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ABSTRACT

VALENTIM, Felipe Leal. Protein Structure Comparison via Contact Map
Alignment. 2010. 77 p. Master thesis (Master in Plant Biotechnology) -
Universidade Federal de Lavras, Lavras.*

Proteins are primary components in almost all biological processes in living
organisms. It is known that the variety of protein functions is a result of the differ-
ences in protein structures. Therefore, understanding and comparing the structure
of proteins is a major challenge in modern molecular biology. The structural align-
ment and comparison of proteins became an essential task, whose solution is in-
strumental in aiding other problems such as drug design, protein structure/function
prediction, and protein clustering. One promising class of approaches for measur-
ing protein similarity relies on the alignment of the protein contact maps. The
most common mathematical statement of the contact map comparison problem is
called the Maximum Contact Map Overlap (MAX-CMO). In this context, in this
Master’s thesis it has been proposed the hybrid heuristic Greedy Random Adap-
tive Search Procedure with Path-relinking for the Maximum Contact Map overlap
problem which have been revealed able to find improved solutions. Another pro-
posal which has been presented in this work is the implementation of a compu-
tational tool that allows the structural alignment of proteins through the proposed
heuristic. The chapters 2 and 3 of this dissertation represent the manuscripts des-
cribing these two proposals and a final chapter that contains the conclusion and
outlines the possibilities for future work.

Keywords: Proteins, Structural alignment, Contact Maps, MAX-CMO.

*Advisor: Ricardo Martins de Abreu Silva - UFLA
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RESUMO

VALENTIM, Felipe Leal. Protein Structure Comparison via Contact Map
Alignment. 2010. 77 p. Dissertação (Mestrado em Biotecnologia Vegetal) -
Universidade Federal de Lavras, Lavras.*

As proteínas são componentes primários em quase todos os processos bi-
ológicos nos organismos vivos. Sabe-se que a variedade de funções de proteínas é
um resultado das diferenças nas estruturas de proteínas. Portanto, compreender e
comparar a estrutura das proteínas é um desafio importante na biologia molecular
moderna. O alinhamento estrutural e comparação das proteínas tornaram-se tarefas
essenciais, cuja solução é fundamental para auxiliar outros problemas, tais como
a desenho racional de novos fármacos, predição de função/estrutura de proteínas,
e clusterização de proteínas. Uma classe promissora de abordagens para medir a
similaridade da proteína depende do alinhamento dos mapas de contato da pro-
teína. A fomalização mais comum para o problema matemático de alinhamento de
mapas de contato é chamado o Maximum Contact Map Overlap problem (MAX-
CMO). Neste contexto, esta dissertação de mestrado propõe a heurística híbrida
Greedy Random Adaptive Search Procedure com Path-relinking para o Maximum
Contact Map Overlap problem, que tem se revelado capaz de encontrar soluções
promissoras. Outra proposta apresentada neste trabalho é a implementação de
uma ferramenta computacional que permite o alinhamento estrutural de proteínas
através da heurística proposta. Os capítulos 2 e 3 desta dissertação representam
os artigos que descrevem estas duas propostas. Um capítulo final descreve experi-
mentos adicionais realizados com a heurística e a ferramenta computacional.

Palavras-chave: Proteínas, Alinhamento estrutural, mapas de contato, MAX-
CMO.

*Orientador: Ricardo Martins de Abreu Silva - UFLA
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CHAPTER 1

GENERAL INTRODUCTION
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1 PROTEIN STRUCTURES AND CONTACT MAPS

Proteins are primary components in almost all biological processes in living

organisms. It is known that the variety of protein functions is a result of thediffer-

ences in protein structures. Therefore, understanding and comparingthe structure

of proteins is a major challenge in modern molecular biology (Eidhammer et al.,

2004).

Despite the large amount of diversity in their functions, all proteins are made

of the same components, amino acids. And all amino acids share the same basic

structure. Each amino acid consists of a central carbon atom (Cα), an amino group

(NH3), at one end, a carboxyl group (COOH) at the other end, and a side-chain

(R) that characterizes the amino acids. This side-chain is usually referred toas an

amino acid residue, or simply aresidue(Eidhammer et al., 2004).

In order to form a protein molecule, the carboxyl group of one amino acid

forms a peptide bond with the amino group of another amino acid and an (H2O)

molecule is revealed. The sequence of peptide bonds forms the protein backbone.

There are 20 different side-chains specified by genetic code each ofwhich is ad-

dressed by a letter of the alphabet. Since each protein is a sequence of amino acids,

it can be described by a string over this set of 20 letters (Eidhammer et al., 2004).

The structure of proteins is organized in four structural levels: primary,sec-

ondary, tertiary, and quaternary structures. The linear sequence ofamino acids that

contribute to the formation of a protein molecule is called its primary structure.

Many proteins contain roughly 100-1000 amino acids (Eidhammer et al., 2004)

(some even more than 4000). Local arrangement of a few or a few dozen amino

acid residues (Hunter, 1993) is seen in particular patterns repeatedly in many dif-

ferent proteins. These patterns are formed because of the interactionsmediated by

hydrogen bonds mainly within the backbone. The three-dimensional fold ofthe
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protein molecule - which is a result of connecting secondary structures together

- is called tertiary structure of the protein (Eidhammer et al., 2004). There are

many proteins in nature which form from combinations of two or more protein

chains. The spatial arrangement of these proteins is calledquaternary structure.

In this work, we are particularly interested in the tertiary structure of proteins, and

when we refer to the protein structure in what follows, we will be referringto their

tertiary ones.

1.1 Availability of structural data of proteins

The Protein Data Bank (PDB) (Berman et al., 2000) is the standard reposi-

tory for collecting information on determined three-dimensional structures ofpro-

teins and other large biological molecules which are found in all of the living

organisms. The coordinates of the structures in the PDB are determined by some

experimental methods such as X-ray crystallography and Nuclear Magnetic Res-

onance (NMR) spectroscopy∗. A rapid increase in the number of protein struc-

tures deposited in the PDB has been observed in recent years, and because of this

growth, protein structure comparison has become a key problem in bioinformat-

ics. This rapid growth has been related to the recent emergence of large scale pro-

tein structure determination projects (Nair et al., 2009), called structural genomics

(Westbrook et al., 2003).

1.2 Protein Contact Maps

Three-dimensional structure of proteins can be represented by theirdistance

maps. A distance map is anN × N matrix, whereN is the number of amino

acids in the sequence of a protein. Each elementdi,j in the matrixD represents

the distance between theith and thejth amino acids, usually in Angestrom (Å).

The distance between two residues can be defined in different ways, such as the

∗More information about the PDB can be found in
http://www.wwpdb.org/documentation/
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distance betweenCα -Cα (Vullo & Frasconi, 2003).
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FIGURE 1 At the top, the protein PDB-ID:1am6 as taken from the PDB
(Berman et al., 2000). On the left below, the extracted Distance Map
of one chain of the protein. And on the right, Contact map of the same
protein by applying the threshold of 6.5Å. Each pixel in this map indi-
cates that the two corresponding amino acids are within the distance of
6.5Åof each other.

Contact mapsare a thresholded version of distance maps. The contact map of

a folded protein withN residues is a binary matrixN×N of all pairwise distances

within that protein. Two residues are said to bein contactif the distance between

their Cα is not greater than a presumed threshold (typically in range 5Å-12Å)

(Vullo & Frasconi, 2003) - see Figure 1.

Different secondary structures can be recognized in contact maps through

their special patterns. In particular,α-helices appear as thick bands along the
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main diagonal, whileβ-sheets appear as thin bands parallel or perpendicular to the

main diagonal (Glasgow et al., 2006). Therefore, the contact map is a minimalist

representation of a protein native three-dimensional structure (Krasnogor, 2004).

This property leads to the idea that if two protein contact maps are similar to each

other, their corresponding proteins have similar structures as well.

2 PROTEIN STRUCTURE COMPARISONS

Protein structure comparison has become a key problem in bioinformatics,

improving researches that seek to find functional/evolutionary relationshipamong

proteins and leading scientists in tasks such as protein function determination

(Wolfon et al., 2005), rational drug (Wieman et al., 2004) design, the assessment

of fold prediction (Goldsmith-Fischman & Honig, 2003), or protein clusteringand

classification (Dietmann et al.,2001). Moreover, structural alignment is a valuable

tool for the comparison of proteins with low sequence similarity, where evolution-

ary relationships between proteins can not be easily detected by standardsequence

alignment techniques (CAPRARA et al., 2000; Balaji & Srinivasan, 2007). A ba-

sic problem in pairwise protein structure comparison is finding a scoring scheme

for similarity. Currently, most of the scoring schemes use the information about

three-dimensional coordinates of protein structures, or their two-dimensional rep-

resentations as distance maps. Another large class of approaches for measuring

protein similarity relies on mutual comparison of contact maps. These methods

are based on the hypothesis that similarity in protein contact maps results in sim-

ilarity in protein structures. In this work, we focus on this approach of alignment

of contact maps.
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2.1 Contact Map Alignment

A large class of methods for protein structure comparison scores the simi-

larity of proteins by comparing their binary contact maps. These approaches are

based on the hypothesis that contact maps capture important information about

the native structure of proteins (Krasnogor et al., 2003). Thus, the similarity be-

tween contact maps results in similarity between protein structures. The most

common mathematical statement of the contact map comparison problem is called

theMaximum Contact Map Overlap(Greenberg et al., 2004) (MAX-CMO). In the

formulation of this problem, contact maps are interpreted as adjacency matrices of

graphs. Each protein is represented by a graph whose nodes correspond to one of

the amino acids of that protein. There is an edge between two nodes of the graph

whenever their corresponding amino acids are in contact, i.e., their positionsin the

three-dimensional structure of the protein are within a specified distance ofone

another. The problem is now to calculate the similarity of proteins by aligning the

two contact map graphs. The alignment value (i.e. the amount of similarity) is

determined by the size of the common subgraph, which is identified by the align-

ment, that is, the number of edges connecting two equivalent nodes in both graphs.

Chapter 2 details this problem.

3 OBJECTIVES AND STRUCTURE OF THE THESIS

This project main objective, which proposal is detailed in Chapter 2, is the

development of a novel and efficient heuristic for the Maximum Contact Map

Overlap problem. The chapter 2 represents the manuscript describing thispro-

posal - introduction, review, formalizations and mathematical modeling of the

MAX-CMO problem; methodology development; our proposal presented asthe

GRASP-PR algorithm for the MAX-CMO problem; as well as presenting the
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results of performed analyses. This manuscript meets the requirements of the

journal “IEEE/ACM Transactions on Computational Biology and Bioinformatics”

(TCBB) for publishing an article of type “Regular Paper”.

A secondary objective – presented in Chapter 3 as a brief manuscript – is

the implementation of a computational tool that allows the structural alignment

of proteins through the proposed heuristic and also other successful algorithms

described in subsequent chapters. This second manuscript meets the requirements

and restrictions of the journal “Bioinformatics” (Oxford journals) to publish an

article of type ”Application Note”.

