
On Merging Object-Oriented Formal Specifications

FATHI TAIBI1

FOUAD MOHAMMED ABBOU2

MD.JAHANGIR ALAM2

1University of Tun Abdul Razak, Selangor, Malaysia
2 Multimedia University, Selangor, Malaysia

1taibi@unitar.edu.my
2(fouad,md.jahangir.alam)@mmu.edu.my

Abstract. Collaborative development allows the delegation of tasks among developers, which eases the
development of complex software systems. The software artifacts created because of this collaboration
need to be merged at the end of a particular development activity. To achieve this, a merging approach
must be able to produce results that are correct, complete and consistent. Furthermore, the merge ap-
proach must rely on a strong similarity detection technique that allows determining the similarities that
exist between the different artifacts. Merging requirement specifications allows discovering and dealing
with inconsistencies at an early stage which reduces both the time and effort associated with such task
compared to dealing with them at later stages such as during design or deployment. This paper proposes
an approach for merging Object-Oriented (OO) formal specification views of a given system. The pro-
posed approach is redundancy-aware, and uses a heuristic matching approach to find the correspondences
between the views. Finally, the approach’s performance is empirically evaluated.

Keywords: collaboration, merging, formal methods, object-oriented.

(Received July 15, 2008 / Accepted November 05, 2008)

1 Introduction

The complexity of today’s software systems makes col-
laborative development necessary to accomplish tasks
as it allows the delegation of work among developers,
which eases the development of such systems. This
complexity is associated with the fact that organizations
often attempt to construct large, complex software sys-
tems because of the availability of powerful processors
at low prices. Frameworks are needed to allow devel-
opers perform their tasks independently and collabora-
tively. The major concern in such frameworks is the
merging [6] [2] operation that allows combining the
partial software views (such as software models or sour-
ce code) created during the collaborative work. Further-
more, certain activities such as requirements specifica-
tion require the participation of several people with dif-
ferent perspectives while the requirements themselves

are derived through several stakeholders with different
views, which increase the need to support the merg-
ing of such models. Merging requires the determina-
tion of the similarities that exist between the different
views before combining them. The accuracy of the lat-
ter operation is crucial to producing a correct and con-
sistent merge model. Missed matches lead to redundan-
cies in the merged model, and the latter is one of the
basic forms of inconsistency [3]. Furthermore, during
merging, other conflicts between the views need to be
discovered and resolved to produce a consistent result.
Merging software requirements allows discovering and
dealing with inconsistencies at an early stage which re-
duces both the time and effort associated with such task
compared to dealing with them at later stages such as
during design or deployment.

Merging requirements specified informally is tremen-
dously difficult and error prone due to the ambiguous

taibi@unitar.edu.my
(fouad,md.jahangir.alam)@mmu.edu.my


and misleading nature of natural languages and the no-
tations used. Formal methods [1] offer a better alterna-
tive because of their precise and accurate nature, which
makes it possible for automatic verification through mo-
del checking [4]. OO formal specifications have a dou-
ble advantage as they combine the strengths of formal
and OO methods. Thus, reuse is possible because of
the OO nature of the developed specifications. The for-
mal specification language Object-Z [10] is an OO ex-
tension of the well-established formal specification lan-
guage Z [11], which makes it a good candidate to be
used during the collaborative development of software
specifications. As an example, Figure1 shows Object-Z
classes taken from two specification views of a compo-
nent of a university management system.

Figure 1: Two Views of an Object-Z class

The class Teacher is derived from another class Per-
son that specifies the common features of a person (whe-
ther he is a student or a teacher). In the class Teacher,
only the operations Create and Update are visible out-
side the class. The operation Create is used to assign
values to the state attributes affiliation and expertise.
While the operation Update is used to change the af-
filiation of a teacher in case he (she) has shifted to a
new department.

