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ABSTRACT

VALENTIM, Felipe Leal. Protein Structure Comparison via Contact Map
Alignment. 2010. 77 p. Master thesis (Master in Plant Biotechnology) -
Universidade Federal de Lavras, Lavras.”

Proteins are primary components in almost all biological processes in living
organisms. It is known that the variety of protein functions is a result of the differ-
ences in protein structures. Therefore, understanding and comparing the structure
of proteins is a major challenge in modern molecular biology. The structural align-
ment and comparison of proteins became an essential task, whose solution is in-
strumental in aiding other problems such as drug design, protein structure/function
prediction, and protein clustering. One promising class of approaches for measur-
ing protein similarity relies on the alignment of the protein contact maps. The
most common mathematical statement of the contact map comparison problem is
called the Maximum Contact Map Overlap (MAX-CMO). In this context, in this
Master’s thesis it has been proposed the hybrid heuristic Greedy Random Adap-
tive Search Procedure with Path-relinking for the Maximum Contact Map overlap
problem which have been revealed able to find improved solutions. Another pro-
posal which has been presented in this work is the implementation of a compu-
tational tool that allows the structural alignment of proteins through the proposed
heuristic. The chapters 2 and 3 of this dissertation represent the manuscripts des-
cribing these two proposals and a final chapter that contains the conclusion and
outlines the possibilities for future work.

Keywords: Proteins, Structural alignment, Contact Maps, MAX-CMO.

“Advisor: Ricardo Martins de Abreu Silva - UFLA



RESUMO

VALENTIM, Felipe Leal. Protein Structure Comparison via Contact Map
Alignment. 2010. 77 p. Dissertacdo (Mestrado em Biotecnologia Vegetal) -
Universidade Federal de Lavras, Lavras.”

As proteinas sdo componentes primdrios em quase todos 0s processos bi-
olégicos nos organismos vivos. Sabe-se que a variedade de fungdes de proteinas é
um resultado das diferengas nas estruturas de proteinas. Portanto, compreender e
comparar a estrutura das proteinas é um desafio importante na biologia molecular
moderna. O alinhamento estrutural e comparacdo das proteinas tornaram-se tarefas
essenciais, cuja solugcdo é fundamental para auxiliar outros problemas, tais como
a desenho racional de novos farmacos, predi¢do de fungdo/estrutura de proteinas,
e clusterizacdo de proteinas. Uma classe promissora de abordagens para medir a
similaridade da proteina depende do alinhamento dos mapas de contato da pro-
teina. A fomaliza¢do mais comum para o problema matematico de alinhamento de
mapas de contato é chamado o Maximum Contact Map Overlap problem (MAX-
CMO). Neste contexto, esta dissertacdo de mestrado propde a heuristica hibrida
Greedy Random Adaptive Search Procedure com Path-relinking para o Maximum
Contact Map Overlap problem, que tem se revelado capaz de encontrar solugdes
promissoras. Outra proposta apresentada neste trabalho € a implementacdo de
uma ferramenta computacional que permite o alinhamento estrutural de proteinas
através da heuristica proposta. Os capitulos 2 e 3 desta dissertacdo representam
os artigos que descrevem estas duas propostas. Um capitulo final descreve experi-
mentos adicionais realizados com a heuristica e a ferramenta computacional.

Palavras-chave: Proteinas, Alinhamento estrutural, mapas de contato, MAX-
CMO.

“Orientador: Ricardo Martins de Abreu Silva - UFLA
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CHAPTER 1

GENERAL INTRODUCTION



1 PROTEIN STRUCTURESAND CONTACT MAPS

Proteins are primary components in almost all biological processes in living
organisms. It is known that the variety of protein functions is a result odlififer-
ences in protein structures. Therefore, understanding and complagisgructure
of proteins is a major challenge in modern molecular biology (Eidhammer et al.,
2004).

Despite the large amount of diversity in their functions, all proteins are made
of the same components, amino acids. And all amino acids share the same basic
structure. Each amino acid consists of a central carbon atfy &n amino group
(IVH3), at one end, a carboxyl group’ QO H) at the other end, and a side-chain
(R) that characterizes the amino acids. This side-chain is usually referascaio
amino acid residue, or simplyrasidue(Eidhammer et al., 2004).

In order to form a protein molecule, the carboxyl group of one amino acid
forms a peptide bond with the amino group of another amino acid ané/a0)(
molecule is revealed. The sequence of peptide bonds forms the prot&hobac
There are 20 different side-chains specified by genetic code eaghicif is ad-
dressed by a letter of the alphabet. Since each protein is a sequence @baids)
it can be described by a string over this set of 20 letters (Eidhammer et@4).20

The structure of proteins is organized in four structural levels: prinssg;
ondary, tertiary, and quaternary structures. The linear sequenaoaind acids that
contribute to the formation of a protein molecule is called its primary structure.
Many proteins contain roughly 100-1000 amino acids (Eidhammer et al.,) 2004
(some even more than 4000). Local arrangement of a few or a fewnagonano
acid residues (Hunter, 1993) is seen in particular patterns repeatedhnindifia
ferent proteins. These patterns are formed because of the interaogoisted by

hydrogen bonds mainly within the backbone. The three-dimensional falleof



protein molecule - which is a result of connecting secondary structureshiergy
- is called tertiary structure of the protein (Eidhammer et al., 2004). There ar
many proteins in nature which form from combinations of two or more protein
chains. The spatial arrangement of these proteins is cgllaternary structure
In this work, we are particularly interested in the tertiary structure of prejeind
when we refer to the protein structure in what follows, we will be refertintipeir
tertiary ones.
1.1 Availability of structural data of proteins

The Protein Data Bank (PDB) (Berman et al., 2000) is the standard reposi-
tory for collecting information on determined three-dimensional structurpsosf
teins and other large biological molecules which are found in all of the living
organisms. The coordinates of the structures in the PDB are determinedney s
experimental methods such as X-ray crystallography and Nuclear Medgtes-
onance (NMR) spectroscopy A rapid increase in the number of protein struc-
tures deposited in the PDB has been observed in recent years, auséed this
growth, protein structure comparison has become a key problem in bimator
ics. This rapid growth has been related to the recent emergence of ¢alggso-
tein structure determination projects (Nair et al., 2009), called structunalgies
(Westbrook et al., 2003).
1.2 Protein Contact Maps

Three-dimensional structure of proteins can be represented bydik&ince
maps A distance map is av x N matrix, whereN is the number of amino
acids in the sequence of a protein. Each elerdgntn the matrixD represents
the distance between thi# and thej? amino acids, usually in Angestrom (A).

The distance between two residues can be defined in different wagfs asuthe

*More information about the PDB can be found in
http://ww. wypdb. or g/ docunent at i on/



distance betwee@'« -C'av (Vullo & Frasconi, 2003).

1A6M._ContactMap

T 40 60 80 100 120 140 160

FIGURE 1 At the top, the protein PDB-ID:1lam6 as taken from the PDB
(Berman et al., 2000). On the left below, the extracted Distance Map
of one chain of the protein. And on the right, Contact map of the same
protein by applying the threshold of 6.5A. Each pixel in this map indi-
cates that the two corresponding amino acids are within the distance of
6.5A0f each other.

Contact mapsre a thresholded version of distance maps. The contact map of
a folded protein withV residues is a binary matriX x N of all pairwise distances
within that protein. Two residues are said toibeontactif the distance between
their Ca is not greater than a presumed threshold (typically in range 5A-12A)
(Vullo & Frasconi, 2003) - see Figure 1.

Different secondary structures can be recognized in contact mamsgthr

their special patterns. In particulat-helices appear as thick bands along the
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main diagonal, whilgs-sheets appear as thin bands parallel or perpendicular to the
main diagonal (Glasgow et al., 2006). Therefore, the contact map is a nfistima
representation of a protein native three-dimensional structure (Kgasn2004).

This property leads to the idea that if two protein contact maps are similar to each

other, their corresponding proteins have similar structures as well.

2 PROTEIN STRUCTURE COMPARISONS

Protein structure comparison has become a key problem in bioinformatics,
improving researches that seek to find functional/evolutionary relatioashimg
proteins and leading scientists in tasks such as protein function determination
(Wolfon et al., 2005), rational drug (Wieman et al., 2004) design, thesassent
of fold prediction (Goldsmith-Fischman & Honig, 2003), or protein clusteend
classification (Dietmann et al.,2001). Moreover, structural alignment ifualie
tool for the comparison of proteins with low sequence similarity, where evaolutio
ary relationships between proteins can not be easily detected by staedarhce
alignment techniques (CAPRARA et al., 2000; Balaji & Srinivasan, 208ha-
sic problem in pairwise protein structure comparison is finding a scoringnseh
for similarity. Currently, most of the scoring schemes use the informationtabou
three-dimensional coordinates of protein structures, or their two-dinreadiep-
resentations as distance maps. Another large class of approachesafrrimg
protein similarity relies on mutual comparison of contact maps. These methods
are based on the hypothesis that similarity in protein contact maps results in sim-
ilarity in protein structures. In this work, we focus on this approach of aigmt

of contact maps.



2.1 Contact Map Alignment

A large class of methods for protein structure comparison scores the simi-
larity of proteins by comparing their binary contact maps. These appesaute
based on the hypothesis that contact maps capture important information abo
the native structure of proteins (Krasnogor et al., 2003). Thus, the sityikse-
tween contact maps results in similarity between protein structures. The most
common mathematical statement of the contact map comparison problem is called
theMaximum Contact Map Overlgiisreenberg et al., 2004) (MAX-CMO). In the
formulation of this problem, contact maps are interpreted as adjacency malfice
graphs. Each protein is represented by a graph whose nodespoods one of
the amino acids of that protein. There is an edge between two nodes offite gr
whenever their corresponding amino acids are in contact, i.e., their posititires
three-dimensional structure of the protein are within a specified distanceeof
another. The problem is now to calculate the similarity of proteins by aligning the
two contact map graphs. The alignment value (i.e. the amount of similarity) is
determined by the size of the common subgraph, which is identified by the align-
ment, that is, the number of edges connecting two equivalent nodes inraptisg

Chapter 2 details this problem.

3 OBJECTIVESAND STRUCTURE OF THE THESIS

This project main objective, which proposal is detailed in Chapter 2, is the
development of a novel and efficient heuristic for the Maximum Contact Map
Overlap problem. The chapter 2 represents the manuscript describingydhis
posal - introduction, review, formalizations and mathematical modeling of the
MAX-CMO problem; methodology development; our proposal presentdtieas
GRASP-PR algorithm for the MAX-CMO problem; as well as presenting the



results of performed analyses. This manuscript meets the requirements of th
journal “lIEEE/ACM Transactions on Computational Biology and Bioinformsdtic
(TCBB) for publishing an article of type “Regular Paper”.

A secondary objective — presented in Chapter 3 as a brief manuscript — is
the implementation of a computational tool that allows the structural alignment
of proteins through the proposed heuristic and also other succeggbuitlams
described in subsequent chapters. This second manuscript meetgiinements
and restrictions of the journal “Bioinformatics” (Oxford journals) to pulblan
article of type "Application Note”.