The fourth and final Chapter contains the conclusion and outlines the possi-

bilities for future work.
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1 ABSTRACT

Structural alignment emerged as a valuable tool for the comparison of
proteins with low sequence similarity, since structurally similar but sequentially
unrelated proteins have been discovered and rediscovered by many researchers.
Recently, the growth of the Protein Data Bank has been accelerated by a large scale
structure determination projects, and thus, fast and efficient algorithms for protein
structure comparison has become more important to take advantage of the huge
amount of structural data. There exist several approaches to perform the structural
alignment, being the solution of the Maximum Contact Map Overlap problem one
efficient available alternative. Although Maximum Contact Map Overlap problem
may be solved using exact algorithms, simple approximate algorithms that obtains
good quality solutions using less computational resources and time are still re-
quired. This paper proposes a variant of the greedy randomized adaptive search
procedure with path-relinking (GRASP-PR) for MAX-CMO. Computationalex-
periments are performed comparing a GRASP-PR heuristic with other algorithms
from literature on real and simulated data. The GRASP-PR heuristic effectiveness
is analyzed, demonstrating that our approach is a promising strategy to resolve the
problem.

Keywords: Structural alignment, maximum contact map overlap problem, GRASP
with Path-Relinking.
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2 RESUMO

O alinhamento estrutural emergiu como uma valiosa ferramenta para com-
paração de proteínas com baixa similaridade de seqüência, visto que proteínas com
estruturas semelhantes mas seqüencialmente não relacionadas têm sido descober-
tas e redescobertas por muitos pesquisadores. Recentemente, o crescimento do
banco de dados da proteínas foi acelerado por uma grande escala de projetos de de-
terminação estrutural e, assim, algoritmos rápidos e eficientes para a comparação
da estrutura da proteína têm se tornado mais importantes para tomarem vantagem
sobre a enorme quantidade de dados estruturais. Existem diversas abordagens para
realizar o alinhamento estrutural, sendo a solução doMaximum Contact Map Over-
lap problemuma eficiente alternativa disponível. Embora oMaximum Contact
Map Overlap problempossa ser resolvido utilizando algoritmos exatos, simples
algoritmos aproximados que obtêm soluções de boa qualidade utilizando menos
recursos computacionais e tempo continuam necessários. Este artigo propõe uma
variação daheurística greedy randomized adaptive search procedurecom path-
relinking (GRASP-PR) para o MAX-CMO. Experimentos computacionais são re-
alizados comparando o GRASP-PR contra outros algoritmos da literatura em da-
dos simulados e reais. A eficiência da heurística GRASP-PR é analizada, demon-
strando que nossa proposta é uma estratégia promissora para resolver oproblema.

Palavras-chave: Alinhamento estrutural,maximum contact map overlap problem,
Greedy Random Adaptive Search ProcedurecomPath-relinking.
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3 INTRODUTION

Proteins are organic compounds that play an important role in nearly all cell

processes, including metabolic, immunological, cell signaling, and regulation of

the cell cycle. Proteins are made up of amino acids arranged in a linear chain

and folded in a three dimensional form. An amino acid is a molecule contain-

ing an amino group, a carboxyl group, and a side chain usually referred to as an

amino acid residue, or simply aresidue. One can think of a protein as being made

up of a backbone with hanging residues (see Figure 1). Note that although two

residues may be far apart in the backbone, because of the three dimensional form

of the protein, they may actually be close together. From the 20 standard amino

acid building blocks, perhaps millions of proteins exist in nature, most of which

currently have unknown function.

Protein structure alignment has become a standard structural analysis tool

analysis tool providing similarity measures between the structures. Protein struc-

ture similarity may indicate functional/evolutionary relationship that usually leads

scientists in tasks such as protein function determination (Wolfson et al., 2005), ra-

tional drug (Wieman et al., 2004) design , assessment of fold (Goldsmith-Fischman

& Honig, 2003) prediction or protein clustering and classification (Dietmann et al.,

2001). Recently, the growth of the Protein Data Bank (PDB) (Berman et al.,2000)

has been accelerated by a large scale structure determination projects, called struc-

tural genomics(Westbrook et al., 2003). As a result, fast and efficient algorithms

for protein structure comparison have become more important to take advantage

of the huge amount of structural data.

One promising way of accomplishing the structural alignment is to evaluate

the alignment of their contact maps. Aprotein contact mapis used to represent the

distances between every pair of residues in a three-dimensional protein structure.

13



The distance between two residues is usually defined as being either the smallest

Euclidean distance between the points where the two residues connect to theback-

bone structure or as the smallest Euclidean distance between any pair of atoms in

the residues.

FIGURE 1 A protein can be viewed as a chain of hanging residues.

A contact map (see Figure 2) consists of either a graph or a two-dimensional

matrix (binary or real). The graph representation (Figure 2.c) shows thecontact

map as a graph with a sequence of nodes corresponding to the sequenceof residues

and an edge for each pair of non-consecutive residues whose distance is below a

given threshold. Thelengthof a contact map in the graph representation is defined

by the number of nodes in the graph.

For a protein withn residues{1, 2, . . . , n}, the binary matrix representation

(Figure 2.a) is a square(0, 1) n × n matrix C where the elementCi,j , for i, j =

1, . . . , n (i 6= j), indicates whether the distanceδij between non-consecutive

residuesi andj is less than a predefined distance thresholdt, i.e.

Ci,j =


1 if δij < t and|j − i| > 1;

0 otherwise.

14



FIGURE 2 Three contact map representations of protein PDB-ID:1ash: (a) as bi-
nary matrix, (b) as a real matrix (distance map), and (c) as a graph. The
interested reader is referred to (Ho et al., 2008) for a detailed descrip-
tion of the generation of contact maps.

With respect to the real matrix representation (shown in Figure 2.b), a contact map

is a square real-valued matrixC, whereCi,j = δij .

Contact maps provide a more compact representation of the protein structure

than its corresponding three dimensional atomic coordinates. The advantage is that

contact maps are invariant to rotations and translations, both favorable properties

for the comparison of protein structures. For more detail, the reader is referred to

(Bartoli et al., 2008). In the remainder of this paper, we restrict our attention to the

contact map graph representation. The termsnodesin a contact map andresidues

in a protein will be interchangeable.

To determine the similarity of two proteins requires the definition of a metric.

In this paper we use two similarity metrics. This first, calledcontact map overlap

(Goldman et al., 1999) is illustrated in Figure 3. This figure is derived from a
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similar figure in (Lancia et al., 2001). The alignment shows the residues selected

in the subgraphs (nodes 1, 2, 4, 5, 6, 7, and 8 fromVA and nodes 1, 2, 3, 5, 7, 9,

and 10 fromVB). The linear ordering is preserved by associating1 ↔ 1, 2 ↔ 2,

4 ↔ 3, 5 ↔ 5, 6 ↔ 7, 7 ↔ 9, and8 ↔ 10. The corresponding edges in the

isomorphic graphs are solid and color matched. These edges satisfy the condition

that their endpoints are associated. For example, edge(1, 4) in EA corresponds to

edge(1, 3) in EB because of node associations1↔ 1 and4↔ 3.

FIGURE 3 Example of contact map alignment. Isomorphic subgraphs have five
(solid color-matched) edges each (Lancia et al., 2001).

Figure 4 shows an optimal alignment (overlapped edges are identified by red

lines) between the contact maps for distinct proteins1hlm∗ (Figure 4.a) and1ahs†

(Figure 4.b). The alignment value is defined as the number of edges of each sub-

graph identified by the alignment, i.e., the set of corresponding edges in each

graph.

∗http://www.rcsb.org/pdb/explore/expore.do?structureld=1HLM
†http://www.rcsb.org/pdb/explore/expore.do?structureld=1AHS
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FIGURE 4 Three dimensional native structures for proteins (a)1ash and (b)
1hlm as taken from the Protein Data Bank (PDB) (Berman et al.,
2000), and (c) an optimal alignment of value 279 of two 6.5Å thresh-
old contact maps of the proteins. The optimal value was deter-
mined in (Xie & Sahinidis, 2007) with a branch and bound algo-
rithm. This alignment was generated with a pure GRASP (without
path-relinking) heuristic. The figure was created with a modified ver-
sion of the java programBuildContactMapFromPDB available at
http://www.cs.nott.ac.uk/~nxk/USM/protocol.html.

Given two contact mapsGA = (VA, EA) and GB = (VB, EB) such that

|VA| = n and|VB| = m, the CONTACT MAP OVERLAP PROBLEM (Goldman et al.,

1999) is to find two subsetsSA ⊆ VA andSB ⊆ VB with |SA| = |SB| and an order

preserving bijectionf betweenSA andSB such that the cardinality of theoverlap

set

L(SA, SB, f) = {(u, v) ∈ EA : u, v ∈ SA, (f(u), f(v)) ∈ EB}
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is maximized. A solution(SA, SB, f) for the contact map overlap problem can be

represented as an assignment vectorp of sizen such that

pu =


v if (u, v) ∈ L(SA, SB, f)

nil otherwise.

We later refer to the cardinality|L(SA, SB, f)| of the overlap set defined byp as

Λ(p).

The contact map overlap problem was shown by (Goldman et al., 1999) to

be NP-hard and can be formulated as a(0, 1) integer program (Greenberg et al.,

2004). Define the binary variablexij = 1 if and only if nodei ∈ VA is associated

with nodej ∈ VB, and define the binary variabley(i,k)(j,l) = 1 if and only if

(i, k) ∈ EA and(j, l) ∈ EB are corresponding edges in the isomorphic subgraphs.

The objective of the CMO problem is to maximize

∑
(i,k)∈EA

(j,l)∈EB

y(i,k)(j,l).

The selected edges must have their endpoints associated in such a way that

y(i,k)(j,l) = 1⇒ xij = xkl = 1,

i.e.

y(i,k)(j,l) ≤ xij ,

y(i,k)(j,l) ≤ xkl,

for all (i, k) ∈ EA and(j, l) ∈ EB. Furthermore, at most one node in one graph
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can be associated with a node in the other graph, i.e.:

∑
i∈VA

xij ≤ 1,∀j ∈ VB,

∑
j∈VB

xij ≤ 1,∀i ∈ VA.

Finally, any two associations (edges with one endpoint inVA and the other inVB)

cannot cross, i.e.:

xij + xkl ≤ 1, for 1 ≤ i < k ≤ |VA| and1 ≤ l < j ≤ |VB|.

The second similarity measure used in this paper is theroot mean square

deviation(RMSD). This measure is not used directly in our heuristic. Instead, it is

used only to verify the quality of the solutions found by the heuristic. The RMSD

is the average distance between the backbones of superimposed proteins. We use

the toolBiopython of (Cock et al., 2009) to compute the RMSD values.

The contact map overlap problem was introduced in (Godzik et al., 1992).

Several exact algorithms as well as heuristics have been since proposed for this

problem. (Lancia et al., 2001) describe a branch and cut strategy that employs

lower-bounding heuristics at the branch nodes. (Caprara & Lancia, 2002) pro-

posed a Lagrangian relaxation approach, where the optimal Lagrange multipliers

are found by subgradient optimization. (Carr et al., 2002) proposed a memetic

evolutionary algorithm. (Xie & Sahinidis, 2007) used dynamic programming as

tool to design a branch-and-bound algorithm with several reduction techniques to

eliminate inferior residue-residue pairs early in the search procedure. (Pelta et al.,

2008) proposed three versions of a multi-start variable neighborhood search heuris-

tic for solving MAX-CMO.
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The remainder of the paper is organized as follows. In Section 4 we present

the GRASP with path-relinking heuristic for the MAX-CMO problem. Computa-

tional experiments are described in Section 5.2. Finally, concluding remarksare

made in Section 6.

