

Formal Software Design Technique – A Pattern Based Approach

SHOUVIK DEY
1

SWAPAN BHATTACHARYA
2

1IBM India Pvt. Ltd., Kolkata -700156, India

2National Institute of Technology , Durgapur, 713209, India
CEP 37200-000, Lavras, MG, Brazil

1send2shouvik@gmail.com, 2bswapan2000@yahoo.co.in

Abstract. Design patterns are usually modeled and documented in natural languages and visual languages,
such as the Unified Modeling Language. UML does not keep track of pattern-related information when a
design pattern is applied or composed with other patterns. Existing graphical notations are not able to provide
complete information to the designers for specifying the role and scope of execution of the participating
classes and their methods in a particular design pattern or combination of patterns. Also the existing formal
specification languages for design patterns are not complete enough. They basically tend to focus on
specifying structural and behavioral aspect of design patterns without taking care of the several extension
mechanisms. Existing formal languages are not strong enough to provide several pattern related information
like the role of a participating class or a method in combination of patterns which is indeed very important
information to pattern users. This paper introduces an extension to the UML Class diagram to better represent
design patterns and based on this mechanism a grammar FSDP (Formal Specification of Design Pattern) for
this design specification is provided to automate the software pattern design techniques. FSDP is able to
represent design pattern and combination of patterns in a more informative way compare to the existing
formal languages.

Keywords: Design Patterns, Pattern combination, Role of class, Scope of execution, Remote method, UML,
Class diagram.

(Received January 14, 2010 / Accepted June 23, 2010)

1. Introduction

Design patterns [13] are commonly used in designing

large-scale software systems. A pattern is a recurring

solution to a standard problem. Since design patterns

have been extensively tested and used in many

development efforts, reusing them yields better quality

software within a reduced time frame. Design patterns

are usually modeled and documented in natural

languages and visual languages, such as the Unified

Modeling Language. UML is a general-purpose

language for specifying, constructing, visualizing, and

documenting artifacts of software-intensive systems. It

provides a collection of visual notations to capture

different aspects of the system under development.

Graphical notations include diagrammatic, iconic,

and chart-based notations. A graphical notation can be

beneficial in many ways. First, it can be used for

conveying complex concepts and models, such as

object-oriented design. Notations like UML are very

good at communicating software designs. Second, it can

help people grasp large amount of information more

quickly than straight text. Third, as well as being easy to

understand, it is normally easier to learn drawing

diagrams than writing text because diagrams are more

concrete and intuitive than text written in formal or

informal languages. Fourth, graphical notations cross

language boundary and can be used to communicate

with people with different nationalities. It is seen that

the constructs provided by the standard UML and the

existing UML extension mechanisms are not enough to

visualize design patterns in several applications and

compositions. The model elements, such as classes,

operations, and attributes, in each design pattern usually

play certain roles that are manifested by their names.

The application of a design pattern may change the

names of its classes, operations, and attributes to the

terms in the application domain. Thus, the role

information of the pattern is lost. It is not obvious which

model elements participate in this pattern. UML does

not track pattern-related information when a pattern is

applied in a software system or when several patterns

are combined. There are several problems when design

patterns are implicit in software system designs: first,

software developers can only communicate at the class

level instead of the pattern level since they do not have

pattern-related information in system designs. Second,

each pattern often documents some ways for future

evolutions, which are buried in system designs. Third, it

may require considerable efforts on reverse-engineering

design patterns from software system designs [10].

Hence there is a need to retain the pattern-related

information even after the pattern is applied or

composed. Here we define an extension to UML. In this

extension, pattern-related information is explicit so that

a design pattern can be easily identified when it is

applied and composed. The extensions have been

defined mainly by applying the UML built-in

extensibility mechanisms, such as stereotypes, tagged

values.

As the number of patterns has grown and problems

requiring combining patterns surfaced, users started to

realize that textual description can be ambiguous and

sometimes misleading in understanding and applying

patterns. Hence the formal specification of design

pattern comes into place. Formal specification of design

patterns is not meant to replace the existing textual or

graphical descriptions but rather to complement them to

achieve well-defined semantics, allow rigorous

reasoning about them and facilitate tool support [16].

Formal specification of design patterns can enhance

the understanding of their semantics. It can be used to

help pattern users decide which pattern(s) is (are) more

appropriate to solve a given design problem within a

context. It can help formalize the combination of design

patterns. Finally it can facilitate the development of

tools for finding instances of patterns in programs and

fine-tuning them to meet pattern specification [18].

A number of formal specification languages have

emerged to cope with the inherent shortcomings of

textual and graphical descriptions. However, their main

problem is lack of completeness. This is mainly because

they were not originally meant to specify design patterns

and have been adapted to do so, or because they focused

on specifying the structural and/or behavioral aspect of

design patterns but several pattern related information

like the role of a participating class or a method in

combination of patterns is lost in the existing formal

languages. In [16] though a balanced approach between

the structural and behavioral aspect is provided but the

approach does not provide any information like where

the pattern should be used or the role(s) and scope of

execution of the participating classes and their methods

in a particular design pattern or when the patterns are

combined. The approach is also not able to provide

information on the inheritance hierarchy structure of the

participating classes as well as the dependency between

the classes.

The rest of the paper is organized as follows: Section

2 represents some of the related works that have been

carried out for the extension of UML diagram. Section 3

describes the actual scope of this work. Section 4

describes the UML extension mechanisms. Section 5

shows how some well-known design patterns are

represented first in standard UML and then by the

proposed notation. This section also compares both

representations highlighting the benefits of our

approach. Section 6 discusses about a non distributed

scenario and Section 7 introduces the proposed FSDP

(Formal Specification of Design Pattern) language. In

section 8 the proposed grammar has been defined.

