

CLÁUDIO VINÍCIUS DE CARVALHO

UMA REVISÃO DE HEURÍSTICAS PARA RENUMERAÇÃO DE VÉRTICES PARA REDUÇÃO DO CUSTO DE EXECUÇÃO DO MÉTODO GMRES PRÉ-CONDICIONADO

LAVRAS – MG

2018

CLÁUDIO VINÍCIUS DE CARVALHO

UMA REVISÃO DE HEURÍSTICAS PARA RENUMERAÇÃO DE VÉRTICES PARA REDUÇÃO DO CUSTO DE EXECUÇÃO DO MÉTODO GMRES PRÉ-CONDICIONADO

Dissertação apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós-Graduação em Ciência da Computação, área de concentração em Inteligência Computacional e Processamento Digital de Imagens, para a obtenção do título de Mestre.

Prof. DSc. Sanderson L. Gonzaga de Oliveira Orientador

LAVRAS – MG 2018

Ficha catalográfica elaborada pela Coordenadoria de Processos Técnicos da Biblioteca Universitária da UFLA, com dados informados pelo(a) próprio(a) autor(a).

Carvalho, Cláudio Vinícius de

Uma revisão de heurísticas para renumeração de vértices para redução do custo de execução do método GMRES pré-condicionado / Cláudio Vinícius de Carvalho. – 2018. 126 p. : il.

Dissertação (mestrado acadêmico) –Universidade Federal de Lavras, 2018.

Orientador: Prof. DSc. Sanderson L. Gonzaga de Oliveira. Bibliografia.

1. GMRES pré-condicionado. 2. Heurísticas de renumeração de vértices. 3. Iterated Local Search. I. Oliveira, Sanderson L. Gonzaga de. . II. Título.

CLÁUDIO VINÍCIUS DE CARVALHO

UMA REVISÃO DE HEURÍSTICAS PARA RENUMERAÇÃO DE VÉRTICES PARA REDUÇÃO DO CUSTO DE EXECUÇÃO DO MÉTODO GMRES PRÉ-CONDICIONADO

Dissertação apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós-Graduação em Ciência da Computação, área de concentração em Inteligência Computacional e Processamento Digital de Imagens, para a obtenção do título de Mestre.

APROVADA em 19 de Março de 2018.

Prof. DSc. Diego Nunes BrandãoCEFET/RJProf. DSc. Antônio Maria Pereira de ResendeUFLA

Prof. DSc. Sanderson L. Gonzaga de Oliveira Orientador

> LAVRAS – MG 2018

AGRADECIMENTOS

Agradeço a Deus pela força nos momentos mais árduos essa jornada.

Agradeço à minha amada esposa, Karoline, pelo apoio e parceria durante essa longa caminhada. Por todo o amor, paciência e compreensão nas horas difíceis, e pela valiosa companhia, que ajudaram a tornar o fardo mais leve.

Agradeço a meus pais, Eliane e Cláudio, por me estimularem e acreditarem neste projeto desde o início; por serem meu exemplo, por todo o suporte e ensinamentos, que me fizeram chegar até aqui. Agradeço também a meus queridos irmãos pelo carinho.

Agradeço ao professor Sanderson, pelo convite que deu origem a este projeto. Por toda a dedicação, instruções, críticas, correções e, sobretudo, pela paciência que demonstrou desde o início.

Agradeço aos companheiros e amigos de mestrado Guilherme Chagas, Alexandre Abreu e Júnior Assis, pela base de códigos e conhecimentos sem a qual este projeto não seria possível. Sua dedicação e esforços prévios foram fundamentais para o desenvolvimento deste trabalho.

Agradeço aos professores e funcionários do Departamento de Ciência da Computação - UFLA por todo o apoio.

Agradeço aos amigos e colegas do Laboratório de Estudos e Projetos em Manejo Florestal - LEMAF, pelo companheirismo durante esse período. Agradeço à coordenação do LEMAF por todo apoio e incentivo desde o primeiro momento e por permitir que me dedicasse a este projeto.

RESUMO

Sistemas de equações lineares envolvendo matrizes esparsas de grande porte surgem, geralmente, da discretização de equações diferenciais parciais, comuns em simulações computacionais de várias áreas da ciência. Métodos iterativos, como o Generalized Minimal Residual (GMRES) pré-condicionado, são os mais adequados para resolução desses sistemas. Quando se utiliza esses métodos, pode-se obter redução de seu custo computacional ao se aplicar técnicas de redução de largura de banda ou de profile nas matrizes envolvidas. Essas técnicas consistem em agrupar os coeficientes não nulos da matriz o mais próximo possível da diagonal principal por meio de permutações de suas linhas e colunas. Neste trabalho, avaliou-se o desempenho de métodos heurísticos no estado da arte para redução de largura de banda ou de profile no contexto de resolução de sistemas de equações lineares com o método GMRES pré-condicionado. Ainda, uma heurística baseada na meta-heurística Iterated Local Search para os problemas de redução de largura de banda e de *profile* de matrizes foi proposta. Nos testes realizados em 172 instâncias da base SuiteSparse Matrix Collection a heurística proposta apresentou bons resultados, principalmente na redução de profile de matrizes assimétricas e de banda de matrizes simétricas. Contudo, seu alto tempo de execução não a qualificou como heurística propícia para reduzir o custo computacional do GMRES pré-condicionado. Treze métodos heurísticos foram avaliados nos experimentos para redução do custo de execução do GMRES pré-condicionado. Foram considerados seis pré-condicionadores, baseados em fatoração incompleta (ILUT, ILUC, ILU(k), VBILUT e VBILUK) e em multigrid (ARMS) em 20 instâncias de grandes dimensões. As simulações apontaram, em consonância com a literatura, que os melhores resultados na redução do custo computacional de sistemas de equações lineares são obtidos por heurísticas com baixo custo computacional, mesmo que não apresentem grandes reduções de largura de banda ou profile. Ainda, constatou-se que, para certas instâncias, nenhuma heurística contribuiu para a redução do custo de resolução dos sistemas com o GMRES pré-condicionado.

Palavras-chave: GMRES. Pré-condicionadores. Renumerações de vértices. Heurísticas. *Iterated Local Search*.

ABSTRACT

Systems of linear equations that involve large sparse matrices arising from the discretization of partial differential equations are commonplace in computational simulations from many scientific fields. Iterative methods such as the preconditioned Generalized Minimal Residual method (GMRES) are the most suitable for solving such systems. When these methods are used, one can achieve computational cost reductions by applying bandwidth and profile reduction technigues on the related matrices. The purpose of these techniques is to group the coefficients of the matrix near to the main diagonal by applying a sequence of permutations of its rows and columns. In this work, the performance of heuristic methods for bandwidth and profile reductions was evaluated when used alongside the preconditioned GMRES method for solving linear systems. Furthermore, we propose a heuristic method for bandwidth and profile reductions based on the metaheuristic Iterated Local Search. In the tests carried in 172 instances from the SuiteSparse Matrix Collection, the proposed algorithm showed good results, especially in reducing the bandwidth of symmetric matrices and reducing the profile of unsymmetric matrices. However, due to its high execution times, it was not considered conducive to reduce the execution time of the preconditioned GMRES. Thirteen heuristic methods were evaluated in the experiments with the preconditioned GMRES. Six preconditioners based on incomplete factorization (ILUT, ILUC, ILU(k), VBILUT and VBILUK) and on multigrid methods (ARMS) were used, in 20 large instances. In line with previous works, heuristic methods with low computational cost obtained the best results in reducing the computational cost of solving linear systems in the simulations conducted, even though the bandwidth and profile reductions they provide are not the best overall. More, it was observed that for certain instances no heuristic was able to help in reducing the computational cost of solving linear systems with preconditioned GMRES.

Keywords: GMRES. Preconditioning. Vertices renumbering. Heuristics. Iterated Local Search.

LISTA DE FIGURAS

Figura 2.1 –	Representações de grafos com diferentes numerações de vértices e suas	
	respectivas matrizes de adjacências	17
Figura 4.1 –	Comportamento de uma iteração da meta-heurística Iterated Local Search.	
	Dado um mínimo local s^* , aplica-se uma perturbação que leva a s' . Após	
	efetuar a BuscaLocal em s' , obtemos $s^{*'}$, que será comparado a s^*	32
Figura 5.1 –	Fragmento de um grafo destacando o valor "ideal" do vértice de rótulo 1.	
	São tomados o maior e menor rótulos adjacentes, 45 e 25, respectivamente,	
	e sua soma é dividida por 2	39
Figura 6.1 –	Número de melhores resultados em redução de largura de banda das heu-	
	rísticas selecionadas em 124 instâncias simétricas	47
Figura 6.2 –	Valor da métrica ρ das heurísticas selecionadas em redução de largura de	
	banda em 124 instâncias simétricas (quanto menor, melhor)	47
Figura 6.3 –	Número de melhores resultados em redução de profile das heurísticas sele-	
	cionadas em 124 instâncias simétricas	48
Figura 6.4 –	Valor da métrica ρ das heurísticas selecionadas em redução de <i>profile</i> em	
	124 instâncias simétricas (quanto menor, melhor)	49
Figura 6.5 –	Número de melhores resultados para tempo de execução das heurísticas	
	selecionadas em 124 instâncias simétricas	50
Figura 6.6 –	Valor da métrica ρ para tempo de execução das heurísticas selecionadas em	
	124 instâncias simétricas (quanto menor, melhor)	51
Figura 6.7 –	Número de melhores resultados em redução de largura de banda das heu-	
	rísticas selecionadas em 48 instâncias assimétricas	52
Figura 6.8 –	Valor da métrica ρ das heurísticas selecionadas em redução de largura de	
	banda em 48 instâncias assimétricas (quanto menor, melhor)	52
Figura 6.9 –	Número de melhores resultados em redução de profile das heurísticas sele-	
	cionadas em 48 instâncias assimétricas	53
Figura 6.10-	-Valor da métrica ρ das heurísticas selecionadas em redução de <i>profile</i> em	
	48 instâncias assimétricas (quanto menor, melhor)	54
Figura 6.11-	-Número de melhores resultados para tempo de execução das heurísticas	
	selecionadas em 48 instâncias assimétricas	54

Figura 6.12 -	-Valor da métrica $ ho$ para tempo de execução das heurísticas selecionadas em	
	48 instâncias assimétricas (quanto menor, melhor)	55
Figura 6.13 -	-Gráfico sobreposto de $\sum \rho$ para largura de banda e para tempo das simula-	
	ções com 124 instâncias simétricas, ordenadas por tempo (em escala loga-	
	rítmica).	57
Figura 6.14-	-Gráfico sobreposto de $\sum \rho$ para <i>profile</i> e para tempo das simulações com	
	124 instâncias simétricas, ordenadas por tempo (em escala logarítmica)	57
Figura 6.15 -	-Gráfico sobreposto de $\sum \rho$ para largura de banda e para tempo das simu-	
	lações com 48 instâncias assimétricas, ordenadas por tempo (em escala	
	logarítmica).	58
Figura 6.16 –	-Gráfico sobreposto de $\sum \rho$ para <i>profile</i> e para tempo das simulações com 48	
	instâncias assimétricas, ordenadas por tempo (em escala logarítmica)	58
Figura 7.1 –	Visão geral do funcionamento de um método multigrid. Para resolução de	
	SELs, a matriz de entrada é aproximada por uma série de matrizes menores,	
	até que possa ser resolvida.	70
Figura 8.1 –	Tempo de execução do método GMRES pré-condicionado na instância da	
	área Electromagnetics problem com os pré-condicionadores ILUT e ARMS	79
Figura 8.2 –	Tempo de execução do método GMRES pré-condicionado na instância da	
	área Optimization problem com os pré-condicionadores ILUC e ARMS	80
Figura 8.3 –	Tempo de execução do método GMRES pré-condicionado nas instâncias da	
	área Directed Weighted Graph problem com os pré-condicionadores ILUT,	
	ILUC e ILU(k) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	81
Figura 8.4 –	Soma dos tempos de execução do método GMRES pré-condicionado nas	
	instâncias da área Computational Fluid Dynamics problem com os pré-	
	condicionadores ILUT, ILUC e ILU(k) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	82
Figura 8.5 –	Somatório da métrica ρ dos tempos de execução do método GMRES pré-	
	condicionado nas instâncias da área Circuit Simulation problem em que	
	houve convergência com o pré-condicionador ILUT	83
Figura 8.6 –	Soma dos tempos de execução do método GMRES pré-condicionado nas	
	instâncias da área Circuit Simulation problem em que houve convergência	
	com o pré-condicionador ARMS	84

LISTA DE TABELAS

Tabela 6.1 –	Ranking das heurísticas para redução de largura de banda e profile, em	
	relação à métrica ρ	56
Tabela 8.1 –	20 instâncias reais e assimétricas de grande porte utilizadas nos testes para	
	resolução de SELs com o método GMRES pré-condicionado. O tamanho	
	da matriz é indicado por n e o número de elementos não nulos, por nnz	76
Tabela 8.2 –	Parâmetros utilizados nos testes com o GMRES pré-condicionado a cada	
	tentativa sem convergência. Os valores da 4ª tentativa foram utilizados	
	apenas nas instâncias em que não houve convergência em nenhuma das	
	tentativas anteriores.	77
Tabela 8.3 –	Melhores combinações de heurísticas de ordenação e métodos pré-condicionad	ores,
	no geral, nos testes realizados com 20 instâncias assimétricas	85
Tabela 8.4 –	Tempos de execução (em segundos) do método GMRES pré-condicionado	
	em instâncias assimétricas do tipo "Electromagnetics problem"	89
Tabela 8.5 –	Tempos de execução (em segundos) do método GMRES pré-condicionado	
	em instâncias assimétricas do tipo "Optimization problem"	89
Tabela 8.6 –	Tempos de execução (em segundos) do método GMRES pré-condicionado	
	em instâncias assimétricas do tipo "Directed Weighted Graph"	90
Tabela 8.7 –	Tempos de execução (em segundos) do método GMRES pré-condicionado	
	em instâncias assimétricas do tipo "Computational Fluid Dynamics problem".	91
Tabela 8.8 –	Tempos de execução (em segundos) do método GMRES pré-condicionado	
	em instâncias assimétricas do tipo "Circuit Simulation problem"	92
Tabela A1 –	Resultados de redução de largura de banda das heurísticas testadas em 124	
	instâncias simétricas da SuiteSparse Matrix Collection	108
Tabela A2 –	Resultados de redução de profile das heurísticas testadas em 124 instâncias	
	simétricas da SuiteSparse Matrix Collection	111
Tabela A3 –	Resultados de tempo de processamento, em segundos, das heurísticas tes-	
	tadas em 124 instâncias simétricas da SuiteSparse Matrix Collection	114
Tabela A4 –	Resultados de redução de largura de banda das heurísticas testadas em 48	
	instâncias assimétricas da SuiteSparse Matrix Collection	117
Tabela A5 –	Resultados de redução de profile das heurísticas testadas em 48 instâncias	
	assimétricas da SuiteSparse Matrix Collection	118

Tabela A6 - Resultados de tempo de processamento, em segundos, das heurís		
	tadas em 48 instâncias assimétricas da SuiteSparse Matrix Collection	119
Tabela B1 –	Parâmetros dos pré-condicionadores e respectivos intervalos de valores uti-	
	lizados nos testes.	121
Tabela B2 –	Áreas de aplicação de 35 instâncias da SuiteSparse Matrix Collection usa-	
	das nos testes. O número de vértices é indicado por n e o número de coefi-	
	cientes não nulos, por <i>nnz</i>	125
Tabela B3 –	Parametrização do método GMRES: valores de $\sum \rho$ para o parâmetro <i>m</i> nas	
	35 instâncias selecionadas, com todas as combinações de parâmetros dos	
	pré-condicionadores	126
Tabela B4 –	Parametrização do método GMRES(m=50): valores de $\sum \rho$ para o parâme-	
	tro τ	126
Tabela B5 –	Parametrização do método GMRES(m=50): valores de $\sum \rho$ para o parâme-	
	tro <i>p</i>	126
Tabela B6 –	Parametrização do método GMRES(m=50): valores de $\sum \rho$ para o parâme-	
	tro <i>k</i>	126
Tabela B7 –	Parametrização do método GMRES(m=50): valores de $\sum \rho$ para o parâme-	
	tro num_niveis	126
Tabela B8 –	Parametrização do método GMRES(m=50): valores de $\sum \rho$ para o parâme-	
	tro tol_dd	126
Tabela B9 –	Parametrização do método GMRES(m=50): valores de $\sum \rho$ para o parâme-	
	tro <i>block_size</i>	126

SUMÁRIO

1	Introdução	12
1.1	Justificativa	13
1.2	Objetivos	15
2	Conceitos básicos	16
2.1	Conceitos básicos de grafos	16
2.2	Estrutura de armazenamento	19
3	Reduções de largura de banda e de <i>profile</i> de matrizes	20
3.1	Métodos heurísticos aplicadas ao problema de redução de largura de banda	20
3.2	Heurísticas recentes baseadas em meta-heurísticas para o PRLB	21
3.2.1	Fast Node Centroid with Hill Climbing	23
3.2.2	Variable Neighborhood Search	25
3.3	Métodos heurísticos aplicadas ao problema de redução de <i>profile</i>	27
3.3.1	Heurística NSloan	27
3.3.2	Heurística Sloan-MGPS	28
3.3.3	Heurística MPG	28
3.4	Heurísticas baseadas em meta-heurísticas para o problema de redução de	
	profile	29
4	A meta-heurística Iterated Local Search	31
4.1	Iterated Local Search	31
4.1.1	Solução inicial	32
4.1.2	Busca local	33
4.1.3	Perturbação	33
4.1.4	Critério de aceitação	34
4.2	Aplicações da meta-heurística ILS em problemas de otimização combina-	
	tória	34
5	Aplicação da meta-heurística Iterated Local Search aos problemas de re-	
	duções de largura de banda e de <i>profile</i> de matrizes	36
5.1	Desenvolvimento da heurística baseada na meta-heurística Iterated Local	
	Search	36
5.1.1	Solução inicial	36
5.1.2	Perturbação	38

5.1.3	Busca Local	40
5.1.4	Critério de aceitação	41
5.2	As heurísticas ILS-Band e ILS-Prof	42
5.3	Detalhes de desenvolvimento	43
6	Simulações para redução de largura de banda e de <i>profile</i>	44
6.1	Instâncias utilizadas	44
6.2	Métricas utilizadas para comparação dos resultados	45
6.3	Simulações com 124 instâncias simétricas	46
6.3.1	Redução de largura de banda	46
6.3.2	Redução de <i>profile</i>	48
6.3.3	Tempo de execução	49
6.4	Simulações com 48 instâncias assimétricas	50
6.4.1	Redução de largura de banda	51
6.4.2	Redução de <i>profile</i>	51
6.4.3	Tempo de execução	53
6.5	Discussão sobre as simulações para redução de largura de banda e de profile	55
6.5.1	Simulações em instâncias simétricas	55
6.5.2	Simulações em instâncias assimétricas	56
6.5.3	Considerações finais sobre o desempenho das heurísticas testadas	58
7	Resolução de sistemas de equações lineares	60
7.1	Métodos iterativos para resolução de SELs	60
7.1.1	Métodos baseados no subespaço de Krylov	60
7.1.1.1	Convergência de métodos iterativos	61
7.1.2	O método GMRES	61
7.1.2.1	Método GMRES com reinícios	63
7.1.3	Pré-condicionamento	63
7.1.4	Método GMRES pré-condicionado	64
7.1.5	Paralelização do método GMRES	65
7.2	Técnicas de pré-condicionamento	66
7.2.1	ILU(k)	67
7.2.2	ILUT	69
7.2.3	ILUC	70

7.2.4	ARMS	70	
7.2.5	Pré-condicionadores em bloco	71	
7.2.6	Pré-condicionamento paralelo		
7.3	Trabalhos recentes com aplicações do método GMRES pré-condicionado		
8 Simulações para resolução de SELs com o método GMRES			
	pré-condicionado	74	
8.1	Descrição das instâncias, heurísticas e pré-condicionadores utilizados		
8.2	Simulações com 20 instâncias assimétricas		
8.2.1	3.2.1 Simulações com o método GMRES pré-condicionado nas instâncias		
	área Electromagnetics problem	78	
8.2.2	Simulações com o método GMRES pré-condicionado nas instâncias da		
	área Optimization problem	79	
8.2.3	Simulações com o método GMRES pré-condicionado nas instâncias da		
	área Directed Weighted Graph problem	80	
8.2.4	Simulações com o método GMRES pré-condicionado nas instâncias da		
	área Computational Fluid Dynamics problem	81	
8.2.5	Simulações com o método GMRES pré-condicionado nas instâncias da		
	área Circuit Simulation problem	82	
8.3	Discussões sobre as simulações para resolução de SELs com o método		
	GMRES pré-condicionado	84	
8.3.1	ILUT	86	
8.3.2	ILU(k)	86	
8.3.3	ILUC	87	
8.3.4	ARMS	87	
8.3.5	Considerações finais	87	
9	Conclusão e trabalhos futuros	95	
	REFERÊNCIAS	98	
	APENDICE A – Resultados das simulações para redução de largura de		
	banda e de <i>profile</i>	107	
	APENDICE B – Parametrização do método GMRES	120	
.1	Determinação dos parâmetros para o método GMRES pré-condicionado .	120	
.2	Execuções e parâmetros escolhidos	122	

1. INTRODUÇÃO

Uma ampla variedade de fenômenos físicos pode ser descrita por meio de Equações Diferenciais Parciais (EDPs). Fenômenos térmicos, acústicos, eletrodinâmicos, de fluidos, entre outros, podem ser modelados por meio de EDPs que descrevem a taxa de mudança de suas quantidades físicas, como forças, energias, temperaturas, velocidades, etc (SAAD, 2003).

A resolução desse tipo de equação, normalmente, passa pela aplicação de métodos como o dos volumes finitos ou dos elementos finitos. A saída desses métodos são discretizações, ou aproximações, utilizando um número finito de incógnitas. Essas discretizações levam a sistemas de equações lineares (SELs) da forma

$$Ax = b$$
,

em que *A* é uma matriz de grande porte e esparsa, isto é, possui poucos elementos não nulos. Grande parte do custo de execução associado a simulações computacionais de diversas áreas da ciência e engenharia está, portanto, ligado à resolução desses sistemas de equações lineares de grande porte, conforme explicam (OLIVEIRA; CHAGAS, 2014).

Para a resolução de sistemas de equações lineares podem ser utilizados métodos diretos ou iterativos. Métodos diretos são amplamente utilizados por serem robustos, altamente confiáveis e por requererem uma quantidade previsível de recursos computacionais (BENZI, 2002). Contudo, eles são pouco escaláveis e, à medida que as instâncias envolvidas crescem, os custos de armazenamento e memória podem se tornar impraticáveis. Métodos iterativos compensam sua menor confiabilidade com custos de execução e armazenamento muito menores que os métodos diretos (SAAD, 2003, p. *xix-xx*). Assim, para sistemas esparsos de grandes proporções ou em que a precisão pode ser sacrificada, métodos iterativos são os indicados.

O método dos gradientes conjugados (MGC) (HESTENES; STIEFEL, 1952; LANC-ZOS, 1952) é um exemplo de método iterativo. Esse método, baseado no subespaço de Krylov, pode ser utilizado nas situações em que as matrizes envolvidas são simétricas e positivas definidas. Para casos de matrizes não simétricas, ou não positivas definidas, pode-se recorrer a métodos como o *Generalized Minimal Residual Method* (GMRES) (SAAD; SCHULTZ, 1986), ou o *Biconjugate Gradient Stabilized Method* (Bi-CGSTAB) (VORST, 1992), por exemplo. Recomenda-se a leitura de Saad (2003) para um profundo detalhamento de métodos iterativos para a resolução de sistemas de equações lineares.

Apesar de serem os mais recomendados para instâncias de grande porte, em algumas situações, métodos iterativos podem levar muito tempo para encontrarem uma solução. Contudo, é possível reduzir o tempo de execução de métodos iterativos para resolução de sistemas de equações lineares ao se aplicar técnicas de pré-processamento nas matrizes envolvidas (SAAD, 2003, p. 275) (OLIVEIRA; CHAGAS, 2014).

Uma forma de pré-processamento que ajuda a acelerar a convergência de métodos iterativos para resolução de SELs é o uso de pré-condicionadores. No trabalho de Benzi (2002) é apresentado um longo histórico de técnicas de pré-condicionamento aplicadas a métodos iterativos. As reduções de largura de banda e de *profile* de matrizes são outras dessas técnicas de pré-processamento. O objetivo dessas técnicas é, sumariamente, encontrar uma permutação das linhas e colunas da matriz de entrada que faça com que seus elementos não nulos fiquem o mais próximo possível da diagonal principal.

Este projeto está organizado como descrito a seguir. Nas seções 1.1 e 1.2 são apresentadas as justificativas e objetivos deste trabalho, respectivamente. No Capítulo 2 são apresentados conceitos básicos para o entendimento deste texto. O Capítulo 3 é dedicado a explicar os problemas de reduções de largura de banda e de *profile* de matrizes, além dos principais métodos desenvolvidos para esse fim. No Capítulo 4 explica-se o funcionamento do método meta-heurístico *Iterated Local Search*. No Capítulo 5 encontra-se a metodologia utilizada no desenvolvimento e implementação do método para redução de largura de banda e *profile* baseado na meta-heurística *Iterated Local Search*. Em seguida, no Capítulo 6, são apresentados os resultados das simulações com reduções de largura de banda e de *profile*. Métodos para resolução de sistemas de equações lineares são abordados no Capítulo 7. No Capítulo 8 são apresentados os resultados das simulações com resolução de SELs. Por fim, no Capítulo 9, apresentam-se as conclusões sobre este trabalho e proposições de trabalhos futuros.

1.1 Justificativa

Como descrito, a resolução de sistemas de equações lineares é responsável por uma grande parcela do custo computacional de simulações numéricas em muitas áreas da ciência e das engenharias. Nessas aplicações, métodos iterativos utilizados para a resolução desses sistemas podem se beneficiar de etapas de pré-processamento dos dados, de forma que fiquem mais estáveis e se tornem menos custosos de serem resolvidos computacionalmente (DUFF; MEURANT, 1989; DUTTO, 1993).

O uso de pré-condicionadores, "é o ingrediente mais crítico no desenvolvimento de resolutores eficientes para problemas desafiadores da computação científica, e a importância do pré-condicionamento está destinada a aumentar ainda mais.", como explica Benzi (2002, p. 419). Os pré-condicionadores, como os baseados na fatoração LU incompleta, por exemplo, são sensíveis à ordem das incógnitas e equações. Logo, métodos de reordenação de matrizes podem ser grandes aliados na construção de pré-condicionadores eficientes (SAAD, 2003).

Duff e Meurant (1989) compararam diversas técnicas de reordenação de matrizes oriundas de SELs. Os autores verificaram que técnicas de redução de largura de banda, em especial, o algoritmo de Cuthill-McKee (CUTHILL; MCKEE, 1969), causaram uma considerável redução no custo computacional do método dos gradientes conjugados. Diferentes métodos de ordenação foram aplicados com resultados similares por D'Azevedo, Forsyth e Tang (1992), Dutto (1993), Benzi, Haws e Tuma (2000), Duff e Koster (2001), Oliveira, Bernardes e Chagas (2017).

Ao se aplicar métodos de redução de largura de banda ou de *profile* nas matrizes envolvidas, obtém-se, pela reordenação de linhas e colunas, uma representação mais compacta dos dados de entrada, sem que se altere a informação subjacente. Essa representação, além de possibilitar a diminuição no custo de armazenamento, permite que se tire maior proveito da forma com que os dados são organizados na memória do dispositivo, com um aumento a taxa de *cache hits*, de acordo com Das et al. (1994), Burgess e Giles (1997).

O número de permutações de linhas e colunas possíveis em uma matriz A, de dimensões $n \ge n$, é da ordem de n!. O problema de minimização de largura de banda de matrizes pertence à classe de problemas NP-Difícil, como mostrado por Papadimitriou (1976), assim como o problema de minimização de *profile* de matrizes, provado por Lin e Yuan (1994). Pela sua importância prática, diversos métodos exatos e heurísticos têm sido propostos para esse problema desde a década de 1960. Mais recentemente, métodos meta-heurísticos também têm sido aplicados nesse problema (CHAGAS; OLIVEIRA, 2015).

O GMRES (SAAD; SCHULTZ, 1986) é um dos métodos de escolha para resolução de sistemas de equações lineares, em especial, os sistemas assimétricos ou não positivos definidos (SAAD, 2003). Neste trabalho, avaliam-se as ordenações produzidas por métodos heurísticos para redução de largura de banda e de *profile* de matrizes considerados no estado da arte enquanto ferramentas para redução do custo de execução do método GMRES pré-condicionado. Além disso, apresenta-se uma proposta de aplicação da meta-heurística *Iterated Local Search* (ILS) nos problemas de reduções de largura de banda e de *profile*. Essa escolha é amparada pelos bons resultados obtidos pela aplicação dessa meta-heurística em problemas de otimização combinatória similares (APPLEGATE; COOK; ROHE, 2003; STÜTZLE; HOOS, 2002; STÜTZLE, 2006; PAQUETE; STÜTZLE, 2002; SCHIAVINOTTO; STÜTZLE, 2004; VIL-LANUEVA et al., 2010; VALDEZ; MEDINA, 2012; SAKURABA et al., 2015). Deste modo, investiga-se também a viabilidade da aplicação da heurística proposta com o intuito de reduzir o custo de resolução de sistemas de equações lineares com o método GMRES.

1.2 Objetivos

O objetivo geral deste projeto é avaliar as reduções no custo de execução do método GMRES pré-condicionado obtidas pelas ordenações produzidas por métodos no estado da arte para os problemas de reduções de largura de banda e de *profile*. Pretende-se também investigar o potencial de aplicação da meta-heurística *Iterated Local Search* nos problemas de reduções de largura de banda e de *profile* de matrizes, e se sua utilização pode contribuir com a diminuição do custo de execução do método GMRES. Para tanto, é preciso que os seguintes objetivos específicos sejam alcançados.

- Desenvolvimento de um algoritmo baseado na meta-heurística ILS para redução de largura de banda e *profile* de matrizes simétricas e assimétricas.
- Experimentações com resolução de SELs com o método GMRES, para as diversas combinações de pré-condicionadores e métodos de redução de largura de banda e de *profile* de matrizes no estado da arte, além do algoritmo proposto.
- Avaliação da possível redução do custo computacional de resolução dos SELs decorrente da aplicação de cada método selecionado.
- Identificação, se pertinente, das melhores combinações entre pré-condicionadores e métodos de redução de largura de banda ou de *profile* para diferentes áreas de aplicação das instâncias que levem a menores tempos de resolução de SELs com o método GMRES pré-condicionado.

2. CONCEITOS BÁSICOS

Neste capítulo, apresentam-se conceitos básicos para melhor entendimento do trabalho. Na Seção 2.1 são explicadas noções básicas de grafos. Estruturas de armazenamento para grafos esparsos são explicadas na Seção 2.2.

2.1 Conceitos básicos de grafos

Para fins de revisão, considere uma matriz *A*, *n* x *n*, e um vetor *b* de tamanho *n*, ambos de valores reais. Deseja-se encontrar um vetor $x, X \in \mathbb{R}^n$, que satisfaça o sistema linear Ax = b, tal que

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Durante a resolução computacional de sistemas como o acima, a maior parte da atenção é comumente voltada para as características da matriz de coeficientes *A*, mais do que para o vetor de incógnitas *x* ou o de termos independentes *b*. Isso porque a eficiência de métodos resolutores diretos e iterativos depende das características da matriz *A*. Para este texto, considera-se que as matrizes envolvidas são de grande porte e esparsas.

Uma matriz de coeficientes A pode ser vista como uma matriz de adjacências e, por consequência, como um grafo. Uma matriz A, $n \ge n$, equivale a um grafo G = (V, E), em que $V = \{v1, v2, ..., v_n\}$ é um conjunto de vértices e $E = \{e1, e2, ..., e_n\}$. Considere o exemplo da Figura 2.1(a). Nela, são representados um grafo não-ponderado e não-direcionado e sua respectiva matriz de adjacências.

Para o grafo representado na Figura 2.1(b) foi utilizada uma numeração diferente para os vértices. Perceba que os efeitos dessa nova numeração se traduzem uma estrutura mais "compacta" da matriz de adjacências. De maneira análoga, permutações aplicadas às linhas e colunas da matriz de coeficientes alteram a numeração dos vértices em *V*. Em um sistema de equações lineares, as reordenações de linhas ou colunas da matriz *A* também causam a reordenação do vetor de termos independentes ou do vetor de incógnitas, respectivamente (SAAD, 2003, p.99-103). Considere agora as seguintes definições.

(a) Representação de um grafo e sua matriz de adjacências. Em destaque, o par de vértices com maior diferença entre seus rótulos define a largura de banda da matriz.

(b) Representação do grafo de (a) com nova numeração e seu reflexo na matriz de adjacências. A nova numeração resulta em uma representação mais compacta e em uma menor largura de banda para a matriz.

Definição 1 (largura de banda) A largura de banda β de uma matriz A, de dimensões n x n pode ser definida como a maior distância entre um elemento não nulo de uma linha i e a diagonal principal de A:

$$\beta = \beta(A) = max\{\beta_i(A) \mid 1 \le i \le n\},\$$

$$\beta_i(A) = i - min\{j \mid a_{ij} \ne 0\},\$$

em que $\beta_i(A)$ é a largura de banda da i-ésima linha de A. Isto é, a largura de banda da matriz A equivale à maior largura de banda entre as n linhas de A.

No exemplo da Figura 2.1(a), a maior distância entre um elemento não nulo e a diagonal principal da matriz ocorre na linha i=1. Assim, a largura de banda $\beta(A) = \beta_7(A) = 7 - 1 = 6$. Na matriz da Figura 2.1(b), a largura de banda da matriz é $\beta(A) = \beta_5(A) = 5 - 3 = 2$.

Do ponto de vista da teoria dos grafos, o problema de minimização de largura de banda consiste em encontrar a numeração dos vértices que minimize a máxima diferença absoluta entre os rótulos de vértices adjacentes (OLIVEIRA; CHAGAS, 2014). Nos grafos das Figuras 2.1(a) e 2.1(b), as arestas que ligam os vértices com maior diferença absoluta aparecem destacadas. Na Figura 2.1(b), a largura de banda é mínima para essa matriz.

Definição 2 (profile) *O profile de uma matriz simétrica corresponde à soma das larguras de banda de cada uma de suas linhas. Seja A uma matriz simétrica n x n, então:*

$$p(A) = \sum_{i=1}^{N} \beta_i(A).$$

Para o cálculo de profile de matrizes assimétricas, considere L e U como partições de A em matrizes triangulares inferior e superior, respectivamente. O profile de A é definido como $p(A) = \sum_{i=1}^{N} (\beta_i(L) + \beta_i(U)).$

Dado um grafo G = (V, E), considere também as definições extraídas de Oliveira e Chagas (2014, p.9-11).

Definição 3 (adjacência) Dois vértices são adjacentes se existe uma aresta entre eles. Nesse caso, o conjunto de vértices adjacentes ao vértice v é dado por ad $j(G,v) = \{u \in V : \{v,u\} \in E\}$

Definição 4 (grau de um vértice) *O grau de um vértice v é o número de vértices adjacentes a v, isto é, grau* $(G, v) = |u \in V : \{v, u\} \in E|$.

Definição 5 (caminho) Um caminho é uma sequência de vértices, de modo que há aresta ligando um vértice ao próximo da sequência, até o último. O tamanho desse caminho é seu número de arestas.

Definição 6 (distância) A distância d(u, v) entre dois vértices $u, v \in V$ é o tamanho do menor caminho entre eles.

Definição 7 (excentricidade) A excentricidade $\ell : V \to \mathbb{N}$ de um vértice $v \in V$ é definida como $\ell(v) = \max_{u \in V} (d(v, u))$. Isto é, a maior distância entre v e algum outro vértice $u \in V$.

Definição 8 (diâmetro) *O diâmetro* $\Phi(G) = max_{v \in V}(\ell(v))$ *é a maior excentricidade de um grafo G* = (*V*, *E*).

Definição 9 (vértice periférico) Um vértice é dito periférico se $\ell(v) = \Phi(G)$, isto é, sua excentricidade é igual ao diâmetro do grafo. Um vértice v é considerado pseudo-periférico se sua excentricidade $\ell(v)$ for próxima ao diâmetro $\Phi(G)$ do grafo.

Definição 10 (estrutura de nível enraizada) A estrutura de nível enraizada em v de profundidade $\ell(v)$ é o particionamento $\mathscr{L}(v) = \{L_0(v), L_1(v), ..., L_{\ell(v)}(v)\}$, em que $L_0(v) = \{v\}$ e $L_i(v) = adj(L_{i-1}(v)) - \bigcup_{j=0}^{i-1} L_j(v)$, para $i = 1, 2, ..., \ell(v)$. Em outras palavras, cada nível da estrutura enraizada contém vértices adjacentes aos vértices no nível anterior que ainda não pertencem à estrutura.

Definição 11 (largura de nível) A largura de nível $b(\mathscr{L}(v))$ é o número de vértices do nível com mais vértices na estrutura, isto é, $b(\mathscr{L}(v)) = \max_{0 \le i \le l(v)}(|L_i(v)|)$.

2.2 Estrutura de armazenamento

As matrizes envolvidas nos sistemas de equações da forma Ax = b consideradas nesse trabalho costumam ser esparsas e de grandes dimensões. Deste modo, sua representação por meio de matrizes de adjacências é inviável, devido ao alto custo de armazenamento. É possível representar essas matrizes em formatos mais compactos, mas que retenham características de acesso rápido aos dados. Os métodos *Compressed Row Storage* (CRS) e *Compressed Column Storage* (CCS), por exemplo, mantém vetores com referências apenas aos valores não nulos e seus índices na matriz de entrada. Considere a matriz assimétrica 5 x 5 abaixo, com 10 elementos não nulos (nnz = 10).

A forma de representar essa matriz no formato *Compressed Row Storage* utiliza três vetores. O vetor *val*, |val| = nnz, armazena os coeficientes não nulos da matriz, percorrida linha a linha. O vetor *colInd*, |colInd| = nnz, armazena o índice das colunas dos elementos armazenados no vetor *val*. O vetor *rowPtr*, |rowPtr| = n+1, armazena os índices dos elementos em *val* que iniciam uma linha. Por convenção, rowPtr[n+1] = nnz + 1. A representação da matriz acima no formato CRS é a seguinte:

$$val = [3, -1, 1, 2, -2, 4, 2, 1, 3, 5],$$

$$colInd = [1, 4, 2, 3, 1, 3, 4, 1, 4, 5],$$

$$rowPtr = [1, 3, 5, 7, 8, 11]$$

Outra estrutura para armazenamento compacto de matrizes é a CRS-SSS, uma combinação das estruturas de dados CRS e *Skyline Storage Scheme* (SSS) (FELIPPA, 1975). Nessa estrutura, indicada para matrizes simétricas, os coeficientes da diagonal principal são armazenados em um quarto vetor e os coeficientes não nulos da matriz triangular inferior são armazenados como no formato CRS, aliando baixo custo de armazenamento a acesso rápido aos dados por meio de índices. Para mais detalhes sobre formas de armazenamento de matrizes, recomenda-se a leitura de Oliveira (2015).

3. REDUÇÕES DE LARGURA DE BANDA E DE *PROFILE* DE MATRIZES

Dada a natureza NP-Difícil dos problemas de reduções de largura de banda e de *profile* de matrizes (PAPADIMITRIOU, 1976; LIN; YUAN, 1994) e sua importância prática, uma variedade de métodos exatos e heurísticos têm sido propostos para esses problemas desde a década de 1960. Métodos exatos, como os empregados por Corso e Manzini (1999) e por Martí, Campos e Piñana (2008), por exemplo, vasculham o conjunto de *n*! permutações das linhas e colunas da matriz utilizando alguma forma de *backtracking*. Em problemas práticos nos quais as matrizes envolvidas têm grandes dimensões, como neste trabalho, eles são preteridos em favor de métodos heurísticos.

Neste capítulo, apresentam-se três métodos heurísticos simples mas bastante utilizados para redução de largura de banda: o método de Cuthill-McKee, Cuthill-McKee reverso e GPS, na seção 3.1. Uma breve revisão dos principais métodos baseados em meta-heurísticas é apresentada na seção 3.2. Alguns métodos heurísticos proeminentes para redução de *profile* de matrizes são introduzidos na seção 3.3. Métodos meta-heurísticos aplicados no problema de redução de *profile* são mencionados na seção 3.4.

3.1 Métodos heurísticos aplicadas ao problema de redução de largura de banda

Uma das heurísticas clássicas para o problema de redução de largura de banda (PRLB) de matrizes foi proposta por Cuthill e McKee (CM) (CUTHILL; MCKEE, 1969). Essa heurística, aplicável a matrizes simétricas, é muito semelhante à busca em largura. O que a difere da busca em largura é a ordem na qual os vértices do grafo são visitados. Na heurística CM, dado um vértice inicial, seus vértices adjacentes são visitados por ordem crescente de grau. Como explicam Oliveira e Chagas (2014, p.16), essa ordenação faz com que os vértices de maior grau fiquem posicionados, na medida do possível, nas linhas centrais da matriz, o que resulta em uma boa configuração com relação à largura de banda. O pseudocódigo da heurística CM é apresentado no Algoritmo 3.1.

Uma melhoria da heurística CM, a heurística Cuthill-McKee reverso (RCM) foi apresentada por George (GEORGE, 1971). O autor constatou que a simples inversão da numeração obtida pela heurística CM resultava em um *profile* pelo menos tão bom quanto o obtido pela numeração original, sem alterar sua largura de banda.

Após analisarem a heurística de CM, Gibbs, Poole Jr e Stockmeyer (1976) verificaram que ela não era adequada em situações em que há um custo alto em se encontrar o vértice inicial.

Algoritmo 3.1 Pseudocódigo do algoritmo de Cuthill-McKee

1:	CUTHILL-MCKEE	
2:	Entrada: um grafo G(V,E) e ur	n vértice inicial $v \in V$.
3:	Saída: renumeração p com V	elementos;
4:	p(1) = v;	// Índice do vértice atual
5:	i = 1;	// Índice do vértice atual na lista renumerada
6:	j = 1;	
7:	enquanto i < V faça	
8:	para vértice $u \in adj(G, p(y))$	i)) não renumerado, em ordem crescente de grau faça
9:	i = i + 1	
10:	p(i) = u;	
11:	j = j + 1	
	retorne p	

Isso porque, no algoritmo de Cuthill-Mckee original, são geradas estruturas de nível de todos os vértices com grau mínimo e, então, aquele vértice cuja estrutura possui a menor largura é escolhido como vértice inicial (CUTHILL; MCKEE, 1969). A heurística proposta de Gibbs, Poole e Stockmeyer (GPS) busca remediar essa situação.

A heurística GPS pode ser dividida em três etapas. Na primeira etapa, são escolhidos os vértices iniciais. Em vez de selecionar todos os vértices de grau mínimo, a heurística inicia por um par de vértices pseudo-periféricos. As estruturas de nível desses vértices são utilizadas como ponto de partida. Como a excentricidade de um vértice pseudo-periférico é próxima do diâmetro do grafo, sua estrutura de níveis enraizada terá mais vértices e, consequentemente, menor largura de nível do que a de um vértice de menor excentricidade.

Na segunda etapa da heurística GPS, as estruturas de nível do passo anterior são combinadas. Tenta-se reduzir a largura de nível combinada, de modo que ela tenha, no máximo, a menor largura de nível entre as estruturas de nível enraizadas de v e de u, como explicam Oliveira e Chagas (2014).

Na última etapa da heurística, acontece a remuneração da estrutura de nível da etapa anterior, em ordem inversa dos níveis. Para uma revisão aprofundada sobre métodos heurísticos para o problema de redução de largura de banda de matrizes, recomenda-se a leitura de Oliveira e Chagas (2014).

3.2 Heurísticas recentes baseadas em meta-heurísticas para o PRLB

Em problemas de otimização combinatória, como os problemas de reduções de largura de banda ou de *profile* de matrizes, métodos meta-heurísticos são constantemente empregados.

