
Refining multiple ontologies: A mappings-based approach*

Jianjiang Lu1, 2, Baowen Xu1, 2, 3, Peng Wang1, Yanhui Li1, Dazhou Kang1, Jin Zhou1
1Department of Computer Science and Engineering, Southeast University, Nanjing, 210096, China

2Jiangsu Institute of Software Quality, Nanjing, 210096, China
3State Key Laboratory of Software, Wuhan University, Wuhan 430072, China

jjlu@seu.edu.cn

Abstract. In a distributed environment like Semantic Web, complex applications often need to handle
multiple ontologies, where the heterogeneity of multiple ontologies arises. In order to reconcile these
ontologies, ontology mappings are proposed to provide the interoperating rules between multiple
ontologies. However, introducing mappings may cause inconsistencies and redundancies, which will
break the soundness and balance of the original ontologies. This paper proposes an approach to
eliminate inconsistencies and redundancies. First the mappings are classified into eleven kinds and
multiple ontologies are modeled as a graph. Then the changes of the graph, when introducing
different kinds of mappings orderly, are analyzed. Following refining steps include semantic checking
to keep multiple ontologies sound, and semantic refinement to avoid multiple redundancies. All the
steps in our approach can be performed in polynomial time. Our method has high efficiency and is
feasible to applications about multiple ontologies in a distributed environment.
Key words: Multiple ontologies, ontology mapping, ontology refinement

(Received April 5, 2005 / Accepted September 8, 2005)

*This work was supported in part by the NSFC (60373066, 60425206 and 90412003), National Grand Fundamental Research
973 Program of China (2002CB312000), National Research Foundation for the Doctoral Program of Higher Education of China
(20020286004).

1 Introduction
Ontology is a formal, explicit specification of a shared
conceptualization [1]. It represents the common
knowledge in domain through defining the concepts,
relations, axioms and instances formally. As a powerful
model to solve the information sharing problems,
ontology plays a key role in the fields including
knowledge representation, information retrieval, and so
on. Ontology is also the core of Semantic Web [2],
which envisions a world-wide distributed architecture
where, on the basis of semantic marking up of web
resources, data and computational resources will easily
interoperate. In the past several years, the development of
Semantic Web has improved the popularity of ontology
greatly.

To improve their performance and efficiency,
ontologies are adopted by more and more applications
to represent semantic information. In a distributed
environment, even a single application is often required
to handle the information from multiple domains.
Therefore, multiple ontologies are used frequently in
practical cases, such as semantic annotation based on
multiple ontologies [3]. Usually, multiple ontologies are

produced by different communities or come from
different fields. These reasons cause the ontologies
frequently heterogeneous, and that has been a major
difficulty to utilize multiple ontologies. To solve this
problem, ontology integration and mapping are two
solutions [4]. Whereas, ontology integration lacks
automatic methods to support it and the integration
process is required to be executed repetitively when
changing or evolving the ontologies. On these accounts,
the ontology integration is too high cost and inflexible.
And in fact, most applications just need the
interoperation between multiple ontologies, ontology
mapping is just a way to establish the exchange rules
between ontologies, which can realize the ontology
interoperation. And naturally the cost of generating
mapping is lower than that of integration.

When introducing the mappings, the original
independent multiple ontologies are connected as a
weak integrated big ontology. However, the structural
and semantic balances of singleton ontology would be
destroyed meanwhile. In mapping introduction,
unexpected redundancies and clashes may appear in
multiple ontologies, which will lead to false conclusions

and lower performances. Therefore, it is very necessary
to refine the redundancies and clashes to keep the
multiple ontologies sound and simple.

In this paper, we propose an approach to eliminate
inconsistencies and redundancies. In the first step, the
mappings are classified into eleven kinds, and graph
theory is used to model the multiple ontologies
environment, and then changes of graph are analyzed
when introducing different kinds of mappings
respectively and orderly. Following refining step
includes semantic checking and semantic refinement.
The former keeps the multiple ontologies sound, and the
latter assures that the multiple ontologies would be
irredundant.