Section 9 illustrates the proposed grammar. Section 10

shows how the grammar can be specified using a case

study and Section 11 concludes the paper.

2. Related Works

UML extension mechanisms have been used to expand

the expressive power of UML to model and represent

object-oriented framework [1, 8], software architecture

[5, 7, 6], and agent-oriented systems [4] when the

original UML is not sufficient to represent the semantic

meaning of the design. Medvidovic et al. [5] applied the

UML extension mechanism for modeling software

architectures. They extended the UML to model

software architecture in UML. Kande and Strohmeier

[7] extended the UML by incorporating key abstractions

in ADLs, such as connectors, components and

configurations. They focus on how UML can be used for

modeling architectural viewpoints. Zarras et al. [6]

applied the UML extension mechanism for architecture

description and provided a base UML profile for

existing Architecture Description Languages (ADLs).

Fontoura et al. [8] proposed a UML extension, called

UML-F, to represent object-oriented frameworks. The

authors defined a set of new tagged values which can

help to represent an object-oriented framework more

meaningfully by UML. But the authors failed to give the

complete UML profiles for the newly defined

stereotypes and tagged values. Wagner [4] applied the

UML extension mechanisms for agent-oriented

modeling. A set of new stereotypes are defined to model

agent-oriented systems. Jing Dong and Sheng Yang [2]

proposed new stereotypes, tagged-values and constraints

to visualize design patterns in composite design patterns.

__

__

28 Dey, S., Bhattacharya, S.

INFOCOMP, v. 9, n. 2, p. 27–38, jun. 2010

Their work uses the UML extension mechanisms to

visualize the pattern-related information hidden in a

class diagram. They defined new tagged values which is

useful to visualize a pattern in a distributed system.

In [14] Rik Eshuis et al. defined a formal execution

semantics for UML activity diagrams that is appropriate

for workflow modeling. The semantics is aimed at the

requirements level by assuming that software state

changes do not take time. It is based upon the

STATEMATE semantics of state charts, extended with

some transactional properties to deal with data

manipulation. That semantics also deals with real-time

and multiple state instances. They first give an informal

description of their semantics and then formalize this in

terms of transition systems. They introduced two

semantics. The first semantics supports execution of

workflow models. Although this semantics is sufficient

for executing workflow models, it is not precise enough

for the analysis of functional requirements (model

checking), since the behavior of the environment is not

formalized. They therefore defined a second semantics,

which is used for model checking, that extends the first

one by formalizing the combined behavior of both the

system that the activity diagram models and the system's

environment. Their semantics is different from the OMG

activity diagram semantics [15], because they map

activities into states, whereas the OMG maps them into

transitions. The OMG semantics implies that activities

are done by the WFS (Work Flow System) itself, and

not by the environment. In their semantics, activities are

done by the environment (i.e. actors), not by the WFS

itself. T. Taibi and D.C.L. Ngo [16,17] proposed a

simple yet Balanced Pattern Specification Language

(BPSL) that is aimed to achieve equilibrium by

specifying structural and behavioral aspects of design

patterns. BPSL combines two subsets of logic, one from

First Order Logic (FOL) and one from Temporal Logic

of Actions (TLA). France et al. [19] presented a rigorous

and practical technique for specifying pattern solutions

expressed in the UML. The specification technique

paves the way for the development of tools that support

rigorous application of design patterns to UML design

models. The technique has been used to create

specifications of solutions for several popular design

patterns. They illustrated the use of the technique by

specifying observer and visitor pattern solutions.

Design patterns document good solutions to

recurring problems in a particular context. Composing

design patterns may achieve higher level of reuse by

solving a set of problems. Design patterns and their

compositions are usually modeled by UML diagrams.

When a design pattern is applied or composed with other

patterns, the pattern-related information may be lost

because traditional UML diagrams do not track this

information. Thus, it is hard for a designer to identify a

design pattern when it is applied or composed. In [3]

Jing Dong presented notations to explicitly represent

each pattern in the applications and compositions of

design patterns. The notations allow maintaining

pattern-related information. Thus, a design pattern is

identifiable and traceable from its application and

composition with others.

3. Scope of Work

The main goal of this work is to provide a technique for

modeling and designing of systems. The primary

objective is to be able to represent both the structural

and behavioral aspects of design patters in a formal way

using the UML extension mechanism. An extension to

the UML Class diagram is proposed which will help to

better visualize the Design Pattern. We have proposed a

grammar which also incorporates this extension

mechanism. In this discussion we have concentrated on

both distributed and non distributed systems.

4. UML Extension Mechanisms

UML is a graphical language for visualizing, specifying,

constructing, and documenting the artifacts of a software

intensive system. It is a multi-purpose language with

many notational constructs. UML provides extension

mechanisms to allow the user to model software systems

if the current UML technique is not semantically

sufficient to express the systems. These extension

mechanisms are stereotypes, tagged values, and

constraints.

Stereotypes allow the definition of extensions to the

UML vocabulary, denoted by <<stereotype-name>>.

The base class of a stereotype can be different model

elements, such as Class, Attribute, and Operation. A

stereotype groups tagged values and constraints under a

meaningful name. When a stereotype is branded to a

model element, the semantic meaning of the tagged

values and the constraints associated with the stereotype

are attached to that model element implicitly. A number

of possible uses of stereotypes have been classified in

[9]. Tagged values extend model elements with new

kinds of properties. Tagged values may be attached to a

stereotype, and this association will navigate to the

model element to which the stereotype is branded.