The fourth and final Chapter contains the conclusion and outlines the poss

bilities for future work.
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CHAPTER 2

GRASP WITH PATH-RELINKING FOR THE
MAXIMUM CONTACT MAP OVERLAP
PROBLEM
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1 ABSTRACT

Structural alignment emerged as a valuable tool for the comparison of
proteins with low sequence similarity, since structurally similar but sequentially
unrelated proteins have been discovered and rediscovered by nsaayaleers.
Recently, the growth of the Protein Data Bank has been accelerated g adatle
structure determination projects, and thus, fast and efficient algorithmpsdtzin
structure comparison has become more important to take advantage of #e hug
amount of structural data. There exist several approaches topetierstructural
alignment, being the solution of the Maximum Contact Map Overlap problem one
efficient available alternative. Although Maximum Contact Map Overlaplgro
may be solved using exact algorithms, simple approximate algorithms that obtains
good quality solutions using less computational resources and time are still re-
quired. This paper proposes a variant of the greedy randomizedinadaparch
procedure with path-relinking (GRASP-PR) for MAX-CMO. Computatioeg
periments are performed comparing a GRASP-PR heuristic with other algorithms
from literature on real and simulated data. The GRASP-PR heuristic gfaets
is analyzed, demonstrating that our approach is a promising strategy heerds®
problem.

Keywords: Structural alignment, maximum contact map overlap problem, GRASP
with Path-Relinking.
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2 RESUMO

O alinhamento estrutural emergiu como uma valiosa ferramenta para com-
paracao de proteinas com baixa similaridade de seqiiéncia, visto qlirgsa@m
estruturas semelhantes mas sequiencialmente nao relacionadas tém siderdesc
tas e redescobertas por muitos pesquisadores. Recentemente, o cresdione
banco de dados da proteinas foi acelerado por uma grande escadgtizsgle de-
terminacao estrutural e, assim, algoritmos rapidos e eficientes para a agawpar
da estrutura da proteina tém se tornado mais importantes para tomaremivantage
sobre a enorme quantidade de dados estruturais. Existem diversdagdns para
realizar o alinhamento estrutural, sendo a solucadaximum Contact Map Over-
lap problemuma eficiente alternativa disponivel. Embor&aximum Contact
Map Overlap problenpossa ser resolvido utilizando algoritmos exatos, simples
algoritmos aproximados que obtém solu¢fes de boa qualidade utilizando menos
recursos computacionais e tempo continuam necessarios. Este artige proa
variagcao deheuristica greedy randomized adaptive search procedare path-
relinking (GRASP-PR) para 0 MAX-CMO. Experimentos computacionais sao re-
alizados comparando o GRASP-PR contra outros algoritmos da literatura-em d
dos simulados e reais. A eficiéncia da heuristica GRASP-PR é analizauan-de
strando que nossa proposta é uma estratégia promissora para regobiaema.

Palavras-chave: Alinhamento estruturamaximum contact map overlap problem
Greedy Random Adaptive Search Procedwgm Path-relinking
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3 INTRODUTION

Proteins are organic compounds that play an important role in nearly all cell
processes, including metabolic, immunological, cell signaling, and regulation o
the cell cycle. Proteins are made up of amino acids arranged in a linear chain
and folded in a three dimensional form. An amino acid is a molecule contain-
ing an amino group, a carboxyl group, and a side chain usually rdfesras an
amino acid residue, or simplyrasidue One can think of a protein as being made
up of a backbone with hanging residues (see Figure 1). Note that alfthauag
residues may be far apart in the backbone, because of the three dinzision
of the protein, they may actually be close together. From the 20 standard amino
acid building blocks, perhaps millions of proteins exist in nature, most oftwhic
currently have unknown function.

Protein structure alignment has become a standard structural analysis tool
analysis tool providing similarity measures between the structures. Protein str
ture similarity may indicate functional/evolutionary relationship that usually leads
scientists in tasks such as protein function determination (Wolfson et ak),2@9
tional drug (Wieman et al., 2004) design , assessment of fold (Goldsmith+Ran
& Honig, 2003) prediction or protein clustering and classification (Dietmarah e
2001). Recently, the growth of the Protein Data Bank (PDB) (Berman &(4Q)
has been accelerated by a large scale structure determination projketsstcac-
tural genomicgWestbrook et al., 2003). As a result, fast and efficient algorithms
for protein structure comparison have become more important to take ageanta
of the huge amount of structural data.

One promising way of accomplishing the structural alignment is to evaluate
the alignment of their contact maps.pfotein contact majs used to represent the

distances between every pair of residues in a three-dimensional proteituse.
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The distance between two residues is usually defined as being either thessmalle
Euclidean distance between the points where the two residues connedbéackihe
bone structure or as the smallest Euclidean distance between any paimsfiato

the residues.

backbone

R(1) R(2) R(3) R(n)l

residues

FIGURE 1 A protein can be viewed as a chain of hanging residues.

A contact map (see Figure 2) consists of either a graph or a two-dimehsiona
matrix (binary or real). The graph representation (Figure 2.c) showsdhiact
map as a graph with a sequence of nodes corresponding to the seqlesidues
and an edge for each pair of non-consecutive residues whosecgissabelow a
given threshold. Thiengthof a contact map in the graph representation is defined
by the number of nodes in the graph.

For a protein withn residues{1, 2, ..., n}, the binary matrix representation
(Figure 2.a) is a squar@, 1) n x n matrix C' where the elemerd; ;, for i, j =
1,...,n (i # j), indicates whether the distandg between non-consecutive

residues andj is less than a predefined distance threshpig.

1 if 6;; < tand|j —i| > 1;
CZ‘J‘:

0 otherwise.

14



a)

1ASH._ContactMap

% 20 40 60 80 100 120 140 160

FIGURE 2 Three contact map representations of protein PDB-ID:1a3tas(bi-
nary matrix, (b) as a real matrix (distance map), and (c) as a graph. The
interested reader is referred to (Ho et al., 2008) for a detailed descrip-
tion of the generation of contact maps.

With respect to the real matrix representation (shown in Figure 2.b), aatonég
is a square real-valued matiix, whereC; ; = d;;.

Contact maps provide a more compact representation of the protein structur
than its corresponding three dimensional atomic coordinates. The adeastagt
contact maps are invariant to rotations and translations, both favoraigerpes
for the comparison of protein structures. For more detail, the readerisedfto
(Bartoli et al., 2008). In the remainder of this paper, we restrict our @beto the
contact map graph representation. The temmdesin a contact map angksidues
in a protein will be interchangeable.

To determine the similarity of two proteins requires the definition of a metric.
In this paper we use two similarity metrics. This first, calteshtact map overlap

(Goldman et al., 1999) is illustrated in Figure 3. This figure is derived from a
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similar figure in (Lancia et al., 2001). The alignment shows the residuestsd

in the subgraphs (nodes 1, 2, 4, 5, 6, 7, and 8 fiogpand nodes 1, 2, 3,5, 7, 9,
and 10 fromVg). The linear ordering is preserved by associating 1, 2 < 2,

4 3,5 56«7 7« 9, and8 < 10. The corresponding edges in the
isomorphic graphs are solid and color matched. These edges satisfyntligao
that their endpoints are associated. For example, €dge in £ 4 corresponds to

edge(1, 3) in Ep because of node associations- 1 and4 < 3.

FIGURE 3 Example of contact map alignment. Isomorphic subgraphs have fiv
(solid color-matched) edges each (Lancia et al., 2001).

Figure 4 shows an optimal alignment (overlapped edges are identifiediby re
lines) between the contact maps for distinct protdinisn (Figure 4.a) andahs
(Figure 4.b). The alignment value is defined as the number of edgeslokaebe
graph identified by the alignment, i.e., the set of corresponding edges lin eac

graph.

*http://ww. rcsh. or g/ pdb/ expl or e/ expore. do?struct urel d=1HLM
thtt p: // www. r csh. or g/ pdb/ expl or e/ expor e. do?st r uct ur el d=1AHS
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N

!

BN
TN

FIGURE 4 Three dimensional native structures for proteinsl@h and (b)
1him as taken from the Protein Data Bank (PDB) (Berman et al.,
2000), and (c) an optimal alignment of value 279 of two 6.5A thresh-
old contact maps of the proteins. The optimal value was deter-
mined in (Xie & Sahinidis, 2007) with a branch and bound algo-
rithm. This alignment was generated with a pure GRASP (without
path-relinking) heuristic. The figure was created with a modified ver-
sion of the java progranBui | dCont act MapFr onPDB available at
http://ww. cs. nott.ac. uk/ ~nxk/ USM prot ocol . ht m .

Given two contact map& 4 = (Va,E4) andGp = (Vp, Ep) such that
|V4| = nand|Vp| = m, the CONTACT MAP OVERLAP PROBLEM (Goldman et al.,
1999) is to find two subsefsy C V4 andSg C Vi with |[S4| = |Sg| and an order
preserving bijectiorf betweenS 4 andSg such that the cardinality of theverlap

set

L(Sa, S, f) ={(u,v) € E4 : u,v € Sya, (f(u),f(v)) € Ep}

17



is maximized. A solutior{S 4, Sg, f) for the contact map overlap problem can be

represented as an assignment veptof sizen such that

v if (u,v) € L(Sa,SB,f)
o nil otherwise
We later refer to the cardinality’(S4, Sg, f)| of the overlap set defined hyas
A(p).

The contact map overlap problem was shown by (Goldman et al., 1999) to
be NP-hard and can be formulated afal) integer program (Greenberg et al.,
2004). Define the binary variable; = 1 if and only if nodei € V4 is associated
with nodej € Vg, and define the binary variablg; ;y;;) = 1 if and only if
(i,k) € E4and(j,1) € Ep are corresponding edges in the isomorphic subgraphs.

The objective of the CMO problem is to maximize

Z Y(ik) (50

(i,k)EEA
(],Z)GEB

The selected edges must have their endpoints associated in such a way that

Yk Gy = 1= T = om = 1,

Y k)G < Tigs

Y6 k)(G) S This

for all (i,k) € E4 and(j,l) € Ep. Furthermore, at most one node in one graph
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can be associated with a node in the other graph, i.e.:

Z Lij < 17\V/.] € VBa
i€V

> @iy <1LVieVa
JEVEB
Finally, any two associations (edges with one endpointjrand the other i)

cannot cross, i.e.:
zij+an <1, forl <i<k<|Viandl <I<j<|Vs|

The second similarity measure used in this paper isrblo¢ mean square
deviation(RMSD). This measure is not used directly in our heuristic. Instead, it is
used only to verify the quality of the solutions found by the heuristic. The BMS
is the average distance between the backbones of superimposed prdteinse
the toolBi opyt hon of (Cock et al., 2009) to compute the RMSD values.

