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Abstract
Plant defense pathways play a critical role in mediating tritrophic interactions between

plants, herbivores, and natural enemies. While the impact of plant defense pathway stimula-

tion on natural enemies has been extensively explored aboveground, belowground ramifi-

cations of plant defense pathway stimulation are equally important in regulating

subterranean pests and still require more attention. Here we investigate the effect of above-

ground stimulation of the salicylic acid pathway through foliar application of the elicitor

methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steiner-
nema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diapre-
pesi belowground following aboveground plant stimulation by an elicitor. In four-choice

olfactometer assays, citrus plants treated with foliar applications of methyl salicylate

recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls.

Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of

methyl salicylate revealed production of d-limonene, which was absent in negative controls.

The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice

olfactometer trials. These results reinforce the critical role of plant defense pathways in

mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling

belowground, and hint at sophisticated plant responses to pest complexes.

Introduction
Plants adopt constitutive and induced strategies to defend against herbivores and pathogens
both aboveground and belowground [1, 2]. These defenses can act directly against the offending
herbivore, producing or releasing toxins that deter feeding behavior [3]. Indirectly, these
defenses can result in the release of herbivore induced plant volatiles that recruit natural
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enemies [3]. These tritrophic interactions involving recruitment of natural enemies have been
observed aboveground [4, 5] and belowground where feeding by larvae of Diabrotica virgifera
virgifera results in release of E-β caryophyllene and recruits the entomopathogenic nematode
Heterhorabditis megidis [6]. Similarly, in citrus, feeding belowground by larvae of the weevil
Diaprepes abbreviatus results in release of pregeijerene which recruits a wide variety of nema-
todes, including entomopathogenic nematodes that are natural enemies ofD. abbreviatus [7–9].

These tritrophic interactions between plants, herbivores, and their natural enemies above
and belowground are mediated by stimulation of defense pathways within plants [3]. Stimula-
tion of these plant defense pathways can occur through herbivory [10], plant-to-plant commu-
nication [11], or application of chemicals that elicit plant defense responses [12]. Among a
myriad of plant defense pathways, a prominent pathway that has important roles in plant
defense against both pathogens and herbivores is the salicylic acid pathway [13, 14]. It is so
called because of the prominent role salicylic acid plays in stimulating plant defense and its
known role in recruiting natural enemies aboveground [15].

In addition to its role in recruiting natural enemies aboveground, the salicylic acid pathway
also mediates interactions between herbivores and pathogens. Stimulation of the salicylic acid
pathway through synthetic elicitors can reduce bacterial lesion development [16] and can affect
plant resistance to herbivores [17]. In addition, the sequence of induction can have ramifications
for plant defense pathway stimulation and herbivore-pathogen resistance [16, 18]. Multiple stim-
ulation of plant defense pathways also has tritrophic effects on natural enemies aboveground [19].

Less is known regarding the role the salicylic acid plant defense pathways play in mediating
plant responses belowground. While stimulation of plant defenses aboveground has effects
belowground, and vice versa, the dynamic nature of plant defense pathways in mediating this
communication between the terrestrial and subterranean environments is less well understood
[20–22]. Effects of plant defense stimulation aboveground on interactions belowground are
varied and occasionally nonexistent [1, 22, 23]. Similarly, the role of plant defense pathways in
stimulating production of herbivore induced plant volatiles for the recruitment of natural ene-
mies belowground is not well understood.

Here, we explore the effect of stimulating the salicylic acid pathway aboveground on recruit-
ment of natural enemies belowground. To do so, we applied an elicitor, methyl salicylate, to the
leaves of citrus seedlings while monitoring the response of the entomopathogenic nematode
Steinernema diaprepesi belowground both in the presence and absence of the larval weevil her-
bivore D. abbreviatus, a prominent polyphagous root pest of citrus and many other crops. The
entomopathogenic nematode, S. diaprepesi, may be the most effective natural enemy of this
polyphagous root herbivore and therefore we focused on this particular nematode as part of
our multi-trophic investigation [24, 25].

Materials and Methods
To evaluate the effect of plant defense pathway stimulation on recruitment of natural enemies
belowground, particularly in the case of the salicylic acid pathway, 30mL of 130μl/Lmethyl
salicylate was applied to the aboveground portion of citrus seedlings while nematode response
was monitored in olfactometer bioassays belowground. Based on the nematode response, vola-
tiles were collected from the roots of treated and control plants. Volatiles unique to treated
plants were then evaluated for activity in two-choice bioassays.

