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Abstract: Histogram Equalization (HE) has proved to be a simple image contrast enhancement technique. 
However, it tends to change the mean brightness of the image to the middle level of the gray level range. In 
this paper, a smart contrast enhancement technique based on conventional HE algorithm is proposed. This 
Constrained PDF based Histogram Equalization (CPHE) technique takes control over the effect of 
traditional HE so that it performs the enhancement of an image without making any loss of details in it. In 
the proposed method, the probability distribution function (histogram) of an image is modified by 
introducing constraints before the histogram equalization (HE) is performed. This shows that such an 
approach provides a convenient and effective mechanism to control the enhancement process, while being 
adaptive to various types of images. Experimental results are presented and compared with results from 
other contemporary methods. 
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1. INTRODUCTION 
 
Contrast enhancement is an important area in image 
processing for both human and computer vision. It is 
widely used for medical image processing and as a 
preprocessing step in speech recognition, texture 
synthesis, and many other image/video processing 
applications [1], [2], [10], [13]. Different methods have 
already been developed for this purpose [3] - [7], [9], 
[11], [12], [14] - [18]. Some of these methods make use 
of simple linear/nonlinear gray level transformation 
functions [9] while some of the others use complex 
analysis of different image features such as edge [4], 
connected component information [16] and so on. 
 
A very popular technique for contrast enhancement of 
images is histogram equalization (HE) [6], [7], [9], [15],  
[17]. It is the most commonly used method due to its 
simplicity and comparatively better performance on 
almost all types of images. HE performs its operation by 
remapping the gray levels of the image based on the 
probability distribution of the input gray levels [11].  
 
Many researches have already been done on histogram 
equalization and many methods have already been 
proposed. Generally, we can classify these methods in 
two principle categories – global and local histogram 

equalization [5]. Global Histogram Equalization (GHE) 
[9] uses the histogram information of the entire input 
image for its transformation function. Though this 
global approach is suitable for overall enhancement, it 
fails to adapt with the local brightness features of the 
input image. If there are some gray levels in the image 
with very high frequencies, they dominate the other gray 
levels having lower frequencies. In such a situation, 
GHE remaps the gray levels in such a way that the 
contrast stretching becomes limited in some dominating 
gray levels having larger image histogram components 
and causes significant contrast loss for other small ones. 
Local histogram equalization (LHE) [9] can get rid of 
such problem. It uses a small window that slides through 
every pixel of the image sequentially and only the block 
of pixels that fall in this window are taken into account 
for HE and then gray level mapping for enhancement is 
done only for the center pixel of that window. Thus, it 
can make remarkable use of local information also. 
However, LHE requires high computational cost and 
sometimes causes over-enhancement in some portion of 
the image. Another problem of this method is that it also 
enhances the noises in the input image along with the 
image features. To get rid of the high computational cost, 
another approach is to apply non-overlapping block 
based HE. Nonetheless, most of the time, these methods 
produce an undesirable checkerboard effects on 



enhanced images [9]. Histogram Specification (HS) [9] 
is another method that takes a desired histogram by 
which the expected output image histogram can be 
controlled. However specifying the output histogram is 
not a smooth task as it varies from image to image. A 
method called Dynamic Histogram Specification (DHS) 
is presented in [3], which generates the specified 
histogram dynamically from the input image. This 
method can preserve the original input image histogram 
characteristics. However, the degree of enhancement is 
not that much significant. 
 
Some researches have also focused on improvement of 
histogram equalization based contrast enhancement such 
as mean preserving bi-histogram equalization (BBHE) 
[17], equal area dualistic sub-image histogram 
equalization (DSIHE) [18] and minimum mean 
brightness error bi-histogram equalization (MMBEBHE) 
[12]. BBHE separates the input image histogram into 
two parts based on input mean. After separation, each 
part is equalized independently. This method tries to 
overcome the brightness preservation problem. DSIHE 
method uses entropy value for histogram separation. 
MMBEBHE is the extension of BBHE method that 
provides maximal brightness preservation. Though these 
methods can perform good contrast enhancement, they 
also cause more annoying side effects depending on the 
variation of gray level distribution in the histogram. 
Recursive Mean-Separate Histogram Equalization 
(RMSHE) [11] is another improvement of BBHE. 
However, it also is not free from side effects.  
 