Basically, the format of a tagged value is a pair of tag

name and an associated value, i.e., {name: value}. The

__

__

Formal Software Design Technique – A Pattern Based Approach 29

INFOCOMP, v. 9, n. 2, p. 27–38, jun. 2010

tagged values attached to a stereotype must be

compatible with the constraints of the stereotype’s base
class.

Constraints add new semantic restrictions to a model

element. Typically constrains are written in the Object

Constraint Language (OCL) [11]. Constraints attached

to a stereotype imply that all model elements branded by

that stereotype must obey the semantic restrictions

which constraints state. Note that the constraints

attached to a stereotyped model element must be

compatible with the constraints of the stereotype and the

base class of the model element. A profile is a

stereotyped package that contains model elements that

have been customized for a specific domain or purpose

by extending the metamodel using stereotypes, tagged

values, and constraints. A profile may specify model

libraries on which it depends and the metamodel subset

that it extends.

5. The Proposed Extensions

This section presents some well-known patterns using

standard UML diagrams; discuss this representation, and

shows how it can be enhanced by adding new elements

to the underlying design notation. First we discuss an

implementation of Proxy pattern which is a distributed

pattern and then we discuss some non distributed design

patterns. The main purpose of a generalized distributed

information system is to retrieve and update

information, which is also distributed. The pattern

described in the following section is based on this

information.

5.1 Proxy Patterns

In many embedded systems data from a single sensor

is used by multiple clients who reside in a different

address space (task space or processor). The naïve

approach to this problem is to have each client capable

of tracking down and requesting the data from the data

server. This is problematic because if the characteristics

of the remote server change, each client must be updated

as well. The Proxy pattern solves this problem by using

a local stand-in for the remote data server, called a

proxy. The proxy encapsulates the information

necessary to contact the real data server and get up-to-

date data. Meanwhile the local clients can directly call

the proxy to get the data but they remain decoupled from

the remote data server. The client may link to the proxy

either by calling it when they need the data, or through

the implementation of callbacks. Figure 1 illustrates the

structure field of the Proxy design pattern [12] using

standard UML.

Keeping in mind the characteristics of a generalized

distributed system as mentioned earlier, we have

assumed an information server capable of retrieving and

updating of distributed information. Let us also assume

that the two server side methods getInfo() and setInfo()

are well enough to serve our purpose. The getInfo()

method retrieves distributed information from the

remote server and on the other hand the setInfo() method

updates any new information to the server Any client

that wants to avail of these two methods, calls the server

methods through the ClientProxy class which takes care

of all the underlying complexities needed to connect and

retrieve information from the remote server. To the

Client it just creates an illusion as if the method calls are

executing locally like the other local method calls.

Client has its own method performOperationWithInfo()

which may be used to perform some local operations

after retrieving information from Server.

Figure 1 lacks several pattern related information.

The first one is that there is no possible way to

understand the above diagram represents which design

pattern.

Figure 1 - Proxy Pattern.

We are saying that it is an implementation of Proxy

Pattern but if only class diagram is given and no caption

is there it is really hard to identify the actual design

pattern we are dealing with. Moreover confusion arises

when more than one pattern are composed and

combined in a design diagram and some of the classes

participate in more than one pattern. Next missing

information is apart from the names of the classes, it is a

bit difficult to designers to understand, which classes

participate in the client side and that in the server side,

that is the actual role of a class in a distributed design

pattern is missing here. But the names of the classes may

change depending on the system requirement. Also each

of the methods in a class has specific job role to perform

but this information is missing in this design pattern.

This design pattern representation also fails to provide

1

1

*

*
ClientProxy

getInfo();
setInfo();

InformationServer

getInfo();
setInfo();

AnyClient

performOperationWithInfo();

__

__

30 Dey, S., Bhattacharya, S.

INFOCOMP, v. 9, n. 2, p. 27–38, jun. 2010

information whether the participating methods reside in

a distributed environment or in a standalone machine

better to say whether a function executes locally or in a

remote system. In a complex system where there are a

large number of participating classes proper message

should be conveyed to the pattern users to clearly

identify these pattern related information.

To sort out these issues and to explicitly visualize

design patterns in class diagrams, we define a UML

extension mechanism which includes tagged-value

notations. Here we introduce two new tag names and

five new values of the tagged value notation, which will

improve the visual representation of pattern related

information. The two tag names are role and scope and

the five values of the tagged-value are client, agent,

server, local and remote. Role of a class actually

provides information about a class under any design

pattern in a system. A class may perform more than one

role but that is possible when the class is participating in

more than one design patterns. Whether a class resides

in a client side or in the server side or it is performing

other role in other design pattern, the new tag name

“role” represents that. The value of the tag “role” for a
class may be one of client, server or agent or any

existing value. Also to resolve the first issue that is a

participating class performing a specific role represents

which design pattern, we have extended the tagged value

notation. We propose in the way as : if a tagged value

notation of a class XYZ is XYZ{role: client/Pattern}

this signifies that the class XYZ performs the role of a

client under design pattern “Pattern”. “Pattern” points to
any of the existing design pattern. On the other hand if a

tagged value notation of a class XYZ is XYZ{role:

agent/Pattern} this signifies that the class XYZ is in the

client side of design pattern “Pattern” but it is the proxy

class of the server. Similarly role of a method denotes

the actual work is being done by it. Scope describes

class methods whether the execution of a method is in

the scope of the local system or a remote system. Its

value is either local or remote.