The class Professor includes two operations New
and Affiliate that are the only elements visible outside
the class. The operation New is used to assign values to
the state attributes ic, name and adr, which represents
a professor’s personal details. The operation Affiliate is
used to assign values to the state attributes faculty and
expertise. This operation can also be used to change the
latter attributes in case they have already been assigned.

Clearly, the classes Teacher and Professor are quite
similar. However, measuring their similarity in a pre-

cise manner requires the usage of an approach that makes
use of the information available in the classes them-
selves as well as the classes related to them in their
respective views. Identifying the similarities between
the classes and elements of specification views is a pre-
requisite for successful merging. Figure 2 shows a pre-
view of the specification views from which the classes
Teacher and Professor are taken.

Figure 2: A Preview of Two Specifications of the Same System

Apart from the classes Teacher and Professor, the
classes Student in both views represent a match and
must be merged. In addition, the class Person might
have a certain degree of similarity with the classes Pro-
fessor and Student of the second view. Furthermore,
several attributes, operations and relationships in the
specification views could be found similar which re-
quires merging them as well.

This paper proposes an approach for merging OO
formal specifications represented according to a pro-
posed meta-model. The proposed merging algorithm
is redundancy-aware, and uses a heuristic matching ap-
proach to find the correspondences between the specifi-
cations. The next section presents a meta-model for rep-
resenting specifications. This is followed by discussing
a new matching approach that enables the determina-
tion of similarities between specifications. After that, a
merging approach is proposed to combine these specifi-
cations. The approaches are empirically evaluated and
related work is discussed. The final section concludes
the paper and discusses future work.

2 Representing the Specifications

Before discussing the approaches that allow matching
and merging OO formal specifications, there is a need
to define how these specifications are represented. The
proposed framework considers each specification as a
graph G = (V,E) where:

• V is a set of vertices (i.e. classes)



• E is a set of edges (i.e. classes’ relationships)
where each edge e = (s, t, p):

– s is the source vertex of e

– t is the target vertex of e

– p ={inherited_by, aggregated_by,
associated_with} is the type of the edge e.

Furthermore, each note in the graph G is associated
with a graph C = (N, A) where:

• N is a set of vertices (i.e. class’ elements)

• A is a set of edges (i.e. relationships between ele-
ments) where each edge a = (s, t, p):

– s is the source vertex of a

– t is the target vertex of a

– p ={is, used_by} is the type of the edge a.

Each element in the graphs G and C is mapped to
an element in a proposed meta-model (M) that consid-
ers a specification as a set of interconnected vertices of
type Class. The interconnection between these vertices
represent the major relationships between the classes
namely inheritance, aggregation/composition and asso-
ciation. Each vertex of type Class is associated with
a graph whose vertices and edges represent class’ el-
ements and their relationships respectively. Figure 3
shows a proposed meta-model for OO formal specifi-
cations.

Figure 3: A Meta-Model for OO Formal Specifications

A class is modeled as a set of Variable(s) manip-
ulated by Operation(s) containing some Predicate(s).
The proposed meta-model uses the generic semantics
of formal specifications to differentiate between the dif-
ferent predicates, i.e. Invariant, Init, Precond, and Post-
cond. Furthermore, it uses the same semantics to differ-
entiate between the different type of variables such as
class’ attribute, operation’s Input/Output, and the Data
Type of a variable is also taken into account. Finally,
the Visibility of a class’ element is used to highlight the
public members of a class. Figure 4 shows the graphs
representing the specification view of the class Teacher
as well as the class itself.

Figure 4: Graph Representation of a Specification View

In Figure 4, the edges e1 and e2 indicate that the
class Person is inherited_by the classes Teacher and
Student while the edges a1 and a7 indicate that the at-
tributes affiliation is accessed (used_by) by the opera-
tions Create and Update. In addition, the edges a13 and
a14 indicate that only the latter operations are visible
outside the class Teacher. Furthermore, each node is
typed according to its association with the meta-model,
which allows processing them differently in the pro-
posed matching and merging approaches.

