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1 Introduction

Computer-based face recognition has attracted the in-
terest of many researchers in later years mainly due to
its applicability in security systems, surveillance and
criminal identification. Although advances have been
reported and new solutions have been proposed, au-
tomatic face recognition is still considered a difficult
computational problem [1], [20], [4]. Inherent issues of
face set (raw data) such as the similarity of human faces
and the unpredictable variations caused by 3D pose, fa-
cial expressions, lighting direction, and aging, are the
greatest obstacles for designing a robust face recogni-
tion system.

According to [20], the face recognition problem can
be divided into three stages: face detection, feature
extraction, and recognition (classification). The first
stage aims to detect (find the location) faces in input
images. This is typically achieved by traditional tech-
niques of image processing such as edge map, signa-
ture, hierarchical coarse-to-fine searches with template-
based matching criteria, etc. [10], [6]. This stage was
not considered in this paper, since the images used to
evaluate the proposed methodology contain only the
face of individuals.

Considering the feature extraction stage, computer-
based face recognition approaches can be grouped into
two categories: feature-based and holistic (or global)
[20], [3]. Feature-based approaches basically rely on
the shapes and geometrical relationships of individual
facial features including eyes, mouth, nose and chin.
Although the methods of this category are more robust
to positional variations of the faces in the input image,
e.g., rotation, scale, etc., they are highly dependent on
the accuracy of facial feature detection techniques. For
a detailed discussion of feature-based approaches, see
[3] and [20].

The holistic approaches in turn, encode the images
globally, extracting features in terms of components of
the input signals (images). Once encoded, the face im-
ages are represented as points in high-dimension fea-
ture space. Many holistic methods proposed in the lit-
erature are based on Karhunen-Loeve transform (KLT)
[16], [12], also known as principal component analy-
sis (PCA). When applied to an input image, KLT pro-
duces an expansion in terms of a set of basis images
or the so-called “eigenfaces”. However, it has been ob-
served that KLT does not achieve adequate robustness
against variations in face orientation position and light-



ing [16]. To overcome this limitation, other methods
such as Fisher’s linear discriminant (FLD) [8] and its
variants have been applied after KLT (on the space of
feature vectors obtained by the KLT) to reduce the di-
mension and to obtain the most discriminating features.
Compared with KLT being applied alone, the combined
approach KLT + FLD (“fisherfaces”) is more insensi-
tive to large variations in lighting and facial expression.
Nevertheless, it is worth notice that the computational
requirements of this approach (KLT + FLD) are greatly
related to the dimension of the original images and the
number of training examples (individuals). Moreover,
the KLT is not only more computationally intensive,
but it must also be redefined every time the statistics
of its input signals change, i.e., the “eigenfaces” (or
“eigenvectors”) should be recalculated every time a new
face is added to the known face set [16]. A alternative
holistic approach for face recognition is the discrete co-
sine transform (DCT) [13], [11]. Of the deterministic
discrete transforms, the DCT is the one that best ap-
proaches the KLT. Moreover, DCT is independent of
data set changes and can be implemented using fast and
efficient algorithms [9].

Finally, the stage of recognition can be viewed as
a pattern classification problem, where a classifier (or
learningmachine), learned from a known face set (train-
ing set), is used to assign a given unknown image,
represented by a feature vector extracted in the previ-
ous stage, to one of the available classes (individuals).
Among the learning machines proposed in the litera-
ture, support vector machines (SVMs) [7] have been
successfully applied to many pattern classification real
problems, including face regognition [15]. SVMs are
based on Vapnik Chervonenkis’ theory and the struc-
tural risk minimization principle [18], [19] which aims
to obtain a classifier with high generalization perfor-
mance through minimization of the training error and
the complexity of the learning machine.

In this paper a face recognition approach based on
discrete cosine transform (DCT) and support vector ma-
chines (SVMs) is investigated on two benchmark data
bases: Yale and AT&T. An efficient algorithm for com-
puting DCT is used on each image for obtaining feature
vectors of 64 dimensions. Such vectors are used for
teaching a SVM. After the learning stage, the proposed
recognition system is then evaluated in terms of accu-
racy for independent test sets, also extracted from the
preprocessed databases.