4 GRASP WITH PATH-RELINKING FOR MAX-CMO

A GRASP heuristic (Feo & Resende, 1995; Resende & Ribeiro, 2003) is a

multi-start procedure in which a greedy randomized solution is constructed tobe

used as a starting solution for local search for all iterations. Local search repeat-

edly substitutes the current solution by a better solution in the neighborhood of the

current solution. If there is no better solution in the neighborhood, the current so-

lution is declared a local maximum and the search stops. The best local maximum

found over all GRASP iterations is output as the solution.

GRASP iterations are independent, i.e. solutions found in previous GRASP

iterations do not influence the algorithm in the current iteration. The use of pre-

viously found solutions to influence the procedure in the current iteration can be

thought of as a memory mechanism.

One way to incorporate memory into GRASP is with path-relinking (Glover,

1996). In GRASP with path-relinking (Laguna & Martí, 1999; Resende &Ribeiro,

2005), an elite set of diverse good-quality solutions is maintained to be usedin all

GRASP iterations. After a solution is produced with greedy randomized construc-

tion and local search, that solution is combined with a randomly selected solution

from the elite set using the path-relinking operator. The combined solution is then

considered apt to be included in the elite set. Ultimately, it is added to the elite set

if it meets quality and diversity criteria.
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procedure GRASP+PR-CMOP
Input: CA, CB

Output: solutionp∗

P ← ∅;1

while stopping criterion not satisfieddo2

p← GreedyRandomized(·);3

p← ApproximateLocalSearch(p);4

if P is full then5

Randomly select a solutionq ∈ P ;6

r ← PathRelinking(p, q);7

r ← ApproximateLocalSearch(r);8

if c(r) > max{c(s) : s ∈ P} then9

t← argmin{∆(r, s) : s ∈ P};10

P ← P ∪ {r} \ {t};11

else if c(r) > min{c(s) : s ∈ P} and r 6≈ P then12

t← argmin{∆(r, s) : s ∈ P : c(s) < c(r)};13

P ← P ∪ {r} \ {t};14

end15

else16

if P = ∅ then17

P ← {p};18

else if p 6≈ P then19

P ← P ∪ {p};20

end21

end22

end23

return p∗ = argmax{c(s) : s ∈ P};24

Algorithm 1: Pseudo-code of the GRASP-PR heuristic for MAX-CMO.
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Algorithm 1 shows pseudo-code for the GRASP with path-relinking heuristic

for the MAX-CMO problem. The algorithm takes two contact maps as inputCA

andCB of proteinsA andB, with n andm residues (m > n), respectively. It

outputs an arrayp∗ of lengthn, with p∗i = nil, if node i ∈ CA representing

residuei ∈ A is not aligned, andp∗i = j, if node i ∈ CA is aligned with node

j ∈ CB.

After initializing the elite setP as empty in line 1, the GRASP with path-

relinking iterations are computed in lines 2 to 26 until a stopping criterion is sat-

isfied. This criterion could be, for example, a maximum number of iterations,

a target solution quality, or a maximum number of iterations without improve-

ment. During all iterations, a greedy randomized solutionp is generated in line 3

and tentatively improved in line 4 with an approximate local search. The greedy

randomized construction and the approximate local search are describedin Sub-

sections 4.1 and 4.2, respectively.

If the elite setP is empty, solutionp is added to it in line 20. If the elite

set is not empty, then while it is not full, solutionp is added to it in line 23 if

it is sufficiently different from the solutions already in the elite set. To define

the term “sufficiently different” more precisely, let∆(p, q) denote the number of

assignments inp that are different from those inq. For a given level of difference

δ, we sayp is sufficiently different from all elite solutions inP if ∆(p, q) > δ for

all q ∈ P , which we indicate with the notationp 6≈ P .

If the elite setP is full, then path-relinking is applied in line 7 betweenp

and some elite solutionq randomly chosen fromP in line 6, resulting in solution

r. In line 8, r is updated by an approximate local minimum in its neighborhood.

Path-relinking is described in Subsection 4.3.

If r is the best solution found so far, then in line 11 it replacest, the solution
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most similar to it, computed in line 10. Otherwise, ifr is better than the worst

solution inP andr 6≈ P , then in line 15 it replacest, the solution most similar to

it, computed in line 14.

4.1 Greedy randomized construction

Greedy randomized construction in a GRASP heuristic combines elements of

a greedy algorithm with randomization to produce a series of starting solutions

for local search. Pseudo-code for the greedy randomized procedure for the MAX-

CMO problem is shown in Algorithm 2, referred to in line 3 of Algorithm 1 as

GreedyRandomized.

procedure GreedyRandomized
Input: CA = (VA, EA) , CB = (VB, EB), α
Output: Assignment vectorp
Randomly selectq ∈ UNIF[⌈α× n⌉, n];1

Initialize RA ← ∅; RB ← ∅;2

for i = 1, . . . , q do3

Randomly selectrA ∈ VA with prob(rA) ∼ deg(rA);4

RA ← RA ∪ {rA};5

Randomly selectrB ∈ VB with prob(rB) ∼ deg(rB);6

RB ← RB ∪ {rB};7

end8

SortRA andRB in increasing order;9

for k = 1, . . . , q do10

i← k-th element ofRA; j ← k-th element ofRB;11

pi ← j;12

end13

return p;14

Algorithm 2: Greedy randomized construction procedure

Given two proteinsA andB, the construction procedure takes as input their

contact mapsCA = (VA, EA) andCB = (VB, EB) of lengthsn andm (m > n),
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respectively, and outputs a vectorp of lengthn, wherepi = nil if residuei ∈ VA

is not aligned, andpi = j if residuei ∈ VA is aligned with residuej ∈ VB.

In line 1 of Algorithm 2, the numberq of residues to be aligned is randomly

selected with uniform probability from the interval[⌈α× n⌉, n], whereα ∈ (0, 1]

is a positive real valued input parameter. LetRA ⊆ VA andRB ⊆ VB be the sets

of residues from proteinsA andB, respectively, that will be aligned. They are

initialized empty in line 2. In thefor loop in lines 3 to 8,q residues are randomly

selected fromVA andVB, greedily favoring nodes with high degree. High degree

nodes have a greater chance of being endpoints of isomorphic edges than do low

degree nodes. These residues are added, respectively, to setsRA andRB. In line 9,

the elements of setsRA andRB are sorted in increasing order. Finally, in thefor

loop in lines 10 to 14 thek-th residue ofRA is aligned with thek-th element of

RB, for k = 1, . . . , q.

4.2 Approximate local search

Since there is no guarantee that the construction procedure presented inSec-

tion 4.1 produces a local maximum number of overlaps, a local improvement pro-

cedure can be applied starting at the constructed solutionp to attempt to increase

the number of overlaps. Given a starting solutionp, a local improvement strategy

examines solutions in the neighborhoodN (p) of p and replacesp by some solution

p′ ∈ N (p) with Λ(p′) > Λ(p).

Given a solutionp, Figure 5 shows four quadrilateral structures that can po-

tentially occur in the solution. In the figures, nodesrL
A, rR

A ∈ SA ⊆ VA and

rL
B, rR

B ∈ SB ⊆ VB, while rA ∈ VA \ SA andrB ∈ VB \ SB. Each structure has

two edges,(rL
A, rL

B) and(rR
A, rR

B) defined by the bijectionf of L(SA, SB, f).

We now describe the neighborhoods of each of the four quadrilateral struc-

tures.
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• Type I: Each quadrilateral structure of Type I in a solution admits two neigh-

bors shown in Figure 6. The first neighbor is obtained by removing edge

(rL
A, rL

B). This move corresponds to settingpi = nil, wherei = rL
A. Like-

wise, the second neighbor is obtained by removing edge(rR
A, rR

B). This

move corresponds to settingpi = nil, wherei = rR
A. with respect to its

contact map, there areO(n) quadrilateral structures of this type.

• Type II: Each quadrilateral structure of Type II in a solution admits two

neighbors shown in Figure 7. The first neighbor is obtained by replacing

edge(rL
A, rL

B) by (rA, rL
B), whererL

A < rA < rR
A. This move corresponds

to settingpi = nil for i = rL
A andpi = j, wherei = rA andj = rL

B.

Likewise, the second neighbor is obtained by replacing edge(rR
A, rR

B) by

(rA, rR
B), whererL

A < rA < rR
A. This move corresponds to settingpi = nil

for i = rR
A andpi = j, wherei = rA andj = rR

B. In the worst case, there

areO(n) quadrilateral structures of this type.

• Type III: Each quadrilateral structure of Type III in a solution admits two

neighbors shown in Figure 8. The first neighbor is obtained by replacing

edge(rL
A, rL

B) by (rL
A, rB), whererL

B < rB < rR
B. This move corresponds

to settingpi = j, wherei = rL
A andj = rB. Likewise, the second neighbor

(a) Type A (b) Type B (c) Type C (d) Type D

FIGURE 5 Quadrilateral structures of solution.
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FIGURE 6 Type I moves in local search.

is obtained by replacing edge(rR
A, rR

B) by (rR
A, rB), whererL

B < rB < rR
B.

This move corresponds to settingpi = j, wherei = rR
A andj = rB. In the

worst case, there areO(m) quadrilateral structures of this type.

• Type IV: Each quadrilateral structure of Type IV in a solution admits five

neighbors shown in Figure 9. The first neighbor (middle structure in the

figure) is obtained by adding edge(rA, rB), whererL
A < rA < rR

A and

rL
B < rB < rR

B. This move corresponds to settingpi = j, wherei = rA and

j = rB. The second neighbor (top left structure in the figure) is obtained

by replacing edge(rL
A, rL

B) by (rL
A, rB), whererL

B < rB < rR
B. This move

corresponds to settingpi = j, wherei = rL
A andj = rB. The third neighbor

(top right structure in the figure) is obtained by replacing edge(rR
A, rR

B) by

(rR
A, rB), whererL

B < rB < rR
B. This move corresponds to settingpi = j,

where i = rR
A and j = rB. The fourth neighbor (bottom left structure

in the figure) is obtained by replacing edge(rL
A, rL

B) by (rA, rL
B), where
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FIGURE 7 Type II moves in local search.

rL
A < rA < rR

A. This move corresponds to settingpi = nil for i = rL
A and

pi = j, wherei = rA andj = rL
B. Finally, the fifth neighbor (bottom right

structure in the figure) is obtained by replacing edge(rR
A, rR

B) by (rA, rR
B),

whererL
A < rA < rR

A. This move corresponds to settingpi = nil for

i = rR
A andpi = j, wherei = rA andj = rR

B. In the worst case, there are

O(mn) quadrilateral structures of this type.

In a standard local search, one explores the neighborhood of a solution and

moves either to the first or to the best improving solution. In either situation, in

the worst case, the entire neighborhood will need to be explored at leastonce.

Such large neighborhoods are expensive to explore with a standard local search

method. To avoid exploring the entire neightborhood, we propose an approximate

local search scheme similar to the one introduced in (Mateus et al., 2009).

