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Abstract. In a distributed environment like Semantic Web, complex applications often need to handle 
multiple ontologies, where the heterogeneity of multiple ontologies arises. In order to reconcile these 
ontologies, ontology mappings are proposed to provide the interoperating rules between multiple 
ontologies. However, introducing mappings may cause inconsistencies and redundancies, which will 
break the soundness and balance of the original ontologies. This paper proposes an approach to 
eliminate inconsistencies and redundancies. First the mappings are classified into eleven kinds and 
multiple ontologies are modeled as a graph. Then the changes of the graph, when introducing 
different kinds of mappings orderly, are analyzed. Following refining steps include semantic checking 
to keep multiple ontologies sound, and semantic refinement to avoid multiple redundancies. All the 
steps in our approach can be performed in polynomial time. Our method has high efficiency and is 
feasible to applications about multiple ontologies in a distributed environment.  
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1   Introduction 
Ontology is a formal, explicit specification of a shared 
conceptualization [1]. It represents the common 
knowledge in domain through defining the concepts, 
relations, axioms and instances formally. As a powerful 
model to solve the information sharing problems, 
ontology plays a key role in the fields including 
knowledge representation, information retrieval, and so 
on. Ontology is also the core of Semantic Web [2], 
which envisions a world-wide distributed architecture 
where, on the basis of semantic marking up of web 
resources, data and computational resources will easily 
interoperate. In the past several years, the development of 
Semantic Web has improved the popularity of ontology 
greatly.  

To improve their performance and efficiency, 
ontologies are adopted by more and more applications 
to represent semantic information. In a distributed 
environment, even a single application is often required 
to handle the information from multiple domains. 
Therefore, multiple ontologies are used frequently in 
practical cases, such as semantic annotation based on 
multiple ontologies [3]. Usually, multiple ontologies are 

produced by different communities or come from 
different fields. These reasons cause the ontologies 
frequently heterogeneous, and that has been a major 
difficulty to utilize multiple ontologies. To solve this 
problem, ontology integration and mapping are two 
solutions [4]. Whereas, ontology integration lacks 
automatic methods to support it and the integration 
process is required to be executed repetitively when 
changing or evolving the ontologies. On these accounts, 
the ontology integration is too high cost and inflexible. 
And in fact, most applications just need the 
interoperation between multiple ontologies, ontology 
mapping is just a way to establish the exchange rules 
between ontologies, which can realize the ontology 
interoperation. And naturally the cost of generating 
mapping is lower than that of integration.  

When introducing the mappings, the original 
independent multiple ontologies are connected as a 
weak integrated big ontology. However, the structural 
and semantic balances of singleton ontology would be 
destroyed meanwhile. In mapping introduction, 
unexpected redundancies and clashes may appear in 
multiple ontologies, which will lead to false conclusions 



and lower performances. Therefore, it is very necessary 
to refine the redundancies and clashes to keep the 
multiple ontologies sound and simple.  

In this paper, we propose an approach to eliminate 
inconsistencies and redundancies. In the first step, the 
mappings are classified into eleven kinds, and graph 
theory is used to model the multiple ontologies 
environment, and then changes of graph are analyzed 
when introducing different kinds of mappings 
respectively and orderly. Following refining step 
includes semantic checking and semantic refinement. 
The former keeps the multiple ontologies sound, and the 
latter assures that the multiple ontologies would be 
irredundant.  

This paper is organized as follows: Section 2 gives 
some principles about ontology and ontology mapping. 
Then after introducing the mappings into multiple 
ontologies, the refining problems are analyzed in 
section 3. Section 4 discusses the method of semantic 
checking and semantic refining for the multiple 
ontologies. Section 5 discusses related work, and 
section 6 makes the conclusions. 

2   Principles 
In this section, we will give some basic knowledge about 
ontology. Then we introduce ontology mapping issues 
among heterogeneous ontologies, and here we focus on 
mapping classification, which is the base of the 
subsequent refining process.  

2.1   Ontology 
Many definitions of ontologies have been given in the last 
decade, and the most prevalent definition of them is 
presented by Gruber: an ontology is a formal, explicit 
specification of a shared conceptualization [1]. In our 
framework, we consider an ontology as the following 
definition. This definition is expressive enough to 
represent ontology in most ontology applications. 