The contact map overlap problem was introduced in (Godzik et al., 1992).
Several exact algorithms as well as heuristics have been since paojoogéis
problem. (Lancia et al., 2001) describe a branch and cut strategy rtipbys
lower-bounding heuristics at the branch nodes. (Caprara & Lan6id2)2pro-
posed a Lagrangian relaxation approach, where the optimal Lagrarigpliens
are found by subgradient optimization. (Carr etal., 2002) proposednaetie
evolutionary algorithm. (Xie & Sahinidis, 2007) used dynamic programming as
tool to design a branch-and-bound algorithm with several reductiomitpaés to
eliminate inferior residue-residue pairs early in the search procedReéaet al.,
2008) proposed three versions of a multi-start variable neighborleawdisheuris-

tic for solving MAX-CMO.
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The remainder of the paper is organized as follows. In Section 4 werntrese
the GRASP with path-relinking heuristic for the MAX-CMO problem. Computa-
tional experiments are described in Section 5.2. Finally, concluding rerageks

made in Section 6.

4 GRASPWITH PATH-RELINKING FOR MAX-CMO
A GRASP heuristic (Feo & Resende, 1995; Resende & Ribeiro, 2003) is a

multi-start procedure in which a greedy randomized solution is constructeel to
used as a starting solution for local search for all iterations. Locatkeapeat-

edly substitutes the current solution by a better solution in the neighbortidioel o
current solution. If there is no better solution in the neighborhood, thewruso-

lution is declared a local maximum and the search stops. The best local maximum
found over all GRASP iterations is output as the solution.

GRASP iterations are independent, i.e. solutions found in previous GRASP
iterations do not influence the algorithm in the current iteration. The useeef p
viously found solutions to influence the procedure in the current iteratiarbe
thought of as a memory mechanism.

One way to incorporate memory into GRASP is with path-relinking (Glover,
1996). In GRASP with path-relinking (Laguna & Marti, 1999; Resendrieiro,
2005), an elite set of diverse good-quality solutions is maintained to bemsdd
GRASP iterations. After a solution is produced with greedy randomizedrceas
tion and local search, that solution is combined with a randomly selected solution
from the elite set using the path-relinking operator. The combined solutioaris th
considered apt to be included in the elite set. Ultimately, it is added to the elite set

if it meets quality and diversity criteria.
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procedure GRASP+PR- CMOP
Input: C4, CB
Output: solutionp*
1 P~
2 while stopping criterion not satisfiedo

3 p < GreedyRandomized(-);

4 | p<« ApproximateLocalSearch(p);
5 if P is full then

6 Randomly select a solutiope P;
7 r «— PathRelinking(p, q);

8 r < ApproximateLocalSearch(r);
9 if ¢(r) > max{c(s) : s € P}then
10 t «— argmin{A(r,s) : s € P};

11 P—Pu{rt\{th

12 elseif ¢(r) > min{c(s) : s € P}andr # P then
13 t — argmin{A(r,s): s€ P: c(s) <c(r)};
14 P —PuU{r}\{t}

15 end

16 else

17 if P = () then

18 | P —{p};

19 elseif p & P then

20 | P—PU{p}

21 end

22 end

23 end

24 return p* = argmax{c(s) : s € P},

Algorithm 1. Pseudo-code of the GRASP-PR heuristic for MAX-CMO.
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Algorithm 1 shows pseudo-code for the GRASP with path-relinking heuristic
for the MAX-CMO problem. The algorithm takes two contact maps as idplit
andCE of proteinsA and B, with n andm residues . > n), respectively. It
outputs an arrap* of lengthn, with pf = nil, if nodei € C4 representing
residuei € A is not aligned, angy} = 7, if nodei € C* is aligned with node
je OB,

After initializing the elite setP as empty in line 1, the GRASP with path-
relinking iterations are computed in lines 2 to 26 until a stopping criterion is sat-
isfied. This criterion could be, for example, a maximum number of iterations,
a target solution quality, or a maximum number of iterations without improve-
ment. During all iterations, a greedy randomized solutios generated in line 3
and tentatively improved in line 4 with an approximate local search. The greed
randomized construction and the approximate local search are desicriSet-
sections 4.1 and 4.2, respectively.

If the elite setP is empty, solutiorp is added to it in line 20. If the elite
set is not empty, then while it is not full, solutignis added to it in line 23 if
it is sufficiently different from the solutions already in the elite set. To define
the term “sufficiently different” more precisely, I&t(p, ¢) denote the number of
assignments ip that are different from those ip For a given level of difference
d, we sayp is sufficiently different from all elite solutions i if A(p,q) > § for
all ¢ € P, which we indicate with the notatigns P.

If the elite setP is full, then path-relinking is applied in line 7 betwegn
and some elite solutiop randomly chosen fron® in line 6, resulting in solution
r. In line 8, r is updated by an approximate local minimum in its neighborhood.
Path-relinking is described in Subsection 4.3.

If r is the best solution found so far, then in line 11 it replagedke solution

22



most similar to it, computed in line 10. Otherwise riiis better than the worst
solution inP andr % P, then in line 15 it replaces the solution most similar to
it, computed in line 14.
4.1 Greedy randomized construction

Greedy randomized construction in a GRASP heuristic combines elements of
a greedy algorithm with randomization to produce a series of starting solutions
for local search. Pseudo-code for the greedy randomized proeéatithe MAX-
CMO problem is shown in Algorithm 2, referred to in line 3 of Algorithm 1 as

GreedyRandomized.

procedure Gr eedyRandoni zed
Input: CA = (Va,E4),CP = (Vp, Ep), a
Output: Assignment vectop
1 Randomly selec € UNIF[[a x n],n];
2 Initialize R4 — 0; R — (;
3fori=1,...,qdo
4 Randomly select4 € V4 with prob(r4) ~ deg(ra);
5 | R~ RAU{ra};
6 Randomly selectp € Vg with prob(rg) ~ deg(rp);
7 RB «— RBU{rp};
8 end
9 SortR“* andR” in increasing order;
10 for k=1,...,¢qdo
1 i — k-th element ofR*; j — k-th element ofR”;
2 | pi—J;
13 end
14 return p;

Algorithm 2: Greedy randomized construction procedure

Given two proteinsd and B, the construction procedure takes as input their

contact map€4 = (Va, E4) andC? = (V, E) of lengthsn andm (m > n),
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respectively, and outputs a vecioof lengthn, wherep; = nil if residuei € V4
is not aligned, ang; = j if residue; € V4 is aligned with residug € V.

In line 1 of Algorithm 2, the numbeg of residues to be aligned is randomly
selected with uniform probability from the interviah x n], n], wherea € (0, 1]
is a positive real valued input parameter. It C V4 andR? C Vp be the sets
of residues from proteingl and B, respectively, that will be aligned. They are
initialized empty in line 2. In théor loop in lines 3 to 84 residues are randomly
selected fron’4, andVp, greedily favoring nodes with high degree. High degree
nodes have a greater chance of being endpoints of isomorphic edgedothav
degree nodes. These residues are added, respectively, R'satel 7. Inline 9,
the elements of set8” and R? are sorted in increasing order. Finally, in tioe
loop in lines 10 to 14 thé-th residue ofR* is aligned with thek-th element of
RB fork=1,...,q.
4.2 Approximatelocal search

Since there is no guarantee that the construction procedure presetectin
tion 4.1 produces a local maximum number of overlaps, a local improvement pr
cedure can be applied starting at the constructed solgttorattempt to increase
the number of overlaps. Given a starting solutigm local improvement strategy
examines solutions in the neighborho®dp) of p and replaceg by some solution
p' € N(p) with A(p') > A(p).

Given a solutiorp, Figure 5 shows four quadrilateral structures that can po-
tentially occur in the solution. In the figures, nodre’g, rf} € Sy € V4 and
rk r e Sp C Vi, whilery € V4 \ Saandrp € Vg \ Sp. Each structure has
two edges(rk, rL) and(r, 7£) defined by the bijectiorf of £(S4, Sg, f).

We now describe the neighborhoods of each of the four quadrilatevat s

tures.
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* Typel: Each quadrilateral structure of Type | in a solution admits two neigh-
bors shown in Figure 6. The first neighbor is obtained by removing edge
(r%,rk). This move corresponds to settipg= nil, wherei = r%. Like-
wise, the second neighbor is obtained by removing eadder). This
move corresponds to setting = nil, wherei = rf. with respect to its

contact map, there ar@(n) quadrilateral structures of this type.

e Type II: Each quadrilateral structure of Type Il in a solution admits two
neighbors shown in Figure 7. The first neighbor is obtained by replacing
edge(rk, rk) by (ra,rk), wherer < r4 < rfi. This move corresponds
to settingp; = nil for i = r4 andp; = j, wherei = r4 andj = rk.
Likewise, the second neighbor is obtained by replacing €dgerZ) by
(ra,rR), whererk < r, < r&. This move corresponds to settipg= nil
fori = r% andp; = j, wherei = r4 andj = r£. In the worst case, there

areO(n) quadrilateral structures of this type.

» Typelll: Each quadrilateral structure of Type Ill in a solution admits two
neighbors shown in Figure 8. The first neighbor is obtained by replacing
edge(rh, L) by (rk,rp), whererk < rg < ri. This move corresponds

to settingp; = j, wherei = r% andj = rp. Likewise, the second neighbor

L r R L
E s s

L R
"a Ta Ta
ooo.ooo ....ooo
.oo.oo- ....ooo
y R r
rE rB B

L
rB I'E r

B

(@) Type A (b) Type B (c) Type C (d) Type D

FIGURE 5 Quadrilateral structures of solution.
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FIGURE 6 Type | moves in local search.

is obtained by replacing eddeZ, r&) by (r%,r5), whererk < rp < r&.
This move corresponds to settipg= j, wherei; = rf andj = rg. Inthe

worst case, there ar@(m) quadrilateral structures of this type.

Type IV: Each quadrilateral structure of Type IV in a solution admits five
neighbors shown in Figure 9. The first neighbor (middle structure in the
figure) is obtained by adding edde,,r5), whererk < r, < rf and

rk < rp < r&. This move corresponds to setting= 7, wherei = 4 and

j = rp. The second neighbor (top left structure in the figure) is obtained
by replacing edgér, %) by (r%,rp), whererk < rp < r£. This move
corresponds to setting = j, wherei = r§ and;j = r. The third neighbor
(top right structure in the figure) is obtained by replacing egddg %) by
(r%,rg), whererk < rp < rE. This move corresponds to settipg= j,
wherei = rf§ andj = rg. The fourth neighbor (bottom left structure

in the figure) is obtained by replacing edge;, r%) by (r4,7%), where
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FIGURE 7 Type Il moves in local search.

rk < rs < rf. This move corresponds to settipg= nil for i = r; and
p; = j, Wherei = r4 andj = r4. Finally, the fifth neighbor (bottom right
structure in the figure) is obtained by replacing edg@, %) by (r4,7%),
whererf < r, < rf. This move corresponds to settipg = nil for

i = ri andp; = j, wherei = r4 andj = r&. In the worst case, there are

O(mmn) quadrilateral structures of this type.

In a standard local search, one explores the neighborhood of a sotutth
moves either to the first or to the best improving solution. In either situation, in
the worst case, the entire neighborhood will need to be explored atdeast
Such large neighborhoods are expensive to explore with a standaidskarch
method. To avoid exploring the entire neightborhood, we propose amdpyate
local search scheme similar to the one introduced in (Mateus et al., 2009).