This paper is organized as follows: Section 2 re-
views the theoretical concepts of DCT and SVMs learn-
ing algorithm. Section 3, presents our approach to the
face recognition problem and describes how the exper-

iments were performed. Section 4 presents the results
obtained and the discussion. Finally, Section 5 is the
conclusion.

2 Background

2.1 Discrete Cosine Transform

The discrete cosine transform (DCT) is a technique for
converting a signal into elementary frequency compo-
nents, much like the Fourier Transform presented in
[10], it is used in the JPG (Join Photographic Experts
Group) image compression.

Data compression is important both for biological
facial recognition as for computer-based face recogni-
tion. According to [14], the human eye uses a compres-
sion of 100:1 for every signal received.

There are four kinds of DCT, named DCT-I, DCT-
II, DCT-III and DCT-IV [11]. The DCT-II is the most
common, usually referred to simply as DCT, and is the
one used in this paper.

Let us consider an image as an array u(n) of size N .
To obtain an array v(k) using the DCT method we have
the following equation,

v(k) = α(k)

N−1�

n=0

u(n) cos
(2n + 1)πk

2N
(1)

0 ≤ k ≤ N − 1

where

α(0) =

�
1

N
, (2)

α(k) =

�
2

N
,

0 ≤ k ≤ N − 1

Another way to understand it is to consider the se-
quence u(n) as an array, and the DCT method as a
transformation matrix applied to u(n). In this case, the
transformation matrix C = {c(k, n)} is defined as,

c(k, n) =
1

√
N

, (3)

k = 0, 0 ≤ n ≤ N − 1

c(k, n) =

�
2

N
cos

(2n + 1)πk

2N
,

1 ≤ k ≤ N − 1, 0 ≤ n ≤ N − 1

where k and n are indexes for row and column of the
transformation matrix. Using equation 3 the DCT of
u(n) will be,
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v = Cu (4)

It is possible to obtain the original image u(n) from
v(n) using the following equation,

u(n) =

N−1�

k=0

α(k)v(k) cos
(2n + 1)πk

2N
, (5)

0 ≤ n ≤ N − 1

Considering the DCT as a Transformation Matrix
and the equation 3, it is possible to recover u(n) from
v(n) through the equation,

u = C−1v (6)

The compression of data using DCT works by defin-
ing the size k of v(k). The smaller the value of k, the
greater is the data loss. By compressing an image using
the DCT method, firstly, the high frequency character-
istics of the image are lost, so after the decompression
the image obtained is similar to the original image, with
the loss of smaller details.

2.2 Support Vector Machines

Support Vector Machines (SVMs) were introduced by
V. Vapnik and coworkers [2, 5] based on the structural
risk minimization principle from statistical learning the-
ory [19]. In their original formulation [2], SVMs were
designed to estimate a linear function,

f (x) = sgn (�w · x�+ b) (7)

of parameters w ∈ R
d and b ∈ R, using only a training

set drawn i.i.d. according to an unknown probability
distribution P (x, y). This training set is a finite set of
samples,

T = {x1, y1, · · · ,xn, yn} (8)

where xi ∈ R
d and yi ∈ {−1, 1}.

The SVMs learning aims to find the hyperplane
which gives the largest separating margin between the
two classes. For a linearly separable training set, the
margin ρ is defined as euclidean distance between the
separating hyperplane and the closest training exam-
ples. The hyperplane is considered in its canonical
form, meaning that its parameters (w, b) are normalized
such that the training examples closest to the hyper-
plane satisfy |f (x) | = 1 and, consequently, the margin
is given by 1/ �w� [7]. Thus, for the linearly separable
case, the learning problem can be stated as follows: find

w and b that maximize the margin while ensuring that
all the training samples are correctly classified,

min(w,b)
1

2
�w�

2
(9)

s.t. yi (�w · xi�+ b) ≥ 1, ∀ i ∈ T

For the non-linearly separable case, slack variables
εi are introduced to allow for some classification errors
(soft-margin hyperplane) [5]. If a training example is
located inside the margins or the wrong side of the hy-
perplane, its corresponding εi is greater than 0. The�n

i=1 εi corresponds to an upper bound of the number
of training errors. Thus, the optimal hyperplane is ob-
tained by solving the following constrained (primal) op-
timization problem,

