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How can individual acts amount to coherent systems of interaction? In this paper, we attempt to answer this key question by
suggesting that there is a place for cities in the way we coordinate seemingly chaotic decisions. We look into the elementary
processes of social interaction exploring a particular concept, “social entropy,” or how social systems deal with uncertainty and
unpredictability in the transition from individual actions to systems of interaction. Examining possibilities that (i) actions rely
on informational differences latent in their environments and that (ii) the city itself is an information environment to actions, we
propose that (iii) space becomes a form of creating differences in the probabilities of interaction.We investigate this process through
simulations of distinct material scenarios, to find that space is a necessary but not sufficient condition for the reduction of entropy.
Finally, we suggest that states and fluctuations of entropy are a vital part of social reproduction and reveal a deep connection between
social, informational, and spatial systems.

1. Introduction: Challenges for
Social Reproduction

Among a number of questions that might linger in the
sociological imagination [1], one refers to social systems in a
particularly acute way: how do we put our actions together
in a way to create a society? How can individual actions
develop into something like a working, coherent system of
interactions? These questions feel more crucial if we think
of the seemingly increasing challenges faced by contempo-
rary societies. Part of these challenges has to do with the
growing profusion of information and messages circulating
within social systems (see [2]). For instance, computational
processing power doubles every eighteen months, while the
volume of data doubles every twelve months [3, 4], making
the processing of available information impossible in the long
run. Interestingly, Luhmann [5] sees this problem bringing
increasing difficulties for dealing with possibilities of action
and how we put them together as interaction systems, a

challenge of selection that seems more and more imposed on
our daily experiences. According to Luhmann, a key question
faced by social systems is as follows: “among the possibilities
of information and interaction, which ones will be actual-
ized?” Considering that we have more possibilities than we
can know about, the very way we build our interactions
depends on this selection. Crucially, having more options
ends up bringing more difficulty in anticipating what will
happen next. For all intents and purposes, more channels of
information and possibilities of action mean less certainty
and predictability.

This apparent difficulty has a name: entropy, a measure
of the probability of events and recognizing order in the face
of unpredictability and uncertainty. In fact, social systems
face entropy all the time. Our daily actions are riddled with
uncertainty, from daily choices we have to make to the
way they will play out once they merge into the actions of
other people. But seeing that requires a somewhat unusual
perspective, one aware of the conditions through which
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choices are made, conditions that are prior to our actions
and have to be there so these possibilities may be known and
decided upon.

We suggest that among all systems of communication
created to give us information about what is available out
there, so that we can have counterparts in interaction, there
is a crucial, rather old one: the city. We will propose that
possibilities of interaction are presented to us and to some
extent preselected for us by our own environment and that
this environment is deeply spatial, shaped in the form of
cities. Cities have historically been a key part of the process
of information, selection, and actualization of actions. We
discuss in this article how this is the case: how cities play
a key role in how seemingly chaotic decisions amount to
coherent systems of interaction. In short, we are interested
in knowing how social organization emerges once its material
and informational conditions are taken simultaneously into
account, namely, in the form of an urban environment.

Essentially, we propose to track the passage from possibil-
ities of action surrounding our decisions to the performance
of action in our daily lives and the variation of entropy that
these passages entail. We suggest that looking carefully into
the place of cities in those passages will clarify the constant
ordering/disordering of action, helping to explain social
reproduction more clearly. We do so arguing that city spaces
have the effect of reducing uncertainty and unpredictability
in the transition from individual actions to ensembles of
interaction. As social agents, we would unconsciously engage
into processes of increasing and decreasing entropywhenever
we perform socially in the city, that is, whenever our actions
have effects on the world. Since the organization of actions in
our daily lives transcends local contexts and is largely beyond
observation, we designed simulations in silico to try and
clarify the effect of cities. These computational experiments
are intended to explore how every time we go about the
city, we participate in the fragile but recursive emergence of
interaction systems.

Once the problem is set, Section 2 discusses entropy,
concentrating on its developments in information and social
theories in order to reach a little explored instance of
social entropy active in the coordination of action. Section 3
establishes a presence for cities as information environment,
while Section 4 advances the city as a frame of reference to
actions and how they coevolve into systems. In turn, Section 5
hypothesizes how the reduction of entropy mediated by
the city becomes an essential part of the self-organization
of action. We examine this process in Section 6 proposing
an agent based model (ABM) able to assess the role of
different social and spatial factors in entropy, such as personal
orientations and an extensive space creating friction for
mobile agents able to create and retrieve information from
their environment. In the final section, we discuss what
our theory and model say about the role of cities in social
interaction.

2. What Is Social Entropy?

The concept of entropy, a term derived from the Greek word
tropos, “transformation,” and introduced by the German

physicist Rudolf Clausius in 1865, originated in the physical
systems context, specifically the second law of thermodynam-
ics, which describes the irreversible process of energy dissipa-
tion. It was advanced by Ludwig Boltzmann’s connection of
entropy and probability in 1877, addressing nonequilibrium
processes and linking macroscopic properties of a system to
its microscopic disorder. There are more possible disordered
states than ordered ones, so systems are likely to move
toward disorder. From the infinite variety of dynamic states,
entropy is a measure of the propensity for certain states. It
characterizes each macroscopic state in terms of the number
of ways of achieving this state [6].

However, entropy is not an exclusive property of physical
systems. The property was translated into “human affairs”
by Shannon [7], in the context of information transmission.
Shannon sees entropy related to the probability of observing
certain events over time and the tendency to increase the
variability of entities, leading to uncertainty and unpre-
dictability, aswe shall see below. In turn, a number of theorists
have seen entropy in societies as well. They have explored
Shannon’s measure of information since the 1960s in a field
that came to be known as Social Entropy Theory (SET) (e.g.,
[8, 9]). Charvat et al. [10, 11] proposed notions like “semantic
entropy” in decision making and “entropy of behaviour” to
measure the homogeneity of needs and dependence between
systems, while Horan [12] developed a measure of propor-
tional reduction of uncertainty. Threats to the social system
come not only from the accumulation of internally produced
entropy, but also from the external environment. Entropywas
essentially seen as the opposite of information, something to
be controlled by system boundaries (see [13]).

Certain arguments are particularly interesting to our
approach. Galtung [14] analyzed entropy at micro- and
macroscopic levels using two basic types, actor entropy and
interaction entropy. Strong forces would push a social system
into a pendulum, oscillating between low- and high-entropy
states. The overall outcome of actions is not random, since
individual agents would act within generalized roles, follow
generalized norms, and pursue generalized goals. Social
norms, rules, culture, language, and other “steering media”
of a social system [15] would be constraints on behaviour
and keep it from reaching maximum entropy. The degree
of entropy would fluctuate cyclically or noncyclically, rather
than maintain a constant level. Bailey [16, 17] advanced this
idea by posing a question: how can social systems increase
their organizational complexity or decrease their entropy
over time? He argues that “society does face a number of
recurring needs and thus has recurring goals, which are met
through recurring actions. Inasmuch as these actions are
replicated, they are said to be orderly [. . .]. It is this degree
of order, which results from the patterned replication of
social action over time that results in a degree of entropy less
than maximum. If the constraints on action were removed,
it is reasonable to expect that society would not decrease
its entropy levels but might in fact move in the direction of
increased entropy levels” [16, page 127]. We shall see through
our model that the reduction of entropy does not have to
depend on routine or constraints over action as Galtung and
Bailey argue but may emerge out of the very coordination of
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actions between agents pursuing changing goals, mediated by
an informational space.

