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1 Introduction

Rational expressions are finite representations of a class
of non-commutative formal series called rational [4, 15].
Initially created to describe formal languages, the ratio-
nal expressions are naturally used in the interpretation
of formal languages and compilers. Their applications
take place in a lot of scientific areas as quantum compu-
tation, logic, bioinformatics, automatic search of text,
natural language processing etc. Rational expressions
have new application fields with the development of In-
ternet, and the diffusion of hostile code and spam mes-
sages. The filters use expressions to detect the poten-
tially harmful elements. In 1961, Schützenberger states
the famous equivalence between the set of weighted au-
tomata and rational expressions [23]. Working with ra-
tional series via weighted automata is often more in-
teresting. For this purpose, a rich toolbox dedicated to
weighted automata in MuPAD-Combinat [1] has been
developed. It is intended for use in research but also

in teaching with pedagogical purposes. Many packages
manipulating finite-state machines have been developed
as Automate [6] or AMoRE [19], but for a given set
of weights except FSM [21] and Vaucanson [9] plat-
forms. Using a computer algebra system, our software
offers more general computations. In fact, weights are
taken from many semirings which are minimal alge-
braic structures for suitable computations. However,
just few systems as our environment and Vaucanson
are able to work with rational expressions. This library
is included in the open-source algebraic combinatorics
package MuPAD-Combinat [13] for the computer alge-
bra system MuPAD [18] (2.0.0 and higher).

The purpose of this paper is not to be a user man-
ual of the library and even not to list all its functional-
ities. We give here only a quick overview on what is
to be found in the library. In the brief presentation that
follows, we describe the design of a library devoted to
manipulations of rational expressions whose scalars be-
long to any semiring. In the first part, we introduce the
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package MuPAD-Combinat and we justify the motiva-
tions of this choice. In the following section, some theo-
retical notions are reminded as semirings, automata and
expressions. We illustrate these formal definitions with
several examples created in MuPAD-Combinat. Next,
we present a sharp tree structure for efficient handlings
of rational expressions. Then, we detail just two algo-
rithms used in symbolic computations. In section 6, we
give an idea about the use of the software with a sym-
bolic demonstration. Finally, we present a brief com-
paraison of the software performances with an analo-
gous platform called Vaucanson. All tests have been
run on a Centrino 1.6 GHz (1 GB of RAM) with Mu-
PAD Pro 4.0.2, MuPAD-Combinat 1.3.2 and Vaucanson
0.7.

2 Inside MuPAD-Combinat

Our research works in combinatorics and computer sci-
ence deal with formal series. Implementation of formal
series in a computer algebra system allows to carry out
many tests and experiences in order to visualize known
results but also to validate conjectures. The research in
algebraic combinatorics benefits from the computer ex-
ploration, which requires flexible and efficient symbolic
tools. Such tools are valorized by the scientific commu-
nity, both in research and teaching to illustrate current
results and undertake new researches.

We want a flexible and extensible open-source tool-
box being composed of standard combinatorial objects
with a free license. Furthermore, we need an oriented-
object language providing the inheritance between al-
gebraic structures, the overloading mechanism and a
rapid implementation. The open-source algebraic com-
binatorics package MuPAD-Combinat for the computer
algebra system MuPAD [18] answers in part to our re-
quirements. On the Florent Hivert and Nicolas Thiéry’s
initiative, the project started in spring 2001. The core
of the package is integrated in the official library of
MuPAD1 since version 2.5.0. A detailed description
of the project is introduced in [13]. MuPAD ensures
us the stability of code, the technical support and the
collaboration with its developers team. This collabo-
ration includes code reviews, explanations on the in-
ternal functioning of MuPAD and discussions on com-
mon developments. MuPAD kernel is built on logi-
cal and sound bases allowing us easy tools develop-
ment but also addition of new functionalities in the ker-
nel. The last feature makes MuPAD reasonably open
than other algebra systems. Moreover, MuPAD offers a
categorial programming language with categories, do-

1downloadable from the web site http://www.mupad.com.