This paper is organized as follows: Section 2 gives
some principles about ontology and ontology mapping.
Then after introducing the mappings into multiple
ontologies, the refining problems are analyzed in
section 3. Section 4 discusses the method of semantic
checking and semantic refining for the multiple
ontologies. Section 5 discusses related work, and
section 6 makes the conclusions.

2 Principles
In this section, we will give some basic knowledge about
ontology. Then we introduce ontology mapping issues
among heterogeneous ontologies, and here we focus on
mapping classification, which is the base of the
subsequent refining process.

2.1 Ontology
Many definitions of ontologies have been given in the last
decade, and the most prevalent definition of them is
presented by Gruber: an ontology is a formal, explicit
specification of a shared conceptualization [1]. In our
framework, we consider an ontology as the following
definition. This definition is expressive enough to
represent ontology in most ontology applications.

Definition 1. (Ontology) An ontology is a six-tuple
O=(C, AC, R, AR, H, X), where C is a set of concepts; AC
is a collection of attribute sets about concepts; R is a set
of relations, each relation associates to a pair of
concepts; AR is a collection of attribute sets about
relations; H represents a concept hierarchy; and X is the
set of axioms.

In above definition, if ci is a concept in C, and its
attributes can be denoted by AC(ci). Each relation
ri<cp,cq> in R represents a binary association between

the individuals in concept cp and cq, and the attribute of
it can be denoted by AR(ri). H is a concept hierarchy
derived from C and it is a set of superclass-subclass
relations; <cp,cq>∈H if cp is a superclass of cq. Each
axiom in X is a constraint about the concepts, relations
and attributes.

2.2 Ontology mapping
Ontology mapping can provide a common layer from
which information can be accessed and exchanged in
the semantically sound manners [5]. The mismatch is
the essential reason that causes ontologies
heterogeneous. The ontology mismatch can be divided
into two levels: ontology language and meta-model
level [6]. The former level of mismatches includes
syntax, logical representation, semantic primitives and
expressivity of the languages. The second level includes
conceptual models, interpretations and terms.
Classifying ontology mismatches is important to denote
which kind of mismatches can be resolved with a
mapping formalism or detected by a matching algorithm.
However, in terms of the practical applications, the
above classification is far more abstract. In fact, most of
practical ontology mappings are just based on the
ontology’s components (with one exceptions: axioms
usually don’t need mapping.) directly. Based on the
above idea, mappings can be classified into two kinds:
concept mappings and relation mappings.

Concept mappings can be divided into seven
subclasses.

(1) Cequal (synonym mapping). This kind of
mappings represents identical or very close concepts in
different ontologies. For example, the ‘PC’ and
‘Computer’ in different ontologies express the same
meaning.

(2) Cdiffer (polysemous mapping). This kind of
mapping represents homonymous concepts in different
ontologies with different meanings. For example the
concept ‘Doctor’ in different ontologies may denote a
man having Ph.D degree or a man curing disease.

(3) Cisa (hypernym or ‘is-a’ mapping). This
mapping represents the possible hierarchy relations of
concepts in different ontologies, for example the ‘is-a’
relations between ‘hammer’ and ‘tool’ in different
ontologies.

(4) Cinstanceof (hyponym mapping). This mapping
expresses the inverse hierarchy relations against the
hypernym mapping.

(5) Chasa (meronym/holonym mapping). This
mapping represents part-whole relations between
concepts in different ontologies. For instance, ‘Tree’ in
an ontology has ‘Root’ and ‘Leaf’ in another ontology.

(6) Ccover (cover mapping). This mapping expresses
that the disjunction of several concepts in different
ontologies can cover another disjunction of several
concepts in different ontologies.

(7) Copposed (opposed mapping). This mapping
expresses that if a concept can be divided into two
disjoint sub-concepts from different ontologies, then
they are opposed. For example, two sub-concepts of
concept ‘Student’ in different ontologies: ‘MaleStudent’
and ‘FemaleStudent’ are opposed.

Four subclasses are divided for the relation mappings
as well.