Figure 2 shows an extended version of standard

UML class diagrams of the proxy pattern using the

proposed tagged-value notation. Let’s take class
InformationServer. The class is declared as

InformationServer{role: server/Proxy} which signifies

that InformationServer class plays the role of a server

and this class is part of the Proxy pattern. It has two

methods declared : getInfo(){role: dataRetriever}{

scope: local} and setInfo(){role: dataModifier}{ scope:

local}. The getInfo() method executes locally in the

server and retrieves data whereas setInfo() modifies the

data within the server local space.

Figure 2 - Proxy Pattern with proposed Tagged-Value notation.

Similarly the getInfo() method of ClientProxy works

as a proxy for the remote method and the method is not

executed locally to ClientProxy class. Hence the scope is

remote. It denotes that there should be some mechanism

within the ClientProxy class such that this method calls

a similar method residing in a remote server.

We have discussed on how design patterns can be

better represented on distributed architecture by using

the UML extension mechanism. Now we discuss on non

distributed design patterns. In non distributed design

patterns there is as such no concept of execution scope

of a method because each and every method within a

process executes in the local memory space during the

life time of that process. Hence the scope is always

local. What is important is that the role of each class

playing in the particular context of the design. For

overlapping patterns a class may participate in more

than one role simultaneously. Also each of the methods

of a class plays some specific roles. We discuss this

issue and try to solve this in the following section with

the proposed mechanism.

6. Example

Figure 3 shows a system design that manages the

connections to different types of databases, such as

Oracle and DB2. This system provides a connection

pool for accessing each type of database. The connection

pool restricts a limit number of accesses to a database

and reuses connections to the database. The system has

the capability to handle different types of database

connections. The ConnectionPool class defines an

interface for the creation of a connection pool for the

appropriate type of database. The concrete classes,

OracleConnectionPool and DB2ConnectionPool, use the

createConnection operation to create the corresponding

1

1

*

*

AnyClient{role: client/Proxy}

performOperationWithInfo(){role:
dataManipulation}{scope: local};

ClientProxy{role: agent/Proxy }

getInfo(){role:proxy}{scope:
remote};

setInfo(){role:proxy}{scope:
remote};

InformationServer{role:
server/Proxy}

getInfo(){role: dataRetriever}
{ scope: local};

setInfo(){role: dataModifier}
{ scope: local};

__

__

Formal Software Design Technique – A Pattern Based Approach 31

INFOCOMP, v. 9, n. 2, p. 27–38, jun. 2010

connections, OracleConnection and DB2Connection,

respectively. All connection instances have the same

interface which is defined in the Connection class.

Like Figure 1, Figure 3 is also not expressive enough

to provide answer to the missing pattern related

information pointed in section 5.1. Moreover this is the

scenario of combination of design patterns where more

than one design patterns are composed and some of the

participating classes represent more than one design

pattern simultaneously and hence each of these classes

have multiple roles, each of the roles corresponding to

one pattern. But this information is not reaching to the

pattern users. Two design patterns, Abstract Factory and

Singleton are applied in the system design. The

ConnectionPool, OracleConnectionPool and

DB2ConnectionPool classes play the roles of abstract

and concrete factories, whereas the Connection,

OracleConnection and DB2Connection classes play the

roles of abstract and concrete products in the Abstract

Factory pattern, respectively. OracleConnectionPool and

DB2ConnectionPool are the Singleton classes, which

restrict only a limited number of connections for each

database. Hence OracleConnectionPool and

DB2ConnectionPool also represent Singleton design

pattern. Apart from the pattern related information the

role of each of the participating class and its methods are

missing in the diagram. Figure 4 gives the solution of

this issue and represents the diagram using our proposed

notation.

Figure 3 - Connection Pool for Database.

Let us take class OracleConnectionPool. It

participates in two design patterns AbstractFactory and

Singleton. Using the proposed notation the class is now

expressed as OracleConnectionPool{role:

ConcreteFactory/AbstractFactory, Singleton/Singleton }

which signifies that this class is playing dual roles one

as a ConcreteFactory under design pattern

AbstractFactory and the other role is a Singleton under

the Singleton pattern. Hence using this proposed

notation composition of design patterns can be

represented efficiently. The createConnection() method

also plays dual role createProduct and Instance which is

represented by using the proposed notation as

createConnection(){role:createProduct, Instance}.

Hence the pattern related information is not lost while

patterns are composed and combined.

7. Introduction to FSDP

We know that Design Patterns are usually modeled

and documented in natural languages and visual

languages. Hence our model will expect natural

language and visual language as input from the user. For

our purpose we confine our model to take English

language as natural language and UML Class diagram as

the visual language.

As per GoF, a properly defined design pattern should

have the sections according to the following template.

The template lends a uniform structure to the

information, making design patterns easier to learn,

compare and use [13].

Pattern Name and Classification, Intent, Also Known

As, Motivation, Applicability, Structure, Participants,

Collaborations, Consequences, Implementation, Sample

Code, Known Uses and Related Patterns.

Though the template is used to define a single design

pattern but FSDP will use the same template for

combining patterns also to make the design clearer to the

pattern users. In that case some of the sections may not

be useful and FSDP has the ability to construct the

language with keeping them blank.

Graphical notations are used mainly for proper and

clear description of several design patterns. The

graphical notations help visualize the system design.

Graphical notations such as UML Class diagrams,

Sequence diagrams etc. are generally used. FSDP will

use the textual content of the UML class diagrams and

represent it in a formal way. We will represent the

structural aspects like the classes, methods, attributes in

a formal way as well as the behavioral nature like the

relationships, association, and cardinality among the

participating classes.