3 Matching specifications’ Elements

A merge algorithm requires the determination of the
similarities that exist between the elements of the input
specifications. These similarities are computed based



on the syntactic (name) similarities that exist between
the specifications’ elements as well as their structure
(content) similarity. The syntactic similarity between
two elements is used to identify the early correspon-
dences between the specifications and cannot alone be
the basis of any matching approach.

The structural similarity is computed based on the
structure of the elements to be mapped. The structure in
this context does not only include the content of these
elements but also the similarity of their ancestors, de-
scendents as well as their neighbors. For example, in
case of classes, the base classes could be treated as an-
cestors, the child classes could be treated as descen-
dents, and classes involved in similar relationships could
be treated as neighbors.

Computing an accurate similarity value between two
specification elements requires the usage of several ap-
proaches because no particular approach is better than
others are. Thus, we propose the usage of three addi-
tional concepts for which experiment results have shown
an improvement in accuracy and efficiency. The full
details of these experiments are discussed in [13]. The
first concept is the use of early landmarks. Where for
a particular specification element, a domain expert (or
a user) could set the element(s) of the second speci-
fication that should be compared to it. This helps in
improving the approach’s efficiency as it reduces the
number of comparison. It also helps reducing the prob-
ability of many false matches, which leads to a better
precision. These landmarks could also be used to rep-
resent confirmed matches. The creation of landmarks is
enabled by the automatic generation of high-level rep-
resentations of the specification views (i.e. the classes
and their relationships) as well as supporting browsing
capabilities to explore their content. The second con-
cept is automatically indexing the classes of the specifi-
cations as they are created. An index could be the most
frequent attribute(s) used in a class, and if used in the
computation of structural similarity, it could improve
the accuracy of the matching results.

The final concept is the use Mutual Enforcing Rela-
tionship concept, i.e. after computing the overall sim-
ilarity between classes, the results is used back to re-
compute the similarity of the classes’ elements. In other
word, classes are similar if they have similar elements
and elements are similar if they are contained in similar
classes. This could improve the accuracy of the match-
ing results of class elements such as attributes and op-
erations.

The proposed matching approach progresses in a
bottom-up style as class’ elements are compared before
top-level elements. It also switches to top-down when

the overall similarity of classes is known to re-compute
the similarities of their elements (Mutual Enforcing Re-
lationship).

Formally, the matching relation Match is defined as:
Match : ELEMENT ×ELEMENT × TY PE →
R Where for two elements (e1, e2) of type t such as
Class, Variable, or Operation, Match(e1, e2, t) returns
a real number between 0 and 1 representing the overall
similarity between them. This overall similarity must
be bigger than a chosen threshold T (a real number be-
tween 0 and 1) that represents the strictness of the match
relation. The overall similarity is a normalized value
of the structural similarity of (e1, e2) by their syntactic
similarity. It is computed using the following formula:
(SSyntactic + SStructural)/(1 + SSyntactic)

Given two strings X and Y , the syntactic similar-
ity SSyntactic between them is obtained by taking the
maximum value from the Longest Common Substring
(LCS) and 2-gram algorithms respectively [12]. For
both algorithms, the similarity metric is defined as:
2 ∗ LengthSame/LengthAll

LengthSame is the cardinality of the longest com-
mon substring between X and Y for LCS. It is the car-
dinality of the set containing similar substrings of size-2
obtained from X and Y for 2-gram. LengthAll is the
cardinality of the set comprising the disjoint union of
the characters of both strings or the disjoint union of
the substrings of size-2 obtained from both strings for
LCS and 2-gram respectively.

Given two specification elements, SStructural be-
tween them is calculated using the following formula:
2 ∗ sum/(sum + count)

Where sum is obtained by cumulating the syntac-
tic similarities (or 0 or 1) between all the compatible
items of the elements and count is the number of items
used in the calculation of sum. Table 1 illustrates how
to compute the overall similarity between the operation
Create of the class Teacher and the operations New and
Affiliate of the class Professor.

