
CHRISTIAN MARLON SOUZA COUTO

A QUALITY-ORIENTED APPROACH TO RECOMMEND

MOVE METHOD REFACTORING

LAVRAS – MG

2018

CHRISTIAN MARLON SOUZA COUTO

A QUALITY-ORIENTED APPROACH TO RECOMMEND MOVE METHOD

REFACTORING

Dissertação apresentada à Universidade

Federal de Lavras, como parte das exigências

do Programa de Pós-Graduação em Ciência

da Computação, área de concentração em

Engenharia de Software, para a obtenção do

título de Mestre.

Prof. Dr. Ricardo Terra Nunes Bueno Villela

Orientador

LAVRAS – MG

2018

Ficha catalográfica elaborada pelo Sistema de Geração de Ficha Catalográfica da Biblioteca

Universitária da UFLA, com dados informados pelo(a) próprio(a) autor(a).

Couto, Christian Marlon Souza
A Quality-oriented Approach to Recommend Move

Method Refactoring / Christian Marlon Souza Couto. –
Lavras : UFLA, 2018.

64 p. : il.

Dissertação (mestrado acadêmico)–Universidade Federal
de Lavras, 2018.

Orientador: Prof. Dr. Ricardo Terra Nunes Bueno Villela.
Bibliografia.

1. Software Architecture. 2. Refactoring. 3. Quality
Metrics. I. Terra, Ricardo. II. Título.

CHRISTIAN MARLON SOUZA COUTO

A QUALITY-ORIENTED APPROACH TO RECOMMEND MOVE METHOD
REFACTORING

Dissertação apresentada à Universidade
Federal de Lavras, como parte das exigências
do Programa de Pós-Graduação em Ciência
da Computação, área de concentração em
Engenharia de Software, para a obtenção do
título de Mestre.

APROVADA em 23 de Agosto de 2018.

Prof. Dr. Henrique Santos Camargos Rocha Inria Lille - Nord Europe
Prof. Dr. Paulo Afonso Parreira Junior UFLA

Prof. Dr. Ricardo Terra Nunes Bueno Villela
Orientador

LAVRAS – MG
2018

This dissertation is dedicated to my grandmothers in memoriam, Izaura and Geralda, who are
inspirations to me of character and love.

ACKNOWLEDGMENTS

Firstly, I would like to thank God for guiding me and for the given opportunities and knowledge
to finish my master’s degree.

I would like to thank my family—especially Carlito and Rosa—who have always been
supporting me.

I would like to thank my girlfriend Kelly for always being on my side, despite the distance
between us.

I would like to thank Federal University of Lavras, specially the Department of Computer
Science, for the opportunity to obtain a master’s degree.

I would like to express my gratitude to my advisor Dr. Ricardo Terra for all support, motivation,
patience, and knowledge which help me during these two years of researching.

I would also like to thank the rest of my dissertation committee—Dr. Henrique Rocha and
Dr. Paulo Afonso Parreira Junior—for the disposition to read this master dissertation and to
participate in my master’s defense.

Lastly, I would like to thank my fellow labmates—specially to my friend Arthur Ferreira—for
having always supported me in my academic activities.

”Those who can imagine anything, can create the impossible.”
(Alan Turing)

RESUMO

Processos de refatoração são comuns em sistemas de software de grande porte, principalmente
quando desenvolvedores negligenciam o processo de erosão arquitetural por longos períodos.
Embora existam uma ampla gama de processos de refatoração, poucos são automatizados e
levam em consideração os impactos na qualidade do software resultante.

Diante desse cenário, esta dissertação de mestrado propõe uma abordagem de refa-
toração de sistemas de software orientada a métricas de qualidade de software. Com base no
modelo QMOOD (Quality Model for Object Oriented Design), a ideia central é mover métodos
entre classes de forma a maximizar os valores das métricas de qualidade. Utilizando uma no-
tação formal, o problema pode ser descrito da seguinte forma. Dado um sistema de software S,
a abordagem recomenda uma sequência de refatorações R1,R2, . . . ,Rn que resulta em versões
do sistema S1,S2, . . . ,Sn, onde qualidade(Si+1)> qualidade(Si).

Uma calibração empírica foi conduzida utilizando quatro sistemas de código aberto, de
modo a encontrar o melhor critério para medir a melhora da qualidade. Dentre dez estratégias
diferentes, foi escolhida a que alcançou uma média de recall de 57%, cujo critério é comparar
as métricas pela porcentagem de melhora da soma dos atributos de qualidade QMOOD.

Três tipos de avaliações foram realizadas para verificar a utilidade da ferramenta im-
plementada, chamada QMove. Primeiro, a abordagem proposta foi aplicada em 13 sistemas de
código aberto que foram modificados movendo aleatoriamente um subconjunto de seus métodos
para outras classes, verificando posteriormente se a abordagem proposta recomendaria que esses
métodos movidos retornassem ao seu local original, e foi alcançado 84% de recall. Segundo, foi
realizada uma comparação do QMove com duas ferramentas de refatoração do estado-da-arte
(JMove e JDeodorant) nos 13 sistemas previamente avaliados, e QMove demonstrou melhor
valor de recall (84%) que os outros dois (30% e 29%, respectivamente). Terceiro e último, foi
feita a mesma comparação utilizando QMove, JMove e JDeodorant em dois sistemas propri-
etários onde desenvolvedores experientes avaliaram a qualidade das recomendações. QMove
obteve oito recomendações avaliadas positivamente pelos desenvolvedores, contra duas e nen-
huma do JMove e JDeodorant, respectivamente.

Palavras-chave: Arquitetura de Software; Refatoração; Métricas de Qualidade.

ABSTRACT

Refactoring processes are common in large software systems, especially when developers ne-
glect architectural erosion process for long periods. Even though there are many refactoring
approaches, very few consider the refactoring impact on the software quality.