8. Formal Specification of Design
Pattern

The grammar to verify the token flow mechanism of

FSDP is provided below. The grammar is verified by

ConnectionPool

createConnection()

OracleConnectionPool

createConnection()

DB2ConnectionPool

createConnection()

OracleConnection DB2Connection

Connection

Create Create

__

__

32 Dey, S., Bhattacharya, S.

INFOCOMP, v. 9, n. 2, p. 27–38, jun. 2010

ANTLR (ANother Tool for Language Recognition)

which is a parser and translator generator tool, akin to

the venerable lex/yacc duo, that lets one define language

grammars in either ANTLR (http://www.antlr.org/)

syntax (which is YACC and EBNF(Extended Backus-

Naur Form) like) or a special AST(Abstract Syntax

Tree) syntax. ANTLR implements a PRED-LL(k)

parsing strategy and affords arbitrary look ahead for

disambiguating the ambiguous.

Figure 4 - Connection Pool with proposed notation.

A compiler has two parts lexer and parser. The lexers

job is to quantify the input stream of characters into

discrete groups called tokens. A lexer usually generates

errors pertaining to sequences of characters it cannot

match to a specific token type defined by one of its

rules. Languages are described by a grammar and the

grammar determines exactly what defines a particular

token and what sequences of tokens are decreed as valid.

The parser organizes the tokens it receives into the

allowed sequences defined by the grammar of the

language. If the language is being used exactly as is

defined in the grammar, the parser will be able to

recognize the patterns that make up certain structures

and group these together. If the parser encounters a

sequence of tokens that match none of the allowed

sequences of tokens, it will issue an error and perhaps

try to recover from the error by making a few

assumptions about what the error was.

Here we have proposed a lexer as well as the parser

which is verified by the ANTLR. The character set of

the proposed grammar includes the set {A-Z, a-z, 0-9}

along with some special characters {. , ; : { } () | _ /}

The semantics of the grammar is given below: (The

terminals are in capital, non terminals in small.)

The Parser of the grammar is :

class FSDPParser extends Parser;

options { k=2;}

tokens {

 ROLE="role";

 SCOPE="scope";

}

validPattern : (mandatory optional) => mandatory

optional | mandatory;

mandatory : name intent participant;

optional : ((motivation)?) => (motivation)?

|((alsoKnownAs)?) => (alsoKnownAs)? |

((applicability)?) => (applicability)? | ((consequences)?)

=>(consequences)? | ((implementation)?)

=>(implementation)? |((samplecode)?) =>

(samplecode)? | ((knownUses)?) => (knownUses)? |

(relatedpatterns)? ;

name : wordlist;

wordlist : WORD ;

intent : stmtlist;

stmtlist : wordlist ;

participant : structure behavior;

structure : (validClass validMethod attribute) =>

validClass validMethod attribute | (validClass

validMethod)=> validClass validMethod | validClass;

validClass : className LEFTBRACE ROLE COLON

OracleConnection{role:ConcreteProduct/
AbstractFactory }

DB2Connection{role:ConcreteProduct/
AbstractFactory }

Connection{role:AbstractProduct/AbstractFactory }

Create Create

ConnectionPool{role:AbstractFactory/AbstractFactory }

createConnection(){role:createProduct}

OracleConnectionPool{role:ConcreteFactory/
AbstractFactory, Singleton/Singleton }

createConnection(){role:createProduct, Instance}

DB2ConnectionPool{role:ConcreteFactory/AbstractFactory,
Singleton/Singleton }

createConnection(){role:createProduct, Instance}

__

__

Formal Software Design Technique – A Pattern Based Approach 33

INFOCOMP, v. 9, n. 2, p. 27–38, jun. 2010

classRole "/" patternName (COMMA classRole "/"

patternName)* RIGHTBRACE | className;

validMethod : methodDecl (roleDecl)? (scopeDecl)?;

methodDecl : methodName parameterDecl;

parameterDecl : LEFTPAREN (parameter (COMMA

parameter)*)? RIGHTPAREN;

roleDecl : LEFTBRACE ROLE COLON methodRole

(COMMA methodRole)* RIGHTBRACE;

scopeDecl: LEFTBRACE SCOPE COLON

methodScope RIGHTBRACE;

behavior : ((dependency)?) => (dependency)?

|((inheritance)?) => (inheritance)? | (association)?;

dependency : className className;

inheritance : className className;

association : className relationship className;

relationship : "one-to-many" | "many-to-one" | "many-

to-many";

attribute : WORD;

className : WORD;

methodName : WORD;

methodRole : WORD;

methodScope : WORD;

classRole : WORD;

parameter : WORD ;

patternName : WORD;

motivation : stmtlist;

alsoKnownAs : stmtlist;

applicability : stmtlist;

participants : stmtlist;

collaboration : stmtlist;

consequences : stmtlist;

implementation : stmtlist;

samplecode : stmtlist;

knownUses : stmtlist;

relatedpatterns : stmtlist;

The Lexer part of the grammar is :

class FSDPLexer extends Lexer;

options { k=2;}

WS : (' ' | '\t' | '\f' | ("\r\n" | '\r' | '\n') { newline(); })

 { $setType(Token.SKIP); } ;

WORD : (CHAR)+;

LEFTBRACE : '{';

RIGHTBRACE : '}';

LEFTPAREN : '(';

RIGHTPAREN : ')';

COMMA : ',';

COLON : ':';

SEMICOLON : ';';

protected

CHAR : ('a'..'z'|'A'..'Z' |'0'..'9'| '|' | '_' | '/' | '.' | '-');

9. Illustration of the Language

There are two stages involved in the specification of

FSDP language. Formation of the tokens is done by the

lexer and then parser checks if the tokens conform to the

syntax of the language defined by the grammar. Let’s
take a look at the Parser. ANTLR has some inbuilt

classes; Parser class is one of them. To create a user

defined parser the new parser class has to extend from

ANTLR Parser class. Hence our parser generator class

FSDPParser extends from Parser class. ANTLR affords

arbitrary look ahead for disambiguating the ambiguous.