The idea of the approximate local search is to sample the neighborhood of

the current solution at mostMaxItr times or untilMaxCLS improving neighbors
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FIGURE 8 Type III moves in local search.

are identified. The search then moves from the current solutionp to an improv-

ing sampled neighborp′ that is randomly chosen with probability proportional to

Λ(p′). The search repeats until no improved neighbors are found afterMaxItr

probes. Algorithm 3 shows pseudocode for the approximate local search proce-

dure. The procedure takes as input: the starting solutionp, the maximum size

MaxCLS of the candidate local search setCLS , the maximum numberMaxItr

of times the neighborhood of the current solution is sampled, and a parameterk

that determines the maximum number of consecutive moves from the current so-

lution p. The loop in lines 1 to 28 is repeated until no improving sampled solution

is found, i.e. CLS = ∅. In line 2, the sampled solution countercount and set

MaxCLS are initialized. The loop in lines 3 to 24 is repeated until either the set

CLS is full or MaxItr neighbors ofp are sampled. In line 4 the current solution is

saved asp′.

Starting fromp, thefor loop in lines 5 to 19 performs a number of moves. This

number of moves is chosen uniformly at random in the range[1, . . . , k]. Recall
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FIGURE 9 Type IV moves in local search.

that a quadrilateral structure is made up of four related nodes,rL
A, rR

A ∈ SA and

rL
B, rR

B ∈ SB, such thatrL
A andrR

A are, respectively, aligned withrL
B andrR

B, and no

other alignment exists between these two edges. Therefore, given one of the four

nodes, the other three are entirely determined. We call this seed node ananchor.

In line 6, position of the anchor is chosen at random to be one of the following:

left-CA, right-CA, left-CB, or right-CB. Once the archor position is fixed, line 7

determines the setR of residues for the anchor. LetΓA andΓB be the set of

aligned residues inCA andCB, respectively. LetiAL = inf ΓA andiAR = sup ΓA

be, respectively, the leftmost and the rightmost aligned residue ofCA. Similarly,

let iBL = inf ΓB andiBR = sup ΓB be, respectively, the leftmost and the rightmost

aligned residue ofCB. If the anchor position is

• left-CA, thenR = ΓA \ {iAR},

• right-CA, thenR = ΓA \ {iAL},

• left-CB, thenR = ΓB \ {iBR},
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• right-CB, thenR = ΓB \ {iBL}.

Let deg(r) be the degree ofr ∈ R with respect to its contact map. In line 8, the

anchor residuer is selected at random fromR with probability proportional to

deg(r). In line 9, the quadrilateral structureQ = {rL
A, rR

A, rL
B, rR

B} is determined.

If the anchor position is

• left-CA, thenrL
A = r, rR

A is the first aligned residual to the right ofrL
A, rL

B

andrR
B are the residues aligned, respectively, withrL

A andrR
A;

• right-CA, thenrR
A = r, rL

A is the first aligned residual to the left ofrR
A, rL

B

andrR
B are the residues aligned, respectively, withrL

A andrR
A;

• left-CB, thenrL
B = r, rR

B is the first aligned residual to the right ofrL
B, rL

A

andrR
A are the residues aligned, respectively, withrL

B andrR
B;

• right-CB, thenrR
B = r, rL

B is the first aligned residual to the left ofrR
B, rL

A

andrR
A are the residues aligned, respectively, withrL

B andrR
B.

Depending on which type of quadrilateral structureQ is, the appropriate move

updates solutionp′ in lines 10 to 18. In lines 20 to 22, ifp′ is better than the current

solutionp, it is added to the setCLS . In line 23, the sampled solution counter

count is incremented. After completing therepeat loop in lines 3 to 24, if the set

CLS is not empty, then in line 26, the new current solutionp is randomly selected

from setCLS with probability proportional toΛ(p).

ProceduresMoveTypeI,MoveTypeII,MoveTypeIII, andMoveTypeIV

are described next. Each procedure takes as input a solutionp and a compatible

quadrilateral structureQ and output a solution in the its neighborhood.
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procedure ApproximateLocalSearch
Input: p,MaxCLS ,MaxItr , k
Output: Approximate local maximump
repeat1

count ← 0; CLS ← ∅;2
repeat3

p′ ← p;4
for i = 1, . . . , UNIF{1, 2, . . . , k} do5

Randomly select anchor position;6
Determine allowable setR of residues for anchor;7
Select anchor residuer ∈ R with prob(r) ∼ deg(r);8
DetermineQ = {rL

A, rR
A , rL

B , rR
B};9

caseQ is of Type I10
p′ ← MoveTypeI(p′);11

caseQ is of Type II12
p′ ← MoveTypeII(p′);13

caseQ is of Type III14
p′ ← MoveTypeIII(p′);15

otherwise16
p′ ← MoveTypeIV(p′);17

end18
end19
if Λ(p′) > Λ(p) then20

CLS ← CLS ∪ {p′};21
end22
count ← count + 1;23

until |CLS | ≥ MaxCLS or count ≥ MaxItr ;24
if CLS 6= ∅ then25

Randomly select a solutionp ∈ CLS ;26
end27

until CLS = ∅ ;28
return p;29

Algorithm 3: Pseudo-code forApproxLocalSearch: Approximate lo-
cal search procedure.

Pseudocode for procedureMoveTypeI is shown in Algorithm 4. This proce-

dure simply moves to one of the two Type I neighbors ofp with equal probability.

In line 1, a coin toss is simulated to select the edge to be removed fromp. If the

outcome of the coin toss is heads, then in lines 3 and 7, edge(rL
A, rL

B) is removed.

Otherwise, in lines 5 and 7, edge(rR
A, rR

B) is removed.

Pseudocode for procedureMoveTypeII is shown in Algorithm 5. This pro-

cedure moves to one of the two Type II neighbors ofp with equal probability. In

line 1, a residuerA located betweenrL
A andrR

A is randomly selected with proba-
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bility proportional todeg(rA). In line 2, a coin toss is simulated to select the edge

to be removed fromp. If the outcome of the coin toss is heads, then in lines 4

and 8 edge(rL
A, rL

B) is replaced by edge(rA, rL
B). Otherwise, in lines 6 and 8,

edge(rR
A, rR

B) is replaced by edge(rA, rR
B).

procedure MoveTypeI
Input: rL

A, rR
A, rL

B, rR
B, p

Output: Assignment vectorp
Randomly selectπ ∈ UNIF(0, 1);1

if π < 0.5 then2

i← rL
A;3

else4

i← rR
A;5

end6

pi ← nil;7

return p;8

Algorithm 4: Type I move in approximate local search

procedure MoveTypeII
Input: rL

A, rR
A, rL

B, rR
B, p

Output: Assignment vectorp
Randomly selectrA, rL

A < rA < rR
A, with1

prob(rA) ∼ deg(rA);
Randomly selectπ ∈ UNIF(0, 1);2

if π < 0.5 then3

j ← rL
B;4

else5

j ← rR
B;6

end7

i← rA; pi ← j;8

return p;9

Algorithm 5: Type II move in approximate local search
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Pseudocode for procedureMoveTypeIII is shown in Algorithm 6. This

procedure moves to one of the two Type III neighbors ofp with equal probabil-

ity. In line 1, a residuerB located betweenrL
B andrR

B is randomly selected with

probability proportional todeg(rB). In line 2, a coin toss is simulated to select

the edge to be removed fromp. If the outcome of the coin toss is heads, then in

lines 4 and 8 edge(rL
A, rL

B) is replaced by edge(rL
A, rB). Otherwise, in lines 6

and 8, edge(rR
A, rR

B) is replaced by edge(rR
A, rB).

procedure MoveTypeIII
Input: rL

A, rR
A , rL

B , rR
B , p

Output: Assignment vectorp
Randomly selectrB such thatrL

B < rB < rR
B ;1

Randomly selectπ ∈ UNIF(0, 1);2
if π < 0.5 then3

i← rL
A;4

else5
i← rR

A ;6
end7
j ← rB ; pi ← j;8
return p;9

Algorithm 6: Type III move in approximate local search

Pseudocode for procedureMoveTypeIV is shown in Algorithm 7. This pro-

cedure moves to one of the five Type IV neighbors ofp. In line 1, residuerA,

located betweenrL
A andrR

A is randomly selected with probability proportional to

deg(rA). Likewise, in line 2, residuerB, located betweenrL
B andrR

B is randomly

selected with probability proportional todeg(rB). In line 3, a coin toss is simu-

lated to determine whether a new edge will be added or if one will be replaced.

If the outcome of the coin toss is heads, then in lines 18 and 20 edge(rA, rB) is

added. Otherwise two simultaneous coin tosses are simulated to determine which

33



of the other four neighborhood solutions will be selected for the move. If isthe

outcome is two heads, then in lines 7 and 20, edge(rL
A, rL

B) is replaced by edge

edge(rL
A, rB). If is the outcome of the first coin is heads and of the second tails,

then in lines 9 and 20, edge(rR
A, rR

B) is replaced by edge edge(rR
A, rB). If is the

outcome of the first coin is tails and of the second heads, then in lines 11, 12,

and 20, edge(rR
A, rR

B) is replaced by edge edge(rA, rR
B). Finally, if is the outcome

is two tails, then in lines 14, 15, and 20, edge(rL
A, rL

B) is replaced by edge edge

(rA, rL
B).

4.3 Path-relinking

Path-relinking (Glover, 1996) is an intensification scheme that explores paths

in the solution space connecting two good-quality (or elite) solutions. Given two

solutions of the MAX-CMO problem denoted by their respective assignmentvec-

tors s andt, let ∆(s, t) = {i = 1, . . . , n : si 6= ti}. Path-relinking examines

each solution in the paths = p1(s, t), p2(s, t), . . . , pk(s, t) = t connectings and

t, wherek = |∆(s, t)| andpj(s, t) is thej-th solution in the path froms to t. So-

lution pj(s, t) ∈ N (pj−1(s, t)) such that|∆(pj(s, t), t)| = |∆(pj−1(s, t), t)| − 1,

i.e. pj(s, t) is obtained by reassigning a residueℓ ∈ ∆(pj−1(s, t), t) of pj−1(s, t)

to tℓ. It is easy to verify that for any pair of solutionss andt there will be at least

one path of the type described above froms to t.

Algorithm 8 illustrates the pseudo-code of the path-relinking procedure ap-

plied to a pair of solutionss (starting solution) andt (target solution).