Definition 1. (Ontology) An ontology is a six-tuple 
O=(C, AC, R, AR, H, X), where C is a set of concepts; AC 
is a collection of attribute sets about concepts; R is a set 
of relations, each relation associates to a pair of 
concepts; AR is a collection of attribute sets about 
relations; H represents a concept hierarchy; and X is the 
set of axioms.  

In above definition, if ci is a concept in C, and its 
attributes can be denoted by AC(ci). Each relation 
ri<cp,cq> in R represents a binary association between 

the individuals in concept cp and cq, and the attribute of 
it can be denoted by AR(ri). H is a concept hierarchy 
derived from C and it is a set of superclass-subclass 
relations; <cp,cq>∈H if cp is a superclass of cq. Each 
axiom in X is a constraint about the concepts, relations 
and attributes.  

2.2   Ontology mapping  
Ontology mapping can provide a common layer from 
which information can be accessed and exchanged in 
the semantically sound manners [5]. The mismatch is 
the essential reason that causes ontologies 
heterogeneous. The ontology mismatch can be divided 
into two levels: ontology language and meta-model 
level [6]. The former level of mismatches includes 
syntax, logical representation, semantic primitives and 
expressivity of the languages. The second level includes 
conceptual models, interpretations and terms. 
Classifying ontology mismatches is important to denote 
which kind of mismatches can be resolved with a 
mapping formalism or detected by a matching algorithm. 
However, in terms of the practical applications, the 
above classification is far more abstract. In fact, most of 
practical ontology mappings are just based on the 
ontology’s components (with one exceptions: axioms 
usually don’t need mapping.) directly. Based on the 
above idea, mappings can be classified into two kinds: 
concept mappings and relation mappings.  

Concept mappings can be divided into seven 
subclasses.  

(1) Cequal (synonym mapping). This kind of 
mappings represents identical or very close concepts in 
different ontologies. For example, the ‘PC’ and 
‘Computer’ in different ontologies express the same 
meaning.  

(2) Cdiffer (polysemous mapping). This kind of 
mapping represents homonymous concepts in different 
ontologies with different meanings. For example the 
concept ‘Doctor’ in different ontologies may denote a 
man having Ph.D degree or a man curing disease.  

(3) Cisa (hypernym or ‘is-a’ mapping). This 
mapping represents the possible hierarchy relations of 
concepts in different ontologies, for example the ‘is-a’ 
relations between ‘hammer’ and ‘tool’ in different 
ontologies. 

(4) Cinstanceof (hyponym mapping). This mapping 
expresses the inverse hierarchy relations against the 
hypernym mapping.  



(5) Chasa (meronym/holonym mapping). This 
mapping represents part-whole relations between 
concepts in different ontologies. For instance, ‘Tree’ in 
an ontology has ‘Root’ and ‘Leaf’ in another ontology. 

(6) Ccover (cover mapping). This mapping expresses 
that the disjunction of several concepts in different 
ontologies can cover another disjunction of several 
concepts in different ontologies.  

(7) Copposed (opposed mapping). This mapping 
expresses that if a concept can be divided into two 
disjoint sub-concepts from different ontologies, then 
they are opposed. For example, two sub-concepts of 
concept ‘Student’ in different ontologies: ‘MaleStudent’ 
and ‘FemaleStudent’ are opposed.  

Four subclasses are divided for the relation mappings 
as well.  

(8) Rsubsume (subsume mapping). This mapping 
expresses the relations in different ontologies having 
subsumption relationships. For example, the relation 
‘ancestor-descender’ in an ontology can subsume the 
relation ‘father-son’ in another ontology.  

(9) Requal (relation equal mapping). This mapping 
denotes the two relations from different ontologies are 
equal. 

(10) Rinverse (inverse mapping). The mapping 
represents that two relations in different ontologies are 
inverse. For example, the ‘Teach’ in an ontology and 
the ‘TaughtBy’ in another ontology are inverse relations. 

(11) Rcompose (composed mapping). Two relations 
of different ontologies may compose a new relation. For 
example, the relation ‘brother’ in an ontology and the 
relation ‘father-son’ in another ontology can compose a 
new relation ‘uncle-nephew’ by that brother(x, y) and 
father-son(y, z) can imply uncle-nephew(x, z).  