Other approaches take societies as collections of agents
interacting in space-time within geographic boundaries [18].
Bailey [19, 20] also related entropy to measures of city size,
population size, and territory. Features from social cybernet-
ics were also introduced, such as context-dependency and
the self-reflexivity of agents and applied to issues like the
division of labour, problematic communication, adaptation
in societies of growing complexity, the role of information
in decision making, and the reduction of entropy [21, 22].
However, such conceptualizations have a thin spatiality. In
them, space is mostly a background, not a part of the problem
of entropy or its resolution in time. Cities are virtually absent
as part of the environment of social systems and as complex
systems in their own right. In turn, we will not find much
support in spatial disciplines either: they havemostly ignored
the conditions of production of actions and, therefore,
the place of cities in it. Beyond other means to stimulate
social organization usually seen in social theory (see [23]),
our aim is to deal with space as an active environmental
condition and a steering medium in the coordination of
action. In order to include cities systemically, we suggest
getting back to our initial question: how can seemingly unpre-
dictable individual acts amount to interconnected systems of
action?

We find a way to answer this question in Luhmann [5]:
a social system faces a number of possibilities of action
larger than it can convert into actual actions, which in
turn imposes the need of selection. Luhmann understands
societies as a network of interconnected subsystems where
events are communicatively formed. The structural elements
that enable these subsystems are fragile: the fleeting but
successive moments of selection and connection between
actions.The reproduction of a social system requires the abil-
ity to produce these connections. In societies with growing
amounts of information and agency, the number of possible
interactions grows exponentially. Accordingly, we have a
growing difficulty of knowing these possibilities and choosing
among them. We have an increase in a type of complexity
that Luhmann calls “unstructured”: an entropic informational
complexity that may at any moment lead into semantic and
organizational loss. Rather than describing the actual course
of events, this is an approach designed to throw light on
counterfactual possibilities and risks that social systems face
all the time. Luhmann uncovers the effort we do every day,
choosing agents and activities to interact with in order to
reduce risks of not performing at all [5, page 287].

In order to fully appreciate this scenario of social sys-
tems prone to entropy, let us get back to the pioneering
definition of Shannon [7]. Shannon defined entropy in the
context of communication. The fundamental problem of
communication is that of reproducing at one point a message
selected at another point, either exactly or approximately.
Messages have meanings, correlated with certain physical
or conceptual entities according to some system. If the
number of messages in a set is finite, entropy is a measure
of the distribution of probabilities that certain messages will
occur.

An example will help clarify what this means as shown in
the following:

Reduction of Entropy in the Construction of Language [7]

(1) Zero-order approximation (symbols independent
and equiprobable):

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJ-
EYVKCQSGHYD QPAAMKBZAACIBZL-HJ-
QD.

(2) First-order approximation (symbols independent but
with frequencies of English text):

OCRO HLI RGWR NMIELWIS EU LL NBNE-
SEBYA TH EEI ALHENHTTPA OOBTTVA
NAH BRL.

(3) Second-order approximation (diagram structure as in
English):

ON IE ANTSOUTINYS ARE T INCTORE ST
BE S DEAMY ACHIN D ILONASIVE TUCO-
OWE AT TEASONARE FUSO TIZIN ANDY
TOBE SEACE CTISBE.

(4) Third-order approximation (trigram structure as in
English):

IN NO IST LAT WHEY CRATICT FROURE
BIRS GROCID PONDENOME OF DEMONS-
TURES OF THE REPTAGIN IS REGOAC-
TIONA OF CRE.

(5) First-order word approximation. Rather than con-
tinue with tetragram, . . ., 𝑛-gram structure, it is easier
and better to jump at this point to word units.
Here words are chosen independently but with their
appropriate frequencies:

REPRESENTING AND SPEEDILY IS AN
GOOD APT OR COME CAN DIFFERENT
NAT-URAL HERE HE THE A IN CAME
THE TO OF TO EXPERT GRAY COME TO
FURNISHES THE LINE MESSAGE HAD BE
THESE.

(6) Second-order word approximation. The word transi-
tion probabilities are correct but no further structure
is included:

THE HEADAND IN FRONTAL ATTACKON
AN ENGLISH WRITER THAT THE CHAR-
ACTER OF THIS POINT IS THEREFORE
ANOTHER METHOD FOR THE LETTERS
THATTHETIMEOFWHOEVERTOLDTHE
PROBLEM FOR AN UNEXPECTED.

In Shannon’s diagram, line (1) shows independent letters
with the same probability of occurrence. On a “first-order”
approximation (line (2)), letters are independent of each
other and have the same probability of appearing in sentences
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that they have in English. In line (3), we have the addition
of the frequency with which letters follow other letters in
pairs in English. On the third-order approximation (line (4)),
letters are randomly ordered according to the likelihood of
association with others in trios. Line (5) shows words chosen
independent to each other but with the same probability of
appearing in sentences that they have in English. Finally,
line (6) comprises the probability that a word is followed by
another specific word. Even without decoding the meanings
of words, a nearly intelligible message is emerging. Differ-
ences in frequency and sequence in letters andwords produce
differences in the probability of occurrence and an increased
probability of certain combinations. In practice, this means
that the message components become more predictable and
intelligible. The reduction of entropy allows communication.

One could argue that Shannon entropy is anything but
semantic. This is a crucial point. Shannon indeed defines
information irrespective of meaning. However, Shannon’s
coauthor in their 1949 book The Mathematical Theory of
Communication, Warren Weaver, had already attempted to
incorporate semantic information into Shannon’s theory.The
argument, recently expanded by Haken and Portugali [24],
shows that Shannon information participates in semantic
information and vice versa: as themind relates to the environ-
ment deflating/inflating information, variations in Shannon
information entail differentmeanings. Furthermore, different
meanings affect the quantity of information, as they are
produced and retrieved through differences in events or
entities, however subject to ambiguities. Aswe shall see below,
for the sake of assessing entropy pragmatically, differences
in semantic information can be sufficiently captured through
Shannon information. This allows one to estimate semantic
entropy through Shannon entropy.

But what does this have to do with social entropy? Soci-
eties are interaction systems. People’s actions are mediated by
information: they have meanings, from personal orientation
[25] to informational [5] and practical contents [26]. Mean-
ings produce informational difference. We recognize actions
through such informational differences, say, in the contents
of utterances or in the tasks we perform with someone. In
principle, the greater the diversity of orientations and actions,
the harder it is to predict what someone’s next action will
be. But there is more to this temporal condition. A state of
high entropy surrounds actions in a potential state, before they
come into being, when a number of possibilities of action lie
ahead. Bringing Shannon’s and Luhmann’s insights together,
the informational problem that societies face on a daily basis
lies in dealing with the selection of actions.

