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RESUMO GERAL 

 

A presença de usinas hidrelétricas nos rios gera impactos severos nos ambientes aquáticos em 

todo mundo. Apesar dos impactos serem inerentes às barragens, a identificação do tipo de 

alteração sofrida é variável de acordo com cada sistema no qual a usina está inserida. A 

dificuldade em se mensurar e avaliar a magnitude destas alterações é ainda mais crítico em 

ambientes aquáticos tropicais. Ainda que identificados os impactos, após a construção de uma 

usina hidrelétrica dificilmente estes são mitigados. Entretanto, nas últimas décadas, a remoção 

física de barragens tem sido adotada como medida de manejo em alguns países no mundo 

como parte de programas de restauração de rios e bacias hidrográficas. Neste contexto, esta 

tese teve como objetivo principal identificar os possíveis impactos oriundos da usina 

hidrelétrica presente no rio Pandeiros localizado na bacia do rio São Francisco, Brasil a fim de 

criar subsídio para a tomada de decisão de sua remoção. Primeiro, é realizada uma abordagem 

do cenário de desenvolvimento hidroelétrico e conservação de ambientes aquáticos em países 

em desenvolvimento com enfoque no Brasil. Explicita-se os impactos de usinas hidrelétricas e 

as dificuldades de se mitigar tais impactos levantando a possibilidade de utilização da técnica 

de remoção física de barragens como medida de manejo para restauração de ambientes 

aquáticos (Artigo 1). Segundo, é uma avaliação empírica dos efeitos de uma usina hidrelétrica 

nas assembleias de peixes (riqueza, abundância e composição) separadas por uma ela (Artigo 

2). O terceiro, é uma avaliação da variação das assembleias de peixes ao longo do rio 

Pandeiros sob a perspectiva da dinâmica trófica e influência da barragem nesta dinâmica 

(Artigo 3). Para as análises foram utilizados dados de dois anos de amostragens (2014-2016) 

em oito pontos de coleta ao longo do rio, compreendendo diferentes regiões em um gradiente 

longitudinal considerando o grau de influência da barragem. A análise, de forma geral, dos 

resultados encontrados enfatizam as alterações na comunidade e na dinâmica trófica da 

ictiofauna provocadas pela PCH Pandeiros. A barragem atua como barreira geográfica e fator 

de alteração do habitat, principalmente nas regiões mais próxima dela. Assim observou-se 

diferenças na riqueza, abundância e composição entre os pontos separados pela barragem. Nas 

três abordagens realizadas discutiu-se sobre os possíveis efeitos da remoção da barragem no 

rio Pandeiros, enfatizando que a ictiofauna presente em determinados pontos do rio é oriunda 

de alterações provocadas pela barragem. Conclui-se que é esperado que após a remoção 

ocorra uma reestruturação da comunidade de peixes resultando possivelmente na dinâmica e 

condição semelhantes encontradas anterior à PCH Pandeiros. 

 

 

Palavras-chave: Remoção de barragens. Ictiofauna. Ecologia trófica. Usinas hidrelétricas. 

Restauração de ambientes aquáticos.             

 

 

  

 

 

 



 

 
  

ABSTRACT 

 

The presence of hydroelectric power plants in rivers causes severe impacts on the aquatic 

environment around the world. Although the impacts are inherent to dams, the identification 

of the type of change suffered varies according to each system in which the plant is inserted. 

The difficulty of measuring and assessing the magnitude of these changes is even more 

critical for tropical aquatic environments. Even if the impacts are identified, after the 

construction of a hydroelectric power plant these are rarely mitigated. However, in the last 

decades, as part of river and basin restoration programs mainly in the United States of 

America and some countries in Europe, the physical removal of these dams has been adopted 

as a management measure to reestablish the natural characteristics before the plants. In this 

context, this thesis aims to identify the possible impacts from the hydroelectric plant present 

in the Pandeiros River located in the São Francisco River basin, Brazil in order to create 

subsidy for the decision making of its removal. First, an approach is taken to the scenario of 

hydroelectric production and conservation of aquatic environments in developing countries 

with a focus on Brazil, demonstrating the impacts of hydroelectric power plants and the 

difficulties of mitigating such impacts, raising the possibility of using the technique of 

physical dams removal As a management measure to restore aquatic environments (Article 1). 

Second, it is an empirical evaluation of the effects on the fish community (richness, 

abundance and composition) separated by a hydroelectric plant (Article 2). The third, is 

evaluation of the variation of the fish assemblages along the river Pandeiros from the 

perspective of the trophic dynamics and influence of the dam in this dynamic (Article 3). To 

reach the objectives it’s were used two-year (2014-2016) sampling data at eight sampled sites 

along the river, comprising a longitudinal gradient considering the influence of the dam. In 

general, the results found emphasize the changes in the community and in the trophic 

dynamics of the ichthyofauna caused by the SHP Pandeiros. In the three approaches we 

discuss the possible effects of the removal of the dam on the Pandeiros River, emphasizing 

that the ichthyofauna present in certain sites of the river it’s caused by the dam. Concluding 

that it is expected that after the removal occurs a restructuring of the community of fishes 

possibly resulting in the similar dynamics prior to the SHP Pandeiros. 

 

 

Keywords: Dam removal. Freshwater fishes. Trophic ecology. Hydroelectric plants. 

Restoration of aquatic environments. 

 

 

 

 

 

 

 

 



 

 
  

SUMÁRIO 

PRIMEIRA PARTE................................................................................................... 11 

1         APRESENTAÇÃO GERAL...................................................................................... 12 

1.1      Objetivos e estrutura da tese...................................................................................... 12 

2.1      CONCLUSÕES GERAIS........................................................................................... 13 

2.2       Prioridades para pesquisas futuras.......................................................................... 14 

REFERÊNCIAS......................................................................................................... 15 

SEGUNDA PARTE - ARTIGOS.............................................................................. 16 

ARTIGO 1 WILL DAM REMOVAL BE A MANAGEMENT OPTION IN 

BRAZIL IN THE NEAR FUTURE?........................................................................ 17 

ARTIGO 2 – SUBSIDIES FOR A DAM REMOVAL: FISH FAUNA OF 

PANDEIROS RIVER.................................................................................................. 33 

ARTIGO 3 – LONGITUDINAL CHANGES IN THE TROPHIC STRUCTURE 

ALONG A REGULATED TROPICAL RIVER..................................................... 58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

PRIMEIRA PARTE 

 

 

 

 

 

 

 

 

 



12 
 

 
  

1 APRESENTAÇÃO GERAL 

A adoção da água como recurso para produção de energia elétrica tem sido 

incentivada em diversos países como alternativa à utilização de combustíveis fósseis a fim de 

reduzir as emissões dos gases do efeito estufa (ZARFL et al., 2015). Entretanto a construção 

de usinas hidrelétricas com ou sem reservatórios é fonte de profundos impactos no sistema 

aquático (SMITH et al., 2017). A maior parte dos países com grande potencial hidroelétrico 

são países em desenvolvimento que ainda possuem extensas áreas com grande biodiversidade 

e elevado grau de endemismos tanto no ambiente aquático quanto terrestre (WINEMILLER et 

al., 2016). Desta forma tem sido motivo de grande preocupação os avanços do setor 

hidrelétrico e as perdas de biodiversidade em função deste desenvolvimento (LEES et al., 

2016). 

O Brasil com extensas redes hidrográficas já possui como principal fonte de energia 

elétrica a hidroeletricidade (ANEEL, 2017). Contudo já é bem estudado os impactos deste 

forma de produção de energia no ambiente aquático e para muitos a mitigação deles não é 

eficiente, em alguns casos podendo agravar o problema (PELICICE; AGOSTINHO, 2008). 

Por isso, o estudo de novas formas de mitigar ou restaurar o ambiente impactado por 

barragens se fazem necessários. Dentre as possibilidades de se restaurar surge a remoção 

física de barragens que em alguns países tem se tornado uma medida viável a diversos 

empreendimentos que não se observa sentido (econômico, ambiental e social) de mantê-los 

(AMERICAN RIVERS, 1999; POFF; HART, 2002). 

Porém, no Brasil e em países em desenvolvimento esta medida não tem sido discutida 

embora a necessidade de se estabelecer um melhor planejamento da expansão de usinas 

hidrelétricas conciliando com a conservação de ambientes aquáticos seja evidente. Assim, a 

adoção da remoção de barragens surge como uma possibilidade de medida viável e efetiva 

para muitos empreendimentos.  

1.1 Objetivos e estrutura da tese 

Neste contexto ambiental e de desenvolvimento do sistema hidroelétrico brasileiro esta 

tese possui o objetivo principal identificar os possíveis impactos gerados por uma pequena 

central hidrelétrica na comunidade de peixes do rio Pandeiros na bacia do rio São Francisco 

criando suporte para a tomada de decisão da remoção da barragem levantando a discussão 

sobre a possiblidade de uso da remoção de barragens como uma medida a ser considerada no 
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planejamento hidrelétrico em bacias hidrográficas. Eu utilizei dados oriundos de dois anos de 

amostragem padronizada da ictiofauna do rio Pandeiros no intuito de comparar as assembleias 

a montante e jusante da Pequena Central Hidrelétrica de Pandeiros. No mesmo intuito de 

comparar as assembleias separadas pela barragem, também utilizamos uma abordagem de 

ecologia trófica com a utilização da técnica de quantificação de isótopos estáveis (¹³C e 15N) 

em algumas espécies para investigar a influência da PCH. A tese de acordo com o formato de 

artigos em versão preliminar de submissão estando dividida em três artigos. O primeiro, 

aborda o cenário da produção hidrelétrica e conservação de ambientes aquáticos de países em 

desenvolvimento com enfoque no Brasil, demonstrando os impactos de usinas hidrelétricas e 

as dificuldades de se mitigar tais impactos levantando a possibilidade da utilização da técnica 

de remoção física de barragens como medida de manejo para restauração de ambientes 

aquáticos (Artigo 1). Segundo, é uma avaliação empírica dos efeitos na comunidade de peixes 

(riqueza, abundância e composição) separadas por uma usina hidrelétrica (Artigo 2). O 

terceiro, é avaliação da variação das assembleias de peixes ao longo do rio Pandeiros sob a 

perspectiva da dinâmica trófica e influência da barragem nesta dinâmica (Artigo 3). Os três 

capítulos estão preparadas para submissão na Brazilian Journal of Water Resources (Artigo 

1), Neotropical Ichthyology (Artigo 2) and Hydrobiologia (Artigo 3). 

2 CONCLUSÕES GERAIS 

Os resultados e discussões desenvolvidos ao longo desta tese são os primeiros no 

contexto da possibilidade da remoção de uma usina hidrelétrica considerando Brasil e países 

em desenvolvimento. É o primeiro que estabelece um estudo de referência com base na 

ictiofauna e ecologia trófica proporcionando subsídios para a tomada de decisão da retirada da 

barragem de acordo com os impactos desta na dinâmica da comunidade de peixes do rio 

Pandeiros. 

No atual contexto sócio, econômico e ambiental em que a utilização da água para 

geração de energia elétrica é apontada como umas das principais alternativas à combustíveis 

fósseis (ZARFL et al., 2015), os barramento de rios por usinas hidrelétricas se tornaram uma 

realidade que pode ser observada em todo o mundo (POFF et al., 2007). Entretanto, 

atualmente a construção de novas usinas se dá principalmente em países em desenvolvimento 

como no Brasil (WINEMILLER et al., 2016). Embora, os impactos de usinas hidrelétricas e 

seus reservatórios seja amplamente difundidos (BAXTER 1977; SMITH et al., 2017), a 

remoção de barragens como medida de manejo não tem a mesma abrangência. Esta tese 
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levanta a discussão da remoção de barragens como possibilidade de medida de manejo no 

Brasil, entretanto chega à conclusão de que esta medida não acontecerá a curto prazo, e que 

esta abordagem deve ser considerada no âmbito da pesquisa, sociedade e dos setores 

tomadores de decisão como órgãos ambientais. 