mains and axioms which is suitable for symbolic han-
dlings especially those of weighted automata or again
rational expressions. The choice of the computer al-
gebra system MuPAD has been done after a serious
study of the existing softwares. Obviously, we would
have preferred to use a computer algebra system that
was already widely used like Maple [8] or Mathematica
[24]. However, the programming language, the license
conditions, and the long term maintenance of Maple
are not suited to our needs. Technically, Mathemat-
ica looks better, but does not seem to fit our technical
requirements concerning the object oriented features.
For more technical details, the reader should refer to
[13]. MuPAD-Combinat works with combinatorial ob-
jects such as words, trees, graphs, combinatorial alge-
bras or weighted automata and recently rational expres-
sions. It provides a number of domains or classes that
are types and methods attached to these objects, in or-
der to deal with them. During six years of existence, the
project has been realized in 10 official versions among
which 6 are stable. In addition, it has been cited in more
than 25 research articles. Actually, more than thirty de-
velopers being interested in combinatorics and the com-
puter exploration, participate to the project. A last re-
lease of the package can be loaded from the web page
http://mupad-combinat.sf.net. In this web
site, we find the reference manual, users and developers
mailing lists, bug reports and how to contribute to the
project.

3 Theoretical background

This section is devoted to theoretical definitions such
as semirings, non-commutative formal series, weighted
automata or again rational expressions. These prerequi-
sites are important for the understanding of the paper.

3.1 Semirings

Semirings are convenient structures to compute with
finite-state machines. A semiring (R,⊕,⊗, 0, 1) is a
set together with two laws and their neutrals. More pre-
cisely (R,⊕, 0) is a commutative monoid with 0 as neu-
tral and (R,⊗, 1) is a monoid with 1 as neutral. The
product is distributive with respect to the addition and
zero is an annihilator. Besides the semiring of natu-
ral numbers, we can cite the boolean semiring, exotic
semirings as the MinPlus semiring, numerical semir-
ings (integers, rationals, reals or complex numbers), or
again the family of all subsets of a nonempty set with
union and intersection. A particular interest for our
work is reserved for the star defined here in a formal
way. Let x ∈ R, we call L(x) (resp. R(x)) the set of



solutions of the equation y⊗x⊕1 = y (resp. x⊗y⊕1 =
y). A star of x belongs to S(x) = L(x) ∩ R(x) if it is
not empty. Therefore, we write x� the star of x if there
exists. In this paper, we use semirings which have at
most one star for each x ∈ R. In practice, the most
used are these ones (as Kleene semirings or Conway
semirings). In MuPAD, a semiring belongs to the cate-
goryCat::SemiRing that sets the main properties of
semirings. It inherits Cat::AbelianMonoid (prop-
erties of abelian monoid for ⊕) and Cat::Monoid
(properties of monoid for ⊗). According to the variety
of semirings which can be used in the theory, we have
developed in MuPAD-Combinat a domain constructor
Dom::SemiRing. This domain creates a semiring
where elements belong to a set or satisfy a property.
The general call of this domain constructor is detailed
below:

Dom::SemiRing(Coefficient=coefficient,

<, Prop=prop, Plus=plus, Zero=zero,

Negate=negate, Mult=mult, One=one,

Invert=invert, Star=star,

Categ=categ>)

The constructor of the domain Dom::SemiRing buil-
ds a semiring where elements belong to coefficient
which can be a domain, a set , or an union of domains
and sets written as a list. Note that the rest of param-
eters is optional for the constructor, since they may be
inherited from coefficient (except prop, star
and categ) which must be a domain in this case. If
the parameter prop is specified, the elements must sat-
isfy this property. The addition, zero and opposites can
be given by plus, zero and negate respectively.
The multiplication, one and inverses by mult, one
and invert respectively, the star by star. When
categ appears, it defines the category of the domain.
For more complicated semirings, appropriate MuPAD
domain constructors are advised. For more details, we
refer the reader to [1]. For instance, we deal with the
implementation of the well known boolean semiring that
is composed of two elements 1 and 0 representing the
boolean values TRUE and FALSE. The two boolean el-
ements admit a unique star which is 1:
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>> B := Dom::SemiRing(