We experience entropy whenever we deal with uncer-
tainty, options, decisions, unpredictable situations, or too
much information, but we rarely realize we do so. Entropy is a
phenomenon “beyond observation”: we cannot see or touch
entropy, even though we experience it on a daily basis. We
are not used to think about the challenges we face in order
to make choices or put our actions together in any workable
sense. The key question here is how such a heightened field
of choices and the taken-for-granted process of selection
involve our environment. We need to understand how cities
are part of the semantic exchanges that constitute collective

action. And the first step here is to understand city space as
information in its own right.

3. The City as Information Environment

Luhmann shows that social systems are immersed in seman-
tic production: meaning becomes their environment. We
wish to further develop this idea exploring urban space as
part of such an environment. In fact, the idea of space as an
environment able to contain social information has gained
great support recently. FromVygotsky [27] toWilson [28] and
Haken and Portugali [24], a number of cognitive properties of
space and spatial properties of cognition have been identified.

(i) Cognition Is Situated and Extended. Our cognitive activity
occurs in the context of a real environment and inherently
involves perception. Internal cognitive processes are shaped
by their coordination with external resources [27]. While
cognitive processes occur, perceptual information continues
to be captured, so as to affect our actions. The ways in which
we dive in cognitive activity are linked to our continuous
interaction with the environment [28]. Theories of extended
mind assert a causal flow as the mind uses resources in
the environment and vice versa, a two-way interaction in a
coupled cognitive system [29]. Order and systematicity in
human cognition and action derive in part from the stability
of our environment (Michaelian and Sutton, 2013).

(ii) We Load the Built Environment with Information. Cer-
tain cognitive processes trigger associations with elements
of the environment through the incorporation of socially
acquired information [30]. In turn, information is classified
into potentially shared categories [31]. Clustering processes
connect pieces of information through similarities of physical
aspects of the environment or through relations between their
meanings [32]. Environmental elements (say, buildings or
places) are interpreted through such socially sharedmeanings
[33]. Visible elements of a city convey different amounts of
information [24]. Small details (like a building entrance)
can be related to higher orders of information and refer to
larger spatial formations (such as a main street or a city
centre), evolving to rich, multilevel hierarchical structures
in which the interactions between information units in the
lower levels generate patterns of environmental elements in
higher levels and vice versa. The probability of a building or
place evoking a mental representation shared by people is
enhanced by its physical appearance and visual identity, along
with its visibility and location in the environment and the
social information associated with activities performed there
([34], cf. [35]).

(iii) Spatial Information Relieves Our Cognitive Work. We
deal with the environment also through memory. However,
our short-term memory is constrained in its capability to
process information [24]. Luckily, our knowledge of spatial
properties and patterns can integrate semantic, visual, and
configurational aspects projected into an urban environment
as symbolic off-loading. The spatial environment becomes
an external memory carrying information about activities
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and agencies found in it for future retrieval [28]. Instead
of trying to keep all the relevant details about activities in
our short-term memory, we retrieve these details from the
environment itself as an extension memory and information
source [36]. Environmental information is a means to reduce
the effort of memorization. Other mnemonic features such as
kinesthetic images have been shown to functionally preserve
spatial and semantic properties of the external world [37].
This external semantic resource relieves the cognitive load
and what Wilson [28] calls “representational bottleneck”: the
limits faced by our internal memory, which lead us to extend
our mnemonics to the environment in the first place. The
roles of long-term and short-term memories for agents able
to retrieve social information from space will be of particular
interest to our approach.

(iv) Cognition Is Pressed for Time. Daily life requires response
capacity. More cognitive capacity can be built up from
successive layers of real-time interaction with our spatial
context. We create mental models of the environment from
which we create action plans. Sophisticated forms of situated
cognition happen in any activity that involves the continuous
updating of plans in response to changing conditions of
action. Time pressure demands spatial decisions [38–40].

(v) Spatial Information Serves Action. Agents build instruc-
tions about events in the environment in an indexical form
[41]. The practical aims of agents can thus be directly
connected to their situation [42, 43]. We manipulate the
environment as a way of dealing with our practical problems.
Embodied cognition includes mechanisms serving adaptive
activities [44]. Our cognitive memory evolved in the service
of perception and action in a three-dimensional environ-
ment [28]. Cognition serves action through a flexible and
sophisticated strategy, where information is stored for future
use without firm commitments on what the future use may
be. Spatial information can be absorbed through a variety
of uses for which it was not originally encoded. This means
that new uses may be derived from a stored representation
of space. They need not be triggered by direct observation
of the environment and its affordances [45]. Environmental
representations, either schematic or detailed, appear to be
largely free of a particular purpose, or at least contain infor-
mation beyond what is necessary for a specific action. This is
certainly an adaptive cognitive strategy.The fact that humans
encode the physical world using spatially and semantically
structured mental models offer a huge advantage in solving
problems.

This nondiscursive knowledge includes spatial properties
and heterogeneities and enables us to build inferences, for
example, when we try to imagine a likely street where to
find certain activity. In turn, Lakoff and Johnson [46] argue
that mental models are based on a modelling of the physical
world and bolster in analogies between abstract and concrete
domains. Other works tie semantics with imagetic schemes
able to incorporate knowledge of the physical world as a
way to encode relationships between events. In perceiving
something, we perceive not only its observed form, but
also the potential information enfolded in it [24]. This very

property is crucial to the presence of urban space in the
selection of actions to be performed.

So our actions encode space with social information,
and such informationally differentiated space plays a part
in easing the representational bottleneck in our memories.
We are able to retrieve information from this semantic
arrangement that takes the form of the city before and during
our actions and experiences. Such semantic layer is stored
in activity places and in the spatial relations between them
andmay be related to physical and functional heterogeneities,
such as accessibility and centrality patterns [34]. Such layers
of spatial information can be evoked in our memories and
used when we need to make inferences, such as where we
could find a particular social situation or place. However,
most theories of situated cognition still do not recognize how
this informational space is part of the way we create action
systems. Let us see how this could be the case.

4. The City as a Frame of Reference

Our aim has strong parallels with Hutchins’s [47, 48] view
on cultural ecosystems operating cognitively at larger spatial
and temporal scales than an individual person. According to
Hutchins, all instances of cognition can be seen as emerging
from distributed processes, that is, from interactions between
elements in a system. Cognitive properties are not predictable
from individual cognitive capacities. Humans create their
cognitive powers by creating the environment in which they
exercise those powers. This socially distributed cognition is a
collective operation produced by interactions among agents
in active relation to their environment, in contexts of ongoing
activity. Possibilities for individual learning depend on the
structure of the environment to the point that the distribution
of cognitive skills is determined by the distribution of prac-
tices engaged in by people. As Hutchins, we are concerned
with the tasks people confront in their everyday world, taking
part in processes of coordination of action, as they move
through physical spaces. Ultimately, our aim relates well to
his proposition that “cultural practices decrease entropy and
increase the predictability of experience” [48, page 46]. Our
work follows parallel lines, through a systems approach able
to encompass large-scale systems of action and spaces.

