
Time Complexity of algorithms that update the Sierpiński-like and
Modified Hilbert Curves

SANDERSON L. GONZAGA DE OLIVEIRA1 , MAURICIO KISCHINHEVSKY2

1UFLA - Universidade Federal de Lavras
DCC - Departmento de Ciência da Computação

P.O. Box 3037 - Campus Universitário 37200-000 - Lavras (MG)- Brazil
sanderson@dcc.ufla.br,

2UFF - Universidade Federal Fluminense
IC - Instituto de Computação

Rua Passo da Pátria, 156 - São Domingos
24210-240 - Niterói (RJ)- Brazil

kisch@ic.uff.br

Abstract. This paper presents the time complexity of two algorithms that update space-filling curves
of adaptively refined domains. The Modified Hilbert (space-filling) Curve was proposed to traverse
square-shaped adaptive-refined meshes. Whereas, the Sierpiński-like (space-filling) Curve was proposed
in order to traverse triangular-shaped adaptive-refined meshes. Those curves are variations of the name-
similar well-known space-filling curves, i.e. the Hilbert Curve and the Sierpiński Curve. Moreover, they
are adapted from those classical curves that traverse regular discretized domains. This paper describes
the asymptotic tight bounds of algorithms that update the Sierpiński-like and the Modified Hilbert Curves
space-filling curves.

Keywords: time complexity, space-filling curves, Hilbert-like Curve, Sierpiński-like Curve.

(Received February 17, 2010 / Accepted May 21, 2010)

1 Introduction

Numerical solution of partial differential equations
(PDEs) may require the use of a mesh refinement strat-
egy that concentrates more mesh points where the so-
lution and/or its derivatives change rapidly. For time-
dependent problems, adaptive mesh refinement becomes
particularly important since, by the dynamic nature of
such problems, may happen migration (or occurrence)
of regions that have rapid solution change.

The solution of PDEs by meshed methods, such as
finite differences, volumes or elements, produces linear
(or non-linear) systems. Those discrete places must be
numbered so that linear systems have each row corre-
sponding to a specific discrete place. The numbering
of the discrete places is a step which can be carried

out in several ways. Specifically, in [1] and [2], the
authors numbered the adaptively refined square-mesh
by the Modified Hilbert Curve (MHC). Whereas, in [4]
and [3], the authors numbered the adaptively refined
triangular-mesh by a Sierpiński-like Curve [12].

The time complexity of a calculation is measured
by expressing the running time of the calculation as a
function of some measure of the amount of data that is
needed to describe the problem to the computer. This
paper presents the time complexity of algorithms that
update those space-filling curves of adaptively refined
domains.

This paper deals with simple results from an on-
going work related to specific data structures that rep-
resent the adaptive mesh refinement in order to solve



PDEs by finite volume discretizations. Although sim-
ple, these results are important. Moreover, the subject
has link with several disciplines, including computer
graphics, computer vision, virtual reality, flight simu-
lation, computer-aided design and geographic data pro-
cessing. Specially in the numerical solution of evolu-
tionary PDEs, the mesh must be traversed and a linear
system set up and solved in each time step that the mesh
is updated. Since an evolutionary PDE solution must re-
quire several time steps, traversing efficiently the mesh
can help to present a complete solution much faster [3].

Related to mesh modeling, surfaces of arbitrary topol-
ogy can be tessellated into a mesh of patches of discrete
places. Such discrete places should be rendered very ef-
ficiently in either software or hardware. It can be used
as a basic geometric primitive of the graphics pipeline
[12].

One of the main disadvantages of certain meshes is
that, in general, they do not provide a compact surface
representation because a large number of discrete places
is required to faithfully describe the geometry of a com-
plex surface. This problem motivated the search for en-
coding schemes that could be used to represent adaptive
refinement meshes in a more compact and efficient way
[12]. The mesh encoding using strips exploits the spa-
tial coherence of the structure. It enumerates mesh ele-
ments in a sequence of adjacent discrete places to avoid
repeating the vertex coordinates of shared edges. In the
traditional setting, the element strip encoding leads to
the problem of converting a given mesh into the mini-
mal set of element strips covering the mesh.

Element strips are important for accelerated render-
ing because they can significantly increase the through-
put of the visualization pipeline. First, the data rate is
increased, since only N + 2 vertex coordinates have
to be sent to the graphics engine for a sequence of N
triangles. Second, viewing operations, such as matrix
transforms and clipping, need to be applied only once
to the elements of the data stream, further increasing the
rendering performance [12].