>> Coefficient = {0,1},

>> Plus =

>> ((e,f) -> if bool(extop(e,1)=1) or

>> bool(extop(f,1)=1) then

>> return(1)

>> else

>> return(0)

>> end_if),

>> Zero = 0,

>> Mult =

>> ((e,f) -> if (extop(e,1)=1) and

>> (extop(f,1)=1) then

>> return(1)

>> else

>> return(0)

>> end_if),

>> One = 1,

>> Star = (e -> 1)):

The star of the arithmetical expression 1 ⊗ 0 ⊕ 1 in the
boolean semiring is then given by:

>> B::star(B(1)*B(0)+B(1))

1

Few semiring domains already exist in MuPAD, and
they are predefined. We have usual numerical domains
as Dom::Integer for integers, Dom::Rational,
Dom::Float or Dom::Complex for rational, real or
complex numbers. In addition, we have integrated less
classical semirings into MuPAD- Combinat. Indeed, we
have the possibility to work with the boolean semiring
having the syntax Dom::BooleanSemiRing and ex-
otic ones as MinPlus (Dom::MinPlusSemiRing),
MaxPlus (Dom::MaxPlusSemiRing) and MinMax
semiringDom::MinMaxSemiRing or again MaxMin
(Dom::MaxMinSemiRing). We point out that we
can compute the star of a scalar belonging to any semir-
ing when it exists via the method star. The following
MuPAD code constructs the MinPlus semiring (2N ∪
∞, min, +):

>> Z := Dom::Integer:

>> s := x -> 0:

>> t := Type::Union(stdlib::Infinity,

>> Type::Predicate("2N",

>> x -> bool(0 <= x) and

>> testtype(x, Type::Even))):

>> N2 := Dom::SemiRing(Coefficient = Z,

>> Prop = t, Plus =min,

>> Zero = infinity,

>> Mult = Z::_plus, One = 0,

>> Star = s):



The scalar 5 can not belong to the semiring N2 since it
is an odd number:

>> N2(5)

Error: Wrong type of 1. argument (type \

’Type::SemiRingElement’ expected, got \

argument ’5’); during evaluation of ’r’

The evaluation of 6 ⊗ 2 gives the scalar 8 as the multi-
plication in the semiring N2 is the addition of integers:

>> N2(6)*N2(2)

8

3.2 Formal series and weighted automata

Let A be an alphabet. A non-commutative formal series
is a map from the free monoid A∗ to a semiring R which
associates a weight (S, w) ∈ R to the word w ∈ A∗.
We denote by ε the empty word of the free monoid A∗

and |w| the length of a word w ∈ A∗. Non-commutative
formal series make up a particular semiring in combi-
natorics denoted R〈〈A〉〉. Let S ∈ R〈〈A〉〉. It can be
written S =

∑
w∈A∗(S, w)w. Addition and Cauchy

product are symbolized by “+” and “·” instead of “⊕”
and “⊗”, in order to distinguish them with the opera-
tions over the set of coefficients R. The star of a non-
commutative formal series S exists if (S, ε)� exists. In
this case, we denote it S∗. A class of non-commutative
formal series are the behaviours of weighted automata.
A weighted automaton or a linear representation A =
(λ, µ, γ) with weights in a semiring R is given by a
set of n states Q, the map µ : A → Rn×n associ-
ating a transition matrix to each letter, the initial vec-
tor λ ∈ R1×n and the final vector γ ∈ Rn×1 (see
Figure 1). If we point out the nature of weights, we
just say R-automaton. Dimension of a weighted au-
tomaton A is its number of states. The map µ can be
extended as morphism of monoids from A∗ to Rn×n.
The weight of a word w for A is λµ(w)γ and the be-
haviour of A is the formal non-commutative series de-
fined by (SA, w) = λµ(w)γ. The set of behaviours of
weighted automata is closed by addition, Cauchy prod-
uct and star, but also shuffle, hadamard and infiltration
products which are dual or extended rational operations.