The procedure starts in line 1 by computing set∆(s, t) = {i = 1, . . . , n :

si 6= ti} comprised of the set of indices for which the residues ins andt differ. In
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procedure MoveTypeIV
Input: rL

A, rR
A, rL

B, rR
B, p

Output: Assignment vectorp
Randomly selectrA such thatrL

A < rA < rR
A;1

Randomly selectrB such thatrL
B < rB < rR

B;2

Randomly selectπ1 ∈ UNIF(0, 1);3

if π1 < 0.5 then4

Randomly selectπ2 ∈ UNIF(0, 1);5

case π2 ≤ 0.256

i← rL
A; j ← rB;7

case 0.25 < π2 ≤ 0.58

i← rR
A; j ← rB;9

case 0.5 < π2 ≤ 0.7510

i← rR
A; pi ← nil;11

i← rA; j ← rR
B;12

otherwise13

i← rL
A; pi ← nil;14

i← rA; j ← rL
B;15

end16

else17

i← rA; j ← rB;18

end19

pi ← j;20

return p;21

Algorithm 7: Type IV move in approximate local search
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procedure PathRelinking
Input: Pair of solutionss andt
Output: Best solutionx∗ in path froms to t
Compute set∆(s, t)← {i = 1, . . . , n : si 6= ti};1
x∗ ← argmax{Λ(s), Λ(t)};2
Λ∗ ← Λ(x∗);3
x← s;4
while ∆(x, t) 6= ∅ do5

Define∆′(x, t) ⊆ ∆(x, t) to be the set of feasible residues;6
i∗ ← argmax{Λ(x⊕ i) : i ∈ ∆′(x, t)};7
∆(x⊕ i∗, t)← ∆(x, t) \ {i∗};8
x← x⊕ i∗;9
if not ISFeasible(x) then10

Repair(x, i);11
end12
if Λ(x) > Λ∗ then13

Λ∗ ← Λ(x);14
x∗ ← x;15

end16
end17
return x∗;18

Algorithm 8: Path-relinking between solutionss andt.

lines 2 and 3, the best solutionx∗ amongs andt and its costΛ∗ are determined.

In line 4 the current solutionx is initialized to s. The loop in lines 5 to 17 is

repeated until the path is traversed, i.e. the current solutions is a neighbor of the

targett. In line 6, the set of feasible indices∆′(x, t) is defined to be the set of

indicesi ∈ ∆(x, t) for which the assignmenty = (x1, . . . , xi−1, ti, xi+1, . . . , xn)

is feasible. We use the shorthand notationy = x ⊕ i to represent this move. If

the constraints of this new solution are not violated, the new solution is feasible.

Otherwise, a repair procedure is applied in an attempt to make it feasible in lines10

to 12. The repair procedure simply removes all alignments that are vialating any

of the constraints, maintaining the alignmenti of the solution target.

In line 7, the feasible indexi∗ that results in the highest valued assignment is

determined and in line 8 set∆(x⊕ i∗, t) is defined to be∆(x, t) \ {i∗}. In line 14

the move is made and in lines 13 to 16 the best solution in the path and its value

are updated if necessary. The best solutionx∗ found in the path froms to t is

returned in line 18.
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5 COMPUTATIONAL EXPERIMENTS AND RESULTS

In this section, we report on computational experiments carried out with the

GRASP-PR heuristic introduced in this paper in order to analyze its effectiveness

and to compare our algorithm with existing ones. First, we describe our test envi-

ronment and use datasets, next we analyze and compare our implementation with

other heuristics from the literature on a suite of test problems.

5.1 Test environment and Datasets

All experiments with the GRASP-PR were carried out on a Dell PE1950 com-

puter with dual quad core 2.66 GHz Intel Xeon processors and 2 Gb of memory,

running Red Hat Linux nesh version 5.1.19.6 (CentOS release 5.2, kernel 2.6.18-

53.1.21.el5). The GRASP-PR heuristic was implemented in Java and compiled

into bytecode with javac version 1.6.0 05. The random-number generator is aim-

plementation of the Mersenne Twister algorithm (Matsumoto & Nishimura, 1998)

from the COLT‡ library.

TABLE 1 Dataset information.Pairs stand for the number of pairwise compar-
isons performed. The values forAvg.Contacts corresponds to contact
maps at 7Å.

Dataset Pairs Avg. Residues Avg. Contacts Reference
Lancia 2702 57.07 95.91 (Caprara & Lancia, 2002)

Skolnick 161 158.23 470.93 (Caprara & Lancia, 2002)
Chew-Kedem 145 201.91 928.75 (Chew & Kedem, 2002)

For the test bed analysis, we used three datasets§ (see table 1): The Lancia

dataset (Caprara & Lancia, 2002) with 269 proteins and 2702 different instances

of protein pairs, the Skolnick datset (Caprara & Lancia, 2002) with 40 proteins and

‡COLT is a open source library for high performance scientific and technical computing in Java.
Seehttp://acs.lbl.gov/∼hoschek/colt/

§The datasets can be downloaded athttp://goic.dcc.ufla.br/Biocomp/Datasets.html
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161 different instances of protein pairs, the Chew-Kedem dataset (Chew & Kedem,

2002) with 40 proteins and 145 different instances.

5.2 Comparison of the GRASP-PR heuristic with other algorithms

In the first experiment, we use of all instances of the three datasets, totalizing

3008 instances of protein pairs.

Caprara & Lancia (2002) proposed a Lagrangian Relaxation (LR) approach

for solving MAX-CMO, where the optimal Lagrange multipliers are found by sub-

gradient optimization. Besides yielding an upper bound on the optimal solution of

the original problem, the Lagrangian multipliers are used to drive a heuristic to

construct the MAX-CMO solutions. Krasnogor et al. (2003) have demonstrated

that this LR algorithm was able to find better results than the previous algorithms

for the MAX-CMO over the Chew-Kedem dataset, and after that, the LR wasre-

viewed over different datasets (Caprara et al., 2004; Xie & Sahinidis, 2007) con-

firming its effectiveness.

Pelta et al. (2008) argued that in order to compare a set of algorithms properly,

all of them should be ideally compiled and run in the same computational environ-

ment. Hence, the experiments carried out in this study met such a requirement.

We make use of the source codes of LR¶ and VNS‖ algorithms to perform the

comparison.

The VNS heuristic is presented as “a simple and fast” heuristic for protein

structure comparison and its original stopping criterion for each run is 100itera-

tions or 20 iterations without improvements (whatever comes first). Three versions

of VNS heuristic are available: MSVNS1, MSVNS2 and MSVNS3. In all com-

putational experiments in this paper, we set the best VNS version and parameter

¶The LR algorithm was implemented in C programming language and it was thatwas kindly
provided to us by one of the authors of Caprara & Lancia (2002), Alberto Caprara.

‖The VNS algorithm was fully implemented in C++ programming language and the software is
available for download athttp://modo.ugr.es/jrgonzalez/msvns4maxcmo.
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looking at the paper: “The best alternative is MSVNS3 with windows sizes of10-

30-50 leading to an average error below3.6% for Lancia’s dataset with 2702 pairs,

and below1.7% for the Skolnick’s one.” (Pelta et al., 2008).

There are also three different modes of the LR algorithm, which differ by the

heuristic used to build the MAX-CMO solutions from the lagrange multipliers.

We applied one denoted by LAGR-R which uses local search at the root node only

to accomplish it, because according to Xie & Sahinidis (2007) they “recorded the

best solutions and CPU time for LAGR-R”.

We also adjusted the best combination of parameters for the GRASP-PR heuris-

tic. To accomplish it, we tested 268 combinations of parameters on 4 randomly

selected instances (2 from Lancia, 1 from Chew-Kedem and 1 from Skolnick). We

performed 10 runs per parameter combination on each one of the 4 instances, with

a running time limit of 1 second and a calculation of the average error of each

round. For the four analyzed instances, the parameters that showed a lower av-

erage error are:α(delimiter of greedy randomized construction): 0.7,MaxCLS

(Local Search parameter) : 20,MaxItr (Local Search parameter) : 10, Local

Search moves : 2,|P | (elite setP size) : 8,δ (sufficiently different level) : 2.

After selecting the best versions and parameters for each algorithm, we per-

formed 30 runs on each instance of the selected datasets using MSVNS3 with

windows size of 30. For each instance, the minimum, the average and the max-

imum overlap values of the 30 runs were calculated, as well as the minimum

and maximum running times. The average running time of the runs subset that

reached the maximum overlap value is also calculated. This last measure of time

was set as the stopping criterion for the LR and GRASP-PR algorithms, and then

we carried out 30 runs on each instance using these two others algorithms and

the minimum, average and maximum overlap values of the 30 runs of these ones
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are also calculated. As result of this experiment, complementary data contain-

ing the values for each instance of the three datasets is available for download

athttp://goic.dcc.ufla.br/Biocomp/ResultsCMOP.xls as a as a

benchmark for MAX-CMO algorithms comparison.

For instances of Lancia and Skolnick datasets, the error per instance ofeach

algorithm was calculated using overlap values∗∗ given by the exact algorithm from

the algorithm presented in (Xie & Sahinidis, 2004). For instances of Chew-Kedem

dataset, for which the exact overlap values were not available, the error(%) was

calculated using the Upper Bound values returned by the LR algorithm. In both

cases, the error is calculated with respect to the maximum overlap value of the30

runs per instance. The results are summarized in Tables 1 and 2.

In the experiment conducted by us, the results for the VNS algorithm showed

in Table 1 closely corroborate with results presented by Pelta et al. (2008). They

report an average error of3.6% for Lancia dataset and below1.7% for the Skol-

nick’s. We obtained3.398% and1.708%, respectively.

For Lancia dataset, Table 2 shows that the VNS heuristic presents the low-

est average error (3.398%) and and the highest number of optimally solved in-

stances (1578 - 58.4%). The LR algorithm obtained the second lowest average

error (8.438%) although it has optimally solved fewer instances than the GRASP-

PR (970 and 1114 number of optimally solved instances for the LR algorithm and

GRASP-PR, respectively). Considering only the instances not optimally solved

(Near-Optimally Solved), the average errors increase to 8.160%, 15.512% and

13.150% for VNS, LR and GRASP-PR, respectively. If we rank the algorithms

considering the value of average error, for Lancia dataset, we observe that the VNS

∗∗These optimal overlap values were kindly provided by one of the authorsof reference Pelta
et al., (2008), Juan González, who make use of same values for computing the error of the VNS
algorithm in respect to the optimal overlap values.
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algorithm is the best one, followed by LR and finally the GRASP-PR. Consider-

ing the number of instances optimally solved, the VNS algorithm, the GRASP-PR

and the LR, we found out that the Lancia dataset has protein pairs with a smaller

number of residues and contacts, containing also the easiest number of instances,

despite it having the largest number of them (see table 1).

For the Skolnick dataset, considering the average error of all instances, we

rank the algorithms with the VNS (1.708%) as the best heuristic followed by

GRASP-PR (3.821%). And considering the number of optimally solved instances,

we rank the GRASP-PR - 89 (55.28%) optimally solved instances - as the best

one followed by VNS - 63 (39.13%) optimally solved instances. The results for

this dataset show that the results of GRASP-PR are competitive with the other two

heuristics analyzed.

Table 3 shows results for the Chew-Kedem dataset, where the error is cal-

culated based on the best Upper Bound algorithm value obtained from the LR

algorithm. In this table, the results are grouped according to the protein families

in order to investigate whether any specific type of structural folding is favoring

some enhancement that could further improve the proposed heuristic, which could

be attained through analyses and proposition of specialized constructivemethods,

designed for different families of proteins. Additional result analyses indifferent

protein faimilies of this datasets will be performed. In general, the GRASP-PR

algorithm showed the best results, with an average error of 12.412%, followed

closely by the LR (12.839%). These results encourage the use of the proposed

GRASP-PR heuristic, for the Chew-Kedem is considered the most challenging

dataset according to to Krasnogor et al. (2003).
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TABLE 2 Results over 2702 pairs from Lancia’s dataset, and 161 pair from Skolnick’s dataset. The error is measured with
respect to the optimum value.