Os resultados encontrados neste trabalho demonstram que mesmo uma pequena usina 

hidrelétrica é fonte de impactos à ictiofauna. Estes impactos estão relacionados à atuação da 

barragem como barreira física e como fonte de alteração do regime de vazão natural do rio, 

possibilitando assim a introdução e estabelecimento de espécies exóticas e causando alteração 

na dinâmica e distribuição das espécies nativas acima e abaixo da barragem. Estas alterações 

por sua vez também afetam a forma como a comunidade de peixes do rio Pandeiros utiliza os 

recursos alimentares, principalmente nas regiões onde a barragem influencia diretamente, 

alterando a proporção de grupos tróficos nesta áreas comparadas com regiões sem a influência 

do barramento. 

2.1 Prioridades para pesquisas futuras 

No contexto do rio Pandeiros, se a opção pela remoção da barragem for adotada, deve 

ser realizado um novo levantamento da ictiofauna nos pontos já amostrados para que 

estabeleça um retrato de como a comunidade de peixes está para se ter um comparativo mais 

recente da situação antes da remoção. Após a remoção, deve ser realizada uma amostragem 

mais sistemática principalmente em relação ao tempo e dos pontos mais próximos à barragem 

tanto a montante quanto jusante. 

Entretanto, a remoção da barragem não deve acontecer antes que ocorra um trabalho 

de conscientização da população que mora próxima da barragem e do rio Pandeiros. O que se 

observa na literatura é a junção dos aspectos econômico, ambiental e social na tomada de 

decisão da remoção, muitas vezes com a comunidade agindo direta e decisivamente na 

tomada de decisão da remoção da barragem, este aspecto social ainda foi pouco explorado no 

contexto da PCH Pandeiros e deve ser fomentado nas próximas etapas do processo.  

De forma geral, existem muitas usinas de pequeno porte que se encontram em situação 

semelhante à PCH Pandeiros, inserida em um contexto econômico e ambiental desfavorável 

onde a possibilidade de remoção seja a melhor alternativa para possibilitar um processo de 

restauração eficaz. Assim, a ideia de remoção deve ser considerada e ampliada para estas 

usinas em todo o país. 
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Will dam removal be a management option in Brazil in the near future? 
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ABSTRACT 

 

Electrical power has become a key element in contemporary society. For over 100 years the 

use of water for this purpose has provided electricity production throughout developing 

world. In recent decades, hydroelectricity became one of the most used alternatives especially 

considering the context of climate change and concerns about greenhouse gas emissions. 

Therefore, the number of dams already significant, affecting more than half of the large rivers 

in the world, has experienced a new boom in construction of new power plants. The purpose 

of this article is to conduct a survey on the impacts of hydropower plants and discuss the 

adoption of dam removal as an option for management in developing countries, with focus on 

Brazil. The impacts of dams are varied and most of them are rarely mitigated. For this reason, 

the physical removal of dams has been used in some countries to improve environmental 

conditions, improve the safety and avoid economic losses. The number of removals has 

increased every year and most of these removals aims at environmental restoration of rivers 

and basins. However, in developing countries, such as Brazil, this possibility seems remote, 

little discussed and many still don't know although it is a unique opportunity to restore river 

basins with large biodiversity (e.g. Amazon, Congo and China) and to avoid to be heavily 

impacted by hydroelectric plants. Even so, the discussion, initially just in the scientific 

community, should be encouraged in order to facilitate possible removal projects that may 

arise as the case of the small hydroelectric plant of Pandeiros in the São Francisco River 

basin. 

 

 

Keywords: Environmental management – Hydroelectric development – Aquatic environment 

conservation – Freshwater conservation 
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INTRODUCTION 

 

Electrical power is one of the main elements that drives and characterizes 

contemporary society. For over 100 years we have used water to generate electricity, and 

hydroelectricity currently represents approximately 16% of the total produced globally (IHA 

2015). In recent decades the use of renewable resources (e.g. wind, solar, geothermal, hydro, 

biomass, waves and tidal) to generate electricity has increased in an effort to reduce 

greenhouse gas emissions, but electricity production is still responsible for 35% of the global 

emissions of these gases (COP 21 2015). In this sense, hydropower arises as an abundant, 

effective and low-cost alternative, besides providing reservoirs for other purposes (Kumar et 

al 2011). Today, hydroelectricity represents approximately 70% of all renewable energy 

production in the world (REN21 2016). 

There are a huge number of dams around the world, with more than 45,000 above 15 

m in height, and more than a half of large river systems being regulated by dams (Dynesius & 

Nilsson 1994, Nilsson et al 2005). The great variety of functions that dams provide make 

them an attractive option, including relatively secure, generally cheap and efficient energy 

production, flow control, water supply, navigation, irrigation and leisure. 

There has been a new boom in hydropower plant construction in several countries that 

have appropriate hydro potential (Zarfl et al 2015). This growth appears to be determined by 

the economic condition of countries and/or regions. Most of such growth has been observed 

in developing countries in Africa (Congo, Rwanda, and Cameroon), Asia (China, Russia and 

Turkey) and South America (Argentina, Brazil and Colombia). These countries are improving 

their hydroelectricity-based energy matrix, thus increasing the pressure in regions with high 

aquatic biodiversity, that have until recently been relatively unaffected by hydropower plants. 

For example, the Congo, Mekong and Amazon river basins (Ziv et al 2012, Winemiller et al 

2016, Lees et al 2016). 

As a result of that recently there has been an increased focus and concern on the 

ecological impacts of hydropower plant construction in developing countries, particularly in 

regions with high biodiversity (Fearnside 2006, Winemiller et al 2016). For example, there 

are about 846 fish species endemic to the Congo River basin, which are threatened by 64 

hydropower plants that are proposed and/or under construction (Winemiller et al 2016). The 

situation in the Amazon and Mekong river basins is even more worrisome due to the 

impressive species richness and great interest in hydroelectric development. There, more than 



20 
 

 
  

1000 hydropower plants are planned or under construction, thus reinforcing the idea that such 

regions represent true hotspots of aquatic biodiversity (Winemiller et al 2016). In other words, 

they are areas with a high diversity, especially of aquatic organisms, which are also highly 

threatened by habitat destruction (Myers et al 2000). 

Herein we briefly discuss the possibility of mitigating the impact of dams on aquatic 

organisms, and raise the discussion of dam removal as a management option in Brazil and the 

developing countries where hydropower is growing as an energy source.  

 

IMPACTS OF DAMS ON AQUATIC ORGANISMS: ARE THEY MITIGATED? 

 

Dams and their reservoirs have substantial impacts on a basin scale (Ligon et al 1995, 

Syvitski et al 2005, Dudgeon et al 2006), and some cases are emblematic. The Balbina 

Hydroelectric Power Plant (Amazonas State, Brazil) represents one dramatic example of a 

disastrous planned project. It was constructed to generate electricity, but generates much less 

than expected and created a reservoir with an area of over 2,300 km² (Fearnside 1989). That 

reservoir was responsible for the local extinction and decline of several populations of 

invertebrates and vertebrates, what led it to be considered a true environmental disaster 

(Benchimol & Peres 2015). A study conducted on the Mekong River identified that the 

construction of hydroelectric power plants in the basin would reduce fish biomass, estimating 

that in a scenario of least environmental impact, fish biomass loss would range from 0.3% 

(~1,700 tons/year) to 4% (25,300 tons/year) for each addition of 1 TWh/y (TeraWatt hour per 

year) (Ziv et al 2012).  

The impacts of hydropower plants already account for the decline of biodiversity in 

aquatic environments at a global scale (Poff et al 2007, Vörösmarty et al 2010) and are mainly 

related to the alteration of the natural hydrological regime of rivers, blockage of migratory 

routes and habitat changes in the impounded area.  

The main impacts of hydroelectric development are the transformation from lotic to 

lentic systems due to the formation of reservoirs and the regulation of the natural flow (Baxter 

1977, Poff et al 2007, Vörösmarty et al 2010, Pelicice et al 2015). As the flood pulse drives 

the transportation of nutrients, sediments and organic matter, such modifications are 

responsible for changes on both structure of habitats and biotic communities, altering the 

biodiversity and the biotic integrity of rivers (Poff et al 1997, Bunn & Arthington 2002, Poff 

et al 2007, Nestler et al 2012). Together with river fragmentation caused by the barrier created 
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by the dam (Nilsson et al 2005), such impacts interfere directly with the recruitment of fish 

species, especially those that require the flood plain and/or long parts of the river to complete 

their life cycles.  

Artificial flooding has been adopted as one strategy to mitigate the impacts of dams on 

the natural flow regime, and may be efficient and contribute to the reestablishment of abiotic 

and biotic variables of the river (Bednarek & Hart 2005, Olden & Naiman 2010). The gains in 

fish production could even surpass the costs associated with energy loss (Godinho et al 2007), 

but the operation of artificial floods seems to be a distant reality in a scenario of increasing 

water and energy demand (Olden et al 2014). Furthermore, those strategies only affect regions 

downstream of the dams, and have no impact on the reduced connectivity between upstream 

and downstream regions and habitat loss due to the reservoir formation. 

In Brazil, fish stocking and the construction of fish passes are the main mitigation 

actions undertaken. However, the precarious conservation status of different species clearly 

indicate that such strategies have been ineffective (Agostinho et al 1994; Cesp 1996; 

Agostinho et al 2002, 2004). Attempts to promote self-sustaining native populations from 

stocking were mainly unsuccessful, since stocking decisions were made without considering 

the status of wild stocks, environmental restrictions or requirements of target species 

(Agostinho et al 2008). 

The construction of fish passes represents another widely used strategy to mitigate the 

impact of dams on migratory species. There are several knowledge gaps concerning the 

efficiency of fish passes, so there is no consensus on their effectiveness (Kemp, 2016a). In 

South America, the failure of fish passes in mitigating the impacts of dams on migratory 

species may be attributed to several aspects: the lack of knowledge on basic aspects of 

behavior and species life history; the lack of critical habitats upstream of the reservoir or 

downstream of the dam, such as reproduction sites and nursery areas, and the absence of 

downstream passages (Pompeu et al., 2012). In some situations, the lack of remaining lotic 

systems sufficient to allow species to complete their life cycle (Pelicice & Agostinho 2008) in 

a dammed catchment is the main reason for their failure to maintain fish populations. 

Moreover, the presence of large reservoirs that act like behavioral barriers to the fish 

movements (Pelicice et al., 2015) represents an additional obstacle rarely manipulated or 

mitigated. Therefore, some of the most significant impacts of dams, especially when big 

reservoirs are created, are poorly mitigated (Pelicice & Agostinho 2008, Orr et al 2012, Lees 

et al. 2016, Sánchez-Zapata et al. 2016), especially in heavily fragmented basins.  
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DAM REMOVAL AS AN ALTERNATIVE TO RESTORATION 

 

The impacts on biodiversity as a result of dam construction are evident and widely 

described in the literature (e. g. see Baxter 1977, Poff et al. 2007). Mitigation options are 

either spurious, or are currently insufficient to be fully effective, especially in developing 

countries (Kemp, 2016b).  