In a previous work, we have designed a rich envi-
ronment allowing general handlings related to weighted
automata in MuPAD-Combinat. The environment pro-
vides the most usual algorithms on weighted automata
as determinization and minimization which have a cru-
cial importance for both time and space efficiency. Test
of equivalence, automatic drawings of automata or again
algebraic elimination of letters are also integrated. Users
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Figure 1: A Z-automaton

can work with these objects and compute weights of
recognized words. Besides, all rational or dual opera-
tions and many other functions that change and simplify
the geometry of weighted automata are available. Each
of these algorithms has been written to support a large
variety of automata. For a detailed description of the
platform we refer the reader to [1].

Now let us create the Z-automaton drawn in Fig-
ure 1. For this purpose, we use the domain construc-
tor Dom::WeightedAutomaton, which is associ-
ated to the set of weighted automata in the package
MuPAD-Combinat. We first construct the set of Z-mat-
rices and Z-automata by:

>> Z := Dom::Integer:

>> ZM := Dom::Matrix(Z):

>> ZWA := Dom::WeightedAutomaton(Z):

We then define the alphabet, initial and final vectors and
transition matrices of the automaton:

>> alphabet := [a, b]:

>> iv := ZM(1,5,table((1,1)=1)):

>> ma := ZM(5,5,table((1,2)=2,(2,2)=1,

>> (5,2)=1,(3,4)=1,(4,4)=1)):

>> mb := ZM(5,5,table((1,3)=2,(2,3)=1,

>> (4,5)=1,(5,3)=1,(3,5)=1)):

>> fv := ZM(5,1,table((1,1)=2,(2,1)=1,

>> (5,1)=1)):

Line 2 means that only the first state is initial with the
weight 1. In line 3, the syntax (1,2)=2 creates a tran-
sition from the state 1 to the state 2 with the label a and
the weight 2. Lines 7 and 8 set that the states 1, 2 and
5 are final with the weights 2, 1 and 1 respectively. We
finally build the Z-automaton by the following call:

>> z_aut := ZWA(5,alphabet,iv,

>> table(a=ma,b=mb),fv)
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Weighted automata are encoded by means of sparse ma-
trices. The computer algebra system MuPAD provides
an efficient storage of this kind of matrices with poly-
nomials representing column-vectors. Thus, although
zeros are displayed, they are not really stored. Further-
more, fast algorithms dealing with matrices are imple-
mented. As an example, let us cite the star of matri-
ces which is computed with a divide-and-conquer algo-
rithm [10]. After creation, we can for instance com-
pute the weight of the word baababab through this Z-
automaton:

>> ZWA::weight(z_aut,[b,a,a,b,a,b,a,b])

2

3.3 Rational Expressions

In 1961, Schützenberger proved the famous equivalence
between the behaviours of weighted automata and the
rational series [23]. The main result of this theorem is
finite writings of behaviours called rational expressions.
A R-expression over an alphabet A is inductively de-
fined as follows:

• a ∈ A and r ∈ R are R-expressions,

• if E, F and G (such that (G, ε)� exists) are R-
expressions, then E + F , E.F and G∗ are also
R-expressions.

We define in the set of R-expressions the null term func-
tion c. It associates at each R-expression E a value in R

which is the weight of the empty word in E i.e. (E, ε).
It can be recursively computed by:

c(a) = 0 c(r) = r c(F ∗) = c(F )�

c(F · G) = c(F ) ⊗ c(G) c(F + G) = c(F ) ⊕ c(G)

The set of definition of the function c is called rational
R-expressions. For example, the Z-expression E1 =
2 · (a + b · a∗ · b)

∗ is rational as its null term c(E1) =

2 ⊗ (0 ⊕ 0 ⊗ 0� ⊗ 0)
� is well defined and equal to 2.

The size of a rational expression E, denoted |E| is the

size of the syntactical tree of E which is the number of
scalars, letters and operations appearing in E. Hence,
the size of the rational Z-expression E1 is |E1| = 11.