The above eleven kinds of mappings are enough to 
express most common relations among heterogeneous 
ontologies. And classifying these mappings will be 
favorable to refining process, since we can deal with 
kinds of mappings respectively.  

3   Analyzing and dividing the refining problems 
The mappings connect the isolating multiple ontologies, 
but meanwhile, it may cause some unavoidable 
semantic redundancies and conflicts. Redundancies may 
cause low performance of the multiple ontologies 
application; and conflict may derive false conclusions 
and even lead the system to crash. Therefore, checking 
semantic consistency and reducing semantic 

redundancies will improve the reasoning capability and 
soundness for multiple ontologies.  

In our view, seven kinds of mapping: Cequal, Cisa, 
Cinstanceof, Chasa, Ccover, Rsubsume and Requal are 
transitive relations, which can introduce semantic 
redundancies and conflicts  by implying new conclusion 
from their transitive property. The other four kinds of 
mappings including Cdiffer, Copposed, Rinverse and 
Rcompose, are not transitive and can not cause 
reasoning failure and semantic redundancies. Therefore, 
the semantic checking and reducing of semantic 
redundancies are aimed at the former seven kinds of 
transitive mappings.  

To be more convenient to refine the multiple 
ontologies, we divide these mappings further. In terms 
of concept mappings, Cinstanceof is a reverse mapping 
of Cisa, and can be translated to Cisa mappings easily. 
In addition, we can use the similar method of refining 
Cisa to deal with Chas. Besides the concept mappings, 
the relation mappings are needed to be considered here. 
The way to solve relation mappings is similar to the 
concepts: Rsubsume is similar to Cisa; Requal is similar 
to Cequal as well. Based on the above analyses, our 
refining method only focuses on the Cequal, Cisa, 
Ccover mappings, which can be extended to suit other 
mappings.   

4   Refining multiple ontologies 
In order to deal with the problem conveniently, we 

use graph theory as the basic mathematical model of the 
multiple ontologies. Then we use graph-based matrix to 
deal with the mappings in order.  

4.1   Mathematical model 
We use a direct graph to represent the concept direct 
inherited relations in multi-ontologies, such a graph is 
called multi-ontologies direct inherited graph.  

Definition 2. The multi-ontologies direct inherited graph 
G is denoted as G=(C, E), where C is a set of concepts; all 
concepts in C are numbered form c1 to cn according to 
their ontologies, where n=|C|. E is the set of direct 
inherited edges. If c1 is a direct child of c2, 1 2( , )c c E∈ . 
G is a direct graph and obviously ( , )c c E∉ . 

A matrix n nU ×  is used to describe the set of direct 
inherited edges E, The values of Uij denote the direct 
inherited concept relations inside singleton ontology 
and among multi-ontologies. The value of Uij can be got 
from the following expression:  
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Before any mapping is imported to multi-ontologies, 
matrix U only has the direct inherited relations in the 
inner inside every ontology, hence the values 1 are 
dense near the diagonal of U, as Figure 1 (a) shown, 
where [Oi] denotes all direct inherited relations in the i-th 
ontology.  

In this graph, we will add a global concept Thing, 
and top concepts in singleton ontology will be 
considered as direct children of Thing. And then we 
change this graph when importing mappings ‘Ccover’, 
‘Cisa’ and ‘Cequal’ orderly.  

1) Importing global concept Thing 
We will add Thing to the concept set C, and the 

matrix U becomes ( 1) ( 1)n n+ × + . 
Since every top concept in ontologies is a direct 

child of Thing, the intersections of the top concepts and 
Thing in U are filled with 1, and other intersections with 
0. And for Thing does not inherit any other concepts, so 
its corresponding row is filled with 0. Now the change 
of U is shown as Figure 1 (b). 

2) Importing the Ccover mappings 
The reason of our processing Ccover first is that this 

kind of mappings will add some new concepts to the 
graph G.  

Given a mapping 1 2 1 2(( , , ..., ), ( , , ..., ))cover m nC a a a b b b , 
where 1 , | |m n C≤ ≤ . According to the different values 
of m and n, we will discuss four different processes as 
follows.  