After this brief introduction, Section 2 describes the
space-filling curves and their time complexities. After-
wards, Section 3 draws some considerations.

2 Space-filling curves

Space-filling curves or Peano Curves were first described
in [8]. Intuitively, a 2D-"continuous curve" can be thought
of as the "path of a continuously moving point". In [7],
the author introduced a rigorous definition in order to
eliminate an inherent vagueness of this notion. This
definition has since been adopted as the precise descrip-
tion of the notion of a "continuous curve": a 2D-curve

(with endpoints) is a continuous function whose domain
is the unit interval [0, 1]2. Moreover, the limit of the se-
quence given by curves of order 1, 2, . . ., is the curve
that passes through each point in the unit square, or in
a closed continuous surface. In the most general form,
the range of such a function may lie in an arbitrary topo-
logical space. However, in the most common cases, the
range will lie in a Euclidean space such as the 2D-plane
[15]. The reader is referred to [9] for further details of
space-filling curves.

2.1 The Hilbert Curve

The Hilbert Curve (see Figure 1) is known as the sec-
ond proposed space-filling curve. Moreover, it is a con-
tinuous fractal space-filling curve first described in [6].
Hilbert Curves are recursively defined sequences of con-
tinuous closed plane fractal curves, which in the limit
n→∞ completely fill the unit square: thus, their limit
curves are examples of a space-filling curves. Its graph
is a compact set homeomorphic to the closed unit inter-
val, with Hausdorff dimension 2 [5]. Consider Hn the
n-th approximation to the limiting curve. Although the
Hilbert Curve grows exponentially with n since the Eu-
clidean length of Hn is 2n − 2−n, it is always bounded
by a square with a finite area [13]. The reader is referred
to [2] for further details of the Hilbert Curve.

Figure 1: Six iterations of the Hilbert Curve construction

2.2 The Sierpiński Curve

The Sierpiński Curve is a space-filling curve proposed
in [10] and [11]. Moreover, Sierpiński Curves are a re-
cursively defined sequence of continuous closed plane
fractal curves, which in the limit n→∞ completely fill
the unit square [14]. Sierpiński Curves in uniform suc-
cessive refinement in equilateral triangles are depicted



in Figure 2. Fig. 3 illustrates nine levels of the Sier-
piński Curve.

Figure 2: Generator process of the Sierpiński Curve through equilat-
eral triangles divided into 4, 10 and 22 triangles, respectively

2.3 Space-filling curves for adaptively refined do-
mains

In relation to space-filling curves in order to number
square-shaped finite volumes in adaptively refined
meshes, it seems that the first one was the Modified
Hilbert Curve (MHC), proposed in [1]. Figure 4 illus-
trates an example of a MHC.

When it comes to space-filling curves in order to tra-
verse adaptively refined triangular-meshes, the first one
in the literature seems to be the Sierpiński-like Curve,
proposed in [12] in the context of rendering, geometry
compression, and theoretical investigation of paths on
triangle meshes. In [4], the authors applied the
Sierpiński-like Curve in order to traverse adaptively re-
fined triangular-meshes in order to solve PDES by finite
volume discretizations. Figure 5 shows an example of
the Sierpiński-like Curve.

The next subsections address to time complexities
of algorithms that update these space-filling curves for
adaptively refined domains.

2.3.1 Time complexity of the algorithm that updates
the MHC

The MHC requires to find the local shape of the Hilbert
Curve for each local refinement. Namely, the local curve
can have four shapes: @, A, u and t. Algorithm 1
evaluates which local shape the new pack is, where the
<direction>SubCells are the cells just refined and →

Figure 3: Sierpiński Curves with 23, 24, . . ., 210 volumes

Figure 4: MHC example

denotes the indirection of the object.



Figure 5: Example of the Sierpiński-like Curve

Algorithm 1: Update the MHC.
——————————————————————
Function HilbertShape
inputs: HilbertCoordinate (integer),

RefinementLevel (integer);
output: an integer 0, 1, 2 or 3 that represents the local
shape of the MHC;
begin

i← 0, j, k : integer;
matrix hilbertTable[4][4] of integer;

hilbertTable[0][0]← 1; hilbertTable[0][1]← 0;
hilbertTable[0][2]← 0; hilbertTable[0][3]← 3;
hilbertTable[1][0]← 0; hilbertTable[1][1]← 1;
hilbertTable[1][2]← 1; hilbertTable[1][3]← 2;
hilbertTable[2][0]← 3; hilbertTable[2][1]← 2;
hilbertTable[2][2]← 2; hilbertTable[2][3]← 1;
hilbertTable[3][0]← 2; hilbertTable[3][1]← 3;
hilbertTable[3][2]← 3; hilbertTable[3][3]← 0;