(8) Rsubsume (subsume mapping). This mapping
expresses the relations in different ontologies having
subsumption relationships. For example, the relation
‘ancestor-descender’ in an ontology can subsume the
relation ‘father-son’ in another ontology.

(9) Requal (relation equal mapping). This mapping
denotes the two relations from different ontologies are
equal.

(10) Rinverse (inverse mapping). The mapping
represents that two relations in different ontologies are
inverse. For example, the ‘Teach’ in an ontology and
the ‘TaughtBy’ in another ontology are inverse relations.

(11) Rcompose (composed mapping). Two relations
of different ontologies may compose a new relation. For
example, the relation ‘brother’ in an ontology and the
relation ‘father-son’ in another ontology can compose a
new relation ‘uncle-nephew’ by that brother(x, y) and
father-son(y, z) can imply uncle-nephew(x, z).

The above eleven kinds of mappings are enough to
express most common relations among heterogeneous
ontologies. And classifying these mappings will be
favorable to refining process, since we can deal with
kinds of mappings respectively.

3 Analyzing and dividing the refining problems
The mappings connect the isolating multiple ontologies,
but meanwhile, it may cause some unavoidable
semantic redundancies and conflicts. Redundancies may
cause low performance of the multiple ontologies
application; and conflict may derive false conclusions
and even lead the system to crash. Therefore, checking
semantic consistency and reducing semantic

redundancies will improve the reasoning capability and
soundness for multiple ontologies.

In our view, seven kinds of mapping: Cequal, Cisa,
Cinstanceof, Chasa, Ccover, Rsubsume and Requal are
transitive relations, which can introduce semantic
redundancies and conflicts by implying new conclusion
from their transitive property. The other four kinds of
mappings including Cdiffer, Copposed, Rinverse and
Rcompose, are not transitive and can not cause
reasoning failure and semantic redundancies. Therefore,
the semantic checking and reducing of semantic
redundancies are aimed at the former seven kinds of
transitive mappings.

To be more convenient to refine the multiple
ontologies, we divide these mappings further. In terms
of concept mappings, Cinstanceof is a reverse mapping
of Cisa, and can be translated to Cisa mappings easily.
In addition, we can use the similar method of refining
Cisa to deal with Chas. Besides the concept mappings,
the relation mappings are needed to be considered here.
The way to solve relation mappings is similar to the
concepts: Rsubsume is similar to Cisa; Requal is similar
to Cequal as well. Based on the above analyses, our
refining method only focuses on the Cequal, Cisa,
Ccover mappings, which can be extended to suit other
mappings.

4 Refining multiple ontologies
In order to deal with the problem conveniently, we

use graph theory as the basic mathematical model of the
multiple ontologies. Then we use graph-based matrix to
deal with the mappings in order.

4.1 Mathematical model
We use a direct graph to represent the concept direct
inherited relations in multi-ontologies, such a graph is
called multi-ontologies direct inherited graph.

Definition 2. The multi-ontologies direct inherited graph
G is denoted as G=(C, E), where C is a set of concepts; all
concepts in C are numbered form c1 to cn according to
their ontologies, where n=|C|. E is the set of direct
inherited edges. If c1 is a direct child of c2, 1 2(,)c c E∈ .
G is a direct graph and obviously (,)c c E∉ .

A matrix n nU × is used to describe the set of direct
inherited edges E, The values of Uij denote the direct
inherited concept relations inside singleton ontology
and among multi-ontologies. The value of Uij can be got
from the following expression:

1 (,)
0 (,)

i j
ij

i j

C C E
U

C C E
∈⎧⎪= ⎨ ∉⎪⎩

Before any mapping is imported to multi-ontologies,
matrix U only has the direct inherited relations in the
inner inside every ontology, hence the values 1 are
dense near the diagonal of U, as Figure 1 (a) shown,
where [Oi] denotes all direct inherited relations in the i-th
ontology.

In this graph, we will add a global concept Thing,
and top concepts in singleton ontology will be
considered as direct children of Thing. And then we
change this graph when importing mappings ‘Ccover’,
‘Cisa’ and ‘Cequal’ orderly.