Uma meta-heurística, como explica Blum e Roli (2003), pode ser vista como arcabouço algorítmico genérico que pode ser aplicado a diferentes problemas de otimização, e que exige relativamente poucas modificações para torná-la adaptada a um problema específico. Como exemplos de meta-heurísticas, podem ser citados Algoritmos Genéticos, *Simulated Annealing*, GRASP, *Ant Colony Optimization*, *Particle Swarm Optimization*, entre várias outras.

Um dos primeiros trabalhos relevantes a aplicar um método baseado em meta-heurísticas no PRLB foi o de Martí et al. (2001), com a meta-heurística *Tabu Search* (TS-band). Apesar de ter custo computacional muito mais alto em comparação ao algoritmo GPS (GIBBS; POOLE JR; STOCKMEYER, 1976), as larguras de banda obtidas pelo TS-Band (MARTÍ et al., 2001) foram levemente superiores.

A meta-heurística GRASP com *Path Relinking* (GRASP-PR) foi utilizada no trabalho de Piñana et al. (2004), no qual se obtiveram soluções com qualidade comparável às encontradas pela heurística TS-band. Contudo, a técnica de *Path Relinking* usada para melhorar as soluções encontradas aumenta ainda mais o tempo de processamento, deixando a heurística mais lenta que as heurísticas TS-band (MARTÍ et al., 2001) e GPS (GIBBS; POOLE JR; STOCKMEYER, 1976).

Implementações de heurísticas baseadas em meta-heurísticas incorporam, em geral, alguma forma de busca local. Nos trabalhos com algoritmos genéticos (GA) de Lim, Brian e Xiao (2003) e Lim, Rodrigues e Xiao (2006), com *Particle Swarm Optimization* (PSO) de Lim, Lin e Xiao (2007) e com *Ant Colony Optimization* (ACO) de Lim et al. (2006), a busca local *Hill Climbing* (HC) é utilizada para essa finalidade. As três heurísticas propostas conseguiram soluções melhores quando comparados às heurísticas GRASP-PR, TS-band e GPS, sendo mais lentas apenas que esta última.

Alguns autores propuseram soluções variadas para o PRLB utilizando programação genética (KOOHESTANI; POLI, 2010), autômatos inteligentes (MAMAGHANI; MEYBODI, 2011), *Scatter Search* (SS) (CAMPOS; PIÑANA; MARTÍ, 2011), abordagem evolucionária (ISAZADEH; IZADKHAH; MOKARRAM, 2012) e algoritmos genéticos (POP; MATEI; CO-MES, 2014). Essas abordagens não se destacam na resolução do PRLB, seja por apresentarem altos tempos de execução nos testes mostrados nessas publicações ou por serem comparados a métodos já superados na literatura, como mostrado em Chagas e Oliveira (2015).

Algoritmos baseados em colônias de formigas foram utilizados por Pintea, Crişan e Chira (2010), Pintea, Crişan e Chira (2012) e Czibula et al. (2013). Esses trabalhos não tiveram destaque porque os autores não compararam seus resultados com os de outras heurísticas disponíveis para o PRLB ((PINTEA; CRIŞAN; CHIRA, 2010; PINTEA; CRIŞAN; CHIRA, 2012)) ou utilizaram uma quantidade muito pequena de instâncias ((CZIBULA et al., 2013)) nos testes apresentados.

A meta-heurística *Simulated Annealing* (SA) foi utilizada no PRLB por Rodriguez-Tello, Hao e Torres-Jimenez (2008). A heurística proposta, SA- σ , obteve resultados comparáveis aos das heurísticas TS-band e GRASP-PR, mas foi superada pelas heurísticas propostas nos trabalhos de (MLADENOVIC et al., 2010) e (LIM; RODRIGUES; XIAO, 2006), como mostram (CHAGAS; OLIVEIRA, 2015). Recentemente, uma nova abordagem baseada na meta-heurística SA, denominada *Dual Representation Simulated Annealing* (DRSA) (TORRES-JIMENEZ et al., 2015), alcançou reduções de largura de banda melhores dos que as das heurísticas com que foi comparada ((PIÑANA et al., 2004; RODRIGUEZ-TELLO; HAO; TORRES-JIMENEZ, 2008; MLADENOVIC et al., 2010)).

No trabalho de Koohestani e Poli (2011), é apresentada uma abordagem baseada em hiper-heurísticas com programação genética (KP-Band-GL) para a solução do PRLB. A heurística KP-Band-GL é uma variação da busca em largura, em que os vértices são renumerados de acordo com uma fórmula específica gerada por programação genética. Apesar de os testes apresentados serem menos extensos que os apresentados nos trabalhos que utilizam as meta-heurísticas VNS (MLADENOVIC et al., 2010) e FNC-HC (LIM; RODRIGUES; XIAO, 2003; LIM; RODRIGUES; XIAO, 2004; LIM; RODRIGUES; XIAO, 2007), o custo computacional alcançado foi razoavelmente baixo nas instâncias testadas, com qualidade de solução também razoável. Em Oliveira, Bernardes e Chagas (2016), a heurística KP-Band-GL é apontada como uma das melhores heurísticas de baixo custo computacional para redução de largura de banda.

3.2.1 Fast Node Centroid with Hill Climbing

A busca local *Hill Climbing* foi utilizada com resultados notáveis na heurística *Fast Node Centroid with Hill Climbing* (FNC-HC) (LIM; RODRIGUES; XIAO, 2003; LIM; RO-DRIGUES; XIAO, 2004; LIM; RODRIGUES; XIAO, 2007). A heurística FNC-HC é uma variação da heurística *Node Centroid with Hill Climbing* (NC-HC), dos mesmos autores (LIM; RODRIGUES; XIAO, 2003), em que certos parâmetros do algoritmo são ajustados automaticamente de acordo com a matriz de entrada. A abordagem utilizada pelo FNC-HC consiste em aplicar uma estratégia global de ajustes de vértices, ou nós, que tenta aproximar os vértices com maior largura de banda dos vértices na sua vizinhança. Essa estratégia é aliada a uma busca com *Hill Climbing*, para se encontrar mínimos locais. O algoritmo pode ser dividido em três etapas: inicialização, ajustes de nós e busca local.

A etapa de inicialização da heurística FNC-HC utiliza uma busca em largura partindo de um vértice aleatório. Essa abordagem gera um estrutura de níveis enraizada que, embora não seja tão boa quanto a ordenação de Cuthill-McKee, por exemplo, é boa o bastante para garantir um bom ponto de partida.

Para o entendimento da etapa de ajustes de nós da heurística FNC-HC, é preciso definir o conceito de *vértice crítico*. A heurística define o diâmetro de um vértice $v \in V$ como $diam_{(u,v)\in E}(s(v)) = max|s(u) - s(v)|$, em que s(v) é a numeração do vértice v na solução atual. Um vértice v é denominado crítico se $diam(s(v)) = \beta_i(G)$, isto é, se seu diâmetro é igual à largura de banda do grafo. Ainda, um vértice v é denominado λ -crítico se $diam(s(v)) = \lambda \beta_i(G)$, para valores de $\lambda \in [0, 1]$ próximos de 1.

A etapa de ajuste de nós tenta reduzir o diâmetro dos vértices λ -críticos aproximandoos dos vértices de seu feixe. O feixe $F_{\lambda}(v)$ de um vértice v é $F_{\lambda}(v) = adj(G,v) \cap \{u : (\{u, v \in E\})|s(u) - s(v)| > \lambda \beta_i(G)\} \cup v$. Para realizar a aproximação dos vértices λ -críticos do centróide do seu feixe, aplica-se um peso w(v) a cada vértice, tal que:

$$w(v) = \sum_{u \in F_{\lambda}(v)} s(u) / F_{\lambda}(v).$$

Na etapa de busca local, com *Hill Climbing*, a heurística FNC-HC identifica os vértices críticos e realiza trocas entre a numeração do vértice crítico atual e a de um vértice na vizinhança, na esperança de melhorar a qualidade da solução. Os autores da heurística consideraram que houve melhora na solução se houve redução na largura de banda do grafo ou diminuição do número de vértices críticos.

A busca local pode ser um processo demorado caso inclua muitos vértices candidatos. É preciso, assim, definir uma vizinhança limitada na qual realizar as trocas. Em Martí et al. (2001) são apresentados os conceitos de numeração mínima e máxima de um vértice como

$$min(v) = min\{s(u)|u, v \in E\}$$

$$max(v) = max\{s(u)|u,v \in E\},\$$

respectivamente. Isto é, eles representam a maior e a menor numeração entre aquelas dos vértices vizinhos a *v*. Assim, a numeração ideal $best_s(v)$ de um vértice é:

$$best_s(v) = |max(v) + min(v)/2|.$$

Na heurística FNC-HC, a vizinhança reduzida de um vértice $v \in V$ na qual se realizam as buscas é definida como:

$$N'(v) = \{u : ||best_s(v) - s(u)| < |best_s(v) - s(v)||\},$$
(3.1)

isto é, ela considera todos os vértices *u* cuja numeração s(u) esteja mais próxima de *best_s*(*v*) do que s(v).

Os autores da heurística FNC-HC a compararam às heurísticas GPS (GIBBS; POOLE JR; STOCKMEYER, 1976), GRASP-PR (PIÑANA et al., 2004), TS-band (MARTÍ et al., 2001), PSO (LIM; LIN; XIAO, 2007), *Node Shifting* (NS) (LIM; RODRIGUES; XIAO, 2006) e GA-HC (LIM; BRIAN; XIAO, 2003), obtendo maiores reduções de banda que todas essas. Além disso, os autores indicam que a heurística FNC-HC foi muito mais rápida que as heurísticas baseadas em meta-heurísticas citadas e quase tão rápida quanto o algoritmo GPS (GIBBS; POOLE JR; STOCKMEYER, 1976). Esse último resultado, em especial, coloca-a numa categoria que torna seu uso interessante em aplicações reais, por apresentar um bom equilíbrio entre velocidade de execução e redução de largura de banda, como notam Chagas e Oliveira (2015).

3.2.2 Variable Neighborhood Search

Um dos trabalhos que mais se destaca na redução de largura de banda de matrizes utiliza a meta-heurística *Variable Neighborhood Search* (VNS) (MLADENOVIC et al., 2010). A ideia básica do método é explorar a vizinhança de um mínimo local aumentando-a de forma sistemática, até que uma solução melhor seja encontrada. A cada vez que a vizinhança $N_k(x)$ de uma solução é expandida, vários pontos em seu interior são considerados como pontos de partida para uma busca local. Uma nova solução na vizinhança é escolhida se for melhor que a solução atual, conforme explicam Mladenovic et al. (2010).

O laço principal da meta-heurística VNS pode ser dividido em três etapas: perturbação, busca local e mudança de vizinhança. Para a inicialização do algoritmo, os autores utilizam uma estrutura de nível enraizada a partir de um vértice v escolhido aleatoriamente. Os vértices de cada nível da estrutura são numerados de maneira aleatória. Para controlar o tamanho da vizinhança, utiliza-se um parâmetro k, inicialmente definido como k_{min} .

A etapa de perturbação no algoritmo VNS leva de uma solução *S* para uma solução *S'* a partir da troca da numeração de vértices. Os autores apresentam duas formas de perturbação da solução, além de um procedimento que determina qual delas será aplicada de acordo com o estado do algoritmo. Na primeira forma de perturbação, um vértice aleatório é selecionado no conjunto $K \in V$, tal que $K = \{v | \beta(f, v) \ge B'\} \ge k$, em que f é a numeração, ou solução, atual. O parâmetro B' é definido de forma que o conjunto K contenha apenas os vértices com maior largura de banda. Um vértice $u \in V$ é selecionado, bem como um vértice v crítico adjacente a u, tal que $(|f(u) - f(v)| = \beta(G))$. Então, é encontrado um vértice $w \in V$ para ser trocado, de modo que a diferença máxima entre $u \in v$ seja mínima.

A segunda forma de perturbação do VNS utiliza um procedimento de rotação de duas vizinhanças proposto por Rodriguez-Tello, Hao e Torres-Jimenez (2008). Nesse procedimento, são definidos índices *b* e *e*, e um índice intermediário *m* (de *begin*, *end* e *middle*). As numerações do vértices no intervalo [*b*, *e*] são deslocadas *m* posições. Como exemplo, a numeração *s*(*b*) passará a ser a posição *s*(*b* + *m*). O procedimento de perturbação a ser utilizado pela meta-heurística VNS depende do valor do parâmetro *k*. Se $k < k'_{max}$, isto é, se o tamanho da vizinhança for menor que o máximo definido, aplica-se o primeiro procedimento, do contrário, aplica-se o segundo. Segundo os autores, o segundo procedimento é necessário pois, em algumas situações, o algoritmo pode ficar preso em um mínimo local mais profundo.

Para o procedimento de busca local, a meta-heurística VNS lança mão do mesmo procedimento utilizado pela heurística FNC-HC, realizando trocas na vizinhança reduzida definida na equação 3.1. No VNS, os vértices no conjunto de candidatos N'(v) são trocados um a um em ordem crescente de |mid(v) - f(u)| até que a solução melhore.

Por fim, deve-se decidir se a solução S'' obtida após a busca local será aceita como solução atual ou não. No VNS, a solução S'' é aceita se $\beta(depois) < \beta(antes)$. Caso $\beta(depois) = \beta(antes)$, a solução S'' é aceita se o número de vértices críticos em S'' for menor que antes.

Os autores do trabalho compararam a abordagem proposta com as heurísticas TS-band (MARTÍ et al., 2001), GRASP-PR (PIÑANA et al., 2004), SS (CAMPOS; PIÑANA; MARTÍ, 2011), GA (LIM; BRIAN; XIAO, 2003), NS (LIM; RODRIGUES; XIAO, 2006) e SA- σ (RODRIGUEZ-TELLO; HAO; TORRES-JIMENEZ, 2008), obtendo resultados melhores que

todas elas. Além disso, o algoritmo baseado na meta-heurística VNS proposto (VNS-Band) apresentou custo computacional muito mais baixo que as outras heurísticas. Por aliar velocidade e qualidade de solução, a heurística VNS-Band poderia ser considerada como possível estado da arte para a resolução do PRLB, segundo Chagas e Oliveira (2015).

3.3 Métodos heurísticos aplicadas ao problema de redução de profile

Nesta seção, apresentam-se as heurísticas para redução de *profile* NSIoan e MPG. Diversas outras heurísticas foram propostas para o problema, como levantado por Bernardes e Oliveira (2015). Porém, como apontado por Oliveira, Bernardes e Chagas (2016), estas duas heurísticas destacam-se por serem as heurísticas de baixo custo mais promissoras para redução de *profile*.

3.3.1 Heurística NSloan

Uma modificação da heurística de Sloan (SLOAN, 1986), a heurística NSloan (*Normalized Sloan*), foi proposta por Kumfert e Pothen (1997). A heurística de Sloan original para redução de *profile* pode ser dividida em duas etapas. Inicialmente, dois vértices pseudo-periféricos $s, e \in V$ são encontrados. O algoritmo mantém controle sobre apenas um vértice de cada grau entre os encontrados, limitando a montagem de estruturas de nível. Em seguida, dada uma função de priorização, os vértices do grafo são renumerados partindo do vértice inicial s. Os demais vértices são renumerados de acordo com uma prioridade definida em relação a seu grau distância do vértice final e.

Uma das diferenças introduzidas a heurística NSloan foi a utilização do algoritmo de Duff, Reid e Scott (DUFF; REID; SCOTT, 1989) para se encontrar os vértices pseudo-periféricos na etapa inicial do algoritmo. Outra modificação é que o algoritmo NSloan utiliza uma normalização para a função de priorização originalmente utilizada no algoritmo de Sloan. Uma terceira modificação proposta foi na estrutura de dados que armazena os vértices candidatos a renumeração em cada iteração. Kumfert e Pothen (1997) propuseram a utilização de uma heap binária e mostraram que essa estrutura apresenta um ganho considerável no tempo de execução em comparação à estrutura de lista não ordenada utilizada no algoritmo de Sloan.

Os autores da heurística NSloan mostraram que seu algoritmo apresenta melhores resultados que as heurísticas RCM e Sloan. Além disso, Oliveira, Bernardes e Chagas (2016) comparou-a com diversas outras heurísticas e apontou a heurística NSloan como uma das melhores heurísticas de baixo custo para redução de profile tanto para matrizes simétricas quanto para assimétricas.

3.3.2 Heurística Sloan-MGPS

Outra variação da heurística de Sloan (SLOAN, 1986) foi proposta por Reid e Scott (1999), chamada de Sloan-MGPS. Assim como na heurística NSloan (KUMFERT; POTHEN, 1997), as alterações na heurística original envolvem o método utilizado para se encontrar vértices pseudo-periféricos e a estrutura de dados que armazena os vértices a serem renumerados.

Durante a etapa de seleção de vértices no último nível da estrutura de nível enraizada atual, Reid e Scott (1999) propuseram a escolha de, no máximo, cinco vértices no último nível, de maneira a limitar a quantidade de estruturas de níveis enraizadas a serem construídas no passo seguinte. Após a escolha dos vértices iniciais *s* e *e*, os autores propuseram que o vértices de maior excentricidade entre eles fosse eleito o vértice inicial *s*. Devido à semelhança com o algoritmo utilizado na primeira etapa da heurística GPS (GIBBS; POOLE JR; STOCKMEYER, 1976), o método proposto por Reid e Scott (1999) foi chamado MGPS (*modified Gibbs-Poole-Stockmeyer*).

Assim como sugerido por Kumfert e Pothen (1997), a heurística Sloan-MGPS propõe a utilização de uma *heap* binária para armazenar os vértices candidatos a renumeração em cada iteração. Reid e Scott (1999) observam que, para instâncias grandes, como as utilizadas neste trabalho, essa estrutura é mais eficiente que a estrutura de listas empregada na heurística de Sloan (SLOAN, 1986).

3.3.3 Heurística MPG

A heurística de Medeiros, Pimenta e Goldenberg (MPG) (MEDEIROS; PIMENTA; GOLDENBERG, 1993) para redução de *profile* utiliza a primeira fase da heurística de Sloan para encontrar dois vértices pseudo-periféricos. Em seguida, na etapa de renumeração, são mantidas duas filas de prioridades, t e q. A fila t contém vértices candidatos a renumeração e a fila q contém os vértices que estão em t ou que são elegíveis para inserção em t. O grau de um vértice v é definido como o número de vértices adjacentes a v que ainda não foram renumerados e que não pertençam à fila de prioridades q. Um vértice v é inserido em q de acordo com uma função de priorização específica. A cada iteração, os vértices com grau atual maior que 1 são inseridos na fila t e os vértices com grau igual 0 são removidos e renumerados em ordem crescente de grau.

Os autores da heurística MPG a compararam com as heurísticas RCM, GPS e Sloan, conseguindo melhores resultados que estas, no geral. Ainda, a heurística MPG foi apontada com uma das melhores heurísticas de baixo custo para redução de *profile* para matrizes simétricas e a melhor heurística para redução de *profile* para matrizes assimétricas por Oliveira, Bernardes e Chagas (2016), em comparação com diversas outras.

3.4 Heurísticas baseadas em meta-heurísticas para o problema de redução de profile

Por se tratar de um problema extremamente relacionado, algoritmos baseados em metaheurísticas são também aplicados, com frequência, no problema de redução de *profile*, como mostra o trabalho de Bernardes e Oliveira (2015). Como exemplos de aplicações de metaheurísticas para redução de *profile* pode-se citar a utilização da meta-heurística *Ant Colony Optimization* nos trabalhos de Kaveh e Sharafi (2007), Kaveh e Sharafi (2008), da meta-heurística *Charged System Search* em Kaveh e Sharafi (2012), da meta-heurística *Scatter Search* no trabalho de Sánchez-Oro et al. (2015) e de métodos baseados em hiper-heurísticas com programação genética nos trabalhos de Koohestani e Poli (2012a), Koohestani e Poli (2012b), Koohestani e Poli (2014), para redução de *profile*.

Entretanto, os algoritmos baseados em meta-heurísticas citados não se encontram entre os possíveis melhores métodos heurísticos para o problema de redução de *profile*, conforme apontam Bernardes e Oliveira (2015). Alguns desses trabalhos foram superados por outros trabalhos que já não figuram entre os estados da arte, como é o caso dos trabalhos de Koohestani e Poli (2012b) (superado pelo algoritmo de (SLOAN, 1986)), de Kaveh e Sharafi (2007) (superado pelos algoritmos de (KING, 1970) e de Sloan (1986)), de Kaveh e Sharafi (2008) (superado pela heurística proposta por Kaveh e Sharafi (2012)) e Kaveh e Sharafi (2012) (superado pelo algoritmo de Gibbs, Poole Jr e Stockmeyer (1976)) (BERNARDES; OLIVEIRA, 2015). Outros autores testaram as heurísticas propostas apenas contra métodos já superados, como no trabalho de Koohestani e Poli (2012a) (comparado com o método Cuthill-McKee reverso George (1971) e com o algoritmo de Gibbs (1976)), e Sánchez-Oro et al. (2015) (comparado com o método Cuthill-McKee reverso (GEORGE, 1971) e com a heurística proposta por Lewis (1994)) (BER-NARDES; OLIVEIRA, 2015). Autoa, o trabalho de Koohestani e Poli (2014) apresenta tempos

de execução proibitivos na prática e, por isso, não poderia ser considerado um dos melhores métodos, na prática.

4. A META-HEURÍSTICA ITERATED LOCAL SEARCH

A meta-heurística *Iterated Local Search* (ILS) (LOURENÇO; MARTIN; STÜTZLE, 2003) é um método simples e versátil. Como o nome sugere, essa meta-heurística utiliza um procedimento de busca local que, iterado de forma sistemática, permite que o espaço de soluções do problema de otimização seja explorado criteriosamente. Neste capítulo, os conceitos básicos do funcionamento dessa meta-heurística são explicados, na Seção 4.1. Na Seção 4.2, apresenta-se um breve resumo de problemas de otimização nos quais essa meta-heurística tem sido aplicada com sucesso.

4.1 Iterated Local Search

Considere um procedimento de busca local para um problema de otimização de interesse. Seja *C* a função custo do problema de otimização a ser *minimizada*. O conjunto de todas as soluções candidatas *s* é denotado por *S*. O procedimento de busca local define um mapeamento de muitos para um do conjunto *S* para o conjunto S^* de soluções ótimas locais s^* . Após a aplicação da busca local em *S*, a questão que surge é: como repetir a busca local e melhorar a solução atual s^* ? A alternativa mais simples é aplicar a busca a partir de um novo ponto de partida aleatório. Porém, essa abordagem tem chances cada vez menores de dar certo, à medida que instâncias maiores são utilizadas.

A forma da meta-heurística ILS de escolher uma nova região para explorar consiste em aplicar uma perturbação à solução atual s^* , levando-a a um estado intermediário s'. Em seguida, a busca local é aplicada à solução s', da qual se obtém uma solução $s^{*'}$ em S^* . Se $s^{*'}$ for aprovada em um teste de aceitação, ela se torna a solução corrente no próximo passo da busca por uma solução melhor em S^* ; do contrário, s^* é mantida como solução corrente. Desse modo, a perturbação em s^* leva a busca a uma região do espaço de busca diferente da anterior, mas que ainda retém características da região em que foi encontrada a solução corrente. As perturbações realizadas são também um mecanismo da meta-heurística ILS para evitar que o algoritmo fique preso a ótimos locais. A noção de uma iteração da meta-heurística ILS é mostrada na figura 4.1. Uma visão de alto nível da estrutura básica da meta-heurística *Iterated Local Search* é mostrada no Algoritmo 4.1.

Como visto no Algoritmo 4.1, as etapas da meta-heurística ILS são bem definidas em blocos ou módulos distintos: geração da solução inicial, procedimento de busca local, perturbação e critério de aceitação. Esses módulos podem ser trocados ou otimizados independente-

Figura 4.1 – Comportamento de uma iteração da meta-heurística *Iterated Local Search*. Dado um mínimo local s^* , aplica-se uma perturbação que leva a s'. Após efetuar a BuscaLocal em s', obtemos $s^{*'}$, que será comparado a s^* .

8: **until** condição de parada atingida

mente, de acordo com as características do problema em que a meta-heurística ILS é aplicada. A seguir, cada um desses módulos é examinado.

4.1.1 Solução inicial

O primeiro módulo a se considerar no desenvolvimento de uma heurística baseada na meta-heurística *Iterated Local Search* é o de geração da solução inicial s_0 . Em casos nos quais o tempo de execução não é um fator limitante, a solução inicial s_0 pode ser gerada de forma aleatória. Contudo, claramente, quanto melhor a solução inicial, menos passos do procedimento de busca local são necessários para se encontrar boas soluções.

As formas mais comuns de se gerar a solução inicial são a geração aleatória e a baseada em alguma heurística gulosa. Segundo Lourenço, Martin e Stützle (2003), são dois os pontos

em que uma solução s_0 gerada de forma gulosa supera uma gerada de forma aleatória. Primeiro, a busca local aplicada sobre uma solução gerada de maneira gulosa gera melhores soluções s_0^* . Além disso, em média, as soluções derivadas de métodos gulosos necessitam de menos passos de busca local para convergirem e, em consequência disso, retornam em menos tempo. Para longos processamentos, Lourenço, Martin e Stützle (2003) observam que a dependência de s_0 tende a ser bastante pequena, visto que em determinado momento se perderá a memória da solução inicial.

4.1.2 Busca local

Em seguida, a escolha de um procedimento de busca local equilibrado é crucial para o sucesso da meta-heurística ILS. Em princípio, qualquer algoritmo de busca local disponível pode ser usado, como afirma Stützle (2006). Como esse procedimento será muito requisitado, ele deverá ser rápido e retornar boas soluções.

Apesar de geralmente ser verdade que, quanto melhor a busca local, melhor a implementação do ILS resultante, em alguns casos isso pode não acontecer. Há casos, por exemplo, em que o aumento do custo computacional é tão grande em comparação à solução fornecida que pode ser melhor aceitar procedimentos de busca local que gerem soluções de qualidade inferior, mas que possam ser iterados mais vezes, dado o mesmo tempo de execução. Em qualquer caso, deve ser avaliado o balanço entre a qualidade e a velocidade do ótimo local gerado pelo procedimento escolhido, como sugerem Lourenço, Martin e Stützle (2003).

4.1.3 Perturbação

Aplicar perturbações à solução atual é a forma utilizada pelo ILS e por outras metaheurísticas de busca local como o *Simulated Annealing* e o VNS para escapar de ótimos locais, nos quais o algoritmo pode eventualmente ficar preso. A perturbação é *complementar* à busca local e também tem a função de alterar a "vizinhança" atual e guiar a amostragem do espaço de soluções.

A *intensidade* da perturbação refere-se ao número de componentes da solução alterados pela perturbação, conforme Besten, Stützle e Dorigo (2001). Se a perturbação for muito forte, o ILS terá comportamento similar a reinícios aleatórios: pouco será mantido da solução atual e a probabilidade de se encontrar soluções melhores será pequena. Se, por outro lado, ela for
muito fraca, corre-se o risco de voltar a ótimos locais já visitados. Uma boa perturbação tem como característica não poder ser desfeita facilmente pela busca local.

Nem sempre, contudo, é possível aplicar uma perturbação de intensidade fixa. Nesses casos, a perturbação precisa ser adaptativa, ou deve incorporar alguma forma de memória à perturbação, de forma similar ao que é feito na Busca Tabu. Ainda é possível mudar a intensidade da perturbação de forma determinística durante a busca, segundo Lourenço, Martin e Stützle (2003). O comportamento do ILS neste último caso é análogo ao do VNS, em que a intensidade (vizinhança) é incrementada até que uma solução melhor seja encontrada. Em qualquer um dos casos, é preciso experimentar com valores diferentes e analisar as características do problema para se encontrar a forma perturbação que dê melhores resultados.

4.1.4 Critério de aceitação

Por fim, o critério de aceitação atua, juntamente com a perturbação, no estabelecimento do equilíbrio entre diversificação e intensificação da busca. Cabe ao critério de aceitação determinar se $s^{*'}$ será aceita ou não como solução atual.

Uma abordagem comum é aceitar qualquer solução $s^{*'}$ que seja melhor que a atual s^* . Conforme explicam Lourenço, Martin e Stützle (2003), essa abordagem leva a uma grande *intensificação* da busca. O extremo oposto seria sempre aceitar a solução intermediária $s^{*'}$, a despeito de seu custo. Essa estratégia é equivalente a um passeio aleatório em *S*, que faz com que a perturbação seja sempre aplicada na solução mais recente.

Técnicas híbridas para o critério de aceitação são comuns. Em Lourenço, Martin e Stützle (2003), é possível encontrar referências ao uso de esquemas similares ao da busca tabu, que tornam o critério de aceitação sensível a soluções previamente visitadas, e ao *Simulated Annealing*, que permitem que a intensificação ou diversificação seja balanceada de maneira mais inteligente durante o ciclo de execução do algoritmo.

4.2 Aplicações da meta-heurística ILS em problemas de otimização combinatória

Como ressaltam Lourenço, Martin e Stützle (2003), apesar da simplicidade conceitual, o ILS tem levado a resultados que são estado da arte em problemas de otimização combinatória. Há exemplos de trabalhos que aplicam a meta-heurística ao problema do caixeiro viajante (AP-PLEGATE; COOK; ROHE, 2003; STÜTZLE; HOOS, 2002), coloração de grafos (PAQUETE; STÜTZLE, 2002), particionamento de grafos (MARTIN; OTTO, 1995), entre outros ((SCHI- AVINOTTO; STÜTZLE, 2004; VILLANUEVA et al., 2010; VALDEZ; MEDINA, 2012; SA-KURABA et al., 2015)). Em particular, a meta-heurística ILS tem sido aplicada com êxito em problemas de alocação de recursos (BESTEN; STÜTZLE; DORIGO, 2001; CONGRAM; POTTS; VELDE, 2002; STÜTZLE, 2006; VANSTEENWEGEN et al., 2009) e roteamento de veículos (PENNA; SUBRAMANIAN; OCHI, 2013; IBARAKI et al., 2008; HASHIMOTO; YAGIURA; IBARAKI, 2008). Recomenda-se a leitura de Lourenço, Martin e Stützle (2010) discussões sobre diversas outras aplicações da meta-heurística em problemas de otimização.

5. APLICAÇÃO DA META-HEURÍSTICA *ITERATED LOCAL SEARCH* AOS PRO-BLEMAS DE REDUÇÕES DE LARGURA DE BANDA E DE *PROFILE* DE MATRI-ZES

Neste capítulo é explicada a metodologia utilizada no desenvolvimento da heurística baseada na meta-heurística *Iterated Local Search* para os problemas de reduções de largura de banda e de *profile* de matrizes proposta neste trabalho. A estrutura básica da meta-heurística ILS consiste de quatro módulos: busca local, solução inicial, perturbação e critério de aceitação. Na Seção 5.1, é explicado como cada um desses módulos foi desenvolvido na heurística proposta e a Seção 5.2 apresenta uma visão geral do algoritmo com a integração de todos os módulos. A Seção 5.3 fecha este capítulo incluindo detalhes de implementação do algoritmo.

5.1 Desenvolvimento da heurística baseada na meta-heurística Iterated Local Search

O desenvolvimento da heurística baseada na meta-heurística ILS para redução de largura de banda e de *profile* proposta neste trabalho iniciou-se com a identificação das técnicas já aplicadas na literatura que poderiam ser incorporadas a cada uma dessas etapas. Como resultado, a solução desenvolvida utiliza elementos consolidados em outras heurísticas aplicadas no problema, expandindo-as para outras utilizações e introduzindo novas ideias.

No algoritmo proposto, a ordenação inicial é gerada por uma busca em largura partindo de um vértice pseudo-periférico. Um procedimento de busca local baseado no *HillClimbing* de Lim, Rodrigues e Xiao (2006), Lim, Rodrigues e Xiao (2007) é aplicado. A perturbação na solução atual é alcançada por i) uma estratégia de rotular os vértices do grafo de acordo com seu "valor ideal", baseado no conceito introduzido por Martí et al. (2001) no contexto de buscas locais e ii) outra que tenta tornar mais próximas as numerações dos vértices com maior largura de banda e seus adjacentes. Todo o processo é repetido até que um número máximo de iterações seja atingido ou até que seja identificado que a solução tenha estagnado em um ótimo local. Nas seções seguintes, cada etapa do algoritmo proposto é explicada com mais detalhes.

5.1.1 Solução inicial

Na etapa de inicialização, deseja-se gerar uma ordenação que seja um bom ponto de partida para o algoritmo. Em geral, quanto melhor a solução inicial s_0 , melhores serão os resultados obtidos pelo algoritmo, ou ainda, menor o tempo necessário para sua convergência,

como afirmam Lourenço, Martin e Stützle (2003, p.11). Neste trabalho, a solução inicial é obtida por uma meio de busca em largura no grafo. Essa abordagem é amplamente consolidada na literatura (CUTHILL; MCKEE, 1969; GIBBS; POOLE JR; STOCKMEYER, 1976; LIM; LIN; XIAO, 2007; LIM; RODRIGUES; XIAO, 2007; MLADENOVIC et al., 2010) e baseia-se na observação de que, em uma boa numeração, os vértices adjacentes devem ter rótulos próximos.

Em geral, a escolha de um vértice aleatório como ponto de partida para a busca em largura fornece resultados satisfatórios, ou pelo menos melhores do que a ordenação original. Como observado em Gibbs, Poole Jr e Stockmeyer (1976), a escolha de um vértice periférico é ainda melhor como ponto de partida. Isso porque a estrutura de nível correspondente tende a ter mais níveis de profundidade e um menor número de vértices em um mesmo nível. Isso implica em vértices de níveis posteriores recebendo rótulos mais próximos aos dos vértices do nível anterior e, consequentemente, em menores larguras de banda. Algoritmos para se encontrar vértices periféricos são caros e, na prática, estes são substituídos por vértices pseudoperiféricos, que podem ser encontrados com custo menor.

Neste trabalho, empregou-se o algoritmo de George e Liu (GEORGE; LIU, 1979) para se encontrar um vértice pseudo-periférico v. O algoritmo original de George e Liu (GEORGE; LIU, 1979) inicia-se com a escolha de um vértice $v \in V$ qualquer. Em seguida, a estrutura de nível enraizada $\mathcal{L}(v)$ é gerada. Um vértice u de grau mínimo no último nível da estrutura $\mathcal{L}(v)$ é selecionado. Se a excentricidade de $\mathcal{L}(u)$ for maior que a de $\mathcal{L}(v)$, o vértice u passa a ser o atual e o processo é repetido. Do contrário, o algoritmo termina com o vértice v como o vértice pseudo-periférico de saída.

Ainda, foi proposta uma variação do algoritmo de George e Liu em que considera-se o vértice u como atual se a excentricidade de $\mathcal{L}(u)$ for maior que a de $\mathcal{L}(v)$, ou se a excentricidade de $\mathcal{L}(u)$ for igual a de $\mathcal{L}(v)$, mas o grau de u for menor que o grau de v. Na solução inicial utilizada no algoritmo desenvolvido, são geradas numerações com vértices iniciais dados pelo algoritmo de George e Liu e pela variação proposta. A numeração escolhida como solução inicial é aquela que apresentar menor largura de banda ou *profile*, dependendo do que se deseja reduzir. Ainda que seja mais custoso que a escolha de um vértice aleatório, observou-se que, em geral, o tempo gasto na solução inicial é ínfimo perto do tempo de execução total da heurística e que o custo extra é compensado por soluções melhores.

5.1.2 Perturbação

No trabalho utilizando a heurística TS-Band de Martí et al. (2001), dada uma numeração *f*, os seguintes valores são definidos:

$$f_{max}(v) = max\{f(u) | (u, v) \in E\},\$$
$$f_{min}(v) = min\{f(u) | (u, v) \in E\}.$$

Isto é, $f_{max}(v)$ e $f_{min}(v)$ são os rótulos dos vértices adjacentes a um vértice v com maior e menor numeração, respectivamente. O valor mid(v) é dado por

$$mid(v) = \left\lfloor \frac{f_{max}(v) + f_{min}(v)}{2} \right\rfloor.$$
(5.1)

Em trabalhos anteriores (MARTÍ et al., 2001; LIM; RODRIGUES; XIAO, 2007; MLA-DENOVIC et al., 2010), o valor mid(v) tem sido utilizado para se encontrar um conjunto de vértices candidatos a serem permutados durante um procedimento de busca local *HillClimbing*. No contexto de reduções de largura de banda e de *profile*, mid(v) pode ser visto como o valor "ideal"de rótulo que v pode assumir, dada uma numeração f, que minimize a diferença entre seu rótulo e os rótulos de seus vértices adjacentes.

O procedimento de perturbação base do algoritmo proposto, midOrdering(f), se utiliza desse princípio, como mostrado no Algoritmo 5.1. Para cada vértice v do grafo, v.mid é calculado como definido em 5.1, sem a função *piso*. A adição de um valor aleatório r entre $-k_{rand}$ e k_{rand} acrescenta variação entre as execuções e torna o procedimento menos propenso a estagnar após execuções seguidas. Em seguida, os vértices são ordenados em ordem crescente em v.mid. Os empates são resolvidos de forma arbitrária. Note que v.mid consiste de um valor real e, dessa forma, o número de empates entre rótulos tende a ser menor.

MIDORDERING(F) Entrada: int k_{rand} **para** v = 1 to |V| **faça** $r = random(-k_{rand}, k_{rand});$ $v.mid = ((v.f_{max} - v.f_{min})/2) + r;$ Ordene $v \in V$ de acordo com v.mid

Como exemplo, tome o cenário representado na Figura 5.1, em que o vértice em destaque possui um rótulo distante dos de seus adjacentes, bem como dos demais vértices na vizinhança. O valor ideal para o vértice de rótulo 1, em destaque, é mostrado, de acordo com a equação 5.1. No exemplo, os valores de *v.mid* calculados pelo procedimento midOrdering(f) para os vértices mostrados serão possivelmente próximos ao do vértice em destaque. Dessa forma, após a ordenação dos vértices (linha 6 do Algoritmo 5.1), a diferença entre seus rótulos será menor e, possivelmente, a largura de banda ou *profile* do grafo.

Figura 5.1 – Fragmento de um grafo destacando o valor "ideal" do vértice de rótulo 1. São tomados o maior e menor rótulos adjacentes, 45 e 25, respectivamente, e sua soma é dividida por 2.

A ideia do procedimento midOrdering() é aproveitar das características do problema para causar uma perturbação na solução intermediária s' enquanto a leva para uma nova solução s'' que seja possivelmente melhor que s'. Como pode ser presumido, nas primeiras chamadas a midOrdering(), a perturbação resultante pode ser bastante intensa. Contudo, após um certo número de iterações, esse efeito tende a ser cada vez menor, à medida que os vértices se "assentam", ou se "estabelecem"em torno de certas regiões do espaço de soluções. Após cada chamada a midOrdering(), os valores de largura de banda e *profile* do grafo são atualizados.

Nos testes preliminares, contudo, foi verificado que para algumas instâncias o procedimento de perturbação midOrdering() pode não produzir melhorias em comparação à ordenação original. Em outros casos, os ganhos são bastante significativos num primeiro momento, mas tendem a estagnar após certo número de iterações. Para contornar essas situações, um outro procedimento de perturbação é utilizado.

Assim como o procedimento midOrdering(), o segundo procedimento procura perturbar a solução atual enquanto a leva para uma solução intermediária possivelmente melhor. Considere as seguintes definições. Um vértice v é dito crítico se $B_f(v) = B_f(G)$, onde $B_f(v)$ é a largura de banda de v e $B_f(G)$ é a largura de banda do grafo, dada uma ordenação (ou solução) *f*. Um vértice *v* é dito quase-crítico, ou λ -crítico, se $B_f(v) \ge \alpha_{crit} * B_f(G)$, e $0 < \alpha_{crit} < 1$. O procedimento groupCritical() tenta diminuir a distância entre os vértices λ -críticos e seus vértices adjacentes, aproximando seus rótulos como explicado no Algoritmo 5.2.

Algoritmo 5.2 Pseudocódigo da função de perturbação groupCritical(f)		
1:	GROUPCRITICAL(MULT)	
2:	Entrada: conjunto de rótulos λ -críticos, parâmetro multiplicador <i>mult</i>	
3:	para $c \in \lambda - criticos$ faça	
4:	para $a \in adj(c)$ faça	
5:	inc = abs(c.degree - a.degree) * (a.label - c.label)/(c.degree + a.degree);	
6:	se a.mid < crit.mid então	
7:	inc = inc * -1	
8:	inc = inc * mult	
9:	crit.mid = crit.mid + inc;	
10:	Ordene $v \in V$ de acordo com <i>v.mid</i>	

O valor *inc* da linha 5 define um incremento que é adicionado ao valor *crit.mid*. Idealmente, esse incremento vai tornar o rótulo do vértice v mais próximo dos rótulos dos vértices λ -críticos adjacentes a v. Em seguida, os vértices são ordenados em ordem crescente de *mid* e renumerados. O parâmetro entrada *mult* é utilizado para controlar a intensidade da perturbação aplicada. Por padrão, utiliza-se *mult* = 1.

O conjunto de vértices λ -críticos de uma numeração f contém vértices que não influenciam na largura de banda $B_f(G)$ da solução atual, mas que podem contribuir para diminuir o *profile* da nova ordenação. Ainda, como o conjunto de vértices λ -críticos inclui o de vértices críticos, é razoável que aproximar a numeração de seus vértices adjacentes melhore a largura de banda atual. O Algoritmo 5.3 mostra como os dois procedimentos são combinados no algoritmo proposto.

```
Algoritmo 5.3 Pseudocódigo da função de perturbação combinada
```

```
PERTURBAÇÃO()
Entrada: solução intermediária s'
s'' = midOrdering();
melhorouSolucao = (s'' < s');
se melhorouSolucao == false então
groupCritical(1);
```

5.1.3 Busca Local

O procedimento de busca local é o núcleo da meta-heurística ILS. O procedimento utilizado no algoritmo proposto é baseado no *HillClimbing* sugerido em Lim, Rodrigues e Xiao (2006), Lim, Rodrigues e Xiao (2007). Nesse procedimento, é definido um conjunto N'(v) com os vértices *u*, tal que

$$N'(v) = \{ u : (v.mid - f(u)) < (v.mid - f(v)) \},\$$

em que f(v) é o rótulo de v na numeração f.

Em outras palavras N'(v) contém os vértices *u* tal que f(u) está mais próximo de *mid*(*v*) do que f(v). Esses vértices são candidatos a troca com vértices λ -críticos *v* durante o *HillClimbing*.

Uma desvantagem desse método de *HillClimbing* é que ele tende a ser computacionalmente caro. Por esse motivo, chamá-la em todas as iterações do algoritmo, como sugere o framework clássico da meta-heurística ILS, pode não ser adequado. Além disso, foi percebido que a aplicação em sequência do procedimento de perturbação midOrdering() pode apresentar ganhos mais significativos do que sua aplicação alternada com a busca local. Nessa situação, a busca local seria executada desnecessariamente. Por isso, optou-se por realizar a busca local ao fim da etapa de perturbações, caso a solução s' seja melhor que a solução atual.

5.1.4 Critério de aceitação

O critério de aceitação é o que determina se a solução intermediária s' será aceita como solução atual s^* . Uma estratégia comum é aceitar uma nova solução apenas se ela for melhor que a solução atual. O algoritmo proposto permite que soluções melhores ou iguais à solução atual possam ser aceitas como nova solução atual.

De modo a evitar que ocorra estagnação na busca, uma perturbação intensa é aplicada caso nenhuma melhora na solução seja identificada por um número definido de iterações, armazenado na variável *maxItersNoImprovement*, no Algoritmo 5.4. Optou-se por utilizar uma adaptação do procedimento *groupCritical()* em que o parâmetro *mult* foi definido com um valor mais alto. O valor escolhido para *mult* nessa perturbação intensa foi o da variável *numberOfResets/2*. A variável *numberOfResets* armazena o número de vezes que a perturbação intensa foi aplicada. Assim, quanto mais vezes for detectada a estagnação, mais intensa é a perturbação que busca contorná-la.

Quando a perturbação intensa é aplicada, o valor da variável α_{crit} é diminuído. Isso implica num número possivelmente maior de vértices λ -críticos nas próximas iterações. Essa alteração afeta tanto a *buscaLocal()* quanto o procedimento *groupCritical()*, atuando assim

no aumento da intensificação e diversificação da busca, respectivamente. Além disso, a variável *maxItersNoImprovement* é reiniciada com 0 e a variável de controle *numberOfResets* é incrementada em 1.