(1) 1m n= = . The Ccover mapping degenerates into 
Cisa mapping, and relevant discuss is given later.  

(2) 1m = , 2n ≥ . We add a new concept cp in C , 
and its semantic meaning is 

1
i

i n
b

≤ ≤
∪ . New edges 

1 i n∀ ≤ ≤ , ( , )i pb c  and 1( , )pc a  are added to E.  
(3) 2m ≥ , 1n = . We add a new concept cq in C, its 

semantic meaning is 
1

i
i m

a
≤ ≤
∪ . new edges 1 i m∀ ≤ ≤  

( , )i qa c , 1( , )qb c  and ( , )qc Thing  are added to E. Notice 

that for the concept cp in situation (2) has a direct parent 
a1, so ( , )pc Thing  can not be added to graph G.  

(4) 2m ≥ , 2n ≥ . We add two new concepts cp and 
cq to graph G, and add a new edge ( , )p qc c  and all other 

new edges in the situation (2) and (3) as well. Figure 1 
(c) shows the change of U in situation (4).  

3) Importing the Cisa mappings 

The Cisa mappings do not change the set of concepts, 
but add the direct inherited edges to graph G. Given a 
mapping Cisa(cu,cv), it implies ( , )u vc c E∈ . From the 
definition of Cisa mapping, cu and cv belong to different 
ontologies. We use Eij to denote all direct inherited 
concept relations in ontology Oi and Oj: ijE E⊆ , 

( , )u v ijc c E∀ ∈  can infer that cu in Oi and cv in Oj. Now 

the changes of U are shown as Figure 1 (d).  
4) Importing the Cequal mappings 
A Cequal mapping declares two concepts of 

different ontology is synonym. To keep the whole 
multi-ontologies semantic irredundant, one of the two 
concepts in a Cequal mapping should be removed, and 
the remaining concept should represent all the semantic 
meanings of the two original concepts. The concepts 
reducing algorithm is given as follows. For each 
mapping Cequal(ck, cl), in algorithm 1, all semantic 
information of concept cl is transferred to concept ck.  

 

Through these processes discussed above, we 
complete the basic mathematical processing for the 
multi-ontologies graph G  when importing ontology 
mapping.  

4.2   Semantic checking 
We assume that no cycle exists in the original single 
ontology [Oi]. If a cycle appears in graph G, the reasons 
may be the following two.  

1) Healthy cycles. The concepts or relations in the 
cycle are equal; just we still have not found the 
corresponding Cequal or Requal mappings. Therefore, 
we can announce all synonym concepts or equal 
relations in the cycles and use Algorithm 1 to delete the 
redundant ones.  

2) Ill cycles. The semantic conflicts may exist in the 
original ontology and bring about semantic error cycles.  

It is disappointing that the computer just can find the 
cycles, but it is not able to distinguish the two types of 

Algorithm 1. Reducing synonym concepts 
For each mapping Cequal(ck, cl), we rewrite U 

in the following steps:  
Step1. Uki=Uki+Uli, where 1 i U≤ ≤ , if the 

result 0kiU > , let Uki=1. Delete the l-th row. 
Step2. Uik=Uik+Uil, where 1 i U≤ ≤ , if the 

result 0ikU > , let Uik=1. Delete l-th column. 
Next mapping  



cycles above. Therefore, when the cycles are detected in 
the graph by the computer, people may judge the types 

of the cycles to decide whether using Algorithm 1 to 
deal with them automatically. 

 

 
Figure 1: The changes of matrix U  by the introduction of mappings 

4.3   Semantic refinement 
After semantic checking, G is acyclic. In semantic 

refinement, we will reduce redundant direct inherited 
relation and assure the new graph 'G  would not lose 
any semantic information in G. 

To be more formal, semantic refinement must 
satisfy two goals: (1) The new graph 'G  is minimal 
(see definition 3); (2) The refining operations do not 
change the connectivity of graph G, which means 'G  
is an equivalent connective graph of G (see definition 
4). 