Options section is used to declare how many characters

parser should look ahead to make a decision. Our

language is bold enough to take decision and

disambiguate by looking only next two characters. The

tokens section explicitly defines literals. We have

defined two string literals ROLE and SCOPE which will

be used repetitively in the language to specify the role of

the classes and methods and the scope of execution of

the methods if they participate in a distributed design.

The root of the parser rule starts with validPattern. We

are proposing that pattern designers have the option to

use some of the sections of the template of the design

pattern defined by GoF and mentioned in section 7 and

some of the sections must have to be used while

defining a pattern or combination of patterns. This will

provide flexibility and ease to the pattern designers.

Hence we have defined the root of the FSDP grammar

rule as:

validPattern: (mandatory optional) => mandatory

optional | mandatory;

which signifies that a valid pattern should consist of a

mandatory and an optional part. The rule denotes a

syntactic predicate (aka "guess" mode) which basically

says first try to match both the mandatory and optional

part, if it works, use it, otherwise, try the next alternative

which is the mandatory part. The rule says that to define

a pattern it should have at least the mandatory section.

The main advantage of using the syntactic predicate in

ANTLR is that compiler can backtrack if the matching is

not successful and try for the next matching. The

mandatory rule is defined as:

mandatory : name intent participant;

which means to describe a pattern or combination of

design patterns the designers must have to provide a

name of the design, intent i.e. where the design would be

useful and the details of the participating elements like

classes, methods and attributes their structural and

__

__

34 Dey, S., Bhattacharya, S.

INFOCOMP, v. 9, n. 2, p. 27–38, jun. 2010

behavioral aspects. Other sections of the pattern

descriptions like motivation applicability are in the

optional part of the grammar as these do not add any

thing extra to the existing textual descriptions. Our main

focus is on the solution part which is primarily defined

using the structure, participants and collaboration

sections. If we see further the participant rule consists of

the structural and behavioral aspects.

participant : structure behavior;

The structure part of the rule holds all the necessary

information about the participating classes, attributes

and methods while the behavior rule provides the

semantic of how the participants cooperate to carry out

their responsibilities. Let’s discuss in detail the structure
as well as the behavioral semantics.

structure : (validClass validMethod attribute) =>
validClass validMethod attribute | (validClass
validMethod)=> validClass validMethod | validClass;

The structure part of the grammar rule searches for

input token stream which consists of the declaration of a

class, declaration of methods and attributes. If compiler

finds all the three it is ok else it will back track and

searches if the input token stream consists of declaration

of a class and valid methods. If the result of this search

is still not successful it finds for the declaration of a

class only. Hence the structure part must have at least a

declaration of a valid class else the input token is

rejected.

The structural validClass rule is defined in the

following way:

validClass : className LEFTBRACE ROLE COLON
classRole "/" patternName (COMMA classRole "/"
patternName)* RIGHTBRACE | className;

The rule says that a valid class can be declared by

using either the proposed extension mechanism which

provides the role(s) of a class under the design pattern(s)

it is participating or simply mentioning only the class

name. This rule thus helps to keep track of pattern

related information even in a complex system when

patterns are combined.

Another non terminal of the structured part is the

validMethod rule.

validMethod : methodDecl (roleDecl)? (scopeDecl)?;

The rule for a valid method is defined by first

declaring the method and then the specific role and

scope of execution of the method under the valid class.

Role and scope are declared as optional. Hence user has

the choice not to mention the role or scope related

information in the design pattern.

methodDecl : methodName parameterDecl ;

The methodDecl rule has two parts. First it should

take the method name and then the parameter list.

parameterDecl : LEFTPAREN (parameter (COMMA
parameter)*)? RIGHTPAREN;

The parameterDecl rule accepts zero parameters as

well as multiple parameters separated by COMMA.

After the parameter is declared pattern users have the

choice of specifying the role(s) of the method playing in

the design as well as the execution scope if the pattern

design is for a distributed system.

The role of the method is defined in the following

way so that the information that a method may perform

multiple roles can be expressed.

roleDecl : LEFTBRACE ROLE COLON methodRole
(COMMA methodRole)* RIGHTBRACE;

The scope is declared as:

scopeDecl: LEFTBRACE SCOPE COLON
methodScope RIGHTBRACE;

Till now we have discussed the features of the

proposed grammar which takes care of the structural

part of the design patterns. Now we will elaborate the

other part that is the behavioral aspects of the grammar.

As already mentioned the behavior rule is defined as:

behavior:((dependency)?)=>(dependency)?|((inheritance
)?) =>(inheritance)?|(association)?;

The behavioral aspect of the rule consists of the

information on how the participating classes are

interrelated with each other in the pattern. One class

may be dependent on another class that is for example if

a class B is used in some methods of class A that means

there is a dependency relationship exists between class

A and B where A is dependent on B. One class may

inherit the characteristics from some other class. There

may be situations where one class is associated with

more than one instances of other class. All the above

behavioral interactions can be achieved by our proposed

grammar. The behavioral rule first looks for dependency

information in the pattern. The dependency information

is provided by

dependency : className className;

which denotes that if X and Y are two classes and the

compiler gets input tokens as

__

__

Formal Software Design Technique – A Pattern Based Approach 35

INFOCOMP, v. 9, n. 2, p. 27–38, jun. 2010

dependency : X Y

this signifies class X is dependent on class Y.