Table 1: Similarity Computation Example
Create vs. New Create vs. Affiliate

Visibility 1 1
Classes 0.125 0.125

Accessed Attributes 0.686 0.735
Inputs 0.686 0.95

Outputs 1 1
Preconditions 1 1
Postconditions 0.666 1
SSyntactic 0.222 0.4
SStructural 0.737 0.907

Overall Similarity 0.785 0.934



During the computation of SStructural, attribute names
(as well as inputs and outputs) are replayed by their re-
spective type for predicates (Inits, invariants, precondi-
tions, and postconditions). The reason behind this nor-
malization is that for all the latter elements; type is the
most important factor; names as well as their order of
appearance could be ignored in this context. Thus, the
impact of SSyntactic on SStructural is reduced for be-
haviorally similar classes and operations. For example,
the postconditions of the operations Create and Affiliate
are totally (1) similar in this context as they manipulate
the same type of data and perform exactly the same ac-
tions.

If two operations A and B are matched, their param-
eters (inputs/outputs) are matched according to the sim-
ilarities of the attributes they manipulate. For example,
the operations Create and Affiliate represent a match as-
suming a threshold T = 0.8. Thus, the parameter a? is
matched to f? as they manipulate matched attributes
(affiliation and faculty in this case). The same intuition
is applied to the argument e? of the two operations. Fi-
nally, it is important to note that arguments with same
names and same types do not represent a match unless
they manipulate matched attributes.

4 A Proposed Merging Approach

The proposed merging algorithm takes as input two OO
formal specifications (represented by graphs G1 and G2)
and creates a merge specification (graph G) combining
their content based on their matching relation (Match).
The merge specification must be correct, complete, and
consistent. Correctness is achieved by ensuring that
the merge specification preserves the properties of all
specification views by combining the right elements.
Completeness is achieved by including all (matched and
non-matched) elements contained in the specification
views. Finally, consistency is ensured by identifying
and resolving the conflicts between the specification views.
Redundancy is one of the basic forms of inconsistency
that should be dealt with first.

The proposed algorithm uses the information con-
tained in Match to combine first all the matched ele-
ments of G1 and G2 and then their non-matched ele-
ments are added to G. Figure 5 shows the proposed
merging algorithm.

The algorithm starts by combining all the matched
vertices (classes) of G1 and G2 and adding them to
G (line 4) by calling another algorithm ClassMerge.
The latter algorithm is discussed below. Each time two
classes (v1, v2) are merged, the name used for the merge
class is used to update (align) the specifications (G1 and
G2) as well as their matching relation (Match). The

Figure 5: SpecificationMerge Algorithm

name of the first class could be used as a merge name in
case the order of the input specifications reflects their
priority. After that, all the unmatched classes of G1

and G2 are added to G (line 8). All edges of G1 and
G2 are added to G (line 9). The algorithm ensures that
merged specification is free from redundant vertices or
edges before applying the unions in lines 8 and 9 as the
input specifications are aligned each time two classes
are merged. The first inconsistency taken into account
is the redundancy of class’ relationships based on their
transitive nature (algorithm called in line 10). Figure
6 shows the algorithm that removes this kind of redun-
dancies.

Figure 6: RemoveRedundantRelation Algorithm

The algorithm accepts as input a graph G with a set
of edges E and removes from it all redundant edges
originated because of transitivity. Inheritance, compo-
sition and aggregation relationships are all transitive.
Thus, if an edge ′a′ links a class X with a class Z, and
there exists two other edges ′b′ and ′c′ of the same type
sharing the same source/target class as ′a′ linking the
classes X with a class Y and Y with Z respectively, the
edge ′a′ is removed from E (line 10). This process is



repeated for all the elements of E, and at the end of it,
E is free from this kind of redundancies.

Figure 7: ClassMerge Algorithm

Merging matched classes is done by combining their
matched/compatible elements and including the remain-
ing elements in the merge class. Figure 7 shows the
algorithm used to merge two matched classes.