FOR k← 1 UNTIL RefinementLevel STEP 1 DO
/* In computing, the modulo operation finds the
remainder of division of one number by another. */
j← HilbertCoordinate modulo 4;
i← hilbertTable[i][j];
HilbertCoordinate← HilbertCoordinate / 4;

end-FOR;
RETURN i;

end-HilbertShape;

· · ·
numberOfHilbertShape, j : integer;
cellHilbertCoordinate, cellRefinementLevel : integer;

cellRefinementLevel← cell→RefinementLevel;
j← 2cellRefinementLevel;
j← j * j;
cellHilbertCoordinate← cell→HilbertCoordinate;
numberOfHilbertShape← HilbertShape (

cellHilbertCoordinate, cellRefinementLevel+1);

/* update the MHC */
IF (numberOfHilbertShape = 0) THEN /* shape: @ */

northeastSubCell→hilbertCoordinate←
cellHilbertCoordinate;

northwestSubCell→hilbertCoordinate←
cellHilbertCoordinate + j;

southwestSubCell→hilbertCoordinate←
cellHilbertCoordinate + 2 * j;

southeastSubCell→hilbertCoordinate←
cellHilbertCoordinate + 3 * j;

ELSE IF (numberOfHilbertShape = 1) THEN
/* shape: t */
northeastSubCell→hilbertCoordinate←

cellHilbertCoordinate;
southeastSubCell→hilbertCoordinate←

cellHilbertCoordinate + j;
southwestSubCell→hilbertCoordinate←

cellHilbertCoordinate + 2 * j;
northwestSubCell→hilbertCoordinate←

cellHilbertCoordinate + 3 * j;
ELSE IF (numberOfHilbertShape = 2) THEN

/* shape: A */
southwestSubCell→hilbertCoordinate←

cellHilbertCoordinate;
southeastSubCell→hilbertCoordinate←

cellHilbertCoordinate + j;
northeastSubCell→hilbertCoordinate←

cellHilbertCoordinate + 2 * j;
northwestSubCell→hilbertCoordinate←

cellHilbertCoordinate + 3 * j;
ELSE IF (numberOfHilbertShape = 3) THEN

/* shape: u */
southwestSubCell→hilbertCoordinate← cellHilbert-

Coordinate;
northwestSubCell→hilbertCoordinate← cellHilbert-

Coordinate + j;
northeastSubCell→hilbertCoordinate ← cellHilbert-

Coordinate + 2 * j;
southeastSubCell→hilbertCoordinate ← cellHilbert-

Coordinate + 3 * j;
END-IF
· · ·
——————————————————————



The HilbertShape function sets up an auxiliary ma-
trix and performs some calculations in order to find the
local shape of the MHC. It receives two integes: the
Hilbert coordinate and the refinement level of the new
pack. When a finite volume is refined, it is substituted
by a new pack of finite volume. The HilbertShape func-
tion returns one integer between [0;3] that represents
the local shape of the MHC. The HilbertShape function
is called by a code that, depending of its return, update
the MHC accordingly.

Since the first and last finite volumes of the MHC
are neighbors, traversing the mesh could be seen as a
Hamiltonian cicle. Notice that the Algorithm 1 does not
directly solve the problem to traverse each finite volume
once and only once, i.e. a NP-Complete problem. The
Algorithm 1 just updates a curve already constructed,
a concept used by space-filling curves. Moreover, one
can construct, e.g. four finite volumes as an initial dis-
cretization. In the following, one can straightforwardly
link these finite volumes creating the regular first level
MHC, implemented as a double-linked list.

Consider that i, o and j are finite volumes in the se-
quence of the MHC. Furthermore, i and o point to each
other and so o and j does. Namely, o is between i and
j in the MHC sequence. When a single finite volume is
refined, say o, this one is substituted by four new finite
volumes, say f, s, t and l. Notice that o is deleted, i.e. its
memory is freed, when it is refined. Algorithm 1 evalu-
ates which of these new four finite volume must be the
first one, say f, which must be the last one, say l, and the
other two ones, say s and t, in the local MHC sequence.
More precisely, f, s, t and l form the sequence of the new
finite volumes inserted locally, i.e. a new local piece of
the double-linked list MHC. The Algorithm 1 updates
the links in order to i and f point to each other and so l
and j does.