Definition 3. ( , )G C E=  is a minimal graph, if for 
( , )x yc c E∀ ∈ , there does not exist a directed path from 

cx to cy: 1( , ,..., , )xy x s yp c a a c= , where 0s > , and 
1 1i s≤ ≤ − , 1 1( , ), ( , ), ( , )x s y i ic a a c a a E+ ∈ . If the path 

1( , ,..., , )xy x s yp c a a c=  exists, we call it a substitute 
path of the edge ( , )x yc c . And the length of a path is 

the number of concept in is minus 1.  
Definition 4. ' ( , ')G C E= is an equivalent 

connective graph of G=(C, E), iff ,x yc c C∀ ∈ , if G=(C, 
E) has a directed path ( ,..., )xy x yp c c= , then 

' ( , ')G C E=  must has a directed path from xc  to yc  

too.  
Definition 5. If ' ( , )'

min minG C E=  is a minimal graph, 
and it is an equivalent connective graph of G=(C, E), 
we call ' ( , )'

min minG C E=  a minimal equivalent 
connective graph of G=(C, E).  

Formally, the goal of the refinement is to seek for 
the minimal equivalent connective graph of G=(C, E). 
From definition 3, 4 and 5, we have three conclusions:  

Conclusion 1. After removing all edges having 
substitute paths in G=(C, E), we can get the minimal 
graph ( , )min minG C E= .  

Conclusion 2. For an edge ( , )x yc c E∈ , if it has a 
substitute path 1( , ,..., , )xy x s yp c a a c= , we can infer 
that there are more than one path from xc  to yc (at 
least, one substitute path and ,x yc c ), and vice versa.  

Conclusion 3. After removing all direct inherited 
edges having more than one path from cx to cy in G=(C, 
E), we can get the minimal graph ( , )min minG C E= .  

Then we discuss the methods to find all edges 
having substitute paths in graph as follows.  



Let matrix U denotes all edges in ( , )G C E= , and 
1U U=  and 1 1n nU U U−= × , where 2n ≥ . 
Theorem 1. ,i jc c C∀ ∈ , k

ijU  is the number of k-

length paths from ci to cj.  
Proof: We use mathematical induction here.  
(1) Obviously, for ,i jc c C∀ ∈ , 1

ijU  denotes the 

number of 1-length paths from ci to cj.  
(2) Assume 1l∃ ≥ , for ,i jc c C∀ ∈ , l

ijU  denotes the 

number of l-length paths from ci to cj. For 
1l lU U U+ = × , we can get 1

1

n
l l
ij is sj

s
U U U+

=

= ×∑ . And the 

(l+1)-length paths from ic  to jc  are composed by l-
length path from ic  to sc  and 1-length path from sc  to 

jc , where i s j≠ ≠ . Therefore, for ,i jc c C∀ ∈ , 1l
ijU +  

is the number of (l+1)-length paths from ic  to jc .  

Let 
2

n
k

k
W U

=

= ∑ . According to conclusion 2 and 

theorem 1, if ( , )i jc c  have substitute paths, 1ijU =  and 
1ijW ≥ .  

Definition 6. If an edge in E has substitute paths, 
we call it redundant edge and let Ed be the set of them.  

{( , ) | ( , ) 1}d i j i j ijE c c c c E and W= ∈ ≥  .  
Definition 7. Let mkp  be a substitute path of (cm, ck), 

where 1 1( , ,.., , , , ,.., , )mk m p x y q kp c a a c c b b c= , 
and 0p > or 0q > . Notes ( , )x yc c  is a part of the 
substitute path mkp  of (cm, ck), we define a new 
relation ‘≺ ’ to denote this relation between them as 
( , ) ( , )x y m kc c c c≺ .  

Theorem 2. The relation ≺  is irreflexive, 
antisymmetric and transitive.  

Proof:  
(1) Irreflexivity. Assume ( , ) ( , )x y x yc c c c≺ , ∃  a 

directed path 1 1( , ,.., , , , ,.., , )xy x p x y q yp c a a c c b b c= . For 
0p >  or 0q > , so ∃  a cycle 1( , ,.., , )x p xc a a c  or ∃  

another cycle 1( , ,.., , )y q yc b b c . It contradicts with the 

acyclic premise, hence ≺  is irreflexive.  
(2) Antisymmetry. Assume ( , ) ( , )x y m kc c c c≺  and 

( , ) ( , )m k x yc c c c≺ , where x mc c≠ or y kc c≠ , ∃  two 
directed paths: 1 1( , ,.., , , , ,.., , )xy x p m k q yp c a a c c b b c=  

and pmk=(cm, c1, …, cr, cx, cy, d1, …, dl, ck), so we get: 
1 1 1 1( , ,.., , , ,.., , , , ,.., , , ,.., , )x p m r x y l k q yc a a c c c c c d d c b b c is 

a directed path. For 0p >  or 0r > , and 0l >  or 

0q > , apparently, there must be a cycle from cx to cx 
or cy to cy. That contradicts with the acyclic premise, 
hence ≺  is antisymmetric.  