Error (%) Time (seconds)
Algorithm N Avg. SD Median Min. Max. Avg. SD Median

Total VNS 2702 (100%) 3.398 4.882 0.000 0.010 5.189 0.077 0.113 0.062

Lancia’s
D

ataset

GRASP-PR 2702 (100%) 9.115 13.326 2.679 0.010 5.189 0.077 0.113 0.062
LAGR 2702 (100%) 8.438 10.001 4.167 0.010 5.189 0.077 0.113 0.062

Optimally Solved VNS 1578 (58.4%) 0.000 0.000 0.000 0.015 0.893 0.083 0.054 0.068
GRASP-PR 1114 (41.30%) 0.000 0.000 0.000 0.011 0.608 0.077 0.049 0.065

LAGR 970 (35.9%) 0.000 0.000 0.000 0.010 0.893 0.085 0.057 0.070
Near-Optimally Solved VNS 1124 (41.6%) 8.160 4.285 8.000 0.010 5.189 0.069 0.162 0.054

GRASP-PR 1586 (58.70%) 15.512 14.247 8.554 0.010 5.189 0.077 0.141 0.060
LAGR 1732 (64.1%) 13.150 9.691 11.111 0.010 5.189 0.075 0.140 0.059

Total VNS 161 (100% ) 1.708 2.257 0.606 2.784 47.780 14.046 11.888 6.605

S
kolnick’s

D
ataset

GRASP-PR 161 (100% ) 3.821 7.935 0.000 2.784 47.780 14.046 11.888 6.605
LAGR 161 (100% ) 4.690 5.930 2.493 2.784 47.780 14.046 11.888 6.605

Optimally Solved VNS 63 (39.13% ) 0.000 0.000 0.000 2.784 33.360 8.782 8.891 4.604
GRASP-PR 89 (55.28% ) 0.000 0.000 0.000 2.784 35.570 6.060 10.041 6.060

LAGR 55 (34.16% ) 0.000 0.000 0.000 2.784 47.780 11.203 11.370 5.945
Near-Optimally Solved VNS 98 (60.87% ) 2.806 2.300 2.116 3.889 47.780 17.430 12.370 9.758

GRASP-PR 73(44.72% ) 8.544 10.048 5.620 3.495 47.780 18.162 12.745 12.230
LAGR 106 (65.84% ) 7.124 6.007 5.900 3.243 42.620 15.521 11.935 7.780
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TABLE 3 Results over 145 pairs from Chew-Kedem dataset. The error ismeasured based on the Upper Bound value given
by the Lagrangian Relaxation algorithm.

Error (%) Time (seconds)
Algorithm N Avg. SD Median Min. Max. Avg. SD Median

All Pairs VNS 145 (100%) 12.839 11.104 9.626 2.033 75.290 10.728 12.839 7.422
GRASP-PR 145 (100%) 12.412 12.850 6.497 2.033 75.290 10.728 12.839 7.422

LAGR 145 (100%) 9.756 11.885 5.398 2.033 75.290 10.728 12.839 7.422
Globin Pairs VNS 102 (70.34%) 9.039 3.348 8.867 5.452 17.990 7.840 2.097 7.416

GRASP-PR 102 (70.34%) 6.648 3.416 8.867 5.452 17.990 7.840 2.097 7.416
LAGR 102 (70.34%) 5.209 2.090 4.881 5.452 17.990 7.840 2.097 7.416

Alpha-Beta Pairs VNS 13 (8.97%) 16.918 21.046 2.667 10.120 30.540 18.262 9.014 12.270
GRASP-PR 13 (8.97%) 17.612 22.121 2.000 10.120 30.540 18.262 9.014 12.270

LAGR 13 (8.97%) 18.074 22.763 2.000 10.120 30.540 18.262 9.014 12.270
Beta Pairs VNS 15 (10.34%) 14.320 4.890 14.079 3.350 5.173 4.139 0.551 4.037

GRASP-PR 15 (10.34%) 27.355 9.707 29.130 3.350 5.173 4.139 0.551 4.037
LAGR 15 (10.34%) 11.500 5.030 11.905 3.350 5.173 4.139 0.551 4.037

TIM-Barrel Pairs VNS 6 (4.14%) 35.474 11.756 39.383 61.080 75.290 67.832 5.970 67.255
GRASP-PR 6 (4.14%) 32.766 5.720 34.374 61.080 75.290 67.832 5.970 67.255

LAGR 6 (4.14%) 31.046 12.518 35.821 61.080 75.290 67.832 5.970 67.255
Mixed Pairs VNS 9 (4.14%) 32.448 15.905 30.631 2.033 10.280 5.463 3.313 4.976

GRASP-PR 9 (4.14%) 30.770 17.140 30.040 2.033 10.280 5.463 3.313 4.976
LAGR 9 (4.14%) 32.175 16.751 30.040 2.033 10.280 5.463 3.313 4.976
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5.3 Time-to-target plots for GRASP-PR against other heuristics

n the following experiment, we used of eight randomly selected instances: 4

from dataset Lancia, 2 from Skolnick and 2 from the Chew-Kedem one.Informa-

tion on these instances is summarized in the table 4.

TABLE 4 Eight randomly selected instances for plotting the time-to-target. In the
following, we use their assigned indexes to refer to the respective in-
stances. Column with identifierID refer to the index assigned to in-
stance; columns with identifierProt. refer to the PDB code for the pro-
tein; columns with identifiersRes.andContactsrefer to the number of
residues and contacts of their contact maps constructed at 7Å, and col-
umn with identifierTarget Valuerefers the optimal value for the instance
that will be used as target value in analysis of time-to-target.

ID Prot. 1 Res. Contacts Prot. 2 Res. Contcts Target Value Dataset
1 1gzi 58 110 9msi 59 112 106 Lancia
2 1ekl 58 106 1msj 59 114 103 Lancia
3 1eqt 58 101 1hcc 47 75 55 Lancia
4 1fh3 54 86 1ptx 54 93 57 Lancia
5 3chy 128 378 4tmy 118 366 323 Skolnick
6 1pla 97 275 1pcy 99 282 253 Skolnick
7 1babA 142 412 1mba 146 439 347 Chew-Kedem
8 1aa9 171 528 1ct9A 497 1508 280 Chew-Kedem

Time-to-target (TTT) plots display on the ordinate axis the probability that an

algorithm will find a solution at least as good as a given target value within a given

running time, shown on the abscissa axis. TTT plots were used by Feo et al.(1994)

and have been advocated thenceforward as a way to characterize the running times

of stochastic algorithms for combinatorial optimization.

In this analysis, each heuristic is runn times on the fixed instance and us-

ing the given target solution value. For each of then runs, the random number

generator is initialized with a distinct seed and, therefore, the runs are assumed

to be independent. For each instance/target pair, the running times are sorted in

increasing order. We associate with thei− th sorted running timeti a probability
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pi = (i − 1/2)/n and plot the pointszi = [ti, pi], fori = 1, ..., n.. Then, this

cumulative probability distribution is ploted allowing to infer and compare details

and information about the performance of the heuristics.

For each of the selected instances, we made 200 independent runs of the

GRASP-PR, 200 runs of the VNS and 200 runs of the LR algorithm. Each of

these runs stopped when the target-valued solution (Target Value - Table4) was

found, and we record the time taken for each run. Figure 10 and 11 shows TTT

plots for all algorithms analyzed on all instances from Table 4. These plots dis-

play the empirical probability distributions of the random variable time to target

solution. Each heuristic was run a total of 1600 times in the experiments.
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FIGURE 10 Time-to-target plots. Plots of cumulative probability distributions of
GRASP-PR, VNS and LR running times for instances 1, 2, 3, and 4
(see table 4).

The relative position of the curves to the feft implies that, given a fixed amount
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of computing time, the algorithm refered to that curve has a higher probability than

grasp of finding a target solution. The relative position of the curves to theright

implies that, given a fixed probability of finding a target solution, the expectedtime

taken by the algorithm refered to that curve to find a solution with that probability

is greater than the time taken by the other ones. For example, consider instance 6

in Figure 11. The probability of finding a target at least as good as the target value

253 in 3.5 seconds is approximately of 40% for all algorithms. In 4.0 secondsat

the most, these probabilities increase to approximately 90% for GRASP-PR and

85% for VNS and LR.
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FIGURE 11 Time-to-target plots. Plots of cumulative probability distributions of
GRASP-PR, VNS and LR running times for instances 5, 6, 7, and 8
(see table 4).

Figure 10 show that the algorithm VNS has a small dominance over the GRASP-

PR in two cases (instances 1 and 4), and the opposite in the other two: for in-

46



stances 2 and 3 the GRASP-PR demonstrates to be better. These figures are plots

over instances of the dataset Lancia with smaller number of residues and contacts,

then easier instances, and maybe favoring simple heuristics as the VNS. Figure 11

shows the dominance of GRASP-PR for instances 5 and 8, and for instances 6 and

7 there are two cases where it is not possible to identify a clear dominance. These

results demonstrate that the proposed algorithm is very competitive comparedthe

other algorithms analyzed.

5.4 GRASP-PR and the Skolnick Clustering test set

The aim of the Skolnick clustering test originally suggested by Skolnick and

described in (Lancia et al., 2001) is to classify 40 proteins into four familiesac-

cording to their cluster membership. The proteins belonging to this dataset are

shown in Table 1. In the following, we use their assigned indexes to refer tothe

respective proteins.

TABLE 5 Protein structures of the Skolnick test set. Columns with identifier ID re-
fer to the index assigned to the proteins; columns with identifier PDB re-
fer to the PDB code for the protein containing the protein; and columns
with identifier CID refer to the chain index of a protein. If a protein
consists of a single chain, the corresponding entry in the CID column is
-. Note that the IDs differ from those used in (Lancia et al., 2001).

ID PDB CID ID PDB CID ID PDB CID ID PDB CID
1 1b00 A 11 1rn1 C 21 2b3i A 31 1tri -
2 1dbw A 12 3chy B 22 2pcy - 32 3ypi A
3 1nat - 13 4tmy A 23 2plt - 33 8tim A
4 1ntr - 14 4tmy B 24 1amk - 34 1ydv A
5 1qmp A 15 1baw A 25 1aw2 A 35 1b71 A
6 1qmp B 16 1byo A 26 1b9b A 36 1bcf A
7 1qmp C 17 1byo B 27 1btm A 37 1dps A
8 1qmp D 18 1kdi - 28 1hti A 38 1fha -
9 1rn1 A 19 1nin - 29 1tmh A 39 1ier -
10 1rn1 B 20 1pla - 30 1tre A 40 1rcd -

Table 2 describes the proteins and their families. Its fourth column with iden-
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tifier Seq. Sim.indicates that sequence alignment fails for clustering the protein

according to their family membership. This motivates structural alignment for

solving the Skolnick clustering test.

TABLE 6 Protein domains of the Skolnick test set and their categories as taken
from (Caprara & Lancia, 2002).Shown are the characteristics of the four
families, the mean number of residues, the range of similarity obtained
by sequence alignment and the identifiers of the proteins.