Given this scenario, this master dissertation proposes a refactoring approach to software
systems oriented to software quality metrics. Based on the QMOOD (Quality Model for Object
Oriented Design), the main idea is to move methods between classes in order to maximize the
values of the quality metrics. Using a formal notation, we describe the problem as follows.
Given a software system S, our approach recommends a sequence of refactorings R1,R2, . . . ,Rn
that result in system versions S1,S2, . . . ,Sn, where quality(Si+1)> quality(Si).

We empirically calibrated our approach, using four open-source systems, to find the
best criteria to measure the quality improvement. By testing ten different strategies, we chose
the one that achieved a recall average of 57.5%, whose criterion is to compare the metrics by
improvement percentage of the sum of QMOOD quality attributes.

We performed three types of evaluation to verify the usefulness of our implemented
tool, called QMove. First, we applied our approach on 13 open-source systems that we mod-
ified by randomly moving a subset of its methods to other classes, then checking if our ap-
proach would recommend the moved methods to return to their original place, and we achieve
84% recall, on average. Second, we compared QMove against two state-of-art refactoring
tools (JMove and JDeodorant) on the 13 previously evaluated systems, and QMove showed
better recall value (84%) than the other two (30% and 29%, respectively). Third, we con-
ducted the same comparison among QMove, JMove, and JDeodorant applied in two proprietary
systems where experts evaluated the quality of the recommendations. QMove obtained eight
positively evaluated recommendations from the experts, against two and none of JMove and
JDeodorant, respectively.

Keywords: Software Architecture; Refactoring; Quality Metrics.

LIST OF FIGURES

Figure 1.1 – Illustrative representation of the proposed approach 13

Figure 2.1 – Move Method refactoring represented by a UML class diagram 17

Figure 3.1 – UML class diagram of system S in our motivation example 28

Figure 3.2 – System versions in UML class diagrams of our motivation example 29

Figure 3.3 – UML class diagram of QMove’s architecture 37

Figure 3.4 – QMove plug-in screenshot . 38

Figure 4.1 – Precision graph of QMove for the evaluated systems 41

Figure 4.2 – Recall graph of QMove for the evaluated systems 41

Figure 4.3 – Precision graph of QMove for Top3 to TopN recommendations 42

Figure 4.4 – Recall graph of QMove for TopN recommendations 42

Figure 4.5 – Recall, precision, and f-score graph for each evaluated systems 43

Figure 4.6 – Overlapping between results of each evaluated systems 47

Figure 4.7 – Overlapping between results of all the evaluated systems 48

Figure 4.8 – Overlapping between results of proprietary system Cyssion 50

Figure 4.9 – Correlation between proprietary system specialist rates and QMOOD metrics 51

LIST OF TABLES

Table 2.1 – QMOOD design properties and its corresponding design metric 23

Table 2.2 – Equations for QMOOD quality attributes 23

Table 2.3 – Move Method refactoring impact on QMOOD design metrics 24

Table 2.4 – Move Method refactoring impact on QMOOD quality attributes 25

Table 3.1 – Variation of QMOOD quality attributes for our motivation example 30

Table 3.2 – Subject systems in the calibration process 32

Table 3.3 – Recall, precision, and f-score results for subject systems of calibration . . . 36

Table 4.1 – Subject systems in the evaluation process 39

Table 4.2 – Recall, precision, and f-score results for subject systems of evaluation 40

Table 4.3 – Best f-score value for each subject system of evaluation 44

Table 4.4 – Comparative between QMove, JMove, and JDeodorant recommendations . . 45

Table 4.5 – Recall, precision, and f-score values for QMove, JMove, and JDeodorant tools 46

Table 4.6 – Proprietary systems in the real scenario evaluation 49

Table 4.7 – Proprietary system Cyssion experts’ evaluation 49

CONTENTS

1 INTRODUCTION . 11

1.1 Problem . 11

1.2 Objectives . 12

1.3 Proposed approach . 12

1.4 Outline of the dissertation . 14

1.5 Publications . 15

2 BACKGROUND . 16

2.1 Refactoring . 16

2.2 Move Method . 17

2.3 Software quality metrics . 18

2.4 Quality Model for Object Oriented Design (QMOOD) 20

2.5 Move Method and QMOOD quality attributes 24

2.6 Recall, precision, and f-score . 25

3 PROPOSED APPROACH . 27

3.1 Motivation example . 28

3.2 Algorithm . 30

3.3 Calibration . 32

3.3.1 Subject systems . 32

3.3.2 Strategies . 33

3.3.3 Results . 35

3.4 Tool support . 36

4 EVALUATION . 39

4.1 Synthesized evaluation . 39

4.2 Comparative evaluation . 44

4.3 Real scenario evaluation . 48

4.4 Threats to validity . 51

5 RELATED WORK . 52

5.1 Refactorings and QMOOD quality attributes 52

5.2 Refactorings and others metrics types . 54

5.3 Refactorings and different uses of metrics . 56

5.4 Impact of refactorings on metrics . 57

6 CONCLUSION . 59

6.1 Contributions . 60

6.2 Limitations . 60

6.3 Future work . 61

REFERENCES . 62

11

1 INTRODUCTION

This chapter is organized as follows. Section 1.1 presents the problems the approach

proposed in this master dissertation addresses. Section 1.2 lists the main objectives of this

dissertation. Section 1.3 introduces the proposed approach. Section 1.4 shows the structure of

this dissertation by the organization of its chapters. Finally, Section 1.5 presents the publications

generated by this dissertation.

1.1 Problem

The refactoring process changes the code to improve the internal structure without com-

promising its external behavior (FOWLER, 1999). In the context of software evolution, the

use of refactoring (or restructuring) is to improve software quality subcharacteristics, such as

maintainability, reusability, complexity, and efficiency (MENS; TOURWÉ, 2004).

Refactoring is also used to remove bad smells. For instance, to treat a Feature Envy

bad smell—which occurs when a method m in class C accesses more components from another

class C′ rather than its own class—we can use Move Method refactoring for moving m from C to

C′ and hence removing this bad smell (FOWLER, 1999).