The Θ-notation defines an asymptotic tight bound
for the growth of a function. Analysing Algorithm 1,
the core of the computation is the highlighted instruc-
tion FOR in the HilbertShape function. The loop in the
instruction FOR in HilbertShape function performs Re-
finementLevel times and it defines the growth order of
the running time of the algorithm. Notice that the code
that calls the HilbertShape function passes cellRefine-
mentLevel+1 as the parameter. Moreover, cellRefine-
mentLevel+1 indicates the level of the new pack. The
time complexity analysis of this algorithm is straight-
forward. Clearly, Algorithm 1 ∈ Θ(L), where L is the
level of refinements of the refined pack.

2.3.2 Time complexity of the algorithm that updates
the Sierpiński-like Curve

Figure 6 shows a local refinement of a triangle. Since
the local Sierpiński-like Curve traverses the new pack
starting (or finishing) in volume d1 and finishing (or
starting) in volume d2, the curve can link: A↔ d1↔
· · · d2↔ B; A↔ d1↔ · · · d2↔ C; or B↔ d2↔ · · ·
d1↔ C, since it is implemented by a double-linked list.

Figure 6: Volume traversing in a local triangular refinement

Algorithm 2: Update the Sierpiński-like Curve.
——————————————————————
· · ·
FaceNumber← 3; /* constant value */
/* previous→ cell2→ cell4→ cell3→ cell1→next*/
boolean: first← true;
integer: i, j;
/* cell2 contains the conectivity information of the local
double-linked list: each node contains pointers to the
previous and the next nodes */
/* isn’t it the first volume? */
IF (cell2->previous = NULL) THEN

/* for each edge of Cell1 */
FOR i← 1 UNTIL FaceNumber STEP 1 DO

/* for each edge of the previous node */
FOR j← 1 UNTIL FaceNumber STEP 1 DO

/* compares each pair of coordinates of Cell1 with
each pair of coordinates of the previous node of
the list */

IF (cell1->edge[i](x,y) =
cell2->previous->edge[j](x,y)) THEN

/*previous→cell1→cell4→ cell3→cell2→next*/
first← false;
/* jump to the next instruction after loops */
BREAK;

end-IF;
end-FOR;

end-FOR;
end-IF;
· · ·
——————————————————————



Algorithm 2 shows a piece of pseudocode that lo-
cally updates the Sierpiński-like Curve when an adap-
tive refinement is applied.

The piece of pseudocode in Algorithm 2 receives as
input finite volumes cell1 and cell2 and finds which of
them, cell1 or cell2, will be the first and the last ones in
the local Sierpiński-like Curve order. Moreover, it finds
which of them shares its coordinates (x,y) with the pre-
vious finite volume in the Sierpiński-like Curve already
constructed. Furthermore, the proper cell2 contains the
conectivity information of the finite volume that was re-
fined. The output of this piece of pseudocode is the first
variable, set as true or false.

The code assumes that cell2 is the first one, so it sets
the variable named first as true. If cell1 is the first one
in the local sequence, first is set to false and the pointers
are set accordingly in the Algorithm 4.

Analysing Algorithm 2, the core of the computa-
tion is the two nested instructions FOR that define the
growth order of the running time of the algorithm. Since
FaceNumber is a constant value, the limits in the in-
structions FORs are constant.

Now, consider another piece of pseudocode. Algo-
rithm 3 is another version of the Algorithm 2. Algo-
rithm 3 verifies the consistency of the Sierpiński-like
Curve in each local refinement of the mesh.

Algorithm 3 performs similarly to Algorithm 1. The
piece of pseudocode in Algorithm 3 also receives as in-
put finite volumes cell1 and cell2 and finds which of
them, cell1 or cell2, is the first and the last ones in the
local sequence. Moreover, the algorithm evaluates cell1
and cell2 in order to discover which of them shares its
coordinates (x,y) with the previous finite volume in the
Sierpiński-like Curve already constructed. Similarly to
Algorithm 2, the proper cell2 contains the conectivity
information of the finite volume just refined. Its point-
ers are updated to a finite volume of the new pack. The
output of this piece of pseudocode is also the first vari-
able, set as true or false.

The code also assumes that cell2 is the first one in
the local sequence, so it sets the variable named first as
true. In the following, it verifies if cell1 is the first one
in the local sequence. If it is, Algorithm 3 sets first as
false and, in the following, verifies if the next finite vol-
ume of the already constructed Sierpiński-like Curve is
really cell2. Notice that the four loops are nested. In
the following, the pointers are also set accordingly in
the Algorithm 4.