Family Style Residues Seq-Sim. Proteins
1 alpha-beta 124 15-30% 1-14
2 beta 99 35-90% 15-23
3 alpha-beta 250 30-90% 24-34
4 - 170 7-70% 35-40

The GRASP-PR algorithm and the server’s one are applied in an all-against-

all fashion to the dataset and a distance matrix is calculated. The GRASP-PR

running time limit is adjusted to 0.5 seconds, thereby, for the 780 pairwise struc-

tural alignments the process required about 10 minutes. As overlap valuesare not

adequateper sefor classification purposes because such values depend on the size

of the proteins being compared, it is applied a normalization scheme, according to

(Pelta et al., 2008), it may play a crucial role in protein classification. Thereis no

general agreement on how to do normalization, so we use two of the availableal-

ternatives - first and second alternatives were proposed in (Lancia &Istrail, 2004)

and (Xie & Sahinidis, 2004), respectively:

Norm1(Pi, Pj) =
overlap(Pi, Pj)

min(contactsPi, contactsPj)
(1)

Norm2(Pi, Pj) =
2 ∗ overlap(Pi, Pj)

contactsPi + contactsPj
(2)

Finally, with the values of the distance matrix normalized byNorm1 and
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FIGURE 12 Hierarchical Clustering based on the normalized overlap values
among proteins in Skolnick’s dataset. The upper dendrograms (a,
b) correspond to the avarage and complete linkage clustering using
Norm1 and the lower ones (c, d) to the avarage and complete linkage
clustering usingNorm2.
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Norm2, we apply complete and average linkage hierarchical clustering as imple-

mented in R software package with the final objective of evaluating if the strategy

is able to detect similarity at SCOP’s fold level (Murzin et al., 1995). We can see

the dendograms generated by Goic-Biocomp server in Figure 1. For visualization

purposes, the class number is displayed at the right of the protein name.

The results indicate an agreement with the SCOP categories as shown in Ta-

ble 3. The GRASP-PR heuristic is able to perfectly recover the original grouping

independently of the normalization and clustering algorithms, since it successfully

classified the Skolnick proteins into five families according to the SCOP classifi-

cation levels.

TABLE 7 Descriptions of the proteins clusters from the Skolnick’s test.
Fold,family, and superfamily are according to SCOP.

Cluster Proteins Fold/Superfamily/Family
1-8, Flavodin-like

1 12-14 Che Y-like
Che Y-related

Microbial ribonucleases
2 9-11 Microbial ribonucleases

Fungi ribonucleases
Cuperdoxin-like

3 15-23 Cuperdoxins
Plastocyanim/Plastoazurin-like

TIM-beta alpha-barrel
4 24-34 Triosephosphate isomerase (TIM)

Triosephosphate isomerase (TIM)
Ferritin-like

5 35-40 Ferritin-like
Ferritin

5.5 GRASP-PR as a structural alignment tool

For a protein structure alignment algorithm, it is important to investigate whether

it produces biologically meaningful alignments. In this computational experiment

we aim to investigate whether our heuristic provides biologically meaningful align-
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ments for practical instances, besides to investigate whether GRASP-PR can repli-

cate the results obtained by exact methods but with less computational effortand

a simple strategy. To accomplish it, we use the MAX-CMO solution to guide

the superimposition of proteins pairs and we make a visual inspection of these

ones, as well as we perform analysis of the RMSD value, comparing the results of

GRASP-PR against the successful exact algorithm “Exact-Reduction Based (RB)

algorithm” proposed by (Xie & Sahinidis, 2007).

To superpose two protein structures one must have a mapping between equiv-

alent amino acids in the two proteins. We can use the MAX-CMO solution as

this required mapping which is used to guide the superimpositioning. So, after

calculating the mapping between equivalent amino acids of the two proteins via

MAX-CMO solution, we make use of a Biopython (Cock et al., 2009) script to

create a PDB file with the two structures superposed.

The root mean square deviation (RMSD) is the measure of the average dis-

tance between the backbones of superimposed proteins. Unlike the numberof

overlaps found by MAX-CMO algorithms, the lower the RMSD to superpose the

protein pair given the residues mapping, and also to calculate the RMSD value

calculated for two superimposed proteins, more similar they are.

In this experiment, we use five instances selected at random from different

datasets. The contact maps are constructed with a threshold of 6.5Å - see Table 4.

Based on this test set, we compare GRASP-PR against the RB algorithm in terms

of overlaps value and RMSD. The running time limit for the GRASP-PR heuristic

is set to 5 seconds, while the RB, as a exact algorithm, just stop running as the

optimal value is found. Table 5 compare the two algorithms in terms of overlaps

value of MAX-CMO solutions and RMSD resultant of the superimposition.

As we can see in table 5, in terms of the overlaps and RMSD values, our
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TABLE 8 Test set description. In the following, we use their assigned indexes to
refer to the respective protein pair.

Instance Protein 1 Protein 2 Dataset
1 1ash 1hlm Chew-Kedem (Chew & Kedem, 2002)
2 1qfo 1neu Chew-Kedem (Chew & Kedem, 2002)
3 2ach 7api Leluk-Konieczny-Roterman (Leluk et al., 2003))
4 1rcd 1ier Skolnick (Caprara & Lancia, 2002)
5 4tmt 1qmpB Skolnick (Caprara & Lancia, 2002)

TABLE 9 Test results of the five selected proteins pairs. In the table is shown the
running time, overlaps value/ the error (%) with respect to the optimal
value of MAX-CMO, the RMSD value found by each algorithm over
each instance.

Time(s) Overlap/Error(%) RMSD
Instance GRASP-PR RB GRASP-PR RB GRASP-PR RB

1 5.00 754.40 271(2.87%) 279(0.00%) 5.21 3.19
2 5.00 185.8 156(13.33%) 180(0.00%) 3.01 2.77
3 5.00 3746.3 700(0.28%) 702(0.00%) 1.31 1.39
4 5.00 48.58 448(0.00%) 448(0.00%) 0.65 0.65
5 5.00 55.25 255(0.00%) 255(0.00%) 1.18 1.18

algorithm is very competitive with the exact algorithm from (Xie & Sahinidis,

2007), since the error with respect to the optimal value is0.00 for instances 4 and

5, and very low for the other instance 1, 2 and 3 - 2.87%, 13.33% and 0.28%,

respectively. For instances 4 and 5, the RMSD value found by GRASP-PR is

as lower as the ones found by the RB algorithm, and for instances 1 and 2 this

difference is very small. These results are very impressive particularly considering

that the running time of GRASP-PR heuristic is about 10x to 750x lower than the

running time of the RB algorithm.

For instance 3, we have an interesting particular case: although the overlap

value found by the GRASP-PR is worse (the higher the overlap value, the better

is the result of the MAX-CMO problem, and the lower the value of RMSD, the

better is the algorithm in terms os structure supreimposition) the RMSD value of
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GRASP-PR is better (smaller) than the values found by the RB algorithm. Such

ambiguity is already known and discussed since the work entitled “The structural

alignment between two proteins: is there a unique answer?” (Godzik, 1996), jus-

tifying the use of heuristics capable of giving fast near-optimal solutions of mean-

ingful alignments.

The superimpositions of this experiment are show in Figures 2-6, in which

we can make a visual inspection of alignment. can make a visual inspection of

alignment. A key observation made from these figures is that the GRASP-PR was

able to align all the selected protein pairs, and the resultant superimpositions had

a high similarity with the superimposition resultant from the alignment of the RB

algorithm with much less effort of time and a simple strategy.

FIGURE 13 Protein backbones superimposition generated from: the GRASP-PR
solution on the left side and the RB one on the right side. Instance 1
- 1ASH (Blue) and 1HLM (Green).

Figures of instances 2, 3, 4 and 5 show that the alignment is identical to

the naked eye for the two algorithms. For instances 4 and 5, this high similar-

ity was expected, since both algorithms reached the exact value of overlaps. But

for instance 2, even without reaching the optimal value of overlap, the GRASP-PR

showed an alignment very similar to the RB algorithm, in addition to obtaining a

better value of RMSD. In this figure 1, alignment of GRASP-PR differs somewhat
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FIGURE 14 Protein backbones superimposition generated from: the GRASP-PR
solution on the left side and the RB one on the right side. Instance 2
- 1QFO (Blue) and1NEU (Green).

FIGURE 15 Protein backbones superimposition generated from: the GRASP-PR
solution on the left side and the RB one on the right side. Instance 3
- 1RCD (Blue) and 1IER (Green).
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FIGURE 16 Protein backbones superimposition generated from: the GRASP-PR
solution on the left side and the RB one on the right side. Instance 4
- 4TMT (Blue) and 1QMPB (Green).

FIGURE 17 Protein backbones superimposition generated from: the GRASP-PR
solution on the left side and the RB one on the right side. Instance 5
- 2ACH (Blue) and 7API (Green).
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from the alignment of the RB algorithm, but both alignments seem to be significant

as the difference in the RMSD between the algorithms value is very low.

The study performed in this dataset shows that our strategy can replicate the

results obtained using exact methods but with less computational effort anda sim-

ple strategy. Moreover, this experiment illustrates that non-exact MAX-CMO val-

ues may have solutions as meaningful as the exact ones. Both elements are impor-

tant resultsper se. We should mention that the all experiments done in this final

chapter can be done through Biocomp-Server described in Chapter 2.

6 CONCLUDING REMARKS

In this work, we tested a straight and simple GRASP implementation with

Path-Relinking for the MAX-CMO problem, which obtains encouraging results.

Computational results demonstrate that the heuristic is a well-suited approach for

the MAX-CMOP, and comparisons with other successful heuristics from litera-

ture show that the proposed heuristic produces results very competitive.GRASP-

PR obtained results that were very well applied to real problems using less com-

putational effort than exact algorithms. Moreover, we mention that all experi-

ments conducted in this paper can be reproduced using the Goic-Biocomp server

athttp://goic.dcc.ufla.br/Biocomp.
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CHAPTER 3

GOIC-BIOCOMP: A WEB-BASED TOOL

FOR PROTEIN ALIGNMENT
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1 ABSTRACT

Protein structure comparison and clustering are key problems in bioinformat-
ics. An available and efficient alternative to perform protein structural comparison
is to align the contact maps of protein pairs. This approach can be formulated
as a well known mathematical problem called Maximum Contact Map Overlap
Problem (MAX-CMO). Tools are still required to solve the problem by using
algorithms that obtain good quality solutions using less computational and time
resources. This paper presents a web-based tool for protein structure alignment
based on the greedy randomized adaptive search procedure with path-relinking
(GRASP-PR) for MAX-CMO problem. Experiments can be performed via web
comparing the GRASP-PR heuristic with other algorithms from literature. The
tool is available:http://goic.dcc.ufla.br/Biocomp.