For a long time, dams were thought to be permanent structures, but this point of view 

has changed and proposals to remove them are becoming increasingly common (O´Connor et 

al. 2015). In the United States, for instance, 1,384 dam have been removed since 1912, with 

average of 47 removals per year recorded between 1999 and 2016 (American Rivers 2017). 

Most of them are still small sized dams (Figure 1) and only a small proportion are 

Hydropower Plants (Figure 2).  

 

 

Figure 1 Number of dams removed in the last three years in the United 

States of America, separated by height (according American Rivers 2017). 
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Figure 2 Number of dams removed in the last three years separated by 

whether the dam had a hydroelectricity purpose before the removal 

process (according American Rivers 2017). 

 

Thus, the removal of dams arises as an alternative to traditional mitigation trying to 

reverse the impacts they cause (Bednarek 2001, Bernhardt et al 2005), and the number of 

studies related to the effects of dam removal on aquatic fauna is fast growing (Figure 3). 

 

 

Figure 3 Number of publications concerning dam removal. A search from 

Web of Science (30 05 2017) was used, using "dam removal" as the basic 

search for all years. The line represents a mean of consecutive years. 
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In recent decades, dam removal has begun to enter discussions in basin restoration 

programs (Shuman 1995). European countries, like Spain, France and England (McCulloch 

2008; Lejon et al 2008; 2009), as well as Japan and Taiwan have already experienced such 

removals (De Leaniz 2008, Lejon et al 2009, Chiu et al 2013, O’Connor et al 2015, Kemp 

2016b), most of them in an effort to restore the aquatic environment. However, except for the 

United States of America, the number of documented removals (reported in the scientific 

literature) per country is still low. Among the developing countries, only Poland have already 

recorded the effects of the removal of a small dam (Tszydel et al 2009). 

The justification for the removal of a dam depends on the context in which it was 

installed and may generally be divided into three main reasons: environmental, safety and 

economic (Maclin & Sicchio 1999). Most dam removals were performed to increase 

connectivity for fish migration (mainly salmon). Safety reasons relate to excess sediment in 

reservoirs, which also impacts the lifetime of dams and the related costs for their maintenance 

(Maclin & Sicchio 1999, Poff & Hart 2002, O’Connor et al 2015).  

Dam removal in the United States is ranked as the sixth cheapest method of 

environmental restoration of rivers, with a mean cost of US$98,000 (Bernhardt et al., 2005). 

However, such costs will increase as proposals for removal of large plants become more 

common (Stokstad 2006) (Figure 4). 

 

Figure 4 Cumulative cost of dam removal projects records in the USA. 

Abbreviations: Land acquisition (LA), Floodplain reconnection (FR), Flow 

modification (FM), Stormwater management (SM), Channel 

reconfiguration (CR), Dam removal/retrofit (DR-R) (Adapted from 

Bernhardt et al. 2005).  
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When the possibility of removing a dam is evaluated, impacts related to the sediment 

discharge and short-term biodiversity loss (Bednarek 2001, Stanley & Doyle 2003, East et al 

2015) must be considered, as well as the benefits of returning the river to a more natural 

condition (Stanley & Doyle 2003). Although many removal projects did not provide adequate 

monitoring (Bednarek 2001), those available indicate that the impacts are mostly positive 

(especially on the medium and long term) and met the purpose of environmental restoration, 

even when a small obstacle was removed (De Leaniz 2008).  

 

THE FUTURE OF DAM REMOVAL IN DEVELOPING COUNTRIES AND BRAZIL 

 

Developing countries are the future hotspots for hydropower development; countries 

like Brazil, China and Democratic Republic of Congo will experience a boom in dam 

construction in near future (Zarfl et al 2015). Part of this development is an effort to decrease 

the emission of greenhouse gases. However, sustainable expansion based on developing 

renewable electricity generation in developing countries may result in the construction of 

large projects that fail to fully consider the environmental, social and economic consequences 

(Ansar et al 2014). 

Good planning is required not only for individual projects, but also for integrated 

development throughout the basin with the aim to conserve environmental and social aspects 

while producing electricity with as low impact as possible (Ziv et al 2012). In this sense, even 

in a scenario of increasing demand for energy, the removal of dams could have a central role 

in basin management, mainly because there are several obsolete hydroelectric plants with 

silted reservoirs, or built without a proper analysis of social/environmental costs and energy 

generation.  

In Brazil there are 4,673 electrical developments registered by the National Energy 

Electricity Agency that are able to produce 152,356,283 kW. Of these, 1,266 are Hydropower 

plants of different sizes with an installed potential of 98,239,061 kW. Approximately 95% of 

this production are produced by relatively few dams (219), and around 83% of the total 

existing dams (small dams) in Brazil contribute with less than 4% of the total electricity 

produced in the country (ANEEL 2017). Most of hydropower plants installed in Brazil are 

small (ANEEL 2017), but they can cause similar environmental impacts (fragmentation, 

regulation, habitat loss) as large dams (Graf 1999, Zimmy et al. 2013, Klunne 2015, NID 

2016, ANEEL 2017). Therefore, integrated development, including consideration of 
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environmental, social and economic issues, should consider dam removal as a management 

option to improve environmental conservation, social welfare and responsible economic 

development. 

Unlike several developed countries that have their rivers almost completely regulated 

by dams (Graf 1999, Zimmy et al 2013), Brazil and others developing countries maintain their 

hydrographic networks in a relatively good condition, and large stretches retain pristine 

conservation status (Winemiller et al 2016). It is necessary to think in the long term before 

habitat loss and fragmentation reach levels that will cause species loss that can be difficult to 

restore, even following dam removal.  

 

FINAL REMARKS 

 

The use of hydroelectric energy has increased, and it will be one of the main 

alternatives to meet electricity demand and avoid further greenhouse gas emissions in the 

future. In this context, developing countries will have a fundamental role to reach the goal 

intended by international agreements regarding the reduction of greenhouse gas emissions. 

However, such expansion will cause impacts to important regions for the conservation of 

aquatic environments and their surroundings (e.g. marginal lakes, flood plains, tropical 

forests).  

Therefore, dam removal would only be a possible management measure if 

immediately integrated into the national environmental and energy strategies of these 

countries. It could represent a more effective tool for medium to long-term environmental 

restoration (Hart et al 2002, Fox et al 2016), even in a scenario of growing river regulation 

and fragmentation. 

In this context, Brazil could experience its first dam removal in the near feature. The 

ANEEL (The Brazilian power national agency) required the CEMIG (Minas Gerais Power 

Company) to conduct a feasibility study to remove a small hydropower plant in the north of 

Minas Gerais state. The plant is located on the Pandeiros River, inside a mosaic of 

conservation areas, including National Parks (e.g. Peruaçu caves national park and Grande 

Sertão Veredas national park), and State protected areas (e.g. State Wildlife Refuge - 

Pandeiros). 

The Pandeiros Power plant has a small dam (9 meters), which generated less than 30 

MW up until 2008 when it was disabled. The dam continues to act as a barrier to fish 
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movements, segregating the aquatic communities from the downstream and upstream areas 

(e.g. macroinvertebrates and fishes). Investigations have been conducted to improve the 

understanding of the dam’s impact on the river’s fauna in order to assess the feasibility of 

such removal. This is the first documented case assessing the possibility of removing a dam in 

South America. In the near future, this potential decommissioning will provide the first 

information on the capacity of tropical rivers to recover in South America, including the 

responses of river biota. 
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ABSTRACT 

 

The impacts of hydropower plants are varied and context dependent. However, the natural 

flow regime changes and hydrological connectivity losses are inherent in almost all the dams 

from smaller to power plants with huge reservoirs. These impacts cause profound changes in 

the aquatic system and biodiversity that depends on the dynamics and environments without 

of physical and physiological barriers. So several techniques have been developed to mitigate 

such impacts, although these techniques are usually inefficient and this scenario is worse in 

tropical. In this context, the removal of dams is an option that can restore not only populations 

of certain stretches, as well as the entire river dynamics found before the construction of the 

dam. Thus, this study has as main objective to assess the impacts of a small hydroelectric 

plant on fish community discussing the effects of a possible dam removal. We sampled during 

two years (2014 to 2016) along eight sites in the Pandeiros River. It were identified 2821 

individuals belonging to 62 species from four orders. We observed an influence of the dam in 

the differentiation of ecological attributes between the fish assemblages above and below the 

dam. Richness and diversity were attributes that showed higher values in downstream region 

and the composition were different between the assemblages separated by the dam. Thus, it 

was possible to identify the influence of the dam on hydrological connectivity causing such 

differences, and also impacts on natural flow regime, mainly in regions immediately upstream 

from the dam. Therefore, the SHP Pandeiros despite its reduced size is still a source of impact 

on the aquatic environment, considering the ichthyofauna, and its removal probably the 

restructuring of fish assemblages, returning the features previous to the dam. 

 

 

Keywords: Fish community – Dam impacts – Decommissioning of a dam - Floodplain 
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Introduction 

 

Energy production is essential to the development of contemporary society. One of the 

sources of energy whose demand has been notably growing is water, resulting in the damming 

and regulation of rivers worldwide (Nilsson et al. 2005, IEA 2015). However, despite being a 

renewable energy source, the use of hydropower plants is not free of environmental impacts, 

including those related to climate change (Fearnside 2004, Fearnside & Pueyo 2012, Deemer 

et al. 2016), and some of these effects are intensified as the number of plants increase in a 

river (Barbosa et al. 1999, Rosenberg 1997, Rosenberg 2000). 

The negative impacts of hydroelectric power plants, both above and below the dam, 

are widely studied and well documented in aquatic ecosystems around the world (Agostinho 

et al. 2007, Poff & Hart 2002, Winemiller et al. 2016). They are mainly related to alterations 

on natural flow regime and hydrological connectivity (Poff et al. 1997, Pringle 2003).  

The natural flow of rivers is considered the main factor determining their physical 

habitats and their aquatic community structure (Bunn & Arthington, 2002). Hence, the 

resultant changes in the natural flow regime to meet power demand generally cause changes 

in organisms that live in this environment, from algae and aquatic plants to invertebrates and 

fishes (Bunn & Arthington, 2002). All the components of the natural flow (magnitude, 

frequency, duration, timing and rate of change) are essential to the river’s ecological integrity 

(Poff et al. 1997), and can be modified by hydropower plants (Poff et al. 1997, Mims & Olden 

2013).  

Hydrological connectivity is the water-mediated transfer of matter, energy or 

organisms between and/or within the elements of the hydrological cycle (Pringle 2001). 

Crook et al. (2015) list three areas of knowledge required for a strategy to mitigate against 

connectivity loss on aquatic environments: (1) Autoecology - the knowledge of species-

specific relationships between the individual and their environment are essential to understand 

how habitat changes caused by connectivity loss can affect certain populations. (2) Population 

structure - population structure studies have supported the development of conceptual models 

of ecological connectivity in rivers, in addition to being critical to understanding the effects of 

translocation of organisms or artificial connection of elements of the hydrological cycle. (3) 

Environmental tolerance/Phenotypic plasticity – identify the species that have less dispersion 

capacity and lower resilience to environmental alterations, and can help to avoid local 

extinction by connectivity alteration. 
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Despite being well known, the impacts of dams are rarely mitigated against. This is 

particularly true in the tropics (Pompeu et al. 2012, Pelicice et al. 2015a), where alternative 

measures that are widespread in temperate zones, such as fish passages, can even create 

additional impacts (Agostinho et al. 2007, Pelicice & Agostinho 2008). In such context, dam 

removal arises as a potential measure to reverse a whole range of impacts caused by the dam 

(Bednarek 2001, Poff & Hart 2002, Lovett 2012). However, the decommissioning of 

hydropower plants as a restoration strategy has mainly been restricted to North America and 

Europe (Stanley & Doyle 2003, O´Connor et al. 2015). 