5.2 As heurísticas ILS-Band e ILS-Prof

Até esse ponto, o algoritmo proposto é independente da métrica que se deseja minimizar, largura de banda ou *profile*. Adaptar o algoritmo para uma delas consiste basicamente em adaptar o critério de aceitação de forma correspondente. Deste modo, definimos aqui duas variações da heurística proposta. Uma versão com foco em redução de largura de banda, é nomeada **ILS-Band**. Nessa versão, dada a nova solução *s*', o critério de aceitação considera que houve melhoria na solução atual *s*^{*} se $\beta(s') \leq \beta(s^*)$. A outra versão, com foco em redução de *profile*, é nomeada **ILS-Prof**. Analogamente, seu critério de aceitação considera que houve melhora na solução *s*^{*} se *Profile*(*s*') \leq *Profile*(*s**).

O pseudocódigo das heurísticas é apresentado no Algoritmo 5.4. Note que a diferenciação entre as duas versões, ILS-Band e ILS-Prof, acontece na implementação do critério de aceitação, na linha 10.

Algoritmo 5.4 Pseudocódigo genérico das heurísticas ILS-Band e ILS-Prof

```
1: ILS-GENERICO()
                   maxIterations, maxResets, maxItersNoImprovement, vértice pseudo-
2:
       Entrada:
   periférico v<sub>pseudo</sub>
       iteration = 0;
 3:
       itersNoImprovement = 0;
4:
       s^* = SolucaoInicial(v_{pseudo});
 5:
6:
       repeat
           s' = Perturbacao(s^*);
7:
           se s' < s^* então
 8:
               s' = BuscaLocal();
9:
           s^* = Aceitacao(s', s^*);
10:
           se Não houve melhora na solução então
11:
               itersNoImprovement++;
12:
13:
               se itersNoImprovement == maxItersNoImprovement então
                  groupCritical(numberOfResets / 2);
                                                                        // Perturbação intensa
14:
                  numberResets + +;
15:
                  itersNoImprovement = 0;
16:
           iteration = iteration + 1;
17:
       until iteration > maxIterations ou numberResets > maxResets; retorne s^*
18:
```

A variável *itersNoImprovement* armazena o número de iterações sem melhora na solução *s**. Se não houver melhoras por *maxItersNoImprovement* iterações, uma perturbação intensa é realizada, como descrita na Seção 5.1.2 (linhas 11 a 16 do Algoritmo 5.4). A cada perturbação intensa, a variável *numberResets* é incrementada. A variável *maxResets* controla o número máximo de vezes que a solução atual sofre a perturbação intensa. Juntamente com a variável *maxIterations*, a variável *maxResets* funciona como critério de parada para o algoritmo.

Para os testes realizados neste trabalho, a variável *maxIterations* foi definida em 300, *maxResets* em 30 e *maxItersNoImprovement* em 15. O valor utilizado para a variável k_{rand} , usada no procedimento midOrdering() foi 6. A variável α_{crit} é inicializada com 0.95 e decrementada em 0.013, a cada perturbação intensa.

5.3 Detalhes de desenvolvimento

Para a implementação das heurísticas propostas foi utilizada a linguagem C++. Internamente, os vértices são mantidos em uma estrutura de armazenamento CRS, descrita no Capítulo 2. A representação compacta obtida por meio do CRS é importante quando se lida com matrizes de grandes dimensões, que demandariam alto custo de armazenamento com o uso de listas de adjacências. Além disso, é possível realizar a permutação de linhas e colunas na estrutura CRS com custo baixo. Essa característica é altamente desejada, já que o algoritmo proposto se utiliza exaustivamente dessa operação.

Para a implementação dos algoritmos propostos utilizou-se a IDE CLion 2017.2 e o editor de textos *Sublime Text 2*. O compilador utilizado foi o g++ versão 5.4.0 com auxílio do cmake 3.10.1. Todos os testes foram executados por meio do sistema computacional, também escrito em C++, utilizado no trabalho de Oliveira, Bernardes e Chagas (2016). Esse sistema é responsável por implementar e gerenciar a execução das heurísticas comparadas com a heurística proposta. À excepção da heurística VNS-Band, todas as outras estão implementadas nesse sistema.

6. SIMULAÇÕES PARA REDUÇÃO DE LARGURA DE BANDA E DE PROFILE

Neste capítulo encontram-se os resultados das simulações para reduções de largura de banda e de *profile* comparando as heurísticas ILS-Band e ILS-Prof propostas a heurísticas relevantes na literatura para esses problemas. A descrição das instâncias utilizadas e métricas empregadas nas simulações deste capítulo encontram-se nas Seções 6.1 e 6.2. As simulações conduzidas foram divididas entre instâncias simétricas e assimétricas. Os resultados da simulações com instâncias simétricas são apresentados na Seção 6.3. Os resultados da simulações com instâncias assimétricas são apresentados na Seção 6.4.

6.1 Instâncias utilizadas

No trabalho de Martí et al. (2001), as simulações para redução de largura de banda foram realizadas sobre um conjunto de 113 instâncias da base Harwell-Boeing (DUFF; GRIMES; LEWIS, 1992), com dimensões variando entre 30 e 1104 vértices. Em diversos trabalhos seguintes e de anos recentes, o conjunto de instâncias utilizadas foi o mesmo (PIÑANA et al., 2004; LIM; RODRIGUES; XIAO, 2003; LIM; RODRIGUES; XIAO, 2004; LIM; RODRI-GUES; XIAO, 2006; LIM et al., 2006; LIM; LIN; XIAO, 2007; LIM; RODRIGUES; XIAO, 2007; RODRIGUEZ-TELLO; HAO; TORRES-JIMENEZ, 2008; MLADENOVIC et al., 2010; CAMPOS; PIÑANA; MARTÍ, 2011; ISAZADEH; IZADKHAH; MOKARRAM, 2012; POP; MATEI; COMES, 2014; TORRES-JIMENEZ et al., 2015).

Para este trabalho, considerou-se que as dimensões das matrizes utilizadas nos trabalhos citados já não são satisfatórias para os padrões atuais e, por isso, foi necessário utilizar instâncias maiores. Assim, as simulações para redução de largura de banda e *profile* de matrizes deste trabalho utilizaram um conjunto de 172 instâncias quadradas da base de matrizes esparsas da *SuiteSparse Matrix Collection* (DAVIS; HU, 2011), divididas em 124 instâncias simétricas e 48 assimétricas. As dimensões das matrizes variam entre 5940 e 112985 mil vértices.

As heurísticas propostas, ILS-Band e ILS-Prof, foram comparadas às heurísticas RCM-GL, RBFS-GL, GPS, KP-Band-GL, FNC-HC e VNS-Band para redução de largura de banda e Sloan, Sloan-MGPS, NSloan e MPG para redução de *profile*. As heurísticas FNC-HC e GPS para redução de largura de banda e NSloan e MPG para redução de *profile* foram elencadas por Oliveira, Bernardes e Chagas (2016) como as possíveis melhores heurísticas de baixo custo para seus respectivos problemas. Além dessas, os autores destacam as heurísticas RCM-GL e RBF-GL por seu baixo custo e processamento e a de Sloan por se sobressair em problemas de áreas específicas. As heurísticas VNS-Band e KP-Band-GL são apontadas por Chagas e Oliveira (2015) como possíveis heurísticas no estado da arte para redução de largura de banda de matrizes simétricas.

As implementações utilizadas das heurísticas RCM-GL, RBFS-GL, GPS, KP-Band-GL, Sloan, Sloan-MGPS, NSloan e MPG foram as utilizadas por Oliveira, Bernardes e Chagas (2016). Recomenda-se consultar o referido trabalho para detalhes de implementação e calibração dessas heurísticas. O código-fonte da heurística FNC-HC foi gentilmente cedido pelo professor Dr. Fei Xiao. Os arquivos executáveis versões 32 e 64 bits da heurística VNS-Band foram gentilmente cedidos pelo professor Dr. Dragan Urosevic.

A heurística VNS-Band utiliza um parâmetro de tempo máximo de execução para encerrar o algoritmo. O tempo limite utilizado nos testes foi a média de tempos do método baseado em meta-heurística com maior tempo de execução. Como poderá ser observado nos testes nas seções seguintes, as médias dos tempos utilizadas foram as da heurística FNC-HC. Os valores foram 60 segundos para instâncias simétricas e 50 segundos (valor aproximado para cima) para instâncias assimétricas.

Nas simulações computacionais nas subseções seguintes, cada heurística foi executada 10 vezes com cada uma das 172 instâncias selecionadas, divididas entre simétricas e assimétricas. Os valores de largura de banda, *profile* e tempo de execução nas tabelas das subseções seguintes correspondem à média das 10 execuções.

Para os testes computacionais realizados nas instâncias da base *SuiteSparse Matrix Collection* utilizou-se um computador com processador Intel Core i7-2600 CPU 3.40GHz com 8MB de cache L3 e 8GB de memória RAM DDR3 1333MHz. O sistema operacional utilizado foi o Linux Mint 18.2 com 64 bits e kernel 4.10.0-40-generic.

6.2 Métricas utilizadas para comparação dos resultados

Para cada heurística, o número de instâncias nas quais ela obteve o melhor resultado entre todas as outras é indicado nas tabelas por "Num melhores". Apesar de este ser um bom indicativo do desempenho do algoritmo, essa métrica, por si só, não é adequada. Isso porque uma heurística que conseguisse resultados próximos dos melhores na maioria das instâncias sem, contudo, conseguir o melhor resultado em nenhuma delas, seria prejudicada. Por esse motivo, o trabalho de Oliveira, Bernardes e Chagas (2016) aplica uma métrica ρ que considera a distância relativa entre a solução encontrada por uma heurística e a melhor solução encontrada naquela instância. Seja uma heurística h, a métrica ρ é dada por

$$\rho_p = \frac{profile_h - profile_{min}}{profile_{min}},\tag{6.1}$$

em que *profile*_h é o *profile* obtido pela heurística e *profile_{min}* é o menor *profile* obtido por uma heurística nessa instância. O mesmo vale para a largura de banda e tempo de execução. Quanto menor o valor de ρ , melhor o desempenho geral da heurística naquele conjunto de instâncias. O somatório de ρ para cada um desses atributos também é indicado nas tabelas seguintes.

6.3 Simulações com 124 instâncias simétricas

Nas Tabelas A1, A2 e A3 presentes no Apêndice A são apresentados os resultados de redução de largura de banda, de *profile* e o tempo de execução, respectivamente, das 10 heurísticas testadas em 124 instâncias simétricas. Uma compilação dessas tabelas é apresentada na forma das figuras 6.1 a 6.6. A análise dos resultados de cada métrica é feita a seguir.

6.3.1 Redução de largura de banda

Como visto na Tabela A1, a heurística que obteve o maior número de melhores resultados em redução de largura de banda foi a heurística FNC-HC, em 66 das 124 instâncias simétricas (Figura 6.1). Esse número corresponde a mais da metade das instâncias testadas. Em seguida, a heurística ILS-Band proposta obteve 34 melhores resultados nesse conjunto (pouco mais de um quarto das instâncias), acompanhada da heurística GPS, com 21 melhores resultados. O ranking ocupado por essas três heurísticas com relação à métrica ρ (vide Figura 6.2) coincide com a quantidade de melhores resultados encontrados por cada uma.

Esses resultados corroboram os obtidos pelo trabalho de Oliveira, Bernardes e Chagas (2016), no qual as heurísticas FNC-HC e GPS foram consideradas as melhores heurísticas para redução de largura de banda de baixo custo. Nesse contexto, notamos como os resultados obtidos pela heurística ILS-Band proposta foram relevantes, se posicionando entre essas duas heurísticas. Além disso, o valor da métrica ρ para a heurística ILS-Band (25,9) ficou mais próximo do valor da heurística FNC-HC (17,4) do que do valor da heurística GPS (39,5).

Figura 6.1 – Número de melhores resultados em redução de largura de banda das heurísticas selecionadas em 124 instâncias simétricas

Figura 6.2 – Valor da métrica ρ das heurísticas selecionadas em redução de largura de banda em 124 instâncias simétricas (quanto menor, melhor)

Apesar de poder ser considerada uma das heurísticas no estado da arte para o problema segundo Mladenovic et al. (2010), Oliveira, Bernardes e Chagas (2016), a heurística VNS-Band obteve apenas 4 melhores resultados nesse conjunto de instâncias (Figura 6.1). Isso pode ser explicado pela limitação de tempo imposta, de 60 segundos. Para comparação, os autores da heurística VNS-Band aplicaram-na sobre instâncias muito menores (até 1000 vértices) com o

tempo máximo de 500 segundos (MLADENOVIC et al., 2010). Além disso, a heurística VNS-Band obteve o pior desempenho em relação à métrica ρ , muito acima do segundo pior resultado (heurística NSIoan), como pode ser visto na Figura 6.2.

A heurística RCM-GL conseguiu 10 melhores resultados mas foi uma das mais rápidas nesse conjunto, como será discutido adiante, na seção 6.3.3. As heurísticas RBFS-GL, Sloan e Sloan-MGPS conseguiram, respectivamente, 4, 3 e 3 melhores resultados e foram as mais rápidas nos testes. As heurísticas para redução de *profile* MPG e NSloan obtiveram, respectivamente 4 e 2 melhores resultados de redução de largura de banda.

6.3.2 Redução de profile

Nos testes de redução de *profile* de instâncias simétricas da Tabela A2, a heurística MPG obteve 48 melhores resultados e a melhor posição no ranking da métrica ρ (Figuras 6.3 e 6.4). Em seguida, a heurística NSIoan obteve 33 melhores resultados. Juntas, as duas heurísticas somaram pouco mais de 65% os melhores resultados para redução de *profile* nas instâncias simétricas.

Figura 6.3 – Número de melhores resultados em redução de *profile* das heurísticas selecionadas em 124 instâncias simétricas

O algoritmo ILS-Prof proposto obteve 17 melhores resultados em redução de *profile* nesse conjunto, atrás da heurística de Sloan, com 18, e da heurística Sloan-MGPS, com 22. O algoritmo ILS-Band conseguiu apenas 6 melhores resultados para redução de *profile*, assim

como a heurística GPS. A heurística VNS-Band conseguiu 2 melhores resultados nesse conjunto, e a heurística FNC-HC, nenhum melhor resultado.

Quanto à métrica ρ , as heurísticas para redução de *profile* MPG, Sloan, NSloan e Sloan-MGPS ocuparam as primeiras posições. Em seguida, em quinto e sexto lugar, respectivamente, ficaram as heurísticas propostas, ILS-Prof e ILS-Band, esta já com grande margem em relação às primeiras colocadas. A heurística KP-Band-GL obteve o pior desempenho na métrica ρ para redução de *profile* nas instâncias assimétricas, com ampla diferença com relação à segunda pior nesse quesito, a heurística GPS.

6.3.3 Tempo de execução

Os tempos de execução das heurísticas nos testes com instâncias simétricas são mostrados na Tabela A3 e Figura 6.5. A heurística RBFS-GL foi mais rápida em 89 das 124 instâncias simétricas testadas. Esse resultado é natural, visto que se trata apenas do custo de se encontrar um vértice pseudo-periférico somado ao custo de uma busca em largura ordinária. A implementação da heurística de Sloan conseguiu os menores tempos de execução em 17 instâncias, a heurística Sloan-MGPS em 9 delas, e a heurística NSloan, em 7. Em 2 instâncias simétricas, a heurística RCM-GL obteve os menores tempos de execução. Em relação à métrica ρ , os piores resultados foram obtidos pelas heurísticas baseadas em meta-heurísticas para redução de largura de banda, VNS-Band e FNC-HC (vide Figura 6.6). O valor mais alto foi o da meta-heurística VNS-Band, com o tempo fixo de 60 segundos por instância, seguida da heurística FNC-HC. Entre as heurísticas para redução de *profile*, a heurística ILS-Prof foi muito mais lenta, no geral, que as heurísticas Sloan, NSloan e Sloan-MGPS, de acordo com a métrica ρ , mas mais rápida que a heurística MPG. Entre as heurísticas para redução de largura de banda, a meta-heurística ILS-Band foi mais lenta que as heurísticas RBFS-GL, RCM-GL e KP-Band-GL, mas consideravelmente mais rápida que as heurísticas FNC-HC e VNS-Band.

Figura 6.5 – Número de melhores resultados para tempo de execução das heurísticas selecionadas em 124 instâncias simétricas

6.4 Simulações com 48 instâncias assimétricas

Nas Tabelas A4, A5 e A6 presentes no Apêndice A são apresentados os resultados de redução de largura de banda, de *profile* e o tempo de execução, respectivamente, das 12 heurísticas testadas comparadas sobre 48 instâncias simétricas. Uma compilação dessas tabelas é apresentada na forma das figuras 6.7 a 6.12. A análise dos resultados desses testes é feita a seguir.

6.4.1 Redução de largura de banda

Como mostrado na Tabela A4, a heurística que obteve o maior número de melhores resultados em redução de largura de banda nas instâncias assimétricas testadas foi a FNC-HC, em 24 das 48 instâncias (Figura 6.7). As heurísticas ILS-Band e ILS-Prof obtiveram, respectivamente, 12 e 10 melhores resultados cada, seguidas da heurística GPS, com 7 melhores resultados. As heurísticas para redução de *profile* MPG, Sloan, NSloan e Sloan-MGPS não obtiveram nenhum melhor resultado em redução de largura de banda nas instâncias assimétricas.

Em relação à métrica ρ , a heurística FNC-HC também teve o melhor desempenho (Figura 6.8). A heurística proposta ILS-Prof foi apenas a terceira melhor nesse quesito, atrás da heurística GPS por uma diferença considerável. As heurísticas RCM-GL, KP-Band-GL e RBFS-GL ocuparam as últimas posições quanto à essa métrica. Isto é, elas foram ainda piores, no geral, que as heurísticas para redução de *profile* MPG, Sloan, NSloan e Sloan-MGPS nas instâncias assimétricas.

6.4.2 Redução de profile

Os resultados de redução de *profile* em 48 instâncias assimétricas da Tabela A5 mostram que a heurística proposta ILS-Prof obteve o maior número de melhores resultados (17)

Figura 6.8 – Valor da métrica ρ das heurísticas selecionadas em redução de largura de banda em 48 instâncias assimétricas (quanto menor, melhor)

nessas instâncias (Figura 6.9). A heurística NSloan foi a segunda melhor nesse quesito, com 13 melhores resultados, seguida da heurística MPG, com 10 melhores resultados. A heurística ILS-Band foi a quarta melhor em número de melhores resultados, superando as heurísticas de Sloan e Sloan-MGPS.

As heurísticas que obtiveram o melhor desempenho quanto à métrica ρ para redução de *profile* foram MPG e NSIoan, em consonância com o trabalho de Oliveira, Bernardes e Chagas (2016). A heurística de SIoan foi a terceira melhor no somatório de ρ para redução de *profile* e a heurística SIoan-MGPS, a quarta. A heurística ILS-Prof, na quinta posição, ficou mais próxima do valor de ρ das quatro melhores heurísticas do que da sexta colocada, a heurística GPS, como mostra a Figura 6.10. Assim como nos testes de redução de largura de banda da seção 6.4.1, as heurísticas RCM-GL, KP-Band-GL e RBFS-GL ocuparam as últimas posições quanto à essa métrica.

6.4.3 Tempo de execução

Os tempos de execução das heurísticas nas 48 instâncias assimétricas são mostrados na Tabela A6. Assim como para as instâncias simétricas, a heurística RBFS-GL foi a mais rápida na maioria das instâncias assimétricas testadas (44 de 48 instâncias). As únicas outras heurísticas a conseguirem melhores resultados foram as heurísticas de Sloan, em 2 instâncias, e suas variações, NSloan e Sloan-MGPS, em 1 instância cada (Figura 6.11).

Assim como para as instâncias simétricas, os piores tempos de execução nesse conjunto de instâncias foram obtidos pelas heurísticas baseadas em meta-heurísticas. O valor mais alto da métrica ρ foi o da heurística VNS-Band com tempo fixo de 50 segundos, com grande margem

Figura 6.10 – Valor da métrica ρ das heurísticas selecionadas em redução de *profile* em 48 instâncias assimétricas (quanto menor, melhor)

Figura 6.11 – Número de melhores resultados para tempo de execução das heurísticas selecionadas em 48 instâncias assimétricas

em relação à segunda pior, a heurística FNC-HC. As heurísticas propostas, ILS-Prof e ILS-Band, obtiveram o nono e décimo melhor tempo, respectivamente.

Em contrapartida ao desempenho ruim quanto a redução de largura de banda (Seção 6.4.1) e de *profile* (seção 6.4.2) nas instâncias assimétricas, as heurísticas redução de largura de banda RCM-GL, RBFS-GL e KP-Band-GL obtiveram os menores tempo de execução. As

heurísticas Sloan, NSloan, Sloan-MGPS e MPG ocuparam da quarta à sétima posições em relação à métrica ρ nesse conjunto de instâncias, respectivamente.

6.5 Discussão sobre as simulações para redução de largura de banda e de profile

Neste capítulo, foram apresentados os resultados das simulações com 172 instâncias da *SuiteSparse Matrix Collection* (DAVIS; HU, 2011), divididas em 124 instâncias simétricas e 48 instâncias assimétricas. Dez heurísticas para reduções de largura de banda e de *profile* na literatura foram comparadas às heurísticas ILS-Band e ILS-Prof propostas. O *ranking* das heurísticas testadas com relação à métrica ρ é mostrado na Tabela 6.1.

6.5.1 Simulações em instâncias simétricas

Nos testes com 124 instâncias simétricas, a heurística proposta ILS-Band obteve o segundo melhor desempenho geral em redução de largura de banda de acordo com a métrica ρ , atrás apenas da heurística FNC-HC. Nos testes para redução de *profile*, a heurística proposta ILS-Prof foi a quinta melhor, atrás das heurísticas MPG, NSloan, Sloan-MGPS e de Sloan.

As Figuras 6.13 e 6.14 ilustram o desempenho relativo das heurísticas nos testes realizados com instâncias simétricas em redução de largura de banda e de *profile*, respectivamente. Por meio da uma análise da Figura 6.13 constata-se que, enquanto as heurísticas FNC-HC e

	Simétricas		Assimétricas			
Heurística	β	profile	t (s)	β	profile	t (s)
ILS-Band	2°	6 ⁰	9°	3°	9º	9º
ILS-Prof	7 ⁰	5°	7 ⁰	6 ⁰	5°	10 ^o
RCM-GL	4 ^o	7 ⁰	4 ^o	10 ^o	12°	2°
RBFS-GL	6 ⁰	10 ^o	1º	12º	10 ^o	1º
KP-Band-GL	5°	12°	6°	11°	11°	3°
GPS	3°	11º	8°	2º	6 ^o	9°
FNC-HC	1º	8°	11°	10	7 ⁰	12º
VNS-Band	12°	9°	12°	9º	8 ⁰	11°
Sloan	8 ⁰	2°	3°	5°	3°	4 ^o
NSloan	9º	3°	5°	8º	2°	5°
Sloan-MGPS	11°	4 ^o	2°	4 ^o	4 ^o	6°
MPG	10 ^o	1°	10 ^o	7º	1°	7 ⁰

Tabela 6.1 – Ranking das heurísticas para redução de largura de banda e profile, em relação à métrica ρ

ILS-Band produzem soluções de qualidade superior, o melhor equilíbrio entre qualidade e velocidade de solução pode ser conseguido com a heurística RBFS-GL. De maneira análoga, uma análise da Figura 6.14 sugere que, enquanto a heurística MPG é claramente melhor em redução de *profile* de instâncias simétricas, um melhor equilíbrio entre qualidade e velocidade de solução é encontrado na heurística de Sloan.

6.5.2 Simulações em instâncias assimétricas

Nos testes com 48 instâncias assimétricas, a heurística proposta ILS-Band obteve a terceira colocação em redução de largura de banda de acordo com a métrica ρ , atrás das heurísticas FNC-HC e GPS. Assim como nas instâncias simétricas, a heurística proposta ILS-Prof obteve a quinta posição, atrás das quatro heurísticas para redução de *profile* testadas.

As Figuras 6.15 e 6.16 ilustram o desempenho relativo das heurísticas nos testes realizados com instâncias assimétricas em redução de largura de banda e de *profile*, respectivamente. Por meio de uma análise desses resultados não é tão simples determinar com precisão quais heurísticas apresentam o melhor equilíbrio entre qualidade e velocidade da solução no conjunto de instâncias assimétricas. Esses resultados sugerem que a escolha de qual heurística utilizar em problemas práticos envolvendo instâncias assimétricas deve levar em consideração o quanto se deseja sacrificar em qualidade da solução ou em velocidade de processamento.

Figura 6.13 – Gráfico sobreposto de $\sum \rho$ para largura de banda e para tempo das simulações com 124 instâncias simétricas, ordenadas por tempo (em escala logarítmica).

Figura 6.14 – Gráfico sobreposto de $\sum \rho$ para *profile* e para tempo das simulações com 124 instâncias simétricas, ordenadas por tempo (em escala logarítmica).

Heurística

Figura 6.15 – Gráfico sobreposto de $\sum \rho$ para largura de banda e para tempo das simulações com 48 instâncias assimétricas, ordenadas por tempo (em escala logarítmica).

Figura 6.16 – Gráfico sobreposto de $\sum \rho$ para *profile* e para tempo das simulações com 48 instâncias assimétricas, ordenadas por tempo (em escala logarítmica).

6.5.3 Considerações finais sobre o desempenho das heurísticas testadas

Nos testes com instâncias simétricas e assimétricas deste capítulo, a heurística ILS-Band obteve o oitavo melhor tempo, entre as doze heurísticas testadas. A heurística ILS-Prof obteve

o sétimo melhor tempo nas instâncias simétricas e apenas o nono melhor tempo nas instâncias assimétricas. Em outras palavras, as heurísticas propostas ficaram entre as cinco mais lentas nos dois conjuntos de instâncias. Levando em consideração os resultados desses testes, não é possível classificar as heurísticas propostas, ILS-Band e ILS-Prof, como heurísticas de baixo custo para redução de largura de banda e de *profile*. Os tempos de execução das heurísticas propostas sugerem, portanto, que seu uso *não é apropriado* para problemas práticos em que o tempo de execução é um fator limitante, como o problema de redução do custo do método GMRES pré-condicionado.

No trabalho de Oliveira, Bernardes e Chagas (2016), a heurística NSIoan foi considerada a mais promissora heurística de baixo custo para redução de *profile* em instâncias simétricas, e a heurística MPG, para instâncias simétricas. Neste trabalho, no entanto, a heurística MPG foi a melhor heurística em redução de *profile* tanto para instâncias simétricas quanto para instâncias assimétricas, em relação à métrica ρ .

Por fim, lembramos que a heurística VNS-Band (MLADENOVIC et al., 2010) pode ser considerada o estado da arte para redução de largura de banda quanto à qualidade das soluções. Nos testes conduzidos neste capítulo com instâncias simétricas, a heurística VNS-Band foi a pior em redução de largura de banda e também a mais lenta entre as doze heurísticas testadas. Nos testes conduzidos com instâncias assimétricas, a heurística VNS-Band foi a oitava em redução de largura de banda e a quarta mais lenta. As heurísticas RBFS-GL, KP-Band-GL e RCM-GL, que foram piores que a heurística VNS-Band em redução de largura de banda nas instâncias assimétricas foram, no entanto, as mais rápidas nesse conjunto de instâncias. Uma explicação para esse desempenho ruim é o tempo fixado nos testes deste trabalho, de 60 segundos para instâncias simétricas e 50 segundos para instâncias assimétricas. No trabalho original, a heurística VNS-Band foi testada sobre instâncias com até 1000 vértices apenas, e tempo máximo de 500 segundos (MLADENOVIC et al., 2010). Com base nos testes deste capítulo, não se pode afirmar que a heurística VNS-Band não está no estado da arte quanto à qualidade das soluções obtidas em redução de largura de banda, mas, definitivamente, que ela não deve ser considerada apropriada para problemas práticos em que o tempo de execução é uma fator crucial.

7. RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES

A redução do custo de execução de métodos para resolução de sistemas de equações lineares é o foco deste trabalho. Neste capítulo, são descritos métodos iterativos para resolução de sistemas de equações lineares, com ênfase em métodos baseados no subespaço de Krylov, na Seção 7.1. Na Seção 7.2 são introduzidas técnicas para pré-condicionamento. Na Seção 7.3 apresenta-se uma breve compilação de trabalhos recentes que utilizaram o método GMRES pré-condicionado.

7.1 Métodos iterativos para resolução de SELs

Os métodos para resolução de sistemas de equações lineares podem ser divididos entre métodos diretos e iterativos. Para muitos problemas práticos, métodos diretos podem levar muito tempo para convergir ou divergir, como afirma Benzi (2002). Para esses casos, em que computar a solução exata do sistema de equações lineares é uma tarefa inviável, são utilizados métodos iterativos.

Dada uma solução inicial aproximada, métodos iterativos para resolução de SELs tentam, a cada passo, alterar alguns componentes dessa aproximação, até que a convergência seja alcançada, como explica Saad (2003, p.105). O objetivo de cada iteração é tentar eliminar componentes do vetor residual $r_0 = b - Ax$.

Entre os métodos iterativos, podem-se citar os métodos clássicos de Jacobi, Gauss-Seidel e *Successive Over-Relaxation* (SOR), métodos baseados no subespaço de Krylov e métodos multinível. Na seção a seguir, são apresentados métodos baseados no subespaço de Krylov, com foco no *Generalized Minimum Residual Method* (GMRES), utilizado nos testes deste trabalho.

7.1.1 Métodos baseados no subespaço de Krylov

Métodos como o GMRES, BI-CGSTAB, MINRES e o MGC, entre outros, são baseados no subespaço de Krylov. Dada uma matriz $A \in \mathbb{C}^{m \times m}$ e $b \in \mathbb{C}^{m}$,

$$K_m = span\{b, Ab, A^2b, \dots, A^{m-1}b\}$$

é o subespaço de Krylov de dimensão m. Um método iterativo do subespaço de Krylov é um método para o qual o subespaço K_m é

$$K_m(A, r_0) = span\{r_0, Ar_0, A^2r_0, \dots, A^{m-1}r_0\},\$$

em que $r_0 = b - Ax_0$.

Os métodos iterativos do subespaço de Krylov variam, basicamente, na forma de construir uma aproximação para Ax = b, por meio de um vetor $x_m \in K_m$. Como explica Saad (2003), as aproximações obtidas por um método do subespaço de Krylov, para $x_0 = 0$, são da forma $A^{-1}b \approx q_{m-1}(A)b$, em que q_{m-1} é um polinômio de grau m-1. Dessa forma, podemos dizer que a solução $x = A^{-1}b$ é aproximada por $q_{m-1}(A)b$.

7.1.1.1 Convergência de métodos iterativos

O comportamento de convergência dos métodos do subespaço de Krylov depende do **número de condição** e da distribuição dos **autovalores** e da matriz de coeficientes. Como explica Saad (2003), autovalores agrupados em torno de um único ponto, distante da origem, implicam em convergência rápida, enquanto autovalores espalhados, especialmente em torno da origem, fazem com que a convergência seja lenta.

O número de condição $\kappa(A)$ da matriz de coeficientes também desempenha um papel fundamental na convergência de métodos iterativos. O número de condição mede o quão sensível é a solução do problema em função de perturbações nos dados, como explicam Pyzara, Bylina e Bylina (2011). Em outras palavras, o número de condição está fortemente relacionado à precisão da solução aproximada do sistema fornecida por métodos iterativos. Diz-se que uma matriz *A* é *bem-condicionada* se seu número de condição $\kappa(A)$ não é muito grande. Nesse caso, o resultado obtido por um método iterativo terá uma boa precisão. Do contrário, em matrizes *mal-condicionadas*, a solução obtida por um métodos iterativos, como os do subespaço de Krylov, irá gerar aproximações com erros grandes, em comparação à solução exata.

7.1.2 O método GMRES

Em 1952, Lanczos (1952) e Hestenes e Stiefel (1952) desenvolveram independentemente o métodos dos gradientes conjugados (MGC) para resolução de sistemas de equações lineares com matrizes simétricas e positivas definidas, como explica Benzi (2002). Posteriormente, iniciou-se uma busca por uma extensão desses métodos que pudesse ser aplicada a sistemas assimétricos e indefinidos. Essas pesquisas culminaram com o desenvolvimento do *Generalized Minimum Residual* (GMRES), por Saad e Schultz (1986). Como outros métodos do subespaço de Krylov, o GMRES tenta aproximar a solução de um sistema Ax = b por meio de um vetor $x_m \in K_m$. Nesse caso, um vetor x_m que minimize o resíduo $|| b - Ax_m ||_2$.

Uma visão geral do método método GMRES é dada no Algoritmo 7.1. O algoritmo recebe um sistema de equações da forma Ax = b, o número máximo de iterações e a dimensão *m* do subespaço de Krylov. Nas linhas 3 e 4 são computados o vetor residual inicial e sua norma. Na linha 5, cria-se o vetor de Krylov inicial.

No laço de iteração das linhas 6 a 12 acontece a expansão do subespaço de Krylov e a projeção do sistema de equações original nesse espaço. Na base desse laço está um método chamado de Iteração de Arnoldi (ARNOLDI, 1951). Como explica Saad (2003), esse é um procedimento eficiente para aproximar autovalores de matrizes esparsas de grande porte. A Iteração de Arnoldi constrói uma projeção ortogonal do subespaço de Krylov K_m . A cada iteração, nas linhas 8 a 10, o processo de ortogonalização de Gram-Schmidt é utilizado para gerar uma sequência de vetores de Arnoldi ortonormais *w*.

Ao fim do laço interno, na linha 13, tem-se uma matriz de Hessenberg do tipo superior \bar{H} . Uma matriz deste tipo é quase triangular, com a diferença de possuir também elementos na subdiagonal imediatamente abaixo da diagonal principal. Na linha 14, encontra-se y_m que minimize $||\beta e_{-1} - \bar{H}_m y||_2$. Conforme explica Saad (2003), essa operação envolve um problema dos mínimos quadrados de ordem (m+1)xm em que *m* é tipicamente pequeno. Na linha 16, o algoritmo retorna a solução aproximada obtida.

Algoritmo 7.1 GMRES - Fonte: Saad (2003)

1: GMRES

2: **Entrada**: Sistema de equações lineares Ax = b, palpite inicial x_0 , número máximo de iterações externas n_{outer} , dimensão do subespaço de Krylov *m*

3:	$r_0 = b - Ax_0$	// Resíduo inicial
4:	$eta = \ r_0\ _2$	// Norma residual inicial
5:	$v_1 = r_0 / \beta$	// Define o primeiro vetor de Krylov
6:	para $j = 1,, m$ faça	// Iteração interna do GMRES
7:	$w_j = A v_j$	// Produto matriz-vetor
8:	para $i = 1,, j$ faça	// Ortogonalização de Gram-Schmidt
9:	$h_{i,j} = (w_j, v_i)$	
10:	$w_j = w_j - h_{i,j} v_i$	
11:	$h_{j+1,j} = \ w\ _2$	
12:	$v_{j+1} = w_j / h_{j+1,j}$	// Define o próximo vetor de Krylov
13:	$ar{m{H}}=\{h_{ij}\}$	// Define uma matriz reduzida do sistema
14:	$y = argmin_{\hat{y}} \ \boldsymbol{\beta} e_1 - \bar{\boldsymbol{H}}\hat{y}\ _2$	// Resolução do sistema reduzido
15:	$x_m = x_0 + \sum_{i=1}^m y_i z_i$	// Formação da solução aproximada
16:	retorne <i>x_m</i>	

7.1.2.1 Método GMRES com reinícios

Um dos problemas com o algoritmo GMRES clássico é que o subespaço de Krylov é expandido continuamente até que a convergência seja alcançada. Isso eleva linearmente os custos de memória e pode tornar o algoritmo inviável. Para contornar esses problemas, certas implementações do GMRES utilizam soluções baseadas em reinícios. No Algoritmo 7.2, que ilustra o GMRES com reinícios, se a dimensão definida do subespaço de Krylov *m* não for suficiente, o algoritmo é reiniciado partindo da solução intermediária *x* já encontrada (linha 21).

Embora seja fundamental para limitar o consumo de recursos computacionais, o uso de reinícios não garante a convergência do método GMRES. Ainda, é consenso que o número de iterações *m* deve ser escolhido a partir de experimentações: se for muito pequeno, o algoritmo pode demorar a convergir; se for muito maior que o necessário, implica nos problemas de consumo de recursos já mencionados. O uso do método GMRES com pré-condicionadores, explicados a seguir, pode ajudar a acelerar sua convergência.

7.1.3 Pré-condicionamento

Embora métodos iterativos sejam mais atrativos do que métodos diretos para resolução de SELs de grande porte, eles não possuem tanta robustez quanto esses últimos. O uso de pré-condicionamento pode contribuir na melhoria da robustez e da eficiência (isto é, na convergência) de métodos iterativos (SAAD, 2003, p.275).

Pré-condicionar um sistema de equações significa, em suma, transformá-lo em outro sistema, mais fácil de resolver por meio de um método iterativo, como explica Ferronato (2012). Isso envolve encontrar uma matriz *M* que será aplicada no sistema de equações original.

Segundo Benzi (2002), Saad (2003), a matriz M deve atender aos seguintes requisitos: ela deve ser fácil de construir e de ser aplicada, e deve tornar o sistema pré-condicionado Mx = bmais simples de ser resolvido. Além disso, deve ser não singular (deve possuir inversa) e ser próxima de A, de algum modo.

Uma matriz pré-condicionante *M* pode ser aplicada de três formas. No pré-condicionamento à esquerda, temos:

$$M^{-1}Ax = M^{-1}b.$$

O pré-condicionamento à direita é da forma:

$$AM^{-1}u = b, x \equiv M^{-1}u.$$

Finalmente, o pré-condicionador utilizado pode estar disponível na forma $M = M_L M_R$, em que M_L e M_R são, em geral, matrizes triangulares, como explica Saad (2003, p.276). Nesse caso, o pré-condicionamento é dito *dividido (split preconditioning)*:

$$M_L^{-1}AM_R^{-1}u = M_L^{-1}b, x \equiv M_R^{-1}u.$$

A escolha da forma de pré-condicionamento depende da aplicação, método iterativo utilizado e características do problema. Note que, em qualquer um dos casos, o sistema de equações pré-condicionado possui a mesma solução do sistema Ax = b original.

7.1.4 Método GMRES pré-condicionado

As três formas de pré-condicionamento apresentadas podem ser utilizadas no método GMRES. Como explica Saad (2003, p.285-287), na maioria das situações práticas, não existe diferença significativa na convergência do método ao se escolher uma ou outra. A exceção se dá em casos em que M é mal-condicionada. Nessas situações, como explicado, a solução do sistema está propensa a grandes variações, dadas pequenas alterações em etapas intermediárias.

Entretanto, ainda segundo Saad (2003), o uso do do pré-condicionador à direita é preferível por possibilitar a aplicação de uma variante "flexível"do GMRES, em que o pré-condicionador pode variar a cada passo. Essa flexibilidade permite também que qualquer técnica iterativa possa ser usada como pré-condicionador, como o SSOR, *multigrid*, etc., e mesmo outros métodos iterativos como o próprio GMRES e o método dos gradientes conjugados.

Na versão do método GMRES pré-condicionado à direita, a base ortogonal do subespaço de Krylov construída pela iteração de Arnoldi assume a forma

$$span\{r_0, AM^{-1}r_0, ..., (AM^{-1})^{m-1}r_0\}.$$

O Algoritmo 7.2 apresenta a versão flexível do GMRES (FGMRES - *Flexible GMRES*) com pré-condicionamento à direita. A adaptação do Algoritmo 7.1 para esta versão envolve definir o passo pré-condicionante $z_j = M_j^{-1}v_j$ (linha 8) e substituir o produto $w = Av_j$ (linha 9) por $w = Az_j$. O cálculo da solução aproximada, na linha 17, passa a ser definido por $x = x_0 + \sum_{i=1}^m y_i z_i$. Isto é, com essas modificações, as operações passam a ser feitas sobre a matriz pré-condicionada.

<u> </u>	· · · · · · · · · · · · · · · · · · ·	
1:	FGMRES	
2:	Entrada: Sistema de equações linea	ares $Ax = b$, palpite inicial x_0 , pré-condicionador M ,
	número máximo de iterações externas n	nouter, dimensão do subespaço de Krylov m
3:	para $l = 1,, n_{outer}$ faça	
4:	$r_0 = b - Ax_0$	// Resíduo inicial
5:	$eta = \ r_0\ _2$	// Norma residual inicial
6:	$v_1 = r_0 / \beta$	// Define o primeiro vetor de Krylov
7:	para $j=1,,m$ faça	// Iteração interna do GMRES
8:	$z_j = M_i^{-1} v_j$	// Passo pré-condicionador
9:	$w = Az_j$	// Produto matriz-vetor
10:	para $i = 1,, j$ faça	// Ortogonalização de Gram-Schmidt
11:	$h_{i,j} = (w, v_i)$	
12:	$w = w - h_{i,j}v_i$	
13:	$h_{j+1,j} = \ w\ _2$	
14:	$v_{j+1} = w/h_{j+1,j}$	// Define o próximo vetor de Krylov
15:	$ar{m{H}}=\{h_{ij}\}$	// Define uma matriz reduzida do sistema
16:	$y = argmin_{\hat{y}} \ \boldsymbol{\beta}e_1 - \bar{\boldsymbol{H}}\hat{y}\ _2$	// Resolução do sistema reduzido
17:	$x = x_0 + \sum_{i=1}^{m} y_i z_i$	// Formação da solução aproximada
18:	se $\ oldsymbol{eta} e_1 - ar{oldsymbol{H}} \hat{oldsymbol{H}} \ _2 < arepsilon$ então	// Verificação de convergência
19:	retorne	
20:	senão	
21:	$x_0 = x$	// Solução reinicializada para próxima iteração

Algoritmo 7.2 Flexible GMRES com pré-condicionamento à direita - Fonte: Saad (2003)

7.1.5 Paralelização do método GMRES

A resolução de sistemas de equações lineares de grande porte com métodos iterativos, principalmente que envolvem matrizes mal-condicionadas, pode demandar muito tempo. Diversos estudos têm se preocupado em desenvolver versões paralelas do método GMRES, aproveitando-se do fato de que muitas das operações envolvidas no algoritmo (produtos vetoriais, escalares e normas, por exemplo) são altamente paralelizáveis. Como exemplos de trabalhos que propuseram versões paralelas do método GMRES, podem ser citados os de Brozolo e Robert (1989), Cunha e Hopkins (1994), Erhel (1995).

Mais recentemente, a resolução de SELs utilizando GPUs (*Graphics Processing Unit*) tem sido o foco de pesquisas da área. O esforço principal desses estudos têm sido em desenvolver rotinas, ou *kernels*, para acelerar operações de produtos vetoriais envolvendo matrizes esparsas (*sparse matrix-vector product* - SpMV), requisitadas exaustivamente em resolutores iterativos.

No trabalho de Couturier e Domas (2012), uma implementação em GPUs do método GMRES com reinícios é proposta. Mesmo utilizando uma forma simples de pré-condicionamento, em que M é igual à diagonal de A, os autores obtiveram melhoras de até 23 vezes no tempo de processamento em comparação à versão sequencial do resolutor.

Clusters de GPUs também foram estudados por Khodja et al. (2014). Os autores apontam que a resolução de sistemas de equações lineares de grande porte é mais eficiente em *clusters* de GPUs do que em *clusters* de CPUs, desde que a localidade espacial e temporal dos dados seja bem gerenciada. Além disso, os autores utilizam técnicas de reordenação das submatrizes para minimizar o *overhead* de comunicação entre os GPUs.

O trabalho de DeVries et al. (2013) inclui versões paralelas do *Flexible* GMRES (FGM-RES) para diversas arquiteturas, como GPUs, sistemas multi-CPU e multi-GPU. Os autores apontam *speedup* significativo, principalmente na versão híbrida multi-GPU com OpenMP + CUDA.

He et al. (2016) propõem uma versão do GMRES pré-condicionado chamada GPU-GMRES, que utiliza uma abordagem híbrida CPU-GPU, com unidades gráficas dispostas em *clusters*. A fatoração LU incompleta implementada no GPU-GMRES permite o ajuste do *fill-in* de maneira a melhor aproveitar a eficiência das GPUs, segundo os autores. Os resultados obtidos em instâncias provenientes de problemas com redes de energia apontam que a abordagem proposta propicia um significativo *speedup* sobre a versão sequencial do mesmo resolutor.