1) Importing global concept Thing
We will add Thing to the concept set C, and the

matrix U becomes (1) (1)n n+ × + .
Since every top concept in ontologies is a direct

child of Thing, the intersections of the top concepts and
Thing in U are filled with 1, and other intersections with
0. And for Thing does not inherit any other concepts, so
its corresponding row is filled with 0. Now the change
of U is shown as Figure 1 (b).

2) Importing the Ccover mappings
The reason of our processing Ccover first is that this

kind of mappings will add some new concepts to the
graph G.

Given a mapping 1 2 1 2((, , ...,), (, , ...,))cover m nC a a a b b b ,
where 1 , | |m n C≤ ≤ . According to the different values
of m and n, we will discuss four different processes as
follows.

(1) 1m n= = . The Ccover mapping degenerates into
Cisa mapping, and relevant discuss is given later.

(2) 1m = , 2n ≥ . We add a new concept cp in C ,
and its semantic meaning is

1
i

i n
b

≤ ≤
∪ . New edges

1 i n∀ ≤ ≤ , (,)i pb c and 1(,)pc a are added to E.
(3) 2m ≥ , 1n = . We add a new concept cq in C, its

semantic meaning is
1

i
i m

a
≤ ≤
∪ . new edges 1 i m∀ ≤ ≤

(,)i qa c , 1(,)qb c and (,)qc Thing are added to E. Notice

that for the concept cp in situation (2) has a direct parent
a1, so (,)pc Thing can not be added to graph G.

(4) 2m ≥ , 2n ≥ . We add two new concepts cp and
cq to graph G, and add a new edge (,)p qc c and all other

new edges in the situation (2) and (3) as well. Figure 1
(c) shows the change of U in situation (4).

3) Importing the Cisa mappings

The Cisa mappings do not change the set of concepts,
but add the direct inherited edges to graph G. Given a
mapping Cisa(cu,cv), it implies (,)u vc c E∈ . From the
definition of Cisa mapping, cu and cv belong to different
ontologies. We use Eij to denote all direct inherited
concept relations in ontology Oi and Oj: ijE E⊆ ,

(,)u v ijc c E∀ ∈ can infer that cu in Oi and cv in Oj. Now

the changes of U are shown as Figure 1 (d).
4) Importing the Cequal mappings
A Cequal mapping declares two concepts of

different ontology is synonym. To keep the whole
multi-ontologies semantic irredundant, one of the two
concepts in a Cequal mapping should be removed, and
the remaining concept should represent all the semantic
meanings of the two original concepts. The concepts
reducing algorithm is given as follows. For each
mapping Cequal(ck, cl), in algorithm 1, all semantic
information of concept cl is transferred to concept ck.

Through these processes discussed above, we
complete the basic mathematical processing for the
multi-ontologies graph G when importing ontology
mapping.

4.2 Semantic checking
We assume that no cycle exists in the original single
ontology [Oi]. If a cycle appears in graph G, the reasons
may be the following two.

1) Healthy cycles. The concepts or relations in the
cycle are equal; just we still have not found the
corresponding Cequal or Requal mappings. Therefore,
we can announce all synonym concepts or equal
relations in the cycles and use Algorithm 1 to delete the
redundant ones.

2) Ill cycles. The semantic conflicts may exist in the
original ontology and bring about semantic error cycles.

It is disappointing that the computer just can find the
cycles, but it is not able to distinguish the two types of

Algorithm 1. Reducing synonym concepts
For each mapping Cequal(ck, cl), we rewrite U

in the following steps:
Step1. Uki=Uki+Uli, where 1 i U≤ ≤ , if the

result 0kiU > , let Uki=1. Delete the l-th row.
Step2. Uik=Uik+Uil, where 1 i U≤ ≤ , if the

result 0ikU > , let Uik=1. Delete l-th column.
Next mapping

cycles above. Therefore, when the cycles are detected in
the graph by the computer, people may judge the types

of the cycles to decide whether using Algorithm 1 to
deal with them automatically.

