices; II-
Comparison among the indices proposed in this paper and the
traditional indices.

Tables 3 to 5 present the results normalized for the
traditional indices. It is observed in Table 5, for
instance, that in homogeneous systems, for CPU-Bound
application, the best index is the CPU one. If a memory,
network or disk index is used, there will be a time of
response 9,32 times higher than the one obtained for the
CPU index. The applications involved in the process are
evenly distributed among the resources.

Analyzing the results of the tables 3 to 5, it is
observed that: The best index is always the one specific
of the application. The problem found is to know the
kind of the application before; For homogeneous and
partially heterogeneous systems, when there are no
information about the application, both the CPU and the
round-robin indices can be used, so that the results are
practically the same; For heterogeneous systems, the best
option when the kind of application is not known is the
use of CPU and Round-Robin indices. However, in those
cases, there are variations that depend on the system
heterogeneity level and its kind of application. In the
round-robin case, it is noticed that more stable values are
obtained.

In most of the papers presented in the literature, the CPU
index is used for any kind of application. Considering the
presented results, the use of the CPU index may be compared
with the Round-robin approach.

Figure 6: Summary of the different kinds of applications

behavior when submitted to the several traditional load indices
and the indices proposed in this article.

Table 3: Table normalized by the best load index by kind of
application in homogeneous platform

 CPU-

Bound

Disk-

Bound

Net.-

Bound
Mix 1 Mix 2 Avg

CPU 1,00 1,03 1,01 1,01 1,02 1,01

Mem. 9,32 9,42 9,38 9,48 9,31 9,38

Disk 9,32 1,00 1,04 1,02 1,00 2,68

Net. 9,32 9,42 1,00 1,00 1,01 4,35

Round-

Robin
1,01 1,01 1,01 1,00 1,01 1,01

Table 4: Table normalized by the best load index by kind of
application in partially heterogeneous platform

CPU-

Bound

Disk-

Bound

Net.-

Bound

Mix

1

Mix

2
Avg

CPU 1,00 1,00 1,02 1,03 1,02 1,02

Mem. 5,59 6,04 6,10 6,13 6,15 6,00

Disk 5,59 1,00 1,36 1,00 1,00 1,99

Net. 5,59 6,04 1,00 1,00 1,01 2,93

Round-

Robin
1,18 1,28 1,30 1,29 1,30 1,27

Table 5: Table normalized by the best load index by kind of
application in heterogeneous platform

CPU-

Bound

Disk-

Bound

Net.-

Bound
Mix 1 Mix 2 Avg

CPU 1,00 2,32 3,68 2,98 2,94 2,59

Mem. 8,63 14,28 8,60 9,04 8,93 9,90

Disk 8,63 1,00 3,99 1,90 1,87 3,48

Net. 8,63 14,28 1,00 1,00 1,00 5,18

Round

-Robin
1,20 1,48 1,71 1,44 1,40 1,45

Thus, considering that in a group of applications there
are:

• x CPU-Bound applications

• (1-x) non CPU-Bound applications

And that the times to execute the applications are:

• t1 = time to execute CPU-Bound applications
with CPU load index

• t2 = time to execute non CPU-Bound
applications with CPU load index

• t'RR = average time to execute any kind of
application using round-robin

Being:

• the time to execute x applications CPU = x*t1;
the time to execute (1-x) applications non CPU
= (x-1) * t2 ; TRR = time to execute all the
applications with round-robin = t'rr; TCPU =
time to execute all the applications with cpu
index = x*t1 + (1-x)*t2

This way, when TCPU <TRR the CPU index should
be used and when TCPU> TRR the round-robin one
should be used.

Therefore, RRTtxxt <−+ 21)1(Equation 4

By solving the equation, it is had: 21

2

TT

TT
x RR

−

−
<

So that the CPU index is more appropriate than the
round-robin one. For the homogeneous and partially
heterogeneous cases, the CPU index is clearly more
appropriate; For the heterogeneous case, when applied in
Equation 5, it is had: x> 0,77, that is, if more than 77%
of the applications are CPU-Bound type, the use of the
CPU index is more appropriate so that performance
losses do not take place; otherwise the round-robin one
can be used without any damage happens. On the other
hand, different results can be observed when the
proposed index – PIV is used

5.1 Comparison among the Indices Proposed in

this Paper and the Traditional Indices
Table 6 present the results normalized for the traditional
indices. The applications involved in the process are
evenly distributed among the resources.

