
Automated Improvement for Component Reuse

Muthu Ramachandran
School of Computing

The Headingley Campus
Leeds Metropolitan University

LEEDS, UK
m.ramachandran@leedsmet.ac.uk

Abstract
Software component reuse is the key to significant gains in productivity. However, the major problem is the
lack of identifying and developing potentially reusable components. This paper concentrates on our approach
to the development of reusable software components. A prototype tool has been developed, known as the
Reuse Assessor and Improver System (RAIS) which can interactively identify, analyse, assess, and modify
abstractions, attributes and architectures that support reuse. Practical and objective reuse guidelines are used
to represent reuse knowledge and to do domain analysis. It takes existing components, provides systematic
reuse assessment which is based on reuse advice and analysis, and produces components that are improved
for reuse. Our work on guidelines has been extended to a large scale industrial application.

Keywords: Software reuse, component reuse, Development for reuse, Development with reuse, Reuse
improvement, Reuse assessment

(Recebido para publicação em 6 de março de 2005 e aprovado em 20 de abril de 2005)

1. Introduction
Software component reuse is the key to significant

gains in productivity. However, the major problem
against the widespread introduction of reuse is the lack
of identifying and developing potentially reusable
components. We have clearly seen the difficulties that
are faced when trying to reuse a component or a tool
that is not designed for reuse. Therefore the objectives
of this research are to explore the general area of
Development For Reuse (DFR) and to investigate the
possibility of automatically identifying, assessing and
improving reusable domain abstractions, attributes and
architectures. An objective of this process is to
produce components that are potentially reusable as
opposed to the normal practice of Development With
Reuse (DWR) which has an objective of producing a
product [1].

To achieve the production of reusable components
we need to address the fundamental issue of what
makes a component more reusable. Earlier studies
have addressed this issue but do not go far from
providing reusable guidelines [2-6]. Therefore, we
took a more practical approach to address this issue by
automating reuse guidelines for identifying, assessing,
analysing and improving domain abstractions and
attributes (Domain analysis for reuse) as well as
identifying language features that affect component
reusability (Language analysis for reuse). For
example, certain languages (such as Java, C++,
Ada95) support reuse explicitly. Engineers often
cannot think about reuse when working on a market-

driven project. In our approach we aim to integrate
guidelines on language features and on domain
analysis.

The notion of domain analysis has emerged from
the well-known work conducted by Neighbors [7] on
his pioneering project on the Draco system. Domain
analysis aims to identify and design reusable
components for a family of products. It also defines
domain roles, process, and domain models and
architecture. Existing work on domain analysis
provides interesting guidelines, methods, and
techniques on how to do domain analysis [8].
However, they fail to address, in detail, the issue of
design for reuse. We took the existing work as a
starting point for formulating reuse guidelines.

In our work, we have taken a more practical
approach to domain analysis for the development of
reusable software components by automating reuse
guidelines. We also have defined the process of DFR,
identifying domain abstractions & classification
(domain-oriented reuse), language-oriented reuse,
reuse assessment, and reuse improvement. Recently
we have extended our work on guidelines into the
design of reusable architectures for a large scale
industrial application [9].

Our approach includes not only identifying
abstractions and attributes but also assessing and
adding these to improve components' reusability. A
prototype has been developed, known as the Reuse
Assessor and Improver System (RAIS). The major
objective of this system is to demonstrate how well-

defined reuse guidelines can be used to automate the
process of development of component reuse by
providing support for language analysis and domain
analysis. For example, this system takes an Ada
component specification, assesses it through two
analysis phases, estimates its reusability according to
how well it satisfies a set of reuse guidelines and
generates a component which is improved for reuse.
Furthermore reuse improvement is done by
performing various classes of structural and
architectural transformations. Reuse assessment
allows the identification of such structural abstractions
early in the process. s.

In this context the system has demonstrated that
it is possible to: (a) identify reusable abstractions,
attributes and architectures effectively based on
domain classification and reuse guidelines, (b)
automate reuse guidelines which provide detailed
advice on how to construct reusable components,
(c) assist software engineers in the process of reuse
assessment and improvement, (d) model reusable
components based on templates (automated
improvement), and (e) produce components that are
potentially reusable.