Na seção a seguir, são apresentadas técnicas de pré-condicionamento comumente utilizadas em conjunto com o método GMRES. Apresentam-se técnicas baseadas na fatoração incompleta da matriz *A* bem como uma técnica baseada em *multigrid*.

7.2 Técnicas de pré-condicionamento

De maneira geral, um pré-condicionador consiste numa forma de modificação, ou aproximação, de um sistema de equações que o torne mais fácil de ser resolvido por um método iterativo. A quantidade de maneiras pelas quais se pode aplicar pré-condicionamento em um sistema de equações lineares é, deste modo, praticamente ilimitada. Como nota Saad (2003, p.297), "encontrar um bom pré-condicionador para resolver um dado sistema linear esparso é, frequentemente, visto como combinação de arte e ciência." Apesar disso, quando se trata de métodos iterativos baseados no subespaço de Krylov, uma das famílias de pré-condicionadores mais utilizada é a dos baseados na fatoração incompleta da matriz de coeficientes *A*. Como explica Dutto (1993), esse tipo de pré-condicionador fornece uma boa aceleração para métodos iterativos como o MGC e o GMRES, além de ser fácil de gerar e usar.

A fatoração LU incompleta consiste em decompor a matriz A como A = LU - R:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} - \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix},$$

em que L é uma matriz diagonal inferior, U é uma matriz diagonal superior, e R é a matriz de resíduo, ou erro, da fatoração. A matriz R contém os elementos descartados durante o processo de fatoração incompleta.

Diz-se que a fatoração LU de uma matriz A apresenta *fill-in* quando posições que eram nulas em A passam a ser não-nulas nos fatores LU. Isso significa que, tanto a matriz triangular inferior L (*lower*) quanto a matriz triangular superior U (*upper*), podem ser menos esparsos (ou mais densos) que A. Vários critérios podem ser utilizados para descartar os elementos em L e U e controlar o *fill-in* da fatoração. Nos métodos considerados a seguir, esses critérios são a posição dos elementos em A, seu valor ou uma combinação de ambos.

7.2.1 ILU(k)

A posição dos fatores na matriz pode ser um critério utilizado para descartar o *fill-in* nas etapas de fatoração LU incompleta. Seja *P* o padrão de elementos nulos de *A*, tal que: $P \subset \{(i, j) | i \neq j; 1 \le i, j \le n\}$. A fatoração LU incompleta sem *fill-in*, ILU(0), pode ser definida como é mostrado no Algoritmo 7.3.

Esse tipo de fatoração é dita sem *fill-in* porque o padrão de elementos nulos P dos fatores LU coincide com as posições nulas de A. Como afirma Benzi (2002), a fatoração ILU(0) é bastante simples de se implementar e pode ser eficiente para certas aplicações. Contudo, na maior parte dos problemas reais, a aproximação de A que ela fornece pode não ser precisa o suficiente para garantir uma boa taxa de convergência do resolutor.

Algoritmo 7.3 ILU(0) - Fonte: Saad (2003)

1:	ILU(0)
2:	para $i=2,,n$ faça
3:	para $k=1,,i-1$ se $(i,k)\in P$ faça
4:	$a_{ik} = a_{ik}/a_{kk}$
5:	para $j = k+1,,n$ se $(i,j) \in P$ faça
6:	$a_{ij} = a_{ij} - a_{ik}a_{kj}$

Uma maneira de remediar a falta de precisão do ILU(0) é permitir algum *fill-in* durante a fatoração. Para tanto, define-se uma hierarquia de pré-condicionadores baseada no conceito de "níveis de *fill-in*", chamada ILU(k). Inicialmente, o nível de *fill-in lev_{ij}* de um elemento não nulo é definido como 1 e o de um elemento nulo, ∞ . A cada modificação sofrida pelo elemento durante a fatoração, seu nível de *fill-in* é atualizado de acordo com:

$$lev_{ij} = min\{lev_{ij}, lev_{ik} + lev_{kj} + 1\}.$$
(7.1)

O Algoritmo 7.4 mostra o pseudocódigo da fatoração ILU(k), onde k corresponde aos níveis de *fill-in*. No ILU(k), $k \ge 0$, todos os elementos cujo nível de *fill-in* forem maiores que k serão descartados. Quanto maior o valor de k, menores tendem a ser os valores dos elementos remanescentes. Contudo, valores de k altos podem elevar demais o custo de geração do précondicionador.

Algoritmo 7.4 ILU(k) - Fonte: Saad (2003)		
1:	ILU(K)	
2:	Para todo elemento não nulo a_{ij} defina $lev(a_{ij}) = 0$	
3:	para $i = 2,, n$ faça	
4:	para $j=1,,i-1$ e para $lev(a_{ij})\leq k$ faça	
5:	Compute $a_{ij} = a_{ij}/a_{jj}$	
6:	Compute $a_{i*} = a_{i*} - a_{ij}a_{j*}$	
7:	Atualize os níveis de <i>fill-in</i> dos elementos a_{ij} não-nulos de acordo com (7.1)	
8:	Substitua qualquer elemento na linha <i>i</i> com $lev(a_{ij}) > p$ para zero	

Segundo constata Saad (2003), as desvantagens dessa abordagem são o custo de atualização dos níveis e o fato de de se desconhecer, de antemão, a quantidade de *fill-in* gerada e o custo computacional envolvido na fatoração.

7.2.2 ILUT

Fatorações como o ILU(0), em que os elementos são descartados com base apenas na estrutura de *A* podem resultar em pré-condicionadores ineficientes em muitas situações práticas, como aponta Saad (2003, p.321). Pré-condicionadores mais robustos podem ser construídos ao se levar em conta a magnitude dos elementos, em vez de suas posições. Dessa forma, apenas os *fill-in* com magnitude que possam contribuir significativamente para a qualidade do pré-condicionador são mantidos.

A fatorização ILUT(τ , p) (*Incomplete LU factorization with Threshold*) (SAAD, 1994) utiliza dois critérios para controlar o *fill-in*. A cada iteração, são descartados todos os elementos que forem menores que a tolerância de descarte τ multiplicada pela norma-2 da linha. Dos elementos restantes, apenas os p maiores em magnitude são mantidos. Uma visão geral do ILUT é dada no Algoritmo 7.5.

Algoritmo 7.5 ILUT - Fonte: Saad (2003)	
1:	ILUT
2:	para $i = 1,, n$ faça
3:	$w = a_{i*}$
4:	para $k = 1,, i - 1$ se $w_k \neq 0$ faça
5:	$w_k = w_k/a_{kk}$
6:	Aplica-se a regra de descarte τ a w_k
7:	se $w_k \neq 0$ então
8:	$w = w - w_k * u_{k*}$
9:	Aplica-se a regra de descarte p à linha w
10:	$l_{i,j} = w_j \operatorname{\mathbf{para}} j = 1,, i-1$
11:	$u_{i,j} = w_j \operatorname{para} j = i,, n$
12:	w = 0

A utilização dos parâmetros τ e *p* possibilita que se controle de antemão o *fill-in* máximo (*p*) e que se garanta que os elementos remanescentes possuam magnitude significativa (τ). Nas situações em que o ILUT falha como pré-condicionador, em geral, pode-se obter convergência diminuindo o valor de τ e aumentando o de *p*, permitindo-se, assim, mais *fill-in* na fatoração.

Uma dificuldade encontrada com a fatoração ILUT é a escolha dos parâmetros. Como aponta Benzi (2002), essa escolha depende fortemente das características do problema e, em geral, é feita por tentativa e erro.
7.2.3 ILUC

Algoritmos de fatoração baseados na eliminação Gaussiana precisam acessar os elementos em L e U por ordem das colunas. Contudo, os valores na linha atual são dinamicamente modificados pela fatoração. Quando a quantidade de *fill-in* é pequena, a busca pelo elemento desejado não incorre em muito custo. Do contrário, o custo dessa busca pode dominar o custo da fatoração em si.

A formulação Crout da fatoração ILU, ou ILUC (LI; SAAD; CHOW, 2003), fornece uma maneira mais eficiente de se percorrer e descartar os elementos de *fill-in*. Essa eficiência é conseguida ao se postergar a atualização dos elementos durante a fatoração. Como apontam os autores, o ILUC permite que estratégias mais robustas de escolhas de pivôs sejam incorporadas, bem como estratégias de descarte de valores baseadas em *threshold*, como a do ILUT.

7.2.4 ARMS

Na análise numérica, métodos *multigrid* são algoritmos para resolução de SEL usando uma hierarquia de aproximações (BRIGGS; MCCORMICK; HENSON, 2000). A ideia desses métodos é, a cada etapa, construir uma versão mais "grosseira" da matriz original. O processo é repetido recursivamente, até que atinja um ponto em que pode ser resolvido com custo muito mais baixo do que o problema original. A solução encontrada é, então, interpolada de volta até a versão original. A Figura 7.1 ilustra esse processo.

O método Multigrid Algébrico (AMG - *Algebraic MultiGrid*), proposto originalmente por Ruge e Stüben (1987), é um exemplo de método *multigrid*. Sua vantagem sobre os métodos existentes até então era obter as matrizes grosseiras de forma automática, sem necessidade de ajustes de vários parâmetros. Posteriormente, o AMG serviu de base para a criação de pré-condicionadores que combinam a fatoração LU incompleta com alguma forma de método *multigrid*, como explicam Saad, Soulaimani e Touihri (2004).

Uma das estratégias que alia a fatoração ILU com o AMG é o *Algebraic Recursive Multilevel Solver* (ARMS), proposto por Saad e Suchomel (2002). Para criar a hierarquia de aproximações da matriz *A* original, o pré-condicionador ARMS utiliza o conceito de ordenações por conjuntos independentes (*independent set orderings*). Uma ordenação por conjunto independente transforma o sistema de equações lineares original em:

$$\begin{pmatrix} B & F \\ E & C \end{pmatrix} = \begin{pmatrix} I & 0 \\ EB^{-1} & I \end{pmatrix} \begin{pmatrix} B & F \\ 0 & S \end{pmatrix},$$

em que o bloco B é bloco diagonal. O *complemento de Schur* desse novo sistema de equações é uma matriz esparsa \mathfrak{S} , tal que $\mathfrak{S} = C - EB^- 1F$. A ideia do ARMS é empregar essa fatoração de forma recursiva. A cada passo, são aplicadas regras para se limitar o *fill-in* de \mathfrak{S} e o sistema resultante passa por um novo processo de ordenação por conjuntos independentes. O processo é repetido por um número de níveis até que o sistema seja pequeno o bastante, ou até que o número máximo de níveis seja atingido. Então, o sistema é resolvido por algum outro método padrão, como o ILUT aliado ao método GMRES.

7.2.5 Pré-condicionadores em bloco

O pré-condicionamento em blocos é uma técnica comumente aplicada a matrizes provenientes da discretização de problemas elípticos, que pode ser generalizada a outras matrizes esparsas, como explica Saad (2003). Uma pré-condicionador em bloco é definido como $M = (L + \Delta)\Delta^{-1}(\Delta + U)$, onde Δ é uma matriz bloco diagonal.

Um dos problemas com esse tipo de pré-condicionadores é encontrar a estrutura em bloco da matriz de interesse, isto é, agrupar as linhas e colunas da matriz em blocos. Uma das abordagens para resolver esse problema foi proposta for (SAAD, 2002). Chamada de *Variable Block ILU*, essa abordagem identifica automaticamente esses blocos, utilizando métricas de similaridade entre os valores das linhas e colunas. A utilização dessa abordagem com *threshold* e níveis de *fill-in* dá origem, respectivamente, aos pré-condicionadores **VBILUT** e **VBILU(k)**.

7.2.6 Pré-condicionamento paralelo

Versões paralelas do método GMRES pré-condicionado devem fazer uso, preferencialmente, de implementações paralelas dos métodos pré-condicionadores. Os trabalhos de Zhang (2002) e de Ghysels et al. (2017) apresentam algumas abordagens para pré-condicionamento paralelo. Pré-condicionadores paralelos baseados em fatoração incompleta foram propostos por Karypis e Kumar (1997) e Hysom e Pothen (2001). Um pré-condicionador paralelo baseado em *multigrid* é proposto por Li, Saad e Sosonkina (2003). Ainda, versões de pré-condicionadores para GPUs são propostos no trabalho de Li e Saad (2013).

7.3 Trabalhos recentes com aplicações do método GMRES pré-condicionado

A escolha do melhor algoritmo de ordenação de matrizes para acelerar a convergência de métodos iterativos baseados no subespaço de Krylov tem sido assunto de vários estudos nas últimas décadas. Duff e Meurant (1989) analisam diversos algoritmos de ordenação na resolução de SEL com GC pré-condicionado pela fatoração incompleta de Cholesky. Para problemas como discretizações da equação de Laplace pelo método dos elementos finitos testados, os autores recomendam o uso da heurística CMR. O trabalho de Dutto (1993), compara alguns algoritmos de ordenação quando utilizados com o método GMRES pré-condicionado com ILU(p) em equações de Navier-Stokes. As ordenações aplicadas no trabalho, incluindo a de Cuthill-McKee reversa, melhoraram, em muito, a convergência do GMRES. Resultados similares foram reportados por Benzi, Szyld e Duin (1999). Os autores avaliaram os efeitos da reordenação da matriz de coeficientes em conjunto com o método GMRES pré-condicionado com as fatorações incompletas ILU(p) e ILUT. Os resultados mostraram que a heurística CMR foi, em geral, superior à heurística CM e a ordenação de grau mínimo.

O trabalho de Catabriga et al. (2006) investiga a aplicação do CMR em conjunto com GMRES e BICGSTAB em sistemas de equações assimétricos oriundos da discretização de problemas de fluxo e transportes pelo método dos elementos finitos. Nos testes envolvendo fatoração LU incompleta e refinamento adaptativo da malha, os melhores tempos de execução foram obtidos com a fatoração ILU(1). Guidetti et al. (2010), Lugon e Catabriga (2013a) analisam os efeitos da aplicação dos métodos de Sloan, GPS, grau mínimo aproximado, espectral, e variações do CMR e dissecção aninhada, na convergência do método GMRES pré-condicionado com fatoração LU incompleta. Os autores concluem que, em geral, a ordenação de Cuthill-McKee reverso é a mais vantajosa para redução do custo computacional. Pessanha, Portugal e Saavedra (2009) propõem um pré-condicionador baseado no método CMR para o método GMRES e conseguem, com isso, sanar instabilidades da fatoração ILU em problemas de fluxo de carga.

8. SIMULAÇÕES PARA RESOLUÇÃO DE SELS COM O MÉTODO GMRES PRÉ-CONDICIONADO

Neste capítulo, mostram-se os resultados dos testes para resolução de sistemas de equações lineares com o método GMRES pré-condicionado com heurísticas para redução de largura de banda ou de *profile* selecionadas. A descrição dos métodos e instâncias utilizadas nos testes é apresentada na Seção 8.1. Os resultados das simulações para redução do custo computacional do método GMRES pré-condicionado encontram-se na Seção 8.2. Discussões sobre os resultados dos testes são apresentados na Seção 8.3.

8.1 Descrição das instâncias, heurísticas e pré-condicionadores utilizados

O objetivo dos testes para resolução de SELs deste capítulo é identificar possíveis heurísticas que produzam ordenações que façam com que o método GMRES pré-condicionado convirja mais rapidamente do que se executado sobre a ordenação original da matriz. Para que isso possa acontecer, além de produzir boas reduções de largura de banda ou de *profile*, a heurística utilizada deve ter um baixo custo de execução.

No trabalho de Oliveira, Bernardes e Chagas (2016), as heurísticas RCM-GL, KP-Band-GL, NSloan, Sloan-MGPS, MPG, GPS e FNC-HC foram identificadas como as mais promissoras heurísticas de baixo custo para redução de largura de banda ou de *profile* em, pelo menos, uma área de aplicação. As heurísticas RCM-GL, KP-Band-GL, NSloan, MPG, Sloan e RBFS-GL obtiveram os melhores resultados na redução do custo de execução do método dos gradientes conjugados pré-condicionado pela fatoração incompleta de Cholesky no trabalho de Oliveira, Bernardes e Chagas (2017). Por esse motivo, essas heurísticas foram selecionadas para os testes deste capítulo com o método GMRES pré-condicionado. As exceções foram as heurísticas GPS e FNC-HC, que apesar dos bons resultados em redução de largura de banda, não apresentaram custo de execução tão baixos nos testes realizados no Capítulo 6. Ainda, foram consideradas também variações do algoritmos de Cuthill-Mckee (CM) e busca em largura (BFS) sem inversão da solução gerada (BFS-GL e CM-GL, respectivamente), sem escolha de vértice pseudo-periférico como ponto de partida (RBFS e RCM, respectivamente) e sem ambas (BFS e CM, respectivamente).

Durante a seleção de instâncias, considerou-se que instâncias muito pequenas não seriam adequadas para se avaliar o desempenho dos métodos escolhidos. Além disso, o método GMRES é comumente utilizado em situações em que o método dos gradientes conjugados não pode ser aplicado, isto é, instâncias assimétricas ou não positivas-definidas. Por esse motivo, foram selecionadas instâncias com mais de 400 mil vértices, assimétricas e com valores reais da *SuiteSparse Matrix Collection*. Essa triagem levou a 20 instâncias de cinco áreas de aplicação diferentes, mostradas na Tabela 8.1.

Os pré-condicionadores utilizados nos testes foram ILUT, ILU(k), ILUC, ARMS, VBI-LUT e VBILU(k), descritos no Capítulo 7. As implementações utilizadas do método GMRES, bem como a dos pré-condicionadores, foram as disponíveis na biblioteca ITSOL v2.0 (SAAD, 2017), de Yousef Saad, co-criador do método GMRES. A versão do GMRES disponível na biblioteca ITSOL v2.0 é o *Flexible* GMRES com pré-condicionamento à direita. A biblioteca ITSOL v2.0 implementa versões sequenciais dos métodos citados, e é escrita em C e Fortran. Por esse motivo, foram criados *wrappers* no projeto computacional em C++ para incluir a biblioteca e permitir que as soluções reordenadas das heurísticas testadas servissem de entrada para os resolutores então disponíveis.

O número de condição da matriz tem grande influência na velocidade de convergência e na precisão da solução obtida pelo GMRES. Se o sistema pré-condicionado gerado possuir um número de condição alto, é mais vantajoso abortar a execução do que permitir que ela leve muito tempo para convergir e ainda forneça uma solução ruim. Infelizmente, o custo de se calcular o número de condição de uma matriz de grande porte é extremamente alto. A implementação do método GMRES da biblioteca ITSOL fornece uma boa aproximação do número de condição. Denotada *condest*, ela consiste em calcular $||(LU)^{-1}e||_{\infty}$, onde *e* é um vetor de tamanho *n* com todos os elementos iguais a 1. Como afirma Benzi (2002), essa aproximação tem sido um bom indicativo, na prática, de que o pré-condicionamento aplicado não foi bem-sucedido e não é confiável. Para as simulações realizadas neste trabalho, considerou-se que um valor de *condest* maior que 10^{15} seria o limite para abortar a execução do GMRES. Essa escolha foi amparada pelo valor escolhido por Chow e Saad (1997), onde foi usado *condest* = 10^{10} como limite, levando-se em conta que as instâncias utilizadas neste trabalho possuem maiores dimensões. Quando o vetor *b* não foi fornecido, utilizou-se um vetor de valores aleatórios entre -1 e 1.

Durantes testes preliminares identificou-se que, com os pré-condicionadores escolhidos, os piores tempos de execução não passavam de alguns segundos. Assim, e permitindo alguma margem para instâncias mais complexas, estabeleceu-se o tempo máximo de execução 1200 segundos, ou 20 minutos. Após esse tempo, as execuções foram abortadas. Além disso, foi definido que o GMRES seria encerrado quando a norma do vetor de erro residual fosse menor

Tabela 8.1 – 20 instâncias reais e assimétricas de grande porte utilizadas nos testes para resolução de SELs com o método GMRES pré-condicionado. O tamanho da matriz é indicado por n e o número de elementos não nulos, por nnz

Instância	n	nnz	Área de aplicação
rajat21	411.676	1.876.011	Circuit Simulation Problem
largebasis	440.02	5.240.084	Optimization Problem
cage13	445.315	7.479.343	Directed Weighted Graph
rajat30	643.994	6.175.244	Circuit Simulation Problem
rajat29	643.994	3.760.246	Circuit Simulation Problem
pre2	659.033	5.834.044	Circuit Simulation Problem
ASIC_680ks	682.712	1.693.767	Circuit Simulation Problem
ASIC_680k	682.862	2.638.997	Circuit Simulation Problem
tmt_unsym	917.825	4.584.801	Electromagnetics Problem
webbase-1M	1.000.005	3.105.536	Directed Weighted Graph
atmosmodj	1.270.432	8.814.880	Computational Fluid Dynamics Problem
atmosmodd	1.270.432	8.814.880	Computational Fluid Dynamics Problem
Hamrle3	1.447.360	5.514.242	Circuit Simulation Problem
atmosmodl	1.489.752	10.319.760	Computational Fluid Dynamics Problem
cage14	1.505.785	27.130.349	Directed Weighted Graph
memchip	2.707.524	13.343.948	Circuit Simulation Problem
FullChip	2.987.012	26.621.983	Circuit Simulation Problem
Freescale1	3.428.755	17.052.626	Circuit Simulation Problem
circuit5M_dc	3.523.317	14.865.409	Circuit Simulation Problem
rajat31	4.690.002	20.316.253	Circuit Simulation Problem

que 10^{-8} ou quando se alcançasse um número de iterações igual a |n|, isto é, igual ao tamanho da matriz.

As implementações dos pré-condicionadores mencionados envolve um certo número de parâmetros que precisam ser definidos, e dos quais depende o desempenho do método GMRES. A fim de se realizar a escolha desses parâmetros da forma mais adequada, realizou-se uma série de simulações cuja descrição se encontra no Apêndice B.

Os valores encontrados nos testes descritos no Apêndice B encontram-se na coluna "1^a tentativa"na Tabela 8.2. Quando a execução do método GMRES com determinado précondicionador não convergiu com os parâmetros listados nessa coluna, foram realizadas novas tentativas com o conjunto de valores seguinte, até os valores listados na coluna "3^a tentativa". Os valores dos parâmetros para essas novas tentativas foram escolhidos de forma a permitir mais *fill-in* na fatoração e aumentar as chances e convergência do método GMRES, como descrito no Capítulo 7.

Nas instâncias em que, após execuções com os três primeiros conjuntos de valores descritos na Tabela 8.2, não houve convergência do método GMRES com nenhuma combinação de pré-condicionador e heurística de renumeração de vértices, uma nova tentativa foi feita. Os valores utilizados nesta situação são os apresentados na coluna "4^a tentativa". Como o *fill-in* esperado nesta tentativa tende a ser maior, optou-se por aumentar o tempo limite dessas execuções para 3600 segundos, ou 1 hora.

Tabela 8.2 – Parâmetros utilizados nos testes com o GMRES pré-condicionado a cada tentativa sem convergência. Os valores da 4^a tentativa foram utilizados apenas nas instâncias em que não houve convergência em nenhuma das tentativas anteriores.

Pré-condicionador	1 ^a tentativa	2 ^a tentativa	3 ^a tentativa	4 ^a tentativa
	$\tau = 10^{-3}$	$\tau = 10^{-6}$	$\tau = 10^{-9}$	$\tau = 10^{-15}$
	p = 50	p = 75	p = 100	p = 250
ILU(k), VBILU(k)	k = 1	k = 2	k = 4	k = 12
ARMS	$tol_dd = 0.1$	$tol_dd = 0.4$	$tol_dd = 0.7$	$tol_dd = 0.7$
	num_niveis = 3	num_niveis = 3	num_niveis = 3	num_niveis = 5

Para os testes computacionais realizados nas 14 menores instâncias (em número de vértice) assimétricas da base *SuiteSparse Matrix Collection* utilizou-se um computador com processador Intel Core i7-4770 CPU 3.40GHz com 8MB de cache L3 e 8GB de memória RAM DDR3 1333MHz. O sistema operacional utilizado foi o Ubuntu 16.04.3 LTS com 64 bits e kernel 4.13.0-39-generic. As 6 maiores instâncias em número de vértices (*cage14, memchip*, *FullChip, Freescale1, circuit5M_dc* e *rajat31*) foram executadas em máquinas similares, porém com 16GB de memória RAM DDR3 1333MHz.

8.2 Simulações com 20 instâncias assimétricas

Nas tabelas 8.4 a 8.8 no fim este capítulo são mostrados os tempos totais de execução do método GMRES pré-condicionado por ILUT, ILU(k), ILUC, ARMS, VBILUT e VBILU(k) com ordenações produzidas pelas heurísticas RBFS-GL, RCM-GL, RBFS, RCM, BFS-GL, CM-GL, BFS, CM, NSloan, Sloan, Sloan-MGPS e MPG. As instâncias foram agrupadas por área de atuação. Em cada uma dessas tabelas, a primeira coluna mostra o pré-condicionador utilizado.

Na segunda coluna encontra-se o tempo de resolução da instância com sua numeração original, isto é, sem utilização de heurísticas de redução de largura de banda ou de *profile*. O símbolo * indica que a simulação foi abortada por alguma inconsistência durante a etapa de précondicionamento, como diagonais ou pivôs nulos, por exemplo. Os casos em que a execução foi abortada porque o número de condição estimado (*condest*) foi acima do limite estabelecido de 10¹⁵ são indicados por "cond". O símbolo † indica que a execução do método GMRES foi abortada por não convergir dentro do limite estabelecido de 1200 segundos. Nas situações em que houve convergência após a primeira tentativa, um índice sobrescrito indica em qual tentativa a convergência ocorreu. Por meio dele é possível identificar o valor dos parâmetros utilizado nas execuções. Nas instâncias em que foi realizada a tentativa extra com o quarto conjunto de parâmetros e com 3600 segundos de limite, o símbolo ‡ indica que a execução foi abortada por exceder o tempo limite. Os melhores tempos de execução por pré-condicionador são destacados em cinza claro. Os melhores resultados para cada instância, entre todos os pré-condicionadores, é indicado em cinza escuro. Nas seções a seguir, os resultados da simulações para cada área de atuação são analisados.

8.2.1 Simulações com o método GMRES pré-condicionado nas instâncias da área *Electromagnetics problem*

Os resultados das simulações com o método GMRES pré-condicionado nas instâncias da área *Electromagnetics problem* encontram-se na Tabela 8.4. Apenas uma instância que atendesse aos critérios estabelecidos foi encontrada para essa área de atuação (*tmt_unsym*).

Nessa instância, o método GMRES convergiu apenas com o pré-condicionador ILUT. Os tempos por heurística são mostrados na Figura 8.1. O menor tempo de convergência foi observado no método GMRES pré-condicionado por ILUT com a numeração produzida pela heurística RBFS.

Nos outros pré-condicionadores testados, ILUC, ILU(k), ARMS, VBILUT e VBILU(k), as simulações não convergiram no tempo máximo estabelecido de 20 minutos. Nota-se também que não houve execuções abortadas por inconsistências na fatoração ou por estimativa de condição alta nessa instância.

8.2.2 Simulações com o método GMRES pré-condicionado nas instâncias da área *Optimization problem*

Os resultados das simulações com o método GMRES pré-condicionado nas instâncias da área *Optimization problem* encontram-se na Tabela 8.5. Apenas uma instância que atendesse aos critérios estabelecidos foi encontrada para essa área de atuação (*largebasis*).

Dos seis os pré-condicionadores testados, em três houve convergência, ILUT, VBILUT e ARMS, mesmo que em poucas combinações de heurísticas e pré-condicionador. Na Figura 8.2, os valores altos de tempos de execução indicam que o método GMRES não convergiu com aquela heurística. No geral, a convergência mais rápida foi observada com o GMRES précondicionado com ILUT utilizando com a ordenação produzida pela heurística RBFS (3,85 segundos). Contudo, nota-se que o pré-condicionamento com ILUT e VBILUT sofreu de instabilidades com muitas das heurísticas de renumeração de vértices testadas na instância dessa área.

O método GMRES pré-condicionado com ARMS foi o mais estável nos testes com essa instância, convergindo com todas as heurísticas testadas. O menor tempo de execução nas simulações com o pré-condicionador ARMS foi com a heurística Sloan-MGPS.

8.2.3 Simulações com o método GMRES pré-condicionado nas instâncias da área *Directed Weighted Graph problem*

Os resultados das simulações com o método GMRES pré-condicionado nas três instâncias da área *Directed Weighted Graph problem* encontram-se na Tabela 8.6. À excepção da instância *webbase-1M*, nas outras instâncias houve convergência em, pelo menos, uma combinação de pré-condicionador e heurística de redução de largura de banda ou de *profile*.

Nas instâncias *cage13* e *cage14*, a ordenação original da matriz produziu o maior número de melhores soluções. Além disso, em ambas as instâncias, o método GMRES précondicionado com ILUC convergiu nos menores tempos entre os pré-condicionadores testados. Os pré-condicionadores ILUT, ILUC e ILU(k) levaram à convergência do método GMRES com todas as heurísticas de reordenação de vértices nas duas instâncias, com exceção da heurística MPG na instância *cage14*. Os tempos de execução do método GMRES com esses précondicionadores são ilustrados na Figura 8.3. Em particular, o pré-condicionador ARMS obteve resultados ruins em instâncias dessa área, conseguindo convergência apenas com a ordenação original na instância *cage13*.

Nenhuma combinação de pré-condicionador e heurística de renumeração de vértices levou à convergência do método GMRES na instância *webbase-1M*. Essa instância foi a sub-

metida à execução com o quarto conjunto de parâmetros indicado na Tabela 8.2. Ainda assim, não houve convergência do método GMRES nessa instância.

8.2.4 Simulações com o método GMRES pré-condicionado nas instâncias da área *Computational Fluid Dynamics problem*

Os resultados das simulações com o método GMRES pré-condicionado nas quatro instâncias da área *Computational Fluid Dynamics problem* encontram-se na Tabela 8.7. Nas três instâncias dessa área, houve convergência do método GMRES com todos os pré-condicionadores, com exceção dos baseados em bloco, VBILUT e VBILU(k). Além disso, o método GMRES convergiu com as numerações produzidas por todas as heurísticas testadas quando pré-condicionado com ILUT, ILUC, ILU(k) e ARMS. A soma dos tempos de execução do método GMRES précondicionado nessas instâncias é mostrada na Figura 8.4.

Em geral, os menores tempos de execução foram obtidos com o pré-condicionador ILU(k). O menor tempo de execução em cada instância dessa área foi obtido com a numeração original da matriz em combinação com o método GMRES pré-condicionado com ILU(k). Notamos ainda que, entre os métodos heurísticos, os baseados em variações de busca em largura, BFS, RBFS e BFS-GL foram responsáveis pelo maior número de melhores resultados nas instâncias dessa área com os pré-condicionadores testados, como pode ser observado na Tabela 8.7.

8.2.5 Simulações com o método GMRES pré-condicionado nas instâncias da área *Circuit* Simulation problem

Os resultados das simulações com o método GMRES pré-condicionado nas instâncias da área *Circuit Simulation problem* encontram-se na Tabela 8.8. Essa área contempla o maior número de instâncias utilizadas nos testes, 12 das 20 instâncias. Além disso, muitas das maiores instâncias selecionadas pertencem a essa área. Talvez por isso, muitos dos pré-condicionadores testados apresentaram instabilidades e falharam em contribuir com a convergência do método GMRES em algumas das instâncias. Em três instâncias dessa área, nenhum pré-condicionador foi capaz de auxiliar na convergência do método GMRES no tempo estabelecido. São elas *Hamrle3, FullChip* e *pre2*.

O método GMRES pré-condicionado com ILU(k) convergiu em 5 das 12 instâncias dessa área. Em nenhum desses casos, o *speedup* obtido por esse pré-condicionador foi o melhor alcançado nessas instâncias. Nesse conjunto de instâncias, os pré-condicionadores em bloco VBILUT e VBILU(k) contribuíram com a convergência do método GMRES em apenas 1 instância, *ASIC_680ks*. Entretanto, o pior desempenho entre os pré-condicionadores nas instâncias dessa área foi o do ILUC. Apenas na instância *rajat31*, com as ordenações produzidas pelas heurísticas CM-GL e CM houve convergência do GMRES com esse pré-condicionador. Esses resultados sugerem que a formulação Crout do ILUT não é a mais adequada para instâncias dessa área de atuação.

Os pré-condicionadores que forneceram os melhores resultados nesse conjunto de instâncias foram ILUT e ARMS. O método GMRES pré-condicionado com ILUT convergiu com, pelo menos, uma heurística de redução de largura de banda ou de *profile* em 6 das 12 instâncias dessa área. A soma dos tempos de execução nessas instâncias com o pré-condicionador ILUT é mostrado na Figura 8.5. Em todas essas instâncias em que houve convergência do método GM-RES com o ILUT, o maior *speedup* entre os pré-condicionadores foi justamente o obtido por esse pré-condicionador. Em 3 dessas instâncias, a melhor ordenação foi a ordenação original da matriz. As heurísticas BFS e RBFS foram responsáveis por, respectivamente, 2 e 1 melhor resultado quando usadas em conjunto com o ILUT.

Figura 8.5 – Somatório da métrica ρ dos tempos de execução do método GMRES pré-condicionado nas instâncias da área *Circuit Simulation problem* em que houve convergência com o précondicionador ILUT

O método GMRES pré-condicionado com ARMS convergiu com, pelo menos, uma heurística de redução de largura de banda ou de *profile* em 9 das 12 instâncias dessa área. Uma análise a métrica ρ para essas instâncias indica que a melhor numeração para uso com o précondicionador ARMS foi, no geral, a numeração original da matriz. Entre as heurísticas, os melhores resultados foram conseguidos com as numerações produzidas por BFS e RBFS. A soma dos tempos de execução nessas instâncias com o pré-condicionador ARMS é mostrado na Figura 8.6. É importante também observar que em 3 instâncias, *rajat24*, *rajat29* e *rajat30*, o pré-condicionador ARMS foi o único com o qual o método GMRES convergiu. Pode-se dizer que o ARMS foi um dos pré-condicionadores mais confiáveis nesse conjunto de instâncias.

Inicialmente, as instâncias *rajat21*, *rajat29*, *Hamrle3*, *FullChip* e *pre2* não apresentaram convergência com nenhum dos seis pré-condicionadores testados. Essas instâncias foram submetidas aos testes com o quarto conjunto de parâmetros indicado na Tabela 8.2. Apenas as instâncias *rajat21* e *rajat29* convergiram com o novo conjunto de parâmetros. Nos dois casos, o pré-condicionador responsável pela convergência foi o ARMS.

8.3 Discussões sobre as simulações para resolução de SELs com o método GMRES précondicionado

Os pré-condicionadores baseados em fatoração incompleta são sensíveis à ordem das incógnitas e das equações no SEL. Neste capítulo, as heurísticas RBFS-GL, RCM-GL, RBFS, RCM, BFS-GL, CM-GL, BFS, CM, NSloan, Sloan, Sloan-MGPS e MPG foram aplicadas em 20 instâncias assimétricas de grande porte, no intuito que as ordenações por elas produzidas contribuíssem para a redução do custo computacional do método GMRES pré-condicionado por ILUT, ILU(k), ILUC, ARMS, VBILUT e VBILU(k).

O número de condição da matriz é crucial para a convergência do método GMRES pré-condicionado e, como apontam Duff e Meurant (1989), "o número de condição de um problema fica pior à medida que o número de incógnitas aumenta". Dessa forma, a influência da heurística de ordenação utilizada tende a ser maior conforme as instâncias aumentam. Ainda, como explica Benzi (2002), os pré-condicionadores baseados em fatoração incompleta frequentemente falham em matrizes esparsas que não apresentam boa simetria estrutural ou numérica, dominância diagonal, ou são altamente indefinidas.

Nos testes conduzidos neste capítulo, 6 das 20 instâncias testadas (*webbase-1M*, *rajat21*, *rajat29*, *Hamrle3*, *FullChip*, *pre2*), não apresentaram convergência com nenhuma combinação de heurística de redução de largura de banda ou de *profile* e método pré-condicionador em conjunto com o GMRES. Após novas tentativas, as instâncias *rajat21* e *rajat29* convergiram com o uso do pré-condicionador ARMS.

Nas 14 instâncias remanescentes, o método GMRES pré-condicionado obteve convergência dentro dos parâmetros estabelecidos com pelo menos um dos métodos pré-condicionadores testados. Com o objetivo de procurar estabelecer quais combinações de heurísticas de ordenação e métodos pré-condicionadores exibem o melhor comportamento de convergência com o método GMRES, buscou-se compilar os resultados destes testes na Tabela 8.3.

Tabela 8.3 – Melhores combinações de heurísticas de ordenação e métodos pré-condicionadores, no geral, nos testes realizados com 20 instâncias assimétricas

Área de aplicação	Pré-condicionador + heurística
Electromagnetics	ILUT + RBFS
Optimization	ILUT + RBFS
Directed weighted graph	ILUC + original
Computational fluid dynamics	ILU(k) + original
Circuit simulation	ILUT + BFS
	ARMS + ([R]BFS ou original)

Por meio da Tabela 8.3 pode-se verificar que, com exceção dos pré-condicionadores em bloco, VBILUT e VBILU(k), cada pré-condicionador testado se sobressaiu em, pelo menos, uma área de atuação. Além disso, nota-se que na maioria das áreas de atuação das matrizes testadas, os melhores tempos de convergência foram observados quando não se utilizou nenhuma heurística de redução de largura de banda ou de *profile*. Apenas heurísticas baseadas em variações da busca em largura, RBFS e BFS, foram capazes de contribuir com a redução do custo total de resolução de SELs com o método GMRES pré-condicionado em alguma área de atuação nos testes realizados. A seguir, o desempenho dos pré-condicionadores que obtiveram bons resultados nos testes é analisado.

8.3.1 ILUT

O pré-condicionador ILUT foi o responsável pelos menores tempos de processamento nas instâncias das áreas *Electromagnetics problem* e *Optimization problem*. Nos testes com instâncias do tipo *Circuit Simulation* o pré-condicionador ILUT obteve melhores resultados em quatro delas quando a ordenação original da matriz foi usada. Ressaltamos que instâncias dessa área foram bastante desafiadoras para o método GMRES com os pré-condicionadores testados. Tome, como exemplo, a instância *memchip*. O método GMRES pré-condicionado com ILUT e ordenação produzida por RBFS convergiu em 8,94 segundos. Já a ordenação produzida por BFS (isto é, sem inversão da ordenação gerada) acarretou em um erro durante a geração do pré-condicionador ILUT. Logo, essa instância foi altamente sensível às mudanças na ordem dos coeficientes, o que caracteriza uma matriz mal-condicionada.

Como afirma Saad (2003), nos casos em que o ILUT falha em um problema, pode-se obter melhores resultados diminuindo-se o valor τ e aumentando-se o valor p. Isso permitirá mais elementos na fatoração e aumentará as chances de sucesso do pré-condicionador. Contudo, no trabalho de Chow e Saad (1997), mostra-se que nem sempre essa estratégia funciona. Para matrizes não estruturadas, podem surgir pivôs com valores muito pequenos na fatoração, ou mesmo com valor zero, o que torna o pré-condicionamento instável e suscetível a falhas. Além disso, aumentar demais o *thresholding* a fatoração pode destruir a precisão da fatoração. Para certos casos em que o ILUT falha, Chow e Saad (1997) sugerem tentar versões do ILUT com pivôs, como a versão ILUTP (*thresholding-based ILU with pivoting*).

8.3.2 ILU(k)

O pré-condicionador ILU(k) foi o melhor pré-condicionador para o método GMRES nos testes com instâncias do tipo *Computational Fluid Dynamics*. Em todas as três instâncias dessa área, a combinação do ILU(k) com as ordenações originais da matriz obteve resultados notáveis.

Em instâncias das áreas *Electromagnetics*, *Optimization* e *Circuit Simulation*, o précondicionador ILU(k) teve um desempenho ruim. Em geral, as fatorações como o ILU(k) são pouco confiáveis para sistemas assimétricos genéricos (KAPORIN, 2010). Mesmo em tentativas posteriores com ILU(2), ILU(4) e ILU(12) que permitem mais *fill-in*, o pré-condicionador não contribuiu com a convergência do método GMRES.

8.3.3 ILUC

O pré-condicionador ILUC foi o melhor pré-condicionador para o método GMRES nos testes com instâncias do tipo *Directed Weighted Graph*. Os melhores resultados do método GMRES pré-condicionado com ILUC nessa área foram com a ordenação original da matriz.

A proposta da formulação Crout do ILU é diminuir o custo da busca por pivôs durante a fatoração, em comparação à fatoração ILU ordinária. Nos testes realizados, o ILUC teve melhor desempenho, em geral que o ILUT e o ILU(k) nas instâncias do tipo *Directed Weighted Graph*, e melhor desempenho que o ILUT nas instâncias do tipo *Computational Fluid Dynamics*.

8.3.4 ARMS

Nos testes deste capítulo, o pré-condicionador ARMS contribuiu para o melhor desempenho do método GMRES, em geral, na instância da área *Electromagnetics*. Ainda, o método GMRES pré-condicionado com ARMS obteve bons resultados em instâncias da área *Circuit Simulation*, conseguindo convergência no maior número de instâncias.

O pré-condicionador ARMS conseguiu convergência com, pelo menos, uma heurística de ordenação em 14 das 20 heurísticas testadas. Esse foi o melhor resultado entre todos os précondicionadores testados. O pré-condicionador ILUT levou o GMRES à convergir em 13 das 20 instâncias. No geral, as causas de não convergência do método GMRES pré-condicionado com ARMS, com as diferentes heurísticas de ordenação, foram o limite de tempo estabelecido. Nesse aspecto, o pré-condicionador ARMS se mostrou mais estável que o ILUT, e mais robusto para uso geral em instâncias assimétricas em simulações em que o tempo de execução pode ser mais longo.

8.3.5 Considerações finais

Os testes realizados neste capítulo consideraram seis pré-condicionadores e treze heurísticas de redução de largura de banda ou de *profile*, além da ordenação original, em 20 instâncias assimétricas de grandes dimensões, oriundas de cinco áreas de atuação diferentes. Devido à diversidade das instâncias utilizadas, era esperado que métodos baseados no subespaço de Krylov, como o GMRES, falhassem em algumas delas.

Um resultado notável observado nos testes conduzidos foi que, em geral, os menores tempos de processamento do método GMRES pré-condicionado foram obtidos com a ordenação original das instâncias. Este resultado vai de encontro aos resultados obtidos por outros trabalhos que estudaram os efeitos da reordenação das matrizes na convergência do método GMRES, em especial os de Benzi, Szyld e Duin (1999) e Benzi, Haws e Tuma (2000). Há diversos fatores que podem explicar esses resultados. Primeiramente, os testes realizados neste trabalho incluíram outros pré-condicionadores (ILUC, ARMS, VBILUT e VBILU(k)), além do ILUT e ILU(k) utilizados em Benzi, Szyld e Duin (1999), Benzi, Haws e Tuma (2000). A escolha dos parâmetros para as execuções do método GMRES com cada pré-condicionador também foi conduzida de forma diferente. Como visto em Chow e Saad (1997), entre muitos outros, diferenças sutis nos valores dos parâmetros dos pré-condicionadores baseados em fatoração incompleta são determinantes na convergência do GMRES. Por fim, as instâncias utilizadas neste trabalho possuem dimensões muito maiores que as utilizadas por Benzi, Szyld e Duin (1999), Benzi, Haws e Tuma (2000). Instâncias com número maior de coeficientes tendem a ter maiores números condição e, em consequência, serem mais sensíveis às ordenações empregadas (DUFF; MEURANT, 1989).

Conclui-se também que as ordenações produzidas por variações da busca em largura (BFS) obtiveram melhor desempenho, no geral, que as produzidas pela heurística Cuthill-McKee (CM). Ainda, as versões dessas duas heurísticas iniciadas por vértices pseudo-periféricos obtidos pelo algoritmo de George e Liu (GL) tornaram maiores os tempos totais para convergência do GMRES, no geral, que as versões sem esse recurso. Foi verificado também que, em geral, as heurísticas para redução de *profile* de Sloan, NSloan, Sloan-MGPS e MPG não são recomendadas para reduzir o tempo total do método GMRES em instâncias assimétricas de grande porte.