In the following, we will introduce a first manipula-
tion of rational expressions. We want to create the set
of rational Z-expressions over the semiring Z and an al-
phabet constituted of two letters a and b. For this goal,
we use the domain Dom::RationalExpression
in MuPAD-Combinat. We precise as arguments in the
constructor, the alphabet and the semiring of weights Z:

>> ZExp := Dom::RationalExpression(

>> alphabet, Z):

We adopt the following formalism in the writing: a,r,
a+b,a*b,a^n and star(a) denoting respectively
the rational R-expressions a ∈ A, r ∈ R, a + b, a.b,
a.a . . . a (n times) and a∗. Therefore, the creation of
the rational Z-expression 2 · (a + b · a∗ · b)

∗ is realized
by:

>> E1 := 2*star(ZExp(a)+ZExp(b)*

>> star(ZExp(a))*ZExp(b))

2 star(a+ (b star(a)) b)

The implementation of rational expressions requires a
suitable structure allowing efficient computations. For
this reason, we have chosen as internal data structure
a generalization of syntactical trees of arithmetical ex-
pressions called ZPC. This algorithmic structure can be
computed in a linear time from a rational expression and
stands halfway between rational expressions and equiv-
alent weighted automata.

4 ZPC-structure

In [25], the ZPC-structure has been proposed to repre-
sent efficiently boolean rational expressions. Next in
[7], it has been extended to the multiplicity case. This
structure can be constructed in a linear time with respect
to the size of the rational expression. Indeed, from a ra-
tional expression it is based on two similar trees, the
first tree and the last tree whose transitions are deco-
rated with scalars belonging to the semiring R. These
copies of the syntactical tree are joined by links mean-
ing Cauchy product or star operation. The reader should
refer to [7] for formal definitions and proofs.

As in [7], a node in a tree is written ν and the root
is denoted by ν0. If the arity of ν is two, νl and νr rep-
resent respectively its left and right descendant. When
its arity is one, its unique descendant is νs. The relation
of descendance over the nodes of a tree is denoted �. It
is the transitive closure of the relations νl � ν, νr � ν



or νs � ν according to the various cases. For a tree
whose edges are labelled by scalars of the semiring R,
we define the function of cost π. Suppose that ν ′ � ν,
the cost π(ν, ν′) is the weight of the path from ν to ν ′.
For any node ν, the rational R-expression Eν denotes
the subexpression resulting from ν as root and c(ν) its
null term.

The first tree TFE is deduced from the syntactical
tree of E. Its nodes are written ϕ and its edges are di-
rected from the root ϕ0 to the leaves. When a node ϕ

is labelled by “·”, we associate the weight c(ϕl) to the
edge from ϕ to ϕr. If a node ϕ is labelled by “∗”, we
assign the weight c(ϕs)

� to the edge from ϕ to ϕs. Any
edge not marked in previous steps will be marked by 1.

The last tree TLE is also deduced from the syntacti-
cal tree E where each node is written ρ. Edges in TLE

are directed from leaves to the root ρ0. For each node ρ

labelled by “·”, we endow the weight c(ρr) to the edge
from ρl to ρ. If a node ρ is labelled by “∗”, the weight
c(ρs)

� is assigned to the edge from ρs to ρ. Just like the
first tree TFE , any edge not marked in previous steps
will be marked by 1.

The follow links connect the last tree TLE to the
first tree TFE . Let ρ be a node in TLE and ϕ its cor-
responding node in TFE . For each node ρ labelled by
“·”, we set a link from ρl to ϕr except if ρl is labelled
by a scalar. For any node ρ labelled by “∗”, we create
a link from ρs to ϕ. The ZPC-structure of the rational
Z-expression E1 is shown in Figure 2.
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Figure 2: The ZPC-structure of 2 · (a + b · a∗
· b)∗.