To overcome the aforementioned problems, we have 
proposed a method in section 3, called Constrained PDF 
based Histogram Equalization (CPHE). This method is 
an enhancement of Weighted Thresholded HE (WTHE) 
presented in [8] which is very fast and produced good 
results over images when compared to other 
contemporary methods. 
 
2. HE TECHNIQUES 
 
In this section, we review some of the existing HE 
approaches in brief. Here we discuss about GHE, LHE, 
DHS and some methods based on histogram partitioning. 
  
2.1. Global Histogram Equalization (GHE) 
 
Suppose input image f(x, y) composed of discrete gray 
levels in the dynamic range of     [0, L-1]. The 
transformation function C(rk) is defined as 
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where 0 ≤ Sk ≤1 and k = 0, 1, 2, …, L-1. 
 
In (1), ni represents the number of pixels having gray 
level ri, n is the total number of pixels in the input image, 
and P(ri) represents as the Probability Density Function 
(PDF) of the input gray level ri. Based on the PDF, the 
Cumulative Density Function(CDF) is defined as C(rk). 
This mapping in (1) is called Global Histogram 
Equalization (GHE) or Histogram Linearization. Here Sk 
can easily be mapped to the dynamic range of [0, L-1] 
multiplying it by (L-1). 
 
Using the CDF values obtained, histogram equalization 
maps an input level k into an output level Hk using the 
following level-mapping equation:  
Hk = (L −1) ×C(rk)     (2) 
 
For the traditional HE described above, the increment in 
the output level Hk can be easily seen to be 
∆ Hk = Hk − Hk −1 = (L −1) × P(rk)    (3) 
 
That is, the increment of level Hk is proportional to the 
probability of its corresponding level k in the original 
image. In theory, for images with continuous intensity 
levels and PDFs, such a mapping scheme would 
perfectly equalize the histogram. However, in practice, 
the intensity levels and PDF of a digital image are 
discrete. In such a case, the traditional HE mapping is no 
longer ideal. Instead, it results in undesirable effects 
where intensity levels with high probabilities often 
become over-enhanced and the levels with low 
probabilities get less enhanced, their numbers reduced, 
or even eliminated in the resultant image. 
 
2.2. Local Histogram Equalization (LHE) 
 
GHE takes the global information into account and 
cannot adapt to local light condition. Local Histogram 
Equalization (LHE) performs block-overlapped 
histogram equalization [9], [15]. LHE defines a sub-
block and retrieves its histogram information. Then, 
histogram equalization is applied for the center pixel 
using the CDF of that sub-block. Next, the sub-block is 
moved by one pixel and sub-block histogram 
equalization is repeated until the end of the input image 
is reached. Though LHE cannot adapt to partial light 
information [3], still it over-enhances some portions 
depending on its mask size. Actually, using a perfect 
block size that enhances all part of an image is not an 
easy and smooth task to perform. 



2.3. Histogram Specification (HS) 
 
Histogram specification is applied when we want to 
transform the histogram of image  into a specified 
histogram to achieve highlighted gray level ranges. 
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where k = 0, 1, 2, …, L-1. 
 
Note that, Sk and Vk represent the CDFs of histograms of 
the input image and the specified histogram respectively. 
We seek the value Zk that satisfy the following equation 
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k = 0, 1, 2, …, L-1. 
 