Similarly, analyzing the results of the table 6, it is
noticed that: For heterogeneous systems, the best option,
when the kind of application is not known, is the use of
the proposed PIV index. Especially when the kind of
application is mixed, the use of PIV becomes even more
appealing in heterogeneous platforms; for the
heterogeneous case, when the Equation 4 is applied, it is
had: x> 1

Table 6: Table normalized by the best load index by kind of
application in heterogeneous platform

CPU-

Bound

Disk-

Bound

Net.-

Bound

Mix

1

Mix

2
Avg.

CPU 1,14 2,32 3,73 3,00 2,98 2,64

Mem. 9,82 14,28 8,72 9,11 9,07 10,20

Disk 9,82 1,00 4,04 1,92 1,90 3,74

Net. 9,82 14,28 1,01 1,01 1,02 5,43

Round-

Robin
1,36 1,48 1,74 1,46 1,42 1,49

PIV 1,00 1,00 1,00 1,00 1,00 1,00

That is, in 100% of the cases, PIV index should be
used so that a performance loss does not take place.

From that analysis, it can be noticed that, executing
the homogeneous platform, the performance index
presents itself much better in terms of use, when the used
platform is not known, as well as when the kind of
application submitted to the scheduling is not known
either.

The graph presented in the Figure 7 illustrates the
existing interaction among the factors. It can be noticed
in the graph that for the load indices 5 and 6 (PIV and
WPIV respectively), the behavior of the applications is
more stable than when the other load indices are used.
This demonstrates that for those indices there is not
practically any influence on their use for the several
kinds of applications, so that they can be used
indiscriminately. In the presented subtitles, the indices
correspond to: 1 - CPU, 2 - Memory, 3 - Disk, 4 -
Network, 5 PIV, 6 - WPIV and 7-Round-robin.

6 CONCLUSION

The new performance index proposed was used with
several kinds of applications, and proper comparisons
were made, presenting a performance increase, what
demonstrated that the load index choice influences in the
quality of scheduling of processes operations, more
specifically in load balancing

Figure 7: Relationship among the factors involved in the

variance analysis.

The motivation for the construction of the model is in
the fact that there is a lack of practical tools of those
indices evaluation and the corresponding performance
evaluation. The modeling techniques are suitable for that
analysis exactly because the physical presence of the
study object is not needed. The advantage of the
simulation over the analytic techniques lies in the fact
that the changes that are imposed to the model can be
reflected more easily. This way, it was opted to carry out
the study of the indices using modeling techniques and
the model resolution for simulation.

The great advantages of the simulation related to the
other evaluation techniques are the possibility of
representing the model execution in different platforms
and, through small changes in the behavior of the model,
the capacity of representing different load indices.

From the manufacturing of the queue network model
for scheduling of processes presented in section 4.1, not
only the performance indices can be tested, but also the
other existing load indices in the literature,
demonstrating the usability and flexibility of that new
index especially in heterogeneous platforms.

The results obtained here also demonstrate the need
of considering all the resources involved in the process
of scheduling of processes so that right decisions can be
made, independently of the aim to be reached with the
scheduling, especially when the kind of application uses
several types of resources or when the kind of
application that will be scheduled is not known. The
accomplished evaluation, although partial, demonstrates
the existing potential of the new proposed index. Used in
a correct way, the performance index can improve the
performance of a scheduler in a significant way

7 REFERENCES

[1] Ferrari, D.; Zhou, S. (1987). An Empirical
Investigation of Load Indices for Load Balancing
Applications. In Proceedings of Performance'87,
the 12th Int'l Symposium on Computer Performance
Modeling, Measurement, and Evaluation, p.515-
528.

[2] Kunz, T. (1991). The Influence of Different
Workload Descriptions on a Heuristic Load
Balancing Scheme. IEEE Transactions on Software
Engineering, v.17, n.7, p.725-730, July.

[3] Khokhar, A. A.; Prasanna, V.K.; Shaaban, M.E.;
Wang, C.L. (1993). Heterogeneous Computing:
Challenges and Opportunities. IEEE Computer,
26(6): 18-27, June.

[4] Ambrosius, S. L.; Freund, R. F.; Scott, S. L.; Siegel,
H. J. (1996). Work-Based Performance
Measurement and Analysis of Virtual

Heterogeneous Machines. In the 5th Heterogeneous
Computing Workshop (HCW´96). April.

[5] Ekemecic, I; Tartalja, I.; Milutinovic, V. (1996). A
Survey of Heterogeneous Computing: Concepts and
Systems. Procceddings of IEEE, 84: 1127-1144.

[6] Beitz, A.; Kent, S.; Roe, P. (2000). Optimizing
Heterogeneous Task Migration in the Gardens
Virtual Cluster Computer. 9th Heterogeneous
Computing Workshop, pp.140-146, Cancun -
Mexico, May.