Organisms
Response of the infective juvenile stage of the entomopathogenic nematode Steinernema dia-
prepesi to 20 cm citrus Swingle Citrumelo (Citrus paradisiMacf. × Poncirus trifoliata L. Raf.)

Salicylic Acid Pathway Recruits Entomopathogenic Nematodes

PLOS ONE | DOI:10.1371/journal.pone.0154712 May 3, 2016 2 / 9

Competing Interests: "The authors have declared
that no competing interests exist."



seedlings was evaluated in four-choice olfactometers. S. diaprepesi infective juveniles were orig-
inally collected from sentinel D. abbreviatus larvae in Florida citrus groves and then reared on
Galleria mellonela larvae and collected on White traps [26, 27]. S. diaprepesi infective juveniles
were maintained in shallow tissue culture flasks at 14°C and were used within two weeks after
emergence. Fifth instar D. abbreviatus larvae used in methyl salicylate bioassay trials were
reared on artificial diet from eggs laid by adults collected from Florida citrus groves [28, 29].

Methyl Salicylate Bioassays
The attraction of the entomopathogenic nematode S. diaprepesi to citrus seedlings treated with
foliar applications of elicitors in the presence and absence of belowground herbivory by D.
abbreviatus larvae was evaluated in four-choice olfactometers (similar to six-choice olfactome-
ters used for evaluating nematode behavior [6]) filled with clean autoclaved sand adjusted to
12% moisture by volume. Four-choice olfactometers were constructed from 4×4×4 inch
(10.16 × 10.16 × 10.16cm) containers (Tupperware Corporation, Orlando, FL) perforated on
each of the four sides to accomodate 2 inch (5.08cm) PVC pipe elbows. Connections were
sealed with insulation and one citrus seedling was placed in each of the elbows. After allowing
48 hours for acclimatization, plants were treated with elicitor sprays. In each four-choice olfac-
tometer, two opposing seedlings received treatment with methyl salicylate (MeSA) and two
opposing seedlings were left as untreated, negative controls. Methyl salicylate treated seedlings
each received 30mL of 130μl/Lmethyl salicylate (Sigma; CAS:119-36-8) by foliar spray in a
Tween 20 and ethanol solution at 0.1 and 2.5mL/L respectively. Control seedlings did not
receive the elicitor, only the Tween 20 and ethanol solution. For experiments involving D.
abbreviatus herbivory, five approximately five week old D. abbreviatus larvae were placed
directly on the roots of methyl salicylate treated and control seedlings. Forty-eight hours after
application of the elicitors, approximately 2500 S. diaprepesi infective juveniles were released
into the center of the olfactometer. After an additional 24 hours, nematodes were extracted
from the responding arms using sugar centrifugation, then counted [30].

Volatile Collection and Analysis
To investigate the potential role of volatile-mediated nematode attraction in the four arm olfac-
tometers, volatiles were collected from the root systems of untreated citrus seedlings and seed-
lings treated with methyl salicylate. Volatiles were collected 48 hours after application of
elicitors for one hour onto 30mgHayesepQ adsorbent filters (Volatile Assay Systems; VAS) at
a flow rate of 160ml/min. Extracted volatiles were eluted off of the collection filters with two ali-
quots of 75μlmethylene chloride. Five microliters of 1.5μg/μl nonyl acetate was added as an
internal standard. A one microliter aliquot of each sample was then injected onto a Clarus 500
gas chromatograph—mass spectrometer (PerkinElmer, Waltham, MA) containing a 30m ×
0.25mm−ID DB-5 capillary column. The column was held at 35°C for 3 minutes after injection
and then increased 10°C per minute until reaching 260°C where it remained for an additional
five minutes. Helium was used as a carrier gas at a flow rate of 2 ml per minute. Electron ioniza-
tion spectra were compared with references found in the NIST Mass Spectral Library (2008)
and then confirmed with available standards. Differences in volatile profiles between treated
and control plants were examined and quantified by comparison to the nonyl-acetate internal
standard.