The idea of the approximate local search is to sample the neighborhood of

the current solution at mostaxltr times or untilMaxzCLS improving neighbors
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FIGURE 8 Type Il moves in local search.

are identified. The search then moves from the current solgtimnan improv-
ing sampled neighbay’ that is randomly chosen with probability proportional to
A(p"). The search repeats until no improved neighbors are found &fteftr
probes. Algorithm 3 shows pseudocode for the approximate locallspance-
dure. The procedure takes as input: the starting solytjaihe maximum size
MazCLS of the candidate local search s8LS, the maximum numbeMazxItr
of times the neighborhood of the current solution is sampled, and a paraimeter
that determines the maximum number of consecutive moves from the cuorent s
lution p. The loop in lines 1 to 28 is repeated until no improving sampled solution
is found, i.e. CLS = (. Inline 2, the sampled solution counterunt and set
MazCLS are initialized. The loop in lines 3 to 24 is repeated until either the set
CLS is full or MazxItr neighbors op are sampled. In line 4 the current solution is
saved agp’.

Starting fromp, thefor loop in lines 5 to 19 performs a number of moves. This

number of moves is chosen uniformly at random in the range ., k]. Recall
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FIGURE 9 Type IV moves in local search.

that a quadrilateral structure is made up of four related nadgs;§ € S and
rk,rE € Sp, suchthat andrf are, respectively, aligned witt; andr£, and no
other alignment exists between these two edges. Therefore, giverf tiveefour
nodes, the other three are entirely determined. We call this seed naoelaor.

In line 6, position of the anchor is chosen at random to be one of the folipwin
left-C4, right-C4, left-C'Z, or right-C 2. Once the archor position is fixed, line 7
determines the seR of residues for the anchor. L&ty andI'p be the set of
aligned residues i'4 andCj, respectively. Let = infI'4 andif = supI'4

be, respectively, the leftmost and the rightmost aligned residd&*ofSimilarly,
leti? = inf 'y andiZ = sup I'p be, respectively, the leftmost and the rightmost

aligned residue of’Z. If the anchor position is
o left-C4, thenR =T'4 \ {i4},
e right-C4, thenR = T4 \ {i7},

o left-CB, thenR =T'p \ {i%},
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s right-CB, thenR =T \ {i?}.

Let deg(r) be the degree of € R with respect to its contact map. In line 8, the
anchor residue is selected at random frofR with probability proportional to
deg(r). In line 9, the quadrilateral structu@ = {r4, %, rL, r&} is determined.

If the anchor position is

o left-C4, thenrf, = r, rfl is the first aligned residual to the right of, r%

andr£ are the residues aligned, respectively, withandrf;

« right-C4, thenr® = r, 7% is the first aligned residual to the left off, 7%

andr£ are the residues aligned, respectively, withandrZ;

* left-C®, thenrk = r, ri is the first aligned residual to the right of, r%

andr% are the residues aligned, respectively, withandr£;

* right-C?, thenrfl = r, rk is the first aligned residual to the left of}, r§

andr% are the residues aligned, respectively, withandrZ.

Depending on which type of quadrilateral struct@ s, the appropriate move
updates solutiop’ in lines 10 to 18. In lines 20 to 22, jf is better than the current
solutionp, it is added to the se€'LS. In line 23, the sampled solution counter
count is incremented. After completing thiepeat loop in lines 3 to 24, if the set
CLS is not empty, then in line 26, the new current solutiois randomly selected
from setCLS with probability proportional ta\ (p).

ProceduredbveTypel ,MoveTypel | ,MoveTypel | | ,andVbveTypel V
are described next. Each procedure takes as input a sojutod a compatible

quadrilateral structur@ and output a solution in the its neighborhood.
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procedure Appr oxi nat eLocal Sear ch
Input: p, MaxCLS,MazItr, k
Output: Approximate local maximurp

1 repeat
2 count «— 0; CLS « 0;
3 repeat
4 P —p
5 fori=1,...,UNIF{1,2,...,k} do
6 Randomly select anchor position;
7 Determine allowable sé® of residues for anchor;
8 Select anchor residuec R with prob(r) ~ deg(r);
9 DetermineQ = {r§,rff, rk rE};
10 case Q is of Type |
1 | p' « MoveTypeI(p');
12 case Q is of Type Il
13 | p' « MoveTypeII(p');
14 case Q is of Type Ill
15 | p' < MoveTypeIII(p');
16 otherwise
17 | p' — MoveTypeIV(p');
18 end
19 end
20 if A(p’) > A(p) then
21 | CLS — CLSU{p'};
22 end
23 count < count + 1;
24 until |CLS| > MazCLS or count > Maxltr ;
25 if CLS # 0 then
26 \ Randomly select a solutigne CLS;
27 end
28 until CLS =0 ;
29 return p;

Algorithm 3: Pseudo-code fohppr oxLocal Sear ch: Approximate lo-
cal search procedure.

Pseudocode for proceduveveTypel is shown in Algorithm 4. This proce-
dure simply moves to one of the two Type | neighbor @fith equal probability.
In line 1, a coin toss is simulated to select the edge to be removedifrdhthe
outcome of the coin toss is heads, then in lines 3 and 7, edgeé) is removed.
Otherwise, in lines 5 and 7, edgef, r&) is removed.

Pseudocode for procedukveTypel | is shown in Algorithm 5. This pro-
cedure moves to one of the two Type Il neighbor® efith equal probability. In

line 1, a residue 4 located between’; andr% is randomly selected with proba-
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bility proportional todeg(r4). In line 2, a coin toss is simulated to select the edge
to be removed fronp. If the outcome of the coin toss is heads, then in lines 4
and 8 edger’,r%) is replaced by edgér4,r%). Otherwise, in lines 6 and 8,

edge(rf, r&) is replaced by edge- 4, rf).

procedure MoveTypel

Input: rfl, rf, 7’{;,, rg, p

Output: Assignment vectop
1 Randomly select € UNIF(0,1);
2 if 1 < 0.5then
3 ‘ 7 — rﬁ;
4 else
5 ‘ 7 — rf;
6 end
7 p; < nil;
8 return p;

Algorithm 4: Type | move in approximate local search

procedure MoveTypel |
Input: rfl, rf, ’f’é, rg, P
Output: Assignment vectop
1 Randomly select, % < 74 < rf, with
prob(ra) ~ deg(ra);
Randomly select € UNIF(0, 1);

if # < 0.5then
L

2
3
4 ‘ J e TE
5 else

6 ‘ j<—r§;
7 end

80 TA D < J;
9 return p;

Algorithm 5: Type Il move in approximate local search
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Pseudocode for proceduMdveTypel I | is shown in Algorithm 6. This
procedure moves to one of the two Type IIl neighborg efith equal probabil-
ity. In line 1, a residue; located between% andr% is randomly selected with
probability proportional taleg(rg). In line 2, a coin toss is simulated to select
the edge to be removed from If the outcome of the coin toss is heads, then in
lines 4 and 8 edgéry,rL) is replaced by edgérk, rg). Otherwise, in lines 6

and 8, edgér’, &) is replaced by edge%, ).

procedure MoveTypel | |
Input: rﬁ, 7’5}, TJLB, rg, p
Output: Assignment vectop
Randomly selectp such thatrl < rp < rf;
Randomly select € UNIF(0, 1);
if = < 0.5 then
‘ 7 rf{;
else
IR
end
Je—rBipi —J;
return p;

O©oO~NO U WNPE

Algorithm 6: Type Ill move in approximate local search

Pseudocode for procedukveTypel Vis shown in Algorithm 7. This pro-
cedure moves to one of the five Type IV neighborgofin line 1, residuer 4,
located between’ andrf is randomly selected with probability proportional to
deg(r4). Likewise, in line 2, residuep, located betweeng andrg is randomly
selected with probability proportional teg(rz). In line 3, a coin toss is simu-
lated to determine whether a new edge will be added or if one will be replaced.
If the outcome of the coin toss is heads, then in lines 18 and 20 edges) is

added. Otherwise two simultaneous coin tosses are simulated to determine which
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of the other four neighborhood solutions will be selected for the move. tHas
outcome is two heads, then in lines 7 and 20, edderk) is replaced by edge
edge(rh, 7). If is the outcome of the first coin is heads and of the second tails,
then in lines 9 and 20, edde’, %) is replaced by edge edde’, ). If is the
outcome of the first coin is tails and of the second heads, then in lines 11, 12,
and 20, edgér?, &) is replaced by edge edge4, r£). Finally, if is the outcome

is two tails, then in lines 14, 15, and 20, edgé€, r%) is replaced by edge edge

(rA,ré).

4.3 Path-relinking

Path-relinking (Glover, 1996) is an intensification scheme that explotés pa
in the solution space connecting two good-quality (or elite) solutions. Given tw
solutions of the MAX-CMO problem denoted by their respective assignrremt
torss andt, let A(s,t) = {i = 1,...,n : s; # t;}. Path-relinking examines
each solution in the path = p (s, t), p2(s,t),...,px(s,t) = ¢t connectings and
t, wherek = |A(s, t)| andp;(s, t) is thej-th solution in the path from to ¢. So-
lution p;(s,t) € N(pj—1(s,t)) suchthalA(p;(s,t),t)| = |A(pj—1(s,t),t)| — 1,
i.e.pj(s,t) is obtained by reassigning a residue A(p;_i(s,t),t) of p;_1(s,t)
tot,. It is easy to verify that for any pair of solutiorsand¢ there will be at least
one path of the type described above freoto ¢.

Algorithm 8 illustrates the pseudo-code of the path-relinking procedwe ap

plied to a pair of solutions (starting solution) and (target solution).

The procedure starts in line 1 by computing 8€ts,t) = {i = 1,...,n :

s; # t;} comprised of the set of indices for which the residues @md¢ differ. In
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procedure MoveTypel V
Input: rf‘, Tf, Té, rg, P
Output: Assignment vectop
1 Randomly select such thatf < r4 < rf;
2 Randomly selectp such thats < rp < r&;
3 Randomly select; € UNIF(0, 1);
4 if m < 0.5 then
5 Randomly select, € UNIF(0,1);
6 casem < 0.25
7 ‘ 7 — Tﬁ; J < Trp;
8 case0.25 < mp < 0.5
9 ‘ 7 — rﬁ;j —rpg;
10 case (0.5 < m <0.75
3 — rf; pi <— nil;
14— TA ] — rg;
13 otherwise
1 — rﬁ; p; < nil,

i ra;j ek

16 end

17 else

18 ‘ 14=TA, ] < B,
19 end

20 p; < 7,

21 return p;

Algorithm 7: Type IV move in approximate local search
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procedure Pat hRel i nki ng

Input: Pair of solutionss and¢

Output: Best solutionz* in path froms to ¢
Compute sef\(s,t) «— {t =1,...,n: s; # t;};
z* «— argmax{A(s), A(t)};

A* — A(z*);

T < S;

while A(z,t) # 0 do

DefineA’(z, t) C A(z,t) to be the set of feasible residues;
i* — argmax{A(z @ i) :i € A (z,t)};
Az @ i*,t) — Az, t) \ {i*};

T —xD*;

10 if not ISFeasiblet) then

11 | Repair,i);

12 end

13 if A(z) > A* then

14 A* — A(z);

15 ¥ — x;

16 end

17 end

18 return z*;

Algorithm 8: Path-relinking between solutiossandt.