In the following sections we discuss the process

on development for reuse, reuse guidelines, the
system that generates reusable components, an
example, and an evaluation of the approach.

2. The Process of Development for Reuse
The main objective of this project is to provide a

software system supporting the process of the
development for reuse. In our work this process
consists of various activities as shown in Figure 1:

Identify business needs - assess your existing
system and application from the business point of
view. What is the effort of building a new product?
How much do we need to develop from scratch?
How many components are you able to reuse?
Justify your planned investment on reuse. Identify
the application domain and its business/market
needs. Define its boundary so that we can avoid
producing components beyond the scope of the
domain.

Identify & classify reusable abstractions,
identify a list of components, frameworks,
architecture, and utilities that share your business
goals and can produce a high return-on-investment.

Formulate and classify reuse guidelines -
produce reuse guidelines and classify them into
domain-oriented reuse (i.e. guidelines on how to do
domain analysis, guidelines on which abstraction
has potential for reuse), design guidelines
(guidelines on how design details/rationale can
support reuse), architectural design guidelines, and
language-oriented reuse (guidelines on language
features).

Design components, make sure reuse engineers
are familiar with reuse guidelines.

Assessment for reuse, allow other engineers’ to
conduct a reuse walkthrough or we can call it reuse
inspection. Produce a detailed report following the
inspection. It is interesting to see that reuse
inspection is more structured and systematic since
we have already formulated reuse rules.

Improvement for reuse, modify components
based on the assessment report

Deliver potentially reusable components.
In this paper we concentrate mainly on two

major activities, reuse assessment which is a
process of assessing the reusability of a components
against a set of well-defined guidelines, and reuse
improvement which is a process of automatically
modifying components structures and adding
attributes that improve reusability.

We then identify reusable abstractions and
classify them. The next step is to formulate
practical reuse guidelines that can characterise
reusable components effectively and precisely. The
mechanism is based on taking the existing
components, assessing these according to a set of
guidelines, and then making suggestions on how the
reusability of these components could be improved.

3. Reuse Guidelines as Knowledge
Representation Technique

Probably there is no best and easy method of
domain representation. Research is underway on
how to do domain analysis, and on domain
representation [8]. In our work, the approach taken
is rule-based representation. Reuse guidelines are
represented as rules. An example of the rule is:

IF abstract structure is complex AND
all operations are independent of the type of the
structure element THEN
 Component should be implemented as a generic
package with the element type as a generic
parameter;
END IF;

However, automating some of these guidelines

breaches this rule. For example, one of our
guidelines on defining the list of operations on
object creation, termination, object inquiry, and
state change, involves more than one interaction
and transformations. Hence it breaches our single
if-then rule and depends on applying domain
knowledge for further transformations. This
information is modelled using a component
template and the reusability is assessed and
improved by comparing the component with that
template.

Figure 1 The process of development for reuse

Potentially reusable
components

Identify
business
needs

Identify &
classify
reusable
abstractions

Formulate
& classify
reuse
guidelines

Reuse
Assessment

Reuse
Improvement

Language-oriented
reuse

Domain-oriented reuse

Design
components

Some of our guidelines are illustrated here:

1. Design of abstract data types. The notion of

an abstract data type allows you to express real
world entities of an application domain. It allows
you to separate a specification from an internal
representation of a structure (principle of
information hiding). It means that we are able to
specify an abstraction of a component in terms of
its actual interface descriptions together which is
useful to generalise that abstraction for reuse. It
allows the designer to view a system at a more
abstract level and to change the representation of
ADS without affecting their use in other parts of the
system.

One of our guidelines on ADS says,

• For all complex structures, provide two

representations such as static and dynamic
structures for each domain abstraction.

This guideline says, for each structure, provide

two abstractions such as static which is represented
using an array structure and dynamic which is
represented using dynamic structure
(access/pointer). This provides a choice and
maximum flexibility for the reuser with improved
reuse potential. For example, in Ada, we can design
two packages for each structure implemented
statically and dynamically. If an abstraction is to be
represented in Ada then we can apply various Ada
reuse guidelines. For example, one on the rationale
for choosing private types. That is, choose limited
private for complex and dynamic structures, and
choose private type for static structures. However,
the Ada library mechanism is inadequate in that it
rises naming conflict when there are two library

units with similar names which means that the
implementation of similar components must have
different names.