The process of removing a dam can cause not only negative environmental impacts, 

but also generate economic and social conflicts (Stanley & Doyle 2003, Lejon et al. 2009, Fox 

et al. 2015). Therefore, it is necessary to identify the cost and benefits of removal. Dam 

removal can cause different impacts, in different timescales, the most important of which is 

considered to be sediment release from the reservoir (Grant 2001, Poff & Hart 2002, Ashley 

et al. 2006, Service 2011, East et al. 2015). However, even the biggest dam removal study to 

date has demonstrated the ability of rivers to restore natural conditions (East et al. 2015). 

Therefore, removing a dam is a complex decision that incorporates different economic, 

ecological, social and safety aspects. 

In South America there are no available studies regarding dam decommissioning and 

its potential effects on fish communities. The Pandeiros small hydroelectric plant (SHP 

Pandeiros) is located on the river of the same name, in Southeast Brazil. Due to the 

accelerated sedimentation process of the reservoir, the dam regularly discharged sediment. As 

the dam’s operation was not properly monitored in order to understand its environmental 

impact, the power company decided to stop power production in the SHP Pandeiros in 2007, 

after receiving environmental fines. In 2010, the Brazilian national electric energy agency 

(ANEEL) recommended a viability study to remove the Pandeiros dam. 

The main goal of this study is to evaluate the influence of the SHP Pandeiros on 

ecological attributes (richness, composition, diversity, and seasonal changes) of fish 

assemblages along the Pandeiros River to understand the potential benefits of removing the 

Pandeiros dam on the local fish community. 
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Material and Methods 

Study area 

The São Francisco River basin is one of the major river basins of South America, and 

covers about 7.5% of Brazil’s land area. The basin contains a great fish diversity with high 

levels of endemism (Carolsfeld 2003, Godinho & Godinho 2003, Abell et al. 2008). The 

middle part of São Francisco River is known to harbour a complex and rich floodplain with 

marginal lakes (Godinho & Godinho 2003, Carolsfeld 2003). These areas can act as breeding 

and initial development areas for several species, including migratory fishes, which are the 

most important species to the commercial fishery in the São Francisco River basin (Camargo 

e Petrere 2001). The Pandeiros River is a tributary of the left bank of the São Francisco River, 

and has a huge floodplain in its lower course, connected to the middle São Francisco 

floodplain system. 

In 1992, the Pandeiros River became a “permanent preservation river” (Minas Gerais 

State law 10.629). It is considered a migration route and a fish spawning site, and is 

approximately 145 kilometres in length. In the lower course of the Pandeiros River, the 

floodplain has an area of 50 km², and it is considered an important nursery area for migratory 

fishes (Carolsfeld 2003, Nunes et al. 2009). 

The SHP Pandeiros (Lat 15°30'14.87"S; Lon 44°45'27.59"O) is located 50 km 

upstream of the mouth of the Pandeiros River. The power plant began operation in 1958, with 

a reduced flow stretch of around 600 meters. The dam has a maximum height of 10.3 meters 

with 0,28 km² flooded by the reservoir (Fonseca et al. 2008). Downstream of the dam there 

are three waterfalls, two of them between the dam and the powerhouse, the largest about 9 

meters high. The power plant stopped operation in 2008, when the river began to flow entirely 

through the natural channel. Nonetheless, despite being non-operational the SHP Pandeiros 

physical structure still regulates the water level above the dam. The reservoir is completely 

filled with sediment, resulting in a small, shallow and lotic reservoir, and a lateral lake, which 

was once temporary, but nowadays is perennial and regulated by the dam. 

 

Fish sampling 

Fish collections were carried out over two years (2014 to 2016), comprising five 

samples in the dry season (Jul/14; Sep/14; Apr/15, Jun/15 and Sep/15) and six in the wet 

season (Nov/14, Dec/14, Jan/15, Feb/15, Dec/15, Feb/16). Eight sample sites were distributed 

along the Pandeiros River (Figure 1), encompassing four distinct segments of the basin (upper 
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river, impounded areas, lower river and floodplain), and the regions upstream and 

downstream of the dam (Tab. 1).  

 

 

Figure 1 – Distribution of study sites along Pandeiros River, with focus on the region 

near the Pandeiros dam.  
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Table 1. Location of sampled sites with a brief description and separation in segments. 

Sites Region 

(upstream 

and 

downstream) 

Segments Coordinates Description 

Site 1 U Upper 15°22'55.69"S/ 

44°55'26.65"W 

Site further away from the dam, sandy 

substrate with some riffle 

Site 2 U Upper 15°26'27.25"S/ 

44°49'14.83"W 

Site upstream without dam influence, 

rocky substrate with rifle 

Site 3 U Impounded 15°29'55.34"S/ 

44°45'27.41" W 

Reservoir site, sandy substrate 

Site 4 U Impounded 15°29'57.61"S/ 

44°45'8.26" W 

Lateral lake site, macrophytes substrate 

Site 5 D Lower 15°30'20.03"S/ 

44°45'24.24" W 

Site between dam and waterfalls, rocky 

substrate 

Site 6 D Lower 15°30'48.63"S/ 

44°45'15.03" W 

Site below the waterfalls, rocky and 

gravel substrate 

Site 7 D Floodplain 15°40'11.11"S/ 

44°38'11.46" W 

Site on the river in the floodplain, sandy 

substrate 

Site 8 D Floodplain 15°41'46.06"S/ 

44°34'30.01" W 

Marginal lake in the floodplain, near the 

São Francisco river 

  

Fish were sampled using a set with 10 gillnets per site with mesh sizes ranging from 

12 mm to 60 mm between opposite knots, armed for 12 hours. To capture smaller species, 

sampling was also conducted with sieves made from mosquito net (80 cm in diameter, 1 mm 

mesh) and seine net (3 m long, 5 mm mesh) in Jan/15, Feb/15 Apr/15 and Dec/15. These data 

from smaller species was not used to data analysis and were used only to improve knowledge 

of the number of species in the river basin. 

The specimens collected were fixed in 10% formalin and taken to the Fish Ecology 

laboratory, at the Federal University of Lavras (UFLA) in Minas Gerais, where they were 

transferred to 70% alcohol and subsequently deposited at the UFLA Fish Collection (CI-

UFLA). 

 

Data analysis 

The list of fish species in the Pandeiros river basin was updated based on previous 

studies (Godinho 1986, Alves & Leal 2010, Santos et al. 2015). Sampling efficiency was 

evaluated for both upstream and downstream regions using species accumulation curves with 

1000 permutations, using the gillnet data. 

The Student’s t test was used to test for differences in richness and Shannon diversity 

between upstream and downstream sites with no separation between dry and wet season. The 
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data were tested for normality and when necessary a logarithmic scale transformation was 

used. 

To test whether if the dam influence on variation seasonal (wet and dry season) and 

composition between the assemblages above and below the SHP Pandeiros were used nMDS 

and PERMANOVA using standardized CPUEn (catch-per-unit-effort in numbers; number of 

individuals/m²*12h-1) from the gillnet data. 

To understand the dam influence on each site were conducted PERMDISP tests of 

homogeneity of dispersions (a proxy of heterogeneity) to compare if the closest sites of the 

dam has lower variation along sampling events, were used CPUEn and CPUEb (catch-per-

unit-effort in numbers biomass; grams/m²*12h-¹) from the gillnet data. The Tukey post hoc 

test for pairwise comparison was used to test for significant variation between sites. All 

analyses were carried out using R statistical software (Oksanen et al. 2015). 

 

Results 

 

A total of 2821 individuals belonging to four orders and 62 species were collected 

(Table 2). Incorporating previous studies, 88 species have now been registered for the entire 

basin (Table 3). Different species were most abundant in different segments (Fig 2), with a 

greater abundance of migratory species being observed in the lower and floodplain segments, 

and the massive presence of exotic species at the impounded sites (Tab 2). 

 

 

 



41 
 

 
  

 

 

 

 

 

 



42 
 

 
  

Figure 2 Percentage of most abundant (CPUEnumeric and CPUEbiomass) species in the 

four segments of the Pandeiros River. The x-axis is percentage of CPUE (black bar is 

biomass and dashed bar is numeric). See Fig 1 and Tab 1 for details of the sampled sites. 

 

 

Table 2. Number of individuals (N) per species sampled in each site along the 

Pandeiros River (E = exotic species; M = migratory species). See Figure 1 and 

Table 1 for details of the sampled sites.  

Species P1 P2 P3 P4 P5 P6 P7 P8 N 

Acestrorhynchus lacustris 12 8 25 97 42 102 5 3 294 
Apareiodon spp.     2    2 

Astronotus ocellatusE        1 1 
Astyanax fasciatus 12 8 3  43 23 1  90 

Astyanax lacustris 8  10 7 4 27 4 3 63 
Brycon orthotaeniaM  2     3 3 8 
Bryconops affinis  1 17 53   1 1 73 
Centromochlus bockmanni 5        5 

Characidium lagosantense    1     1 

Characidium zebra 4        4 

Cichla piquitiE       1  1 

Cichlasoma sanctifranciscense 2 3 4 26    6 41 
Corydoras multimaculatus 8        8 

Crenicichla lepidota      1  2 3 
Cyphocharax gilberti        7 7 
Curimatella lepidura      43 6 61 110 
Eigenmannia virescens 6 5 1  2  1 1 16 
Gymnotus carapo 1  1 5    1 8 
Hemigrammus marginatus   1 5   3  9 

Hisonotus sp. 8 6    5 1  20 

Hoplerythrinus unitaeniatus    1     1 

Hoplias intermedius 15 31 6 7 20 27 1 4 111 
Hoplias malabaricus   18 56  19  14 107 
Hoplosternum littorale 3 1 12 304    45 365 
Hypostomus aff. alatus      4   4 

Hypostomus aff. margaritifer 2 28 11  42 20   103 

Hypostomus sp1 7 28 3  26 3   67 

Hypostomus spp   1  3 13   17 

Leporellus vittatus      3   3 

Leporinus obtusidensM   1  2 1 1  5 

Leporinus piau      71 10 38 119 
Leporinus reinhardtiM      21 4 23 48 
Leporinus taeniatus      140  1 141 
Lophiosilurus alexandri      1 3  4 

Metynnis lippincottianus   4 10  3  1 18 
Moenkhausia sanctae-filomenae       1  1 

Myleus micans 38 45 19 3 58 13 2  178 

Orthospinus franciscensis    1   6 1 8 
Pachyurus francisci        1 1 
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Pamphorichthys hollandi   6      6 

Parodon hilarii  2   3 1   6 

Phenacogaster franciscoensis  3     5  8 

Pimelodus fur        2 2 
Pimelodus maculatusM      2  16 18 
Prochilodus argenteusM      10 6 22 38 
Prochilodus costatusM      11  5 16 
Pseudoplatystoma corruscansM        3 3 
Pterygoplichthys etentaculatus       1 1 2 
Pygocentrus piraya       20 9 29 
Rhamdia quelen     1 2   3 

Rineloricaria pentamaculata      1   1 

Salminus franciscanusM      8 5 15 28 
Schizodon knerii      18 4 28 50 
Serrapinnus piaba 4  3      7 

Serrassalmus brandtii      1 5 26 32 
Steindachnerina elegans 1 9   4 7  3 24 
Sternopygus macrurus        1 1 
Tetragonopterus franciscoensis      20 15 19 54 
Trachelyopterus galeatus 2 3 41 309 10 9  6 380 
Triportheus guentheri       11 37 48 
Total 138 183 187 885 262 630 126 410 2821 

 

Table 3. Comparison of the species collected in the different studies performed 

in the Pandeiros River basin. 