The transformation function for Sk in (4) is same as in 
GHE and the desired level Zk (i.e., the mapping of input 
gray level rk) is found from (5). Thus, to summarize HS, 
GHE is performed first on the input histogram and then 
the gray levels are remapped to the  existing gray levels 
in the specified histogram. Fig. 1 shows how the input 
image’s histogram distribution is specified using the 
specified histogram. However, to determine the most 
suitable specified histogram no general rule is available. 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 

(b) 
 
 
 
 
 

(c) 
Fig. 1. (a) Original Histogram (b) Specified Histogram 

(c) Result of Specification 
 

2.4. Dynamic Histogram Specification (DHS) 
 
This approach selects some critical points (CP) from the 
image histogram. Then based on these CPs and other 
components of the histogram, it creates a specified 
histogram. Then HS is applied on the image based on 
this specified histogram. DHS enhances the image 
keeping some histogram characteristics since the 
specified histogram is created from the input image 
histogram. However, as it does not change the dynamic 
range, the overall contrast of the image is not much 
enhanced. Moreover, sometimes it causes some artifacts 
in the images.  
 
2.5. Histogram Partitioning Approaches 
 
BBHE tries to preserve the average brightness of the 
image by separating the input image histogram into two 
parts based on input mean and then equalizing each of 
the parts independently. DSIHE partitions the image 
based on entropy. RMSHE proposes to partition the 
histogram recursively more than once. Here some 
portions of histogram among partitions cannot be 
expanded much, while the outside region expands so 
much that creates the unwanted artifacts. This is a 
common drawback of most of the existing histogram 
partitioning approaches since they keep the partitioning 
point fixed through the entire process. 
 
3. CONSTRAINED PDF BASED HISTOGRAM 
EQUALIZATION (CPHE) 
 
The proposed method, Constrained PDF based HE 
(CPHE) performs histogram  equalization based on a 
modified histogram. Each original probability density 
value P(rk) is replaced by a Constrained PDF value 
Pc(rk), yielding  
 
∆Hk = (L −1) * Pc (rk)     (6) 
 
In the new level-mapping scheme given in (6), Pc(rk) is 
obtained by applying a transformation function Ω(.) to 
P(k), such that 
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The transformation function Ω(.) clamps the original 
PDF at an upper constraint Pu and at  lower constraint Pl, 
and transforms all values between the upper and lower 
constraints using a normalized power law function with 
index r>0.  
 



In our level-mapping scheme, the increment for each 
intensity level is decided by the transformed histogram 
(7). The increment can be controlled by adjusting the 
index r of the power law transformation function. To 
give an example, when r<1, the power law function will 
give a higher weight to the low probabilities in the PDF 
than the high probabilities. Therefore, with r<1, the 
less-probable levels are “protected” and over-
enhancement is less likely to occur. 
 
Also in equation (7), the constrained PDF Pc(rk) is 
thresholded at an upper limit Pu. As a  result, all levels 
whose PDF values are higher than Pu will have their 
increment clamped at a maximum value ∆ max = (K −1) 
* Pu (see equation (6) and (7)). Such upper clamping 
further avoids the dominance of the levels with high 
probabilities when allocating the output dynamic range. 
In our algorithm, the value of Pu is decided by 
  
Pu = v * Pmax ,  0 ≤ v ≤1     (8) 
 
where Pmax is the peak value (highest probability) of the 
original PDF and the real  number v defines the upper 
constrain normalized to Pmax. For example, with v=0.5, 
the cut-off point is set at 50% of the highest probability 
observed in the image. A lower value of v results in 
more high-probability levels being clamped, and thus 
the less the likelihood of their dominance in the output 
range. In our proposed algorithm, the normalized upper 
constrain v is used as another parameter that controls the 
effect of enhancement. 
 
The lower constraint Pl in equation (7), is used to find 
out the levels whose probabilities are too low and thus 
of little visual importance. Instead of taking the value of 
the lower constraint Pl as zero [8], the average of P(rk) 
has been fixed as lower constraint which is used to 
improve the contrast of the low probability levels also. 
The value of Pl is  important in controlling the 
enhancement and is set at a very low fixed value (e.g., 
0.01%) in the algorithm. It can be seen from equation (7) 
that when r=1, Pu =1 and Pl =0 the proposed CPHE 
reduces to the traditional HE. 
 