Figure 1: The changes of matrix U by the introduction of mappings

4.3 Semantic refinement
After semantic checking, G is acyclic. In semantic

refinement, we will reduce redundant direct inherited
relation and assure the new graph 'G would not lose
any semantic information in G.

To be more formal, semantic refinement must
satisfy two goals: (1) The new graph 'G is minimal
(see definition 3); (2) The refining operations do not
change the connectivity of graph G, which means 'G
is an equivalent connective graph of G (see definition
4).

Definition 3. (,)G C E= is a minimal graph, if for
(,)x yc c E∀ ∈ , there does not exist a directed path from

cx to cy: 1(, ,..., ,)xy x s yp c a a c= , where 0s > , and
1 1i s≤ ≤ − , 1 1(,), (,), (,)x s y i ic a a c a a E+ ∈ . If the path

1(, ,..., ,)xy x s yp c a a c= exists, we call it a substitute
path of the edge (,)x yc c . And the length of a path is

the number of concept in is minus 1.
Definition 4. ' (, ')G C E= is an equivalent

connective graph of G=(C, E), iff ,x yc c C∀ ∈ , if G=(C,
E) has a directed path (,...,)xy x yp c c= , then

' (, ')G C E= must has a directed path from xc to yc

too.
Definition 5. If ' (,)'

min minG C E= is a minimal graph,
and it is an equivalent connective graph of G=(C, E),
we call ' (,)'

min minG C E= a minimal equivalent
connective graph of G=(C, E).

Formally, the goal of the refinement is to seek for
the minimal equivalent connective graph of G=(C, E).
From definition 3, 4 and 5, we have three conclusions:

Conclusion 1. After removing all edges having
substitute paths in G=(C, E), we can get the minimal
graph (,)min minG C E= .

Conclusion 2. For an edge (,)x yc c E∈ , if it has a
substitute path 1(, ,..., ,)xy x s yp c a a c= , we can infer
that there are more than one path from xc to yc (at
least, one substitute path and ,x yc c), and vice versa.

Conclusion 3. After removing all direct inherited
edges having more than one path from cx to cy in G=(C,
E), we can get the minimal graph (,)min minG C E= .

Then we discuss the methods to find all edges
having substitute paths in graph as follows.

Let matrix U denotes all edges in (,)G C E= , and
1U U= and 1 1n nU U U−= × , where 2n ≥ .
Theorem 1. ,i jc c C∀ ∈ , k

ijU is the number of k-

length paths from ci to cj.
Proof: We use mathematical induction here.
(1) Obviously, for ,i jc c C∀ ∈ , 1

ijU denotes the

number of 1-length paths from ci to cj.
(2) Assume 1l∃ ≥ , for ,i jc c C∀ ∈ , l

ijU denotes the

number of l-length paths from ci to cj. For
1l lU U U+ = × , we can get 1

1

n
l l
ij is sj

s
U U U+

=

= ×∑ . And the

(l+1)-length paths from ic to jc are composed by l-
length path from ic to sc and 1-length path from sc to

jc , where i s j≠ ≠ . Therefore, for ,i jc c C∀ ∈ , 1l
ijU +

is the number of (l+1)-length paths from ic to jc .

Let
2

n
k

k
W U

=

= ∑ . According to conclusion 2 and

theorem 1, if (,)i jc c have substitute paths, 1ijU = and
1ijW ≥ .

Definition 6. If an edge in E has substitute paths,
we call it redundant edge and let Ed be the set of them.

{(,) | (,) 1}d i j i j ijE c c c c E and W= ∈ ≥ .
Definition 7. Let mkp be a substitute path of (cm, ck),

where 1 1(, ,.., , , , ,.., ,)mk m p x y q kp c a a c c b b c= ,
and 0p > or 0q > . Notes (,)x yc c is a part of the
substitute path mkp of (cm, ck), we define a new
relation ‘≺ ’ to denote this relation between them as
(,) (,)x y m kc c c c≺ .