Species Godinho 

1986 

Alves & Leal 

2010 

Santos et al. 

2015 

Current 

Anchoviella vaillanti X    

Acestrorhynchus britskii X    

Acestrorhynchus lacustris X X X X 

Apareiodon spp.    X 

Astronotus ocellatus    X 

Astyanax fasciatus X X X X 

Astyanax lacustris  X X X 

Astyanax rivularis   X  

Australoheros facetum  X   

Brycon orthotaenia X X X X 

Bryconamericus stramineus   X  

Bryconops affinis  X X X 

Centromochlus bockmanni    X 

Characidium fasciatum X    

Characidium lagosantense  X  X 

Characidium aff. zebra  X X X 

Cichla piquiti   X X 

Cichla ocellaris  X   

Cichlasoma cf. facetum   X  

Cichlasoma sanctifranciscense X  X X 

Corydoras multimaculatus X  X X 

Corydoras polystictus  X   

Crenicichla lepidota X X  X 

Curimatella Gilberti    X 
Curimatella lepidura X X X X 

Cyphocharax gilbert  X   

Eigenmannia virescens X X X X 
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Gymnotus carapo X X  X 

Harttia longipinna   X  

Hemigrammus marginatus X X  X 

Hisonotus sp.  X  X 

Hoplerythrinus unitaeniatus  X X X 

Hoplias intermedius X X X X 

Hoplias malabaricus X X X X 

Hoplosternum littorale  X X X 

Hypostomus spp.  X  X 

Hypostomus aff. alatus    X 
Hypostomus aff. margaritifer    X 

Hypostomus francisci   X  

Hypostomus lima   X  

Hypostomus sp1    X 
Hyphessobrycon santae  X   

Hyphessobrycon sp.  X   

Imparfinis minutus  X   

Leporellus vittatus   X X 

Leporinus macrocephalus  X   

Leporinus obtusidens X X X X 

Leporinus piau X X X X 

Leporinus reinhardti X X X X 

Leporinus taeniatus X X X X 

Lophiosilurus alexandri X   X 

Metynnis lippincottianus    X 
Moenkhausia costae X X   

Moenkhausia sanctaefilomenae X X X X 

Myleus altipinnis   X  

Myleus micans X X X X 

Orthospinus franciscensis X X  X 

Pachyurus francisci X   X 

Pachyurus squamipinnis X    

Pamphorichthys hollandi  X  X 

Parodon hilarii   X X 

Pimelodella cf. lateristriga X X X  

Pimelodus fur X   X 

Piabina argentea   X  

Phenacogaster franciscoensis    X 
Pimelodus maculatus X X X X 

Planaltina sp.   X  

Prochilodus argenteus X X X X 

Prochilodus costatus X X  X 

Psellogrammus kennedyi  X   

Pseudoplatystoma corruscans X X X X 

Pterygoplichtys etentaculatus X X X X 

Pygocentrus piraya X X X X 

Rhamdia quelen    X 
Rineloricaria pentamaculata    X 

Roeboides xenodon X X   

Salminus franciscanus X X X X 

Schizodon knerii X X X X 

Serrapinnus heterodon   X   

Serrapinnus piaba X X  X 

Serrasalmus brandtii X X X X 

Steindachnerina elegans X X X X 

Sternopygus macrurus  X  X 

Synbranchus marmoratus  X   

Tetragonopterus chalceus X X  X 

Trachelyopterus galeatus X X X X 

Trichomycterus sp.   X  
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Triportheus guentheri  X  X 

 

Among the 52 species sampled only with gillnets, 51 were captured in the downstream 

section of the river and 22 were captured upstream. The accumulation curves in both regions 

had the same inclination pattern, with both next to the asymptote (Figure 3). Only one species 

was restricted to the upstream region (H. unitaeniatus) and 30 species were captured 

exclusively downstream of the dam. Fish richness (Student's t test, t = 3.82, P < 0.05; Figure 

4) and diversity index (Student's t test, t = 3.71, P < 0.05; Figure 5) were higher downstream 

of the dam. 

 

 

Figure 3 Species accumulation curves for upstream and 

downstream regions to the SHP Pandeiros with 95% 

confidence intervals (vertical lines). 
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Figure 4 Box plot diagram of richness (logarithm) between 

upstream and downstream regions on Pandeiros River. The 

upper and lower boundaries represent the quartiles, the 

horizontal bar represents the median. The regions are 

significantly different (P > 0.05). 

 

 

Figure 5 Box plot diagram of Diversity Shannon Index 

between upstream and downstream regions on Pandeiros 

River. The upper and lower boundaries represent the 

quartiles, the horizontal bar represents the median. The 

regions are significantly different (P > 0.05). 

 

CPUEn and CPUEb were highest in the lateral lake (P4), whilst CPUEn was also high at the 

site located below the falls (P8) (Figure 6). 
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Figure 6 Box plot diagram of catch per unit effort (CPUE) in number 

of individuals and biomass between all sites sampled on Pandeiros 

River. The upper and lower boundaries represent the quartiles, the 

horizontal bar represents the median. The sites with the same letter 

are not significantly different (P > 0.05). 

 

There were differences in the fish assemblages between the upstream and downstream 

regions (PERMANOVA: Pseudo-F = 8.05; P = 0.001) (Figure 7), and no differences in fish 

assemblages were observed between the dry and wet seasons (PERMANOVA: Pseudo F = 

0.62; P = 0.83). 

 

 

Figure 7 Non Multidimensional scaling (nMDS) plots relating CPUE numeric 

for different fish species at sites upstream and downstream to SHP Pandeiros. 
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Based on assemblage dissimilarity comparisons, the average distance from the 

centroid varied between sites (PERMDISP, F7, 79 = P < 0.001). The lowest average distance 

from the centroid was found at the lateral lake (site 04), while highest was found at the 

Pandeiros River at the floodplain (site 07) (Figure 8). 

 

 

Figure 8 Box plot diagram of CPUE numeric representing results from 

PERMDISP between all sites sampled on Pandeiros River. The upper and 

lower boundaries represent the quartiles, the horizontal bar represents the 

median. The sites with the same letter are not significantly different 

(P > 0.05). 

 

Discussion 

 

The impacts of hydroelectric power plants on the aquatic environment are well 

documented globally, especially those of large companies (Nilsson et al. 2005, Agostinho et 

al. 2005, Winemiller et al. 2016). On the other hand, the impacts of small dams are poorly 

studied (Benstead et al. 1999, Cumming 2004, Santos et al. 2006), and in some cases 

neglected, and restricted to environmental impact reports. This study demonstrates the 

influence of the Pandeiros Hydropower plant, even when not in operation, on fish 

assemblages. Greater richness and diversity were observed below the dam, and large changes 

in the fish assemblages were mainly observed at the sites influenced by the dam. Moreover, 

the dam still seems to act as a barrier to fish displacement, restricting the existence of several 

migratory species in the upstream areas. 
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Knowledge of the Pandeiros River fish diversity has previously been concentrated on 

the floodplain (Godinho 1986, Alves and Leal 2010). A single study was conducted in other 

regions of the basin, but it covered just four sites (Santos et al. 2015). Our study recorded 11 

fish species previously undocumented in the Pandeiros river basin, which is now known to 

harbour 30% (88 species) of the fish species in the São Francisco river basin. However, the 

basin richness may still be higher if we take into account that there are still smaller headwater 

streams that shelter a rich fauna of small sized fish species (Pompeu et al. 2009) that have not 

been explored in previous studies. 

The species accumulation curves are useful to indicate sampling efficiency using a 

particular biological sampling tool, as well as to compare regions where they were employed 

(Magurran 1998, Gotelli & Colwell 2001). The general curves created in this study indicate 

that most of the fish species that could be captured with gillnets were registered. Therefore, 

the species richness sampled with gillnets gave us a reliable scenario of regional diversity in 

order to compare fish assemblages along the Pandeiros River, and the possible effects of the 

dam.  

Migration can be defined as synchronized movements that go beyond a species home 

range, occurring at a specific stage of their life cycle (Lucas & Baras 2001). Migratory fishes 

are normally of great economic importance and perform fundamental ecosystem functions 

(Lucas & Baras 2001). In the São Francisco River basin, they are highly valued and are the 

main targets for commercial fishing (e.g. “dourado” (Salminus francsicanus), “surubim” 

(Pseudoplatystoma corruscans), “curimba” (Prochilodus spp.)). In this basin, these fish use 

tributaries such as Pandeiros River for both spawning and refuge against predators (Godinho 

& Pompeu 2003). 

Among the long-distance migratory fishes of the São Francisco River basin, just the 

pirá (Conorhynchus conirostris) and tabarana (Salminus hilarii) were not registered during 

this study. These species were not sampled in previous studies either, indicating that they do 

not occur naturally in this region. This study shows that the Pandeiros River is a migration 

route for fish and its floodplain is used as a nursery area. The statement that 70% of the 

nursery areas in the São Francisco River basin is provided by the Pandeiros River floodplain 

(Fonseca et al. 2008) is exaggerated and lacks empirical support. However, the capture of 

large number of migratory species (juvenile and adult), and the presence of endangered 

species (Lophiosilurus alexandri) along the Pandeiros justifies its categorization as a 
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permanent preservation area, and also the existence of the State Refuge Wildlife Pandeiros 

River (10.629 State law of 1992 and Decree No. 43.910 of 2004). 

Our study demonstrates that the Pandeiros River is widely used by most migratory 

fishes of the São Francisco River basin. However, most (~ 98%) of the migratory species 

individuals collected were found downstream of the Pandeiros dam. Only three individuals of 

two species (Brycon orthothaenia and Leporinus elongatus) were registered upstream. These 

species are usually abundant in lotic segments in the São Francisco basin (e.g. Alves & 

Pompeu, 2001), indicating they are probably from relictual populations isolated by the dam. 

The occurrence of these species upstream, and the presence of a non-functional fish ladder by 

the dam, indicates that the waterfalls, at least during the highest floods, were not an obstacle 

for fish migration. In addition, the presence of migratory species immediately below the dam 

and between the waterfalls also demonstrates that they are able to pass by the waterfalls. 

Many researchers indicate that the introduction and establishment of alien species is 

one of the main causes of species loss in aquatic environments (Allan & Flecker 1993, 

Dudgeon 2006). Moreover, the chance of the introduction of exotic species having negative 

effects is greater than the chance of having positive or neutral impacts (Vitousek et al. 1996, 

Simberlof et al. 2003, Simberloff et al. 2013, Pelicice et al. 2015b). In some cases, the 

construction or maintenance of dams can prevent the dispersal and migration of alien species 

(Port et al. 1999), so their distribution should be evaluated carefully in a context of dam 

removal (Simberloff et al. 2013).  