Another important guideline [4] on the design of

abstract data structures emphasises the need for
providing methods for a list of operations such as
object creation, object termination, state change,
state inquiry, and input and output. They have not
considered operations on exceptions that deal with
error conditions. We believe that the operations on
exceptions and handling are significant for reusable
and reliable components. In our work we have
extended this guideline to include operations on
exceptions handling.

Our extended guideline on ADS says,

The components should be provided with the

following operations on ADS.
Creation
Termination
Conversion
State inquiry
State change
Input/ output representation, and
Exceptions

Creation involves both creating and initialising

an object, termination is a means of making the
object inaccessible for the remainder of its scope,
conversion allows for the change of representation
from one type to another, state inquiry functions
allow the user to determine the state of the object
and boundary conditions, state change functions
allow modifying or changing the contents of the
object, input/ output representations are primarily
useful for debugging purposes, and exceptions deal

with error conditions and exception handling
procedures. Each operation emphasises one or more
functionality so that the services offered by the
component are increased thus leading to improved
reusability. Sometimes components which do not
provide all these operations may well be reused. In
such cases, the component has to be measured
based on the degree of reusability.

2. Other guidelines. Our guidelines on the

design of reusable static and dynamic structures,
and on space management are essential, objective
and realisable. Complete set of guidelines can be
found in [1 and 9]. Some of our important domain
guidelines are,

Always, define a constrained array structure to

represent a component of static structure.

Always select dynamic object representation for

all complex structures and hide detailed structural
information.

• If the abstract structure is complex and all operations

are independent of the type of the structure element
then that component should be implemented as a
generic package with the element type as a generic
parameter.

Always provide a procedure to record the
maximum size of the free list with a counter so that
the user may increase or decrease the size of the
free list. when decreasing the free list size, space in
excess of the new size is returned to the system.

Always provide a procedure to release the free

list, so that all space in the free list is
returned to the system completely.

For each exception, provide an exception

handler.

In the following section we will see how these

guidelines can be implemented as a tool for
automated improvement and advisory system which
can take Ada code and provides an assessment and
improvement for reuse.

4. The Reuse Assessor and Improver
System (RAIS)

Reuse assessment is concerned with assessing the
reuse potential of a component against reuse
guidelines. Reuse improvement has the goal of
transforming an assessed component into a component
that is improved for reuse, based on language-oriented
and domain-oriented reuse guidelines. This system
takes an Ada component specification and estimates
its reusability according to how well it satisfies a set of
reuse guidelines and generates a component which is
improved for reuse. The system produces assessment
reports based on the percent of guidelines satisfied and
interacts with the user for making further
improvements.

A general model of the tool for systematic reuse
assessment and improvement has been developed as
shown in Figure 2.

The important features of this system are,
Identifying domain abstractions, attributes and

architectures, and language attributes and structures
that affect component reusability.

The integration of language knowledge
(supporting language-oriented reusability) and
domain knowledge (supporting domain-oriented
reusability),

Providing reusability advice and analysis,
Assisting the reuse engineer in the process of

assessing and improving his component for reuse.

RAIS considers a component specification

rather than an implementation. However, this
system can also generate implementation templates.
We believe that reuse of specifications has definite
advantages over reuse of implementations.

The RAIS system consists of a language

analyser which is supported by built-in language
knowledge and provides reusability analysis and
advice, and a domain analyser which is supported
by built-in domain knowledge and provides
reusability analysis and advice.

Component
Language

analyzer
Domain
analyzer

Reuse
engineer

Language
knowledge

Domain
knowledge

Reusability
analysis

Reusability
advice

Figure 2 : Reuse Assessor & Improver System

Modified
Component

An Ada component is firstly submitted to the
language analyser which parses the component and
applies the language-oriented guidelines to the
code. Some of these guidelines require human
input from the reuse engineer. RAIS predicts and
records existing language constructs, and provides
reuse advice and analysis. For example, the system
can determine if the component processes arrays
and if language attributes are used. However, it
cannot automatically determine whether a
component parameter refers to an array dimension
and thus breaches the reuse guideline.