Theorem 2. The relation ≺ is irreflexive,
antisymmetric and transitive.

Proof:
(1) Irreflexivity. Assume (,) (,)x y x yc c c c≺ , ∃ a

directed path 1 1(, ,.., , , , ,.., ,)xy x p x y q yp c a a c c b b c= . For
0p > or 0q > , so ∃ a cycle 1(, ,.., ,)x p xc a a c or ∃

another cycle 1(, ,.., ,)y q yc b b c . It contradicts with the

acyclic premise, hence ≺ is irreflexive.
(2) Antisymmetry. Assume (,) (,)x y m kc c c c≺ and

(,) (,)m k x yc c c c≺ , where x mc c≠ or y kc c≠ , ∃ two
directed paths: 1 1(, ,.., , , , ,.., ,)xy x p m k q yp c a a c c b b c=

and pmk=(cm, c1, …, cr, cx, cy, d1, …, dl, ck), so we get:
1 1 1 1(, ,.., , , ,.., , , , ,.., , , ,.., ,)x p m r x y l k q yc a a c c c c c d d c b b c is

a directed path. For 0p > or 0r > , and 0l > or

0q > , apparently, there must be a cycle from cx to cx
or cy to cy. That contradicts with the acyclic premise,
hence ≺ is antisymmetric.

(3) Transitivity. Assume (,) (,)x y m kc c c c≺ and
(,) (,)m k s tc c c c≺ , from definition 7, ∃ two directed
path: 1 1(, ,.., , , , ,.., ,)mk m p x y q kp c a a c c b b c= and pst=(cs,

c1, …, cr, cm, ck, d1, …, dl, ct). So we can get:
1 1 1 1(, ,.., , , ,.., , , , ,.., , , ,.., ,)s r m p x y q k l tc c c c a a c c b b c d d c is

a directed path, it implies that (,) (,)x y s tc c c c≺ . Hence

≺ is transitive.
Definition 8. We divide Ed into two disjoint subsets:

{(,) | (,) (,) , (,) (,)}b i j i j d x y d x y i jE c c c c E c c E c c c c= ∈ ¬∃ ∈ ≺ , ;
and x d bE E E= − .

Definition 9. For any path 1(, ,..., ,)xy x s yp c a a c= ,
we define the set E(xyp) of edges in xyp as follows:

1

1 1
1

() {(,) {(,) (,)}
s

xy x i i s y
i

E p c a a a a c
−

+
=

= ∪ ∪ .

Algorithm 2. Construct the substitute path
Input: a substitute path 'xyp and its composing

edges set (')xyE p , and the edges in (')xyE p are
stored in turn from xc to yc .

Step1. For each edge ei in (')xyE p .
Step2. If i be E∈ , there must be a substitute path

Pl, all edges in Pl ∉ Ed, use the edges of Pl to
substitute ie in turn, go to Step 5.

Step3. If i xe E∈ , there must be a substitute path
Pm, using the edges of Pm to substitute ie in turn.
Return to Step2.

Step4. If i be E∉ and i xe E∉ , go on to Step 5.
Step5. Next edge
Output: A substitute path xyp , in which all edges

dE∉ .

Theorem 3. For any (,)x y dc c E∈ , it must have a
substitute path 1(, ,..., ,)xy x s yp c a a c= , where 0s > ,
1 1i s≤ ≤ − , and ()xy dE p E = ∅∩ .

Proof:
(1) For any (,)x y bc c E∈ , obviously the theorem is

valid.
(2) For any (,)x y xc c E∈ , it must has a substitute

path 1' (, ,..., ,)xy x s yp c a a c= . We use algorithm 2 to
construct a substitute path xyp from 'xyp .

(3) From (1) and (2), theorem 3 is proved.

Theorem 4. After removing all edges in Ed,
' (, ')G C E= is the equivalent connective graph of the

original graph (,)G C E= .
Proof: For any ,x yc c C∈ , if there is a directed path

'xyp from xc to yc in (,)G C E= , from theorem 3,
'xyp can be substituted by a new path xyp satisfying
()xy dE p E = ∅∩ . Therefore, there must be a directed

path from xc to yc in ' (, ')G C E= .