62



2 RESUMO

Comparação de estruturas de proteínas é um problema chave em bioinfor-
mática. Uma alternativa eficiente disponível para realizar a comparação estrutural
de proteínas é alinhar os mapas de contatos de pares de proteínas. Essa abordagem
pode ser formulada como um problema matemático bem conhecido chamado Max-
imum Contact Map Overlap (MAX-CMO). Ferramentas que resolvem esse prob-
lema usando algoritmos que obtêm soluções de boa qualidade usando menos recur-
sos computacionais e tempo ainda são requeridos. Esse artigo apresenta uma ferra-
menta web para o alinhamento estrutural de proteínas baseado na heurísticagreedy
randomized adaptive search procedure com path-relinking (GRASP-PR) para o
MAX-CMO. Experimentos podem ser realizados via web comparando a heurís-
tica GRASP-PR com outros algoritmos da literatura. A ferramenta é disponível
emhttp://goic.dcc.ufla.br/Biocomp.
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3 GRASP WITH PATH-RELINKING FOR MAX-CMO

Recently, the growth of the Protein Data Bank (PDB) (Berman et al., 2000)

has been accelerated by a large scale structure determination project, called struc-

tural genomics(Westbrook et al., 2003). As a result, fast and efficient algorithms

for protein structure comparison have become more important to take advantage

of the huge amount of structural data.

One promising way of accomplishing the structural alignment is to evaluate

the alignment of their contact maps, which are used to represent the distances

between every pair of residues in a three-dimensional protein structure.

In the graph representation, the contact mapG = (V, E) is a graph with

a set of nodesV corresponding to the sequence of residues and a set of edges

E corresponding to the edges for each pair of non-consecutive residues whose

distance is below a given threshold.

Given two contact mapsGA = (VA, EA) and GB = (VB, EB) such that

|VA| = n and|VB| = m, the CONTACT MAP OVERLAP PROBLEM (Goldman et al.,

1999) is to find two subsetsSA ⊆ VA andSB ⊆ VB with |SA| = |SB| and an order

preserving bijectionf betweenSA andSB such that the cardinality of theoverlap

set

L(SA, SB, f) = {(u, v) ∈ EA : u, v ∈ SA, (f(u), f(v)) ∈ EB}

is maximized. A solution(SA, SB, f) for the contact map overlap problem can be

represented as an assignment vectorp of sizen such that

pu =


v if (u, v) ∈ L(SA, SB, f)

nil otherwise.
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Algorithm 1 shows pseudo-code for the GRASP (Feo & Resende, 1995)with

path-relinking (Glover, 1996) heuristic for the MAX-CMO problem. The algo-

rithm takes as input two contact mapsCA andCB of proteinsA andB, with n

andm residues (m > n), respectively. It outputs an arrayp∗ of lengthn, with

p∗i = nil, if nodei ∈ CA representing residuei ∈ A is not aligned, andp∗i = j,

if nodei ∈ CA is aligned with nodej ∈ CB.

After initializing the elite setP as empty, the GRASP with path-relinking

iterations are computed until a stopping criterion is satisfied. This criterion could

be, for example, a maximum number of iterations, a target solution quality, or a

maximum number of iterations without improvement. In all iterations, a greedy

randomized solutionp is generated and tentatively improved with a local search.

If the elite setP is empty, solutionp is added to it. If the elite set is not empty,

then while it is not full, solutionp is added to it if it is sufficiently different from the

solutions already in the elite set. In order to define the term “sufficiently different”

more precisely, let∆(p, q) denote the number of assignments inp that are different

from those inq. For a given level of differenceδ, we sayp is sufficiently different

from all elite solutions inP if ∆(p, q) > δ for all q ∈ P , which we indicate with

the notationp 6≈ P .

If the elite setP is full, then path-relinking is applied betweenp and some elite

solutionq randomly chosen fromP , resulting in solutionr. Next,r is updated by

a local minimum in its neighborhood. Ifr is the best solution found so far, then it

replacest, the solution most similar to it. Otherwise, ifr is better than the worst

solution inP andr 6≈ P , then it replacest, the solution most similar to it.

Several exact algorithms as well as heuristics have been since proposed for

MAX-CMO problem. In addition to GRASP-PR heuristic, BIOCOMP web tool

provides some algorithms from literature as follows. A Lagrangian relaxationap-
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proach proposed by Caprara & Lancia (2002), where the optimal Lagrange multi-

pliers are found by subgradient optimization. A dynamic programming as tool to

design a branch-and-bound algorithm with several reduction techniques to elim-

inate inferior residue-residue pairs early in the search procedure proposed as a

reduction based exact algorithm by Xie & Sahinidis (2007). A multi-start variable

neighborhood search heuristic for solving MAX-CMO developed by Peltaet al.

(2008).

procedure GRASP+PR-CMOP
Input: CA, CB

Output: solutionp∗

P ← ∅;
while stopping criterion not satisfieddo

p← GreedyRandomized(·);
p← LocalSearch(p);
if P is full then

Randomly select a solutionq ∈ P ;
r ← PathRelinking(p, q);
r ← LocalSearch(r);
if c(r) > max{c(s) : s ∈ P} then

t← argmin{∆(r, s) : s ∈ P};
P ← P ∪ {r} \ {t};

else if c(r) > min{c(s) : s ∈ P} and r 6≈ P then
t← argmin{∆(r, s) : s ∈ P : c(s) < c(r)};
P ← P ∪ {r} \ {t};

end
else

if P = ∅ then
P ← {p};

else if p 6≈ P then
P ← P ∪ {p};

end
end

end
return p∗ = argmax{c(s) : s ∈ P};

Algorithm 1: GRASP-PR for MAX-CMO algorithm.
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4 GOIC-BIOCOMP SERVER

Goic-Biocomp server (Figure 1) takes as input the selected algorithm for the

MAX-CMO problem and the PDB files (Westbrook et al., 2003) corresponding to

the proteins to be aligned. The protein contact maps used as input for the algo-

rithm are generated from the input PDB files. The algorithm outputs the residue

alignment and the cardinality of the overlap set. Depending on the comparison

approach, a different set of information are reported in the output web page. In

pairwise comparison approach, besides the algorithms results, we have thebinary

and real two-dimensional matrix representation of the contact maps and alsothe

superimposed proteins plot. While these matrixes are generated byPConPy tool

(Ho et al., 2008) from protein PDB files, the superimposed PDB plots are created

by JMOL tool. (Jmol, 2009) takes as input superimposed PDB files created by

BioPython tool from the residue alignment.Biopython (Cock et al., 2009) is

also responsible to compute theroot mean square deviation(RMSD), the average

distance between the backbones of superimposed proteins.

In multiple comparison approach, three or more proteins are compared all-

against-all through the pairwise approach. The result is a symmetric two-dimensional

matrix having as distance metric the cardinality of the overlap set of each pairwise

structure alignment. This matrix is normalized according to two normalization

schemes reported by (Lancia & Istrail, 2004) and (Xie & Sahinidis, 2004). Next,

the normalized matrix is used as input for three clustering methods (Everitt & Dunn,

1992): single, complete and average linkage clustering. At the end, the clustering

results are plotted as dendograms using R statistical tool (R Development Core Team,

2005).
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CHAPTER 4

SUMMARY, GENERAL CONCLUSIONS AND

FUTURE WORK
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1 ABSTRACT

The final chapter contains the summary, general conclusions and outlines the
possibilities for future work with the GRASP-PR algorithm presented in Chapter
2 and the Goic-Biocomp web tool described in Chapter 3.
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2 RESUMO

O último capítulo contém o resumo, as conclusões gerais e descreve as possi-
bilidades de trabalho futuro com o algoritmo GRASP-PR apresentado no capítulo
2 e a ferramenta web Goic-Biocomp descrita no Capítulo 3.
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3 SUMMARY AND GENERAL CONCLUSION AND FUTURE WORK

Protein structure comparison is one of the most important problems in bioin-

formatics (see Chapter 1, Section 2). One approach for solving this problem is to

first, extract protein binary contact maps from the protein tertiary structure (see

Chapter 1, Section 1), and next, align these contact maps. In order to guide the

design and development of a new algorithm to solve this problem, we used the

Maximum Contact Map Overlap (MAX-CMO), one of the most common mathe-

matical statements of the contact map alignment problem. Our purpose is based

on the hybridization of two promising heuristics, called Greedy Random Adaptive

Search Procedure with Path-Relinking (GRASP-PR) for the MAX-CMO.

Initially, we aimed to validate our proposal by comparing the results obtained

by other popular algorithms described in the literature that solve the MAX-CMO

problem. Based on the performed comparisons and analysis, we can observe that

the GRASP-PR is very competitive when compared against some of the most

successful algorithms: the Variable Neighborhood Search heuristic and the La-

grangian Relaxation algorithm. In addition, from an optimization point of view,

we can mention at least two ways to obtain further improvements to our propose

(Chapter 2, Section 2): a) by trying more specialized Greedy randomized con-

struction procedures and b) by better tuning the parameters’ values chosen.

An important element in several bioinformatics problems is the relation be-

tween the optimum value of the objective function and the biological relevance of

the corresponding solution. In protein structure comparison, we should remem-

ber that we are dealing with a mathematical model that captures some aspects of

the biological problem, being possible to measure protein structure similarity in

several ways. For example, up to 37 measures are reviewed in (May, 1999).

Then, in a second moment, we aimed at investigating whether our heuristic
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provides biologically meaningful alignments for practical instances; further inves-

tigating whether GRASP-PR can replicate the results obtained by applying exact

methods with less computational effort. In order to accomplish this, we used three

different assessment criteria for the algorithms: the overlap value, RMSD value

and a visual inspection of the superimposition of the structures guided by the cor-

respondence between residues of two proteins obtained by the MAX-CMO. We

showed that our strategy can replicate the results obtained using exact methods

but with less computational on practical instances. Furthermore, we observed that

not always the different similarity measures and criteria for evaluating structural

alignment algorithms agree with each other, a question much discussed since 1996

in the work entitled “The structural alignment between two proteins: is there a

unique answer?” (Godzik, 1996). In this sense, a promising strategy would be

to combine two of the most used similarity metrics in an attempt to reshape the

MAX-CMO problem with a multi-objective function: minimize the RMSD and to

maximize the number of overlaps.

Besides obtaining the highest overlap values, it is also critical to develop

strategies able to obtain a proper similarity ranking of proteins. Our experiments

showed that in terms of SCOP’s family the (normalized) overlap values given by

the GRASP-PR seemed to be good enough to capture the similarity.

After the GRASP-PR algorithm was implemented and validated, we built an

interface that allows easy use of MAX-CMO algorithms in order to perform the

pairwise structural alignment or structural clustering of proteins. This web inter-

face is available at http://goic.dcc.ufla.br and we call it Goic-Biocomp

web tool (Chapter 3). Goic-Biocomp server produces up to six kinds of output

when the task of pairwise structural alignment is requested: (i) the distance map

plots; (ii) the contact map plots; (iii) a PDB file containing the coordinates of the
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superimposed molecules; (iv) a sequence alignment corresponding to the equiva-

lent residues found by the MAX-CMO; (v) an RMSD report that contains the cal-

culated RMSD values (in Angstroms) between the superimposed molecules; (vi) a

JMol (Jmol, 2009) applet view of the superimposed molecules. For the structural

clustering, the Goic-Biocomp server produces the dendogram as output.

In summary, Goic-Biocomp web tool provides a simple-to-use, web-accessible

approach to performing the structural pairwise alignment and the structural clus-

tering, via MAX-CMO using different successful algorithms reported in literature,

allowing several studies on protein structures with different purposes - The in-

terested reader is referred to (Wolfon et al., 2005) for a detailed description of

methods and applications for the determination of protein function.
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