According to Figure 2, we can notice that each tree
has eleven nodes since 11 is the size of the rational Z-
expression E1. On the first tree TFE1

, the scalar 2 is
associated to the edge relating the root to the node la-
belled by “∗” as c(2) = 2. The library gives the possi-
bility to visualize this sharp structure, with the method

ZPCstructure:

>> ZExp::ZPCstructure(E1)

1 table(

2 11 = ["*", 1, 10], table(

3 10 = ["star", 9], (11, 1) = 1,

4 9 = ["+", 2, 8], (11, 10) = 2,

5 8 = ["*", 7, 5], (10, 9) = 1,

6 7 = ["*", 3, 6], (9, 8) = 1,

7 6 = ["star", 4], , (9, 2) = 1, ,

8 5 = b, (8, 7) = 1,

9 4 = a, (8, 5) = 0,

10 3 = b, (7, 3) = 1,

11 2 = a, (7, 6) = 0,

12 1 = 2 (6, 4) = 1

13 ) )

14

15 table(

16 (10, 11) = 1,

17 (1, 11) = 1,

18 (9, 10) = 1, table(

19 (8, 9) = 1, 4 = [9, 10],

20 (2, 9) = 1, , 3 = [7, 5],

21 (5, 8) = 1, 2 = [3, 6],

22 (7, 8) = 0, 1 = [4, 6]

23 (6, 7) = 1, )

24 (3, 7) = 1,

25 (4, 6) = 1

26 )

The library creates for each rational expression a set of
dynamic tables coding the syntactic tree, the first, the
last trees and the follow links respectively. Each entry
of the first table corresponding to the syntactic tree rep-
resents a node. A node is a letter (as 2 = a in line 11),
a scalar (1 = 2 in line 12) or again an operation (7 =
["*", 3, 6] in line 6). The entry associated to an
operation is a list containing the label of the node and
its descendants. For example, 7 = ["*", 3, 6]
means that the node 7 with the label “·” is the prede-
cessor of the nodes 3 and 6. The two tables that follow
store the weights of edges appearing in the first and the
last tree. In line 9, the writing (8, 5) = 0 sets that
the weight of the edge joining the nodes 8 and 5 in the
first tree TFE1

is 0. Finally, the last table retains all fol-
low links of the ZPC-structure. The syntax 1=[4, 6]
in line 22 codes the first link connecting the node 4 of
the last tree TLE1

to the node 6 of the first tree TF E1
.

5 On the algorithms

This library offers several handlings over expressions as
rational operations, semirings conversions and check-



ing equality. We can also compute the weights of rec-
ognized words and construct equivalent weighted au-
tomata. An important feature in symbolic computations
is to be able to convert weighted automata to rational
expressions. It is done by actions on the geometry of
weighted automata. We are currently working on these
effective algorithms. This result will enrich the library
by supplying new manipulations as shuffle, hadamard
and infiltration products of rational expressions. In the
sequel, we focus on two algorithms of conversions to
weighted automata and computing weights of recog-
nized words.

5.1 Expressions versus automata

The transformation of an expression into an automaton
has given rise to a very rich literature. In fact, recent
researches in the theory deal with the conversion of a
rational expression into a weighted automaton. In [5],
a Glushkov automaton is built in a cubic time. Then, a
generalization of the work of Antimirov [3] is detailed
in [17]. Finally in [16], the notion of weighted posi-
tion automaton is presented via an extended definition
of Thompson automata, and in [7], the ZPC-structure
is introduced for the multiplicity case. The main ad-
vantage of the ZPC-structure is to allow a construction
of the so-called position automaton in a quadratic time.
For its efficiency, we have implemented the algorithm
and the data structures proposed in [7]. Moreover, for
pedagogical goals we chose to include Thompson con-
struction with an efficient algorithm [16]. A convenient
practice using our library is to write the different con-
structions of weighted automata from rational expres-
sions. The following MuPAD code computes the posi-
tion Z-automaton equivalent to E1:

>> pos1 := ZExp::automaton(E1)
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The method returns obviously an object belonging to
the set of weighted automata in MuPAD-Combinat:

>> domtype(last(1))

Dom::WeightedAutomaton(Dom::Integer)

It is not difficult to observe that this position automaton
is equal to the Z-automaton drawn in Figure 1.