Studies in the literature address the relationship of quality metrics with software refac-

toring, such as the fact that coupling and size metrics decrease after refactorings (STROULIA;

KAPOOR, 2001) and cohesion metrics increase (BOIS; DEMEYER; VERELST, 2004). The

use of metrics during the refactoring process may be important to correct a software system, in

order to monitor the metric values to verify that the measures are having a positive impact on

the cohesion and coupling in the project, for example.

Currently, there are many refactoring approaches where the degree of automation can

vary (MENS et al., 2003; TSANTALIS; CHATZIGEORGIOU, 2009; BAVOTA et al., 2014;

TERRA et al., 2017). The majority of these tools search for the best sequence of refactor-

ings using search-based algorithms, with genetic algorithms being the most used (MARIANI;

VERGILIO, 2017).

However, with the use of these algorithms, the choice of objectives to be maximized may

not impact the quality of software as a whole. Moreover, there is the possibility of not analyzing

all the possible refactorings, which can generate a non-optimal sequence of refactorings. This

is due to the large number of possibilities, making it impossible to verify all of them.

12

Besides, there are very few approaches that consider refactoring impact on software

quality metrics. Some approaches consider other types of metrics, as number of bad smells (KE-

BIR; BORNE; MESLATI, 2016; KESSENTINI et al., 2011), Jaccard similarity coeffi-

cient (TERRA et al., 2017; TSANTALIS; CHATZIGEORGIOU, 2009), and number of modi-

fications needed to apply refactorings (JENSEN; CHENG, 2010; WANG et al., 2015). Conse-

quently, a software system refactored by one of the aforementioned approaches may result in a

system version that worsens its overall quality.

1.2 Objectives

Considering the problems reported in the previous section, the main objective of this

master dissertation is to propose a quality-oriented approach that identifies Move Method refac-

toring opportunities in software systems and recommend these refactorings through a sequence

that, when applied, improves software quality metrics values. Our ideia is to verify all Move

Method refactorings that can be automatically applied and recommend those that improve the

quality of the system w.r.t. the six quality attributes from Quality Model for Object Oriented

Design (QMOOD) (BANSIYA; DAVIS, 2002).

To achieve this main objective, we elaborated the following specific objectives:

• To design the underlying algorithm for a quality-oriented approach to recommend Move

Method refactorings;

• To calibrate the proposed approach in open-source systems;

• To develop a tool that supports the proposed approach;

• To evaluate the approach in open-source and proprietary systems; and

• To compare the proposed approach with state-of-the-art approaches.

1.3 Proposed approach

On the context of a search-based software engineering research, we propose a semi-

automatic software refactoring approach based on software quality metrics. We rely on the

measurements of the QMOOD model to recommend Move Method refactorings that improve

software quality.

13

Using a formal notation, we describe the problem as follows. Given a software system

S, our approach recommends a sequence of refactorings R1,R2, . . . ,Rn that result in system

versions S1,S2, . . . ,Sn, where quality(Si+1) > quality(Si), being the strategy of comparing the

quality by improvement percentage of the sum of QMOOD quality attributes. Indeed, our

approach provides software architects with a real grasp whether refactorings improve software

quality or not.

We implemented QMove, a prototype plug-in for the Eclipse IDE that supports our

proposed approach. The plug-in receives as input a Java system and outputs the better sequence

of Move Method refactorings that improves the overall software quality. Figure 1.1 presents an

illustrative representation of our approach.

Figure 1.1 – Illustrative representation of the proposed approach

We divide the process of our approach into three phases. In the first phase, our approach

through QMove gets the source code of target system. In the second phase, QMove (i) calculates

the six quality attributes of the system; (ii) detects every method that could be automatically

moved to another class; (iii) moves each method to different classes that can receive it auto-

matically, recalculate the quality attributes, and return it to its original class; and (iv) includes

the refactoring that achieved better quality improvement to the recommendation list and come

back to step (iii) for the remaining methods, being now the six quality attributes calculated in

(i) changed for the new quality attributes values calculated after applying the best found refac-

toring. In third and last phase, after QMove have processed every method, it presents a recom-

mendation list showing the sequence of Move Method refactorings R1,R2, . . . ,Rn ordered by the

first to last found recommendation. After performing all the refactorings in sequence (from R1

14

to Rn), we expected that quality(Sn)>>> quality(S), being quality(Si)> quality(Si−1) and Si

the system version with the sequence of refactorings R1 to Ri performed.

We empirically calibrate our approach to find the best strategy to assess software quality

improvement. First, we modify four systems by randomly moving a subset of its methods to

other classes. Second, we verify if our approach would recommend the moved methods to

return to their original place. After testing ten different calibration strategies, we calibrate the

approach with the strategy of comparing the metrics by improvement percentage of the sum of

QMOOD quality attributes, which achieved the best recall average (57.5%, specifically).

Through QMove, we perform three experiments. First, we evaluate our approach on

13 open-source systems. Similar to our calibration method, we modify the original systems

by randomly moving a subset of their methods to other classes. Next, we verify if our ap-

proach recommend the moved methods to return to their original classes. As result, QMove

could move back 84.2% of the methods, on average. Second, we compare QMove with JMove

and JDeodorant on the same 13 systems used before. As result, the state-of-the-art tools showed

lower precision, recall, and hence f-score values than the ones achieved by QMove. Last, we

perform a comparative evaluation of these tools in two proprietary systems that has been over-

seen by experts developers, and our approach obtained a greater number of positively evaluated

recommendations.

1.4 Outline of the dissertation

The remainder of this dissertation is structured as follows.

• Chapter 2 presents a literature review of the main concepts involved in this dissertation,

such as refactorings with a focus on Move Method, quality metrics, QMOOD quality

model, and the impact on QMOOD metrics when occurs a Move Method refactoring.

Finally, we describe concepts of precision, recall, and f-score, used in the calibration and

evaluation processes of our proposed approach.