©CoOo~NOUA~WNPRE

lines 2 and 3, the best solutiarf amongs andt¢ and its costA* are determined.
In line 4 the current solutior: is initialized tos. The loop in lines 5 to 17 is
repeated until the path is traversed, i.e. the current solgtisra neighbor of the
targett. In line 6, the set of feasible indice¥'(z,¢) is defined to be the set of
indicesi € A(z,t) for which the assignment = (z1,...,2i—1,ti, Tit1, ..., Tp)
is feasible. We use the shorthand notatios- = & i to represent this move. If
the constraints of this new solution are not violated, the new solution is feasible
Otherwise, a repair procedure is applied in an attempt to make it feasible inlines
to 12. The repair procedure simply removes all alignments that are vialatyng an
of the constraints, maintaining the alignmeérif the solution target.

In line 7, the feasible index’ that results in the highest valued assignment is
determined and in line 8 sét(z @ i*,t) is defined to be\(z, ¢) \ {i*}. Inline 14
the move is made and in lines 13 to 16 the best solution in the path and its value
are updated if necessary. The best solutibrfound in the path frons to ¢ is

returned in line 18.
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5 COMPUTATIONAL EXPERIMENTS AND RESULTS

In this section, we report on computational experiments carried out with the
GRASP-PR heuristic introduced in this paper in order to analyze its effexss
and to compare our algorithm with existing ones. First, we describe oumest e
ronment and use datasets, next we analyze and compare our implementtition w
other heuristics from the literature on a suite of test problems.
5.1 Test environment and Datasets

All experiments with the GRASP-PR were carried out on a Dell PE1950 com-
puter with dual quad core 2.66 GHz Intel Xeon processors and 2 Gb mwionye
running Red Hat Linux nesh version 5.1.19.6 (CentOS release 5.2 | ReBnt3-
53.1.21.el5). The GRASP-PR heuristic was implemented in Java and compiled
into bytecode with javac version 1.6.0 05. The random-number generatanis a
plementation of the Mersenne Twister algorithm (Matsumoto & Nishimura, 1998)

from the COLT library.

TABLE 1 Dataset information Pairs stand for the number of pairwise compar-
isons performed. The values fdrg.Contacts corresponds to contact

maps at 7A.
Dataset Pairs Avg. Residues Avg. Contacts Reference
Lancia 2702 57.07 95.91 (Caprara & Lancia, 2002)
Skolnick 161 158.23 470.93 (Caprara & Lancia, 2002)
Chew-Kedem 145 201.91 928.75 (Chew & Kedem, 2002)

For the test bed analysis, we used three datagst® table 1): The Lancia
dataset (Caprara & Lancia, 2002) with 269 proteins and 2702 diffémstances
of protein pairs, the Skolnick datset (Caprara & Lancia, 2002) with 4@prs and

tCOLT is a open source library for high performance scientific and ieahcomputing in Java.
Seehttp://acs.lbl.govi-hoschek/colt/
$The datasets can be downloadeltat p: / / goi c. dcc. uf | a. br/ Bi oconp/ Dat aset s. ht m
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161 different instances of protein pairs, the Chew-Kedem datasew(&Kedem,
2002) with 40 proteins and 145 different instances.
5.2 Comparison of the GRASP-PR heuristic with other algorithms

In the first experiment, we use of all instances of the three datasets, t@alizin
3008 instances of protein pairs.

Caprara & Lancia (2002) proposed a Lagrangian Relaxation (LR)oagp
for solving MAX-CMO, where the optimal Lagrange multipliers are found bly-s
gradient optimization. Besides yielding an upper bound on the optimal soldtion o
the original problem, the Lagrangian multipliers are used to drive a heuristic to
construct the MAX-CMO solutions. Krasnogor et al. (2003) have destnated
that this LR algorithm was able to find better results than the previous algorithms
for the MAX-CMO over the Chew-Kedem dataset, and after that, the LRresas
viewed over different datasets (Caprara et al., 2004; Xie & Sahini@&72con-
firming its effectiveness.

Pelta et al. (2008) argued that in order to compare a set of algorithmarpyrop
all of them should be ideally compiled and run in the same computational environ-
ment. Hence, the experiments carried out in this study met such a requirement.
We make use of the source codes of fRnd VNS algorithms to perform the
comparison.

The VNS heuristic is presented as “a simple and fast” heuristic for protein
structure comparison and its original stopping criterion for each run igt&09
tions or 20 iterations without improvements (whatever comes first). Threewnsr
of VNS heuristic are available: MSVYNS1, MSVNS2 and MSVNS3. In all com-

putational experiments in this paper, we set the best VNS version anchgizra

9The LR algorithm was implemented in C programming language and it wasvisakindly
provided to us by one of the authors of Caprara & Lancia (2002), fdb@aprara.

IThe VNS algorithm was fully implemented in C++ programming language anddftware is
available for download atttp://modo.ugr.es/jrgonzalez/msvns4maxcmo
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looking at the paper: “The best alternative is MSVNS3 with windows sizd®eof
30-50 leading to an average error bel®% for Lancia’s dataset with 2702 pairs,
and belowl.7% for the Skolnick’s one.” (Pelta et al., 2008).

There are also three different modes of the LR algorithm, which differ &y th
heuristic used to build the MAX-CMO solutions from the lagrange multipliers.
We applied one denoted by LAGR-R which uses local search at theodetanly
to accomplish it, because according to Xie & Sahinidis (2007) they “redaifuz
best solutions and CPU time for LAGR-R”.

We also adjusted the best combination of parameters for the GRASP-HR heur
tic. To accomplish it, we tested 268 combinations of parameters on 4 randomly
selected instances (2 from Lancia, 1 from Chew-Kedem and 1 frofnmiskp We
performed 10 runs per parameter combination on each one of the 4 irstasitte
a running time limit of 1 second and a calculation of the average error of each
round. For the four analyzed instances, the parameters that showeeraale-
erage error arew(delimiter of greedy randomized construction): QM axCLS
(Local Search parameter) : 20f/axItr (Local Search parameter) : 10, Local
Search moves : 2P| (elite setP size) : 8,0 (sufficiently different level) : 2.

After selecting the best versions and parameters for each algorithm,rwe pe
formed 30 runs on each instance of the selected datasets using MSVNSS3 with
windows size of 30. For each instance, the minimum, the average and the max-
imum overlap values of the 30 runs were calculated, as well as the minimum
and maximum running times. The average running time of the runs subset that
reached the maximum overlap value is also calculated. This last measure of time
was set as the stopping criterion for the LR and GRASP-PR algorithms, and th
we carried out 30 runs on each instance using these two others algoritiims a

the minimum, average and maximum overlap values of the 30 runs of these ones
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are also calculated. As result of this experiment, complementary data contain-
ing the values for each instance of the three datasets is available for dalvnlo
athttp://goic.dcc.ufla. br/Bi oconp/ Resul t sCMOP. xl s asaasa
benchmark for MAX-CMO algorithms comparison.

For instances of Lancia and Skolnick datasets, the error per instameelof
algorithm was calculated using overlap valtiggiven by the exact algorithm from
the algorithm presented in (Xie & Sahinidis, 2004). For instances of (Kedem
dataset, for which the exact overlap values were not available, th€%jravas
calculated using the Upper Bound values returned by the LR algorithm. tihn bo
cases, the error is calculated with respect to the maximum overlap value38 the
runs per instance. The results are summarized in Tables 1 and 2.

In the experiment conducted by us, the results for the VNS algorithm gshowe
in Table 1 closely corroborate with results presented by Pelta et al. (2008y
report an average error 8f6% for Lancia dataset and below7% for the Skol-
nick’'s. We obtained.398% and1.708%, respectively.

For Lancia dataset, Table 2 shows that the VNS heuristic presents the low-
est average error (3.398%) and and the highest number of optimallydsiolve
stances (1578 - 58.4%). The LR algorithm obtained the second lowestgave
error (8.438%) although it has optimally solved fewer instances than theSBPRA
PR (970 and 1114 number of optimally solved instances for the LR algoritldm an
GRASP-PR, respectively). Considering only the instances not optimdiredo
(Near-Optimally Solved), the average errors increase to 8.160%, 56.512
13.150% for VNS, LR and GRASP-PR, respectively. If we rank therilyns

considering the value of average error, for Lancia dataset, wewbeat the VNS

**These optimal overlap values were kindly provided by one of the autifarsference Pelta
et al., (2008), Juan Gonzéalez, who make use of same values fquutioig the error of the VNS
algorithm in respect to the optimal overlap values.
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algorithm is the best one, followed by LR and finally the GRASP-PR. Conside
ing the number of instances optimally solved, the VNS algorithm, the GRASP-PR
and the LR, we found out that the Lancia dataset has protein pairs withleeisma
number of residues and contacts, containing also the easiest numbdaaotess
despite it having the largest number of them (see table 1).

For the Skolnick dataset, considering the average error of all instawees
rank the algorithms with the VNS (1.708%) as the best heuristic followed by
GRASP-PR (3.821%). And considering the number of optimally solved instanc
we rank the GRASP-PR - 89 (55.28%) optimally solved instances - as the best
one followed by VNS - 63 (39.13%) optimally solved instances. The results fo
this dataset show that the results of GRASP-PR are competitive with the other tw
heuristics analyzed.

Table 3 shows results for the Chew-Kedem dataset, where the errdr is ca
culated based on the best Upper Bound algorithm value obtained from the LR
algorithm. In this table, the results are grouped according to the protein families
in order to investigate whether any specific type of structural folding isriag
some enhancement that could further improve the proposed heuristit¢y edtd
be attained through analyses and proposition of specialized constmnatheds,
designed for different families of proteins. Additional result analysedifierent
protein faimilies of this datasets will be performed. In general, the GRASP-PR
algorithm showed the best results, with an average error of 12.412khvéal
closely by the LR (12.839%). These results encourage the use of thesga
GRASP-PR heuristic, for the Chew-Kedem is considered the most chialieng

dataset according to to Krasnogor et al. (2003).
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TABLE 2 Results over 2702 pairs from Lancia’s dataset, and 161 pair 8kolnick’s dataset. The error is measured with
respect to the optimum value.