(3) Transitivity. Assume ( , ) ( , )x y m kc c c c≺  and 
( , ) ( , )m k s tc c c c≺ , from definition 7, ∃  two directed 
path: 1 1( , ,.., , , , ,.., , )mk m p x y q kp c a a c c b b c=  and pst=(cs, 

c1, …, cr, cm, ck, d1, …, dl, ct). So we can get: 
1 1 1 1( , ,.., , , ,.., , , , ,.., , , ,.., , )s r m p x y q k l tc c c c a a c c b b c d d c  is 

a directed path, it implies that ( , ) ( , )x y s tc c c c≺ . Hence 

≺  is transitive.  
Definition 8. We divide Ed into two disjoint subsets: 

{( , ) | ( , ) ( , ) , ( , ) ( , )}b i j i j d x y d x y i jE c c c c E c c E c c c c= ∈ ¬∃ ∈ ≺ ,  ; 
and x d bE E E= − .  

Definition 9. For any path 1( , ,..., , )xy x s yp c a a c= , 
we define the set E( xyp ) of edges in xyp as follows: 

1

1 1
1

( ) {( , ) {( , ) ( , )}
s

xy x i i s y
i

E p c a a a a c
−

+
=

= ∪ ∪ . 

Algorithm 2. Construct the substitute path 
Input: a substitute path 'xyp  and its composing 

edges set ( ' )xyE p , and the edges in ( ' )xyE p  are 
stored in turn from xc  to yc . 

Step1. For each edge ei in ( ' )xyE p . 
Step2. If i be E∈ , there must be a substitute path 

Pl, all edges in Pl ∉  Ed, use the edges of Pl to 
substitute ie  in turn, go to Step 5.  

Step3. If i xe E∈ , there must be a substitute path 
Pm, using the edges of Pm to substitute ie  in turn. 
Return to Step2.  

Step4. If i be E∉  and i xe E∉ , go on to Step 5. 
Step5. Next edge 
Output: A substitute path xyp , in which all edges 

dE∉ . 

Theorem 3. For any ( , )x y dc c E∈ , it must have a 
substitute path 1( , ,..., , )xy x s yp c a a c= , where 0s > , 
1 1i s≤ ≤ − , and ( )xy dE p E = ∅∩ .  

Proof: 
(1) For any ( , )x y bc c E∈ , obviously the theorem is 

valid. 
(2) For any ( , )x y xc c E∈ , it must has a substitute 

path 1' ( , ,..., , )xy x s yp c a a c= . We use algorithm 2 to 
construct a substitute path xyp  from 'xyp .  

(3) From (1) and (2), theorem 3 is proved. 



Theorem 4. After removing all edges in Ed, 
' ( , ')G C E=  is the equivalent connective graph of the 

original graph ( , )G C E= .  
Proof: For any ,x yc c C∈ , if there is a directed path 

'xyp  from xc  to yc  in ( , )G C E= , from theorem 3, 
'xyp  can be substituted by a new path xyp  satisfying 
( )xy dE p E = ∅∩ . Therefore, there must be a directed 

path from xc  to yc  in ' ( , ')G C E= .  

According to the conclusion 3 and theorem 4, we 
can conclude that: after deleting all edges in Ed, we can 
get the minimal equivalent connective graph 

' ( , ')G C E=  of ( , )G C E= .  
By the methods discussed in this section, we 

complete the semantic refinement for multi-ontologies 
with ontology mapping. During the refining process, 
all the steps in our methods can be performed in 
polynomial time obviously. That assures our method 
has high efficiency and is feasible to the practical cases. 
Although our discussion focuses on the concept 
mappings, the methods to deal with the relation 
mappings also can be derived from our approach easily.   