• Chapter 3 describes our proposed approach, presenting its high-level algorithm. We also

describe the calibration process, where we evaluate ten different strategies to find the best

criteria to measure the quality improvement. Finally, we describe the tool that implements

our proposed approach, which receives as input a software system and outputs a list of

Move Method refactoring recommendations.

15

• Chapter 4 reports three evaluations of our proposed approach. First, we evaluate our

approach in 13 open-source systems. Second, we compare the previous results with two

state-of-the-art tools (JMove and JDeodorant). Third and last, we evaluate our approach

and the two state-of-the-art tools in real-world systems.

• Chapter 5 discusses related works, presenting studies that address different refactorings,

in addition to Move Method, and quality metrics, in addition to the QMOOD model.

• Chapter 6 presents the final remarks of this dissertation, highlighting the contributions,

limitations, and future work.

1.5 Publications

This dissertation generated the following publications and therefore contains material

from them:

• Christian Marlon Souza Couto, Henrique Rocha and Ricardo Terra. Quality-oriented

Move Method Refactoring. In 16th BElgian-NEtherlands software eVOLution symposium

(BENEVOL), pages 13-17, 2017.

• Christian Marlon Souza Couto, Henrique Rocha and Ricardo Terra. A Quality-oriented

Approach to Recommend Move Method Refactoring. In 17th Simpósio Brasileiro de

Qualidade de Software (SBQS), pages 1-10, 2018.

16

2 BACKGROUND

This chapter presents basic concepts for understanding the approach proposed in this

dissertation. Section 2.1 describes basic concepts on refactoring. Section 2.2 details Move

Method refactoring. Section 2.3 comments about software quality metrics. Section 2.4 intro-

duces the QMOOD model for quality assessment. Section 2.5 presents the impact of Move

Method refactoring on QMOOD quality attributes. Finally, Section 2.6 shows precision, recall,

and f-score concepts.

2.1 Refactoring

In the literature, there are different terms for refactoring, such as remodularization and

restructuring, and the concepts of each term are interrelated.

Remodularization is a process that changes the modular design of a software for pur-

poses of adaptation, evolution or correction, and this process does not require the behavior

preservation of the system to be preserved (TERRA; VALENTE; ANQUETIL, 2016).

Restructuring is the transformation of one form of representation into another at the same

level of relative abstraction, while preserving the external behavior of the system (functionality

and semantics) (CHIKOFSKY; CROSS, 1990).

Refactoring is basically restructuring applied to object-oriented programming, which

can be described as transformations in a software that preserve its behavior, with the main idea

to redistribute classes, methods, and attributes by class hierarchy to facilitate future adaptations

and extensions (MENS; TOURWÉ, 2004). In practice, however, this concept is broader because

developers realize that refactoring involves costs and risks, and they need other types of support

in addition to automated refactoring (KIM; ZIMMERMANN; NAGAPPAN, 2012).

There are several types of refactorings (FOWLER, 1999), such as method composi-

tion (e.g., Extract Method, Replace Method with Method Object, and Substitute Algorithm),

move resources between objects (e.g., Move Method, Move Field, and Extract Class), data or-

ganization (e.g., Replace Data Value with Object, Change Value to Reference, and Replace

Array with Object), etc. From the several types of refactoring, we highlight the Move Method,

which is the core of our proposed approach.

17

2.2 Move Method

A Move Method refactoring consists in moving a method from one class to another,

which can even occur to classes in other packages. There are many reasons to move a method

to a different class. A common scenario for this refactoring is when developers realize that a

method depends more from members of another class than its own. Fowler named this bad

smell as Feature Envy (FOWLER, 1999).

Consider the method methodA2 for example (Code 2.1). This method, belonging to

class A, has an object from class B as parameter. The statements within the method calls only

to methods of class B through object b (lines 2 and 3). More precisely, the value of one of the

attributes in class B is printed if its value is not null (line 3). Thus, it makes more sense to move

this method from class A to class B. Therefore, it is used the Move Method refactoring to move

method methodA2 to class B. After being moved, the method no longer needs the parameter

of type B. Figure 2.1 illustrates by a UML class diagram the behavior of the refactoring in

our example. It is noted that the dependence of class A in class B disappeared after the Move

Method refactoring. Thus, we observed reduction of coupling and increase of cohesion. The

calls of methodA2 are now adapted to be called by an object of class B, eliminating the need for

an object of class A to perform the call and thus reducing the coupling in classes that contains

these method calls.

1 public void methodA2(B b){
2 if(b.getAttribute() != NULL){
3 System.out.println(b.getAttribute());
4 } else {
5 System.out.println("Empty");
6 }
7 }

Code 2.1 – Method example

Figure 2.1 – Move Method refactoring repre-
sented by a UML class diagram

Other reasons for using Move Method involve the following contexts (FOWLER, 1999):

• When there is a type of change in the code that causes the need to make more changes in

methods of different classes. Move Method is an alternative to move these methods into

a single class, making it easy to perform changes;

18

• When the system has several switch or case instructions spread across different classes,

and when adding a new clause to the switch, there is a need to add it also in others

switch instructions. With this, one can use Move Method to apply the idea of polymor-

phism and move the switch instruction where necessary, validating this polymorphism;

• To correct the parallel inheritance hierarchy problem, i.e., when creating a subclass of

a class, there arises the need to create a subclass for another class as well. One way to

remove this hierarchy is by using Move Method;

• To correct a messages chain, i.e., when an object, to be called, must first be called by

several other objects. In this case, Move Method is used to break this chain by removing

the object to be called from the chain;

• When classes depend on private parts of each other very often. Move Method is one of

the strategies to decrease this dependence; and

• When there are alternative classes with different interfaces. Move Method is used until

the classes’ protocol be the same.

The proposed approach in this dissertation aims to suggest a sequence of Move Method

refactorings that improve quality attributes, i.e., without a prior concern to specifically address

one of the aforementioned problems. However, the recommended refactorings can indirectly

correct these problems, mainly the Feature Envy bad smell, contributing to the improvement of

quality of the system.