The algorithm accepts two matched classes C1 and
C2 and returns their merge class C. It starts by merging
their matched (such as attributes and operations) and
compatible (such as invariants) elements by calling El-
ementMerge algorithm (line 4). Each time two elements
are merged, the name change is updated in the specifi-
cations G1 and G2 as well as their match relation Match
(line 5). After that, the non-matched elements are added
to the merge class (line 8). Finally, edges of C1 and C2

are added to C (line 9) while the algorithm guarantees
non-publication of edges and nodes because of specifi-
cation alignment. ElementMerge accepts two class el-
ements (n1, n2) and combines them according to their
respective type.

Figure 8 shows a recursive definition of Element-
Merge. Merging two class elements (n1, n2) is per-
formed according to their type. For variables with com-
patible (or same) types (line 4), the type of the merge
element n will be the super-type of the types of (n1, n2)
(line 6). In case the types of (n1, n2) are not compat-
ible, ElementMerge simply returns both elements (line
8). For operations, their matched (such as inputs/outputs)
and compatible elements (such as pre and post con-
ditions) are merged using a recursive call to Element-
Merge (line 19). The pre-condition of the merge op-
eration will be the disjunction of pre-conditions of the
respective operations (line 13). The post-condition of
the merge operation as well as other predicates such as
invariants is the conjunction of their items (line 14). Fi-
nally, the remaining non-matched elements are simply
added to the merge operation (line 21).

The merging approach has been tested with several

Figure 8: ElementMerge Algorithm

Figure 9: A Example of a Merged Class

specifications and Figure 9 shows the class obtained by
merging the classes Teacher and Professor introduced
earlier. The class Teacher-Professor incorporates all
the matched and non-matched elements of the merged
classes. The operation Create represents the result of
merging of the operations Create and Affiliate of the
merged classes. The operations Update and New of
the merged classes are not matched, thus directly in-
cluded. The attributes affiliation and expertise represent
the merging of (affiliation, faculty) and (expertise, ex-
pertise) respectively. Finally, the attributes ic, name and
adr are directly included as they are not matched. It is
important to note that since the class Teacher is derived
from a class Person, the merge class Teacher-Professor
is consequently derived from the same class. This may
lead to redundancies as the attributes ic, name, and adr
might be defined in the class Person (which is the case
in this example). This is also valid for the operation



New. Dealing with this kind of redundancies is out of
the scope of this paper. An independent approach need
to be proposed to deal with this kind of inconsistency
as well as with other forms of inconsistencies such as
ensuring that the asymmetric and acyclic properties of
class’ relationships are maintained.

5 Evaluation

A merge approach is useful if it produces accurate (cor-
rect and complete) results with cheap processing means
(i.e. time and space) while ensuring a consistent result.
The complexity of the proposed merging approach is
around O(n ∗ m) where n and m represent the num-
ber of elements in the two specifications views respec-
tively. The matching approach has similar complexity
that could be further reduced if landmarks between the
specifications views are created. The complexity be-
comes O((n − k) ∗ (m − k)) where k is the number
of landmarks created. The matching and merging ap-
proaches are effective if they do not produce too many
false matches and do not miss too many correct matches.
Precision and recall metrics were used in the evalu-
ation. Precision measures quality and is the ratio of
correct matches/merges found to the total number of
matches/merges found. Recall measures coverage and
is the ratio of the correct matches/merges found to the
total number of all correct matches/merges. The pro-
posed approaches have been intensively evaluated based
on several small/medium sized case studies. One of
them (Figure 2) includes two specifications with 62 el-
ements and 92 relationships. Precision and recall were
computed for a threshold ranging from 0.5 up to 0.9.
Figure 10 shows the results obtained.