We propose to explore the informational role of city space
in how agents build connections between actions. We all
know that urban space is produced to express human activity.
But theories of cognition suggest much more: space would
be semanticized by our actions. That means that activity
places are informationally differentiated and acquire a level
of semantic definition similar to types of action [49, 50].
This differentiation is enacted in and associated with the very
structure of urban space. Space is differentiated in at least
three levels: (i) its physical properties of extensity and config-
uration, such as accessibility and centrality patterns in a city;
(ii) recognizable shapes in its visual and tridimensional form
[24]; and (iii) the semantic contents of activities performed in
buildings and places (cf. [34, 35]) (Figure 1).

How can this informational space become a part of
action?There is a remarkable lack of theoretical and empirical
work on this problem. First, we seem to retrieve meanings
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(a) (b) (c)

Figure 1: Differential space: like a code of instructions for collective action, urban space finds differentiation both physically, as hierarchies
of accessibility and distribution of built form (a), and semantically, through actions performed in buildings and places ((b), (c)).

associated with our actions in architectural and urban spaces.
We arguably grasp useful information about the activity
performed in a place not only by visual features, but also
inferring what people do there. Space not only represents
activity: it is actuated and thus loaded with meanings related
to performance. This is a semantic dimension of space: space
“means” as much as our actions, precisely because it is
semanticized by our actions.This enacted information is very
important. Action is temporally related to spatial locations.

Second, these locations allow us to access potential coun-
terparts in interaction. As we shall see below, knowing a
city means that we can find places where certain activities
are performed. Recognizing spatial differences and patterns
allows us to infer such locations. Apart from other sources of
information such as linguistic exchanges, we do so becausewe
can retrieve environmental information about activities and
location patterns.

Third, places are means of connection: we can actualize
connections with certain people or activities during a period
of time. These spatial links allow us to create complexes of
interaction. In practice, places “draw” courses of action with
different orientations and contents and tie them together
momentarily. Flows of convergent and divergent actions
happen all the time, when people leave their homes to work,
to seek services or go about to socialize, and do so often
without prior knowledge of activities, counterparts or places
they wish to visit (Figure 2). Urban space becomes what
Parsons [51] would call an “action frame of reference,” a
connective fabric which both enables and constrains choices
materially and socially.

5. Entropy as a Way into Social Organization

In order to be a part of selection, the urban environment
needs to be informational enough, and not just to suggest

t3

t2

t1

L1 L2 L3 L4

Figure 2: As a reference system, urban space converges courses of
action in time (𝑡

1
, 𝑡
2
, and 𝑡

3
) and space (𝐿

1
, 𝐿
2
, 𝐿
3
, and 𝐿

4
).

particular options but allow unforeseen changes in the course
of our actions. Luhmann suggests that a desired social activity
must be within reach. “Because complete interdependence is
unattainable, however, interdependencies only come about
by selection. [. . .] Successfully established interdependencies
then serve as perspectives for and constraints on the struc-
tural selections that connect onto them” [5, page 284]. As a
social event, this connection is produced through communi-
cation. But before communication comes into being, certain
conditions have to be there, spatially there. Places must be
chosen as conjunctive pieces that materialize connections.
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Could cities stimulate connections? If they could, and
given the fact that they are formed by space and that
space is not fully malleable, is it reasonable to suppose
that certain spatial formations could ease such momentary
connections? We know that proximity increases the intensity
of interaction [52, 53]. But what form should urbanized space
take in order to meet such systemic expectations? We may
understand such spatial conditions through a counterfactual
scenario. Imagine a fully chaotic urban formation with no
recognizable concentrations or paths. Visual elements could
not convey information, as spatial differences would not
develop into structures emerging out of absolute heterogene-
ity. References to activities of interest would have to rely
only on our memory. Selection of actions would become
dependent on very detailed mental representations of such a
chaotic formation. Inferences about more likely places to find
particular activities would be very hard tomake.Wewould be
immersed in a spatial environment without patterns to guide
our choices, reduce our efforts, and amplify our interactions.
In a world of unstructured spaces, actions would face lack
of information, noise, and relentless entropy. The possibility
that space may have an informational presence in interaction
expresses the possibility that the physical environment may
have informational properties and that the world is rich in
information.

Now, not only our daily experience denies that cities are
such completely chaotic, structureless places, but also spatial
economics and urban studies offer plenty of theories and
evidences that, as complex as they may be, cities are (at least
partially) structured places. From location patterns described
since Alonso [54] and accessibility patterns described from
Hansen [55] to Hillier [56], we know that urban patterns
matter: they imply that activities can be arranged in ways that
are recognizable and accessible. And from the point of view of
selection, the realization that activities are somehow arranged
along a spatial structure is a form of preselection. Activities
tend to be distributed according to levels of accessibility,
land values, and practical dependencies, facilitating comple-
mentary actions. Intentionally or not and however subject to
contingencies, urban space is also structured (physically and
informationally), which allows possibilities of action to be
more easily known, selected and viable. In short, at first, the
urban structure affords a range of possibilities for selection.
In a second moment, the structure itself suggests gradients of
attractive possibilities.

In a view of social systems constituted by connections
of actions, this means that space can be part of the constant
transition from individual acts to complexes of actions (indi-
vidual act → places as connections → action systems). Our
hypothesis here, to be tested in computational experiments
in the following section, is that cities become a crucial part of
this connectivity. They would reduce risks such as the lack of
information or courses of action too costly to emerge.

What does this say about the effect of cities on entropy?
Beginning with Luhmann, interactions have structural value
because they represent selections from combinatorial possi-
bilities. If we relate this to Shannon’s entropy, the very emer-
gence of urban structures eliminates spatial scenarios where
every possible connection would have the same probability.

Another counterfactual scenario might help here. Entirely
homogeneous cities (or entirely heterogeneous, for that
matter), free from structure, would present even probabilities
of choice between actions. Of course this would be a problem
for social systems: connections potentially interesting tomost
people would be as difficult to find as any. If urban space
was purely homogeneous or purely random, the probability
of finding an activity would be distributed homogeneously
in space. That is a scenario of maximum entropy. The spatial
environment would be useless in stimulating certain sought-
after connections which could otherwise be there, say, when
we concentrate activities like final supply or input-output
exchanges in production. Effort, time spent, and economic
costs involved in finding activities of interest would rise.

On the other hand, when urban space finds differentiated
contents and structures, say, location patterns along acces-
sible paths, it naturally creates differences in the probability
of interaction and decreases in entropy. Location patterns are
in fact material and informational expressions of interaction
systems. The differences engendered by such patterns gener-
ate differences in the chances of finding an agent, a service, or
commerce. If a city did not have recognizable internal forma-
tions such as a centralities or high streets, agents would have
more difficulties in knowingwhere they aremost likely to find
what they are after. A partially structured environment allows
us to build inferences about actions and agencies available in a
social system.When these agencies are also related temporally
through proximity and functional complementarity, there is
an even greater potential for differences in probability to
emerge, suggesting new connections and sequences. What
all this means is that cities, internally differentiated yet far
from absolute heterogeneity, have the effect of reducing social
entropy.