Similarly the inheritance rule looks like

inheritance : className className;

i.e. the first class inherits the features from the second

class.

The association information between two classes can

be achieved by the association rule.

association : className relationship className;

relationship : "one-to-many" | "many-to-one" | "many-

to-many";

The first class is related to the second class by either

"one-to-many" or "many-to-one" or "many-to-many"

cardinality.

The optional part of the FSDP grammar is to declare

the semantic rule of the sections which if not present

will not cause any important information loss in

representing a design pattern. This optional part of the

rule consists of the sections like motivation,

consequences, applicability etc. Pattern designers have

the choice of declaring any number or even no one of

them is required to declare

optional : ((motivation)?) => (motivation)? |

((alsoKnownAs)?) =>(alsoKnownAs)? |

((applicability)?) => (applicability)?| ((consequences)?)

=> (consequences)? | ((implementation)?) =>

(implementation)? | ((samplecode)?) => (samplecode)? |

((knownUses)?) => (knownUses)? | (relatedpatterns)? ;

10. Case Study

In this section we use FSDP to specify the pattern

described in Figure 4. In section 6 we have proposed the

UML extension mechanism how to increase the

visualization and understandability of the design pattern

representations. Now we will illustrate here how that

representation can be specified in the FSDP language.

For the sake of simplicity we will illustrate the structure

and behavior of the design pattern as these two sections

contain the major information to represent any design

pattern.

The structure consists of validClass, validMethod

and attribute. Let us take the ConnectionPool class and

specify it using FSDP.

ConnectionPool class has methods declared but no

attributes in it hence the following rule will satisfy the

incoming tokens.

structure : (validClass validMethod)=> validClass

validMethod

The validClass and validMethod is further specified

as :

validClass: ConnectionPool {role : AbstractFactory /

AbstractFactory }

validMethod : createConnection(){role:createProduct}

which is sufficient to provide the information to pattern

users that ConnectionPool class participates in a single

design pattern AbstractFactory and plays the role of

AbstractFactory under the pattern and it consists of only

one method named as createConnection and role or

responsibility of which is createProduct.

Similarly the structures of the OracleConnectionPool

class is specified in the following way.

OracleConnectionPool class:

validClass:OracleConnectionPool{role:ConcreteFactory

/ AbstractFactory,Singleton/Singleton}

validMethod:createConnection(){role:createProduct,

Instance}

Note that OracleConnectionPool class participates in

two design patterns AbstractFactory and Singleton and

hence this class plays dual role, ConcreteFactory role

under AbstractFactory pattern and Singleton role under

Singleton pattern. Also the method createConnection()

in this class performs dual role of createProduct and

Instance.

Likewise the rest of the classes can be specified

applying the FSDP language in the following way:

DB2ConnectionPool class:

validClass:DB2ConnectionPool{role:ConcreteFactory/A

bstractFactory,Singleton/Singleton}

validMethod:createConnection(){role:createProduct,

Instance}

OracleConnection class:

validClass:OracleConnection{role:ConcreteProduct/Abs

tractFactory }

DB2Connection class:

validClass: DB2Connection{role:ConcreteProduct/

AbstractFactory }

Connection class:

validClass:Connection{role:AbstractProduct/AbstractFa

ctory }

The behavioral aspect of the design is provided

below. It shows how the classes Connection,

DB2Connection, OracleConnection,

DB2ConnectionPool, OracleConnectionPool and

__

__

36 Dey, S., Bhattacharya, S.

INFOCOMP, v. 9, n. 2, p. 27–38, jun. 2010

ConnectionPool are interrelated with each other. It is

clear from Figure 4 that OracleConnectionPool is

dependent on OracleConnection similar to

DB2ConnectionPool is dependent on DB2Connection as

OracleConnectionPool creates instances of

OracleConnection within it and DB2ConnectionPool

creates instances of DB2Connection within

DB2ConnectionPool class. This dependency relationship

can be specified using the FSDP rule in the following

way:

dependency : OracleConnectionPool OracleConnection

dependency : DB2ConnectionPool DB2Connection

The design pattern uses inheritance where

OracleConnectionPool and DB2ConnectionPool inherit

from ConnectionPool whereas OracleConnection and

DB2Connection inherit from Connection class. This

information can be specified using the grammar rule as:

inheritance : OracleConnectionPool ConnectionPool

inheritance : DB2ConnectionPool ConnectionPool

inheritance : OracleConnection Connection

inheritance : DB2Connection Connection

11. Conclusions and Future Work

Standard UML is normally used to describe a design

pattern. However, UML does not provide all the

necessary pattern related information to the designers

especially when patterns are combined. In this paper, we

proposed a UML extension mechanism for the explicit

visualization of design patterns in system designs. It is

important for designers to describe explicitly patterns in

a design diagram because the goals of design patterns

are to reuse design experience, to improve

communication within and across software development

teams, to capture explicitly the design decisions made by

designers, and to record design tradeoffs and design

alternatives in different applications. The application of

a design pattern may change the names of classes,

operations, and attributes participating in this pattern to

the terms of the application domain. Thus, the roles that

the classes, operations, and attributes play in this pattern

have lost. This pattern-related information is important

to accomplish the goals of design pattern. Without

explicitly representing this information, the designers

are forced to communicate at the class and object level,

instead of the pattern level. The design decisions and

tradeoffs captured in the pattern are lost too. Therefore,

the notations provided in this paper help on the explicit

representation of design patterns and accomplishing the

goals of design patterns. All the extension mechanisms

are implemented in our proposed FSDP grammar. The

existing formal languages to represent design pattern are

not complete. They tend to focus only on the structural

and behavioral aspects of design patterns but they do not

support the various extension mechanisms so as to more

clearly represent design patterns. The existing formal

languages do not clearly provide information on how

several classes are interacted with each other in terms of

association, inheritance and dependency. Here we

introduced a designing environment based on a new

formal model, FSDP (Formal Specification of Design

Pattern) which is designed to overcome these issues and

aid rapid software design systems. A grammar for this

design specification is provided, which has been

implemented and verified by ANTLR.