Algorithm 3: Sierpiński-like Curve consistency.
——————————————————————
· · ·
FaceNumber← 3; /* constant value */
/* previous→ cell2→ cell4→ cell3→ cell1→next*/
boolean: first← true;
integer: i, j, m, n;
/* cell2 contains the conectivity information of the local
double-linked list: each node contains pointers to the
previous and the next nodes */
/* isn’t it the first volume? */
IF (cell2->previous = NULL) THEN

/* for each edge of Cell1 */
FOR i← 1 UNTIL FaceNumber STEP 1 DO

/* each edge of the previous node of the linked list*/
FOR j← 1 UNTIL FaceNumber STEP 1 DO

/* compares each pair of coordinates of Cell1 with
each pair of coordinates of the previous node of
the list */

IF (cell1->edge[i](x,y) =
cell2->previous->edge[j](x,y)) THEN

/* is it the last volume? */
IF (cell2->next = NULL) THEN

/*previous→cell1→cell4→cell3→cell2→next*/
first← false;
/* jump to the next instruction after loops */
BREAK;

end-IF;
FOR m← 1 UNTIL FaceNumber STEP 1 DO

FOR n← 1 UNTIL FaceNumber STEP 1 DO
/* compares coordinates from the 2nd cell to

the next one */
IF (cell2->edge[m](x,y) =

cell2->next->edge[n](x,y)) THEN
/* previous→ cell1→ cell4→ cell3→

cell2→ next */
first← false;
/* jump to the next instruction after loops*/
BREAK;

end-IF;
end-FOR;

end-FOR;
end-IF;

end-FOR;
end-FOR;

end-IF;
· · ·
——————————————————————

Consider that each finite volume is represented by
a node of a particular data structure. Algorithm 2 or 3
is followed by Algorithm 4 that links the nodes of the



new finite-volume pack. The input of the piece of pseu-
docode described in Algorithm 4 is the first variable set
as true or false. The output of Algorithm 4 depends on
the first variable. It updates the pointers of the nodes to
either · · · ↔ cell2↔ cell4↔ cell3↔ cell1↔ · · · or
· · · ↔ cell1 or↔ cell3↔ cell4↔ cell2↔ · · · is set.

Notice that, since cell2 already contained the conec-
tivy information of the refined finite volume, either cell2
and the previous finite volume in the Sierpiński-like
Curve point to each other if cell2 is the first one in the
local sequence or cell2 and the next finite volume in
the Sierpiński-like Curve point to each other if cell2 is
the last one in the local sequence. Namely, one pointer
of cell2 and one of its adjacent node in the already con-
structed Sierpiński-like Curve do not need to be updated
in one and only one situation since they already point to
each other.

Algorithm 4: Link the Sierpińki-like Curve.
——————————————————————
· · ·
IF (first = true) /* update the double-linked list */

IF (cell2->next 6= NULL) THEN
cell2->next->previous← cell1;

end-IF.
cell1->next← cell2->next;
cell3->next← cell1;
cell4->next← cell3;
cell2->next← cell4;
cell1->previous← cell3;
cell3->previous← cell4;
cell4->previous← cell2;

ELSE
cell2->previous->next← cell1;
cell1->next← cell3;
cell3->next← cell4;
cell4->next← cell2;
cell1->previous← cell2->previous;
cell3->previous← cell1;
cell4->previous← cell3;
cell2->previous← cell4;

end-IF.
· · ·
——————————————————————

Likewise described, since the first and last finite vol-
umes of the Sierpiński-like Curve are neighbors, travers-
ing the mesh could be seen as a Hamiltonian cicle. No-
tice also that the Algorithm 4 and Algorithm 2 or 3
do not directly solve the problem to traverse, once and
only once, each finite volume of the mesh, i.e. a NP-
Complete problem. They just update a curve already

constructed. Moreover, one can construct, e.g. eight
finite volumes as an initial discretization. In the follow-
ing, one can straightforwardly link these finite volumes
creating the regular first level Sierpiński-like Curve, im-
plemented as a double-linked list. When a local re-
finement is applied, the algorithms locally update the
double-linked list accordingly.