5.2 Computing weights of words

The classical way to compute weights of recognized
words for a rational expression is first to construct an
automaton A = (λ, µ, γ) of dimension n, where the
best complexity is quadratic, then to evaluate the weight
of a word w through the automaton A with a matrix
product λµ(w)γ in O(|w| × n2). This comlexity is
due to the multiplication of a row vector to a matrix
for each letter of the word w. Thus, the best time to
recognize a word w including the construction of the
equivalend automaton is O(|w| × |E|

2
). However, the

problem of the weighted recognition has been resolved
in O(|w| × |E|) using a generalization of Thompson
automata without ε-transition removal [16]. This time
complexity is also reached in [2] with ZPC-structures.
We describe in [2] a novel efficient algorithm comput-
ing the weight of a word w for a rational expression E,
without going through the construction of an equivalent
weighted automaton. Using the corresponding ZPC-
structure of E, the algorithm assigns coefficients to the
nodes of the first and the last trees. For each letter wi in
the word w, there is a bottom-up traversal of the last tree
that depends on the coefficients of edges and leaves la-
belled by letters. Next, via the follow links, some nodes
of the first tree are provided with weights, and a top-
down walk of the first tree yields new coefficients for
some leaves labelled by letters. Hence, the computation
of (E, w) is done in O(|w| × |E|). Proofs and details
are given in [2]. This algorithm has been integrated to
the library with the method weight. The weight of
the word baababab for the rational Z-expression E1 is
computed by:

>> ZExp::weight(E1,[b,a,a,b,a,b,a,b])

2

6 Symbolic proofs

In the sequel, we give just an idea to the reader about
possible manipulations offered by the library. For this
purpose, we suggest an example to illustrate an auto-
matic demonstration. Indeed, we want to prove compu-
tationaly the following relation:

(a − b)
∗

+ (a + b)
∗

= 2 · (a + b · a∗ · b)
∗

First, we create a second rational Z-expression E2 de-
noting (a − b)

∗
+ (a + b)

∗:



>> E2 := star(ZExp(a)-ZExp(b))+

>> star(ZExp(a)+ZExp(b)):

Next, we check simply the equality of these rational Z-
expressions:

>> ZExp::areEqual(E2,E1)

TRUE

In what follows, we will detail the algorithms inter-
vening in the proof of this relation. As stressed previ-
ously, rational expressions are represented in the library
by a sharp structure. Its use allows efficient compu-
tations with rational expressions such as the construc-
tion of equivalent automata. From ZPC-structures, the
method areEqual builds the Z-automata associated
to the expressions E1 and E2. Then, it tries to test
the equivalence of these automata. Figures 3 and 5
show both the ZPC-structure and the Z-automaton of
(a − b)

∗
+ (a + b)

∗.

TFE2

+

∗∗

+

a .

−1 b

+

a b
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+

∗∗

+

a .
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a b
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Figure 3: The ZPC-structure of (a − b)∗ + (a + b)∗.

a |1

b |−1

a |1

b |1

b |−1

a |1

b |1

a |1

a |1 b |−1

a |1 b |1

1

2

1

1

1 1

Figure 4: The position Z-automaton of (a − b)∗ + (a + b)∗.

>> pos2 := ZExp::automaton(E2)
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The equivalence of weighted automata checks whether
their respective behaviours are identical. It is depen-
dent upon the semiring R, and realizable if R is a prin-
cipal ideal domain (as Z in our example) or a division
ring. In this case, there is a minimization algorithm (in
the number of states) which constructs an effective iso-
morphism between reduced linear representations. It
is clarified in [11] and generalizes the Schützenberger’s
algorithm [4, 12]. When the boolean semiring is consid-
ered, the equivalence is verified with the Moore’s algo-
rithm [22]. For some exotic semirings as MinPlus, the
equivalence is undecidable [14]. However, a heuristic is
made under the twins property [20]. Therefore, to show
the relation (a − b)∗ + (a + b)∗ = 2 · (a + b · a∗ · b)∗

amounts checking that the Z-automaton obtained after
minimization of the difference pos1−pos2 is the empty
automaton:

>> ZWA::minimization(pos1-pos2)

` ´

, a =
` ´

, b =
` ´

,
` ´

The figures below illustrate the minimal Z-automata cor-
responding to E1 and E2 with a generalization of the
Schützenberger’s algorithm:

b |1

b |1
a |1 a |1

2

1

Figure 5: Minimal Z-automaton of 2 · (a + b · a∗
· b)∗.

b |−1

b |−1
a |1 a |1

2

1

Figure 6: Minimal Z-automaton of (a − b)∗ + (a + b)∗.