Volatile Bioassays
To investigate whether d-limonene, primarily responsible for the differences between volatile
profiles of methyl salicylate treated and untreated control plants (see Results), may attract S.
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diaprepesi, two-choice sand-filled assays consisting of inverted 1.5 inch (3.81 cm) diameter
PVC T-Tubes, capped on each end, were used. Individual assay tubes were filled with clean
autoclaved sand adjusted to 12% moisture by volume after placing filter paper treated with
either a blank control, 10μl of water, or 10μl aliquots of doses of d-limonene in water for a total
of 17ng, 170ng, 1.7μg, or17μg at opposing ends of the olfactometer. Approximately 2000 S. dia-
prepesi infective juveniles were applied to the central orifice of each olfactometer. After 24
hours, responding nematodes were extracted from the sand in each PVC cap using Baermann
funnels and counted [31].

Statistical Analysis
S. diaprepesi infective juvenile response to salicylate-treated citrus plants in four-choice olfac-
tometers was summed within each replicate for each treatment to avoid aggregation effects
then examined for normality by visual inspection with quantile-quantile plots and Shapiro-
Wilk’s test. Wilcoxon signed rank tests were then used to evaluate preference. Differences in
volatile profiles between treated and control plants were quantified through comparison to
internal standards. Mean quantities of collected volatiles were calculated and bootstrapped to
determine 95 percent confidence intervals. S. diaprepesi infective juvenile preference for doses
of d-limonene in two-choice olfactometers was evaluated by determining the percentage of
infective juveniles responding to d-limonene in each replicate for each dose. Preference per-
centages were examined for normality through visual inspection with quantile-quantile plots
and interrogation with Shapiro-Wilk’s test and subsequently evaluated for differences from a
50% response of no preference through one-sided t-tests with Bonferroni correction (reported
as padj). Data were collated in Microsoft Excel 2011 and analyzed using R version 3.2.2 [32] in
the R Studio version 0.99.484 development environment [33]. Analysis was facilitated using
the packages xlsx [34] for interface with Microsoft Excel, tidyr [35] and dplyr [36] for data
arrangement and summary statistics, ggplot2 [37] for graphics capabilities, and scales for visual
representation of scaling [38].

Results

Methyl Salicylate Bioassays
The infective juveniles of the entomopathogenic nematode S. diaprepesi significantly (p = 0.01)
preferred (27.7%; 95% Confidence Interval: 16.4%, 38.9% difference) plants treated with
methyl salicylate (MeSA) over control plants in the absence of a weevil pest (Fig 1). Data were
non-normal by visual inspection and interrogation with the Shapiro-Wilk normality test
(W = 0.83, p = 0.004). In the presence of belowground feeding by the insect herbivore D. abbre-
viatus on both the control and treated plants, methyl salicylate treated plants were not signifi-
cantly (p = 0.25) more attractive than controls (Fig 1).

Volatile Collection and Analysis
d-Limonene (retention time 14.38) was present in root volatile profiles of methyl salicylate
treated plants but not detectable in the controls (Fig 2). An average of 0.61ng/μl (from 0.04 to
2.22ng/μl) d-limonene was detected in eluted samples from methyl salicylate treated plants;
total amount of volatile d-limonene collected averaged 91.5ng.

Volatile Bioassays
Entomopathogenic nematode S. diaprepesi infective juveniles significantly (padj = 0.02) pre-
ferred d-limonene at doses of 17μg in two-choice olfactometer assays as compared with
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Fig 1. S. diaprepesi attraction to methyl salicylate (MeSA) treated citrus seedlings. Entomopathogenic nematode
S. diaprepesi infective juvenile response to citrus seedlings treated aboveground with methyl salicylate in four-choice
sand filled olfactometers both in the presence and absence of belowground herbivory by D. abbreviatusweevil larvae
(n = 21). Bars and error bars denote mean number of respondents and standard error respectively. S. diaprepesi
infective juveniles significantly preferred plants treated with methyl salicylate (MeSA) over control plants in the
absence of weevil feeding damage.

doi:10.1371/journal.pone.0154712.g001

Fig 2. Volatile Profiles of Methyl Salicylate Treated and Control Plants. Sample chromatograms with volatile profiles of methyl salicylate treated
(above) and control (below) plants. d-limonene (retention time 14.38; from 0.04 to 2.22ng) was present in treated plants, but not in controls (n = 10).
Nonyl acetate was used as an internal standard. Decane (a) was also recovered in both standards and controls.

doi:10.1371/journal.pone.0154712.g002
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negative controls (Fig 3). Data were not significantly different from normal by visual inspection
with quantile-quantile plots and interrogation with the Shapiro-Wilk test (p>0.28). Prefer-
ences for d-limonene at other doses were not significantly different from 50% (padj > 0.32).