2.3 Software quality metrics

Metrics are products of quality measurement, productivity, and improvement, and their

use is a strong maturity indication of an independent developer or organization (HEVNER,

1997). In the context of software, metrics are widely used and extremely important to measure

several factors, one of the most important being software quality.

There are several metrics related to software quality, and in the context of object-

oriented systems, there are examples of metrics such as Depth of Inheritance Tree (DIT),

Number Of Children (NOC), Coupling Between Object classes (CBO), Weighted Methods per

Class (WMC), Response For a Class (RFC), and Lack of Cohesion on Methods (LCOM) (CHI-

DAMBER; KEMERER, 1994).

19

Some studies report the refactoring impact on the measurement of quality metrics.

Stroulia and Kapoor (STROULIA; KAPOOR, 2001) reported that size and coupling decrease

after refactoring. Bois et al. (BOIS; DEMEYER; VERELST, 2004) proposed refactoring in-

structions to improve cohesion and coupling metrics, obtaining promising results when applying

these instructions in open-source projects.

Although there is a wide range of proposed metrics in the literature, this dissertation

presents the following 11 metrics contained in QMOOD quality model and elaborated by Ban-

siya and Davis, which are fundamental to the complete understanding of the proposed ap-

proach (BANSIYA; DAVIS, 2002):

• DSC (Design Size in Classes): it counts the number of classes in the project (range from

1 to n);

• NOH (Number of Hierarchies): it counts the number of hierarchical classes in the project

by independent inheritance trees (range from 1 to n);

• ANA (Average Number of Ancestors): it represents the average of the number of classes

from which a class inherits information in the project. Considering x as the sum of the

ancestors for each class and y as the count of all classes, ANA = x/y (range from 1 to n);

• DAM (Data Access Metrics): it represents the ratio between the number of private at-

tributes and the total number of attributes declared in the class. A high DAM value is

desired, ranging from 0 to 1, i.e., the closer to 1, the better;

• DCC (Direct Class Coupling): it counts the different number of classes a particular class

is directly related. The metric includes classes that are directly related by attribute decla-

rations and message passing (parameters) in methods. A low DCC value is desired (range

from 0 to n);

• CAM (Cohesion Among Methods of Class): it computes the relationship between the

methods of a class based on its parameter list. Considering x as the sum of different

parameter types of all methods in a class, and y as the total number of methods in a class

(except constructor and static methods in both cases), CAM = x/(x ∗ y). The preference

is for a value close to 1 (range from 0 to 1);

20

• MOA (Measure of Aggregation): it measures the extent of the part-whole relationship,

performed using attributes. The metric is a count of the number of data declarations

whose types are user-defined classes (range from 0 to n);

• MFA (Measures of Functional Abstraction): it measures the proportion of the number

of methods inherited by a class to the total number of methods accessible by member

methods of the class (range from 0 to n);

• NOP (Number of Polymorphic Methods): it counts the number of methods that may

exhibit polymorphic behavior (range from 0 to n);

• CIS (Class Interface Size): it counts the number of public methods in a class (range from

0 to n); and

• NOM (Number of Methods): it counts the total number of methods in a class (range from

0 to n).

Our approach relies on the latter metrics and the QMOOD quality model due to its

coverage achieved through its six quality attributes and 11 design properties, which together

provide a broader overview of the quality of the software compared to other quality metrics for

object-oriented design.

2.4 Quality Model for Object Oriented Design (QMOOD)

QMOOD quality model, proposed by Bansiya and Davis (BANSIYA; DAVIS, 2002),

measures software quality aspects in object-oriented projects by six quality attributes based

on ISO 9126, namely reusability, flexibility, understandability, functionality, extensibility, and

effectiveness. Calculating values for each attribute provides an analysis on software quality as

a whole or on a subset of the six mentioned attributes. QMOOD also helps to assess object-

oriented design properties, provides search-based refactoring, and quantifies quality attributes

with the help of equations (KATOCH; SHAH, 2014).

For the calculation of these six quality attributes, Bansiya and Davis formulated a

methodology in four steps: (i) quality attributes definition of a design, (ii) design properties

definition of object-oriented projects, (iii) design metrics definition of object-oriented projects,

and (iv) relationship of these metrics with design properties and quality attributes.

21

Quality attributes definition (1st Stage): In this stage, the following six quality attributes are

defined to be used to measure the quality of object-oriented systems:

• Reusability: it reflects the presence of features of object-oriented projects that allows a

project to be reapplied to a new problem without significant effort;

• Flexibility: it reflects the easiness to incorporate changes in the project, i.e., the ability of

the project to be adapted to provide features related to the functionalities;

• Understandability: it refers to the project property that allows it to be easily learned

and understood, these characteristics being directly related to the complexity of the

project structure;

• Functionality: it represents the responsibilities assigned to the project classes, which are

made available by the classes through their public interfaces;

• Extendibility: it measures the ability of the project to achieve desired functionality and

behavior using object-oriented design concepts and techniques; and

• Effectiveness: it reflects the presence and use of properties in an existing project that

allows the incorporation of new requirements in the project.

The following steps formulate equations in order to obtain the measurements of these

quality attributes.

Design properties definition (2nd Stage): Design properties are concepts that can be directly

accessed by examination of the structure (internal and external), relationships and functionality

of the components, attributes, methods, and classes of the project. For example, the evalua-

tion of a class by its external relations with other classes and the examination of its internal

components, attributes, and methods reveals significant information to objectively capture the

structural and functional characteristics of a class and its objects.