Tabela 8.4 – Tempos de execução (em segundos) do método GMRES pré-condicionado em instâncias assimétricas do tipo "Electromagnetics problem".

	Pré-condicionador	Original	RBFS-GL	RCM-GL	RBFS	RCM	BFS-GL	CM-GL	BFS	СМ	KP- Band-GL	NSloan	Sloan	Sloan- MGPS	MPG
	ILUT	90.76 /2	79.65 ^{/2}	87.15 ^{/2}	77.50/2	85.22 /2	82.67 /2	84.94 /2	80.85 /2	82.39 /2	90.26 /2	90.25 /2	84.39 /2	84.33 /2	82.79 /2
Ë	ILUC	†	†	†	†	†	†	†	†	ŧ	†	ŧ	†	†	Ŧ
nsy	ILUK	†	†	†	ŧ	†	†	†	†	ŧ	†	ŧ	†	†	Ŧ
Lu I	ARMS	†	†	†	ŧ	†	†	†	†	ŧ	†	ŧ	†	†	†
tĦ	VBILUT	†	†	†	ŧ	†	†	†	†	ŧ	†	ŧ	†	†	Ŧ
	VBILUK	t	ŧ	Ť	Ŧ	†	ţ	†	†	†	ţ	†	†	†	†

Tabela 8.5 - Tempos de execução (em segundos) do método GMRES pré-condicionado em instâncias assimétricas do tipo "Optimization problem".

	Pré-cond.	Original	RBFS-GL	RCM-GL	RBFS	RCM	BFS-GL	CM-GL	BFS	СМ	KP- Band-GL	NSloan	Sloan	Sloan- MGPS	MPG
	ILUT	*	3.97	*	3.85	*	*	8.47	*	7.36	8.76	*	*	*	*
is	ILUC	cond	†	†	†	†	†	†	†	†	cond	ŧ	†	†	ŧ
Jasi	ILU(k)	*	*	*	*	*	*	*	*	*	cond	*	*	*	*
rgel	ARMS	136.90/3	371.67 /3	1115.10/3	386.04 /3	65.04 /3	$62.70^{/3}$	746.62	61.48/3	389.70/3	699.66	72.82 /3	76.11/3	$12.12^{/3}$	107.94 /3
laı	VBILUT	*	*	7.32	*	9.73	7.26	*	6.15	*	7.47	*	*	*	*
	VBILU(k)	*	*	*	*	cond	cond	*	cond	*	cond	cond	cond	cond	*

	Pré-condicionador	Original	RBFS-GL	RCM-GL	RBFS	RCM	BFS-GL	CM-GL	BFS	СМ	KP- Band-GL	NSloan	Sloan	Sloan- MGPS	MPG
	ILUT	8.26	16.01	21.64	13.54	18.34	16.96	20.66	13.59	18.40	23.24	24.47	24.66	24.61	225.62
_	ILUC	5.37	13.26	17.27	9.25	14.22	12.41	16.95	9.41	13.98	18.05	20.21	19.23	19.28	219.90
e13	ILU(k)	11.41	18.26	24.02	15.45	21.09	19.22	22.95	16.36	20.28	26.38	26.79	25.06	25.03	258.25
cag	ARMS	729.74	†	†	ŧ	†	†	ŧ	†	†	†	†	†	†	†
0	VBILUT	15.38	24.50	31.78	21.91	28.38	27.65	28.79	23.72	26.39	35.08	36.32	31.03	31.45	231.06
	VBILU(k)	25.18	30.63	36.90	28.09	33.85	32.82	36.10	29.37	32.81	39.37	40.76	37.56	36.96	234.58
	ILUT	31.47	65.23	84.06	50.87	67.27	63.74	81.09	51.82	68.23	86.63	97.18	103.17	97.32	†
	ILUC	17.48	45.98	69.78	33.13	51.08	46.25	62.90	33.20	50.53	68.17	73.59	79.45	86.74	†
e14	ILU(k)	49.81	81.66	102.63	65.71	86.35	81.71	99.40	69.15	82.87	109.11	106.16	111.32	98.65	†
cag	ARMS	t	†	†	ŧ	†	ŧ	ŧ	†	ŧ	†	†	†	+	ŧ
0	VBILUT	Ť	†	†	ŧ	†	ŧ	ŧ	†	ŧ	†	†	†	†	ŧ
	VBILU(k)	†	†	†	†	†	†	†	†	ŧ	†	†	ŧ	†	†
	ILUT	*	*	*	*	*	*	*	*	*	*	*	*	*	*
IM	ILUC	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond
se-	ILU(k)	*	*	*	*	*	*	*	*	*	*	*	*	*	*
ba	ARMS	*	*	*	‡	*	*	‡	‡	‡	‡	‡	*	*	*
weł	VBILUT	*	*	*	*	*	*	*	*	*	*	*	*	*	*
F	VBILU(k)	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Tabela 8.6 - Tempos de execução (em segundos) do método GMRES pré-condicionado em instâncias assimétricas do tipo "Directed Weighted Graph".

	Pré-condicionador	Original	RBFS-GL	RCM-GL	RBFS	RCM	BFS-GL	CM-GL	BFS	СМ	KP- Band-GL	NSloan	Sloan	Sloan- MGPS	MPG
	ILUT	38.47	30.63	37.47	26.27	33.42	29.51	37.76	26.19	33.42	37.97	42.08	42.43	42.07	41.33
pp	ILUC	31.89	26.30	33.75	23.03	30.34	26.42	33.69	23.06	30.15	34.65	35.38	35.28	35.73	37.52
mo	ILU(k)	18.39	24.28	32.76	21.84	28.99	25.58	31.80	21.68	28.98	33.98	33.63	32.31	33.46	34.58
los	ARMS	33.03	34.08	44.37	35.68	44.48	41.02	43.65	37.87	42.87	48.89	45.09	45.14	44.44	45.85
atn	VBILUT	ŧ	†	†	†	Ť	ŧ	Ť	+	†	†	ŧ	ŧ	†	†
	VBILU(k)	†	†	†	†	ŧ	†	†	†	†	ŧ	Ť	†	†	†
	ILUT	39.82	30.40	36.74	25.75	33.09	30.25	38.16	25.77	32.93	37.69	39.50	41.19	41.10	40.84
ďj	ILUC	31.41	28.42	33.85	23.33	30.35	26.90	33.66	23.08	30.17	34.54	37.79	37.73	38.09	39.60
Smc	ILU(k)	18.27	25.68	30.91	21.80	29.02	23.59	30.73	21.67	28.96	33.53	32.01	31.71	32.58	35.15
nos	ARMS	33.35	37.40	47.53	35.09	44.19	32.40	42.79	37.41	42.34	55.03	52.26	44.23	50.07	54.51
atr	VBILUT	ŧ	†	Ť	†	†	Ť	†	Ŧ	†	†	ŧ	†	†	ŧ
	VBILU(k)	†	†	†	†	†	†	†	†	†	ŧ	†	†	†	†
	ILUT	27.48	31.33	39.21	27.39	36.19	30.28	40.35	27.64	35.58	40.81	42.17	44.26	44.35	41.44
dl	ILUC	21.11	27.44	37.96	24.73	33.10	27.94	35.96	24.56	33.73	38.82	36.51	38.03	37.78	39.05
Smc	ILU(k)	10.21	19.92	27.79	13.92	22.55	19.28	28.09	14.13	22.24	28.63	31.31	31.12	30.04	29.84
nos	ARMS	30.21	173.91	301.85	178.12	288.45	178.16	294.34	174.02	303.06	186.77	237.24	234.38	239.30	250.36
atr	VBILUT	†	†	†	t	Ť	†	†	†	†	†	ŧ	†	†	ŧ
	VBILU(k)	†	†	†	†	†	†	†	†	†	†	†	†	†	†

Tabela 8.7 – Tempos de execução (em segundos) do método GMRES pré-condicionado em instâncias assimétricas do tipo "Computational Fluid Dynamics problem".

	Pré-cond.	Original	RBFS-GL	RCM-GL	RBFS	RCM	BFS-GL	CM-GL	BFS	СМ	KP- Band-GL	NSloan	Sloan	Sloan- MGPS	MPG
rajat21	ILUT ILUC ILU(k) ARMS VBILUT	* ‡ 8.99 ^{/4}	* * 14.57 ^{/4}	* cond ‡ 13.86 ^{/4} *	* * 25.22 ^{/4}	* cond ‡ 12.86 ^{/4} *	* cond ‡ 11.97 ^{/4} *	* * 20.86 ^{/4}	* cond ‡ 10.98 ^{/4} *	* ‡ 27.08 ^{/4}	* cond ‡ *	* cond * *	* cond * *	* cond * *	* ++ *
	VBILU(k)	‡	*	‡	*	‡	‡	*	‡	*	‡	*	*	*	*
rajat29	ILUT ILUC ILU(k) ARMS VBILUT VBILU(k)	* ‡ 133.53 /4 ‡ ‡	* * 56.28 /4 * *	* cond ‡ 30.78 ^{/4} ‡ ‡	* * 54.32 /4 * *	* cond ‡ 29.06 /4 ‡ ‡	* cond ‡ 246.75 ^{/4} ‡ ‡	* ‡ 66.86 /4 ‡ ‡	* * 157.03 ^{/4} * *	* * 65.22 /4 * *	* cond ‡ * * \$	** ** ** **	* * * * *	* * * * *	** ** ** **
rajat30	ILUT ILUC ILU(k) ARMS VBILUT VBILU(k)	* † 228.11 †	* † * 85.30 † ;	* cond † 93.41 † †	* * 81.24 † †	* cond † 91.34 † ;	* cond † 350.80 † †	* † 90.11 †	† cond † 319.75 † †	* † 87.87 † †	* cond † 359.91 /3 † †	† † † † †	† † † † †	† † † † †	† † † † †
ASIC_680ks	ILUT ILUC ILU(k) ARMS VBILUT VBILU(k)	0.35 † 0.97 14.66 6.12 2.81	2.44 † 3.13 3.58 8.36 5.05	3.43 † 7.97 11.67 9.90 18.23	1.37 † 2.00 2.48 9.41 3.89	2.77 † 7.20 3.26 ^{/2} 8.81 18.22	2.99 † 13.83 3.68 8.90 40.90	3.41 † 4.16 4.32 10.36 6.46	2.38 † 13.72 2.79 8.01 43.28	2.13 † 2.76 3.27 8.49 4.69	3.89 † 16.12 4.76 8.89 50.47	7.90 † 7.80 11.49 12.30 9.10	8.03 † 7.24 12.01 14.59 9.08	8.02 † 7.23 12.01 13.75 9.07	53.10 † 53.84 54.78 ^{/2} 62.79 56.00

Tabela 8.8 - Tempos de execução (em segundos) do método GMRES pré-condicionado em instâncias assimétricas do tipo "Circuit Simulation problem".

	Pré-cond.	Original	RBFS-GL	RCM-GL	RBFS	RCM	BFS-GL	CM-GL	BFS	СМ	KP- Band-GL	NSloan	Sloan	Sloan- MGPS	MPG
V	ILUT	*	*	*	*	6.90	*	*	4.20	*	*	†	ţ	†	†
801	ILUC	Ŧ	*	Ŧ	*	T	Ŧ	Ŧ	T	Ŧ	Ť	T	T	T	T
Ö	ILU(k)	Ť	*	Ť	*	†	Ť	*	†	*	Ť	†	+	Ť	†
SIC	ARMS	141.58	182.19	187.09	180.77	185.49	132.68	158.25	131.24	156.93	187.08	Ť	+	†	†
Ā	VBILUT	Ť	Ť	ŧ	†	†	†	†	†	†	†	Ŧ	+	†	†
	VBILU(k)	Ť	ŧ	ŧ	†	ŧ	ŧ	ŧ	†	ŧ	Ť	ŧ	ŧ	†	ŧ
	ILUT	*	*	*	*	*	*	*	*	*	*	*	*	*	‡
Э	ILUC	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond	‡
rle	ILU(k)	*	*	*	*	*	*	*	*	*	*	*	*	*	‡
am	ARMS	*	*	*	*	*	*	*	*	*	*	*	*	*	‡
Ha	VBILUT	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡
	VBILU(k)	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡
	ILUT	*	18.03	*	8.94	*	*	28.06	*	21.14	*	+	*	*	*
0	ILUC	†	†	†	+	÷	ţ	ţ	+	+	+	+	+	†	+
chij	ILU(k)	*	29.88	*	21.24	*	*	40.48	*	33.33	*	*	*	*	*
Smc	ARMS	21.37	105.62	118.23	101.37	109.41	135.48	107.90	125.46	100.23	106.44	143.19	90.07	93.12	378.31
Ш	VBILUT	+	+	+	+	+	t	t	+	+	+	+	+	†	+
	VBILU(k)	Ť	Ť	Ť	ţ	ŧ	ŧ	ŧ	+	ŧ	ŧ	†	ŧ	+	+
	ILUT	*	*	*	*	*	*	*	±	*	*	+	±	±	ŧ
_		+	cond	cond	+	cond	cond	+	+	+	cond	+	+	т t	+
hip		+	+	+	+ +	+	+	+	+	+	+	т +	+	+	+
IIC	ARMS	+	+	+	+ +	т +	+	+	+	+	+	т +	+	+	+
Fu	VBILUT	т †	т †	т †	т +	т +	т +	т †	+						
ц	VBILU(k)	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
	, DILU(K)	+	+	+	+	+	+	+	+	+	+	+	+	+	+

	Pré-cond.	Original	RBFS-GL	RCM-GL	RBFS	RCM	BFS-GL	CM-GL	BFS	СМ	KP- Band-GL	NSloan	Sloan	Sloan- MGPS	MPG
el	ILUT ILUC	303.01 †	49.67 cond	50.63 /2 cond	33.10 †	36.37 ^{/2} cond	28.50 ^{/2} cond	68.71 †	16.63 /2 cond	55.12 †	52.53 ^{/2} cond	198.44 †	180.80 †	179.37 †	† †
cal	ILU(k)	447.74 ^{/3}	360.02 /3	ŧ	948.00/3	ţ	†	380.02 /3	ŧ	905.50 ^{/3}	†	†	577.65 ^{/3}	582.50/3	†
ees	ARMS	1039.31 /2	$998.72^{/2}$	1073.64 /2	1035.55 /2	941.52 /2	$1002.48^{/2}$	$1029.89^{/2}$	998.89 ^{/2}	$1052.66^{/2}$	992.52 /2	†	ŧ	†	ţ
ц	VBILUT	Ť	t	ŧ	ŧ	ŧ	Ť	Ť	t	†	t	†	ŧ	t	†
	VBILU(k)	†	†	Ť	†	Ť	†	†	ŧ	†	†	†	ŧ	Ť	†
~	ILUT	2.80	24.67	*	10.31	*	22.75	*	10.69	*	43.58	38.06	42.06	37.00	†
ď,	ILUC	†	- †	ŧ	ŧ	cond	†	cond	†	cond	ŧ	†	ŧ	ŧ	†
SM	ILU(k)	6.813	26.334	*	11.769	*	29.999	*	15.610	*	51.113	47.015	45.822	40.668	†
uit	ARMS	15.66	30.24	51.12	16.05	35.79	29.61	46.27	13.78	35.33	50.50	50.17	54.88	49.50	†
circu	VBILUT	Ť	†	Ť	Ť	Ť	†	t	Ť	†	Ť	Ŧ	Ť	Ť	†
0	VBILU(k)	†	†	Ť	†	Ť	†	†	ŧ	†	†	†	ŧ	Ť	ţ
	ILUT	4.10	*	53.34 /2	*	34.01	250.25/3	*	9.97	*	*	*	*	*	*
	ILUC	†	†	ŧ	ŧ	ŧ	cond	55.71	cond	60.31	cond	†	ŧ	†	†
it31	ILU(k)	16.47	*	$122.84^{/2}$	*	43.74	29.44	*	21.46	*	57.03	*	*	*	*
raja	ARMS	8.21	27.52	51.71	15.80	41.87	26.84	51.28	15.42	41.81	49.44	36.19	35.85	41.43	1041.39
-	VBILUT	Ť	ŧ	Ť	Ť	Ť	†	t	Ť	†	t	†	ţ	t	†
	VBILU(k)	†	ŧ	ŧ	Ŧ	ŧ	†	†	ŧ	+	ŧ	†	ŧ	ŧ	†
	ILUT	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	ILUC	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond	cond
52	ILU(k)	‡	*	‡	*	‡	‡	*	‡	*	‡	*	*	*	*
pro	ARMS	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡
	VBILUT	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	VBILU(k)	*	*	*	*	*	*	*	*	*	*	*	*	*	*

9. CONCLUSÃO E TRABALHOS FUTUROS

Neste trabalho, buscou-se avaliar o desempenho de métodos de redução de largura de banda ou de *profile* na redução do custo de execução do método GMRES pré-condicionado. Os métodos de interesse neste estudo foram aqueles considerados no estado da arte para redução de largura de banda ou de *profile* por Bernardes e Oliveira (2015), Chagas e Oliveira (2015), Oliveira, Bernardes e Chagas (2016). Além deles, foram propostas heurísticas para redução de largura de banda e de *profile* de matrizes baseadas na meta-heurística *Iterated Local Search*.

A aplicação da meta-heurística *Iterated Local Search* nos problemas em questão culminou com o desenvolvimento de duas heurísticas: *ILS-Band*, com foco em redução de largura de banda e *ILS-Prof*, com foco em redução de *profile*. As heurísticas propostas foram comparadas à heurísticas que podem ser consideradas como as potenciais heurísticas de baixo custo computacional no estado da arte para reduções de largura de banda e de *profile*. Nos testes realizados com instâncias simétricas, a heurística proposta ILS-Band obteve o segundo melhor desempenho geral em redução de largura de banda de acordo com a métrica ρ . A heurística ILS-Prof foi a quinta melhor em redução de *profile* nesse conjunto de instâncias. Nos testes realizados com instâncias assimétricas, a heurística proposta ILS-Band obteve a terceira melhor posição em redução de largura de banda de acordo com a métrica ρ . Quanto à redução de *profile* nesse conjunto de instâncias, a heurística ILS-Prof foi também a quinta melhor.

As heurísticas ILS-Band e ILS-Prof propostas apresentaram tempos de execução menores dos que os obtidos pelos outros métodos heurísticos testados que incluem alguma forma de busca local, como FNC-HC e VNS-Band. Contudo, esses tempos foram ainda muito superiores aos de outros métodos heurísticos testados. Esse resultado fez com que as heurísticas propostas ILS-Band e ILS-Prof não fossem consideradas promissoras para a tarefa de redução do custo computacional do método GMRES pré-condicionado.

Foram conduzidos experimentos com heurísticas de baixo custo selecionadas para se avaliar os efeitos das reordenações produzidas por elas na convergência do método GMRES utilizando pré-condicionadores baseados em fatoração incompleta (ILUT, ILU(k), ILUC, VBI-LUT e VBILU(k)) e em *multigrid* (ARMS). Os experimentos com o método GMRES précondicionado foram realizados em 20 instâncias assimétricas de grande porte oriundas de cinco áreas de aplicação. Matrizes desse tipo podem sofrer com altos números de condição e podem possuir características que tirem a estabilidade dos pré-condicionadores aplicados. Ainda assim, apenas 4 das instâncias não apresentaram convergência com nenhuma combinação de heurística de ordenação e método pré-condicionador.

Nos testes conduzidos, verificou-se que a escolha da melhor combinação de heurística de numeração de vértices e pré-condicionador é altamente dependente da área de aplicação, e mesmo das características das instâncias dentro de uma mesma área. Essa observação corrobora os resultados obtidos por Chow e Saad (1997), Benzi, Szyld e Duin (1999). Não obstante, umas das contribuições deste trabalho foi indicar potenciais combinações de pré-condicionadores e heurísticas de ordenação que, no geral, promovem reduções do custo do método GMRES em áreas específicas.

Ainda, os experimentos conduzidos neste trabalho mostraram que o tempo de execução do método GMRES pré-condicionado em conjunto com as ordenações produzidas pelas heurísticas selecionadas foi pior, no geral, do que com a ordenação original da matriz, nas instâncias selecionadas. Nas áreas em que houve diminuição no tempo de execução do método GMRES, as heurísticas que levaram a melhores resultados foram, no geral, as mais simples. Em especial, ordenações produzidas por variações da busca em largura (BFS) produziram bons resultados nas instâncias testadas. Estes últimos resultados estão em consonância com os observados no trabalho de Oliveira, Bernardes e Chagas (2017), em que foi empregado o método dos gradientes conjugados pré-condicionado pela fatoração incompleta de Cholesky.

Apesar das heurísticas propostas terem apresentado os menores tempos, em geral, entre métodos meta-heurísticos testados, espera-se, em trabalhos futuros, melhorar ainda mais o desempenho das heurísticas ILS-Band e ILS-Prof quanto ao tempo de execução. Técnicas que adicionem alguma forma de memória à heurística, como a da busca tabu, podem contribuir para que as heurísticas não fiquem presas a ótimos locais potenciais e produzam respostas melhores e mais rápidas.

Experimentos futuros envolvendo o método GMRES podem se beneficiar de implementações paralelas desse resolutor. Tais implementações podem ser focadas apenas em GPUs, em multi-CPUs ou em esquemas híbridos GPU-CPU. Experimentos que apontem qual a melhor plataforma para implementações paralelas do método GMRES pré-condicionado devem ser realizados. Nos casos de implementações em GPUs, os melhores *kernels* para operações de produtos vetoriais envolvendo matrizes esparsas (SpMV) devem ser identificados. Versões paralelas de pré-condicionadores baseados em fatoração incompleta LU, bem como de heurísticas para redução de largura de banda ou de *profile* também devem ser considerados em trabalhos futuros.

Por fim, certas áreas de aplicação consideradas nos testes com o método GMRES précondicionado possuíam poucas instâncias que atendiam aos critérios definidos neste trabalho. Espera-se realizar testes futuros com o método GMRES pré-condicionado em um número maior de instâncias de diferentes áreas de aplicação.

REFERÊNCIAS

APPLEGATE, D.; COOK, W.; ROHE, A. Chained Lin-Kernighan for large traveling salesman problems. **INFORMS Journal on Computing**, INFORMS, v. 15, n. 1, p. 82–92, 2003.

ARNOLDI, W. E. The principle of minimized iterations in the solution of the matrix eigenvalue problem. **Quarterly of applied mathematics**, v. 9, n. 1, p. 17–29, 1951.

BENZI, M. Preconditioning techniques for large linear systems: A survey. Journal of Computational Physics, Elsevier, v. 182, n. 2, p. 418–477, 2002.

BENZI, M.; HAWS, J. C.; TUMA, M. Preconditioning highly indefinite and nonsymmetric matrices. **SIAM Journal on Scientific Computing**, SIAM, v. 22, n. 4, p. 1333–1353, 2000.

BENZI, M.; SZYLD, D. B.; DUIN, A. V. Orderings for incomplete factorization preconditioning of nonsymmetric problems. **SIAM Journal on Scientific Computing**, SIAM, v. 20, n. 5, p. 1652–1670, 1999.

BERNARDES, J. A. B.; OLIVEIRA, S. L. Gonzaga de. A systematic review of heuristics for profile reduction of symmetric matrices. **Procedia Computer Science**, Elsevier, v. 51, p. 221–230, 2015.

BESTEN, M. D.; STÜTZLE, T.; DORIGO, M. Design of iterated local search algorithms. In: SPRINGER. **Workshops on Applications of Evolutionary Computation**. Berlin, Heidelberg: Springer, 2001. p. 441–451.

BLUM, C.; ROLI, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. **ACM computing surveys (CSUR)**, ACM, v. 35, n. 3, p. 268–308, 2003.

BRIGGS, W. L.; MCCORMICK, S. F.; HENSON, V. E. A multigrid tutorial. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2000. v. 72.

BROZOLO, G. R. D.; ROBERT, Y. Parallel conjugate gradient-like algorithms for solving sparse nonsymmetric linear systems on a vector multiprocessor. **Parallel Computing**, Elsevier, v. 11, n. 2, p. 223–239, 1989.

BURGESS, D.; GILES, M. Renumbering unstructured grids to improve the performance of codes on hierarchical memory machines. Advances in Engineering Software, Elsevier, v. 28, n. 3, p. 189–201, 1997.

CAMATA, J.; ROSSA, A.; VALLI, A.; CATABRIGA, L.; CAREY, G.; COUTINHO, A. Reordering and incomplete preconditioning in serial and parallel adaptive mesh refinement and coarsening flow solutions. **International Journal for Numerical Methods in Fluids**, Wiley Online Library, v. 69, n. 4, p. 802–823, 2012.

CAMPOS, V.; PIÑANA, E.; MARTÍ, R. Adaptive memory programming for matrix bandwidth minimization. **Annals of Operations Research**, Springer, v. 183, n. 1, p. 7–23, 2011.

CATABRIGA, L.; CAMATA, J. J.; VALLI, A. M.; COUTINHO, A.; CAREY, G. F. Reordering effects on preconditioned Krylov methods in AMR solutions of flow and transport. In: **XVII Iberian Latin American Congress on Computational Methods in Engineering**. Belém, Pará, Brazil: Brazilian Assoc. for Comp. Mechanics & Latin American Assoc. of Comp. Methods in Engineering, 2006. v. 1, p. 1–14.

CHAGAS, G. O.; OLIVEIRA, S. L. Gonzaga de. Metaheuristic-based heuristics for symmetric-matrix bandwidth reduction: a systematic review. **Procedia Computer Science**, Elsevier, v. 51, p. 211–220, 2015.

CHOW, E.; SAAD, Y. Experimental study of ILU preconditioners for indefinite matrices. **Journal of Computational and Applied Mathematics**, Elsevier, v. 86, n. 2, p. 387–414, 1997.

CONGRAM, R. K.; POTTS, C. N.; VELDE, S. L. van de. An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. **INFORMS Journal on Computing**, INFORMS, v. 14, n. 1, p. 52–67, 2002.

CORSO, G. M. D.; MANZINI, G. Finding exact solutions to the bandwidth minimization problem. **Computing**, Springer, v. 62, n. 3, p. 189–203, 1999.

COUTURIER, R.; DOMAS, S. Sparse systems solving on GPUs with GMRES. **The journal of Supercomputing**, Springer, v. 59, n. 3, p. 1504–1516, 2012.

CUNHA, R. D. D.; HOPKINS, T. A parallel implementation of the restarted GMRES iterative algorithm for nonsymmetric systems of linear equations. Advances in Computational Mathematics, Springer, v. 2, n. 3, p. 261–277, 1994.

CUTHILL, E.; MCKEE, J. Reducing the bandwidth of sparse symmetric matrices. In: ACM. **Proceedings of the 1969 24th national conference**. New York, NY, USA, 1969. p. 157–172.

CZIBULA, G.; CRIŞAN, G.-C.; PINTEA, C.-M.; CZIBULA, I.-G. Soft computing approaches on the bandwidth problem. **Informatica**, Vilnius University Institute of Mathematics and Informatics, v. 24, n. 2, p. 169–180, 2013.

DAS, R.; MAVRIPLIS, D.; SALTZ, J.; GUPTA, S.; PONNYSAMY, R. Design and implementation of a parallel unstructured Euler solver using software primitives. **AIAA journal**, v. 32, n. 3, p. 489–496, 1994.

DAVIS, T. A.; HU, Y. The University of Florida sparse matrix collection. **ACM Transactions** on Mathematical Software (TOMS), ACM, v. 38, n. 1, p. 1, 2011.

DEVRIES, B.; IANNELLI, J.; TREFFTZ, C.; O'HEARN, K. A.; WOLFFE, G. Parallel implementations of FGMRES for solving large, sparse non-symmetric linear systems. **Procedia Computer Science**, Elsevier, v. 18, p. 491–500, 2013.

DUFF, I. S.; GRIMES, R. G.; LEWIS, J. G. Users' guide for the Harwell-Boeing sparse matrix collection (Release I). Citeseer, 1992.

DUFF, I. S.; KOSTER, J. On algorithms for permuting large entries to the diagonal of a sparse matrix. **SIAM Journal on Matrix Analysis and Applications**, SIAM, v. 22, n. 4, p. 973–996, 2001.

DUFF, I. S.; MEURANT, G. A. The effect of ordering on preconditioned conjugate gradients. **BIT Numerical Mathematics**, Springer, v. 29, n. 4, p. 635–657, 1989.

DUFF, I. S.; REID, J. K.; SCOTT, J. A. The use of profile reduction algorithms with a frontal code. **International Journal for Numerical Methods in Engineering**, Wiley Online Library, v. 28, n. 11, p. 2555–2568, 1989.

DUTTO, L. C. The effect of ordering on preconditioned GMRES algorithm, for solving the compressible navier-stokes equations. **International Journal for Numerical Methods in Engineering**, Wiley Online Library, v. 36, n. 3, p. 457–497, 1993.

D'AZEVEDO, E. F.; FORSYTH, P. A.; TANG, W.-P. Ordering methods for preconditioned conjugate gradient methods applied to unstructured grid problems. **SIAM Journal on Matrix Analysis and Applications**, SIAM, v. 13, n. 3, p. 944–961, 1992.

ERHEL, J. A parallel GMRES version for general sparse matrices. **Electronic Transactions on Numerical Analysis**, v. 3, n. 12, p. 160–176, 1995.

FELIPPA, C. A. Solution of linear equations with skyline-stored symmetric matrix. **Computers & Structures**, Elsevier, v. 5, n. 1, p. 13–29, 1975.

FERRONATO, M. Preconditioning for sparse linear systems at the dawn of the 21st century: History, current developments, and future perspectives. **ISRN Applied Mathematics**, Hindawi Publishing Corporation, v. 2012, 2012.

GEORGE, A.; LIU, J. W. An implementation of a pseudoperipheral node finder. **ACM Transactions on Mathematical Software (TOMS)**, ACM, v. 5, n. 3, p. 284–295, 1979.

GEORGE, J. A. Computer implementation of the finite element method. Stanford, CA, USA, 1971.

GHYSELS, P.; LI, X. S.; GORMAN, C.; ROUET, F.-H. A robust parallel preconditioner for indefinite systems using hierarchical matrices and randomized sampling. In: IEEE. **Parallel and Distributed Processing Symposium (IPDPS), 2017 IEEE International**. Orlando, FL, USA, 2017. p. 897–906.

GIBBS, N. E. Algorithm 509: A hybrid profile reduction algorithm. **ACM Transactions on Mathematical Software (TOMS)**, ACM, v. 2, n. 4, p. 378–387, 1976.

GIBBS, N. E.; POOLE JR, W. G.; STOCKMEYER, P. K. An algorithm for reducing the bandwidth and profile of a sparse matrix. **SIAM Journal on Numerical Analysis**, SIAM, v. 13, n. 2, p. 236–250, 1976.

GUIDETTI, K.; CATABRIGA, L.; BOERES, M. C.; RANGEL, M. C. A study of the influence of sparse matrices reordering algorithms on Krylov-type preconditioned iterative methods. In: **XXXI Iberian Latin American Congress on Computational Methods in Engineering**. Buenos Aires, Argentina: Asociación Argentina de Mecánica Computacional, 2010. XXIX, p. 2323–2343.

HASHIMOTO, H.; YAGIURA, M.; IBARAKI, T. An iterated local search algorithm for the time-dependent vehicle routing problem with time windows. **Discrete Optimization**, Elsevier, v. 5, n. 2, p. 434–456, 2008.

HE, K.; TAN, S. X.-D.; ZHAO, H.; LIU, X.-X.; WANG, H.; SHI, G. Parallel GMRES solver for fast analysis of large linear dynamic systems on GPU platforms. **INTEGRATION, the VLSI journal**, Elsevier, v. 52, p. 10–22, 2016.

HESTENES, M. R.; STIEFEL, E. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, v. 49, n. 6, p. 409–436, 1952.

HYSOM, D.; POTHEN, A. A scalable parallel algorithm for incomplete factor preconditioning. **SIAM Journal on Scientific Computing**, SIAM, v. 22, n. 6, p. 2194–2215, 2001.

IBARAKI, T.; IMAHORI, S.; NONOBE, K.; SOBUE, K.; UNO, T.; YAGIURA, M. An iterated local search algorithm for the vehicle routing problem with convex time penalty functions. **Discrete Applied Mathematics**, Elsevier, v. 156, n. 11, p. 2050–2069, 2008.

ISAZADEH, A.; IZADKHAH, H.; MOKARRAM, A. A learning based evolutionary approach for minimization of matrix bandwidth problem. **Applied Mathematics and Information Sciences**, v. 6, n. 1, p. 51–57, 2012.

KAPORIN, I. Scaling, preconditioning, and superlinear convergence in GMRES-type iterations. In: Matrix Methods: Theory, Algorithms and Applications: Dedicated to the Memory of Gene Golub. NJ, USA: World Scientific, 2010. p. 273–295.

KARYPIS, G.; KUMAR, V. Parallel threshold-based ILU factorization. In: IEEE. **Supercomputing, ACM/IEEE 1997 Conference**. New York, NY, USA, 1997. p. 28–28.

KAVEH, A.; SHARAFI, P. A simple ant algorithm for profile optimization of sparse matrices. Asian Journal of Civil Engineering (Building and Housing), v. 9, n. 1, p. 35–46, 2007.

KAVEH, A.; SHARAFI, P. Optimal priority functions for profile reduction using ant colony optimization. **Finite Elements in Analysis and Design**, Elsevier, v. 44, n. 3, p. 131–138, 2008.

KAVEH, A.; SHARAFI, P. Ordering for bandwidth and profile minimization problems via Charged System Search algorithm. **Iranian Journal of Science and Technology Transaction of Civil Engineering**, v. 36, n. C1, p. 39–52, 2012.

KHODJA, L. Z.; COUTURIER, R.; GIERSCH, A.; BAHI, J. M. Parallel sparse linear solver with GMRES method using minimization techniques of communications for GPU clusters. **The journal of Supercomputing**, Springer, v. 69, n. 1, p. 200–224, 2014.

KING, I. P. An automatic reordering scheme for simultaneous equations derived from network systems. **International Journal for Numerical Methods in Engineering**, Wiley Online Library, v. 2, n. 4, p. 523–533, 1970.

KOOHESTANI, B.; POLI, R. A genetic programming approach to the matrix bandwidthminimization problem. In: **Parallel Problem Solving from Nature, PPSN XI**. Berlin, Heidelberg: Springer, 2010. p. 482–491.

KOOHESTANI, B.; POLI, R. A hyper-heuristic approach to evolving algorithms for bandwidth reduction based on genetic programming. In: **Research and Development in Intelligent Systems XXVIII**. London: Springer, 2011. p. 93–106.

KOOHESTANI, B.; POLI, R. A genetic programming approach for evolving highlycompetitive general algorithms for envelope reduction in sparse matrices. In: **Parallel Problem Solving from Nature-PPSN XII**. Berlin, Heidelberg: Springer, 2012. v. 7492, p. 287–296.

KOOHESTANI, B.; POLI, R. On the application of genetic programming to the envelope reduction problem. In: IEEE. **4th Computer Science and Electronic Engineering Conference (CEEC)**. Colchester, UK, 2012. p. 53–58.

KOOHESTANI, B.; POLI, R. Evolving an improved algorithm for envelope reduction using a hyper-heuristic approach. **IEEE Transactionson Evolutionary Computation**, IEEE, v. 18, n. 4, p. 543–558, 2014.

KUMFERT, G.; POTHEN, A. Two improved algorithms for envelope and wavefront reduction. **BIT Numerical Mathematics**, Springer, v. 37, n. 3, p. 559–590, 1997.

LANCZOS, C. Solution of systems of linear equations by minimized iterations. **Journal of Research of the National Bureau of Standards**, Citeseer, v. 49, n. 1, p. 33–53, 1952.

LEWIS, R. R. Simulated annealing for profile and fill reduction of sparse matrices. **International journal for numerical methods in engineering**, Wiley Online Library, v. 37, n. 6, p. 905–925, 1994.

LI, N.; SAAD, Y.; CHOW, E. Crout versions of ILU for general sparse matrices. **SIAM Journal on Scientific Computing**, SIAM, v. 25, n. 2, p. 716–728, 2003.

LI, R.; SAAD, Y. GPU-accelerated preconditioned iterative linear solvers. **The Journal of Supercomputing**, Springer, v. 63, n. 2, p. 443–466, 2013.

LI, Z.; SAAD, Y.; SOSONKINA, M. pARMS: a parallel version of the algebraic recursive multilevel solver. **Numerical linear algebra with applications**, Wiley Online Library, v. 10, n. 5-6, p. 485–509, 2003.

LIM, A.; BRIAN, R.; XIAO, F. Integrated genetic algorithm with hill climbing for bandwidth minimization problem. In: SPRINGER. **Genetic and Evolutionary Computation Conference**. Berlin, 2003. p. 1594–1595.

LIM, A.; LIN, J.; RODRIGUES, B.; XIAO, F. Ant colony optimization with hill climbing for the bandwidth minimization problem. **Applied Soft Computing**, Elsevier, v. 6, n. 2, p. 180–188, 2006.

LIM, A.; LIN, J.; XIAO, F. Particle Swarm Optimization and Hill Climbing for the bandwidth minimization problem. **Applied Intelligence**, Springer, v. 26, n. 3, p. 175–182, 2007.

LIM, A.; RODRIGUES, B.; XIAO, F. A new node centroid algorithm for bandwidth minimization. In: MORGAN KAUFMANN PUBLISHERS INC. **Proceedings of the 18th international joint conference on Artificial intelligence**. Acapulco, Mexico, 2003. p. 1544–1545.

LIM, A.; RODRIGUES, B.; XIAO, F. A centroid-based approach to solve the bandwidth minimization problem. In: IEEE. System Sciences, 2004. Proceedings of the 37th Annual Hawaii International Conference on. Big Island, HI, 2004. p. 6–pp.

LIM, A.; RODRIGUES, B.; XIAO, F. Heuristics for matrix bandwidth reduction. **European** Journal of Operational Research, Elsevier, v. 174, n. 1, p. 69–91, 2006.

LIM, A.; RODRIGUES, B.; XIAO, F. A fast algorithm for bandwidth minimization. **International Journal on Artificial Intelligence Tools**, World Scientific, v. 16, n. 03, p. 537–544, 2007.

LIN, Y.; YUAN, J. Profile minimization problem for matrices and graphs. Acta Mathematicae Applicatae Sinica (English Series), Springer, v. 10, n. 1, p. 107–112, 1994.

LOURENÇO, H. R.; MARTIN, O. C.; STÜTZLE, T. Iterated local search. In: Handbook of metaheuristics. Boston, MA: Springer, 2003. p. 320–353.

LOURENÇO, H. R.; MARTIN, O. C.; STÜTZLE, T. Iterated local search: Framework and applications. In: **Handbook of metaheuristics**. Boston, MA: Springer, 2010. p. 363–397.

LUGON, B.; CATABRIGA, L. Algoritmos de reordenamento de matrizes esparsas aplicados a precondicionadores ILU(p). **XLV Simpósio Brasileiro de Pesquisa Operacional**, p. 2343–2354, 2013.

LUGON, B.; CATABRIGA, L. Algoritmos de reordenamento de matrizes esparsas aplicados a precondicionadores ILU(p). **XLV Simpósio Brasileiro de Pesquisa Operacional**, p. 2343–2354, 2013.

MAMAGHANI, A. S.; MEYBODI, M. R. A learning automaton based approach to solve the graph bandwidth minimization problem. In: IEEE. **Application of Information and Communication Technologies (AICT), 2011 5th International Conference on**. Baku, Azerbaijan, 2011. p. 1–5.

MARTÍ, R.; CAMPOS, V.; PIÑANA, E. A branch and bound algorithm for the matrix bandwidth minimization. **European Journal of Operational Research**, Elsevier, v. 186, n. 2, p. 513–528, 2008.

MARTÍ, R.; LAGUNA, M.; GLOVER, F.; CAMPOS, V. Reducing the bandwidth of a sparse matrix with tabu search. **European Journal of Operational Research**, Elsevier, v. 135, n. 2, p. 450–459, 2001.

MARTIN, O. C.; OTTO, S. W. Partitioning of unstructured meshes for load balancing. **Concurrency and Computation: Practice and Experience**, Wiley Online Library, v. 7, n. 4, p. 303–314, 1995.

MEDEIROS, S.; PIMENTA, P.; GOLDENBERG, P. An algorithm for profile and wavefront reduction of sparse matrices with a symmetric structure. **Engineering computations**, MCB UP Ltd, v. 10, n. 3, p. 257–266, 1993.

MLADENOVIC, N.; UROSEVIC, D.; PÉREZ-BRITO, D.; GARCÍA-GONZÁLEZ, C. G. Variable neighbourhood search for bandwidth reduction. **European Journal of Operational Research**, Elsevier, v. 200, n. 1, p. 14–27, 2010.

OLIVEIRA, S. L. G. de; BERNARDES, J. A.; CHAGAS, G. O. An evaluation of low-cost heuristics for matrix bandwidth and profile reductions. **Computational and Applied Mathematics**, Springer, p. 1–60, 2016.

OLIVEIRA, S. L. G. de; BERNARDES, J. A. B.; CHAGAS, G. O. An evaluation of reordering algorithms to reduce the computational cost of the incomplete Cholesky-conjugate gradient method. **Computational and Applied Mathematics**, Springer, p. 1–40, 2017.

OLIVEIRA, S. L. Gonzaga de. Introdução à geração de malhas triangulares. São Carlos: SBMAC, 2015.

OLIVEIRA, S. L. Gonzaga de; CHAGAS, G. O. Introdução a heurísticas para redução de largura de banda de matrizes. São Carlos: SBMAC, 2014.

OSEI-KUFFUOR, D.; SAAD, Y. Preconditioning Helmholtz linear systems. **Applied** numerical mathematics, Elsevier, v. 60, n. 4, p. 420–431, 2010.

PAPADIMITRIOU, C. H. The NP-completeness of the bandwidth minimization problem. **Computing**, Springer, v. 16, n. 3, p. 263–270, 1976.

PAQUETE, L.; STÜTZLE, T. An experimental investigation of iterated local search for coloring graphs. In: **Applications of Evolutionary Computing**. Berlin, Heidelberg: Springer, 2002. p. 122–131.

PENNA, P. H. V.; SUBRAMANIAN, A.; OCHI, L. S. An iterated local search heuristic for the heterogeneous fleet vehicle routing problem. **Journal of Heuristics**, Springer, v. 19, n. 2, p. 201–232, 2013.

PESSANHA, J. E.; PORTUGAL, C.; SAAVEDRA, O. Investigação crítica do desempenho do GMRES pré-condicionado via fatoração incompleta LU em estudos de fluxo de carga. **Sba Controle & Automação**, SciELO Brasil, v. 20, n. 4, p. 564–572, 2009.

PIÑANA, E.; PLANA, I.; CAMPOS, V.; MARTÍ, R. GRASP and path relinking for the matrix bandwidth minimization. **European Journal of Operational Research**, Elsevier, v. 153, n. 1, p. 200–210, 2004.

PINTEA, C.-M.; CRIŞAN, G.-C.; CHIRA, C. A hybrid ACO approach to the matrix bandwidth minimization problem. In: ROMAY, M. G.; CORCHADO, E.; SEBASTIAN, M. T. G. (Ed.). **Hybrid Artificial Intelligence Systems**. Berlin, Heidelberg: Springer, 2010. v. 6076, p. 405–412.

PINTEA, C.-M.; CRIŞAN, G. C.; CHIRA, C. Hybrid ant models with a transition policy for solving a complex problem. **Logic Journal of IGPL**, Oxford Univ Press, v. 20, n. 3, p. 560–569, 2012.

POP, P.; MATEI, O.; COMES, C.-A. Reducing the bandwidth of a sparse matrix with a genetic algorithm. **Optimization**, Taylor & Francis, v. 63, n. 12, p. 1851–1876, 2014.

PYZARA, A.; BYLINA, B.; BYLINA, J. The influence of a matrix condition number on iterative methods' convergence. In: IEEE. **Computer Science and Information Systems** (FedCSIS), 2011 Federated Conference on. Szczecin, Poland, 2011. p. 459–464.

REID, J.; SCOTT, J. Ordering symmetric sparse matrices for small profile and wavefront. **International Journal for Numerical Methods in Engineering**, v. 45, n. 12, p. 1737–1755, 1999.

RODRIGUEZ-TELLO, E.; HAO, J.-K.; TORRES-JIMENEZ, J. An improved simulated annealing algorithm for bandwidth minimization. **European Journal of Operational Research**, Elsevier, v. 185, n. 3, p. 1319–1335, 2008.