FaceNumber denotes the number of edges of the
volume. Even employing the Algorithm 3 in which
there are four nested intructions FOR, in the upper bound,
there are, at most, 34 possibilities, i.e. the limits of the
loops are constant values that do not depend on any in-
put of the algorithm. The time complexity analysis of
this algorithm is also straightforward. Clearly, the al-
gorithm that locally updates the Sierpińki-like Curve is
Θ(1).

3 Consideration Remarks

This work presents the time complexity of two algo-
rithms that perform the local update of space-filling
curves that traverse adaptively refined meshes. These
space-filling curves are variations of the name-similar
well-known regular space-filling curves. The algorithm
that implements the local update of the Sierpiński-like
Curve with its Θ(1) running time beats the algorithm
that implements the local update of the Modified Hilbert
Curve, whose worst-case running time is Θ(L), where
L is the level of refinements of a refined pack. Partic-
ularly, in [3], the author claimed that this difference is
one of the reasons in which the solution of PDEs using
the adaptive mesh refinement technique can be faster
described with a triangular-mesh than a square-shaped
mesh.

Since MHC could store in each node the level of
the refinement already evaluated in order to improve its
running time efficiency, a future work shall show this
alteration in the algorithm that updates the MHC. Such
future work shall describe experiments with a compu-
tational analysis and comparison of the running time of
those algorithms as well.

Future works shall demonstrate that these
space-filling curves that traverse adaptively refined
meshes can be employed to advantage in solutions that
generate element strip for accelerated rendering, algo-
rithms that compute sequential discrete places for ge-
ometry compression of multiresolution models and also
in theoretical investigation of paths on (hybrid) meshes.
The relative gain in efficiency may be even more com-
pelling for 3D problems.



Acknowledgements

The authors gratefully acknowledge CAPES for the fi-
nancial support and Prof. Denise Burgarelli for sent
us the program code to solve the Laplace Equation by
quadrangular-shaped finite volume discretizations.

References

[1] Burgarelli, D. Modelagem Computacional e Sim-
ulação Numérica Adaptativa de Equações Difer-
enciais Parciais Evolutivas Aplicadas a um Prob-
lema Termoacústico. PhD thesis, Pontifícia Uni-
versidade Católica do Rio de Janeiro, August
1998.

[2] Burgarelli, D., Kischinhevsky, M., and Biezuner,
R. A new adaptive mesh refinement strat-
egy for numerically solving evolutionary PDE’s.
J. of Computational and Applied Mathematics,
196:115–131, 2006.

[3] Gonzaga, S. L. O. Graph-based adaptive
simplicial-mesh refinement for finite volume dis-
cretizations. PhD thesis, Universidade Federal
Fluminense, January 2009.

[4] Gonzaga, S. L. O. and Kischinhevsky, M. Sierpin-
ski curve for total ordering of a graph-based adap-
tive simplicial-mesh refinement for finite volume
discretizations. In XXXI CNMAC, pages 581–585,
September 2008.

[5] Hausdorff, F. Dimension und äusseres mass.
Mathematische Annalen, 79(1-2):157–179, March
1919.

[6] Hilbert, D. Über die stetige abbildung einer linie
auf ein flächenstück. Mathematische Annalen,
38:459–460, 1891.

[7] Jordan, C. Courbes continues. Cours d’analyse,
pages 587–594, 1887.

[8] Peano, G. Sur une courbe, qui remplit toute une
aire plane. Mathematische Annalen, 36(1):157–
160, 1890.

[9] Sagan, H. Space-Filling Curves. Springer-Verlag,
1994.

[10] Sierpiński, W. Sur une nouvelle courbe con-
tinue qui remplit toute une aire plane. Bulletin
de l’Académie des Sciences de Cracovie A, pages
462–478, 1912.

[11] Sierpiński, W. Sur une courbe cantorienne
qui contient une image biunivoque et continue
de toute courbe donee. Comptes Rendus de
l’Académie des Sciences, 162:629–632, 1916.

[12] Velho, L., Figueiredo, L. H., and Gomes, J. Hi-
erarquical generalized triangle strips. The Visual
Computer, 15(1):21–35, 1999.

[13] Wikipedia. Hilbert curve. Techni-
cal report, Wikipedia, January 2010.
http://en.wikipedia.org/wiki/Hilbert_curve.

[14] Wikipedia. Sierpiński curve. Tech-
nical report, Wikipedia, January 2010.
http://en.wikipedia.org/wiki/Sierpiński_curve.

[15] Wikipedia. Space-filling curve. Tech-
nical report, Wikipedia, May 2010.
http://en.wikipedia.org/wiki/Space_filling_curve.