Before experimenting with these relationships in silico,
let us attempt an introductory description of what these
differences in probability entail in theway social systems han-
dle entropy (Figure 3). Linearizing for the sake of simplicity
processes that in fact occur simultaneously, the reduction
of social entropy would take the following form. (a) In an
initial state free of space, think of the actions as lines moving
in time. Agents can do anything, and we cannot foresee
what they will do, a potential state of high entropy. Colors
of the lines in Figure 4 represent different informational
contents in personal orientations. (b) Then agents start
selecting actions and converging into different positions in a
spatial system, arranged as places or buildings (represented
by colors in the vertical strip), in order to connect with
others. Action lines might have subtle differences in relation
to the places they approach, so they converge into places
by informational proximity. Connections can only happen
if all other possibilities of connection are excluded. (c)
As these convergences happen, the initially chaotic maze
becomes a momentarily coordinated system, where agents
cooperate. The overall entropy of actions is reduced. (d)
After each spatially held event, actions may change again,
according to changing orientations. Accordingly, the colors
of lines change. Entropy increases as actions go into another
momentary state of unpredictability, as new possibilities are
presented to agents and somemust be selected if actions are to
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Momentarily
coherent systems

State of unpredictable
decisions

Action systems

Reduction of entropy

Coordination of actions

Selection
of actions

High entropy state

Information growth
(Hidalgo 2015)

Possibilities of action
(Luhmann 1995)

Differences in the
probability of
interactions

(Shannon 1948)

Agents interact Orientations align in
activity places

Actions mediated by
information

(Luhmann 1995)

City as information
environment
(Haken and Portugali 2015)

Figure 3: Recursive process that conducts interaction systems from chaotic states (high entropy) into coherence (low entropy).

(a) (b) (c)

(e) (d)

Figure 4: The cycle of social entropy and space, clockwise: from the high unpredictability of potential actions to a momentarily ordered
system, as actions converge into places, only to dive in entropy again.
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Figure 5: Aligning different actions in the cooperation process.

be actualized. (e) And then actions “refer” again to meanings
and positions in space, starting a new cycle of entropy
(Figure 4).

These distinct moments are theoretical, of course. In
reality, reminding Prigogine and Stengers [6, page 124], this
“multitude of events” takes place simultaneously and may
render any clearly emergent cycle invisible. But that neither
means that individual cycles do not happen or aggregate in
bunches, nor they compensate one another like peaks and
troughs in colliding sound waves. In fact, routinization in
daily life leads to rhythms and cycles unfolding from or
folding over the seemingly chaotic maze of actions. But even
if actions were far from synchronic, the fabric of interaction
still faces the challenge of entropy, that is, the challenge of
producing differences in the probability of connections as a way
to ease organization whenever agents feel compelled to create
new interactions, and this process is remarkably recursive.
We converge to places to act with others and do so on a
daily basis. Once engaged in an activity place, interaction
requires levels of cooperation.Wemay bring our own distinct
tendencies or latent orientations, in the form of long-term
memories of how to act, along with short-term memories
of a previous action, both shaping our next actions. As we
act socially, we bring our orientations into contact in a
way to open them in the communication process, regulating
collective action. A result of this coordination is to reduce
initial differences. Our actions “align”within an activity place
(Figure 5).

All this suggests that social life involves a continuous
although unconscious handling of entropy, a vital oscillation
between unpredictability and predictability. As this process
engages an enormous number of agents and events and
transcends places and contexts and therefore cannot be
observed as a whole, entropy can only be fully grasped in
theoretical representations. A useful way to examine space as
an information environment for action is through a compu-
tational model, a means to examine a counterfactual world
where other steering media such as language or social rules
were “switched off,” keeping only properties of space active
along with agents’ cognitive abilities to align orientations
with activities. Once we abstract from other media, we
may assess whether space could have any presence in the
self-organization of action. Let us examine this possibility
through some experiments.

LBuilding
activity type

Figure 6:The theoretical one-dimensional citywith a set of different
activity places. Here there are 𝐿 buildings distributed in a ring,
constituting the city space. Colors represent activity types.

6. Digital Experiments:
A Unidimensional Model

6.1. Design Concepts. An agent based model (ABM) is pro-
posed. Agents are defined to perform actions at each time-
step and places by corresponding activity types. The decision
on which action to perform next may be influenced by
three different conditions: namely, (i) latent orientation𝜎in

𝑖
(𝑡),

representing the tendency of a single agent to act around
a particular type of action, initially randomly distributed;
this condition remains over time; (ii) current action 𝜎

𝑖
(𝑡)

performed by an agent as he/she selects an activity place
in order to perform a new action; this means an influence
of the current action, while allowing gradual changes of
orientation in time influenced by other agents and activities;
and (iii) types of activity places 𝜎

𝑥
󸀠(𝑡) where agents perform,

supporting specific types of action. Agents follow simple
rules, selecting their activity places closer to their latent
orientations and current actions, while being influenced
by those activities. Activity places are also influenced by
visiting agents, but they change at a slower rate. In short,
agents coevolve with their spatial and social environment.
The model simulates different situations under this basic
structure. Differences in the weight of these factors over
the next action may lead to quite different levels of social
entropy, suggesting new possibilities for understanding the
phenomenon.Although there is a tradition inmodelling daily
activities, including a growing literature using digital loca-
tional data (e.g., [57]), our ABM is not designed to represent
empirical sequences of actions or actual routines. Instead, it
focuses on trends that might emerge from the interfaces of
simplified systems of action, information, and space.

6.2. Variables and Scale. Consider a unidimensional city
formed by agents and places. Places form a ring with length
(or perimeter) 𝐿, as shown in Figure 6. Our choice for
representing the city by a ring is justified by the minimal
sufficient representation of spatial distance as a factor whose
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role in social organization is to be assessed. This is allowed
by a unidimensional model (e.g., [58–60]). The ring form
allows continuous movement across a linear sequence of
locations, eliminating centrality factors while taking into
account periodic boundary conditions in order to reduce
border effects, eliminating the role of topologywhile isolating
the problem of distance (see [61–63]). This stylized city
houses 𝑁 agents, which in each time-step 𝑡 select and visit
a specific place located at the position 𝑥 within the city.
Consider that the position of the 𝑖th agent at the time 𝑡 is
represented by 𝑥

𝑖
(𝑡). The position of an agent can assume the

integer values 1, 2, . . . , 𝐿, according to the place that she/he
chooses to visit. This means that, at every time-step, each
agent will choose one activity place to perform her next
action.