RUGE, J. W.; STÜBEN, K. Algebraic multigrid. In: **Multigrid methods**. Boston, MA: SIAM, 1987. p. 73–130.

SAAD, Y. Ilut: A dual threshold incomplete LU factorization. **Numerical linear algebra with applications**, Wiley Online Library, v. 1, n. 4, p. 387–402, 1994.

SAAD, Y. Finding exact and approximate block structures for ILU preconditioning. **SIAM** Journal on Scientific Computing, SIAM, v. 24, n. 4, p. 1107–1123, 2002.

SAAD, Y. Iterative methods for sparse linear systems. 2nd. ed. Philadelphia, PA: SIAM, 2003. ISBN 0898715342.

SAAD, Y.; SCHULTZ, M. H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. **SIAM Journal on scientific and statistical computing**, SIAM, v. 7, n. 3, p. 856–869, 1986.

SAAD, Y.; SOULAIMANI, A.; TOUIHRI, R. Variations on algebraic recursive multilevel solvers (ARMS) for the solution of cfd problems. **Applied numerical mathematics**, Elsevier, v. 51, n. 2-3, p. 305–327, 2004.

SAAD, Y.; SUCHOMEL, B. ARMS: An algebraic recursive multilevel solver for general sparse linear systems. **Numerical linear algebra with applications**, Wiley Online Library, v. 9, n. 5, p. 359–378, 2002.

SAAD, Y. e. a. **ITSOL v.2.0: ITERATIVE SOLVERS package**. 2017. Disponível em: http://www-users.cs.umn.edu/~saad/software/ITSOL>.

SAKURABA, C. S.; RONCONI, D. P.; BIRGIN, E. G.; YAGIURA, M. Metaheuristics for large-scale instances of the linear ordering problem. **Expert Systems with Applications**, Elsevier, v. 42, n. 9, p. 4432–4442, 2015.

SÁNCHEZ-ORO, J.; LAGUNA, M.; DUARTE, A.; MARTÍ, R. Scatter search for the profile minimization problem. **Networks**, Wiley Online Library, v. 65, n. 1, p. 10–21, 2015.

SCHIAVINOTTO, T.; STÜTZLE, T. The linear ordering problem: Instances, search space analysis and algorithms. Journal of Mathematical Modelling and Algorithms, Springer, v. 3, n. 4, p. 367–402, 2004.

SLOAN, S. An algorithm for profile and wavefront reduction of sparse matrices. **International Journal for Numerical Methods in Engineering**, Wiley Online Library, v. 23, n. 2, p. 239–251, 1986.

SOULÄIMANI, A.; SALAH, N. B.; SAAD, Y. Enhanced GMRES acceleration techniques for some CFD problems. **International Journal of Computational Fluid Dynamics**, Taylor & Francis Group, v. 16, n. 1, p. 1–20, 2002.

STÜTZLE, T. Iterated local search for the quadratic assignment problem. **European Journal** of Operational Research, Elsevier, v. 174, n. 3, p. 1519–1539, 2006.

STÜTZLE, T.; HOOS, H. H. Analysing the run-time behaviour of iterated local search for the travelling salesman problem. In: **Essays and Surveys in Metaheuristics**. Boston, MA: Springer, 2002. p. 589–611.

TORRES-JIMENEZ, J.; IZQUIERDO-MARQUEZ, I.; GARCIA-ROBLEDO, A.; GONZALEZ-GOMEZ, A.; BERNAL, J.; KACKER, R. N. A dual representation simulated annealing algorithm for the bandwidth minimization problem on graphs. **Information Sciences**, Elsevier, v. 303, p. 33–49, 2015.
VALDEZ, G. C.; MEDINA, S. S. B. Iterated local search for the linear ordering problem. **International Journal of Combinatorial Optimization Problems and Informatics**, International Journal of Combinatorial Optimization Problems & Informatics, v. 3, n. 1, p. 12, 2012.

VANSTEENWEGEN, P.; SOUFFRIAU, W.; BERGHE, G. V.; OUDHEUSDEN, D. V. Iterated local search for the team orienteering problem with time windows. **Computers & Operations Research**, Elsevier, v. 36, n. 12, p. 3281–3290, 2009.

VILLANUEVA, J. D. T.; HUACUJA, H. J. F.; RANGEL, R. P.; VALADEZ, J. M. C.; SOBERANES, H. J. P.; BARBOSA, J. J. G. Iterated local search algorithm for the linear ordering problem with cumulative costs (LOPCC). In: **Soft Computing for Intelligent Control and Mobile Robotics**. Berlin, Heidelberg: Springer, 2010. v. 318, p. 395–404.

VORST, H. A. Van der. Bi-cgstab: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. **SIAM Journal on scientific and Statistical Computing**, SIAM, v. 13, n. 2, p. 631–644, 1992.

ZHANG, J. A sparse approximate inverse preconditioner for parallel preconditioning of general sparse matrices. **Applied Mathematics and Computation**, Elsevier, v. 130, n. 1, p. 63–85, 2002.

APÊNDICE A – Resultados das simulações para redução de largura de banda e de profile

Nesse apêndice, apresentam-se os resultados das simulações para redução de largura de banda e de *profile* com as heurísticas ILS-Band e ILS-Prof propostas e outras dez heurísticas da literatura consideradas no estado da arte para a resolução desses problemas. As simulações estão divididas entre as executadas sobre 124 instâncias simétricas e as executadas sobre 48 instâncias assimétricas da *SuiteSparse Matrix Collection*.

Instância	n	Original	RBFS-GL	KP-band-GL	RCM-GL	GPS	MPG	NSloan	Sloan	Sloan-MGPS	ILS-Prof	ILS-Band	VNS-Band (60s)	FNC-HC
utm5940	5940	497	4761	3869	3659	381	1763	2076	1662	1626	3613	497	1552	278
G67	10000	9900	200	199	199	199	350	343	321	341	200	200	2497	199
crack	10240	10195	191	184	186	177	641	2057	524	524	191	188	582	172
sit100	10262	7381	398	399	395	396	1159	3806	1464	1266	396	398	2615	414
shuttle_eddy	10429	9597	196	210	196	176	814	770	830	824	201	169	586	166
vsp_p0291	10498	10386	6642	6920	6022	6722	10318	10069	9682	10079	6748	6377	3655	3092
bundle1	10581	10461	6631	6278	6029	3340	8207	7970	7931	8014	5509	3018	4166	2532
wing_nodal	10937	10884	1442	1258	1060	1060	5417	6219	3696	6057	879	801	2681	893
CurlCurl_0	11083	1748	708	849	643	548	3965	4308	3727	4901	532	671	3305	400
fe_4elt2	11143	10838	204	205	200	181	4388	2959	862	758	199	217	3597	164
linverse	11999	4	6	7	4	4	4	7	6	7	4	4	4	8
ncvxqp1	12111	11107	2798	2776	2767	2743	10295	10437	9586	10162	3320	2679	3674	2145
vibrobox	12328	12162	4840	4822	4640	4594	11717	11093	11157	11384	3762	2834	3643	2643
stokes64	12546	8450	370	389	384	346	824	1547	593	593	519	392	1156	319
tuma2	12992	9018	333	338	328	332	1573	4634	1582	1511	546	323	385	294
cbuckle	13681	13577	778	953	943	1001	2951	3113	3308	3100	13577	757	2648	754
cyl6	13681	13577	719	713	713	713	2631	2576	2610	2574	13577	719	2487	719
crystm02	13965	459	275	266	272	158	490	606	573	573	242	277	3955	261
bcsstk29	13992	1157	892	990	905	989	3543	3714	6041	7199	881	766	5470	694
Pres_Poisson	14822	12583	362	335	379	334	495	312	570	601	300	295	2941	292
opt1	15449	1632	1568	1509	1539	1348	5825	6543	6052	7734	1632	1479	4609	1263
hangGlider_4	15561	13832	13829	14214	13829	13806	15552	15547	15547	15559	14813	12734	7114	6915
Dubcova1	16129	16052	511	502	500	534	790	1831	909	909	512	512	3472	416
olafu	16146	593	564	556	569	533	8650	5581	4914	5915	663	565	689	531
net50	16320	16246	6558	6728	7071	5032	14238	14359	14273	14359	11544	5417	5124	3603
fe_sphere	16386	439	247	257	256	258	6362	3618	568	402	256	256	3991	237
pds10	16558	15451	3767	3223	3916	3902	16409	14641	14671	14647	15451	2492	5341	2323
ex3sta1	16782	12921	4541	4876	5078	4129	16400	16422	16415	16599	5136	3891	4751	3475
ramage02	16830	3388	2938	3114	3046	2513	3265	3822	3362	3181	2943	2289	4942	2308
cti	16840	12942	614	662	592	613	4900	9440	2188	2511	601	613	4487	589
gyro	17361	5144	1776	1739	1739	1703	10595	12534	10156	12872	1603	1187	1307	940
lowThrust_7	17378	15449	14374	10439	11130	11129	17193	17323	17323	17323	11551	8096	5667	5455
L-9	17983	2378	228	245	219	276	4334	5182	378	738	211	277	487	192
nd6k	18000	16766	4776	4091	4320	4037	11818	10920	10900	10727	4150	4181	5904	4078
crplat2	18010	17757	521	595	476	437	7388	7465	7871	6886	519	495	3302	444
tandem_vtx	18454	18411	1673	1671	1665	1912	5899	4320	4524	4427	1205	1084	5843	1391
ford1	18728	18704	296	323	309	293	2672	9722	2277	2403	282	264	3458	265
fxm4_6	18892	18815	9501	9008	8925	8925	18524	17049	17637	17163	18814	4141	5945	5536
whitaker3_dual	19190	19178	103	101	105	73	403	2363	305	304	201	103	5188	94
pattern1	19242	19231	14011	14062	11106	8564	18358	16487	16591	16430	15617	8603	9609	8490
bodyy6	19366	18605	333	329	348	295	4436	4822	1437	1128	350	266	2360	259
raefsky4	19779	11786	1157	1023	1038	1052	6891	7447	6538	7356	1159	980	2146	983
Si5H12	19896	7105	4021	4020	4154	3836	9269	10872	11016	10085	4051	4096	4731	4069
LF10000	19998	3	3	3	3	3	3	3	3	3	3	3	3	5
qpband	20000	15000	2	2	2	2	2	2	2	2	2	2	4003	2
Trefethen_20000	20000	16384	7351	7453	7285	7545	19308	18070	19104	17871	7366	7366	8054	7142
tsyl201	20685	20384	1149	1124	1012	1001	2357	2562	2562	2365	827	827	3255	910
tube1	21498	2759	2707	2742	2743	1144	14545	14109	14336	13901	2679	1959	1199	1141
												Continua na	próxima página	

Tabela A1 – Resultados de redução de largura de banda das heurísticas testadas em 124 instâncias simétricas da SuiteSparse Matrix Collection

Instância	n	Original	RBFS-GL	KP-band-GL	RCM-GL	GPS	MPG	NSloan	Sloan	Sloan-MGPS	ILS-Prof	ILS-Band	VNS-Band (60s)	FNC-HC
biplane-9	21701	4165	439	517	443	422	4640	8309	2353	2248	3065	430	526	375
trdheim	22098	533	783	732	804	719	3930	4102	4084	4068	869	533	842	638
pli	22695	1357	1977	1861	1961	1725	11553	11104	10204	14565	1357	1357	1862	1730
tuma1	22967	16032	477	508	489	474	2338	16580	2227	2210	868	493	3928	444
msc23052	23052	23046	1310	1314	1394	1462	17500	15659	15527	18025	1466	1416	4016	1095
ca-CondMat	23133	23019	9440	9301	9496	10431	21211	20247	20473	20111	9457	9704	10627	5301
stufe-10	24010	7466	700	673	948	516	10112	10430	1695	3847	7185	617	5854	607
de2010	24115	23905	657	582	583	797	11326	3573	2342	2342	917	641	2298	473
rajat09	24482	24473	522	523	525	526	1006	1025	979	975	522	527	6745	272
crystk03	24402	572	1033	1015	1034	520	1061	1062	1062	1062	701	572	3312	006
pervetk03	24090	572	1033	1015	1034	557	1060	1062	1062	1062	791	572	3312	014
dtoc	24090	10004	1055	1020	1020	337	1000	1002	1002	1002	191	372	6	914
h:2010	24995	19994	4	4	4	4	4	2002	4	4	4	4	1220	0
m2010	25016	8836	1081	1029	1093	925	//95	3092	3440	2419	1/60	1191	1329	679
12010	25181	22696	936	992	/90	692	9213	4024	2648	2843	21/2	/56	0205	581
bcsstk3/	25503	19193	1534	1493	1427	1456	20352	16920	16453	19569	19193	1403	2308	1378
smt	25710	19228	2649	2501	2530	2227	14654	15441	16176	15255	2512	2491	5295	1977
brainpc2	27607	20707	20690	20690	20689	13799	27589	26752	26025	25783	23024	19168	10042	20689
bratu3d	27792	26687	944	962	943	988	2287	2282	1626	1598	941	952	6448	955
bloweya	30004	20004	19993	19994	19994	19989	29992	29993	29993	29993	12729	9618	9636	10878
rajat10	30202	30193	584	582	581	586	1132	1230	1054	1122	588	583	10018	318
big_dual	30269	29706	360	369	369	359	3170	6693	1573	2004	29706	373	6222	336
wathen100	30401	304	533	566	551	492	1579	3658	1519	1290	490	304	732	502
helm3d01	32226	32070	2619	2675	2607	2855	7338	6957	7528	7082	2558	2155	7578	2279
lpl1	32460	29706	14643	13495	14226	16414	30877	29439	29490	29469	11504	7538	10336	9673
vt2010	32580	31554	786	763	717	668	14045	3932	3020	3834	9431	742	2129	616
delaunay n15	32768	32506	899	910	873	737	5291	4341	3172	3460	2838	2802	6698	793
se	32768	16383	4525	4525	4525	4525	15513	21236	11343	11343	974	904	8560	4012
SiO	33401	10976	6575	6467	6456	6044	13834	13127	13112	14945	4921	6116	7811	6596
ship 001	3/920	32003	1055	1095	1090	1073	2732	2161	2285	2160	1055	1055	2867	987
aug3dcap	35543	20215	004	004	004	085	2610	2383	2205	2335	2072	836	7812	714
ndb1HVS	26417	24064	2120	2026	2700	2480	19092	16820	17072	17275	2072	2810	0007	2222
shock 0	26476	2529	240	2930	2109	2409	10005	6500	17075	1/2/3	2304	2010	1740	2552
SHOCK-9	26510	2336	340	307	219	295	4400	0509	1204	1090	2330	337	1742	219
pwi	30319	35455	300	300	30/	340	2848	8385	2459	1098	392	330	2343	340
email-Enron	36692	34414	20865	21881	21857	18431	32315	33130	33280	33280	29547	22/18	1//68	9789
pkustk05	3/164	37013	1765	1/16	1705	1661	24325	28684	11403	18281	1487	1469	9391	1248
finance256	37376	37348	2023	2076	2053	2313	8277	5257	8889	8711	1889	1309	2025	1968
c-57	37833	37774	17864	17904	17033	18533	37677	36906	36813	37810	20725	13353	10471	9974
minsurfo	40806	202	204	203	203	202	399	358	302	302	204	202	7113	204
OPF_10000	43887	42825	2576	2557	2476	2440	17700	11841	10237	15734	2499	2007	1696	1470
vanbody	47072	3526	2212	2170	2211	2437	30647	25546	24262	26544	2269	2212	2699	1955
gridgena	48962	405	372	443	537	344	5874	10358	6777	7325	566	405	11826	336
stokes128	49666	33282	775	776	768	690	1497	5912	1106	1110	1096	771	1198	660
cvxbqp1	50000	33333	1670	1665	1685	1690	8380	29265	7830	8063	1578	1400	6859	1534
sparsine	50000	45454	25538	25689	27707	30730	39915	41667	40137	44307	26366	19232	17134	18281
copter2	55476	55279	2671	2698	2744	2705	14788	10280	11039	10990	2550	2294	5637	2047
dixmaanl	60000	40000	7	7	7	8	14	11514	11	12	12	8	19994	6
blockap1	60012	40012	40010	60005	60005	30008	60008	60008	60008	60008	56929	32648	29648	25007
Dubcova?	65025	64820	1024	1010	1012	1072	1725	3247	1751	1709	1023	1024	15848	834
aslik	66127	1049	2025	1072	1012	1421	12421	22046	6070	6006	1223	1024	6056	1000
quoix gas sensor	66017	2001	2033	19/2	1991	1421	13421	23940	5527	5265	1504	1040	8733	1000
gas_sensor	0091/	2901	19/9	1934	1902	1842	4833	10225	3321	3203	1382	Continua na	oros próxima página	1740

Instância	n	Original	RBFS-GL	KP-band-GL	RCM-GL	GPS	MPG	NSloan	Sloan	Sloan-MGPS	ILS-Prof	ILS-Band	VNS-Band (60s)	FNC-HC
H2O	67024	14976	7436	7096	7252	7511	28406	15636	15976	14771	9232	6883	16037	7309
cfd1	70656	6229	3359	3379	3465	3035	19685	24569	20956	19141	2467	2779	11839	2799
finan512	74752	74724	1323	1290	1331	1331	3879	3922	4109	3993	1446	1283	1279	1233
rail_79841	79841	79811	552	501	550	454	8704	27447	8430	3691	552	552	14672	421
cont-201	80595	69996	404	405	403	403	602	27390	599	664	578	403	15917	404
apache1	80800	808	792	794	792	792	1278	1485	1240	1261	792	791	16647	809
shallow_water1	81920	40959	345	345	335	322	908	2044	783	886	322	353	23242	328
shallow_water2	81920	40959	347	334	324	322	839	6752	841	759	322	322	23242	335
thermal1	82654	80916	218	231	231	215	1268	1314	648	713	464	210	4773	230
consph	83334	44024	6087	5400	5956	4144	12315	13667	13024	14688	24224	5441	16859	4533
c-72	84064	84063	33969	33990	33964	54091	83164	83335	83335	83335	41011	21125	23703	28399
ncvxqp7	87500	79996	18360	17841	18302	17767	79663	77023	73556	74583	16183	12248	27101	15059
olesnik0	88263	64453	1255	1241	1274	1583	4257	29659	4375	4287	1223	1205	17261	1131
denormal	89400	596	598	601	597	597	893	1173	930	927	600	596	28966	614
s3dkq4m2	90449	614	1217	1207	1206	614	4553	7193	4563	4697	608	608	8113	1002
s4dkt3m2	90449	614	609	608	608	608	1138	1781	1109	1123	843	614	5852	677
boyd1	93279	93269	89512	89508	89508	46637	93276	93276	93276	93276	93275	82026	46640	46636
tandem_dual	94069	70502	2562	2638	2386	2280	13583	16779	8372	8084	1889	2283	26476	2227
pkustk13	94893	90800	5035	4968	5122	5207	27889	33149	28852	29951	5368	5002	25067	4463
Si34H36	97569	18908	15834	15715	15826	17017	39080	41309	40843	41350	10867	12329	30703	16063
2cubes_sphere	101492	100407	4751	4732	4772	6855	11160	13807	11645	11023	5313	4543	32116	4509
thermomech_TC	102158	102138	261	275	271	270	2801	2881	897	898	294	277	7121	282
thermomech_TK	102158	102138	261	269	258	270	2765	2891	898	900	310	264	7121	266
filter3D	106437	8276	3675	3369	3586	3690	8873	9792	9744	9062	3564	2475	5448	2482
598a	110971	110811	7750	8160	8292	9142	29494	23215	21975	23236	4629	4336	28479	7195
Ge87H76	112985	21340	18398	18417	18397	17988	69682	72334	70915	68311	12673	14887	35118	18529
Núm. melhores $\Sigma \rho_{\beta}$			4 68.9797	6 65.8537	10 63.4706	21 39.4073	4 725.6986	2 2960.7800	3 474.2705	3 495.9671	16 257.2746	34 25.8714	4 6308.8192	66 17.3802

Instância	n	Original	RBFS-GL	KP-band-GL	RCM-GL	GPS	MPG	NSloan	Sloan	Sloan-MGPS	ILS-Prof	ILS-Band	VNS-Band (60s)	FNC-HC
utm5940	5940	1827101	2777355	2524863	2420531	2257927	1337963	1961690	1848141	1859518	2295900	3618808	8042772	2191696
G67	10000	1970197	1340182	1340113	1339539	1342507	1337963	1340859	1340682	1340901	1340629	1340217	3636308	1340155
crack	10240	43760373	955652	1254362	939730	968807	743316	751327	763669	763669	955652	950752	1870122	1288747
sit100	10262	18393811	2165854	2863739	2287710	2299615	1546879	1426845	1768363	1653998	2136300	2456495	11701230	2899577
shuttle_eddy	10429	11656811	709140	821739	709132	708216	571277	590143	615362	602377	709368	689615	1535150	818476
vsp p0291	10498	23156785	20902534	40454285	19436006	39442296	9705108	8936198	8896922	8924193	15089756	20048375	22450862	19742849
bundle1	10581	54480684	6674071	26075552	3378140	9345694	1458364	1463849	1505171	1435063	2099836	9109017	18976399	13465346
wing nodal	10937	38007800	8270663	8733842	6641127	7708187	4554919	4408160	5750870	4417277	5035546	5129318	17841331	7498325
CurlCurl 0	11083	8739886	3725931	4857019	3439146	3014835	2352119	2353965	2462524	3115227	2843015	3748322	12622069	3279450
fe 4elt2	11143	24510012	1250914	1338920	1241109	1195667	1029087	1091763	1066667	1022376	1117705	1272008	4723646	1321826
linverse	11999	41989	49184	65973	41989	41989	41989	41989	41989	41989	41989	41989	41989	76320
ncvxap1	12111	54092365	18241757	22650932	18084291	22599196	8766615	10220168	9318470	9743717	15976557	16678656	24135426	19205017
vibrobox	12328	45720334	31441783	39589512	30710064	37205034	7953845	8543384	9045913	9212234	18266679	16799800	30128113	23651379
stokes64	12546	35031296	3046793	3230996	3164508	2750556	1901430	2391023	1950875	1952400	2939682	3228200	6833264	2848067
tuma2	12992	36191690	2364400	2404371	2303930	2291139	1735925	1275504	1829202	1825779	2249977	2306500	2964050	2513199
chuckle	13681	3203982	6075770	6340530	6147635	6126820	6855167	6978967	6976049	6894964	3203979	6123019	22204321	6200229
cvl6	13681	3205584	6143551	6150898	6107868	6095232	7967456	7671941	7673688	7673748	3205584	6174423	18410920	6209610
crystm02	13965	6134814	2152188	2245014	2139233	1924542	1950245	1889094	1929387	1929387	1949770	2152219	2739660	2300782
besstk29	13992	7441166	6998455	8946474	7129315	7699086	3888555	3249121	4785106	5586636	5955595	5162327	23513985	7649063
Pres Poisson	14822	9789525	3081623	3078179	3114030	2916499	2832494	2858324	2831709	2831252	2889410	2965473	32119189	3112863
opt1	15449	8263744	9039003	13210502	9064654	10317995	6935343	7067090	6893576	7300450	8263744	8734313	38890526	12116673
hangGlider 4	15561	101628355	74735493	118432051	74151361	98263263	6649811	1769837	1769837	1767333	6566244	41606654	61870725	60315661
Dubcova1	16129	120327369	2730009	5374546	2722691	3486708	2599412	2303298	2640901	2640901	2726367	2728189	14948511	4917621
olafu	16146	/051080	5055509	5184744	/007660	5068842	4683716	4521433	4229465	4667417	4836307	5025848	6692905	5//83/0
net50	16320	104280210	37922795	56551957	47948321	37897524	26648414	28079908	27835774	28015365	40218330	34804872	48003402	36719920
fe sphere	16386	2883775	2940545	2916820	2910971	2810512	3157683	2956851	2809411	3041623	2808260	2808260	11535547	3121316
nds10	16558	18035808	310008/0	3500/525	31732482	31521682	120085/11	12733380	13284665	13282254	18035806	22424672	46804896	27050223
ex3sta1	16782	105040221	34783052	550/9283	A4737081	44660460	67505878	68352183	69242050	68008256	3/208//7	33713621	52892755	38734237
ramage02	16830	24460081	23066577	35188485	25303830	25327737	2161/387	21610813	2160/105	21730060	23850754	2/37610/	54623349	20304507
cti	16840	15472870	6847560	7251031	7127826	7233765	6180171	6081988	69/1/15/	6633/08	6762818	7218527	29967706	7/679/6
gyro	17361	1/326001	6650738	13070511	6465443	6623306	6052982	7606740	4992024	6985374	65/3803	6227013	12675891	10220288
lowThrust 7	17378	88555135	80285553	110000006	72707788	72688620	1311456	455611	455611	455611	38211337	43042052	60123813	52371375
I _Q	17083	2668337	2050777	3178073	2801555	3460588	2208000	1703/16	2/18027	2484588	2105135	3574046	3301273	2627210
nd6k	18000	110066/180	53008686	5/258235	51017267	53710783	46317130	16745846	46730769	45686618	40518704	51878908	78716939	57749634
crolat?	18010	22125142	6063836	6471714	5811374	5873877	63/02/5	5761000	5647276	61/0062	5402210	5674853	35234938	6231120
tandem vtv	18454	81008/20	15200805	10027027	15461056	14416158	5240441	6376337	6360822	6144489	8008001	800/615	48357187	10138307
ford1	10404	25107722	2088724	2542874	2141065	2024110	2186467	0370337	2414500	2202700	2404475	2662814	7723300	2417100
fym/ 6	18802	10272265	73005152	11/011881	72/08803	72/08726	16/11/53	2/0/401	2414399	2393700	10272015	2002014	62085450	64773828
whitaker3 dual	10100	7155543	1330046	13/8612	1320060	12498720	1201081	1200/136	1304860	1200230	1333444	1340204	5500747	1325163
nottern1	19190	142692527	07250172	1340012	107201071	00077712	1291901	1200430	116720228	1299239	00020708	102226122	112275710	102221414
bodyy6	19242	142062327	4120207	4110804	10/2019/1	4008541	2150424	2062640	2656926	2052276	2206620	2661002	8083610	281/222
roofsky	19300	14954504	4139397	4110094	4242099	4006541	0105202	9112474	9490294	9933370 9094405	10700200	11202017	27100030	12001127
C;5U12	19//9	19011100	57202159	57612969	12401912	56105760	010JJ0J 53406707	51099006	0409304 54150205	54455066	10/09300	55258520	68058420	60044440
JJ112 L E10000	19890	90237212 40000	3/393138 40000	37012808 40000	37003137 40000	J0185708	55400707	J4088990 40000	34130393 40000	34433000 40000	30/33/13 40000	33238320 40000	10000	50481
append	20000	49990	49990	4777U 20000	47770	499990 20000	47770	47770	49990	47770	47770	47770	16004	JU481 10000
Trafathan 20000	20000	148722020	100221174	20000	100048002	20000	20000	13000	13000	13000	13000	100724649	1150004	19999
tov1201	20000	148/23029	100531174	101901890	100048992	101499853	994/92/3	98803966	98383132	9000/000 10256429	99008072	100/34048	25405766	98/39812
tsy1201 tubal	20085	34434233	11498/23	13842/9/	1113/89/	11/190/4	102/0513	10343033	10343033	10330438	10323/40	10525740	12020071	- 130/2202
tubel	21498	21/813/0	21342990	22004640	21//1810	10940287	10300887	23139697	23039303	23017087 Continua na pro	1880/82/ óxima página	18851302	160299/1	- 18935/11

Tabela A2 – Resultados de redução de profile das heurísticas testadas em 124 instâncias simétricas da SuiteSparse Matrix Collection

Continua na próxima página

Instância	n	Original	RBFS-GL	KP-band-GL	RCM-GL	GPS	MPG	NSloan	Sloan	Sloan-MGPS	ILS-Prof	ILS-Band	VNS-Band (60s)	FNC-HC
biplane-9	21701	3872319	4783609	5476632	4759152	4983313	2919945	1999469	3543844	3846360	3807876	4760046	6079471	4865598
trdheim	22098	5584881	3976955	7735967	4016541	3897309	2945649	2942978	2941833	2938977	4160685	5584881	4400997	8341053
pli	22695	19878760	23908272	24324036	23885641	23484231	41931736	44974025	45175787	52774094	19878758	19878760	25447453	23493999
tuma1	22967	112240761	6159577	6370514	6180524	6159578	4768040	7602840	5294783	5368698	6094555	6184758	13605200	6657837
msc23052	23052	183660755	16003552	19858732	17238679	17122364	9407920	10514056	9978563	11860876	16315402	16024261	48606620	19784417
ca-CondMat	23133	179600115	48373060	127854302	48822904	88285070	25497315	28855022	28882880	28718047	49107211	49906370	87126140	72516034
stufe-10	24010	2637362	10526959	1085/350	1/652080	8758/32	58055/0	2730075	7721803	7046416	2631860	10271750	33237516	10322080
de2010	24010	69667991	1522656	7567018	4227024	6060462	2258220	2122521	2085601	2085601	2401026	10271750	8063151	7826052
raiat00	24113	7701481	4525050	6405011	2611615	6410271	2556250	2602910	2003091	2720205	2607507	2685440	0702327	6360052
rajat09	24462	12640201	142(2179	14752215	14299976	12001220	12000116	12002279	12001100	12007205	12(10/72	12640201	2702327	15002074
crystk05	24696	13049391	14302178	14/52515	14388870	12891339	12809110	12903278	12891198	12907305	130194/3	13049391	27039801	15002974
perystkus	24696	13649391	14362178	1480/654	14244620	12891339	12//60/2	12909318	12919266	1288/1/2	13619746	13649391	27039801	14670351
dtoc	24993	13/432506	54976	74968	56976	54976	59974	54976	54976	54976	5/4//	59979	118548	124/14
h12010	25016	57803984	6398259	11568615	6550539	5527330	1293294	1240080	1300/80	1141727	3423870	6786704	8010800	10052823
ri2010	25181	73734773	6786547	13109805	6419840	7203852	2553410	3056657	2316444	2514432	5350533	6379264	30301346	10430454
bcsstk37	25503	11302540	17900032	20422180	17144927	17488662	9722386	10120387	9854744	10510696	11302540	15234185	30346232	20534855
smt	25710	82049527	29915676	43230688	28910885	31445665	27966295	29147803	29627283	29394795	29871004	27823678	76828072	40256624
brainpc2	27607	238146600	190369939	333113441	190388419	285577234	31264433	82082330	117793830	157129995	94363671	188068371	155704223	333074338
bratu3d	27792	176677007	16100457	17973854	16015093	16162765	15987303	15916711	15957140	15973227	16059096	16222501	57342370	18053720
bloweya	30004	150115006	149997194	349874305	150035948	349655162	129992	108107	107424	106667	71408299	75306057	166351454	145169324
rajat10	30202	10371751	4987880	8700887	5121106	8824360	5058820	5049477	4960638	5151033	5194599	4968287	15624076	8703976
big dual	30269	3636049	6333958	6581617	6353296	6253788	4738598	2702502	5292962	4983758	3636048	6527011	13287621	6997386
wathen 100	30401	7645600	7024341	10940848	7192353	8548323	6780110	6106997	6963250	6702309	7286537	7645600	8673715	10743429
helm3d01	32226	488963313	34160090	54339700	34225395	42562876	24521168	25481465	25698588	25785823	34289959	34111094	118117480	55022728
Inl1	32460	105223934	125809199	245179557	136695362	185090406	18439546	14411689	17117497	14992145	81026551	84702893	192707846	195793744
vt2010	32580	35500542	7272213	13570216	7202736	7858070	4057742	3531528	3478061	36/1/50	5965974	7221386	10337513	13681535
delaunay n15	22768	240149752	15156979	18100527	14812220	12852080	8082222	10205002	0122006	10270861	52467607	52424442	41367765	17262266
uciauliay_III5	22768	212504577	1010070	00602211	00222027	00602010	47020582	10293092	55481204	55481204	12084452	15017826	153101342	01155727
SiO	22401	191551040	90232937	152244925	90232937	128040025	47030363	46/03430	117404722	119150022	117155002	127174012	191209712	150002024
ship 001	24020	161551040	146524554	133244623	14/301031	156949055	110353517	11/29493/	11/494/33	110139032	11/155902	15/1/4015	20454496	136063934
snip_001	34920	258/53262	16645276	24886938	16621642	2081/54/	15442109	1548/140	155//63/	15493173	16645276	16645276	30434480	24865139
aug3dcqp	35543	162465715	15086610	17026900	150/888/	14828318	9018883	/8839/5	7882483	7892406	14882774	15110840	35251821	1/38/313
pdbIHYS	36417	85893224	54145909	60786479	50584140	56995785	31177486	32502588	32445562	324/31/8	41537082	45915064	216845390	60043305
shock-9	36476	6323171	7154536	7197412	7087634	6717138	5709448	3966198	6362797	6295715	6323171	7132852	12287903	7411063
pwt	36519	88246186	5545473	5829032	5589537	5640951	4905492	4815117	4886819	5080596	5268420	5497046	11190182	5868383
email-Enron	36692	456214647	100982343	426907301	101646059	234048649	24179120	39959018	40459899	40459891	74657359	109584186	207528740	185826463
pkustk05	37164	58406934	29965328	36878257	30075121	29886042	65469461	37940689	28140697	30776790	28463658	29504244	167392014	33095409
finance256	37376	241399968	33050067	48151913	33643397	39514304	6702596	6397794	6367595	6339123	17684817	14590040	52283288	48065478
c-57	37833	515506328	257539158	420827222	232102639	270515381	18518265	29199059	27614004	27845199	195786898	203417512	188688380	211402464
minsurfo	40806	8201805	5547297	5524057	5540296	5515105	5515105	5515256	5515105	5515105	5555344	6858455	8978203	6425937
OPF_10000	43887	354965540	27365060	50016317	26724331	31704268	2951267	2489700	2305710	2256773	15752205	13851926	24930457	42238137
vanbody	47072	47896815	51621819	65949604	50289775	53418981	33726915	37496583	36886525	36826959	36475199	51621819	63581173	66311968
gridgena	48962	15499962	11910912	12843539	12602940	10951258	10948496	12904999	11103051	11341348	11853147	12293843	67687201	12675930
stokes128	49666	548545024	25474108	25686651	25240252	21731222	15418196	24931898	15652574	15655001	24182424	25323813	25955418	22637782
cyxbap1	50000	819815962	43383098	52801368	43413273	53398841	36530379	26088467	34070451	33956062	37098633	37315872	47544537	51383072
sparsine	50000	1137001002	633468627	760335126	642203430	731917744	443528350	463569659	453138982	487569082	542249831	567374228	622270794	647366549
conter?	55476	1084047722	75100445	92125642	76164385	74416281	47130636	50520263	46801114	48713374	50120230	58258871	151710188	87904797
dixmaanl	60000	1200010000	370308	372123042	380231	380064	350063	348458	350050	350050	360300	38/065	266780033	350060
blookap1	60010	400210011	1200600040	1200414050	1000466050	050405020	710094	340430 260420020	120626025	539939 600 25 0014	100642044	J0490J 400127114	664260592	55152767
Dubcovs?	65025	1054007907	1200000049	1000414039	1080400038	030403039	717700	21910701	120020023	000230014	199043944	40013/114	2004200283	023433/0/
Dubcova2	65025	1954927827	2208/999	43480789	22075139	28621659	21509938	21819/91	2119/0/3	20843842	22090005	22091337	208080001	38352486
qaork	66127	04802523	7/288049	80536411	/03350/0	00852070	/3392688	/6250029	/2010410	/1/36088	04031108	04862523	13493/310	81148885
gas_sensor	66917	69391231	80882583	82830931	80345254	/38/1884	69820999	64266712	69930149	69597992	67003478	80706514	225817042	$\Xi^{78183097}$
										Continua na pr	oxima pagina			2

Instância	n	Original	RBFS-GL	KP-band-GL	RCM-GL	GPS	MPG	NSloan	Sloan	Sloan-MGPS	ILS-Prof	ILS-Band	VNS-Band (60s)	FNC-HC
H2O	67024	726502155	354821308	357395061	353951785	372197160	339604846	323307033	325540803	314033571	370110471	350870845	710661807	369991375
cfd1	70656	103460652	125811085	132732812	131735999	105832955	58618821	73716728	61703713	56708430	76303742	93949032	385734946	119735689
finan512	74752	961176736	56337680	81042583	57385952	83402704	11818422	11192912	11874206	11918518	21168294	52849855	84711343	83331859
rail 79841	79841	551148483	16742832	19083148	16738720	14720371	13976217	9306620	13828506	15029539	16742832	16742832	42504348	17498396
cont-201	80595	1634949108	21503884	21659078	21389843	21397724	21393582	21386988	21334863	21336249	21370588	21393684	559298398	23570820
apache1	80800	64705043	43398207	43486781	43573695	43551322	43314099	43381780	43347110	43346836	43580816	43577760	155874779	49146926
shallow_water1	81920	35117727	22867384	22887719	22369881	21920594	22419016	21897736	23687824	22685200	21902078	23095403	77658932	22176916
shallow_water2	81920	35117727	22879469	22406173	21977576	21920594	21857395	22241893	22597269	21885650	21918268	21918331	77658932	22425894
thermal 1	82654	175625317	12023625	12976354	12143186	12199245	10302343	10283016	10577399	10737259	11805699	11943346	20092531	12841911
consph	83334	245646007	297747273	293147332	293427167	241426337	191659193	189954349	192998906	214249681	236516801	286028826	669250510	252816707
c-72	84064	2255525662	1143992285	1843783696	1133335836	1549828571	100920670	112412268	111268803	112412268	784329682	703616837	1083658227	1354043890
ncvxqp7	87500	2983313879	846714413	1064929086	847645802	1069372595	241450601	277141702	282172854	271782257	516245686	532122276	1335480147	950167150
olesnik0	88263	1235233247	37560237	64217339	37508882	47955579	25431328	25909625	25541709	25995854	35690261	36562841	280536455	64046204
denormal	89400	53016878	35798796	35833959	35727844	35727370	35729783	35728421	35758436	35762065	35776941	53016878	1148161534	39589218
s3dkq4m2	90449	54981444	67377576	67034249	66387617	54981444	56243536	53233151	56047345	56046942	42759294	42759387	192855810	61092456
s4dkt3m2	90449	54981444	42794753	42759294	42759294	42759294	42764966	42770013	42762890	42762777	54206152	54981444	110674149	44200140
boyd1	93279	1508966	1953655021	4013758116	920382333	1446006835	691870	8214189	8214189	8545217	971620	1370824317	1148140770	1308753335
tandem_dual	94069	487466755	129713225	142783578	128071557	119020989	80193344	65878258	92247784	90967464	76105831	103249749	276139384	158340461
pkustk13	94893	234310721	152841330	326903588	149854271	227776463	133169679	148014371	145700853	149082222	158526011	152973744	1151436298	315598816
Si34H36	97569	1121290978	1016296049	1078787168	1024850608	989135758	768882514	795209187	793775648	794242316	756362088	759877008	1857924813	1108421633
2cubes_sphere	101492	483241271	273087405	352369397	271086176	276620528	169299238	193039264	188689009	201280732	243544022	237771123	1486492983	325061948
thermomech_TC	102158	2667823445	17806392	18835939	17872907	18153270	15429699	15529114	15985756	16043867	17014959	17908476	32633880	19838401
thermomech_TK	102158	2667823445	17806392	18806540	17766378	18153270	15371737	15480751	16020622	16160089	17015033	17823406	32633880	19351294
filter3D	106437	260719523	92262938	191806705	94108423	133330442	85938851	95934490	95449701	94371728	91493938	112694002	222196706	203318106
598a	110971	3432278586	403268891	540921032	416146211	462726798	149675436	146513068	192660114	189109404	146220564	151162670	1420462485	533090046
Ge87H76	112985	1438496399	1349544985	1446829334	1345431237	1423650695	1202067278	1246564128	1242964682	1243953205	983866414	1008572614	2343232906	1474559091
Núm. melhores			3	2	4	6	48	33	18	22	17	6	2	0
$\Sigma \rho_{-}\beta$			6244.3311	12141.8189	4565.4111	6926.4435	23.4274	531.2092	205.0242	874.4056	1098.4834	3576.9875	5528.3829	4456.8798

Instância	n	RBFS-GL	KP-band-GL	RCM-GL	GPS	MPG	NSloan	Sloan	Sloan-MGPS	ILS-Prof	ILS-Band	VNS-Band (60s)	FNC-HC
utm5940	5940	0.0204	0.0246	0.0251	0.0499	0.0259	0.0208	0.0222	0.0216	0.7839	1.5019	60.1545	4.9966
G67	10000	0.0197	0.0215	0.0210	0.0359	0.0113	0.0080	0.0078	0.0079	0.6978	0.7745	60.1399	4.8525
crack	10240	0.0232	0.0265	0.0257	0.0391	0.0169	0.0140	0.0153	0.0148	0.8639	2.6714	60.1150	4.0353
sit100	10262	0.0215	0.0245	0.0240	0.0374	0.0296	0.0114	0.0118	0.0119	1.0094	3.2048	60.1198	5.5160
shuttle_eddy	10429	0.0240	0.0283	0.0281	0.1109	0.0196	0.0161	0.0137	0.0148	1.0666	3.5796	60.1173	5.3044
vsp_p0291	10498	0.0309	0.0378	0.0373	0.0834	0.0632	0.0318	0.0268	0.0308	1.9389	2.7782	60.1417	26.3748
bundle1	10581	0.2025	0.2779	0.2697	144.0595	1.6442	0.4078	0.3586	0.3311	5.8809	15.7771	60.5051	10.2382
wing_nodal	10937	0.0404	0.0516	0.0511	0.0940	0.0584	0.0444	0.0414	0.0408	2.6645	10.1698	60.1578	10.8779
CurlCurl_0	11083	0.0255	0.0320	0.0316	0.3851	0.0594	0.0232	0.0219	0.0203	1.4567	5.8753	60.1670	8.2456
fe_4elt2	11143	0.0237	0.0271	0.0265	0.0408	0.0174	0.0126	0.0163	0.0130	1.8651	2.7301	60.1168	4.9260
linverse	11999	0.0239	0.0284	0.0283	0.0890	0.0141	0.0131	0.0126	0.0136	1.4001	1.2622	60.1915	1.5777
ncvxqp1	12111	0.0269	0.0309	0.0297	0.0665	0.0420	0.0230	0.0202	0.0235	1.3764	3.7865	60.1723	13.3586
vibrobox	12328	0.0784	0.1093	0.1116	0.1664	0.1064	0.0992	0.1101	0.0932	4.4822	18.6532	60.3561	22.9753
stokes64	12546	0.0284	0.0351	0.0377	0.3520	0.0326	0.0232	0.0226	0.0237	1.4995	3.5147	60.2148	9.0789
tuma2	12992	0.0217	0.0246	0.0239	0.0589	0.0198	0.0118	0.0113	0.0117	0.9852	1.5514	60.1505	4.7006
cbuckle	13681	0.0903	0.1394	0.1402	3.6594	0.1992	0.1511	0.1510	0.1258	4.9434	16.2318	60.5684	21.4500
cyl6	13681	0.0973	0.1258	0.1296	2.7209	0.2843	0.0878	0.0863	0.0890	5.3659	20.6593	60.4706	22.1377
crystm02	13965	0.0483	0.0651	0.0689	0.8670	0.0649	0.0589	0.0594	0.0608	4.9506	7.7914	60.3732	11.3017
bcsstk29	13992	0.0801	0.1266	0.1276	0.2244	0.1417	0.0993	0.0922	0.0843	5.2622	23.7488	60.3213	20.1360
Pres_Poisson	14822	0.1130	0.1478	0.1370	3.0178	0.1897	0.1733	0.1716	0.1722	5.7590	14.7006	60.5736	21.1334
opt1	15449	0.3629	0.5102	0.5144	6.4193	2.1747	0.3774	0.4040	0.3214	13.4644	51.6958	60.7475	33.7349
hangGlider_4	15561	0.0320	0.0427	0.0418	4.4338	0.0484	0.0413	0.0383	0.0338	2.2984	2.5103	60.2804	28.6092
Dubcova1	16129	0.0515	0.0693	0.0719	1.6463	0.0783	0.0608	0.0589	0.0614	2.5227	8.0211	60.3854	12.2898
olafu	16146	0.1338	0.2082	0.2182	1.2029	0.2552	0.1461	0.1457	0.1459	7.0413	28.7863	60.7624	23.8253
net50	16320	0.2970	0.3746	0.3015	79.1596	6.2310	0.3914	0.3884	0.3619	11.5350	15.6027	60.6561	58.0320
fe_sphere	16386	0.0337	0.0372	0.0352	0.0835	0.0323	0.0240	0.0216	0.0192	1.3988	3.8117	60.2233	9.5381
pds10	16558	0.0360	0.0445	0.0441	1.2859	0.0726	0.0466	0.0480	0.0328	2.1266	6.0075	60.2450	17.4180
ex3sta1	16782	0.1606	0.2199	0.2088	7.1821	0.3546	0.2361	0.2216	0.2168	9.2716	30.7721	60.4407	29.0748
ramage02	16830	0.8117	1.0687	1.0210	43.4957	2.8562	0.8490	0.8441	0.8907	22.0227	92.5474	61.1035	53.4161
cti	16840	0.0295	0.0355	0.0345	0.0918	0.0330	0.0231	0.0229	0.0228	27.7990	4.4075	60.2235	15.9811
gyro	17361	0.1218	0.1989	0.2172	0.4724	0.4531	0.2082	0.2368	0.1823	7.2235	32.1519	60.8166	17.7507
lowThrust_7	17378	0.0475	0.0666	0.0626	4.9505	0.0596	0.0499	0.0492	0.0487	3.3902	5.2264	60.3601	63.7133
L-9	17983	0.0279	0.0323	0.0329	0.0633	0.0199	0.0189	0.0205	0.0197	9.2674	3.0527	60.2190	7.7141
nd6k	18000	1.3233	2.3682	2.9556	34.9241	8.6857	10.7771	7.4482	4.0541	57.5573	145.8650	64.9234	97.8758
crplat2	18010	0.1040	0.1527	0.1774	0.8724	0.2972	0.1502	0.1703	0.1776	7.6706	25.2494	60.5039	23.7441
tandem_vtx	18454	0.0589	0.0788	0.0773	0.3434	0.1106	0.0871	0.0927	0.0870	3.6611	16.3735	60.3077	19.5866
ford1	18728	0.0286	0.0342	0.0326	0.0675	0.0290	0.0231	0.0216	0.0225	3.0076	5.1736	60.2584	8.0863
fxm4_6	18892	0.0824	0.1204	0.1283	1.8988	0.1938	0.1154	0.1066	0.1137	4.2881	15.7968	60.4148	76.7772
whitaker3_dual	19190	0.0236	0.0310	0.0299	0.0621	0.0364	0.0174	0.0173	0.0171	1.2423	1.5541	60.2603	6.3052
pattern1	19242	3.3709	4.8699	3.2106	16.1594	98.7080	5.0544	4.8634	5.1600	65.2552	154.2615	63.9100	127.6115
bodyy6	19366	0.0317	0.0400	0.0387	0.0811	0.0324	0.0264	0.0263	0.0267	11.2739	5.4588	60.3149	10.9231
raefsky4	19779	0.1946	0.2773	0.2402	1.8665	0.4289	0.3338	0.3591	0.3211	9.2601	43.4627	61.0371	37.9574
Si5H12	19896	0.1556	0.2251	0.2040	6.5413	1.1769	0.4213	0.4680	0.2945	69.0908	27.1988	60.7486	38.9175
LF10000	19998	0.0288	0.0349	0.0340	0.1050	0.0199	0.0189	0.0202	0.0194	3.1907	1.6224	60.3386	1.5600
qpband	20000	0.0180	0.0209	0.0198	0.0841	0.0458	0.0449	0.0446	0.0496	2.0122	1.3500	60.2724	1.3726
Trefethen_20000	20000	0.1068	0.1602	0.1485	2.5115	0.4724	0.1557	0.1385	0.1467	5.2290	8.9607	60.5694	44.7556
tsyl201	20685	0.5614	0.7265	0.5560	4.4624	4.6914	0.7718	0.7708	0.7885	17.4836	78.8392	61.0897	43.6910
tube1	21498	0.1045	0.1505	0.1500	0.3690	0.2617	0.1267	0.1251	0.1262	6.7676	33.0990	60.5626	30.2771
									-	Continua na p	róxima página		