Error (%)

Time (seconds)

Algorithm N Avg. SD Median | Min. | Max. Avg. SD Median
Total VNS 2702 (100%) | 3.398 | 4.882 | 0.000 | 0.010| 5.189 | 0.077 | 0.113 | 0.062
GRASP-PR| 2702 (100%) | 9.115 | 13.326| 2.679 | 0.010| 5.189 | 0.077 | 0.113 | 0.062
LAGR 2702 (100%) | 8.438 | 10.001| 4.167 | 0.010| 5.189 | 0.077 | 0.113 | 0.062 B
Optimally Solved VNS 1578 (58.4%)| 0.000 | 0.000 | 0.000 | 0.015| 0.893 | 0.083 | 0.054 | 0.068 | 3
GRASP-PR| 1114 (41.30%) 0.000 | 0.000 | 0.000 | 0.011| 0.608 | 0.077 | 0.049 | 0.065 g
LAGR 970 (35.9%) | 0.000 | 0.000 | 0.000 | 0.010| 0.893 | 0.085 | 0.057 | 0.070 | o
Near-Optimally Solved VNS 1124 (41.6%)| 8.160 | 4.285 | 8.000 | 0.010| 5.189 | 0.069 | 0.162 | 0.054 %
GRASP-PR| 1586 (58.70%) 15.512| 14.247| 8.554 | 0.010| 5.189 | 0.077 | 0.141 | 0.060 ‘Qﬁ
LAGR 1732 (64.1%) | 13.150| 9.691 | 11.111 | 0.010| 5.189 | 0.075 | 0.140 | 0.059
Total VNS 161 (100% ) | 1.708 | 2.257 | 0.606 | 2.784| 47.780| 14.046| 11.888| 6.605
GRASP-PR| 161 (100%) | 3.821 | 7.935 | 0.000 | 2.784| 47.780| 14.046| 11.888| 6.605
LAGR 161 (100% ) | 4.690 | 5.930 | 2.493 | 2.784| 47.780| 14.046| 11.888| 6.605 %’
Optimally Solved VNS 63(39.13%) | 0.000 | 0.000 | 0.000 | 2.784| 33.360| 8.782 | 8.891 | 4.604 | =
GRASP-PR| 89 (55.28% ) | 0.000 | 0.000 | 0.000 | 2.784| 35.570| 6.060 | 10.041| 6.060 | &
LAGR 55(34.16% ) | 0.000 | 0.000 | 0.000 | 2.784| 47.780| 11.203| 11.370| 5.945 "D’
Near-Optimally Solved VNS 98 (60.87% ) | 2.806 | 2.300 | 2.116 | 3.889| 47.780| 17.430| 12.370| 9.758 | &
GRASP-PR| 73(44.72% ) | 8.544 | 10.048| 5.620 | 3.495| 47.780| 18.162| 12.745| 12.230 §
LAGR 106 (65.84% )| 7.124 | 6.007 | 5.900 | 3.243| 42.620| 15.521| 11.935| 7.780 |~




ev

TABLE 3 Results over 145 pairs from Chew-Kedem dataset. The erroe&sured based on the Upper Bound value given

by the Lagrangian Relaxation algorithm.

Error (%)

Time (seconds)

Algorithm N Avg. SD Median | Min. Max. Avg. SD Median

All Pairs VNS 145 (100%) | 12.839| 11.104| 9.626 | 2.033 | 75.290| 10.728| 12.839| 7.422
GRASP-PR| 145 (100%) | 12.412| 12.850| 6.497 | 2.033 | 75.290| 10.728| 12.839| 7.422

LAGR 145 (100%) | 9.756 | 11.885| 5.398 | 2.033 | 75.290| 10.728| 12.839| 7.422

Globin Pairs VNS 102 (70.34%)| 9.039 | 3.348 | 8.867 | 5.452 | 17.990| 7.840 | 2.097 | 7.416
GRASP-PR| 102 (70.34%)| 6.648 | 3.416 | 8.867 | 5.452 | 17.990| 7.840 | 2.097 | 7.416

LAGR 102 (70.34%)| 5.209 | 2.090 | 4.881 | 5.452 | 17.990| 7.840 | 2.097 | 7.416

Alpha-Beta Pairs VNS 13 (8.97%) | 16.918| 21.046| 2.667 | 10.120| 30.540| 18.262| 9.014 | 12.270
GRASP-PR| 13(8.97%) | 17.612| 22.121| 2.000 | 10.120| 30.540| 18.262| 9.014 | 12.270

LAGR 13 (8.97%) | 18.074| 22.763| 2.000 | 10.120| 30.540| 18.262| 9.014 | 12.270

Beta Pairs VNS 15(10.34%) | 14.320| 4.890 | 14.079 | 3.350 | 5.173 | 4.139 | 0.551 | 4.037
GRASP-PR| 15 (10.34%) | 27.355| 9.707 | 29.130 | 3.350 | 5.173 | 4.139 | 0.551 | 4.037

LAGR 15 (10.34%) | 11.500| 5.030 | 11.905 | 3.350 | 5.173 | 4.139 | 0.551 | 4.037

TIM-Barrel Pairs VNS 6 (4.14%) | 35.474| 11.756| 39.383 | 61.080| 75.290| 67.832| 5.970 | 67.255
GRASP-PR| 6(4.14%) | 32.766| 5.720 | 34.374 | 61.080| 75.290| 67.832| 5.970 | 67.255

LAGR 6 (4.14%) | 31.046| 12.518| 35.821 | 61.080| 75.290| 67.832| 5.970 | 67.255

Mixed Pairs VNS 9(4.14%) | 32.448| 15.905| 30.631 | 2.033 | 10.280| 5.463 | 3.313 | 4.976
GRASP-PR| 9(4.14%) | 30.770| 17.140| 30.040 | 2.033 | 10.280| 5.463 | 3.313 | 4.976

LAGR 9(4.14%) | 32.175| 16.751| 30.040 | 2.033 | 10.280| 5.463 | 3.313 | 4.976




5.3 Time-to-target plotsfor GRASP-PR against other heuristics

n the following experiment, we used of eight randomly selected instances: 4
from dataset Lancia, 2 from Skolnick and 2 from the Chew-Kedem ferma-

tion on these instances is summarized in the table 4.

TABLE 4 Eight randomly selected instances for plotting the time-to-target. In the
following, we use their assigned indexes to refer to the respective in-
stances. Column with identifidD refer to the index assigned to in-
stance; columns with identifiétrot. refer to the PDB code for the pro-
tein; columns with identifierRes.andContactsrefer to the number of
residues and contacts of their contact maps constructed at 7A, and col-
umn with identifierTarget Valugrefers the optimal value for the instance
that will be used as target value in analysis of time-to-target.

ID Prot.1 Res. Contacts Prot.2 Res. Contcts Target Value adeat

1 lgzi 58 110 Imsi 59 112 106 Lancia

2 lekl 58 106 1msj 59 114 103 Lancia

3 leqt 58 101 lhce 47 75 55 Lancia

4 1fh3 54 86 1ptx 54 93 57 Lancia

5 3chy 128 378 4tmy 118 366 323 Skolnick

6 1pla 97 275 1pcy 99 282 253 Skolnick

7  1babA 142 412 1mba 146 439 347 Chew-Kedem
8 laa9 171 528 1ct9A 497 1508 280 Chew-Kedem

Time-to-target (TTT) plots display on the ordinate axis the probability that an
algorithm will find a solution at least as good as a given target value withivea g
running time, shown on the abscissa axis. TTT plots were used by Feq%d4)
and have been advocated thenceforward as a way to characterinanh@grtimes
of stochastic algorithms for combinatorial optimization.

In this analysis, each heuristic is runtimes on the fixed instance and us-
ing the given target solution value. For each of theuns, the random number
generator is initialized with a distinct seed and, therefore, the runs anenads
to be independent. For each instance/target pair, the running times teé isor

increasing order. We associate with the th sorted running time; a probability
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p; = (i — 1/2)/n and plot the points; = [t;,p;],fori = 1,...,n.. Then, this
cumulative probability distribution is ploted allowing to infer and compare details
and information about the performance of the heuristics.

For each of the selected instances, we made 200 independent runs of the
GRASP-PR, 200 runs of the VNS and 200 runs of the LR algorithm. Each of
these runs stopped when the target-valued solution (Target Value - Apblas
found, and we record the time taken for each run. Figure 10 and 11sshdWw
plots for all algorithms analyzed on all instances from Table 4. These p®is d
play the empirical probability distributions of the random variable time to target

solution. Each heuristic was run a total of 1600 times in the experiments.
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FIGURE 10 Time-to-target plots. Plots of cumulative probability distributions of
GRASP-PR, VNS and LR running times for instances 1, 2, 3, and 4
(see table 4).

The relative position of the curves to the feft implies that, given a fixed atnoun
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of computing time, the algorithm refered to that curve has a higher probabdity th
grasp of finding a target solution. The relative position of the curves toighe
implies that, given a fixed probability of finding a target solution, the expdotesl
taken by the algorithm refered to that curve to find a solution with that pitifyab

is greater than the time taken by the other ones. For example, consider en6tanc
in Figure 11. The probability of finding a target at least as good as thetteafpe

253 in 3.5 seconds is approximately of 40% for all algorithms. In 4.0 secainds
the most, these probabilities increase to approximately 90% for GRASP-PR and
85% for VNS and LR.
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FIGURE 11 Time-to-target plots. Plots of cumulative probability distributions of
GRASP-PR, VNS and LR running times for instances 5, 6, 7, and 8
(see table 4).

Figure 10 show that the algorithm VNS has a small dominance over the GRASP-

PR in two cases (instances 1 and 4), and the opposite in the other two: for in-
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stances 2 and 3 the GRASP-PR demonstrates to be better. These figyskgsar
over instances of the dataset Lancia with smaller number of residues i@ tsp
then easier instances, and maybe favoring simple heuristics as the VN& Eigu
shows the dominance of GRASP-PR for instances 5 and 8, and for iastérand
7 there are two cases where it is not possible to identify a clear dominahese T
results demonstrate that the proposed algorithm is very competitive contpared
other algorithms analyzed.
5.4 GRASP-PR and the Skolnick Clustering test set

The aim of the Skolnick clustering test originally suggested by Skolnick and
described in (Lancia et al., 2001) is to classify 40 proteins into four famalaes
cording to their cluster membership. The proteins belonging to this dataset are
shown in Table 1. In the following, we use their assigned indexes to retéeto

respective proteins.

TABLE 5 Protein structures of the Skolnick test set. Columns with identifieelD r
fer to the index assigned to the proteins; columns with identifier PDB re-
fer to the PDB code for the protein containing the protein; and columns
with identifier CID refer to the chain index of a protein. If a protein
consists of a single chain, the corresponding entry in the CID column is
-. Note that the IDs differ from those used in (Lancia et al., 2001).

ID PDB CID|ID PDB CID|ID PDB CID|ID PDB CID
1 1b00 A |11 1l C | 21 2b3i A | 31 1tri -
2 1dbw A | 12 3chy B | 22 2pcy - 32  3ypi A
3  1nat - |13 4my A |23 2plt - 33 8tim A
4  1ntr - 14 4tmy B |24 1lamk - |34 1lydv. A
5 1gmp A |15 1lbaw A |25 law2 A |35 1b71 A
6 1lgmp B | 16 1byo A | 26 1b%9b A | 36 1bcf A
7 lgmp C | 17 1byo B | 27 1btm A |37 1dps A
8 1gmp D | 18 1kdi - 28 1hti A | 38 1fha -
9 1ml A | 19 1nin - 29 1tmh A | 39 1lier -

10 1ml B | 20 1pla - 30 ltre A | 40 1lrcd -

Table 2 describes the proteins and their families. Its fourth column with iden-
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tifier Seq. Simindicates that sequence alignment fails for clustering the protein
according to their family membership. This motivates structural alignment for

solving the Skolnick clustering test.