Discussion
Stimulation of the salicylic acid pathway through aboveground application of methyl salicylate
resulted in recruitment of the entomopathogenic nematode S. diaprepesi. Herbivory by larvae
of the weevil D. abbreviatus attenuates this response. Attraction in the absence of the weevil
herbivore is likely mediated by belowground root release of the volatile d-limonene. This result
suggests that insect larval feeding may induce a competitive plant defense response
belowground.

These results highlight, for what we believe to be the first time, the direct role of the salicylic
acid pathway in releasing induced plant volatiles for the recruitment of entomopathogenic
nematode natural enemies belowground. While previous work has shown that herbivory
belowground by the weevil D. abbreviatus can induce production of pregeijerene and attract
entomopathogenic nematodes [8], the effects of stimulating the salicylic acid pathway on
recruitment of subterranean natural enemies suggests a broader role for plant defense signaling
for belowground natural enemies of herbivores.

This signaling serves little purpose if no receiver perceives the stimulus. The response of
entomopathogenic nematodes to the d-limonene cue suggests that the entomopathogenic nem-
atodes in this system are highly attuned to the volatiles in their environment. Entomopatho-
genic nematodes have been shown to respond to herbivory in connection to a variety of plant
and herbivore species and to a variety of induced host plant volatiles belowground (e.g., E-β
caryophyllene and pregeijerene) [6, 8, 39]. In previous work, however, such induced host plant
volatiles were produced through herbivory or mechanical damage of a potential host. In our
case, the d-limonene cue was released after stimulation of the salicylic acid pathway above-
ground and in the absence of weevil herbivory. Interestingly, d-limonene is a terpene related to

Fig 3. S. diaprepesi preference for d-limonene. Entomopathogenic nematode S. diaprepesi infective juvenile
preference for doses of d-limonene as evaluated in two-choice sand filled olfactometers (n = 48). 50% response
(horizontal blue line) indicates no preference. Points and error bars denote mean and standard error respectively. S.
diaprepesi significantly preferred d-limonene at doses of 17μg.

doi:10.1371/journal.pone.0154712.g003
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belowground signals indentified in earlier work [6, 8]. This may provide a different and com-
plementary information pathway for plant defense belowground and does not simply signal
presence of a host herbivore feeding on the roots.

Indeed, feeding by the weevil herbivore seemed to attenuate the response of belowground
entomopathogenic nematodes. In the absence of salicylic acid pathway stimulation, herbivory
by D. abbreviatus on Swingle Citrumelo citrus seedlings recruits entomopathogenic nematodes
through release of the herbivore-induced volatile pregeijerene within twenty-four hours [8]. In
the absence of herbivory, salicylic acid pathway stimulation recruited entomopathogenic nem-
atodes through release of d-limonene. In the case where herbivory by larvae of the weevil D.
abbreviatus was coincident with stimulation of the salicylic acid pathway, entomopathogenic
nematode response was attenuated in this investigation. This interaction suggests a possible
case of crosstalk between plant defense pathways. Insect herbivory has been shown in many
instances to stimulate the jasmonic acid pathway [2, 14]. The jasmonic acid pathway, when
stimulated, can antagonistically interact with the salicylic acid pathway, in some cases shutting
down plant defense response [14].

While the jasmonic acid pathway is traditionally associated with plant responses to herbiv-
ory, stimulation of the salicylic acid pathway is often associated with defense against biotrophic
pathogens [14]. In this case, its role in recruiting natural enemies may seem counter intuitive.
Indeed the evolution and advantages of such attraction remain to be explored. One possible
explanation is that the citrus-D. abbreviatus-entomopathogenic nematode interaction is not a
simple closed system. There is a fourth, and prominent, player. The oomycete Phytophthora is
frequently found in association with D. abbreviatus herbivory. Wounding of plant roots by D.
abbreviatus opens a passage for infection by Phytophthora causing much greater damage to cit-
rus trees and other plants than weevil herbivory alone [40]. The Phytophthora-Diaprepes weevil
system is a complex that must be considered when developing management strategies for com-
mercial citrus and plant production [41]. Because Phytophthora infections frequently accom-
pany belowground weevil herbivory, recruitment of entomopathogenic nematodes by
stimulation of the salicylic acid pathway may be an effective response for defense against attack
by both an insect herbivore and a phytopathogen. We are currently exploring this hypothesis.
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