The language analyser assesses for reuse and

changes the code after consulting the reuse
engineer. The system interacts with the engineer to
discover information that can't be determined
automatically. The conclusion of this first pass is an
estimate of how many guidelines are applicable to
the component and how many of these have been
breached. The report generator produces a report
with all the information that has been extracted
about that component and changes that have been
made for reuse.

The second pass involves applying domain

knowledge to the system. The component templates
have been modelled representing static and
dynamic structures. Their reusability is assessed by
comparing the component against that template.
Domain reuse improvement is done by adding

methods automatically. Operation classes are
identified by interaction with the reuse engineer. If
some operations are found to be missing, skeleton
implementations of these can be generated from the
template for expansion to create a reusable
component.

The support provided by the system ensures that

the reuse engineer carries out a systematic analysis
of the component according to the suggested
guidelines. He or she need not be a domain expert.
Again, an analysis is produced which allows the
engineer to assess how much work is required to
improve system reusability.

There are formulated reuse guidelines that

emphasise the need for a packaging mechanism just
like in Ada. Conceptually, packaging is a powerful
mechanism for reuse. Some of these guidelines may
only be possible with the Ada packaging
mechanism such as private typing, the concept of
specification which is independent of its body, and
most importantly the concept of generics in order to
achieve parameterisation. However, the approach
and the methodology that are adopted by this
system can easily be applied to any component. In
this domain, RAIS uses the classification scheme in
which each abstract data structure is classified into
linear and non-linear structures and again these are
classified into static, and dynamic structures.

Figure 3 Assessment report and improved component

As well as this analysis, the system can also

produce some reusability advice, generated from
the guidelines, which is intended to assist the
engineer in improving the reusability of the
component. The knowledge of language and
domain experts can be made available to the reuse
engineer.

An ultimate objective is automatic reusability

improvement where the system takes its own advice
and some human guidance and modifies the
component. A report and compilable code are
produced. Clearly it is possible to use the language-
oriented and domain-oriented guidelines to infer
some code transformations which will improve
reusability.

5. Reuse Assessment
Reuse assessment is a process of assessing the

reuse potential of a component. It depends on the
number of reuse guidelines that are satisfied by the
component. RAIS predicts this and reports to the
reuse engineer. RAIS measures the reusability
strength of a component based on the percent of
guidelines satisfied such as weakly (less than 50%),
strongly (50-70%), limitedly (70-90%),
immediately reusable (more than 90%) and also it
takes into account the significance of a guideline
(its importance for reuse).

For example, let us consider one of our domain

guideline,

For all complex structures, the components

should be implemented as a generic package with
the element type as a generic parameter.

For instance, if a component of complex

structure doesn't possess a generic package then the
significance of this guideline becomes very
important and therefore the system immediately
reports to the reuse engineer that the component is
weakly reusable. The system can make such
structural modification automatically if the engineer
decides to do so by responding to the dialogue.

In this way reuse assessment is being done by

RAIS. The result of the assessment process is
obviously arbitrary but it allows implementations to
be compared, reuse improvements to be assessed,
and it allows the reuse engineer to re-plan well
before reusing components. The report generator
produces the complete details of a component
submitted to the systems in a tabular form which
mainly consists of object name, its class, details of
all the subprograms including the details of formal
parameters and their class, and details of private
types, etc. An example of a report is shown in a
later section of this paper, see Figure 3.

6. Reuse Improvement
Reuse improvement is a stepwise process of

improving a component for reuse through several
transformations. Transformations can be simple,
multiple, and cumulative. Because of the effort
involved in this process, it has not been possible to
implement for all the possible improvements. RAIS
does most of the reuse improvements using reuse
guidelines as domain rules and component
templates. At present, RAIS can improve the
component reusability by 50%.

Each abstract data structure is analysed and, by

interaction with the user, the presence or absence of
these operations is then identified. This information
is modelled using a component template and the

reusability is assessed by comparing the component
against that template. Operation classes are
identified by interaction with the reuse engineer. If
some operations are found to be missing, skeleton
implementations of these are generated from the
template for expansion to create a reusable
component.

Two types of templates are created supporting

reuse of architectures, one for static structures and
another for dynamic structures. After reuse
assessment, the designer is given all the information

captured from his component (a report generator for
Ada has been designed for this purpose). Finally,
RAIS generates the component that is assessed and
improved for reuse after several transformations.