TABLE 6 Protein domains of the Skolnick test set and their categories as take
from (Caprara & Lancia, 2002).Shown are the characteristics of tire fo
families, the mean number of residues, the range of similarity obtained

by sequence alignment and the identifiers of the proteins.
Family Style Residues Seq-Sim. Proteins
1 alpha-beta 124 15-30% 1-14

2 beta 99 35-90% 15-23
3 alpha-beta 250 30-90% 24-34
4 - 170 7-70% 35-40

The GRASP-PR algorithm and the server’s one are applied in an all-&gains
all fashion to the dataset and a distance matrix is calculated. The GRASP-PR
running time limit is adjusted to 0.5 seconds, thereby, for the 780 pairwise struc
tural alignments the process required about 10 minutes. As overlap eakiast
adequateer sefor classification purposes because such values depend on the size
of the proteins being compared, it is applied a normalization scheme, aggtwodin
(Pelta et al., 2008), it may play a crucial role in protein classification. Tisane
general agreement on how to do normalization, so we use two of the available
ternatives - first and second alternatives were proposed in (Lankstal, 2004)

and (Xie & Sahinidis, 2004), respectively:

overlap(P;, Pj)

Norml(P;, P;) = —
(Pi, ) mian(contactsP;, contactsP;)

1)

2 x overlap(P;, Pj)
contactsP; + contactsP;

Norm2(P;, Pj) = (2

Finally, with the values of the distance matrix normalized Mgrm1 and
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a) Cluster Dendrogram b) Cluster Dendrogram
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FIGURE 12 Hierarchical Clustering based on the normalized overlap wvalue
among proteins in Skolnick’'s dataset. The upper dendrograms (a,
b) correspond to the avarage and complete linkage clustering using
Norml and the lower ones (c, d) to the avarage and complete linkage
clustering usindNorm2.
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Norm2, we apply complete and average linkage hierarchical clustering as imple-
mented in R software package with the final objective of evaluating if the gfrate

is able to detect similarity at SCOP’s fold level (Murzin et al., 1995). We e&n s
the dendograms generated by Goic-Biocomp server in Figure 1. Fotizéegien
purposes, the class number is displayed at the right of the protein name.

The results indicate an agreement with the SCOP categories as shown in Ta-
ble 3. The GRASP-PR heuristic is able to perfectly recover the originalping
independently of the normalization and clustering algorithms, since it sdatigss
classified the Skolnick proteins into five families according to the SCOP classifi-

cation levels.

TABLE 7 Descriptions of the proteins clusters from the Skolnick’s test.

Fold,family, and superfamily are according to SCOP.
Cluster Proteins Fold/Super family/Family

1-8, Flavodin-like
1 12-14 Che Y-like
Che Y-related
Microbial ribonucleases
2 9-11 Microbial ribonucleases

Fungi ribonucleases
Cuperdoxin-like
3 15-23 Cuperdoxins
Plastocyanim/Plastoazurin-like
TIM-beta alpha-barrel

4 24-34  Triosephosphate isomerase (TIM)
Triosephosphate isomerase (TIM)
Ferritin-like
5 35-40 Ferritin-like
Ferritin

5,5 GRASP-PR asa structural alignment tool
For a protein structure alignment algorithm, it is important to investigate whether
it produces biologically meaningful alignments. In this computational expetimen

we aim to investigate whether our heuristic provides biologically meaningful-alig
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ments for practical instances, besides to investigate whether GRASPaRP&otia

cate the results obtained by exact methods but with less computationalesftbrt

a simple strategy. To accomplish it, we use the MAX-CMO solution to guide
the superimposition of proteins pairs and we make a visual inspection of these
ones, as well as we perform analysis of the RMSD value, comparingsbksef
GRASP-PR against the successful exact algorithm “Exact-Reductisad3(RB)
algorithm” proposed by (Xie & Sahinidis, 2007).

To superpose two protein structures one must have a mapping between equ
alent amino acids in the two proteins. We can use the MAX-CMO solution as
this required mapping which is used to guide the superimpositioning. So, after
calculating the mapping between equivalent amino acids of the two proteins via
MAX-CMO solution, we make use of a Biopython (Cock et al., 2009) script to
create a PDB file with the two structures superposed.

The root mean square deviation (RMSD) is the measure of the average dis-
tance between the backbones of superimposed proteins. Unlike the nafmber
overlaps found by MAX-CMO algorithms, the lower the RMSD to superpose th
protein pair given the residues mapping, and also to calculate the RMSD value
calculated for two superimposed proteins, more similar they are.

In this experiment, we use five instances selected at random from differe
datasets. The contact maps are constructed with a threshold of 6.5AatseetT
Based on this test set, we compare GRASP-PR against the RB algorithm in terms
of overlaps value and RMSD. The running time limit for the GRASP-PR heuristic
is set to 5 seconds, while the RB, as a exact algorithm, just stop running as th
optimal value is found. Table 5 compare the two algorithms in terms of overlaps
value of MAX-CMO solutions and RMSD resultant of the superimposition.

As we can see in table 5, in terms of the overlaps and RMSD values, our
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TABLE 8 Test set description. In the following, we use their assignedxiesléo
refer to the respective protein pair.

Instance Proteinl Protein 2 Dataset
1 lash 1him Chew-Kedem (Chew & Kedem, 2002)
2 1gfo 1lneu Chew-Kedem (Chew & Kedem, 2002)
3 2ach 7api Leluk-Konieczny-Roterman (Leluk et al., 2003))
4 lrcd lier Skolnick (Caprara & Lancia, 2002)
5 4tmt 1gmpB Skolnick (Caprara & Lancia, 2002)

TABLE 9 Test results of the five selected proteins pairs. In the table isrskiosy
running time, overlaps value/ the error (%) with respect to the optimal
value of MAX-CMO, the RMSD value found by each algorithm over
each instance.

Time(s) Owverlap/Error(%) RMSD
Instance GRASP-PR RB GRASP-PR RB GRASP-PR RB
1 5.00 75440 271(2.87%) 279(0.00%) 521 3.19
2 5.00 185.8 156(13.33%) 180(0.00%) 3.01 2.77
3 5.00 3746.3 700(0.28%) 702(0.00%) 1.31 1.39
4 5.00 48.58  448(0.00%) 448(0.00%) 0.65 0.65
5 5.00 55.25  255(0.00%) 255(0.00%) 1.18 1.18

algorithm is very competitive with the exact algorithm from (Xie & Sahinidis,
2007), since the error with respect to the optimal valu@($ for instances 4 and
5, and very low for the other instance 1, 2 and 3 - 2.87%, 13.33% and 0.28%
respectively. For instances 4 and 5, the RMSD value found by GRASIKP
as lower as the ones found by the RB algorithm, and for instances 1 and 2 this
difference is very small. These results are very impressive particulanisidering
that the running time of GRASP-PR heuristic is about 10x to 750x lower than the
running time of the RB algorithm.

For instance 3, we have an interesting particular case: although themverla
value found by the GRASP-PR is worse (the higher the overlap value etier b
is the result of the MAX-CMO problem, and the lower the value of RMSD, the

better is the algorithm in terms os structure supreimposition) the RMSD value of
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GRASP-PR is better (smaller) than the values found by the RB algorithm. Such
ambiguity is already known and discussed since the work entitled “The stalictu
alignment between two proteins: is there a unique answer?” (Godzik),1j896
tifying the use of heuristics capable of giving fast near-optimal solutidnssan-
ingful alignments.

The superimpositions of this experiment are show in Figures 2-6, in which
we can make a visual inspection of alignment. can make a visual inspection of
alignment. A key observation made from these figures is that the GRASPaBR w
able to align all the selected protein pairs, and the resultant superimposigidns h
a high similarity with the superimposition resultant from the alignment of the RB

algorithm with much less effort of time and a simple strategy.

FIGURE 13 Protein backbones superimposition generated from: the GIRRSP
solution on the left side and the RB one on the right side. Instance 1
- 1ASH (Blue) and 1HLM (Green).

Figures of instances 2, 3, 4 and 5 show that the alignment is identical to
the naked eye for the two algorithms. For instances 4 and 5, this high similar-
ity was expected, since both algorithms reached the exact value of azeBap
for instance 2, even without reaching the optimal value of overlap, theSFRRR
showed an alignment very similar to the RB algorithm, in addition to obtaining a

better value of RMSD. In this figure 1, alignment of GRASP-PR differs saina¢
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FIGURE 14 Protein backbones superimposition generated from: the GIRRSP
solution on the left side and the RB one on the right side. Instance 2
- 1QFO (Blue) and1NEU (Green).

FIGURE 15 Protein backbones superimposition generated from: the GIRRSP
solution on the left side and the RB one on the right side. Instance 3
- 1RCD (Blue) and 1IER (Green).
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FIGURE 16 Protein backbones superimposition generated from: the GIRRSP
solution on the left side and the RB one on the right side. Instance 4
- 4TMT (Blue) and 1QMPB (Green).

FIGURE 17 Protein backbones superimposition generated from: the GIRRSP
solution on the left side and the RB one on the right side. Instance 5
- 2ACH (Blue) and 7API (Green).
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from the alignment of the RB algorithm, but both alignments seem to be significant
as the difference in the RMSD between the algorithms value is very low.

The study performed in this dataset shows that our strategy can replieate th
results obtained using exact methods but with less computational effost sind
ple strategy. Moreover, this experiment illustrates that non-exact MAYGWal-
ues may have solutions as meaningful as the exact ones. Both elementsare imp
tant resultgper se We should mention that the all experiments done in this final

chapter can be done through Biocomp-Server described in Chapter 2.

6 CONCLUDING REMARKS

In this work, we tested a straight and simple GRASP implementation with
Path-Relinking for the MAX-CMO problem, which obtains encouraging ltesu
Computational results demonstrate that the heuristic is a well-suited appoyach f
the MAX-CMOP, and comparisons with other successful heuristics fromalite
ture show that the proposed heuristic produces results very compeBiRaSP-
PR obtained results that were very well applied to real problems usingdess c
putational effort than exact algorithms. Moreover, we mention that alé/xp
ments conducted in this paper can be reproduced using the Goic-Biocovep se

athttp://goic.dcc.ufla. br/Bi oconp.
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1 ABSTRACT

Protein structure comparison and clustering are key problems in bioinformat-
ics. An available and efficient alternative to perform protein structuwadmarison
is to align the contact maps of protein pairs. This approach can be formulated
as a well known mathematical problem called Maximum Contact Map Overlap
Problem (MAX-CMO). Tools are still required to solve the problem by using
algorithms that obtain good quality solutions using less computational and time
resources. This paper presents a web-based tool for protein stradignment
based on the greedy randomized adaptive search procedure withefiaking
(GRASP-PR) for MAX-CMO problem. Experiments can be performed via we
comparing the GRASP-PR heuristic with other algorithms from literature. The
tool is availablehht t p: / / goi c. dcc. uf | a. br/ Bi oconp.
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2 RESUMO

Comparacéao de estruturas de proteinas é um problema chave em bioinfor-
matica. Uma alternativa eficiente disponivel para realizar a comparacaiestr
de proteinas € alinhar os mapas de contatos de pares de proteina®oEssgemn
pode ser formulada como um problema mateméatico bem conhecido chamado Max-
imum Contact Map Overlap (MAX-CMO). Ferramentas que resolvem asde p
lema usando algoritmos que obtém solu¢fes de boa qualidade usandoecenos r
S0S computacionais e tempo ainda sédo requeridos. Esse artigo apresefaaa-
menta web para o alinhamento estrutural de proteinas baseado na heynéstitya
randomized adaptive search procedure com path-relinking (GRASR&a o
MAX-CMO. Experimentos podem ser realizados via web comparando rdsheu
tica GRASP-PR com outros algoritmos da literatura. A ferramenta € disponivel
emht tp://goic.dcc.ufla.br/Bi oconp.
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3 GRASPWITH PATH-RELINKING FOR MAX-CMO

Recently, the growth of the Protein Data Bank (PDB) (Berman et al., 2000)
has been accelerated by a large scale structure determination projedtstraite
tural genomicgWestbrook et al., 2003). As a result, fast and efficient algorithms
for protein structure comparison have become more important to take ageanta
of the huge amount of structural data.