In this study, we observed the presence of three exotic species. Their introduction is 

likely to be linked to deliberate introduction for sport fishing (C. piquiti), and accidental 

(improper disposal or escape) introduction related to fishkeeping (A. ocellatus and M. 

lippincottianus). The species A. ocellatus and C. piquiti were each represented by a single 

individual in the floodplain region. This density demonstrates that populations are not yet 

fully established, which can hide the negative effects of introduction. Although C. piquiti was 

collected in 2008 by Santos et al. (2015), greater attention should be paid to this species 

mainly in lentic environments, because when the species establishes it usually modifies the 

structure and dynamics of the native fish community (Pompeu & Godinho 2001, Pelicice et 

al. 2015b). The most abundant exotic species (M. lippincottianus) was collected above and 

below the SHP Pandeiros, but with higher abundance in the impounded sites, indicating that 

the flow modification may favor the invasion (Didham et al. 2007). H. littorale has been 

considered an exotic species in the São Francisco basin, although there are still doubts about 
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the real distribution of the species (Pompeu & Alves 2003, Alves & Leal 2010, Salvador Jr. & 

Silva 2011). Regardless of its natural distribution, 83% of the individuals of this species were 

captured in the lateral reservoir lake. 

The factors that influence the fish richness in rivers are diverse and may vary 

according to the scale analysed (Cumming 2004). Changes to the aquatic community usually 

follow a longitudinal pattern, from small streams to large rivers, but these changes are gradual 

and occur in a continuum of physical and biotic variation in the aquatic environment (Vannote 

et al. 1980). However, the impact of dams, even those small in size, are usually significant 

and negatively affect fish richness (Anderson et al. 2006). Our study shows the same pattern 

usually found in other studies where the region downstream of the dam has a significantly 

higher species diversity (Reyes-Gavilán et al. 1996; Port et al. 1999; Gehrke et al. 2002, 

Nilsson et al. 2005). This difference occurs primarily because the dam hinders colonization of 

upstream areas. Similarly, waterfalls can act as natural barriers for species dispersal and can 

define a region’s fish community (Abell et al. 2008). On the other hand, the lower course is 

connected with other larger rivers, a situation that usually provides great diversity (White et 

al. 2012).  

Environments altered by humans commonly feature communities dominated by few 

species in large abundance (Hillebrand et al. 2008), and lower temporal heterogeneity (Ward, 

1998; 1999). This dominance and homogeneity can be related to several factors such as the 

absence of predators and competitors in an altered environment, habitat changes and/or 

homogenization and attenuation of seasonal variations (Hillebrand et al. 2008), and factors 

that both impairs the permanence of species sensitive to variations and assists those more 

tolerant to disturbances. The main species responsible for the observed dominance in the 

lateral lake (T. galeatus, H. littorale, A. lacustris) are usually found in lentic environments 

(Fernandes et al. 2009, Maia et al. 2013), including reservoirs. These species (the first two) 

are also often found in eutrophic environments and are adapted to low rates of dissolved 

oxygen in the water (Affonso & Rantin 2005, Sánchez-Botero et al. 2008).  

The present work indicates that the SHP Pandeiros, even deactivated, is still a source 

of impact on fish assemblages along the Pandeiros River, with marked effects on fish 

distribution and on the community structure in the impounded areas. The removal of SHP 

Pandeiros would provide an opportunity to observe changes on the river and on the fish 

communities that bear a greater resemblance with their natural condition before the 

construction of the dam.  
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The dam removal would enable exchange of some species and the increase of gene 

flow between the upstream and downstream regions reducing the observed differences in the 

fish assemblages. An increase in the abundance of migratory fishes in upstream areas would 

be highly likely. After the dam removal, and the return of the impounded areas to the natural 

flow regime, a drastic change in the fish communities in the lateral lake would be expected, 

with a possible reduction of tolerant species, including those alien species. At the reservoir, 

sediment would be transported to downstream areas, and an increase of the rheophilic species 

would be expected. 

From this study, it is evident that the removal of the Pandeiros dam is adequate in 

order to provide an opportunity for fish to recover along the basin, possibly bringing more 

benefits than losses for the fish fauna. We hope that the removal itself, planned for the near 

future, will bring a new paradigm for developing countries, and this management strategy will 

be incorporated into conservation on a larger scale (Winemiller et al 2016). 
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ABSTRACT 

 

The main objective of this study was to describe the structure of the trophic network of river 

fish assemblages in four regions along a longitudinal gradient trying to identify the influence 

of a small hydroelectric plant in this structure. To achieve this, were separated four regions on 

river for comparison and evaluation of trophic structure, these regions were distributed in a 

longitudinal gradient with different influence of the dam. The trophic structure were analysed 

using community-wide trophic metrics based on stable isotopes δ13C and δ15N. The region 

of the middle course presented greater values of total length of isotopic niche and ranges of 

carbon and nitrogen. The region directly affected by the dam showed higher differentiation in 

isotopic niche occupation. We conclude that the trophic structure of the river varied along the 

longitudinal gradient and the dam altered directly the use and occupation of the isotopic niche 

fish assemblages and proportion of feeding guilds of each region. 

 

Keywords: Stable isotopes – Food webs – Trophic ecology - Dams 
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Introduction 

 

The composition of aquatic communities is closely related to the variation in available 

food, and the interactions between organisms along the river (Junk et al. 1989, Vannote et al. 

1980). This dynamic defines some distinct patterns on distribution and composition of species 

according to the location of the region along the river/basin (Esselman et al. 2006, Ibanez et 

al. 2007, Araújo et al. 2009). Most of these patterns are related with the stream size and the 

load and quality of organic matter on rivers and streams (Vannote et al. 1980). Generally, a 

higher proportion of insectivore, frugivore, and herbivore feeding guilds are expected to be 

found in the upper reaches of a river, and a predominance of carnivores, omnivores, and 

detritivores in the lower reaches (Vannote et al. 1980, Aarts & Nienhuis 2003). 

The influence and importance of floodplain wetlands on organism interactions was 

first evidenced as a scientific concept by Junk et al. (1989). One of the key aspects of this 

concept is that a substantial part of the primary and secondary production originates from the 

floodplain, and the river is just a means of transport for dissolved and/or suspended matter in 

the water (Junk et al. 1989). Hence, the dynamic and influence of flooding on river floodplain 

ecosystems represents a key characteristic of the riverine landscape (Ward et al. 1999). 

Anthropic activities cause several impacts to the environment, including changes in 

the dynamics of biogeochemical cycles (Vitousek et al. 1997). Specifically, the presence of a 

dam results in a series of changes in the aquatic environment where the flow of organic matter 

and inorganic chemistry are altered, thereby also modifying biological interactions (Poff et al. 

1997, Barbosa et al. 1999). 

The elements carbon and nitrogen are fundamental to the formation of living 

organisms, and are important components of the atmosphere (Peterson and Fry 1987). 

Therefore, the use of stable isotopes of these elements (13C and 15N) in environmental studies 

is increasing because they can contribute to a better understanding of the energy transfer 

between organisms. This can be achieved by identifying the sources and consumers of these 

isotopes, allowing for the construction of trophic networks and an understanding of how their 

components are connected (Peterson and Fry 1987, Bearhop et al. 2004, Boecklen et al. 

2011). The use of these stable isotopes focuses on the features responsible for the variation in 

the isotopic signatures of the diets of different organisms (13C), and their trophic position 

(15N) (Boecklen et al. 2011). However, the use of stable isotopes is not the only approach to 
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investigate trophic networks, and its inference can be biased because there is a large natural 

variation in the assimilation of these isotopes (Post 2002). 

In this context, this tool is becoming an important way to better understand how fish 

communities and the relationships among species change along rivers (Winemiller et al. 

2011). Consequently, it could provide information on how hydropower plants would affect 

resources assimilation, and help determine the impacts of dam removal on food webs. 

This paper aims to describe the food web structures in four distinct regions along the 

Pandeiros River in Brazil (the upper course, the region under the influence of a dam, the 

middle course, and the lower course), considering the presence of a small power plant. The 

following questions were addressed: Are there differences in food resources among regions? 

Are there differences in the fish trophic structure among regions? And, are the biomass 

proportions of fish trophic guilds different among regions? These aspects were discussed in 

the context of the possibility of removing the Pandeiros dam. 

  

Materials & Methods 

 

Study area 

 

The São Francisco River basin is one of the most important basins in Brazil, covering 

around 645 km² (Araújo-Lima et al. 1995, Kohler 2003). It is the largest river basin that has 

its entire limits within Brazilian territory. The São Francisco basin harbors around 211 fish 

species, and along its course fishing plays an important role as a food source for the riverine 

population (Reis et al. 2016). The most commercially important fish species in the basin are 

migratory, such as Pimelodus maculatus, Prochilodus spp., Salminus franciscanus and 

Pseudoplatystoma corruscans (Godinho & Godinho 2003). 

The Pandeiros River is an important tributary of the São Francisco River, and a 

migration route of spawning fish. In the lower course of the Pandeiros River, a huge 

floodplain (3000 - 5000 ha) is a habitat to a great diversity of organisms (Nunes et al. 2009, 

Rezende et al. 2012, Lopes et al. 2013). At least 88 fish species use the Pandeiros River as a 

habitat, for refuge, feeding or reproduction, and the floodplain as a shelter or nursery area 

(Chapter 2). 

The Pandeiros small hydroelectric plant (SHP Pandeiros) (525974.02 m E; 

8285899.58 m S) is located 50 km upstream of the mouth of the Pandeiros River, and the dam 



62 
 

 
  

has a maximum height of 10.3 meters. The power plant began operation in 1958, but was 

deactivated in 2008 (Fonseca et al. 2008).  

 

Sampling data 

 

Fish samples were carried out over two years (2014 to 2016). In total, eight sample 

sites were distributed along the Pandeiros River, four of them upstream of the dam (upper and 

middle reaches of the Pandeiros River basin), and four downstream of the dam (covering the 

floodplain region of the Pandeiros River). The sites were grouped in four regions, reflecting 

their position in relation to the dam, and physiographic characteristics of the river (Tab. 1).   

 

Table 1. Location and brief description of sample sites. 

Sites Region Location 

(upstream 

and 

downstream) 

Coordinates Description of the site 

1 

1 

U 15°22'55.69"S/ 

44°55'26.65"W 

Site furthest away from the dam, sandy 

substrate with some riffle 

2 U 15°26'27.25"S/ 

44°49'14.83"W 

Site upstream, uninfluenced by the dam, rocky 

substrate with riffle 

3 

2 

U 15°29'55.34"S/ 

44°45'27.41" W 

Reservoir site, sandy substrate 

4 U 15°29'57.61"S/ 

44°45'8.26" W 

Lateral lake site, macrophytes substrate 

5 

3 

D 15°30'20.03"S/ 

44°45'24.24" W 

Site between dam and waterfalls, rocky 

substrate 

6 D 15°30'48.63"S/ 

44°45'15.03" W 

Site below the waterfalls, rocky and gravel 

substrate 

7 

4 

D 15°40'11.11"S/ 

44°38'11.46" W 

Site on the river in the floodplain, sandy 

substrate 

8 D 15°41'46.06"S/ 

44°34'30.01" W 

Marginal lagoon in the floodplain, near the São 

Francisco River 

  

 

Stable isotopes analyses were conducted for the most abundant species in each region. 

Between three and nine individuals of each species were analyzed, totaling 293 isotopic fish 

samples taken from the white muscle tissue of fishes of similar sizes (Tab. 2).   

The possible resources available in each region were also sampled, including leaves of 

riparian vegetation (RIP), fine particulate organic matter (FPOM), coarse particulate organic 

matter (CPOM), organic matter in suspension (SUSP), macrophytes (MAC), periphyton 

(PERI) and macroinvertebrates (MACRO), accounting for over 277 isotopic samples.  
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The collected samples were frozen for later isotopic composition analysis. In the 

laboratory, the organisms collected were taxonomically identified using identification keys for 

fishes of the São Francisco River basin. Smaller fish were analyzed whole, with only the 

digestive tract removed. Each fish and resource sample was lyophilized for 48 hours and 

ground to a fine homogeneous powder using a mortar and pestle; approximately 2–5 mg of 

dry tissue was selected for isotopic analysis. 