5   Related works 
Ontology mapping is considered as an important 
solution to the heterogeneity of multiple ontologies. 
Developing mappings has been the focus of a variety 
of works originating from diverse communities over a 
number of years. Some frameworks have been 
proposed. The IFF ontology mapping framework is 
based on the Information Flow Theory, which could 
describe the dynamic and stability about ontology [7]. 
In MAFRA framework, Maedche et al. used the 
semantic mapping to specify the translation between 
individuals and properties in different ontology [8].  

Finding mappings is the key and also a difficult 
issue in ontology mapping. Till now, there is not an 
efficient way. To avoid the high cost of generating 
mappings manually, semi-automatic algorithm is 
necessary. These algorithms often use the natural 
language processing or machine learning, and discover 
the matching patterns by calculating the similarity. 
PROMPT algorithm first computes the concepts 
similarity, and then provides the possible mappings to 
the knowledge engineer to refine manually [9]. GLUE 
evaluates the similarity probability of the concepts or 
relations through instance learning [10]. The learning 
process of the approach uses multi-strategy learning 

mechanism. In [11], we also provided two semi-
automatic methods for generating the mappings. First 
way discovers mappings by calculating the similarity 
based on the ontology structure, which includes 
synonym concept set, concept features and semantic 
neighborhood concept set. Another method is based on 
the mutual instances set of the ontologies and 
mappings which can be extracted by set operations. 
Although so much work has done for the ontology 
mapping, few of them consider the refinement after 
generating mappings. 

In Ontology generation, discovering the relations 
between concepts is also an intricate task. Maedche 
and Staab used the idea of generalized association rule 
algorithm to detect non-taxonomic relations between 
concepts [12]. However, they didn’t consider ontology 
refinement. Since the ontology learning algorithms 
often extract a number of taxonomic relations and 
general binary relations [13], errors and 
inconsistencies often exist, so the refining step is a 
necessary step in the ontology generation. Shamsfard 
and Barforoush proposed an automatic ontology 
building approach to extract lexical and ontological 
knowledge from Persian texts [14]. Their work 
involves refining and reorganizing ontology to 
eliminate redundancies, remove superfluities and 
unnecessary parts, but they did not give more detail 
algorithm. Lonsdale aims to build a new domain 
ontology reusing an existing big one [15]. Refining the 
results is the last step in his approach. But he does not 
give the detail algorithm too, and his method is manual. 

Refining ontology is an important step both in the 
ontology building and multiple ontologies’ 
applications. Its aim is to keep the ontologies sound 
and well organized. However, as far as we know, 
except our work, we have not found out any similar 
and specific work about on this issue. So we can 
believe that our work is one of the earliest approaches 
to investigate this issue.  

6   Conclusions 
Multiple ontologies often need to be accessed by 

the applications today. Ontology mappings provide the 
interoperating rules between multiple ontologies in 
order to reconcile these ontologies. However, 
introducing the mappings may break the soundness 
and balance of the original ontologies. And some 
mappings may be redundant or erroneous, which 



would cause the multiple inconsistent and redundant. 
For the purpose to deal with the problem, this paper 
proposes an approach to eliminate the redundancies 
and errors in multiple ontologies. First, to solve the 
problem more conveniently, we classify the mappings 
into eleven kinds and model the multiple ontologies as 
graph. Then we analyze the changes of graph when 
introducing different kinds of mappings respectively 
and orderly. Following refining step includes semantic 
checking and semantic refinement. The former keeps 
the multiple ontologies sound, and the latter assures 
that the multiple ontologies are irredundant. Since this 
method is efficient, so it is feasible in the distributed 
environments.  

We are implementing our methods as a tool in a 
system, whose aim is to solve the applications based 
on multiple ontologies. We have tried to use our 
refining method to refine the ontologies when 
extracting sub-ontology from the multiple ontologies 
[16]. The method works well, and the results are good. 
Additionally, we believe our approach is of benefit to 
the ontology generation as well, especially when the 
generation derived from ontology learning, our method 
can help to refine the ontology, provide suggestions for 
the knowledge engineers when finding the cycles, and 
improve the quality of the ontology.  
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