Figure 10: Results For the University Management System

For low to medium threshold (0.5 - 0.7), the match-
ing approach has shown good recall (75% - 100%) com-
bined with an acceptable precision (62% - 67%). For

high threshold (0.75 - 0.9), the approach has shown a
perfect precision (100%) combined with an acceptable
recall (63%). It is important that the matching approach
is capable to identify as many correct matches as pos-
sible because it is easier to remove incorrect matches
compared to identifying missing ones manually. Thus,
the results obtained were good because for a reference
threshold of 0.71 (where the precision and the recall
graphs intersect) both the precision and recall scored
72%. The latter figure indicates that only 28% of sim-
ilar elements have not been matched and that 72% of
the matched elements are indeed correct. The missed
matches need to be identified by a domain expert along
with the removal of the incorrect ones leading to a merge
result that is correct and complete. The amount of eval-
uation done so far serves only as a proof-of-concept.
More (intensive) evaluation is needed to tune and vali-
date the proposed approach.

6 Related Work

In [7], merging hierarchical statechart models based on
a correspondence relation is done by processing shared
and non-shared elements separately. The merge model
contains the shared elements of the input models as nor-
mal behaviors and the non-shared elements as variabil-
ities that are represented using parameterization. The
latter are guarded by conditions denoting the origin model
before added to the merge model. To ensure that the
merge model is behaviorally sound and deterministic,
the proposed approach requires the shared states of the
input models to have identical events, conditions, and
priorities. This leads to unnecessary redundant transi-
tions, and the approach did not include an automatic
way to deal with them, i.e. identify and handle them.
In addition, the proposed merge operator is based on a
heuristic match operator whose average precision was
relatively low (around 50%). Thus, a domain expert
needs to manually identify and remove half of (incor-
rect) matches, which lowers the benefits of any imple-
mentation of the merge approach.

In [14], a differencing algorithm is proposed to de-
tect the structural changes between the designs of sub-
sequent versions of OO software. The input models
are obtained through reverse engineering of two corre-
sponding code versions. The algorithm reports the dif-
ferences between them in terms of additions / removals,
moves, and renaming of program elements such as pack-
ages, classes, interfaces, fields, and methods. The dif-
ferencing algorithm computes an overall similarity based
on name and structure similarity metrics. The name
similarity metric was computed using 2-gram algorithm.
The latter does not provide good results in case of short



strings as well as in case of long strings where a sub-
string has been replaced by a different word. This could
affect the accuracy of the early landmarks based on which
structural and overall similarities are computed. In ad-
dition, the proposed algorithm assumes that enough de-
sign entities remain the "same" between the two con-
secutive versions of the system. The latter assumption
is weak in the sense that there is no guarantee that the
developers of the new version of the system do not vio-
late it.

In [5], a generic algorithm was proposed to differ-
entiate between UML models. The first phase of the
approach consists of identifying correspondences (i.e.
similarity) while the second phase deduces the appro-
priate differences between the documents based on their
correspondences. The output produced consists of a ta-
ble with structural differences, attribute differences, ref-
erence differences, and move differences between the
input documents. The calculation of similarity between
two elements starts by comparing the sub-elements first
(bottom-up). The similarity metric used assigns differ-
ent weights to the elements of the input document with
the highest weight given to the similarity of class names
(0.4). This weight is inappropriate as it does not per-
mit matching classes with poor name similarity but with
very similar content (attributes and operations). While
the LCS used to compare names does provide accurate
results in case of a change of word order, which affects
the recall of the proposed algorithm.

Finally, in [9] and [8], a consistency checking ap-
proach (from a structural perspective) is proposed for
homogeneous models. The approach is intended to deal
with consistency rules beyond pairwise checking. The
approach consists of creating a merged model and then
checking consistency rules written using Relational Ma-
nipulation Language (RML). The merge operator used
considers each model as a graph and each mapping as
a binary relation over two models equating their corre-
sponding elements. The approach lacks efficiency be-
cause there is a need to store external links to equiv-
alence groups mapping elements of the input models.
Furthermore, the approach applicability is limited to
classes (for class diagrams) and entities (for entity rela-
tionship diagrams) and their relationships only. It does
not indicate how class entities/elements are supposed to
be merged. Finally, the proposed framework indicates
that the correspondences between the input models are
explicitly specified. This may work for small models
but not for a big number of real-size models. The corre-
spondences between the input models should be identi-
fied automatically (or semi-automatically).