7 Benchmarking

In this section we give some benchmarks and discuss
some features of the library. For the moment, the ef-
ficiency of the software is acceptable. Table 1 gives
an idea about the time and space complexities of the
expression conversion algorithm. The number n repre-
sents the size of rational Q-expressions. Table 2 presen-
ts some benchmarks about the boolean determinization



algorithm such that n is the dimension of boolean au-
tomata. Clearly, Vaucanson is more efficient than our
environment. The main reason of this observation is
the use of C++ programming language in Vaucanson,
whereas MuPAD language is used to develop our envi-
ronment. Thus, a compiler is a bonus for the efficiency
of our developments. In the future, we should focus our
efforts to improve the performances of our software. To
this end, we shall use the dynamic modules in MuPAD
allowing C/C++ programming.

Table 1: Duration in ms and space in Kb of the expression conversion
algorithm.

n 5 10 15 20 25 30 40

Time 7 34 95 300 465 1324 3630
Space 2 3 3 4 5 5 8

Table 2: Duration in ms of the boolean determinization algorithm.

n 2 8 14 20 26 32 35

Mu-Co 4 35 94 203 344 484 640
Vauc 2 13 28 72 160 228 283

The software offers an easy and a flexible use. Indeed,
the user should not worry about the programming. One
can introduce inputs in an intuitive way and execute ap-
propriate functions. But with Vaucanson the user must
write C++ code, learn Vaucanson syntax and know all
its pre-compiled headers. We believe that this kind of
experimentations over rational expressions is not achiev-
able by a simple user and requires a good knowledge
of C++. MuPAD language ensures the modularity of
the software as it associates to each class of objects a
domain that encapsulates methods handling these ob-
jects. The most interesting feature in our environment is
its genericity. This characteristic has been particularly
important for us during the design of the software. In
fact, the software enables to create any particular semir-
ing in a generic way. This powerful functionality en-
forces the genericity of the system by creating any type
of weighted automata or rational expressions over cre-
ated semirings. However, just few classical semirings
are available with Vaucanson. Code is freely available
with MuPAD-Combinat. This choice allows sharing
code, experience and knowledge between researchers,
developers and students but also improving the quality
and the readability of code. MuPAD-Combinat instal-
lation is quick and simple, whereas Vaucanson needs
a heavy one requiring particular compilers and lasting
many hours in modern computers. Moreover, MuPAD-
Combinat uses an adapted tool for multi-developers soft-

wares called SVN2 or Subversion managing the changes
within their source code trees. It is a powerful method
allowing to many developers to work on the same source
code. Each developer checks out a copy of the cur-
rent version of the source code from the SVN repository
in order to work on his personal copy separately from
other developers. When some changes are done, the de-
veloper commits them back to the SVN repository. The
SVN server is then able to merge all the changes made
by the developers. Finally, we point out that one of the
greatest disadvantages of the use of Vaucanson is the
lack of documentation contrary to our environment.

Table 3: Some benchmarks about MuPAD-Combinat and Vaucanson
softwares.

Project Use Genericity Efficiency

Mu-Co Call functions Excellent Good
Vauc Write programs Good Excellent

8 Conclusion

Designing a symbolic software aroses from the dream
of having within the same system different theories over
weighted automata, rational expressions, transducers
and grammars. Our aim is to offer to the users a simple
and a convenient interface to work with such objects
by means of a computer algebra system. This frame-
work is intended to be useful for research and academic
communities which need a suitable and a computational
toolbox.
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