According to the conclusion 3 and theorem 4, we
can conclude that: after deleting all edges in Ed, we can
get the minimal equivalent connective graph

' (, ')G C E= of (,)G C E= .
By the methods discussed in this section, we

complete the semantic refinement for multi-ontologies
with ontology mapping. During the refining process,
all the steps in our methods can be performed in
polynomial time obviously. That assures our method
has high efficiency and is feasible to the practical cases.
Although our discussion focuses on the concept
mappings, the methods to deal with the relation
mappings also can be derived from our approach easily.

5 Related works
Ontology mapping is considered as an important
solution to the heterogeneity of multiple ontologies.
Developing mappings has been the focus of a variety
of works originating from diverse communities over a
number of years. Some frameworks have been
proposed. The IFF ontology mapping framework is
based on the Information Flow Theory, which could
describe the dynamic and stability about ontology [7].
In MAFRA framework, Maedche et al. used the
semantic mapping to specify the translation between
individuals and properties in different ontology [8].

Finding mappings is the key and also a difficult
issue in ontology mapping. Till now, there is not an
efficient way. To avoid the high cost of generating
mappings manually, semi-automatic algorithm is
necessary. These algorithms often use the natural
language processing or machine learning, and discover
the matching patterns by calculating the similarity.
PROMPT algorithm first computes the concepts
similarity, and then provides the possible mappings to
the knowledge engineer to refine manually [9]. GLUE
evaluates the similarity probability of the concepts or
relations through instance learning [10]. The learning
process of the approach uses multi-strategy learning

mechanism. In [11], we also provided two semi-
automatic methods for generating the mappings. First
way discovers mappings by calculating the similarity
based on the ontology structure, which includes
synonym concept set, concept features and semantic
neighborhood concept set. Another method is based on
the mutual instances set of the ontologies and
mappings which can be extracted by set operations.
Although so much work has done for the ontology
mapping, few of them consider the refinement after
generating mappings.

In Ontology generation, discovering the relations
between concepts is also an intricate task. Maedche
and Staab used the idea of generalized association rule
algorithm to detect non-taxonomic relations between
concepts [12]. However, they didn’t consider ontology
refinement. Since the ontology learning algorithms
often extract a number of taxonomic relations and
general binary relations [13], errors and
inconsistencies often exist, so the refining step is a
necessary step in the ontology generation. Shamsfard
and Barforoush proposed an automatic ontology
building approach to extract lexical and ontological
knowledge from Persian texts [14]. Their work
involves refining and reorganizing ontology to
eliminate redundancies, remove superfluities and
unnecessary parts, but they did not give more detail
algorithm. Lonsdale aims to build a new domain
ontology reusing an existing big one [15]. Refining the
results is the last step in his approach. But he does not
give the detail algorithm too, and his method is manual.

Refining ontology is an important step both in the
ontology building and multiple ontologies’
applications. Its aim is to keep the ontologies sound
and well organized. However, as far as we know,
except our work, we have not found out any similar
and specific work about on this issue. So we can
believe that our work is one of the earliest approaches
to investigate this issue.

6 Conclusions
Multiple ontologies often need to be accessed by

the applications today. Ontology mappings provide the
interoperating rules between multiple ontologies in
order to reconcile these ontologies. However,
introducing the mappings may break the soundness
and balance of the original ontologies. And some
mappings may be redundant or erroneous, which

would cause the multiple inconsistent and redundant.
For the purpose to deal with the problem, this paper
proposes an approach to eliminate the redundancies
and errors in multiple ontologies. First, to solve the
problem more conveniently, we classify the mappings
into eleven kinds and model the multiple ontologies as
graph. Then we analyze the changes of graph when
introducing different kinds of mappings respectively
and orderly. Following refining step includes semantic
checking and semantic refinement. The former keeps
the multiple ontologies sound, and the latter assures
that the multiple ontologies are irredundant. Since this
method is efficient, so it is feasible in the distributed
environments.