The system has taken a pragmatic approach to

domain analysis supporting development for reuse.
Figure 3 shows the details of a report generated by
the system after an initial analysis and assessment.
Finally it generates the component which is
improved for reuse.

0

20

40

60

80

100

Assessment Improvement

Automated
Informative
Complex
Breached

Figure 4 Automating reuse guidelines

7. Critical Evaluation
Existing approaches have not explored the

issues of development for reuse and others have
considered this as a management problem. In this
context, our work has explored one of the major
technical problems and the system has
demonstrated that it is possible to assess and
improve components reusability automatically. This
work has also demonstrated that it is possible to
formulate object and practical reuse guidelines that
can assist and advise software engineers on how to
construct components that are potentially reusable.
This is one of the major practical steps taken in this
work. Figure 4 illustrates how guidelines are
classified and how many are automated.

RAIS has also demonstrated that the integration

of language knowledge and the application domain
knowledge is possible when modelling components
for reuse. Therefore we feel that the various steps
proposed for the process of development for reuse
are important, practical and can be considered along
with or before the normal software development
process.

The system has also proved perhaps to a limited

extent that it is possible to design for the highest
form of reuse which is the reuse of components and
architectures. The system models components
effectively based on the templates for reuse of

component architectures that are static and
dynamic. It is not quite clear for example on what is
probably the best technique for domain
representation, what should be considered as a
domain, and so on. In this context we might feel
that the application domain chosen is perhaps
inadequate in the commercial sense. However we
believe that it is possible to extend the approach
described here to other application domains,
languages, and tools.

It has not been possible to automate all the

guidelines that are formulated but it should be
possible in a long-term project. The system does
perhaps a limited number of domain-oriented reuse
improvements. We believe that it is also possible to
extend the approach described here to higher levels
of reuse such as requirements definition and
specification.

8. Conclusions
The objectives of this project were to explore

the general area of development for reuse and to
investigate the possibility of automatically
assessing the reusability of a software component
and modifying that component to improve its
reusability. In this context, the system has
demonstrated that it is possible to identify, assess
and improve components’ reusability automatically
based on domain knowledge and language
knowledge.

In addition to these, more interesting results

have evolved from this research, reusing generic
component templates and generic architectures.
Further work is needed to enhance the
functionalities of RAIS. We believe that it is
possible to extend the approach described here to
other domains, languages and tools. Our work on
reuse guidelines has been applied to a large-scale
industrial application [9].

9. Acknowledgement
The author wishes to thank Prof Ian

Sommerville for his support during this work at
Lancaster University, Lancaster, UK.

10. References
[1] Sommerville, I. and Ramachandran, M. (1991),
Reuse Assessment, First International Workshop on
Software Reuse, Dortmund, Germany, July.

[2] Hooper, J. W. and Chester, R. O. (1991). Software
Reuse: Guidelines and Methods, Plenum Press.

[3] Gautier, R.J. and Wallis, P.J.L. (Editors) (1990),
Software Reuse with Ada, Peter Peregrinus Ltd for
IEE/BCS.

[4] Braun, C.L. and Goodenough, J.B. (1985), Ada
Reusability Guidelines, Report 3285-2-208/2, USAF.

[5] Booch, G. (1987), Software Components with
Ada, Benjamin/Cummings.

[6] Dennis, R.J.St. (1987), Reusable Ada(R) software
guidelines, Proc. of the 12th annual Hawaii
International conference on system sciences, pp.513-
520.

[7] Neighbors, J.M. (1984), The Draco Approach to
constructing Software from reusable components,
IEEE Trans. on Software Engineering, vol.SE-10,
No.5, pp.564-574, September.

[8] Prieto-Diaz, R and Arango, G (ed) (1991), Domain
Analysis and Software Systems Modeling, IEEE
Computer Society Press Tutorial.

[9] Ramachandran , M and Fleischer, W. (1996).
Design for large scale reuse: an industrial case study,
Proceedings of the 4th Intl. Conf. on Software Reuse,
IEEE CS press, Orlando, Florida, USA.

[10] Tracz, W. (1991), Reuse through
parameterization, ACM SIGSOFT Software
Eng.Notes.