Tabela A3 - Resultados de tempo de processamento, em segundos, das heurísticas testadas em 124 instâncias simétricas da SuiteSparse Matrix Collection

Instância	n	RBFS-GL	KP-band-GL	RCM-GL	GPS	MPG	NSloan	Sloan	Sloan-MGPS	ILS-Prof	ILS-Band	VNS-Band (60s)	FNC-HC
biplane-9	21701	0.0290	0.0405	0.0376	0.0796	0.0336	0.0256	0.0242	0.0269	1.5173	3.4416	60.3310	11.3483
trdheim	22098	0.2339	0.3423	0.3315	3.1910	3.8866	0.3083	0.3087	0.3144	13.5374	66.5513	60.8582	26.9829
pli	22695	0.1818	0.3180	0.3194	9.9220	0.6400	0.5557	0.5722	0.4287	10.4836	43.3930	60.7299	45.0692
tuma1	22967	0.0303	0.0379	0.0368	0.1227	0.0444	0.0256	0.0277	0.0279	1.8838	2.8507	60.3892	8.9951
msc23052	23052	0.2154	0.2896	0.2501	0.8388	0.4470	0.2767	0.3002	0.3049	9.9474	48.1750	61.1486	35.7301
ca-CondMat	23133	0.0649	0.0830	0.0877	0.2095	0.2568	0.0925	0.0886	0.0910	2.9473	3.9745	60.4694	54.8247
stufe-10	24010	0.0345	0.0457	0.0451	0.1208	0.0413	0.0391	0.0388	0.0371	1.6851	3.4943	60.3520	17.6323
de2010	24115	0.0411	0.0521	0.0506	0.1091	0.0511	0.0427	0.0403	0.0424	2.0852	5.6077	60.3992	11.3101
rajat09	24482	0.0308	0.0384	0.0373	0.1381	0.0703	0.0293	0.0275	0.0301	1.8814	3.6942	60.3827	8.4213
crystk03	24696	0.2565	0.3427	0.3048	32.6441	0.4665	0.3634	0.3674	0.3664	14.1767	40.3517	61.5437	48.9546
pcrystk03	24696	0.2683	0.3432	0.3192	33.1230	0.4605	0.3656	0.3585	0.3862	15.3787	40.3506	60.8525	49.1221
dtoc	24993	0.0326	0.0382	0.0361	0.3440	0.0262	0.0233	0.0244	0.0256	2.0859	2.6214	60.3861	2.1429
hi2010	25016	0.0362	0.0490	0.0494	0.1264	0.0483	0.0432	0.0443	0.0449	2.0851	5.0269	60.4236	11.0959
ri2010	25181	0.0434	0.0571	0.0544	0.1394	0.0559	0.0479	0.0476	0.0551	2.3296	5.2779	60.4443	12.2165
bcsstk37	25503	0.1236	0.1962	0.2135	0.9037	0.4295	0.2665	0.2497	0.2193	9.4015	40.4283	61.0413	39.8729
smt	25710	0.8219	1.1465	0.9142	27.7625	4.9263	1.6324	1.8237	1.2966	26.6585	112.2545	62.9113	62.6995
brainpc2	27607	0.0429	0.0578	0.0538	0.2723	856.9546	0.0453	0.0386	0.0457	3.3042	7.7997	60.5857	9.6201
bratu3d	27792	0.0531	0.0667	0.0643	0.3259	0.0893	0.0633	0.0623	0.0615	2.7052	9.2282	60.5413	9.8317
bloweya	30004	0.0419	0.0564	0.0542	97.6164	0.0481	0.0416	0.0411	0.0419	3.4862	5.5847	60.6061	89.8033
rajat10	30202	0.0379	0.0483	0.0477	0.1924	0.1032	0.0388	0.0366	0.0468	2.4836	5.8620	60.5628	11.0173
big_dual	30269	0.0416	0.0515	0.0493	0.1648	0.0734	0.0438	0.0407	0.0420	2.0836	4.3170	60.5714	13.8554
wathen100	30401	0.0733	0.1007	0.0993	7.3604	0.1040	0.0902	0.0878	0.0866	6.4390	14.8792	60.7747	28.1051
helm3d01	32226	0.1217	0.1759	0.1604	0.3205	0.3705	0.1821	0.1701	0.1704	5.8511	36.2670	60.9876	30.9421
lpl1	32460	0.0830	0.1136	0.1261	0.2427	0.1715	0.1501	0.1110	0.1227	5.9319	12.6146	60.7163	13.3117
vt2010	32580	0.0540	0.0725	0.0702	0.1883	0.0773	0.0671	0.0721	0.0601	2.9360	6.6131	60.6691	15.8875
delaunay n15	32768	0.0540	0.0775	0.0752	0.1797	0.1037	0.0647	0.0814	0.0620	43.6645	23.3199	60.6520	23.0136
se	32768	0.0419	0.0577	0.0549	0.1125	0.2449	0.0506	0.0480	0.0490	3.7467	11.8282	60.6660	45.8377
SiO	33401	0.3136	0.4551	0.4397	0.9166	1.2108	0.4917	0.5431	0.4419	29.7288	38.6839	61.4902	65.5825
ship 001	34920	1.0018	1.3611	1.3287	5.0949	6.7953	1.2393	1.2244	1.2296	31.9726	146.0020	63.6388	64.9832
aug3dcop	35543	0.0501	0.0642	0.0564	0.3588	0.1188	0.0462	0.0448	0.0447	2.6529	18.9485	60.7389	25.2291
pdb1HYS	36417	0.9284	1.2559	1 2951	3 0772	3,7259	2.2441	2,4242	1 4377	32,4557	141.3415	63.3907	89.0965
shock-9	36476	0.0528	0.0679	0.0658	0.2022	0.0670	0.0610	0.0581	0.0585	2.5476	6 3578	60.7078	17.9756
pwt	36519	0.0706	0.0898	0.0903	0.9168	0.0849	0.0765	0.0709	0.0680	11.6202	11.1266	60.7383	14.1882
email-Enron	36692	0.1170	0.1666	0.1560	0.5380	0.4028	0.2310	0.2302	0.2323	6.1678	8 5593	60.8394	101.2275
pkustk05	37164	0.3905	0.4991	0.4978	2 2216	0.9133	0.3708	0.3596	0.3575	16 7664	76 4437	61.4446	56.5105
finance256	37376	0.0665	0.0973	0.0911	0.2706	0 1199	0.0786	0.0775	0.0783	5 3062	25.0580	60.9027	29 5993
c-57	37833	0.0920	0.1331	0.1170	255 4630	0.3769	0.2595	0.2765	0.1345	6.8902	15,2841	60.9984	125,9508
minsurfo	40806	0.0605	0.0775	0.0776	0.3545	0.0649	0.0630	0.0611	0.0613	3.3241	6 3620	60.9069	13,7585
OPF 10000	43887	0.1009	0.1375	0.1367	0.4389	0 1481	0.1322	0.1312	0.1370	6 4165	27 9251	61.2803	33 4187
vanbody	47072	0.3092	0.4446	0.4686	1.5150	0.8467	0.4866	0.4722	0.4967	18 8992	96.2528	62.5369	80.7322
gridgena	48962	0.0875	0.1246	0.1339	0.5532	0.2008	0.1096	0.1103	0.1056	6.3921	18,5109	61.4579	38.0681
stokes128	49666	0.1083	0 1499	0 1458	4 4829	0 2441	0.1308	0.1330	0 1339	7 3889	18 5449	61.5425	48 7858
cvxbap1	50000	0.0979	0.1528	0.1420	0 5943	0.1923	0.1228	0.1234	0 1199	21 2503	35 8104	61,4902	49.0385
sparsine	50000	0.6191	0.8463	0 7917	2461 0000	5 1335	0.7230	0.7260	0 7845	26 4900	44 3949	62,7557	230 3445
conter?	55476	0.1863	0.2611	0 2458	0 5287	0 3433	0.2268	0 2247	0 2282	28 2856	75 3418	61.7989	65 9936
dixmaanl	60000	0.0694	0.0992	0.0897	0.8820	0.0804	0.0729	0.0733	0.0739	9 6271	5 1639	61.9648	6 9738
blockapl	60012	0 1155	0.1778	0.1765	342 6390	201 3796	0.1612	0.1603	0 1540	9 1836	17 0559	62 0238	153 3410
Dubcova?	65025	0 2320	0 3149	0.3076	15 9510	0.4142	0.3320	0.3270	0.3296	11 3746	39 7724	62 8072	76 5056
a8fk	66127	0.2320	0.3224	0.3524	54 7788	0.4573	0.4002	0.3080	0.0200	22 2827	76 1954	62 9155	97 0394
gas_sensor	66917	0.2250	0.3224	0.3820	65.8371	0.4497	0.4002	0.3989	0.4432	14.0564	45.8698	63.0819	100.9180

Continua na próxima página

Instância	n	RBFS-GL	KP-band-GL	RCM-GL	GPS	MPG	NSloan	Sloan	Sloan-MGPS	ILS-Prof	ILS-Band	VNS-Band (60s)	FNC-HC
H2O	67024	0.5588	0.7833	0.7529	1.6975	8.6456	0.8017	0.9733	0.8506	165.1657	124.9082	63.6743	118.1910
cfd1	70656	0.3252	0.4327	0.3965	20.8932	0.5953	0.4918	0.4700	0.4859	27.9988	120.4260	63.2592	109.1950
finan512	74752	0.1280	0.1827	0.1695	0.6424	0.2492	0.1751	0.1732	0.1743	14.2363	57.7832	62.9115	47.2335
rail_79841	79841	0.1196	0.1701	0.1646	0.8112	0.2367	0.1610	0.1571	0.1521	8.6248	27.9550	63.1493	49.3325
cont-201	80595	0.1251	0.1708	0.1530	1.1750	0.1827	0.1655	0.1642	0.1617	9.9304	27.8199	63.1833	69.8154
apache1	80800	0.1484	0.1983	0.1831	1.1539	0.2100	0.1986	0.1918	0.1917	12.1842	25.0811	63.1678	89.5916
shallow_water1	81920	0.1006	0.1387	0.1488	1.1055	0.3936	0.1659	0.1126	0.1296	24.0436	7.3355	63.0814	42.9358
shallow_water2	81920	0.0979	0.1548	0.1371	1.0543	0.4103	0.1541	0.1531	0.1583	24.4512	7.5020	63.1049	43.2950
thermal1	82654	0.1259	0.2001	0.1801	0.7096	0.3186	0.3065	0.3058	0.3157	10.5340	17.6245	63.2304	36.3578
consph	83334	0.8017	1.2344	1.5265	720.1520	5.3969	4.0529	3.6473	3.1438	46.6827	128.3630	66.6537	84.0069
c-72	84064	0.1803	0.2703	0.2896	3.2181	0.5087	0.3021	0.2958	0.2966	14.7890	42.1797	64.3364	1041.6500
ncvxqp7	87500	0.2190	0.3228	0.2973	3.0339	1.6935	0.3501	0.3845	0.3282	283.0120	73.7512	64.0954	222.0185
olesnik0	88263	0.1657	0.2347	0.2256	0.7571	0.8585	0.2370	0.2336	0.2503	11.5624	34.8054	63.7518	77.4491
denormal	89400	0.1835	0.2549	0.2602	1.8859	0.3048	0.2685	0.2696	0.2649	56.6576	21.7314	64.0649	99.2586
s3dkq4m2	90449	0.5469	0.8267	0.7293	29.3711	1.4366	0.8039	0.7974	0.8022	44.0125	227.5900	66.4396	155.9845
s4dkt3m2	90449	0.3807	0.5604	0.6144	2.4286	0.9398	0.5163	0.5131	0.5237	79.2760	156.5415	64.4956	141.6645
boyd1	93279	0.3950	0.7913	0.7332	17.4941	186.1944	0.6163	0.6034	0.6188	18.1355	60.1750	64.1620	294.4345
tandem_dual	94069	0.1212	0.1742	0.1708	0.5005	0.3316	0.1697	0.1596	0.1736	93.9624	42.6671	64.0222	91.1535
pkustk13	94893	1.3051	1.7670	1.4726	43.7136	7.3081	2.1965	2.5529	2.1678	51.7379	258.0230	65.9505	169.6185
Si34H36	97569	1.3057	1.9341	1.6334	3.9644	9.4581	2.0055	2.2277	2.1295	221.6830	319.2550	67.9498	194.9035
2cubes_sphere	101492	0.3721	0.5511	0.5206	1.8497	4.6887	0.5461	0.5019	0.6149	33.7637	107.1672	65.4856	134.2855
thermomech_TC	102158	0.2130	0.3258	0.3015	1.2098	0.3508	0.2920	0.3132	0.3124	101.8651	38.9185	65.0597	69.2077
thermomech_TK	102158	0.2139	0.3238	0.3026	1.1824	0.3509	0.3006	0.3052	0.2828	98.6794	36.3973	65.0707	64.2321
filter3D	106437	0.5214	0.7573	0.7638	1.9218	2.9743	1.0871	1.0147	0.9270	28.1781	179.6825	66.8755	108.5985
598a	110971	0.5702	0.8399	0.8145	1.9919	1.3909	0.9120	0.9403	0.8818	69.9385	239.2945	66.6182	191.6230
Ge87H76	112985	2.0776	3.0696	2.5715	8.7368	15.8565	3.5208	3.6725	3.1778	176.3295	383.1670	71.2212	249.2590
Núm. melhores $\Sigma \rho \beta$		89 12 1685	0 60.2935	2	0 16230 9755	0 25465 2125	7 57 6520	17	9 44 1020	0 15458 2754	0 24114 7163	0 144707.0067	0

Instância	n	Original	RBFS-GL	KP-band-GL	RCM-GL	GPS	MPG	NSloan	Sloan	Sloan-MGPS	ILS-Prof	ILS-Band	VNS-Band (50s)	FNC-HC
ted A	10605	4291	222	196	210	174	259	248	242	243	197	137	250	148
lhr10	10672	8419	10380	10276	10388	4797	10252	10110	9977	10010	8421	8418	3502	2897
igbt3	10938	10905	358	323	339	368	1635	2281	1755	1755	635	302	1697	307
k3plates	11107	265	286	282	280	334	1530	1402	1590	1485	447	265	622	260
bips98_1450	11305	8914	10510	10768	10216	1745	10153	10110	10177	10177	11000	7795	3101	1714
cage10	11397	5348	2504	2474	2589	2578	9194	7577	7795	7467	2677	2499	3680	2015
inlet	11730	142	497	296	548	149	268	209	259	265	142	142	327	148
pesa	11738	11327	351	363	352	350	5901	5927	6776	6380	277	265	1232	267
hig	13209	12916	419	346	403	300	3270	2182	2438	1025	296	328	3105	296
mimo46x46 system	13250	10782	12966	12336	12292	628	7920	6114	4316	4316	12969	9476	737	663
vingo afonso itaipu	13250	10782	12105	12017	12003	628	7920	60/1	4316	4316	12060	0513	737	663
airfail 2d	14214	2002	771	707	1027	440	2248	2115	1979	2105	2002	702	4601	424
harth5	14214	15080	12424	1/179	1027	274	2240	2927	10/0	2195	1002	10560	4001	220
powersim	15000	11204	15454	141/0	14337	5/4	4045	3021 7549	1165	2143	11262	10309	4933	339
momentus	13030	17751	13727	13740	13729	1039	10112	1348	17(11	1950	11505	2015	/04	5071
EEM 2D the march	1//38	1//51	9877	10550	10090	10/5/	10/70	1/011	1/011	1/011	8875	5875	4000	50/1
FEM_5D_inermal1	1/880	13/8/	655	692	692	565	1837	/02	1854	1/96	568	562	1059	480
	20082	1395	1255	1254	1211	1201	3448	4068	3628	3628	910	1090	5032	1036
cz20468	20468	514	6/	6/	69	42	130	1488	140	124	66	68	103	28
bayer04	20545	20544	20379	20454	20446	7852	19534	17005	17120	16742	18988	18904	6574	4475
xingo3012	20944	16122	19946	19695	19634	1491	18144	14177	14301	14301	17031	14845	1423	1137
std1_Jac2	21982	18189	21864	21963	21946	13058	20548	20737	20885	20739	18189	18189	7891	6944
af23560	23560	304	345	527	420	305	1274	599	546	547	476	304	2391	308
hvdc1	24842	24762	8206	8158	8535	2107	23468	13321	13321	13321	5169	4227	3096	1780
epb2	25228	2035	4794	4805	4780	1044	11067	7046	7046	7433	2035	941	6493	712
wang3	26064	900	675	678	675	675	1456	1297	1284	1300	675	675	7455	693
2D_27628_bjtcai	27628	27304	450	506	453	431	3603	4455	3278	4044	747	449	4605	417
mixtank_new	29957	28080	4061	3880	3919	3780	20182	21315	20458	21042	2504	3137	8581	3090
poli4	33833	33784	33449	33497	33408	8865	33447	32034	32034	32034	33449	33292	10984	6296
Zhao1	33861	32907	983	964	983	490	1694	12428	1377	1267	496	499	6504	504
onetone1	36057	8505	27408	29110	29240	8127	15866	12053	11510	11739	8505	8505	11719	6493
chem_master1	40401	201	201	202	201	201	400	301	301	301	201	201	6243	204
xenon1	48600	10001	2023	1982	2042	2404	9967	10894	11560	9725	1838	1845	13938	1935
ecl32	51993	51840	22102	40926	40885	1824	10513	8220	5585	5498	16828	16223	14089	1805
beireuit	68902	67086	1509	1242	1218	1534	5577	6988	5250	4999	1402	1285	1880	1337
shyv161	76480	160	62941	52,577	26094	239	8440	6444	473	505	160	160	15600	238
circuit 4	80209	80193	73389	73393	73384	31644	67003	66970	66970	66970	55553	73089	22035	36567
enb3	84617	284	567	569	565	286	567	1594	771	756	284	284	10718	289
poisson3Db	85623	85563	9552	9996	9758	10607	19269	22260	22219	21678	8230	7631	26576	8142
rajat28	87190	87090	55208	56998	53806	29029	86285	78984	77561	77561	87090	39968	28178	31820
LeGresley 87936	87936	81/07	85746	76487	76323	3372	71080	381/1	15740	15333	84505	23700	17550	2665
raiat18	04204	0/180	84605	21/25	94596	22857	80042	76124	76124	76124	04180	51655	20074	24215
ASIC 100ks	00100	08420	21925	20426	21641	17160	02072	00056	26521	00120	08/20	14400	31187	17540
ASIC 100ks	99190	90439	21623	20430	21041	02076	92072	90030	00229	90120	90439	74205	10676	1/340
motrix 0	99340 102420	102420	771/0 5670	99103 6002	77103 6190	90970 4050	77334 25605	99330 20166	22220	22140	20222	14203	70200	49020
hainavit	105430	105429	24274	0003	6180	4050	23093	29100	28933	33140	0320	4980	29300	2021
hencult	1056/6	105063	24274	23849	0422	3262	09501	2//24	27829	203/3	19402	4/490	93310	4047
lung2	109460	10/141	62801	62800	62800	0085	29949	29949	29949	29949	10/141	15957	10331	11256
rajat23	110355	110255	1068/5	10/402	106/58	18981	103844	/5051	/5051	80237	110255	104621	28541	14427
Baumann	112211	1111	1086	1089	1086	1086	1939	1958	1963	1987	1086	1086	22624	1117
Núm. melhores			3	0	4	7	0	0	0	0	10	12	5	24
ΣΡβ			020.4706	503.9001	397.0526	13.4804	555.9680	343.3967	204.9323	55.4512	210.5791	132.8431	348.1308	3.2285

Tabela A4 – Resultados de redução de largura de banda das heurísticas testadas em 48 instâncias assimétricas da SuiteSparse Matrix Collection