min(w,b,εi)
1

2
�w�2 + C

n�

i=1

εi (10)

s.t. yi (�w·xi�+b)≥1−εi, ∀ i ∈ T

εi ≥ 0, ∀ i ∈ T

where the constant C > 0, controls the trade-off be-
tween the margin size and the misclassified examples.
Instead of solving the primal problem directly, one con-
siders the following dual formulation,

max(α)

n�

i=1

αi −
1

2

n�

i,j=1

yiyjαiαj�xi ·xj� (11)

s.t. 0 ≤ αi ≤ C, ∀ i ∈ T
n�

i=1

αiyi = 0

Solving this dual problem the Lagrange multipliers
αi are obtained whose sizes are limited by the box con-
straints (αi ≤ C); the parameter b can be obtained from
some training example (support vector) with non-zero
corresponding αi. This leads to the following decision
function,

f(xj) = sgn

�
n�

i=1

yiαi �xi · xj�+ b

�

(12)

Notice that the SVM formulation presented so far
is limited to linear decision surfaces in input space,
which are definitely not appropriate for many classi-
fication tasks. The extension to more complex deci-
sion surfaces is conceptually quite simple and, is done
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by mapping the data into a higher dimensional feature
space F , where the problem becomes linear. More pre-
cisely, a non-linear SVM first maps the input vectors by
Φ : x → Φ (x), and then estimates a separating hyper-
plane in F ,

f(x) = sgn (�Φ (x) ·w�+ b)) (13)

It can be observed, in (11) and (12), that the input
vectors are only involved through their inner product
�xi · xj�. Thus, to map the data is not necessary to con-
sider the non-linear function Φ in explicit form. The in-
ner products can only be calculated in the feature space
F . In this context, a kernel is defined as a way to di-
rectly compute this product [7]. A kernel is a function
K , such that for all pair x,x� in input space,

K (x,x�) = �Φ (x) ·Φ (x�)� (14)

Therefore, a non-linear SVM is obtained by only re-
placing the inner product �xi · xj� in equations (11) and
(12) by the kernel function K (xi,xj) that corresponds
to that inner product in the feature space F . Some Ker-
nel functions commonly used in SVM learning are lin-
ear and RBF functions given, respectively, by the fol-
lowing expressions [7],

K (x,x�) = x · x� (15)

K (x,x�) = exp

�
−(x− x

�)2

2r2

�

(16)

3 Methodology

Our face recognition approach uses the DCT holistic
method to transform the whole image into a 8×8 feature
matrix. The size of this matrix was suggested by [11].

As mentioned in [9], when the DCT is used to trans-
form an image into a 8 × 8 matrix, even with the loss
of data, the most important characteristics used for face
recognition, such as the hair silhouette, eyes, nose and
mouth position are kept. This characteristics are all
low frequency components, muchmore reliable for face
recognition.

After the image compressionwith the DCT, the 8×8
matrix must be converted into an one dimensional array
of 64 positions. Following sugestion of [9], we scan
the DCT coefficient matrix in a zig-zag manner starting
from the upper-left corner and subsequently convert it
to a one-dimensional (1-D) vector, as illustrated in Fig-
ure 1. Once each image is converted into an array of
64 characteristics, the array should be normalized to be
used as input to a SVM classifier.

Figure 1: Scheme of scanning a 2 dimensional matrix into a one
dimensional array

In order to compare our face recognition approach
with other results already published in literature, exper-
iments were conducted with two common benchmark
face databases: the Yale and the AT&T. The following
sections describe the characteristics of these databases
and the methodology used to obtain the learning (train-
ing) and classification (test) subsets for each experi-
ment.

3.1 Yale database

The Yale database contains 165 images in GIF format
(Graphic Interchange Format). These images are all in
gray scale, and have dimensions 320 × 243. They rep-
resent a total of 15 individuals in 11 different situations.
An example of the 11 images of a individual is shown
in Figure 2.

Figure 2: Images of the Yale database: centered light, with glasses,
happy, light at left, no glasses, normal, light at right, sad, leepy, sur-
prised and blinking an eye.