This stage defines 11 design properties and separates them into two types of sets. The

first set is composed by the characteristics of both structural and object-oriented designs: ab-

straction, encapsulation, coupling, cohesion, complexity, and size of the project. The second set

is formed from concepts introduced for the object-oriented paradigm: messages, composition,

inheritance, polymorphism, and hierarchy. Next, we describe the definitions of the 11 project

properties, according to Bansiya and Davis:

22

• Design Size: measurement of the number of classes contained in the system;

• Hierarchies: measurement of the number of non-inherited classes that have children in a

system, since hierarchies represent different generalization-specialization concepts;

• Abstraction: measurement of the generalization-specialization aspect of the system. Sys-

tem classes that have one or more descendants exhibit this abstraction property;

• Encapsulation: measurement of classes that restricts access to attributes by defining them

as private, thus protecting the internal representation of objects;

• Coupling: measurement of the interdependence of an object with other objects in the

system. It counts the number of other objects that would have to be accessed by an object

in order to execute its functionalities properly;

• Cohesion: measurement of the relation of methods and attributes in the class. A strong

intersection of method parameters and attribute types is an indication of strong cohesion;

• Composition: measurement of part-whole relationship, which are aggregation relations

in an object-oriented system;

• Inheritance: measurement of is-a relationship between classes. This relationship is re-

lated to the level of nesting of classes in a inheritance hierarchy;

• Polymorphism: measurement of the functionalities of an object that are dynamically de-

termined at run time;

• Messaging: measurement of the number of public methods that are available to other

classes. It represents the functionality that a method provides; and

• Complexity: measurement of the degree of difficulty in understanding and comprehend-

ing the internal and external structure of classes and their relationships.

Design metrics definition (3rd Stage): This stage uses the design properties of the previous

stage to formulate metrics to quantitatively measure each of the properties. The metrics are the

same already mentioned in Section 2.3, i.e., also elaborated for Bansiya and Davis. Table 2.1

reports each design property related to its equivalent metric (see Section 2.3 for more details

about the metrics).

23

Table 2.1 – QMOOD design properties and its corresponding design metric

Design Property Design Metric
Size DSC (Design Size in Classes)
Hierarchies NOH (Number of Hierarchies)
Abstraction ANA (Average Number of Ancestors)
Encapsulation DAM (Data Access Metrics)
Coupling DCC (Direct Class Coupling)
Cohesion CAM (Cohesion Among Methods of Class)
Composition MOA (Measure of Aggregation)
Inheritance MFA (Measures of Functional Abstraction)
Polymorphism NOP (Number of Polymorphic Methods)
Messaging CIS (Class Interface Size)
Complexity NOM (Number of Methods)

Relationship of design metrics with design properties and quality attributes (4th Stage):

In this stage, the metrics related to the design properties and defined in the previous stage were

used to formulate equations for each of the quality attributes defined in the first stage. In this

way, for each attribute, it is possible to measure its value by means of combinations of the

design properties, the value of each property being calculated by means of the metrics defined

in the third stage. Table 2.2 reports the attributes and the equations defined to calculate each

quality attribute.

Table 2.2 – Equations for QMOOD quality attributes

Quality Attribute Equation

Reusability
-0.25*Coupling +0.25*Cohesion +0.5*Messaging
+0.5*Size

Flexibility
+0.25*Encapsulation -0.25*Coupling +0.5*Composition
+0.5*Polymorphism

Understandability
-0.33*Abstraction +0.33*Encapsulation -0.33*Coupling
+0.33*Cohesion -0.33*Polymorphism -0.33*Complexity
-0.33*Size

Functionality
+0.12*Cohesion +0.22*Polymorphism +0.22*Messaging
+0.22*Size +0.22*Hierarchies

Extendibility
+0.5*Abstraction -0.5*Coupling +0.5*Inheritance
+0.5*Polymorphism

Effectiveness
+0.2*Abstraction +0.2*Encapsulation +0.2*Composition
+0.2*Inheritance +0.2*Polymorphism

For the weighted values defined for each design property, Bansiya and Davis performed

an extensive literature review in object-oriented programming books to incorporate ideas of how

each design property can influence quality attributes. From this analysis, weighted value of +1

or +0.5 were initially defined for properties that positively influenced the value of the attribute,

and weighted value of−1 or−0.5 for negative influences. The initial weighted values were then

24

proportionally changed to ensure that the sum of the new weighted values for each design prop-

erty in a quality attribute added to −1 and 1 range. They chose this weighting scheme through

the influences of each design property on quality attributes for its simplicity of application.

Each calculated quality attribute serves as a parameter to provide a notion of the current

quality of the software, i.e., greater its value, better is the characteristic assigned to it, opposite

to other metrics that provide values between 0 and 1. For example, a system S has reusability

attribute value equals to 10. Assume that developers change the source code of S, generating a

new version of the system, S′, and reusability attribute value increased to 15. Therefore, there

was an increase of 50% in reusability value, which means that S′ has a greater possibility of

their reuse in other systems, compared to S.

2.5 Move Method and QMOOD quality attributes

In order to properly conduct the process of formulating the proposed approach in this

dissertation, we identified in Shatnawi and Li’s study data about what would be the impact of

the Move Method refactoring on the 11 project properties (see Table 2.1) and the six QMOOD

quality attributes (see Table 2.2).

Table 2.3 reports an impact analysis on the desgin metrics when applying the Move

Method refactoring. A positive impact is represented by +, negative impact by −, and an

impact represented by 0 means that the metric has little or no impact (SHATNAWI; LI, 2011).

Table 2.3 – Move Method refactoring impact on QMOOD design metrics

Design Metric Impact
DSC (Design Size in Classes) 0
NOH (Number of Hierarchies) 0
ANA (Average Number of Ancestors) 0
DAM (Data Access Metrics) 0
DCC (Direct Class Coupling) -
CAM (Cohesion Among Methods of Class) +
MOA (Measure of Aggregation) 0
MFA (Measures of Functional Abstraction) 0
NOP (Number of Polymorphic Methods) 0
CIS (Class Interface Size) -
NOM (Number of Methods) 0

It is noticed that only DCC, CAM, and CIS metrics have relevant impacts. This means

that a Move Method refactoring tends to improve cohesion and coupling properties, and worsen

message, with the others properties little changed or unchanged.

25

Table 2.4 presents an analysis, also conducted by Shatnawi and Li, on the impact of

Move Method refactoring on QMOOD quality attributes. It is observed that only reusability

and effectiveness do not change, while functionality tends to worsen and the remaining quality

attributes tend to improve.