The main goal of this research work is to define an

adequate representation for patterns and provide a

formal way of representing any design pattern using a

new additional representation technique so that it may

be useful in the documentation, implementation steps of

the software development process. The proposed

representation is complementary to existing OOADMs,

and is defined an extension to UML. Our approach uses

the UML extension mechanisms for visualizing design

patterns. Using this new UML extension mechanism to

model software system design in class diagrams, one can

identify pattern-related information, such as the role of

each class and its member functions, execution scope of

the member methods.

This paper presented some of the well known

patterns and described how their representation can be

vastly enhanced with a more appropriate notation.

Examples throughout the paper have shown that the

approach is also valid to real world frameworks that

consist of distributed design patterns.

12. References

[1] Marcus Fontoura and Carlos Lucena, Extending
UML to Improve the Representation of Design
Patterns, Software Engineering Laboratory (LES),
Computer Science Department, Pontifical Catholic
University of Rio de Janei, 2003.

[2] Jing Dong and Sheng Yang, School of Engineering
and Computer Science, University of Texas at
Dallas, Richardson, “Extending UML To Visualize
Design Patterns In Class Diagrams”. Proceedings
of the Fifteenth International Conference on
Software Engineering and Knowledge Engineering
(SEKE), pp124-131, San Francisco Bay,
California, USA, July 2003.

__

__

Formal Software Design Technique – A Pattern Based Approach 37

INFOCOMP, v. 9, n. 2, p. 27–38, jun. 2010

[3] Jing Dong, UML Extensions for Design Pattern
Compositions, The Journal of Object Technology
(JOT), Vol. 1, No. 5, pp149-161, Nov. 2002.

[4] G. Wagner. A UML Profile for Agent-Oriented
Modeling. Proceedings of the Third International
Workshop on Agent.Oriented Software
Engineering, Bologna, Italy, July 2002.

[5] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles,
and J. E. Robbins. Modeling Software
Architectures in the Unified Modeling Language.
ACM Transactions on Software Engineering and
Methodology, 11(1):2–57, January 2002.

[6] A. Zarras, V. Issarny, C. Kloukinas, and V. K.
Nguyen. Towards a Base UML Profile for
Architecture Description. Proceedings of the ICSE
Workshop on Architecture and UML, 2001.

[7] M. M. Kande and A. Strohmeier. Towards a UML
Profile for Software Architecture Descriptions.
Proceedings of the Third International Conference
on the Unified Modeling Language (UML),
LNCS1939, Springer-Verlag, pages 513– 527,
October 2000.

[8] M. Fontoura, W. Pree, and B. Rumpe. UML-F: A
Modeling Language for Object-Oriented
Frameworks. Proceedings of the 14th European
Conference on Object- Oriented Programming
(ECOOP), pages 63–82, July 2000.

[9] S. Berner,M. Glinz, and S. Joos. A Classification
of Stereotypes for Object-Oriented Modeling
Languages. Proceedings of the Second
International Conference on the Unified Modeling
Language (UML), LNCS1723, Springer-Verlag,
pages 249–264, October 1999.

[10] R. K. Keller, R. Schauer, S. Robitalille, and P.
Pag´e. Pattern-Based Reverse-Engineering of
Design Components. Proceedings of the 21st
International Conference on Software Engineering,
Los Angeles, USA, pages 226–235, May 1999.

[11] J. B. Warmer and A. G. Kleppe. The Object
ConstraintLanguage: Precise Modeling with UML.
Addison-Wesley, 1998.

[12] Vlissides, Coplien and Kerth, Pattern Languages of
Program Design 2 ed. Addison-Wesley, 1996.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley Publishing
Company, 1995.

[14] Rik Eshuis and Roel Wieringa, A Real-Time
Execution Semantics for UML Activity Diagrams,
University of Twente,Department of Computer

Science, Proceedings of the 4th International
Conference on Fundamental Approaches to
Software Engineering, Pages:76-90, 2001.

[15] OMG- Unified Modeling Language version 2.2.
OMG, 2009.

[16] T. Taibi and D.C.L. Ngo, Formal Specification of
Design Patterns - A Balanced Approach, Journal of
Object Technology (JOT), Vol. 2, No 04, pp. 127-
140, 2003.

[17] Taibi & Ngo 2003 Formal specification of design
pattern combination using BPSL, IST, Vol. 45,
Issue 3, 1 March 2003, Pages 157-170.

[18] Eden, A.H., and Hirshfeld, Y., Principles in formal
specification of objectoriented architectures,
CASCON'01, 2001.

[19] France et al., A UML-based pattern specification
technique, IEEE TSE,Volume 30, Issue 3, March
2004 Pages: 193-206.

__

__

38 Dey, S., Bhattacharya, S.

INFOCOMP, v. 9, n. 2, p. 27–38, jun. 2010