As there are 11 pictures of each individual in
the database, 11 different experiments were conducted
through the following methodology: in each experi-
ment, the first image of each individual was separated to
compound the test subset, and the other 10 images were
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used as training examples. This training set (contain-
ing 150 examples) was then used to train a Multi-Class
SVM. Once trained, the SVM classifier was evaluated
using the test set containing 15 faces. The Yale database
can be obtained at http://cvc.yale.edu/
projects/yalefaces/yalefaces.html.

3.2 AT&T database

The AT&T database contains 400 images of 40 individ-
uals. The images are all in gray scale and have dimen-
sions 92×112. An example of 10 images of a individual
is shown in Figure 3.

Figure 3: Example of AT&T database images.

In these database, there are 10 pictures of each in-
dividual. Thus, 10 experiments were conducted with
different training e test subsets obtained from the same
methodology adopted with Yale database. The AT&T
database, previously known as the ORL database can
be obtained at http://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html

3.3 The Multi-Class SVM Configuration

To achieve better results with SVM classifier, it was
necessary to tune the following parameters of the SVM
learning algorithm,

• Type of kernel function: linear or RBF;

• The regularization parameter C, which controls
the trade-off between the margin size and the mis-
classified examples in training set (see expression
11);

Since the linear kernel function obtained good re-
sults in initial empirical tests, it was chosen for all ex-
periments. The optimal range (0.01− 0.04) for param-
eter C was selected using a grid search procedure, as
described in [17]. In this range, the best results for all
experiments were obtained with C = 0.01. These re-
sults are presented in the following Section.

4 Results and Discussion

Tables 1 and 2 show the results achieved with the Yale
and AT&T databases, respectively. In each experiment,
the accuracy (percentage of individuals correctly classi-
fied) was calculated from a different subset of the test.
Moreover, in the last row of each table is provided the
global accuracy (average) and the standard deviation
over all test subsets.

As can be observed in Table 1, our approach for face
recognition (DCT + SVMs) achieved 72.8% of global
accuracy over all test subsets of Yale database. How-
ever, it is important to notice that for the experiments 4
and 7, the results were not good. This can be explained
due to the characteristics presented by the pictures that
compound the 4 and 7 test subsets. These images were
obtained when the light source was at the side of the
individual, and not in front of it, as in the other pic-
tures. Great changes in light source position can affect
the efficiency of face recognition system, as explained
in [20].

Table 1: Results obtained with Yale database

Experiment n◦ Accuracy

1 80%

2 73.3%

3 93.3%

4 20%

5 93.3%

6 100%

7 0%

8 86.7%

9 86.7%

10 86.7%

11 80%

Global Acc. 72.8%

STD Acc. 32.2%

Although the global accuracy achieved with AT&T
database has not been satisfactory, as can be seen in Ta-
ble 2, the results obtained in each experiment were more
stable (see standard deviation) than the Yale’s ones. We
believe that the discrepancy of global accuracies (be-
tween the databases) was due to the AT&T database im-
ages are not geographically normalized. We also spec-
ulate that, the use of algorithms to correct these geo-
metric differences before application of DCT, as pre-
sented in [1], could improve the results obtained with
this database.

5 Conclusions

One face recognition approach was presented and
tested. Its main characteristics are fast and efficient
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Table 2: Results obtained with AT&T database

Experiment n◦ Accuracy

1 42.5%

2 35%

3 30%

4 35%

5 35%

6 35%

7 35%

8 27.5%

9 30%

10 35%

Global Acc. 34%

STD Acc. 4.1%

extraction of feature vectors using the DCT holistic
method, and improved accuracy in the image classifi-
cation stage due to the choice of a learning machine
(SVMs) designed to ensure high generalization perfor-
mance.

Although the experimental results obtained with
both databases, Yale and AT&T, have not been en-
tirely satisfactory, they point out that our approach is
promising. Furthermore, they show that the incorpo-
ration of digital image processing techniques and al-
gorithms, such as normalization of illumination direc-
tion and correction of geographic differences can im-
prove the global accuracy and robustness of the pro-
posed method.

Concerning SVMs learning algorithm, we also be-
lieve that a detailed investigation with other types of
kernel functions such as polynomial, sigmoid and RBF
could help to improve the results.
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