In the proposed method, the power index r is the main 
parameter that controls the degree of enhancement. With 
r<1 (e.g., r=0.5), more dynamic range is allocated to the 
less probable levels, thus preserving important visual 
details. When the value of r gradually approaches 1, the 
effect of the proposed method approaches that of the 
traditional HE. When r>1, more weight is shifted to the 
high-probability levels, and CPHE would yield even 
stronger effect than the traditional HE. Using r>1 is less 
common due to its higher likelihood to result in over-
enhancement, yet it is still useful in specific applications 

where the levels with high probabilities (e.g., the 
background) need to be enhanced with extra strength.  
 
The proposed transformation function (equation (7)) 
introduces constraints to the histogram. In [11], a similar 
approach is adopted but the constraints are manually set 
by the user. For the proposed CPHE method, the upper 
constraint Pu adapts to Pmax, the highest probability 
observed in the image. Such a mechanism effectively 
alleviates the necessity of manually setting proper 
constraints, resulting in consistent enhancement effect 
for different types of images without manually adjusting 
the parameters. 
 
After the constrained PDF is obtained from equation (7), 
the cumulative  distribution function (CDF) is obtained 
by 
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Now, the classical HE procedure is applied to get the 
enhanced result. 
 
4. EXPERIMENTAL RESULTS 
 
ASNR (Average Signal to Noise Ratio) is commonly 
used measure in image enhancement applications, which 
is given by 
 
ASNR = (f – b)/σ              (10) 
where   f  is the average gray-level value of the 
enhanced image. 
b is the mean gray-level value of the original image.  
σ  is the standard deviation. 
 
If the ASNR value is larger, the enhancement method 
performs better. The following table shows the increased 
ASNR values from normal HE to CPHE methods for the 
cameraman image. 
 

Methods ASNR value 

Histogram Equalization 0.8924 

Bi-histogram Equalization 1.1107 
Recursive Mean-Separate 

HE 1.1864 

WTHE 2.4091 

Constrained PDF based HE 2.4508 

 
The results from previous techniques and the proposed 
technique are simulated and compared with the 
enhancement ability of this proposed method using 



Average Signal to Noise Ratio (ASNR) values on 
variety of images. Here we show some of the results. In 
Fig. 2(b), HE image shows that the average brightness 
has increased instead of increasing the contrast. In Fig. 
2(c), BHE enhances the image better when one level of 
partitioning is used. In Fig. 2(d), RMSHE is also not 
free from generating unwanted artifacts. WTHE in Fig. 
2(e) shows relatively good results. On the other hand, 
CPHE performs much better results with different values 
of v. With increasing the value of v the contrast is 
increasing and making the edges more sharper without 
introducing any artifacts (Fig. 2(f)). 
 
 
 
 
 
 
 
 
 
 

Fig. 2(a) Original Gray Scale Image and its Histogram 
 
 
 
 
 
 
 
 
 

Fig. 2(b) Result of HE & its histogram 
 
 
 
 
 
 
 
 
 
 

Fig. 2(c) Result of BHE of gray scale image and its 
histogram 

 
 
 
 
 
 
 
 
 

Fig. 2(d) Result  of RMSHE r=2 of  gray scale image 
and its histogram 

 
 
 
 
 
 
 
 
 
Fig. 2(f) Result  of WTHE with r=0.5 and v=0.9 and its 

histogram 
 
 
 
 
 
 
 
 
 

 
Fig. 2(f) Result  of CPHE with r=0.5 and v=0.9 and its 

histogram 
 
5. CONCLUSION 
 
We have proposed an efficient approach for contrast 
enhancement of low contrast images. CPHE enhances 
the image without making any loss in image details. 
However, if user is not satisfied, he/she may control the 
extent of enhancement by adjusting the power factor r. 
Moreover, the method is simple and computationally 
effective that makes it easy to implement and use in real 
time systems. 
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