We are implementing our methods as a tool in a
system, whose aim is to solve the applications based
on multiple ontologies. We have tried to use our
refining method to refine the ontologies when
extracting sub-ontology from the multiple ontologies
[16]. The method works well, and the results are good.
Additionally, we believe our approach is of benefit to
the ontology generation as well, especially when the
generation derived from ontology learning, our method
can help to refine the ontology, provide suggestions for
the knowledge engineers when finding the cycles, and
improve the quality of the ontology.

References
[1] Gruber, T. R. A translation approach to portable

ontology specifications. Knowledge Acquisition, v.5,
p.199-220, 1993.

[2] Berners-Lee, T.; Hendler, J.; Lassila, O. The
semantic web. Scientific American, v.284, p.34-43,
2001.

[3] Wang, P; Xu, B. W.; Lu, J. J.; Li, Y. H. & Kang, D.
Z. Using Bridge Ontology for Detailed Semantic
Annotation Based on Multi-ontologies.
International Journal of Electronics and Computer
Science, v.6(2), p.19-29, 2004.

[4] Wache, H.; Vögele, T.; Visser, U.; et al. Ontology-
based integration of information- a survey of
existing approaches. In: IJCAI’01 Workshop:
Ontologies and Information Sharing, p.108-117,
2001.

[5] Kalfoglou, Y.; Schorlemmer, M. Ontology
mapping: the state of the art. The Knowledge
Engineering Review, v. 18(1), p.1-31, 2003.

[6] Klein, M. Combining and relating ontologies: an
analysis of problems and solutions. In: Workshop on
Ontologies and Information Sharing, IJCAI’01,
Seattle, USA, 2001.

[7] Kent, R. The information flow foundation for
conceptual knowledge organization. In: Proc. of the
6th International Conference of the International
Society for Knowledge Organization, 2000.

[8] Maedche, A.; Motik, B.; Silva, N. & Volz, R.
MAFRA - A mapping framework for distributed
ontologies. In: Proc. of the 13th European
Conference on Knowledge Engineering and
Knowledge Management, EKAW-2002, Madrid,
Spain, 2002.

[9] Noy, N. F.; Musen, M. PROMPT: algorithm and
tool for automated ontology merging and alignment.
In: Proc. of the 17th National Conference on
Artificial Intelligence (AAAI’00), 2000.

[10] Ehrig, M.; Staab, S. QOM-Quick Ontology
Mapping. In: International Semantic Web
Conference, Hiroshima, Japan, LNCS, v.3298,
p.683-697, 2004.

[11] Wang, P.; Xu, B. W.; Lu, J. J. et al. Theory and
semi-automatic generation of bridge ontology in
multi-ontologies environment. In: On the Move to
Meaningful Internet Systems 2004: OTM 2004
Workshops, Lecture Notes in Computer Science,
v.3292, p.763-767, 2004.

[12] Maedche, A.; Staab, S. Discovering Conceptual
Relations from Text. In: Proc. of the 14th European
Conference on Artificial Intelligence, Berlin, 2000.

[13] Maedche, A.; Staab, S. Ontology Learning.
Handbook on Ontologies, Springer, p.173-190,
2004.

[14] Shamsfard, M.; Barforoush, A. A. Learning
ontologies from natural language texts. Int. J.
Human-Computer Studies, v.60, p.17-63, 2004.

[15] Lonsdale, D.; Ding, Y.; et al. Peppering
knowledge sources with SALT: boosting conceptual
content for ontology generation. In: Proc. of the
AAAI Workshop on Semantic Web Meets Language
Resources, Edmonton, Alberta, Canada, 2002.

[16] Kang, D. Z.; Xu, B. W.; Lu, J. J.; Wang, P.; Li, Y. H.
Extracting sub-ontology from multiple ontologies. In: On
the Move to Meaningful Internet Systems 2004: OTM
2004 Workshops, Lecture Notes in Computer Science,
v.3292, p.731-740, 2004.