We considered 𝜎
𝑖
(𝑡) as the current action of the 𝑖-th agent

and 𝜎
𝑥
(𝑡) the activity performed in a place located at the

position 𝑥 = (1, 2, . . . , 𝐿) of the city, both in time 𝑡. We
quantify action orientations weighting the three variables
(latent orientation, current action, and activity place). First,
variables are translated into different numeric values. Let us
assume that an orientation is an integer number between 0
and 1000, each number represents a particular type of action,
and numbers in their vicinity mean similar actions. The
resulting orientation in time 𝑡 for each agent is the weighted
average of those three parameters.Thedifference |𝜎

𝑖
(𝑡)−𝜎
𝑥
(𝑡)|

gives us the difference in orientation between an agent and
the activity place. At every time-step, each agent assesses the
difference between her orientation and every activity place
in the city. An agent chooses a specific place based on her
orientation affinity with this place, minimum difference.

As we hypothesized above, the urban structure has a role
in this selection. In this experiment, we reduced “urban struc-
ture” to distance. In order to investigate how distance may or
not interfere in this selection, we propose two scenarios. In
the first one, the agent selects her next activity based only on
the similarity in orientations between herself and the activity
place. Agents can move across a space free of friction. Space
is not a constraint.This scenario considers only differences in
orientation. The parameter 𝐸

𝑖
(𝑥, 𝑡) estimates the interaction

between agent 𝑖 and the place located at 𝑥 at the time 𝑡. The
agent selects activity locations that minimize this quantity.
We propose

𝐸
𝑖 (𝑥, 𝑡) =

󵄨󵄨󵄨󵄨𝜎𝑖 (𝑡) − 𝜎𝑥
󵄨󵄨󵄨󵄨 . (1)

In the second more realistic scenario, space imposes
friction to movement. The agent takes into account the
physical distance between her current location in the city and
the location of her next activity and opts to minimize this
distance along with the difference between her orientation
and that of the activity place. We propose

𝐸
𝑖 (𝑥, 𝑡) =

󵄨󵄨󵄨󵄨(𝑥𝑖 (𝑡) − 𝑥) (𝜎𝑖 (𝑡) − 𝜎𝑥)
󵄨󵄨󵄨󵄨 . (2)

Summing up, an agent 𝑖 selects at time 𝑡 a particular
activity place located at𝑥 thatminimizes the function𝐸

𝑖
(𝑥, 𝑡).

In the first scenario, she will choose activity places closer
to her orientation. In the second, she will choose activity
places closer in both orientation and physical distance. This

brings a form of “energy cost” into the factors considered.
Space takes on a function role because of the energy used in
“visiting.” Agents move in this linear city willing to minimize
this energy, while searching for social information latent
in places close to their changing orientations. Changes in
entropy levels are derived from this energy function. In its
spatial version, the model assesses effects of the effort to
reduce energy in action minimizing informational differ-
ences (between orientations and activity places) and spatial
distances (between agents and activity places).

6.3.TheEvolution of ActionOrientations. Orientation evolves
in time according to the following rule. When an agent
chooses and joins a particular place, both agent and place
become a little closer in terms of orientation. This means
that activity places are not immune to what agents perform
in them and that the urban activity system also changes in
time. To illustrate how orientations are constantly updated,
consider that agent 𝑖 selects an activity place located at 𝑥󸀠.
Orientations will be updated according the rule:

𝜎
𝑖 (𝑡 + 1) =

1
𝛼 + 𝛽 + 𝛾

(𝛼𝜎in
𝑖
(𝑡) + 𝛽𝜎𝑖 (𝑡) + 𝛾𝜎𝑥󸀠 (𝑡)) . (3)

Selection also depends on three additional parameters:
latent orientation 𝜎in

𝑖
(𝑡) weighted by parameter 𝛼; current

orientation𝜎
𝑖
(𝑡)weighted by parameter𝛽; and type of activity

place 𝜎
𝑥
󸀠(𝑡) weighted by parameter 𝛾. This means that agents

will consider the three factors previously described (𝜎in
𝑖
(𝑡),

𝜎
𝑖
(𝑡), 𝜎
𝑥
󸀠(𝑡)) with different weights (𝛼, 𝛽, 𝛾) to estimate which

activity she wants to perform in the next time-step.
The latent orientation evolves from an initial, randomly

distributed behaviour, 𝜎0
𝑖
. We consider that 𝜎in

𝑖
(𝑡) is normally

distributed around 𝜎0
𝑖
, meaning that every agent has an

“average” latent orientation, whose value will be derived at
each time-step from a normal distribution peaking at the
agent’s average orientation. If 𝛼 is sufficiently small in relation
to 𝛽 and 𝛾, then the latent orientation does not play a role
in the agent’s action. However, if 𝛼 is sufficiently large (once
in relation to 𝛽 and 𝛾), then the action becomes strongly
dependent on the latent orientation. This would lead to a
pretty conservative city where inhabitants are not open to
changes in behaviour.

The current action of an agent may influence a new
action with an intensity that depends on parameter 𝛽. If this
parameter is small in comparison to 𝛼 and 𝛾, then the agent
has no memory of an ongoing orientation. However, if 𝛽 is
sufficiently large, then the new action is strongly dependent
on a previous one (a Markovian behaviour).

The intensity of the activity place’s influence on the agent’s
action depends on the value of 𝛾. If this parameter is small
in comparison to 𝛼 and 𝛽, then the activity place does not
affect her next action,meaning that the place does not change
behaviours. However, if this parameter is sufficiently large,
then the place plays a strong influence on future actions. The
activity place will be updated according to the rule:

𝜎
𝑥
󸀠 (𝑡 + 1) = 𝜎𝑥󸀠 (𝑡) + 𝜃∑

𝑖∈𝑥
󸀠

𝜎
𝑖 (𝑡) , (4)
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where 𝜃 is a parameter sufficiently small. That is, places
are less influenced by agents than the other way round.
This means that, at every time-step, a place would have its
type of activity closer to the average of orientations of its
visitors. Therefore, the main activity of the place will change
slightly according to visiting agents, while changing their
orientations.

6.4. Frequency of Orientations and Entropy Levels. We cal-
culate entropy assessing the distribution of resulting orien-
tations of all agents in the social system at each time-step,
using Shannon entropy. Our quantitative interpretation of
information removes ambiguities from the relation between
Shannon information and semantic information, as different
orientations, actions, and types of activity places are repre-
sented by numerical values. This allows us to estimate social
entropy through Shannon entropy. The entropy of actions is
calculated as follows: consider𝑁(𝜎, 𝑡) as the number of agents
with orientation 𝜎 at the time 𝑡 (note that the total population
is 𝑁 = ∑

𝜎
𝑁(𝜎, 𝑡)). We compute the frequency (or density)

𝜌(𝜎, 𝑡) of this orientation within a population with

𝜌 (𝜎, 𝑡) = 1
𝑁
𝑁 (𝜎, 𝑡) . (5)

Equation (5) calculates the probability of observing an
orientation 𝜎 at time 𝑡. We compute the entropy level for any
distribution of orientations with

𝑆 (𝑡) = −∑
𝜎

𝜌 (𝜎, 𝑡) ln (𝜌 (𝜎, 𝑡)) . (6)

Equation (6) describes how uneven is the probability of find-
ing different orientations. Higher values mean that different
orientations have almost the same probability to happen,
while lower values indicate a system with clear orientation
trends. The reduction of entropy implies that the probability
of certain actions increases, that is, actions grow in similarity.
In the limit, as entropy falls to zero, all agents in the system
would reach the same orientation.