One promising way of accomplishing the structural alignment is to evaluate
the alignment of their contact maps, which are used to represent the distanc
between every pair of residues in a three-dimensional protein structure.

In the graph representation, the contact ndap= (V, E) is a graph with
a set of noded’ corresponding to the sequence of residues and a set of edges
E corresponding to the edges for each pair of non-consecutive essighose
distance is below a given threshold.

Given two contact map&'ys = (Va,F4) andGp = (Vp, Eg) such that
|Va| = nand|Vg| = m, the CONTACT MAP OVERLAP PROBLEM (Goldman et al.,
1999) is to find two subset$y C V4 andSp C Vg with |S4| = |Sp|and an order
preserving bijectiory betweenS 4 andSg such that the cardinality of thaverlap

set

L(Sa,Sp, f) ={(u,v) € Ea : u,v € Sa, (f(u), f(v)) € Ep}

is maximized. A solutior{S4, Sg, f) for the contact map overlap problem can be

represented as an assignment vegtof sizen such that

v if (u,v) € L(S4, SB, f)
Pu =
nil otherwise

64



Algorithm 1 shows pseudo-code for the GRASP (Feo & Resende, 1@€5)
path-relinking (Glover, 1996) heuristic for the MAX-CMO problem. Theaalg
rithm takes as input two contact maps' andC'? of proteinsA and B, with n
andm residuesu > n), respectively. It outputs an array of lengthn, with
pf = nil, if nodei € C* representing residuec A is not aligned, ang; = j,
if nodei € C4 is aligned with nodg € C'5.

After initializing the elite setP as empty, the GRASP with path-relinking
iterations are computed until a stopping criterion is satisfied. This criteriold cou
be, for example, a maximum number of iterations, a target solution quality, or a
maximum number of iterations without improvement. In all iterations, a greedy
randomized solutiop is generated and tentatively improved with a local search.

If the elite setP is empty, solutiornp is added to it. If the elite set is not empty,
then while itis not full, solutiorp is added to it if it is sufficiently different from the
solutions already in the elite set. In order to define the term “sufficientlyrdifit&
more precisely, lef\(p, ¢) denote the number of assignmentgp ihat are different
from those ing. For a given level of differencé, we sayp is sufficiently different
from all elite solutions inP if A(p,q) > ¢ for all ¢ € P, which we indicate with
the notatiorp % P.

If the elite setP is full, then path-relinking is applied betwegrand some elite
solutionqg randomly chosen fron®, resulting in solutiorr. Next,r is updated by
a local minimum in its neighborhood. #fis the best solution found so far, then it
replaceg, the solution most similar to it. Otherwise,sifis better than the worst
solution inP andr # P, then it replaces, the solution most similar to it.

Several exact algorithms as well as heuristics have been since pdofoose
MAX-CMO problem. In addition to GRASP-PR heuristic, BIOCOMP web tool

provides some algorithms from literature as follows. A Lagrangian relaxaten
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proach proposed by Caprara & Lancia (2002), where the optimabinggrmulti-
pliers are found by subgradient optimization. A dynamic programming as tool to
design a branch-and-bound algorithm with several reduction tectmiquelim-
inate inferior residue-residue pairs early in the search procedupoged as a
reduction based exact algorithm by Xie & Sahinidis (2007). A multi-staitide
neighborhood search heuristic for solving MAX-CMO developed by Retlt.
(2008).

procedure GRASP+PR- CMOP

Input: C4, CB

Output: solutionp*

P —0;

while stopping criterion not satisfiedo
p < GreedyRandomized(-);
p < LocalSearch(p);

if Pis full then
Randomly select a solutiope P;

r «— PathRelinking(p, q);
r « LocalSearch(r);
if ¢(r) > max{c(s) : s € P}then
t «— argmin{A(r,s) : s € P};
P—PU{r}\{t}
elseif ¢(r) > min{c(s) : s € P} and r # P then
t — argmin{A(r,s): s€ P: ¢(s) <c(r)};
P—PU{r}\{t}h
end
else
if P =( then
| P —{pk
elseif p £ P then
| P —=PU{p};
end

end

end

return p* = argmax{c(s) : s € P};
Algorithm 1: GRASP-PR for MAX-CMO algorithm.
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4 GOIC-BIOCOMP SERVER

Goic-Biocomp server (Figure 1) takes as input the selected algorithmdor th
MAX-CMO problem and the PDB files (Westbrook et al., 2003) corregpunto
the proteins to be aligned. The protein contact maps used as input for the alg
rithm are generated from the input PDB files. The algorithm outputs theuessid
alignment and the cardinality of the overlap set. Depending on the comparison
approach, a different set of information are reported in the output \agk.pin
pairwise comparison approach, besides the algorithms results, we hadiadhe
and real two-dimensional matrix representation of the contact maps anthalso
superimposed proteins plot. While these matrixes are generate@diyPy tool
(Ho et al., 2008) from protein PDB files, the superimposed PDB plots astent
by JMOL tool. (Jmol, 2009) takes as input superimposed PDB files created by
BioPython tool from the residue alignmer8i opyt hon (Cock et al., 2009) is
also responsible to compute ttwot mean square deviatiqfiRMSD), the average
distance between the backbones of superimposed proteins.

In multiple comparison approach, three or more proteins are compared all-
against-all through the pairwise approach. The resultis a symmetric twaoisiomal
matrix having as distance metric the cardinality of the overlap set of eachipairw
structure alignment. This matrix is normalized according to two normalization
schemes reported by (Lancia & Istrail, 2004) and (Xie & Sahinidis, 200xt,
the normalized matrix is used as input for three clustering methods (Everittr§a Du
1992): single, complete and average linkage clustering. At the end, tterihg
results are plotted as dendograms using R statistical tool (R DevelopmenT€am,

2005).
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FIGURE 1 Goic-Biocomp architecture
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CHAPTER 4

SUMMARY, GENERAL CONCLUSIONS AND
FUTURE WORK
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1 ABSTRACT

The final chapter contains the summary, general conclusions and outlines the
possibilities for future work with the GRASP-PR algorithm presented in Chapter
2 and the Goic-Biocomp web tool described in Chapter 3.
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2 RESUMO

O ultimo capitulo contém o resumo, as conclusdes gerais e descreve as possi-
bilidades de trabalho futuro com o algoritmo GRASP-PR apresentado no capitulo
2 e a ferramenta web Goic-Biocomp descrita no Capitulo 3.
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3 SUMMARY AND GENERAL CONCLUSION AND FUTURE WORK

Protein structure comparison is one of the most important problems in bioin-
formatics (see Chapter 1, Section 2). One approach for solving this problem is to
first, extract protein binary contact maps from the protein tertiary structure (see
Chapter 1, Section 1), and next, align these contact maps. In order to guide the
design and development of a new algorithm to solve this problem, we used the
Maximum Contact Map Overlap (MAX-CMO), one of the most common mathe-
matical statements of the contact map alignment problem. Our purpose is based
on the hybridization of two promising heuristics, called Greedy Random Adaptive
Search Procedure with Path-Relinking (GRASP-PR) for the MAX-CMO.

Initially, we aimed to validate our proposal by comparing the results obtained
by other popular algorithms described in the literature that solve the MAX-CMO
problem. Based on the performed comparisons and analysis, we can observe that
the GRASP-PR is very competitive when compared against some of the most
successful algorithms: the Variable Neighborhood Search heuristic and the La-
grangian Relaxation algorithm. In addition, from an optimization point of view,
we can mention at least two ways to obtain further improvements to our propose
(Chapter 2, Section 2): a) by trying more specialized Greedy randomized con-
struction procedures and b) by better tuning the parameters’ values chosen.

An important element in several bioinformatics problems is the relation be-
tween the optimum value of the objective function and the biological relevance of
the corresponding solution. In protein structure comparison, we should remem-
ber that we are dealing with a mathematical model that captures some aspects of
the biological problem, being possible to measure protein structure similarity in
several ways. For example, up to 37 measures are reviewed in (May, 1999).

Then, in a second moment, we aimed at investigating whether our heuristic
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provides biologically meaningful alignments for practical instances; further inves-
tigating whether GRASP-PR can replicate the results obtained by applying exact
methods with less computational effort. In order to accomplish this, we used three
different assessment criteria for the algorithms: the overlap value, RMSD value
and a visual inspection of the superimposition of the structures guided by the cor-
respondence between residues of two proteins obtained by the MAX-CMO. We
showed that our strategy can replicate the results obtained using exact methods
but with less computational on practical instances. Furthermore, we observed that
not always the different similarity measures and criteria for evaluating structural
alignment algorithms agree with each other, a question much discussed since 1996
in the work entitled “The structural alignment between two proteins: is there a
unique answer?” (Godzik, 1996). In this sense, a promising strategy would be
to combine two of the most used similarity metrics in an attempt to reshape the
MAX-CMO problem with a multi-objective function: minimize the RMSD and to
maximize the number of overlaps.

Besides obtaining the highest overlap values, it is also critical to develop
strategies able to obtain a proper similarity ranking of proteins. Our experiments
showed that in terms of SCOP’s family the (normalized) overlap values given by
the GRASP-PR seemed to be good enough to capture the similarity.

After the GRASP-PR algorithm was implemented and validated, we built an
interface that allows easy use of MAX-CMO algorithms in order to perform the
pairwise structural alignment or structural clustering of proteins. This web inter-
face is available athttp://goic.dcc.ufla.br and we call it Goic-Biocomp
web tool (Chapter 3). Goic-Biocomp server produces up to six kinds of output
when the task of pairwise structural alignment is requested: (i) the distance map

plots; (ii) the contact map plots; (iii) a PDB file containing the coordinates of the
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superimposed molecules; (iv) a sequence alignment corresponding to the equiva-
lent residues found by the MAX-CMO; (v) an RMSD report that contains the cal-
culated RMSD values (in Angstroms) between the superimposed molecules; (vi) a
JMol (Jmol, 2009) applet view of the superimposed molecules. For the structural
clustering, the Goic-Biocomp server produces the dendogram as output.

In summary, Goic-Biocomp web tool provides a simple-to-use, web-accessible
approach to performing the structural pairwise alignment and the structural clus-
tering, via MAX-CMO using different successful algorithms reported in literature,
allowing several studies on protein structures with different purposes - The in-
terested reader is referred to (Wolfon et al., 2005) for a detailed description of

methods and applications for the determination of protein function.
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