[7] Amir, Y. et al. (2000). An Opportunity Cost
Approach for Job Assignment in a Scalable
Computing Cluster. IEEE Transactions on Parallel
and Distributed Systems, v. 11, n.7, p. 760-768,
July.

[8] Abdelzaher, T. F., Shin, K. G.(2000). Period-Based
Load Partitioning and Assignment for Large Real-
Time Applications. IEEE Transactions on
Computers, vol 49, Nº 1, p. 81-87, January.

[9] Beaumont, O.; Legrand, A.; Robert, Y. (2003).
"Optimal algorithms for scheduling divisible
workloads on heterogeneous systems", In
HCW'2003, the 12th Heterogeneous Computing
Workshop, IEEE Computer Society Press.

[10] Branco, K. R. L. J. C., Santana, M.J., Santana, R. H.
C. (2003). A Novel Performance Metric for
Evaluation of Computer System Heterogeneity.
Proceedings of The International Symposium on
Performance Evaluation of Computer and
Telecommunication Systems (SPECTS’2003). p.
292 – 301, V. 34, n. 04 SCS. Montreal – Canadá,
july.

[11] Branco, K. R. L. J. C., Santana, M.J., Santana, R. H.
C. (2003). A Novel Metric for Checking Levels of
Heterogeneity in Distributed Computer Systems.
Proceedings of The Fourth Congress of Logic
Applied to Technology (LAPTEC'2003). p. 148 –
155, V. 101, IOS Press. Marília – São Paulo –
Brazil, novembro.

[12] Wolffe, G.S.; Hosseini, S.H.; Vairavan, K. (1997).
An Experimental Study of Workload Indices for
Non-dedicated, Heterogeneous Systems. In the
proceedings of PDPTA´97, v.1, p. 470-478.

[13] Fontlupt, C.; Marquet, P.; Dekeyser, J. (1998). Data
Parallel Load Balancing Strategies. Parallel
Computing, 24 p. 1665-1684.

[14] Karatza, H. D.; Hilzer, R. C. (2003). Parallel Job
Scheduling in Homogeneous Distributed Systems.
In Simulation, Vol 79, Issue 5-6, May-June, p. 287-
298.

[15] Branco, K. R. L.J. C. (2004). Índices de Carga e
Desempenho em Ambientes Paralelos/Distribuídos

– Modelagem e Métricas. Phd Thesis (Doctorate in
Computer Sciences and Computational
Mathematics) – Institute of Mathematical and
Computational Sciences –São Carlos campus. USP
– University of São Paulo.

[16] Souza, P. S. L. (2000). AMIGO: Uma Contribuição
para a Convergência na Área de Escalonamento de
Processos. Phd Thesis (Doctorate in “Applied
Physics – option: Computational Physics” Sciences)
- São Carlos Institute of Physics, USP – University
of São Paulo.

[17] Higginbottom, G. N. (1998). Performance
Evaluation of Communication Networks. Artech
House, Inc.

[18] Macdougall, M.H. (1987). Simulating Computer
Systems Techniques and Tools. The MIT Press.

[19] Bruschi, S. M. (1997). Extensão do ASiA para
Simulação de Arquiteturas de Computadores. São
Carlos. Dissertação (Mestrado em Ciências da
Computação e Matemática Computacional) -
Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo.

[20] Sargent, R. G. (1999) Validation and Verification of
Simulation Models. In Proceedings of the 1999
Winter Simulation Conference, p. 39 – 48. White
Paper AMD (2002). QuantiSpeedTM Architecture.
Advanced Micro Devices, INC - One AMD Place.
Sunnyvale, CA 94088. January.

[21] White Paper AMD (2002). QuantiSpeedTM
Architecture. Advanced Micro Devices, INC - One
AMD Place. Sunnyvale, CA 94088. January.

[22] Kant, K., MOHAPATRA, P. (2000). Scalable
Internet servers: Issues and challenges. In
Proceedings of the Workshop on Performance and
Architecture of Web Servers (PAWS). ACM
SIGMETRICS, June.

[23] Ulson, R.S. (1999). Simulação Distribuída em
Plataformas de Portabilidade: Viabilidade de Uso e
Comportamento do Protocolo CMB. Phd Thesis
(Doctorate in “Applied Physics – option:
Computational Physics” Sciences) - São Carlos
Institute of Physics, USP – University of São Paulo.

[24] Mehra, P.; Wah, B.W.(1993). Automated Learning
of Load-Balancing Strategies for a Distributed
Computer System. University of Illinois at Urbana-
Champaign.