Table 2.4 – Move Method refactoring impact on QMOOD quality attributes

Quality Attributes Impact
Reusability 0
Flexibility +
Understandability +
Functionality -
Extensibility +
Effectiveness 0

Previous knowledge on the impacts presented in Tables 2.3 and 2.4 is relevant in the

calibration process of the proposed approach in this dissertation (Section 3.3). However, some

design properties or design metrics may have a different impact than those reported in Shatnawi

and Li’s study. Such impacts are further discussed in Section 4.3.

2.6 Recall, precision, and f-score

The precision-recall curve can provide a view on the performance of a sample data and is

commonly summarised in a single indicator (GOUTTE; GAUSSIER, 2005), such as the f-score

value. Given a classifier and an instance, there are four possible outcomes: (i) if the instance is

positive and it is classified as positive, it is counted as a true positive (tp); (ii) if the instance is

positive and it is classified as negative, it is counted as a false negative (fn); (iii) if the instance

is negative and it is classified as negative, it is counted as a true negative (tn); and (iv) if the in-

stance is negative and it is classified as positive, it is counted as a false positive (fp) (FAWCETT,

2006).

We use these outcomes to calculate precision and recall values and with them we can

obtain the f-score value, as the following equations (OLSON; DELEN, 2008).

precision =
tp

tp+ fp
recall =

tp
tp+ fn

f − score = 2× precision× recall
precision+ recall

26

These equations were used during the calibration and evaluation process of our work,

and details about which outputs we considered and how we define them will be detailed in

Section 3.3 and Chapter 4.

27

3 PROPOSED APPROACH

This dissertation proposes a semi-automatic refactoring approach using Move Method

refactorings and the six QMOOD quality attributes used as quality metrics (see Table 2.2).

Given a software system S, our approach recommends a sequence of refactorings R1,R2, . . . ,Rn

that result in system versions S1,S2, . . . ,Sn, where quality(Si+1)> quality(Si). By applying the

sequence of recommendations, we expect that both the architectural structure and the software

quality are improved. Thus, the approach follows a set of steps, which are:

1. Calculate the values of the six quality attributes of the target system;

2. Identify all methods that can be automatically refactored with Move Method. Our ap-

proach uses for this identification JDT Eclipse, which provides a procedure to verify for

each method of the target system whether it can move through Move Method refactoring

and the possible classes that can receive the method under analysis;

3. Move each of the identified methods from step 2 to other classes, recalculate the new

values of the quality attributes, and return it to its original class;

4. Select methods that have improved quality when comparing the values of six quality

attributes calculated in step 1 with the new values after refactoring. Such improvement

is measured by the strategy of comparing quality through the percentage improvement

in the sum of QMOOD quality attributes;

5. Among the methods selected in step 4, identify the one that presented the highest in-

crease in the values of the quality attributes, remove it and all of its possible refactorings

from the list of methods formulated in step 2, and include it in a list of recommended

refactorings;

6. Calculate the new values of the six quality attributes after refactoring the best method

found in step 5 and replace these new values with the values calculated in step 1;

7. Repeat steps 3 to 6 as long as there is a method that improves the values of the quality

attributes; and

8. If it does not have a method that improves the quality attribute values, the list of recom-

mendations with Move Method refactorings is shown from the first to the last recom-

mendation found in step 5.

28

This chapter is structured as follows. Section 3.1 presents a motivation example of the

application of our proposed approach to a system. Section 3.2 shows the high-level algorithm of

our approach. Section 3.3 reports the calibration process of our approach. Finally, Section 3.4

shows the implemented tool of our proposed approach.

3.1 Motivation example

This section illustrates a Move Method refactoring scenario where our approach could be

useful. Suppose a small Java system S with three classes: A, B, and C. Class A has three methods:

methodA1, methodA2, and methodA3; class B has two methods: methodB1 and methodB2; and

class C has three methods: methodC1, methodC2, and methodC3. A well-design architecture

for this example would have the methods with parameters in the class of the parameter type.

More specifically, methodB2 and methodC2 that receive an A object as a parameter should

be in class A; methodA2 and methodC1 that receive a B object as a parameter should be in

class B; and methodA3 and methodB1 that receive a C object as a parameter should be in class C.

Figure 3.1 shows a UML diagram of the classes described in our example and the dependencies

between them.

Figure 3.1 – UML class diagram of system S in our motivation example

When we apply our approach to system S, we first compute the QMOOD quality at-

tributes for S. Then, we detect methodA2, methodA3, methodB1, methodB2, methodC1, and

methodC2 as the methods that could be moved to other classes. Method methodA2 is moved

29

to class B creating the new system version SA2. We recompute the quality metrics for SA2 and

then we return the method to class A, where it originally came from. Next, method methodA3

is moved to class C creating the new system version SA3, then we recompute the quality metrics

for SA3 and return the method to class A. We do the same to remain methods, where methodB1

generates SB1, methodB2 generates SB2, methodC1 generates SC1, and methodC2 generates SC2.

After, we verify from the generated systems the one that obtained the best quality im-

provement, and we found system SB2 as the best, with 68.28% of quality improvement, which

was calculated by the following steps: (i) calculation of the sum of quality attributes values of

system S; (ii) calculation of the sum of quality attributes values of system SB2; and (iii) calcula-

tion of improvement percentage between the sums of steps (i) and (ii). The same is done to each

generated system, and the improvement percentages are compared to find the best improvement,

which in this case was 68.28% for system SB2.

Therefore, we definitely move methodB2 from class B to class A, and the generated

system SB2 is called now S1. Figure 3.2 shows the architecture of S and S1 systems and the

remain systems generated during the execution of our approach. We can note that in system S1

methodB2 does not have a parameter of type A and hence the dependency from class B to class A

in system S no longer exists in system S1, resulting in an improvement to cohesion and coupling

from S to S1, besides the quality improvement, i.e., quality(S1)> quality(S).