6.5.Model Procedure. Themodel performs the following pro-
cedures:

(1) The city is created by generating the following:

(a) The type of activity in places: that is, (𝜎
𝑥=1
(𝑡 =

0), 𝜎
𝑥=2
(𝑡 = 0), . . . , 𝜎

𝑥=𝐿
(𝑡 = 0)), also generated

from a random distribution. This step creates
activity places in the ring-city and assign them
randomly distributed activity values 𝜎

𝑥
󸀠(𝑡).

(b) The initial position of 𝑁 agents: that is (𝑥
1
,

𝑥
2
, . . . , 𝑥

𝑁
), and their respective orientations

(𝜎
1
(𝑡 = 0), 𝜎

2
(𝑡 = 0), . . . , 𝜎

𝑁
(𝑡 = 0)), generated

from a random distribution. This step creates
moving agents in random locations and assign
them latent orientations based on the initial,
randomly distributed orientation 𝜎in

𝑖
(𝑡) = 𝜎

𝑖
(0).

(2) At each time-step 𝑡 every agent chooses a place to
act. This place should minimize the function 𝐸

𝑖
(𝑥, 𝑡).

Suppose that the chosen place by 𝑖 is defined as 𝑥󸀠.
Then agent and place update their orientations 𝜎

𝑖
and

𝜎
𝑥
󸀠 , as described above.

(3) Update the distribution of orientations 𝜌(𝜎, 𝑡).
(4) Compute Shannon entropy 𝑆(𝑡).

6.6. Results. We have developed a number of observations
on the behaviour of social systems working under different
parameters.

(i) Entropy reduction is only found in scenarios where
space imposes friction to movement, that is, where
the spatial distance between agents and activity places
is considered as an active factor in selection. Entropy
requires an extensive space in order to be reduced. But
space cannot do it alone. Surprisingly, space is a nec-
essary, but not sufficient condition. Figure 7 compares
two scenarios. In the first one, distance is an issue in
the selection of activities (red line).Thedistribution of
orientations changes from a homogeneous one at the
start of simulation (a) to a nearly normal distribution
at the end of simulation (b), where certain kinds
of action are more likely to happen. Informational
contents in extensive space help aligning contents in
actions. In the second scenario, agents move free of
spatial friction (blue line). Orientations are initially
randomly distributed (a) and continue to be so at the
end of simulation (b), as a similar number of agents
are distributed along different orientations.This result
suggests that a materially active space becomes a
means for increasing the probability of certain inter-
actions, easing the collective coordination of action.

Nowassessing the relative influence of social and personal
factors on the selection of a next action, namely, the social
information in activity places, latent orientation, and the cur-
rent action, under the influence of spatial friction (Figure 8),
we can say the following:

(i) There is structure in the relation between selection
factors and the reduction of entropy. Entropy begins
to fall and fluctuate around specific values, according
to different combinations of factors. For some com-
binations, there is a great reduction of entropy. For
others, the reduction is minimal, almost negligible.
Fluctuations derive from the random component in
the decisionmaking of the agent (under the influence
of latent orientation).

(ii) A strong latent orientation (𝛼 sufficiently large) leads
to increasing entropy (blue lines in Figures 8 and
9), since agents cannot align their actions with other
agents and activity places. Like a long-term memory,
systems whose actions are dictated by latent orienta-
tions are likely to preserve initial orientations, which
were randomly distributed and, therefore, homoge-
neous. This condition is responsible for limiting the
reduction of entropy.

(iii) Current action alone does not shape new actions in
any specific way (green lines in Figures 8 and 9).
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Figure 7: Histogram of probability distribution of actors performing different types of action at the start (a) and at the end (b) of simulations
in scenarios where distance is not considered (blue) and distance is considered, aligning orientations in action coordination (red). Results
are averaged for 30 runs for 125 parameter combinations.
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Figure 8: Evolution of entropy: colors in a RGB scale refer to
parameter weights in decisions on actions in a next time-step, and
their impact on entropy levels in different simulations (under the
friction of distance). In the palette triangle, each color represents
a specific combination of the three parameters. In each vertex, a
parameter reaches maximum value while the others have minimum
value. Results are averaged for 30 different runs for 125 parameter
combinations.

It just keeps what is already happening, working
as “reinforcement feedback” for either direction the
agent (and the system) is going. Current actions are
means to conserve tendencies in the system.

(iv) Activity places play a key role in the reduction of
entropy (red lines in Figures 8 and 9).The social infor-
mation in space “contaminates” agents: they align
their actions through the social contents of places.
We have seen that space matters as extension. Now
we see that space also has a very active informational
presence.

(v) Different combinations of factors have different
effects over entropy. Figure 8 shows the transitions

between the three parameters and how nuanced
weights resulting from blending factors matter in
the reduction of entropy. For instance, blending the
weight of activity places and latent orientation on the
next action displays a strong reduction of entropy
(pink lines in Figure 8). That means that when agents
do not keep information from previous selections
(i.e., 𝛽 ≈ 0), the action system reduces more entropy
than in other parameter combinations. A strong
short-term memory leads the system into conserving
itself and into a poorer capability to coordinate
actions. Also, when current actions 𝛽 and activity
places 𝛾 share a similar weight over the next action
(orange lines on top), the social system does not
experience a great reduction of entropy as agents tend
to reproduce their actions.

(vi) Finally, the reduction of entropy implies that the
probability of certain actions and interactions
increases. In practical terms, this means more
alignments between agents and more connections
between actions (interactions). However, if all agents
in the system reached the same orientation and
entropy dropped to zero, the system would lose inter-
nal differentiation. Agents would behave in the same
way, say, in a world with no personal differentiation,
specialization, or division of labour. New orientations
(therefore, entropy) are necessary if the social system
is to keep differentiated agencies. On the other
hand, a system with maximum entropy would create
difference in actions to a point where no action coor-
dination or interaction would be possible. Clearly this
situation cannot be the case. A social system requires
balances, neither full entropy nor total predictability.

These results also suggest that we are dealing with distinct
“social memories”: a long-term memory is active in what we



Complexity 13

2.0

2.5

3.0
En

tr
op

y

0.4 0.60.2
-latent orientation

0.4 0.60.2
-current action

2.0

2.5

3.0

En
tr

op
y

2.0

2.5

3.0

En
tr

op
y

0.4 0.60.2
-activity place

Figure 9: Parameter exploration: isolated importance of each parameter in entropy (under the friction of distance). Each vertical set of dots
represents one fixed value for the highlighted parameter, with the two other parameters assuming every possible combination within the
tested range. Each dot corresponds to the entropy value when a sufficiently large time-frame is used.

call latent orientations. Short-term memory is active in the
influence of a current orientation over a new action. In turn,
the social information latent in activity places is a result of
social arrangements (say, as firms, a local economy, and so
on) which find certain stability, changing much slower then
actions. It is an extension of the social system projected onto
urban space, stabilizing the system to some extent.