7 Conclusion

An approach to merge OO formal specifications was
proposed in this paper. It uses the results of a match-
ing approach that is responsible of identifying the sim-
ilarities between the elements of the input specifica-
tions. The specifications are represented using a pro-
posed meta-model that is based on the generic seman-
tics of both formal and OO methods, which makes the
proposed merging approach useful for a wide range of
applications. The matching approach uses heuristics for
both syntactic and structural similarities with the possi-
bility of adjusting the results before merging starts. The
latter adjustment consists of removing incorrect matches
and identifying missed ones. High recall combined with
high precision is a pre-requisite to make the adjustments
minimal. The proposed matching approach has shown
good precision and good recall for reasonably high thre-
shold, which provides a good basis for the merging ap-
proach. The proposed merging approach comprises al-
gorithms for combining specification views (classes, re-
lationships and class-elements) and is redundant-aware
for class relationships as well as for class elements.

The scalability of the proposed approaches needs to
be further tested as all the experiments have included
small/medium sized case studies. Thus, specifications
views for large and complex systems are needed to study
this scalability.

Finally, identifying and resolving all the inconsis-
tencies in the merge specification is the first issue to
be dealt with after more validation work is put on the
merging approach.

References

[1] Bowen, J. and Hinchey, M. Ten commandments
revisited. a ten-year perspective on the industrial
application of formal methods. In 10th ACM
IWFMICS conference, pages 8–16, 2005.

[2] Fortsch, S. and Westfechtel, B. Differencing and
merging of software diagrams - state of the art and
challenges. In ICSDT 2007 conference,, pages 90–
99, 2007.

[3] Gervasi, V. and Zowghi, D. Reasoning about
inconsistencies in natural language requirements.
ACM TOSEM, 14(3):277–330, 2005.

[4] Kassel, G. and Smith, G. Model checking object-
z classes: Some experiments with fdr. In APSEC
2001 conference, pages 445–452, 2001.



[5] Kelter, U., Wehren, J., and Niere, J. A generic
difference algorithm for uml models. In Software
Engineering Conference, pages 105–116, 2005.

[6] Mens, T. A state-of-the-art survey on software
merging. EEE Transactions on Software Engi-
neering, 28(5):449–462, 2002.

[7] Nejati, S., Sabetzadeh, M., Chechik, M., Easter-
brook, S., and Zave, P. Matching and merging
of statecharts specifications. In ICSE’2007, pages
54–64, 2007.

[8] Sabetzadeh, M. and Easterbrook, S. View merg-
ing in the presence of incompleteness and in-
consistency. Requirements Engineering Journal,
11(3):174–193, 2006.

[9] Sabetzadeh, M., Nejati, S., Liaskos, S., Easter-
brook, S., and Chechik, M. Consistency check-
ing of conceptual models via model merging. In
RE’2007, pages 21–230, 2007.

[10] Smith, G. The Object-Z Specification Language.
Kluwer Academic Publishers, 2000.

[11] Spivey, J. The Z Notation. Prentice Hall, 2nd edi-
tion, 1992.

[12] Taibi, F., Abbou, F., and Alam, M. A match-
ing approach for object-oriented formal specifica-
tions. Journal of Object Technology, 7(8):139–
153, 2008.

[13] Taibi, F., Abbou, F., and Alam, M. Towards iden-
tifying similarities between formal specification
views. In ICIMU’08, pages 789–794, 2008.

[14] Xing, Z. and Stroulia, E. Differencing logical uml
models. Journal of Automated Software Engineer-
ing, 14(2):215–259, 2007.


	Introduction
	Representing the Specifications
	Matching specifications' Elements
	A Proposed Merging Approach
	Evaluation
	Related Work
	Conclusion