After preparing the materials, samples were sent for isotopic analysis at the Laboratory 

of Isotope Ecology, which is linked to the Center for Nuclear Energy in Agriculture (Centro 

de Energia Nuclear na Agricultura—CENA) at the University of São Paulo (Universidade de 

São Paulo—USP), Piracicaba. All samples were analyzed for isotope ratios (13C:12C 

expressed as δ13C and 15N:14N expressed as δ15N) of the total carbon and nitrogen content. 

Mass spectrometry (Continuous-flow-Isotope Ratio Mass Spectrometry—CF-IRMS) with a 

Carlo Erba elemental analyzer (CHN 1110) coupled to a Delta Plus mass spectrometer from 

Thermo Scientific was used to determine isotope ratios. Results were expressed as relative 

differences in international reference standards, in the delta notation (δ ‰), and calculated 

using the following formula: 

δX = [(Rsample/Rstandard) – 1] x 10³ 

where X is 13C or 15N, and R is the isotope ratio 13C/12C or 15N/14N (Barrie & Prosser, 

1996). 

 

Data analysis 

 

To answer the first question purposed if there are differences in the availability of 

basal resources between regions were tested using a one-way ANOVA.  

To understand the differences in the fish trophic structure among regions we used 

three Layman metrics (Layman et al. 2007) reformulated in a Bayesian framework by Jackson 

et al. (2011), nitrogen range (NR), the nitrogen range (NR) and the total area (TA), to perform 

comparisons between assemblages along the Pandeiros River, and to examine the dispersion 

of dimensional space graphics from isotope variation in δ15N and δ13C. The nitrogen range 

(NR) represents the vertical structure of the community trophic network, and a higher NR 

among consumers suggests a higher trophic level. The carbon range (CR) is based on species 

with higher and lower carbon isotope concentration, thus assemblages with higher CR values 

are characterized by multiple basal resources. The total area (TA) is characterized by the total 
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area between all species in space in the biplot showing variation in δ15N and δ13C, and 

represents the trophic diversity in the trophic network. These Layman metrics are related to 

isotopic niche width among assemblages (regions). Trophic diversity was also compared 

between regions by comparing the bayesian SEAc (standardized Area of the ellipse) and theta 

values (θ – angles in radians), which is another method to interpret stable isotope analyses 

(Jackson et al. 2011, Reid et al. 2016).  

To test if the proportion of fish trophic guilds are different among regions all species 

identified were separated a priori according to the literature in six feeding guilds: piscivorous 

(pis), omnivorous (oni), herbivorous (her), insectivorous (ins), detritivorous/iliophagous (ili), 

zooplanktivorous (zoo) (Tab. 2). We calculate the proportion (%) of the biomass of each 

separate guild by region using all sampled data between 2014 and 2016. The analyses were 

performed using SIAR and SIBER packages developed in R statistical software (Parnell et al. 

2010, Jackson et al. 2011, R Core Team 2016). 

 

Table 2. List of species and abundance of fishes used in stable isotopes analyses in each 

region. See Table 1 for description of regions. 38 species were sampled and classified into 

feeding guilds. 

Species 

Abundance (N) 

per region Feeding guilds Reference* 

1 2 3 4 

Acestrorhynchus lacustris 5 9 5 - Piscivorous 1 

Astyanax fasciatus 5 - - - Omnivorous 1 

Astyanax lacustris 5 - 6 4 Herbivorous 1 

Brycon orthotaenia - - - 3 Herbivorous 1 

Bryconops affinis - 7 - - Insectivorous 2 

Centromochlus bockmanni 5 - - - Insectivorous 3 

Characidium zebra 4 - - - Insectivorous 4 

Cichlasoma sanctifranciscense - 5 - - Insectivorous 1 

Corydoras sp. 5 - - - Insectivorous  

Curimatella lepidura  - - 5 4 Detritivorous/Iliophagous 1 

Eigenmannia virescens 3 - - - Omnivorous 5 

Hemigrammus piaba 4 5 - 3 Insectivorous 1 

Hisonotus sp. 5 - - - Detritivorous/Iliophagous  

Hoplias intermedius 7 5 5 - Piscivorous 1 

Hoplias malabaricus - 7 3 5 Piscivorous 1 

Hoplosternum littorale - 5 - - Insectivorous 1 

Hypostomus aff. margaritifer 5 - 5 - Detritivorous/Iliophagous 6 

Hypostomus sp1 6 - 6 - Detritivorous/Iliophagous  

Leporinus piau  - - 6 7 Herbivorous 1 

Leporinus reinhardti  - - 3 4 Insectivorous 1 

Leporinus taeniatus  - - 9 - Herbivorous 1 

Lophiosilurus alexandri - - - 3 Piscivorous 7 

Metynnis maculatus - 6 3 - Herbivorous 8 

Myleus micans 9 6 6 - Herbivorous 1 
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Orthospinus franciscensis - - - 7 Insectivorous 1 

Phenacogaster franciscoensis - - - 5 Zooplanktivorous 1 

Pimelodus maculatus - - - 5 Omnivorous 1 

Prochilodus argenteus - - - 7 Detritivorous/Iliophagous 1 

Prochilodus costatus  - - 5 3 Detritivorous/Iliophagous 1 

Pseudoplatystoma corruscans - - - 3 Piscivorous 1 

Pygocentrus piraya - - - 5 Piscivorous 1 

Salminus franciscanus - - - 5 Piscivorous 1 

Schizodon knerii - - - 3 Herbivorous 1 

Serrassalmus brandtii - - - 5 Piscivorous 1 

Steindachnerina elegans 5 - - - Detritivorous/Iliophagous 2 

Tetragonopterus 

franciscoensis  
- - - - 

Insectivorous 

1 

Trachelyopterus galeatus - 6 5 - Insectivorous 9 

Triportheus guentheri - - 5 3 Insectivorous 1 

Total 
73 

5

9 
77 

8

4  

 

*Reference number: 1Pompeu & Godinho (2003), 2Melo et al. (2004), 3Cabeceira et al. (2015), 4Casatti & 

Castro (1998), 5Giora et al. (2005), 6Gandini et al. (2012), 7Alvim & Peret (2004), 8Melo (2011), 9Oliveira 

et al. (2016). Feeding guilds information drawn from studies using analyses of stomach contents. In some 

cases were considered the information known to the genus (few details about the species). 

Results 

 

The greatest variation in δ13C ‰ signatures of basal resources was observed in region 

2, followed by region 3, while regions 1 and 4 presented similar values (Tab. 3). However, the 

ANOVA results showed that there is no difference in carbon signature ranges between regions 

(F(3,17) = 2.67; p = 0.08). 

The greatest variation in δ15N ‰ signatures of basal resources was observed in region 

4, followed by region 2, 3 and 1 (Tab 3). The macroinvertebrates were shown to be more 

enriched in δ15N signatures than basal resources in all regions, and there was no difference 

between the nitrogen range signatures (F(3,35) = 2.57; p = 0.06). 

 

Table 3. Mean and standard deviation values of the 

isotopic signatures of resources sampled in the four 

regions along the Pandeiros River. Resources: leaves of 

riparian vegetation (RIP), fine particulate organic 

matter (FPOM), coarse particulate organic matter 

(CPOM), organic matter in suspension (SUSP), 

macrophytes (MAC), periphyton (PERI) and 

macroinvertebrates (MACRO). 
Sampling  [Resources] 
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region 

  δ13C‰±SD δ15N‰±SD 

Region 1    

 RIP -29.22 ± 1.62 1.04 ± 1.45 

 CPOM -29.27 ± 1.59 0.93 ± 1.74 

 MAC -27.60 ± 1.19 2.02 ± 0.40 

 FPOM -27.95 ± 0.64 2.05 ± 0.51 

 SUSP -28.40 ± 0.56 1.91 ± 0.48 

 MACRO -27.39 ± 1.65 3.5 ± 0.62 

Region 2    

 
RIP -29.05 ± 2.10 1.37 ± 1.20 

 
CPOM -27.55 ± 1.31 1.54 ± 1.22 

 
MAC -26.00 ± 2.10 0.70 ± 2.38 

 
FPOM -26.74 ± 2.00 0.70 ± 2.10 

 
SUSP -24.63 ± 3.37 0.20 ± 1.77 

 
MACRO -24.81 ± 1.33 1.44 ± 1.93 

Region 3    

 
RIP -28.60 ± 2.73 1.88 ± 2.35 

 
CPOM -28.13 ± 2.70 1.63 ± 1.74 

 
MAC -25.40 ± 2.50 2.76 ± 0.90 

 
FPOM -27.02 ± 2.24 2.79 ± 0.95 

 
SUSP -28.10 ± 0.15 1.75 ± 0.30 

 
PERI -26.07 ± 1.91 2.61 ± 0.83 

 
MACRO -25.57 ± 1.34 2.99 ± 1.30 

Region 4  
  

 
RIP -28.06 ± 1.33 1.69 ± 1.35 

 
MAC -27.95 ± 1.13 1.11 ± 0.63 

 
SUSP -27.79 ± 0.13 1.99 ± 0.21 

 
CPOM -29.42 ± 0.37 0.92 ± 0.21 

 
FPOM -28.73 ± 0.28 0.42 ± 0.27 

 
MACRO -28.18 ± 4.24 3.25 ± 1.47 

 

The largest variation in δ13C assimilated by fish (-37.22 ‰ to -16.84 ‰) seen in region 

3, followed by region 4 (-39.56 ‰ to -25.81 ‰). With the exception of region 2, the range of 

δ13C signatures of the sampled resources did not cover the entire variation of δ13C assimilated 

by fish (Fig. 1a). This was more evident in region 4, which presented fish with signatures 

below -35 ‰ (Fig. 2). In this region, the species L. reinhardti (-35.62 ‰), P. maculatus (-36.1 
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‰), P. argenteus (-36.55 ‰), P. costatus (-36.09 ‰) and T. guenteri (-39.06 ‰) showed 

average δ13C values of less than -35 ‰ (Fig. 2).  

The variation in fish δ15N values was similar among regions in the Pandeiros River 

(Fig. 1b). The species with the most enriched δ15N average values were the carnivorous P. 

piraya (9.64 ‰), P. corruscans (9.58 ‰), H. malabaricus (9.35 ‰), S. franciscanus (9.34 ‰) 

and A. lacustris (9.30 ‰), the first four belonging to region 4 and the last to the region 1 (Fig 

2). The lowest values were observed for C. sanctifranciscense (3.21 ‰), M. micans and M. 

maculatus (both with 3.50 ‰), H. marginatus (4.25 ‰), Hypostomus sp1 (4.74 ‰), the first 

four species collected in region 2 and the last in region 3 (Fig. 2). 