ied. A 1005 24944805 153808 157817 135767 130075 143221 333837 138835 119499 130996 555911 148236 lph3 11007 144560 10793 144234 231971 314700 317929 3148234 231971 314700 317929 3148234 231971 314700 317929 3148234 231971 314700 317929 3148234 210149 245910 312235 315910 316413 3161234 317310 3267140 3267140 3267340 316413 3161433 3161433 316143	Instância	n	Original	RBFS-GL	KP-band-GL	RCM-GL	GPS	MPG	NSloan	Sloan	Sloan-MGPS	ILS-Prof	ILS-Band	VNS-Band (50s)	FNC-HC
	ted_A	10605	24944805	1528808	1517817	1355083	1435767	1306075	1403260	1398577	1383835	1189439	1130996	1555911	1488245
igh3 10038 45856442 3319771 3147705 317929 3148234 2107145 2104168 2104108 2432910 3112235 11208116 235728 hppsML1650 11103 7771187 6647726 711214 6647071 1261089 2749567 2501775 251277 262374 1183000 1711733 357065 353300 peua 11738 3792425 2383785 135340 1357155 1734477 1562720 1761614 117373 119711 337766 1983400 peua 11738 3792425 2313755 2329564 1302476 1816166 1056337 7761461 812137 3213776 1983400 7371647 5235766 mimoded.system 13250 9188547 771027 7522013 7571617 771628 7272914 757164 753390 759141 1664092 7217164 852398 mimoded.system 15586 40547268 36104879 943791 12297547 77810519 953766	lhr10	10672	24671734	49868537	44679263	49250105	40201867	30861570	31432851	33532595	35159484	42484086	42484088	39547603	32976002
Läplans 11107 174660 360300 2820739 2701120 2900148 2866159 3169463 3612244 3338820 3888410 caper10 1139 14930283 31007985 3127746 3356221 3048949 2457247 2216179 622377 27037491 2456724 145733 3025744 13506 177772 12073 13277 1855727 13277 13273 13277 135549 1277772 12771 12377 13277 13277 13277 13277 1277172 12777 1277772 127777 1277777 127777 12777777 12777777 1277777777777	igbt3	10938	45856042	3319771	3147705	3179929	3148234	2107045	2035165	2104198	2104198	2432910	3112235	11208316	3257278
bighesg 14305 7771187 6647726 712174 6647073 1261089 2748965 2261779 2261779 2261779 2261779 2261779 2377712 2778712 2778712 2778712 2778712 2778712 2778712 2778712 2778714 3366374 3	k3plates	11107	1746869	3692962	3639110	3646661	3633608	2829739	2715129	2906148	2866159	3169463	3621254	5353882	3884810
-migel 0 [1397 493823 3050985 33127736 3395221 3048949 2497247 24506429 24781262 23778722 27087491 22467340 4578925 3079913 peak 11738 7789249 3213795 3229664 224409 320734 1810366 167047 2761140 2912575 1837727 184004 559557 2929516 peak 11220 9318367 73123 520164 224409 320734 1810366 196933 7509833 709605 1887379 1722 75337 859713 singo_forus_tinpu 1220 9318367 7541287 7373380 756175 644007 1228566 1968056 199833 709633 768605 16358065 7273733 725761 46302 725947 880502 471579 9537650 05771624 66302 725947 880502 471579 9537650 05771624 66302 725947 880502 471579 9537650 1724723 222050 1307992 128566 199833 709605 199833 709605 723733 728507 1314322 220806 13807390 445518 101622 1371034 1155393 1155393 1768605 16358063 723733 725761 89374 454838 1976421 891069 3755938 3290718 646309 725107 1314320 252060 1307390 444551 1155393 1155393 1155393 1768605 247159 9537650 189749 221159 1447518 044519 047169 044151 02082 1371034 70061 8824482 9445591 0472106 940519 275947 880502 471528 455818 930462 3220189 170777 957164 193212 244022 140724 1401015 0326442 244726 3440105 0326422 3440254 04071106 4030212 1371034 1155393 1155393 1155393 1155393 1155393 1155393 115539 11550872 555872 555872 555872 555872 555872 555872 555873 1450854 1570498 12409249 3242842 1159159 115393 1135519 1157539 1137551 1153751 1153751 1153759 1153759 1153759 1153759 1153759 1153759 1153759 1153759 1153759 11537559 1153959 11	bips98 1450	11305	7771187	6647726	7121744	6647073	12610989	2748965	2208033	2261779	2261779	6262374	11685050	17147340	15607085
inflet 11730 1004256 2088798 1518540 1985451 157156 173447 150220 1747614 1801261 191711 13232766 1933400 big 13209 53906470 530647 5306471 5304617 5304617 5304671 5305772 2513575 5327729 153157 737279 153157 737279 153157 737279 153157 737279 153157 737273 153157 7272136 6857132 6857132 6857132 6857132 6857132 6857132 6857132 6857132 6857132 6857132 6857132 6857132 6857132 6857132 7103760 6777164 6822098 571644 1530150 7371638 6859912 716379 7068714 645992 721178 853862 6577164 64292 721178 453858 6597156 1578657 107917 1314320 5906774 9042457 9017610 9164330 9230478 1376472 951827 51877 518757 51877 518757 51877 51877 51877 51877 51877 5231995 51877	cage10	11397	14938283	33050985	33127736	33956221	30489549	24597247	24806429	24781826	23775722	27087491	32467340	45735925	30799133
peak 11738 37892480 3213796 3224669 3202364 1810366 1676937 2761140 2912575 1837729 1854034 5509557 2929516 mimodeds_system 13250 9318367 7371023 722013 7532138 6140507 1228566 105016 1095833 7080144 16350187 2227233 857132 airfoil_2d 14214 2435588 10624103 10038696 1380790 761926 6528546 105016 1095833 7080144 1630058 2757614 8560502 4718379 953750 67711644 8623089 memplus 17788 164155 7028472 2460524 4445501 9404457 9484172 9501527 7913014 24219344 24219344 24219344 24219346 25210646 580542 7360914 70680741 70680741 70680741 70680741 70680741 70680741 70680741 70680741 70680741 70680741 70680741 70680741 70680741 70680741 70680741 <t< td=""><td>inlet</td><td>11730</td><td>1004256</td><td>2088798</td><td>1518540</td><td>1985451</td><td>1557156</td><td>1734457</td><td>1562720</td><td>1747614</td><td>1801291</td><td>1191711</td><td>1191711</td><td>2332766</td><td>1983400</td></t<>	inlet	11730	1004256	2088798	1518540	1985451	1557156	1734457	1562720	1747614	1801291	1191711	1191711	2332766	1983400
	pesa	11738	37892459	3213795	3229664	3234609	3205746	1810366	1676937	2761140	2912575	1837729	1854034	5509557	2929516
$ \begin{array}{c} mind set set set set set set set set set set$	hig	13200	53960367	5006470	5303617	58/15010	1018713	3022694	3066284	360/11/6	1174837	3210776	1796084	14614038	5537866
 ningu Janose, Iningu 13250 9318467 7541287 7327380 7309175 6140307 7225748 7309175 6140307 7225748 7309175 6140307 7225748 7309175 6140307 725760 6522654 6532654 6532657 77810519 9526614 9002512 8757514 900741 90080741 70680741 7058075 7177173 71144 7144074 7144704 7144400 7144400 7144404 7144444 71444444444 7144444444<	mimo/6x/6 system	13250	0318367	7371023	7202013	7532238	6140507	1228566	1150516	1005833	1005833	7500144	16363157	7227523	6857132
attract_attract_attract_attract attract_attract_attract attract_attract attract attract <	vingo ofonso itainu	12250	0210267	75/1025	7292013	7352236	6140507	1220500	100000	1005922	1005922	7696005	16259062	7227523	7257614
all olis 14214 2433936 10024100 10030600 1201920 0231940 0231950 123394 6809302 4125125 9331600 03110941 6823060 perversion 1582 26017268 3640105 5026023 4309305 941830 113802 9350462 9350462 9230478 101919 6823060 perversion 17758 14187718 14221920 138424536 139469750 4201860 70680741 70680741 9216374 9230478 92	sinfail 2d	13230	9316307	10(241287	10028606	12007020	0140307	1228300	1000000	1093633	1093633	/080003	10556005	62771664	7237014
$ \begin{array}{c} 1000 & 4008105 & 7/10/87 & 70041.3 & 919/34 & 4348.88 & 1976421 & 1891089 & 573893.8 & 3290718 & 646.992 & 122107 & 1142.02 & 22000 \\ powersine 1788 & 11445306 & 8434487 & 934467 & 931467 & 931467 & 9314777 & 9314777 & 9314777 & 9314777 & 9314777 & 9314777 & 931477$	alfIOII_20	14214	2455598	10624103	10038090	13807930	//01920	0520540	0000099	1255941	8809502	4/155/9	9557650	12142202	8023098
powersim 158.8 2004/268 34610156 36280422 34600224 9445021 101022 1210424 1158.953 1238955 2211388 4528348 95230402 9211295 chipson1hermal1 77082 110120615 29965908 9287084 29241290 2201044 2228441 2217331 24210334 22193682 22329111 9856774 30843448 cz20466 20468 1196152 623337 610057 623027 571933 586623 6758516 88575 2375006 34441490 99067498 singe-3012 20944 49244571 3237544 32692347 1785555 31778149 15001827 15018375 1437506 34845102 1837844 1501837 146702413 10327729 18455102 15538471 18465102 1534841 3485114 3137525 3737848 1501627 5506872 550872 550872 550872 550872 550872 550872 550872 550872 550872 550872 550872 550872 550	barth5	15606	4058103	//10/8/	/064130	6159/34	4548388	1976421	1891059	3/54938	3290/18	6463092	/2510//	13143202	5220360
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	powersim	15838	26047268	34610156	36280422	34609254	9445591	1014022	13/1034	1156393	1139895	2211388	4858848	9350462	9231595
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	memplus	17/58	141187718	142426669	141221920	138424536	139469750	42061860	70680741	70680741	/0680/41	64889840	56829375	77810519	95268014
chipcooli 20082 [1902605 29963008 29878684 29414269 2926104 22864308 22735731 24219334 24219334 2421934 2219342 2232111 98567746 30843448 bayend4 20454 131403879 I54407064 I58522700 I59086875 11477325 57886 76957306 7642954 70952877 78566551 I57560556 I52538106 I3441870 990967488 1341_Jac2 21082 86101829 196574357 199204516 183768391 229471849 137571489 I50079294 I50218370 I4702413 I03277299 I03277299 I03277299 I046511020 I5194849 https://doi.org/10.1016/10	FEM_3D_thermal1	17880	11445306	9840487	9845711	9858410	9079106	9003212	8756714	9024245	9017610	9164330	9230478	13/64/2/	9591827
cz20468 20468 1196152 62337 619057 623927 591933 589652 578891 608682 601296 622087 62209 675316 589564 xingo3012 20944 49244571 23016071 23735454 23622477 178550857 2388875 2388875 2378820 34418430 90967498 xingo3012 2064 49244571 23016071 2373544 230247184 113773551 13178555 13178555 13177229 13165583 1448840 6605204 13622367 xingo3012 25640 7994330 31874363 31874405 130281783 1410840 13178155 1317725 13178555 1317725 1316583 1418840 6605204 13622367 xipp2 25228 6603392 25661613 52548915 25658972 2556877 2254902 2563883 1933252 1933352 1378356 13123201 1137551 1317855 1317855 1317855 1317855 1317855 1317855 1317855 1317855 1317855 1317855 1317855 13178156 1317855 13178556	chipcool1	20082	11902605	29963908	29876884	29414269	29261046	22864308	22735731	24219334	24219334	22193682	22329111	98567746	30843448
bayerb4 20545 131403879 [54407064 [58522700 159086875 11477325] 67957306 76429544 70952877 7855065 [157550 5375828] 5575 2838757 283875 283875 283875 283875 283875 283875 283875 283875 283875 283875 283875 2838757 2838755 283875 283885 285484 2455484 26677124 783988 83298641 10018645 29136326 7049700 834795 3838787 1046759 11576197 12449346 122874657 127492867 83298641 1099165 38489095 2627727 2685104 28992491 1035759 108675	cz20468	20468	1196152	623337	619057	623927	591933	589652	578891	608682	601296	622087	622609	675316	589564
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	bayer04	20545	131403879	154407064	158522700	159086875	114773251	67957306	76429544	70952877	78566851	157560556	152538106	134414930	90967498
stall_hac2 21982 86101829 196574357 199204516 18376839 129471894 137571489 1570720 13157720 13157720 13157720 1315555 1317720 1315555 1317720 1315555 1317720 1315555 1317720 1315555 13175720 1315555 13175720 1315555 13175720 1315555 13175720 1315555 13175720 1315555 13175720 1315555 13175720 1315555 13175720 131555 13175755 13175720 131555 1315720 1315720 1315720 131555 1315720 1315720 1315720 131555 1315720 1315720 131559 1115553 141880 14880 150373 13763480 1375352 1556373 13078837 112523 10693847 112529 131509 1114583 118322 130090 148537877 1029847 132053 1242503 1342503 1342503 1342503 1342503 1342503 1345851 13078837 119867300 1385090 1345305 1230512 1450502 3820960 134520960 13452095 2667513 2626844 26555464 1556418 1556418 105156418 105156418 105156418 105156418 1051520 131312 1050248 4555543 43565543 4356546 45687040 19867399 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867590 10867400 10867400 19542137 11111333 1356051 1337522 055952 23200573 22973400 22973400 10867599 10867599 10867599 10867599 10867390 1085740 19543137 12550828 27253061 1373752 0565932 10914849 2320507 13242053 13458551 13458953 13569587 823355 122569869 12535909 114537877 101575 130540512 13908218 149823551 13568951 134588507 13250892 822393045 27129546 9786732 7251717 73116157 80364668 80153075 1367008 1954318 1088748 435555 135728904 139342926901 1334360951 133450951 13456	xingo3012	20944	49244571	23016071	23735454	23692347	17855055	3778828	3651393	2838575	2838575	23750806	34480874	23277634	18518150
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	std1_Jac2	21982	86101829	196574357	199204516	183768391	229471894	137571489	150079294	150218370	146702413	103277299	103277299	184651020	151943849
hvdc1 24842 68348635 3174067 31875404 32081783 42293356 8853881 5556872 5556872 5556872 500128 20128 201331 56337346 54881747 (1918) 2528 84803592 16610191 16625146 16549805 18838613 14137581 15061057 15406264 14109198 2125084989 2669005 2012763 13007831 121529 11255084905 18338613 14137581 121529 1145683 254316 2553800 2564328 25539320 74469889 2669005 2012763 130078317 121529 10693847 1235199 1145683 1183829 300921 31976340 11981632 9923791 115762197 123459346 123274657 127492867 83288641 10008645 291363267 109003413 33861 36549059 26677513 26268424 2667227 2681046 26896455 2610270 27113551 27357229 26546584 265544 156491593 27925910 000000 1242005 318882784 14942624 934946 123274657 127492867 832886748 1649269 39248054 149426249 39248655 4625344 156491593 27925910 000000 1242053 38882784 149426249 39248655 44255544 156491593 27925910 000000 1242053 2668740 128067700 1242053 12432053 12432053 38882784 1690867400 19867400 1086781 10867400 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867400 10867400 10867400 10867400 10867400 10867400 10867400 10867400 10867400 10867400 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867599 10867400 10867400 10867400 10867400 10867599 10467599 314638 137145318 112231148 15250814 14921440 12460467 199373138 22043733 2204373 27339 240331 22309483 1374832 210941492 1240084 137145318 12236086 13744638 137145318 12236086 13744638 137145318 12236086 139449869 20176153 4017688 2038552 122560966 45670403 9871170 1316157 80364666 80153075 136700643 13540951 134360951 134360951 134360951 134360951 134360951 134360951 134360951 1344608 12408048 137143518 12236048 39867166 20149195039 134418158 1214408 146014667 19931888 2240335 2240338 12294383 61545448 75003391 7635887 75973067 7487291877 5430796 244057614 3785268 2475334 24026199 2406766149 23903676 1491915593 134450951 134449662 24494365 244484848 75070044 41220518 44256684 1592488807 44525	af23560	23560	7094330	13558471	13253631	13228122	13172231	13175515	13157726	13178555	13177229	13165583	14188640	66052094	13625365
$ \begin{array}{c} epb2 \\ warg3 \\ 2D_{c} 7628 \ bitcai \\ mixtank_new \\ 29957 \ 3971.4877 \\ 33833 \ 469894056 \ 38886906 \\ 33834 \ 609822 \ 13192763 \\ 13006315 \ 13078837 \\ 1125293 \ 11576210^{-1} 12459346 \\ 11576210^{-1} 12459346 \\ 1125293 \ 1125293 \\ 1125293 \ 1125293 \ 1125293 \\ 1125293 \ 1125293 \ 1125293 \\ 1125293 \ 1125293 \ 1125293 \\ 1125293 \ 1125293 \ 1125293 \ 1125293 \\ 12452053 \ 12432053 \ 12432053 \\ 12432053 \ 12432053 \ 12432053 \\ 12432053 \ 12432053 \ 12432053 \ 12432053 \\ 12452054 \ 12452054 \ 12529156325 \ 12545946 \ 156491593 \ 27932910 \\ 0000804 \ 128607 \ 0100086740 \ 19542113 \ 1111333 \\ 111333 \\ 1005021 \ 2215291 \ 12452946 \ 10010867599 \ 10867599 \ 10867599 \ 10867599 \ 10867599 \ 10867599 \ 10867599 \ 10867599 \ 10867599 \ 10867599 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867599 \ 10867599 \ 10867599 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867400 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867400 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867599 \ 10867599 \ 10867400 \ 10867400 \ 10867400 \ 10867599 \ 10867400 \ 10867599 \ 10867599 \ 10867599 \ 10867400 \ 10867400 \ 10867599 \ 10867599 \ 10867599 \ 10867400 \ 10867400 \ 10867599 \ 10867599 \ 10867599 \ 10867400 \ 10867400 \ 10867599 \ 10867599 \ 10867599 \ 10867400 \ 10867400 \ 10867599 \ 10867599 \ 10867599 \ 10867699 \ 10807400 \ 10867400 \ 10867599 \ 10867599 \ 10867599 \ 10867400 \ 10867400 \ 10867599 \ 10867599 \ 10867599 \ 10867400 \ 1086466 \ 80153075 \ 133400051 \ 134340064 \ 12860660 \ 159444 \ 12864044 \ 1286404 \ 1286404 \ 1286404 \ 1286404 \ 1286404 \ 1286404 \ 1286$	hvdc1	24842	68348635	31740367	31875404	32081783	42293356	8853881	5556872	5556872	5556872	5401928	22013531	56337346	54881747
$ \begin{array}{c} vang3 \\ vang4 \\ 2D_27628 \\ 7141587 \\ 2D_27628 \\ 7141587 \\ 7141587 \\ 20992 \\ 209728 \\ 7141587 \\ 7141587 \\ 7100922 \\ 7217 \\ 7217 \\ 72168 \\ 7141587 \\ 7141587 \\ 7100922 \\ 7217 \\ 7217 \\ 72168 \\ 7141587 \\ 7141587 \\ 7100922 \\ 7217 \\ 7217 \\ 72168 \\ 7217 \\ 7217 \\ 72168 \\ 7217 \\ 7217 \\ 72168 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7216 \\ 7217 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 7217 \\ 7217 \\ 7218 \\ 721$	epb2	25228	6803892	16610197	16625146	16548905	18838613	14137581	15061057	15061057	15406264	10189084	14109198	125508489	19373552
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	wang3	26064	22644785	25614052	25656153	25545046	25525904	25607191	25587747	25624516	25653880	25643285	25539320	74469889	26696005
$ \begin{array}{c} 1138124 \\ 100103 \\ 100103 \\ 100101 \\ 100103 \\ 100103 \\ 1000003 \\ 100003 \\ 100003 \\ 1000003 \\ 100003 \\ 1000003 \\ 100003 \\ 100003 \\ 1000003 \\ 100003 \\ 1000003 \\ 1000003 \\ 1000003 \\ 10000000 \\ 10000000 \\ 10000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 100000000$	2D 27628 bitcai	27628	7141587	13009922	13192763	13006315	13078837	11215293	10693847	11235199	11145683	11838229	13009930	48385803	13763460
$ \begin{array}{c} poli4 \\ poli4 \\ Zhaol \\ Zhaol \\ Zhaol \\ Shaf 369894056 \\ 3888506 \\ 38825096 \\ 38825096 \\ 38825096 \\ 38825096 \\ 38825096 \\ 3880912 \\ 48803968 \\ 8529640 \\ 2haol \\ 2haol \\ Shaf 36549059 \\ 2haol \\ Shaf 36549059 \\ 2haol \\ Shaf 36549059 \\ 2haol \\ 3886216 \\ 3886206 \\ 3882509 \\ 10867400 \\ 1086740 \\ 1089148 \\ 245027 \\ 1334360951 \\ 1334360951 \\ 1334360951 \\ 1334360951 \\ 1334300951 \\ 1334300951 \\ 1334300951 \\ 1334300951 \\ 1334300951 \\ 1086466 \\ 1091403 \\ 109040 \\ 34903957 \\ 17732884 \\ 1086414 \\ 1214048 \\ 11810134 \\ 121013$	mixtank new	29957	397143539	114060711	113812401	111981632	99529791	115762197	124459346	122874657	127492867	83298641	100108645	291363267	109003413
$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	poli4	33833	469894056	38886906	38425096	38409912	48803968	8329690	12432053	12432053	12432053	38882784	149426249	39248655	40620878
$ \begin{array}{c} 0 \text{netonel} \\ 0 \text{netonel} $	Zhaol	33861	365490595	26677513	26268424	26677227	26851046	26896455	26210270	27113551	27357229	26546584	26655464	156491593	27932910
$ \begin{array}{c} 1000100000000000000000000000000000000$	onetone1	36057	36601150	20077515	231505295	238606370	220051040	0204/01/	105156418	105813122	106206248	45565543	45565543	391362869	242653061
$ \begin{array}{c} 10307400 \\ second \\ se$	chem master1	40401	8080400	10867400	10868781	10867400	10867400	10867500	10867500	10867500	10867500	10867400	10867400	105/2137	11111333
$ \begin{array}{c} \mbox{Achorin} & 48000 & 704700.3 & 1127360804 & 118729050 & 21203500 & 114376732 & 72521717 & 73116157 & 80364666 & 80153075 & 136709643 & 14529669 & 456870403 & 98721170 \\ \mbox{bericuit} & 68902 & 488289014 & 109991667 & 100112592 & 98793138 & 82568942 & 14895200 & 11737585 & 18766290 & 18991448 & 24502079 & 38374638 & 137145318 & 112231148 \\ \mbox{shyp161} & 76480 & 12186076 & 30693729 & 27731994 & 21125003 & 22943037 & 20269935 & 20814949 & 23291036 & 23605144 & 20261590 & 20276153 & 24400381 & 24493665 \\ \mbox{ericuit} & 80209 & 26212339 & 2219447077 & 2149859833 & 2220277339 & 1541984697 & 506700434 & 11354360951 & 1334360951 & 1334360951 & 1334360951 & 1344360951 & 1384460951 & 1894694393 & 1574188126 & 1301950947 & 178359200 \\ \mbox{epb3} & 84617 & 23890785 & 40015343 & 40176085 & 39907530 & 40168868 & 39867166 & 3564108 & 41256018 & 41256081 & 12144088 & 377842643 & 42176582 \\ \mbox{poisson3Db} & 85623 & 3419311554 & 860077724 & 870486522 & 875298904 & 759243839 & 615465483 & 755003391 & 763589678 & 759730677 & 487291877 & 540307969 & 2406766149 & 831041679 \\ \mbox{rajatl8} & 94294 & 943395788 & 1349339573 & 1414326152 & 1399018164 & 2094132431 & 2304092674 & 1690820378 & 1690820376 & 118860664 & 1591248893 & 1641541540 & 201581903 \\ \mbox{ASIC_100k} & 99340 & 2951888685 & 2416576554 & 357296690 & 4038637644 & 1601840386 & 740413323 & 826623463 & 8266234$	venon1	40401	77047005	107280864	118720006	126520000	114527977	104057144	102207522	106560022	100614024	00720218	10007400	682038535	122560060
$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $		51002	246202475	127360604	282002045	120339009	07967722	704037144	72116157	20264666	20152075	126700642	145206606	456970402	122300909
$ \begin{array}{c} 08902 & 48289014 & 109991667 & 10011292 & 9879138 & 82568942 & 14895200 & 1173785 & 1876290 & 18991448 & 2492079 & 3874638 & 137143518 & 112231148 \\ 120261590 & 20276153 & 24400381 & 224493665 \\ circuit_4 & 80209 & 26212339 & 2219447077 & 2149859833 & 2220277339 & 1541984697 & 560700434 & 1334360951 & 1334360951 & 1089469393 & 1574188126 & 1301950947 & 178359200 \\ epb3 & 84617 & 23890785 & 40015343 & 40176085 & 39907530 & 40168868 & 39867166 & 35644108 & 41262018 & 41256981 & 12144048 & 377842643 & 42176582 \\ rajat28 & 87190 & 88141410 & 2146604657 & 1993518359 & 2159275316 & 2145841912 & 2297728734 & 1423222062 & 1419195604 & 141915593 & 1177017682 & 1124468694 & 1750334082 & 216992137 \\ LeGresley_87936 & 87936 & 1954349960 & 243503216 & 254344316 & 255293477 & 203418157 & 78215102 & 55675362 & 44588507 & 44672672 & 239256826 & 501587170 & 307748423 & 246291777 \\ rajat18 & 94294 & 943395788 & 134939573 & 144326152 & 1399018164 & 209413241 & 23402674 & 1690820378 & 1690820378 & 1690820378 & 1690820378 & 1494983 & 1614541540 & 201581903 \\ ASIC_100ks & 99190 & 152743554 & 1693918521 & 163416609 & 1650345324 & 1743037215 & 663690906 & 819317369 & 821806957 & 8173467 & 3156005982 & 553107049 & 378862984 \\ matrix_9 & 103430 & 396507913 & 495045266 & 570250880 & 538661162 & 41258561 & 405710521 & 388448362 & 405640241 & 398668319 & 420931439 & 477076916 & 3243281996 & 413543340 \\ ASIC_100k & 99340 & 2951888685 & 2416576554 & 537296090 & 4338276878 & 137567939 & 159265331 & 148191062 & 14249943 & 137193365 & 23281437 & 44078671 & 37220202 \\ lung2 & 109460 & 43425018 & 4025076344 & 4023082257 & 4025018634 & 685916146 & 2954327 & 3813893 & 3609697 & 3609697 & 3609697 & 56324049 & 43054261 & 94078671 & 37220202 \\ lung2 & 109460 & 43425018 & 4025076344 & 4023082257 & 4025018634 & 829516162 & 2954327 & 3813893 & 3609697 & 3609697 & 56324041 & 3986643199 & 42031439 & 470776916 & 3243281996 & 41354346 \\ matrix_9 & 103450 & 39789933 & 1818631424 & 188240580 & 166748924 & 166235680 & 166157481 & 166160875 & 166311904 &$	eci52	51995	340202473	172349303	282993043	2/1229340	97607752	14905200	/511015/	80504000	80133073	130709045	145290090	4308/0403	98721170
shy161 (76480 121860/6 30693/29 2173194 21125003 22943037 20269935 20814949 23291036 23605144 20261590 20276153 24400381 24493665 (247070454) 1334360951 1334360951 1334360951 1334360951 1334360951 1334360951 1334360951 1334360951 1334360951 1334360951 1334360951 1334360951 1334360951 1334360951 12144048 12144048 377842643 42176582 poisson3Db 85623 3419311554 86007724 870486522 875298904 759243839 615465483 755003391 763589678 759730677 487291877 54030796 2406766149 831041679 rajat28 87936 1954349960 243503216 254344316 255293477 20341817 78215102 557362 44588507 44672672 239256826 501587170 307748423 246291777 rajat18 94294 94339578 1349339573 1414326152 1399018164 2094132431 2340492674 1690820378 1690820376 1188606664 1591248983 1641541540 2015819033 ASIC_100k 99340 2951888655 2416576554 357296699 4038637644 1601840386 740413323 826623463 826	beireuit	68902	488289014	109991667	100112592	98/93138	82568942	14895200	11/3/585	18/66290	18991448	24502079	383/4638	13/145518	112231148
$ \begin{array}{c} c_{17Curl} 4 \\ epb3 \\ science bc \\ epb3 \\ science bc \\ science$	snyy161	76480	12186076	30693729	27/31994	21125003	22943037	20269935	20814949	23291036	23605144	20261590	202/6153	24400381	24493665
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	circuit_4	80209	26212339	2219447077	2149859833	2220277339	1541984697	560700434	1334360951	1334360951	1334360951	1089469393	1574188126	1301950947	1783592001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	epb3	84617	23890785	40015343	40176085	39907530	40168868	39867166	35644108	41262018	41256981	12144048	12144048	377842643	42176582
$ \begin{array}{c} r_{ajat28} \\ LeGresley_{87936} \\ r_{ajat18} \\ S7936 \\ 1954349960 \\ 245303216 \\ 254344316 \\ 254344316 \\ 255293477 \\ 203418157 \\ 78215102 \\ S5293477 \\ 203418157 \\ 78215102 \\ S5675362 \\ 44588507 \\ 419195604 \\ 1419195593 \\ 141915504 \\ 1419195593 \\ 141915504 \\ 1419195593 \\ 1177017682 \\ 1124468044 \\ 17507348042 \\ 239256826 \\ 501587170 \\ 307748402 \\ 239256826 \\ 501587170 \\ 307748402 \\ 239256826 \\ 501587170 \\ 307748402 \\ 239256826 \\ 501587170 \\ 307748402 \\ 239256826 \\ 501587170 \\ 307748402 \\ 24629177 \\ 307748402 \\ 24629177 \\ 307748402 \\ 24629177 \\ 30734442 \\ 204512431 \\ 234049267 \\ 449339573 \\ 144325012 \\ 164554150 \\ 201581903 \\ 45918521 \\ 164154150 \\ 201581903 \\ 45918521 \\ 164154150 \\ 201581903 \\ 45918521 \\ 164316094 \\ 1650345324 \\ 1750345324 \\ 174037215 \\ 663690906 \\ 819317369 \\ 819317369 \\ 819317369 \\ 819817369 \\ 819817369 \\ 819817369 \\ 819817369 \\ 821806957 \\ 817512499 \\ 478531931 \\ 84453260 \\ 303296878 \\ 1455005982 \\ 553107049 \\ 3156005982 \\ 553107049 \\ 378862984 \\ 405460241 \\ 398668319 \\ 420931439 \\ 477076916 \\ 324281496 \\ 41254367 \\ 3156005982 \\ 553107049 \\ 37826294 \\ 4152332768 \\ 137567939 \\ 159265331 \\ 148191062 \\ 142449943 \\ 13719365 \\ 232831437 \\ 44078867 \\ 37220202 \\ 322831437 \\ 44078867 \\ 37220202 \\ 322831437 \\ 44078867 \\ 37220202 \\ 140578167 \\ 37220202 \\ 109460 \\ 43425018 \\ 402507634 \\ 4023082257 \\ 4025018634 \\ 685916146 \\ 2954327 \\ 381389 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 363440 \\ 127351891 \\ 127519365 \\ 232831437 \\ 44078867 \\ 177202795188 \\ 1275199 \\ 132111512 \\ 12344210 \\ 166552864 \\ 16678382 \\ 16674924 \\ 165940324 \\ 165940324 \\ 166235680 \\ 166154593 \\ 166154593 \\ 166157481 \\ 166160875 \\ 166311904 \\ 166420474 \\ 707520725 \\ 178300223 \\ 148141151 \\ 134071584 \\ 129865849 \\ 166235680 \\ 166154593 \\ 166154593 \\ 166157481 \\ 166160875 \\ 166311904 \\ 166420474 \\ 707520725 \\ 178300223 \\ 14814 \\ 1314071584 \\ 129865849 \\ 166235680 \\ 166157481 \\ 166160875 \\ 166311904 \\ 166220474 \\ 707520725 \\$	poisson3Db	85623	3419311554	860077724	870486522	875298904	759243839	615465483	755003391	763589678	759730677	487291877	540307969	2406766149	831041679
$ \begin{array}{c} LeGresley_87936 \\ 87936 \\ 94294 \\ 94339578 \\ 94294 \\ 94339578 \\ 1349339573 \\ 144326152 \\ 163918521 \\ 1634512652 \\ 1639018164 \\ 2094132431 \\ 2340492674 \\ 1690820378 \\ 1690820378 \\ 1690820378 \\ 1690820376 \\ 18806667 \\ 13782020 \\ 137820220 \\ 137820220 \\ 13414343 \\ 134071597 \\ 134114513 \\ 13407158 \\ 123751997 \\ 134114513 \\ 13407158 \\ 123751997 \\ 134114513 \\ 13407158 \\ 123751997 \\ 134114513 \\ 123854205 \\ 166311904 \\ 166420474 \\ 707520725 \\ 178300223 \\ 178300223 \\ 166157481 \\ 166160875 \\ 166157481 \\ 166160875 \\ 166311904 \\ 166420474 \\ 707520725 \\ 178300223 \\ 178300223 \\ 178300223 \\ 178300223 \\ 18803 \\ 18$	rajat28	87190	881414140	2146604657	1993518359	2159275316	2145841912	2297728734	1423222062	1419195604	1419195593	1177017682	1124468694	1750334082	2169921375
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LeGresley_87936	87936	1954349960	243503216	254344316	255293477	203418157	78215102	55675362	44588507	44672672	239256826	501587170	307748423	246291777
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	rajat18	94294	943395788	1349339573	1414326152	1399018164	2094132431	2340492674	1690820378	1690820384	1690820376	1188606664	1591248983	1641541540	2015819035
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ASIC_100ks	99190	152743554	1693918521	1634166094	1650345324	1743037215	663690906	819317369	821806957	817512499	478531931	844532660	3032996878	1421001348
$ \begin{array}{c} \text{matrix}_9 \\ \text{hcircuit} \\ 105676 & 4367574045 \\ 109460 & 43425018 \\ 109460 & 43425018 \\ 112211 & 123444210 \\ 122411 & 123444210 \\ 166552864 \\ 166678382 \\ 16674392 \\ 1494.0318 \\ 317.0497 \\ 14.0587 \\ 149.0587 \\ 14.0587 \\ 15.6093 \\ 18.5199 \\ 19.0931 \\ 18.5199 \\ 19.0931 \\ 18.5199 \\ 19.0931 \\ 14.2931439 \\ 47076916 \\ 420931439 \\ 47076916 \\ 3243281996 \\ 473324281996 \\ 413543364 \\ 4023082257 \\ 322831437 \\ 440788671 \\ 37220220 \\ 333276878 \\ 333276878 \\ 333276878 \\ 333276878 \\ 137567939 \\ 3813893 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 3609697 \\ 67863490 \\ 1922795188 \\ 127351997 \\ 13217321623 \\ 440788671 \\ 37220220 \\ 67863490 \\ 1922795188 \\ 127351997 \\ 1341141517 \\ 563264261 \\ 820141814 \\ 1314071584 \\ 129865849 \\ 166420474 \\ 707520725 \\ 178300223 \\ 16631904 \\ 166420474 \\ 707520725 \\ 178300223 \\ 16631904 \\ 166420474 \\ 707520725 \\ 178300223 \\ 18892 \\ 16631904 \\ 166420474 \\ 707520725 \\ 178300223 \\ 18892 \\ 16631904 \\ 166420474 \\ 707520725 \\ 178300223 \\ 18892 \\ 16631904 \\ 166420474 \\ 707520725 \\ 178300223 \\ 18892 \\ 16631904 \\ 166420474 \\ 166420474 \\ 10587 \\ 15.6093 \\ 18.5199 \\ 19.0931 \\ 61.2993 \\ 760.1803 \\ 638.9250 \\ 557.6532 \\ 1889 \\ 1880 \\$	ASIC_100k	99340	2951888685	2416576554	3572966909	4038637644	1601840386	740413323	826623463	826623463	826623463	185713467	3156005982	553107049	3788629841
hcircuit105676436757404547915050145911571442834076033327687813756793915926533114819106214244994313719336523283143744078867137220202lung210946043425018402507634440230822574025018634685916146 2954327 381389336096973609697360969767863490192279518812735199791341141512rajat231103553597899331818631424188824058016878566601737821623 467214519 6222376086322376086381172315632642618201418141314071584129865849Baumann112211123444210166552864166678382166744924 165940324 166235680166154593166157481166160875166311904166420474707520725178300223Núm. melhores101310133017700 $\Sigma \rho_{\beta}$ 1485.78741492.55421494.0318317.049714.058715.609318.519919.093161.2993760.1803638.9250557.6532	matrix 9	103430	396507913	495045266	570250880	538661162	412585651	405710521	388448362	405460241	398668319	420931439	477076916	3243281996	413543364
$ \begin{array}{c} \mbox{lung2} \\ \mbox{rajat23} \\ \mbox{Baumann} \end{array} \begin{array}{c} 109460 & 43425018 \\ 110355 & 359789933 \\ 112211 & 123444210 \end{array} \begin{array}{c} 4025076344 & 4023082257 & 4025018634 & 685916146 \\ 1888240580 & 1687856660 \\ 16678382 & 166744924 \end{array} \begin{array}{c} 2954327 \\ 467214519 \\ 166235680 \end{array} \begin{array}{c} 3813893 \\ 622237608 \\ 166154593 \end{array} \begin{array}{c} 3609697 \\ 622237608 \\ 638117231 \\ 166160875 \end{array} \begin{array}{c} 67863490 \\ 638117231 \\ 166160875 \end{array} \begin{array}{c} 1922795188 \\ 1273519979 \\ 12217 \\ 12344421 \end{array} \begin{array}{c} 1314071584 \\ 129865849 \\ 166778382 \end{array} \begin{array}{c} 129865849 \\ 1667744924 \end{array} \begin{array}{c} 165940324 \\ 166235680 \end{array} \begin{array}{c} 100 \\ 13 \\ 1485.7874 \end{array} \begin{array}{c} 3 \\ 1492.5542 \end{array} \begin{array}{c} 1 \\ 1492.5542 \end{array} \begin{array}{c} 1 \\ 1494.0318 \end{array} \begin{array}{c} 1 \\ 317.0497 \end{array} \begin{array}{c} 1 \\ 14.0587 \end{array} \begin{array}{c} 13 \\ 15.6093 \end{array} \begin{array}{c} 3 \\ 18.5199 \end{array} \begin{array}{c} 1922795188 \\ 1609697 \\ 16631904 \end{array} \begin{array}{c} 67863490 \\ 1922795188 \\ 1273519979 \end{array} \begin{array}{c} 1341141512 \\ 129865849 \\ 166311904 \end{array} \begin{array}{c} 1922795188 \\ 1273519979 \end{array} \begin{array}{c} 1341141512 \\ 129865849 \\ 166154593 \end{array} \begin{array}{c} 1922795188 \\ 1273519979 \end{array} \begin{array}{c} 1341141512 \\ 129865849 \\ 166157481 \end{array} \begin{array}{c} 166160875 \\ 166160875 \end{array} \begin{array}{c} 166311904 \\ 166420474 \end{array} \begin{array}{c} 707520725 \\ 178300223 \end{array} \end{array}$	hcircuit	105676	4367574045	479150501	459115714	428340760	333276878	137567939	159265331	148191062	142449943	137193365	232831437	440788671	372202202
$ \begin{array}{c} r_{ajat23} \\ Baumann \\ 112211 \\ 123444210 \\ 16552864 \\ 16657888 \\ 16657888 \\ 166678382 \\ 166678382 \\ 166744924 \\ 1669740324 \\ 1669740324 \\ 166235680 \\ 166124593 \\ 166124593 \\ 166154593 \\ 166157481 \\ 166160875 \\ 166160875 \\ 166160875 \\ 166311904 \\ 1662304261 \\ 166311904 \\ 16622037608 \\ 16622237608 \\ 166157481 \\ 166160875 \\ 166160875 \\ 166160875 \\ 166311904 \\ 166420474 \\ 707520725 \\ 178300223 \\ 178300223 \\ 178300223 \\ 178300223 \\ 185199 \\ 19.0931 \\ 61.2993 \\ 760.1803 \\ 638.9250 \\ 557.6532 \\ 185752 \\ 18575 \\ 18575 \\ 18575 \\ 18575 \\ 18575 \\ 18575 \\ 18575 \\ 185199 \\ 19.0931 \\ 19.0931 \\ 19.0931 \\ 19.0931 \\ 19.0931 \\ 19.0931 \\ 19.0931 \\ 19.0931 \\ 10.0180 \\ $	lung2	109460	43425018	4025076344	4023082257	4025018634	685916146	2954327	3813893	3609697	3609697	67863490	1922795188	1273519979	1341141513
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	rajat23	110355	359789933	1818631424	1888240580	1687856660	1737821623	467214519	622237608	622237608	638117231	563264261	820141814	1314071584	1298658491
Núm. melhores101310133017700 $\Sigma \rho_{\beta}$ 1485.78741492.55421494.0318317.049714.058715.609318.519919.093161.2993760.1803638.9250557.6532	Baumann	112211	123444210	166552864	166678382	166744924	165940324	166235680	166154593	166157481	166160875	166311904	166420474	707520725	178300223
$\Sigma \rho_{\beta}$ 1485.7874 1492.5542 1494.0318 317.0497 14.0587 15.6093 18.5199 19.0931 61.2993 760.1803 638.9250 557.6532	Núm. melhores			1	0	1	3	10	13	3	0	17	7	0	0
	$\Sigma \rho_{\beta}$			1485.7874	1492.5542	1494.0318	317.0497	14.0587	15.6093	18.5199	19.0931	61.2993	760.1803	638.9250	557.6532

Tabela A5 – Resultados de redução de profile das heurísticas testadas em 48 instâncias assimétricas da SuiteSparse Matrix Collection

Instância	n	RBFS-GL	KP-band-GL	RCM-GL	GPS	MPG	NSloan	Sloan	Sloan-MGPS	ILS-Prof	ILS-Band	VNS-Band (50s)	FNC-HC
ted_A	10605	0.1145	0.1402	0.1365	1.3814	0.4601	0.1731	0.1686	0.1851	4.1907	16.4430	50.6025	11.769
lhr10	10672	0.0477	0.0637	0.0645	1.0707	0.4433	0.3081	0.2584	0.2215	1.6058	3.2763	50.3581	34.80285
igbt3	10938	0.0571	0.0750	0.0730	0.3988	0.0868	0.0718	0.0730	0.0702	6.0294	8.5020	50.3130	14.4351
k3plates	11107	0.0560	0.0768	0.0814	0.2545	0.1308	0.1029	0.1023	0.0977	6.6989	9.5229	50.5093	16.6384
bips98_1450	11305	0.02046364	0.0222	0.0215	0.0479	0.0213	0.0177	0.0179	0.0204	1.0887	2.0482	50.2394	4.322495
cage10	11397	0.0390	0.0490	0.0484	0.1458	0.1055	0.0515	0.0520	0.0524	3.0639	4.3617	50.2592	21.42845
inlet	11730	0.0521	0.0742	0.0735	0.3460	0.1117	0.1025	0.0976	0.1126	1.7357	6.3687	50.4823	11.5468
pesa	11738	0.02537016	0.0288	0.0282	0.0603	0.0250	0.0222	0.0207	0.0215	3.0550	4.7261	50.1681	8.08772
big	13209	0.0251	0.0334	0.0319	0.0670	0.0298	0.0257	0.0285	0.0252	5.3358	3.6451	50.2023	9.368495
mimo46x46 system	13250	0.02194796	0.0233	0.0219	0.0537	0.0211	0.0192	0.0190	0.0220	1.2824	2.5516	50.1932	4.945995
xingo afonso itaipu	13250	0.02153102	0.0238	0.0229	0.0498	0.0215	0.0193	0.0195	0.01856	1 0798	1 6007	50,1771	5 07843
airfoil 2d	14214	0.0516	0.0733	0.0752	0 1942	0.1301	0.1115	0.1123	0.1387	1 3310	7 7960	50 5073	18 06465
barth5	15606	0.0240	0.0278	0.0768	0.0940	0.0202	0.0261	0.0267	0.0313	1.00/0	1 7613	50 1912	0.00405
powersim	15838	0.0240	0.0273	0.0200	0.0586	0.0252	0.0201	0.0207	0.0232	1.6925	1.7015	50.2605	9.67221
memplus	17758	0.0227	0.0273	0.0275	0.1084	0.0204	0.0220	0.0230	0.0232	1 8814	4 5265	50.3344	20 3187
FEM 3D thermal1	17990	0.0317	0.0431	0.0419	2 5 9 1 1	0.0771	0.0037	0.0045	0.0021	5 1642	4.5205	50.6625	29.5107
abipapol1	20082	0.0702	0.0903	0.0992	0.2519	0.1270	0.1112	0.1130	0.1112	2 2054	12.1410	50.6023	20.39333
0720468	20082	0.0981	0.12/1	0.1203	0.2318	0.1870	0.1402	0.1581	0.1380	5.0034	13.9040	50.0075	23.89093
CZ20408	20408	0.0390	0.0340	0.0550	0.2491	0.0908	0.0740	0.0842	0.0823	3.0052	5 20(9	50.4074	0.913073
bayer04	20545	0.0415	0.0579	0.0565	0.2190	0.5055	0.1046	0.1008	0.1014	2.3310	5.2068	50.4664	38.11975
xingosul2	20944	0.0270	0.0325	0.0306	0.0894	0.0434	0.0405	0.0383	0.0365	1.8607	3.0839	50.5522	8.104/25
std1_Jac2	21982	0.4806	0.6491	0.5967	7.3145	14.9038	0.0021	0.0/10	6.6628	5.0556	17.6001	52.0052	105.6455
af23560	23560	0.0727	0.1019	0.1039	0.3580	0.2940	0.1407	0.1388	0.1410	19.8327	5.1623	50.8004	31.91645
hvdcl	24842	0.0428	0.0577	0.0548	0.1330	0.0649	0.0581	0.0575	0.0558	5.7782	6.1291	50.5175	27.82375
epb2	25228	0.0390	0.0525	0.0520	0.1850	0.1264	0.0764	0.0743	0.0754	2.0204	11.7196	50.5394	21.1954
wang3	26064	0.0442	0.0580	0.0575	0.2041	0.0764	0.0664	0.0664	0.0642	8.8049	7.7975	50.5591	29.37565
2D_27628_bjtcai	27628	0.0725	0.1013	0.1014	0.3219	0.2165	0.1082	0.1162	0.1229	11.3172	9.5292	50.8493	35.2644
mixtank_new	29957	0.9066	1.0866	1.0083	259.2303	3.2757	2.5975	2.4859	2.6221	61.2439	82.1067	52.8081	90.8827
poli4	33833	0.0323	0.0353	0.0349	0.1469	0.0745	0.0561	0.0547	0.0523	1.9085	5.3783	50.6462	48.5469
Zhao1	33861	0.0602	0.0769	0.0736	0.3757	0.4784	0.0786	0.0771	0.0755	11.4671	11.4468	50.8205	41.1204
onetone1	36057	0.0900	0.1273	0.1225	0.9825	0.7124	0.3014	0.2979	0.2967	8.1091	5.7493	51.0595	73.709
chem_master1	40401	0.0609	0.0824	0.0774	0.3860	0.0869	0.0844	0.0836	0.0929	5.1569	8.0364	51.0514	29.84665
xenon1	48600	0.3336	0.4029	0.3978	3.6534	0.9017	0.5246	0.4947	0.5630	42.0395	45.6470	52.4375	38.90935
ecl32	51993	0.0984	0.1780	0.1554	1.9270	1.9135	1.6464	1.8788	1.5460	10.9750	14.0007	51.7268	30.5772
bcircuit	68902	0.1162	0.1666	0.1554	0.4214	0.2029	0.1864	0.1806	0.1846	21.0736	41.6134	52.5335	50.54515
shyy161	76480	0.0792	0.1144	0.1095	2.5546	0.1642	0.1647	0.1661	0.1640	5.5343	6.1399	52.7851	56.29615
circuit 4	80209	0.1000	0.1345	0.1337	4.0781	3.4778	3.1946	3.1823	3.8445	7.4992	9.3681	53.1366	36.3078
epb3	84617	0.1176	0.1589	0.1558	1.3029	1.1815	0.2052	0.2110	0.2094	3.2078	15.6129	53.5965	74.35685
poisson3Db	85623	1.2856	1.6763	1.5391	6.7725	14 2176	3 3115	3 5702	3 6216	102.3131	176 3010	57.1718	176 1115
rajat28	87190	0.1656	0.2531	0.2409	4.9201	5.3110	4.7890	5.0036	4.1128	10.5598	19.7834	53.9226	39.31645
LeGresley 87936	87936	0.1823	0.2481	0.2329	0.6580	0.3581	0.3126	0.3055	0.3258	7 7922	20.1262	54.2827	42,1455
raiat18	94294	0.1349	0.2006	0 1940	3 6578	3 9124	3 3132	3 3042	3 2821	9 5471	16 1836	54.3219	40 5265
ASIC 100ks	99190	0 1703	0.2433	0.2327	0.7327	0.7312	0.3681	0 3644	0.3746	12 6499	64 9006	54 8141	46.0318
ASIC 100k	99340	0 3418	0.5824	0.5237	232 0313	225 1798	225 3074	223 8386	234 8950	22 8801	29 6697	55 4503	186 8515
matrix 9	103430	0.3697	0.5247	0.5080	97 4564	31 2975	0.6502	0.6589	0 7111	18 6788	46 5454	56 7357	179 6075
heireuit	105676	0 1388	0.2060	0.1001	1 2709	0 7970	0.7807	0.7811	0.8860	17 4605	21.0610	59 6858	76 3304
lung?	100460	0.1300	0.2000	0.1591	0.5276	0.7970	0.7697	0.7011	0.0009	5 0104	21.0019	55 3130	160.0315
raiat23	110255	0.1100	0.1397	0.1012	1.0070	0.2243	0.2130	0.2092	0.2120	11 1070	10 2721	55 4083	100.0313
Tajat23 Boumonn	110555	0.1521	0.2213	0.2100	1.0070	0.7140	0.7018	0.0001	0.0091	11.10/9	19.3731	55 0188	40.0694
	112211	0.1/02	0.2420	0.2411	2.12/3	0.3330	0.3209	0.3283	0.3272	44.0072	42.1012	55.9100	139.341
Núm. melhores		44	0	0	0	0	1	2	1	0	0	0	0
$\Sigma \rho_{\beta}$		0.6908	17.1953	15.2310	1618.9824	981.8740	810.1102	808.0996	839.7661	4330.0166	7140.2979	45652.1925	22667.2414

Tabela A6 - Resultados de tempo de processamento, em segundos, das heurísticas testadas em 48 instâncias assimétricas da SuiteSparse Matrix Collection

APÊNDICE B – Parametrização do método GMRES

Antes de se iniciar as simulações com resolução de SELs com o método GMRES précondicionado é preciso que se definam diversos parâmetros dos pré-condicionadores e do método GMRES, em si. Nesta seção, mostra-se como foram feitos os testes para escolha do melhor conjunto de parâmetros para as simulações subsequentes.

É importante reforçar que a escolha dos parâmetros para o GMRES pré-condicionado é altamente dependente da instância que se deseja resolver. Por esse motivo, os valores definidos para os parâmetros nesta seção são apenas um ponto de partida comum para as simulações realizadas no Capítulo 8.

Para os pré-condicionadores baseados em fatoração incompleta ILUT, ILUC e VBILUT, os parâmetros a se considerar são τ , relacionado com a tolerância para descarte de elementos com valor pequeno durante a fatoração e *p*, que define o número máximo de elementos por linha, conforme explicado na Seção 7.2.2.

Nos pré-condicionadores ILU(k) e VBILU(k), o parâmetro k controla o nível de fill-in da fatoração, como explicado na Seção 7.2.1. A utilização de valores maiores de k tendem a produzir melhores sistemas pré-condicionados, porém com custos computacionais de geração mais elevados.

Um dos parâmetros a se considerar com o pré-condicionador ARMS é o número de níveis da fatoração, como explicado na Seção 7.2.4. A implementação ARMS disponível na biblioteca ITSOL permite definir também o parâmetro tol_{dd} , relacionado com o grau de dominância da diagonal principal, e o parâmetro $block_{size}$, que define o tamanho dos conjuntos (blocos) independentes gerados a cada nível.

.1 Determinação dos parâmetros para o método GMRES pré-condicionado

A versão do método GMRES implementada na biblioteca ITSOL v2.0 (SAAD, 2017) é o GMRES com reinícios, ou GMRES(m), em que m é número de iterações internas até que o algoritmo seja reiniciado. Nessa versão do método GMRES, como explicado na Seção 7.1.2, a escolha de um valor adequado para o parâmetro m é fundamental para a convergência do método.

Cada um dos parâmetros mencionados, de cada pré-condicionador e do GMRES, possui um intervalo de valores aceitáveis que é definido de acordo com as características da instância. Quando possível, buscou-se referências na literatura para a escolha desse intervalo de valores. De maneira a evitar um número exageradamente grande de combinações, o conjunto de valores definidos para cada parâmetro foi restrito a poucos elementos, mas que representassem intervalos de valores coerentes com as características das matrizes utilizadas nos testes com o método GMRES pré-condicionado. A Tabela B1 resume os valores testados para cada parâmetro Para estes testes, considerou-se que as melhores combinações de parâmetros fossem as que levassem a um menor tempo total de processamento, no geral.

Método	Parâmetro	Valores testados
GMRES(m)	m	30, 50, 100, 250
	τ	$10^{-1}, 10^{-3}, 10^{-6}, 10^{-9}$
ILUI, ILUC, VBILUI	р	15, 50, 100, grauMaximo
ILU(k), VBILU(k)	k	0, 1, 2, 3, 4
ARMS	num_niveis	3, 5, 10
	tol_dd	0.1, 0.4, 0.7
	block_size	30, 100, $\lfloor grauMaximo/2 \rfloor$

Tabela B1 – Parâmetros dos pré-condicionadores e respectivos intervalos de valores utilizados nos testes.

Para GMRES(m), pode-se encontrar na literatura trabalhos que utilizaram GMRES(20) (BENZI; HAWS; TUMA, 2000; DUFF; KOSTER, 2001), GMRES(30) (CAMATA et al., 2012), GMRES(50) (CHOW; SAAD, 1997), GMRES(60) (OSEI-KUFFUOR; SAAD, 2010), GMRES(100) ((LI; SAAD; SOSONKINA, 2003)), entre outros. Devido às dimensões das instâncias utilizadas nos testes conduzidos para redução do custo computacional do método GMRES précondicionado deste trabalho (Capítulo 8), optou-se por favorecer valores maiores para este parâmetro. Nos testes realizados para definição dos valores dos parâmetros, os valores de *m* escolhidos para GMRES(m) foram 30, 50, 100 e 250.

Exemplos de valores encontrados na literatura para parâmetro τ usado na fatoração incompleta com *threshold* passam por $\tau = 10^{-1}$ (BENZI; HAWS; TUMA, 2000; DUFF; KOS-TER, 2001), $\tau = 10^{-2}$ (BENZI; SZYLD; DUIN, 1999), $\tau = 10^{-3}$ (BENZI; SZYLD; DUIN, 1999; SAAD; SUCHOMEL, 2002), $\tau = 10^{-4}$ e $\tau = 10^{-5}$ (BENZI; SZYLD; DUIN, 1999; LI; SAAD; SOSONKINA, 2003), para citar alguns. Para o parâmetro *p*, podem-se encontrar *p* = 5 (BENZI; HAWS; TUMA, 2000), *p* = 10 (BENZI; SZYLD; DUIN, 1999), *p*=15 (SOULÄI-MANI; SALAH; SAAD, 2002), *p*=30 (CHOW; SAAD, 1997), *p*=50 (SAAD; SUCHOMEL, 2002), *p*=60 (LI; SAAD; SOSONKINA, 2003), entre outros. Em (BENZI; HAWS; TUMA, 2000, p.1345-1346), os autores reconhecem que os valores pequenos de τ e *p* utilizados em seu trabalho são incomuns na prática e que "geralmente, tolerâncias (τ) muito menores e valores de *p* muito maiores são usados, particularmente para problemas difíceis". Por este motivo, em virtude das dimensões das matrizes utilizadas nos testes deste trabalho com o método GMRES pré-condicionado, optou-se por incluir valores maiores de *p* e valores menores de τ que os normalmente encontrados na literatura. Ainda, como também enfatiza (CHOW; SAAD, 1997), essa escolha implica em pré-condicionadores mais robustos e pode ser crucial para a convergência do método GMRES pré-condicionado em instâncias mais difíceis. Deste modo, nos testes para escolha de parâmetros para o método GMRES, os valores definidos para τ foram 10^{-1} , 10^{-3} , 10^{-6} e 10^{-9} . Os valores de *p* escolhidos foram 15, 50, 100 e o valor do maior grau entre os vértices do grafo correspondente à matriz de entrada.

O parâmetro k dos pré-condicionadores baseados no ILU(k) assume um variado conjunto de valores na literatura. Por exemplo, nos trabalhos de (BENZI; SZYLD; DUIN, 1999; DUFF; KOSTER, 2001) utiliza-se ILU(0) e ILU(1), e em (LUGON; CATABRIGA, 2013b), são feitos testes com ILU(0), ILU(4), ILU(8), ILU(12), ILU(16), ILU(20). Neste trabalho, devido às dimensões das instâncias testadas, valores grandes de k poderiam demandar muito tempo de processamento e, mesmo, exaurir os recursos computacionais da máquina. Veja (LUGON; CATABRIGA, 2013b) para comparações do *fill-in* resultante de diferentes valores de k, por exemplo. Por isso utilizou-se valores pequenos de k, entre 0 e 4, nos testes para a escolha dos valores dos parâmetros do método GMRES.

Para o parâmetro *num_niveis* do ARMS, pode-se encontrar valores de *num_niveis*=4 (OSEI-KUFFUOR; SAAD, 2010) e *num_niveis*=5 (SAAD; SUCHOMEL, 2002), por exemplo. Nos testes deste trabalho, foram usados os valores 3, 5 e 10 de maneira empírica. Não se encontrou referências sobre os parâmetros *tol_dd* e *block_size* do ARMS na literatura. Para o parâmetro *tol_dd*, que admite valores entre 0 e 1, foram escolhidos 0.1, 0.4 e 0.7 e para o parâmetro *block_size* os valores 30, 100 e o (piso) do maior grau entre os vértices do grafo dividido por 2.

.2 Execuções e parâmetros escolhidos

Para cada pré-condicionador, cada possível combinação de parâmetros foi executada em um conjunto de 35 instâncias da *SuiteSparse Matrix Collection* com até 150 mil vértices. As instâncias foram selecionadas de cinco áreas diferentes: 2D/3D, *circuit simulation*, *computati*-

onal fluid dynamics, optimization e *structural*. A Tabela B2 mostra as instâncias selecionadas e as respectivas áreas de aplicação dos problemas que as originaram.

Após a seleção dos parâmetros, o método GMRES pré-condicionado foi utilizado nas instâncias selecionadas com as diferentes combinações de parâmetros dos pré-condicionadores. As iterações foram encerradas quando excederam |n|, em que n é o número de linhas da matriz, ou quando a norma do resíduo ficou menor que 10^{-8} . Quando o vetor b não foi fornecido, utilizou-se um vetor de valores aleatórios entre -1 e 1.

Como mencionado, a escolha do parâmetro *m*, em GMRES(m), é fundamental para o comportamento de convergência do GMRES. Para os testes deste trabalho, optou-se por fixar um valor de *m* em todas as execuções do método GMRES. O valor de *m* escolhido foi aquele que obteve o menor somatório da métrica ρ quanto ao tempo de execução para execuções com todas os pré-condicionadores e suas possíveis combinações de parâmetros. Isto é, para cada valor de *m* listado na Tabela B1, cada pré-condicionador foi executado com todas as combinações de parâmetros possíveis (também listados na referida tabela), e calculou-se o valor de ρ da soma dos tempos de cada uma delas.

A compilação desses resultados é exibida na Tabela B3. Como pode ser observado, o menor valor de $\sum \rho$ para GMRES(m) foi m = 50. Isto é, na média, as execuções com GMRES(50) com todas as outras combinações de parâmetros de pré-condicionadores obtiveram os menores tempos, em geral, segundo a métrica ρ . Então, esse foi o valor utilizado para GMRES(m) nos testes do Capítulo 8.

Após a definição de m = 50 para as simulações, buscou-se identificar quais valores de parâmetros dos pré-condicionadores levavam o GMRES(50) a convergir com os menores tempos. Assim, calculou-se o valor de $\sum \rho$ (equação 6.1) quanto à média das somas dos tempos nas execuções com GMRES(50), para cada valor possível dos parâmetros listados. As Tabelas B4 a B9 mostram os valores de $\sum \rho$ para cada parâmetro.

Os melhores valores para τ nos testes foram obtidos com $\tau(10^{-3})$, vide Tabela B4. Seguindo os valores mostrados na Tabela B5, o valor adotado para *p* foi *p*=50. O valor escolhido para o parâmetro ILU(k) foi *k*=2, conforme a Tabela B6. Os parâmetros escolhidos para o pré-condicionador ARMS foram *num_niveis*=5, *tol_dd*=0.4, por um pequena margem, e *block_size*=30, como pode ser visto nas Tabelas B7 a B9.

É natural que, devido a variedade de características presentes nas instâncias testadas (número de vértices, número de elementos não nulos e, principalmente, número de condição,

para citar algumas), a escolha de parâmetros não seja a ideal para todas elas. Contudo, acreditase que os valores obtidos nesses testes sejam pontos de partida adequados para simulações com instâncias de maior porte, além de estarem em consonância com valores usados por outros trabalhos na literatura.

Área de aplicação	Instância	n	nnz
	cant	62451	4007383
	consph	83334	6010480
2D/3D	cop20k_A	121192	2624331
	Dubcova2	65025	1030225
	Dubcova3	146689	3636643
	torso2	115967	1033473
	ASIC_100ks	99190	578890
Circuit simulation	G2_circuit	150102	726674
	bcircuit	68902	375558
	cfd1	70656	1825580
	cfd2	123440	3085406
Computational fluid dynamics	lung2	109460	492564
	shallow_water1	81920	327680
	venkat01	62424	1717792
	blockqp1	60012	640033
	brainpc2	27607	179395
	c-57	37833	403373
	cont-201	80595	438795
Outiningtion	cvxbqp1	50000	349968
Optimization	dixmaanl	60000	299998
	gridgena	48962	512084
	minsurfo	40806	203622
	ncvxqp1	12111	73963
	qpband	20000	45000
	apache1	80800	542184
	bcsstk37	25503	1140977
	bodyy6	19366	134208
	cbuckle	13681	676515
	msc23052	23052	1142686
Structural	olafu	16146	1015156
	raefsky4	19779	1316789
	ship_001	34920	3896496
	smt	25710	3749582
	sparsine	50000	1548988
	vanbody	47072	2329056

Tabela B2 – Áreas de aplicação de 35 instâncias da *SuiteSparse Matrix Collection* usadas nos testes. O número de vértices é indicado por *n* e o número de coeficientes não nulos, por *nnz*.

Tabela B3 – Parametrização do método GMRES: valores de $\sum \rho$ para o parâmetro *m* nas 35 instâncias selecionadas, com todas as combinações de parâmetros dos pré-condicionadores

	GMRES(30)	GMRES(50)	GMRES(100)	GMRES(250)
$\sum \rho_t$	4.473	2.246	2.285	3.737

Tabela B4 – Parametrização do método GMRES(m=50): valores de $\Sigma \rho$ para o parâmetro τ

	$ au(10^-1)$	$\tau(10^-3)$	$ au(10^-6)$	$\tau(10^-9)$
Σho	19.80	12.30	32.68	100.60

Tabela B5 – Parametrização do método GMRES(m=50): valores de $\sum \rho$ para o parâmetro p

	p(15)	p(50)	p(100)	p(grauMaximo)
Σho	11.71	11.21	17.39	17.30

Tabela B6 – Parametrização do método GMRES(m=50): valores de $\sum \rho$ para o parâmetro k

	ILU(0)	ILU(1)	ILU(2)	ILU(3)	ILU(4)
Σho	5.67	2.33	4.33	7.24	9.27

Tabela B7 – Parametrização do método GMRES(m=50): valores de $\Sigma \rho$ para o parâmetro *num_niveis*

	num_niveis(3)	num_niveis(5)	num_niveis(10)
Σho	4.11	7.50	30.08

Tabela B8 – Parametrização do método GMRES(m=50): valores de $\Sigma \rho$ para o parâmetro tol_dd

$$\frac{\text{tol}_dd(0.1)}{\sum \rho} \quad \frac{\text{4.19}}{21.55} \quad \frac{21.55}{47.95}$$

Tabela B9 – Parametrização do método GMRES(m=50): valores de $\sum \rho$ para o parâmetro *block_size*

	block_size(30)	block_size(100)	block_size(grauMaximo/2)
Σρ	25.99	4.19	3.37