7. Cities and Social Interaction: Conclusions

What does this approach bring to the state of the art on the
relations of social interaction, information, and space and on
social entropy and ABM in particular? We have seen that
previous approaches overlooked the coordination of action
as a key empirical and analytical problem. Furthermore,
they tend to have the thin spatiality of a passive territorial
background (e.g., [16, 20]). In turn, although the concept
of “collective action” is finally getting attention in urban
studies [64], the problem of social organization is still largely
underestimated. The problem of entropy has been dealt with
since Wilson’s [65] work on spatial interaction but has not
reached the mainstream of the discipline and deals mostly
with urban form (e.g., [24]) and spatial distributions [66],
not with social information and action. Regarding agent
based models, we are not aware of an approach that deals
with the problem of how cities and space are part of social
organization. In a sense, our model is closer to Axelrod’s
[67] ABM model of dissemination of culture. His agents
exchange “culture” through direct contact with neighbours
in a cellular automata model, whereas our agents are mobile
and actively deal with distance and social information in
space, recognizing types of activities in places. The intensity
of exchanges between agents in Axelrod’s model is a function
of similarities between them. In our model, exchanges are
mediated by the selection and interaction with space. In our
understanding, our contribution in terms of ABM lies on
the fact that a new and simple model is proposed to deal
with the material and informational dimensions of social
organization, not just as an illustration, but as a proof of
concept: space can have causal presence if agents generate
preferences as detailed in a domain that coevolves with them.

Now, does the simulation model corroborate the theory
introduced in this paper? Our proposition cannot be empir-
ically validated at this stage, given that it is very hard to

assess people’s choices and the whole panorama of actions
in a city. Entropy may well be beyond observation. In these
circumstances, simulations of the behaviour of agents under
different spatial conditions become useful to assess entities,
events, and entropic forces at play. One expected result from
the model is that space matters for coordinating actions, but
simulations surprisingly showed that space is a necessary but
not sufficient condition for the reduction of entropy. Neither
material cognitive resources nor individual powers of agents
are enough. Information in activity places and a bit of agents’
personal history also play roles in the way social systems
deal with their own entropy. That would mean a causal but
nondeterministic presence of space.

Substantively, this approach explores a subtle but funda-
mental presence of cities in social organization.We argue that
urban space materializes gradients of difference in potential
interactions, from less to more recognizable, costly or likely.
Placing simple criteria including distance as a factor in select-
ing activities, our ABM showed that space becomes a means
for producing differences in the probabilities of interaction,
increasing chances of certain selections and convergences in
collective action.

In reality, people recognize the social information of
activity places, along with uses of busy streets or local central-
ities. We are able to retrieve these differences from the built
environment and relate to them. One of the key points of our
argument is that these differences help us make selections.
Every time we move through the city and select places to
perform, we participate in the large-scale coordination of
action. We enact space as a “referential system” [49, 50],
a set of semantic bits indexing social activities, informing
and guiding daily decisions. Space becomes inherently part
of the conversion of orientations into interactions, that is,
connections that crisscross sequences of actions, re/creating
the interaction system. By means of a structure that both
materializes and restricts the quasi-endless combinatorial pos-
sibilities of interaction, this system can acquire sufficient
internal guidance to make its own reproduction possible.
By distributing sufficiently recognizable differences in the
probability of interaction, cities express and release local
forces of reproduction of social systems. The interfaces of
action, cognitive, and spatial systems transform entropic
complexity into structured complexity, constantly reordering
actions in time.
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This materialistic viewpoint can be integrated with other
views of social organization. Further work may include the
relational roles of cultures, language, social norms, and other
steering media, along with explorations of possibly similar
effects of communication technologies over entropy. At this
stage, we attempted to integrate a social dimension (agents
engaged in coordination), a spatial dimension (an extensive
environment), and an informational dimension (as differ-
ences in action and in the environment itself), a demanding
interdisciplinary effort. The approach identifies a central role
for coevolving agents actualizing aims as they coordinate (cf.
[68]), and a central role for the environment, exterior but
responsive to agents, leading to cumulative changes along
their history.Themodel also identifies roles for cognition and
memory in the ways agents deal with their own orientations
and choose their actions and activity places, changing their
spatial environment, with consequences in the overall levels
of entropy. All this suggests that the behaviour of the model
cannot be reduced to or fully predicted from the behaviour of
individual variables, which is a key aspect of complexity.

So one of the main aims of this paper was to assess
whether space as information environment had any effect
on the coordination and entropy of interaction. However, if
physical distance and social information in activity places
matter, what about city size and the internal spatial struc-
tures of cities? What about rural areas or rarefied suburbs?
Since our model explores an abstract circular city, it only
begins to answer such questions. Our findings indicate that
shorter distances between activity places tend to reduce
social entropy. Density seems to matter: denser spatialities
(as opposed to rarefied ones) have a role to play. A path
for further development here is Jacobs’s [69] idea that the
diversity of activities generates positive externalities. And
diversity, as spatial economics shows us, has to do with
the size of cities and density of population (e.g., [70, 71]).
Entropy may also be influenced by diversity. Batty et al. [66]
have shown that information increases as cities get bigger.
The remaining question is whether larger, denser, and more
internally structured cities could create, process, and reduce
entropy with more intensity than smaller cities, transforming
big pools of activities into differences in the probability of
interaction. Although we proposed a unidimensional model,
our agents’ behaviour can be explored in more realistic
representations of cities, testing the roles of density, topology,
and diversity, while going beyond perfectly informed agents.
By proposing the ring model, we intended to simplify a
city to a minimum system where the spatial dimension
of social organization becomes intelligible, without losing
fundamental properties.

Shouldwe conclude fromall this that entropy is a problem
for social systems? Our approach suggests that it is not.
Entropy is a necessary force. It means that novel orientations
are entering the interaction system and must be dealt with.
Entropy only becomes a problem if not converted into orga-
nization, only if numerous potential actions are not converted
into smaller sets of actual interactions. The effects of new
actions over entropy would be positive once actualized,
having to dowith the diversity of agency.Conservative systems
are likely to face less entropy, but also likely to produce

less novelty, having homogeneity as a problematic horizon.
Fluctuations of entropy seem vital to complex societies.

Finally, our intention was to explore entropy as a means
to think about the conditions of social organization “from
another angle,” so to speak, from the viewpoint of challenges
involved in social reproduction. Hence, the approach focused
on the idea of uncertainty surrounding agents dealing with
aims and decisions and the different probabilities of inter-
action that follow, an attempt to bring social, cognitive,
informational, and spatial theories under a single roof. Our
approach sees cities as connective systems produced to create
the delicate fabric of interaction that keeps large numbers
of agents coherently living together. It also suggests that the
varying states of entropy reveal deep connections between
social, informational, and spatial systems.
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