 

  

Figure 1. Isotopic signature range for δ13C (a) and δ15N (b) 

of basal resources, macroinvertebrates and fishes. Dashed 
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line represents variation of each stable isotope for basal 

resources.  
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Figure 2. Representation of the trophic structure of fish assemblages for 

each region along the Pandeiros River, a Region 1, b Region 2, c 

Region 3, d Region 4. The numbers in figures represent each species in 

the fish community. Symbols: (1) Acestrorhynchus lacustris; (2) 

Bryconops affinis; (3) Cichlasoma sanctifranciscense; (4) 

Hemigrammus marginatus; (5) Hoplias intermedius; (6) Hoplias 

malabaricus; (7) Hoplosternum littorale; (8) Metynnis maculatus; (9) 

Myleus micans; (10) Trachelyopterus galeatus; (11) Astyanax 

fasciatus; (12) Astyanax lacustris; (13) Centromochlus bockmanni; (14) 

Hypostomus aff. margaritifer; (15) Characidium zebra; (16) Corydoras 

sp.; (17) Eigenmannia virescens; (18) Hisonotus sp.; (19) Hypostomus 

sp1; (20) Steindachnerina elegans; (21) Curimatella lepidura; (22) 

Leporinus piau; (23) Leporinus reinhardti; (24) Leporinus taeniatus; 

(25) Prochilodus costatus; (26) Tetragonopterus chalceus; (27) Brycon 

orthotaenia; (28) Lophiosilurus alexandri; (29) Orthospinus 

franciscensis; (30) Phenacogaster franciscoensis; (31) Pimelodus 

maculatus; (32) Prochilodus argenteus; (33) Pseudoplatystoma 

corruscans; (34) Pygocentrus piraya; (35) Salminus franciscanus; (36) 

Schizodon knerii; (37) Serrassalmus brandtii; (38) Triportheus 

guentheri. The crosses represents the variation of each resources (leaves 

of riparian vegetation (RIP), fine particulate organic matter (FPOM), 

coarse particulate organic matter (CPOM), organic matter in suspension 

(SUSP), macrophytes (MAC), periphyton (PERI) and 

macroinvertebrates (MACRO)) for each stable isotope (δ13C and δ15N). 

 

The trophic niche metrics varied between regions of the Pandeiros River (Tab. 4), and 

indicated that region 4 is the most distinct isotopic niche occupied, particularly due to the 

lower δ13C values (Fig. 3). However, region 3 presented the highest values of total area (TA), 

carbon (CR) and nitrogen (NR). Despite overlapping between regions 1, 2 and 3, region 2 

presented slightly higher SEAc and thetas value (Tab 4). 
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Table 4. Isotopic niche metrics for each region along the 

Pandeiros River. S = number of fish species, TA = total area, 

SEAc = standard ellipse area, CR = carbon range (δ13C), NR = 

nitrogen range (δ15N), Theta (θ) = angle of ellipse inclination in 

radians.   

Region 
Trophic metrics 

S TA SEAc CR NR θ 

1 14 40.47 11.09 10.01 5.41 0.092 

2 10 55.27 16.84 11.38 8.17 0.532 

3 15 101.54 16.82 20.38 9.99 -0.121 

4 19 63.05 17.91 13.75 5.43 -0.048 

 

 

 

 

 

Figure 3. Representation of the trophic structure of the fish community on the 

Pandeiros River. Standard ellipse areas (SEA, circles) represent the core isotopic niche 

space of each fish assemblage along the Pandeiros River. The solid lines represent the 

theta value for each region. 

 

The use of carbon resources did not show any specialization by feeding guilds, since 

each guild could explore a wide range of carbon. However, the detritivorous guild in region 3 

had the highest δ13C value, and the insectivorous guild in region 4 had the lowest δ13C value 

(Fig. 4). In general, the species in the piscivorous guild were the most δ15N enriched. 
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However, regions 2 and 3 showed individuals belonging to other feeding guilds (insectivorous 

and herbivorous) with high values of δ15N. In contrast, the detritivorous and herbivorous 

guilds were always less δ15N enriched (Fig. 4).  
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Figure 4. Representation of the trophic structure of the fish assemblages for 

each region along the Pandeiros River, separated by feeding guilds; (a) 

Region 1, (b) Region 2, (c) Region 3, (d) Region 4. 

 

The most represented guilds by biomass in the four regions were the piscivorous, 

herbivorous, detritivorous and insectivorous guilds (Fig. 5). The piscivorous guild was most 

represented in region 4, with approximately 55% of the total biomass sampled during the 

study. In this region, this guild was mainly represented by the species P. piraya, S. 

franciscanus, and H. malabaricus. The guild with the highest representation in a single region 

was the insectivorous guild in region 2, with about 68% of the total biomass. This mainly 

consisted of the species H. littorale and T. galeatus, which accounted for approximately 65% 

of the biomass of the guild. The region under influence of the dam was the only one in which 

species belonging to all five trophic guilds were not found. In region 2, only piscivorous, 

herbivorous and insectivorous trophic guilds were represented (Fig. 5). 
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Figure 5. Relative biomass for each feeding guilds (piscivorous (pis), omnivorous (oni), 

herbivorous (her), insectivorous (ins), detritivorous/iliophagous (ili), algivorous (alg) in a four 

region along Pandeiros River ((a) Region 1, (b) Region 2, (c) Region 3, (d) Region 4). 

 

Discussion 

 

Land use impacts and changes influence the range of δ13C and δ15N signatures from 

basal resources due different inputs of chemicals, organic fertilizers and sewage (Allan 2004, 

De Carvalho et al. 2015, De Carvalho et al. 2017). Therefore, signatures with higher values of 

nitrogen and/or greater δ13C ranges would be expected in regions subject to such impacts. 

However, the isotopic range (δ13C and δ15N) from basal resources on the Pandeiros River did 

not show differences between regions along the longitudinal gradient. This suggests that the 

isotopic baseline on the Pandeiros River is similar along the stretch studied, and the human 

impact on natural carbon and nitrogen availability along the river is not significant. 

The range of δ13C signatures identified from the resources sampled did not cover the 

range of δ13C assimilated by fish, indicating that fish in this region have consumed basal 

resources that were not sampled. In tropical riverine ecosystems there are a complex variety 

of possible resources available to fish communities, which ranges from seeds to small 



74 
 

 
  

vertebrates, and opportunistic feeding is more common than specialization (Lima et al. 1995). 

Furthermore, omnivory is one of the most abundant foraging modes in tropical freshwater 

fishes (Winemiller & Jepsen 1998), and it is possible that we have not captured all basal 

resources. Region 4 is located in the floodplain, in the confluence between the Pandeiros and 

São Francisco Rivers. Hence, these missing δ13C values, may be explained by feeding that 

occurred outside the Pandeiros River, particularly for migratory fishes (Leporinus reinhardti, 

Prochilodus spp.). For this reason, the range of basal resource may be different from those 

sampled in the Pandeiros River. However, most of the individuals sampled were juveniles that 

have probably not yet migrated to another region in the São Francisco basin. 

Extreme seasonal events are characterized by long periods with low levels of dissolved 

oxygen, which occurs particularly in the floodplain (region 4). This can facilitate the 

production of methane, which has been recognized as a source of carbon for aquatic food 

webs (Sanseverino et al. 2012). The lowest δ13C values were observed in that region, and 

some individuals presented -38.35‰ (Curimatella lepidura carbon mean -31.19‰), -39.42 ‰ 

(Triportheus guenteri carbon mean -39.06‰) and -39.56‰ (Leporinus reinhardti carbon 

mean -35.62‰). These low δ13C values are thought to come from biogenic CH4 (Bastviken et 

al. 2003). We identified another three species from that region that also had low values: P. 

maculatus (-36.1 ‰), P. argenteus (-36.55 ‰), and P. costatus (-36.09 ‰). All of these 

species with lower carbon signatures were zooplanctivorous, detritivorous or omnivorous 

(with tendency towards invertivory). Such species feed on particulate and dissolved organic 

matter oxidized by MOB (methane oxidizing bacteria), or rely on pelagic (zooplanctivorous) 

or benthic organisms (invertivorous). These are all possible ways in which methane can be 

incorporated into food webs in tropical rivers (Bastviken et al. 2003, Sanseverino et al. 2012). 

The measures of trophic structure utilized in this study have become widely adopted in 

trophic community ecology studies based on stable isotopes (Jepsen & Winemiller 2002, 

Jackson et al. 2011, De Carvalho et al. 2017). These measures facilitate the improved 

understanding of the relationship between basal resources and their consumers, making it 

possible to compare the relationship between areas under different human impacts (Silva et al. 

2007, De Carvalho et al. 2015, 2017). In this study, the CR, TA and theta values were 

markedly different between regions.  

Regions 3 and 4, located downstream of the dam, had higher CR and TA values. 

Those regions possessed some species with a great variation of signatures, for example, one 

of the individuals of Leporinus piau analyzed had -24.23‰ δ13C and 13.77‰ δ15N. These 
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values contribute to increase the TA of the region and indicate that the region, connected to 

the São Francisco main stream, supports species with different approaches to exploit the 

resources, receiving individuals that can forage other areas (Bearhop et al. 2004). The higher 

CR and TA values characterize an assemblage with large niche width, high trophic diversity 

and multiple basal resources (Layman et al. 2007). It also indicates that the lower Pandeiros 

River can exchange individuals with others areas of the basin, increasing the diversity of 

isotopic signatures. 

The theta value can be used as an alternative to interpret the SEA, especially when 

ellipse area values were similar (Reid et al. 2016). In our study, despite the similar area and 

great overlap among the ellipses, the different angle of inclination (theta value) pointed to 

differences in food web structures in each region. Vertically distributed communities, like 

those under the influence of the dam (region 2), tend to be composed of simpler species 

assemblages, with a narrower use of resources. The strong environmental filter imposed by 

reservoirs has been extensively described in the literature, and reductions in species richness 

and fish diversity are expected, as some species are locally eliminated and others become 

dominant and numerous (Agostinho et al., 2008). However, a progressive change in the 

trophic community in region 2 towards that observed in regions 1 or 3 is expected to result 

from removing the dam.  

We observed that piscivorous, detritivorous and herbivorous guilds were of greatest 

importance in all regions. In general, fish characterized as herbivores and 

detritivore/iliophagous are in the same trophic position (according to the variation in δ15N) as 

primary consumers, although they possibly utilize different carbon sources (Jepsen & 

Winemiller 2002, Post 2002). However, the signatures of the herbivores have a greater 

amplitude in the use of the two isotopes studied. As proposed by Vannote et al. (1980), a 

higher proportion of piscivorous fishes is expected to be found in lower parts of a longitudinal 

gradient in a river, and this aspect has been documented by several studies (Hoeinghaus et al. 

2007, Ibanez et al. 2007). We could identify similar patterns along the Pandeiros River where 

piscivorous and detritivorous fishes were dominant in the lower reaches (region 3 and 4). 

However, we have also found a great biomass of piscivorous and detritivorous fishes 

upstream of the dam. Yet, only predators (e. g. Salminus franciscanus) and detritivores (e. g. 

Prochilous spp.) found in the lower reaches of the river were represented by migratory 

species. Predators and detritivores in the upper basin were sedentary species like Hoplias spp. 
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and Hypostomus spp, suggesting that fragmentation by the dam separates the assemblages 

upstream and downstream into two different functional and taxonomic regions. 

The findings presented here demonstrate how the trophic structure based on stable 

isotopes can change along a small regulated tropical river. Although the input of organic 

matter did not change in terms of δ13C and δ15N, the region under influence of the dam and 

the floodplain region showed marked differences in the exploited resources. In addition, 

although the guild composition did not change among the lotic regions, the contribution of 

migratory species changed along the river due to the fragmentation imposed by the dam. 

Considering the possibility of removing the Pandeiros dam, the data collected present an 

opportunity to follow the changes in resource assimilation and guild composition after such 

removal. After restoring the natural dynamic of the Pandeiros River, changes in the region 

under influence of the dam, and upstream of the current reservoir due to the colonization by 

migratory species are expected, and must be monitored.    
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