Figure 3.2 – System versions in UML class diagrams of our motivation example

Our approach then repeats the process to system S1 by simulating to move the remain

methods methodA2, methodA3, methodB1, methodC1, and methodC2 to other classes and re-

calculating the quality metrics again. After, we found that methodA3 has the best quality im-

provement (196.85%) regarding system S1, then we definitively move it from class A to class C

30

on system version S1, generating the new system version S2 where the dependency from class A

to class C no longer exists. Therefore, we have quality(S2)> quality(S1)> quality(S).

Following, our approach continues the process to system version S2 with methods

methodA2, methodB1, methodC1, and methodC2. It is detected that methodC1 has the best

quality improvement (199.45%) regarding system S2, then we move it from class C to class B

on system version S2, generating the new system version S3 where does not have the depen-

dency from class C to class B. Thus, with the new system version S3, we have quality(S3) >

quality(S2)> quality(S1)> quality(S).

Last, our approach executes on system version S3 by moving the remain methods

methodA2, methodB1, and methodC2. However, no one of the moves improves the quality

on system version S3, then our approach finishes the analysis. Table 3.1 shows the QMOOD

quality attributes for S, S1, S2, and S3, and for each quality attribute from system S1 to sys-

tem S3, we show the improvement compared to the previous version, e.g., reusability has the

value of 4.29 in system S and 4.67 in system S1, an improvement of 0.38 on its value. Besides,

Table 3.1 shows the sum of quality attributes and the quality improvement of each system, which

is calculated by the sum of the six quality attributes to previous system version, the sum of the

six quality attributes to new system, and then the improvement percentage between these sums.

Table 3.1 – Variation of QMOOD quality attributes for our motivation example

Quality Attribute S S1 S2 S3

Reusability 4.29 4.67 (+0.38) 5.01 (+0.34) 5.33 (+0.32)
Flexibility -1.50 -1.25 (+0.25) -1.00 (+0.25) -0.75 (+0.25)
Understandability -5.55 -5.04 (+0.51) -4.60 (+0.44) -4.18 (+0.42)
Functionality 2.56 2.62 (+0.06) 2.66 (+0.04) 2.70 (+0.04)
Extendibility -2.50 -2.00 (+0.5) -1.50 (+0.5) -1.00 (+0.5)
Effectiveness 0.20 0.20 (0) 0.20 (0) 0.20 (0)
Sum (Improvement) -2.5 -0.8 (68.28%) 0.77 (196.85%) 2.3 (199.46%)

Since system version S3 shows better quality attributes, our approach would recommend

methodB2, methodA3, and methodC1 to be moved to class A, C, and B, respectively and in that

order (as previous illustrated in Figure 3.2).

3.2 Algorithm

Algorithm 1 describes our proposed approach. It is worth noting that before we execute

the algorithm, we make a copy of the analyzed system, and the algorithm is executed in this

copy (and not in the actual system).

31

Algorithm 1: Proposed Approach Algorithm
1 Require: methods, a list with every method and their respective class from the analyzed

system
2 Ensure: recommendations, an ordered sequence of Move Method refactoring that can be

applied to the analyzed system
3 begin
4 potRefactor := ∅
5 currentMetrics := calculateMetrics()
6 for each method m in methods do
7 if m can be automatically refactored to a class C then
8 potRefactor := potRefactor + {m,C}
9 end

10 end
11 candidates := ∅
12 metrics := ∅
13 while potRefactor 6=∅ do
14 for each refactoring ref in potRefactor do
15 applyRefactoring(ref)
16 metrics := calculateMetrics()
17 undoRefactoring(ref)
18 if fitness(metrics) > fitness(currentMetrics) then
19 candidates := candidates + {ref,metrics}
20 end
21 end

/* find the refactoring with the best metrics */
22 bestRefactoring := maxMetrics(candidates)
23 applyRefactoring(bestRefactoring)
24 potRefactor := potRefactor \ {bestRefactoring}
25 recommendations := recommendations + {bestRefactoring}
26 currentMetrics := bestRefactoring.metrics

27 end
28 end

The algorithm receives as input a list containing all methods with their respective class

from the analyzed system. The output is a sequence of Move Method refactorings that resulted

in better quality metrics, ordered by the first to last found recommendation.

First, it calculates the current six QMOOD quality metrics for the analyzed sys-

tem (line 5). Second, it determines the methods of the system (m) that can be automatically

moved to other classes (C) with support of JDT Eclipse (lines 6-10) and stores the pairs (m,C)

in the list of potential refactorings (line 8).

The next loop (lines 13-27) finishes when the list containing the methods for potential

refactoring is empty. Now, each method in the potential refactoring list is moved (line 15), the

quality metrics are recalculated after moving the method (line 16), and the method returns to its

32

original class (line 17). If the quality measurements are better than the current ones (line 18),

then the method is added to our list as a candidate for refactoring (line 19).

After we measure every method, we select the one that achieved the best quality metric

improvement (line 22). The best refactoring is applied to the system copy (line 23), removed

from the potential refactoring list (in fact, we remove all refactorings where it is the origin

method) (line 24), and added to the recommendations (line 25). The new calculated metrics

for the best refactoring becomes the system baseline now (line 26). After the execution of

Algorithm 1, the sequence of refactorings is recommended to the user.

3.3 Calibration

Our calibration is related to the fitness function from Algorithm 1 (line 18). The

fitness function defines how we compare the quality attributes to determinate if there is an

improvement according to our requirements. Our objective is to identify the best set of require-

ments for the fitness function to make our approach recommend better refactoring options.

3.3.1 Subject systems

Table 3.2 reports information about the four systems we use in calibration process, such

as size in terms of lines of code (LOC), and number of classes and methods.

Table 3.2 – Subject systems in the calibration process

System Version # of classes # of methods LOC
JHotDraw 4.6 674 6,533 80,536
JUnit r4.12 1,092 2,811 26,111
MyAppointments - 22 99 1,213
MyWebMarket - 18 107 1,034

We chose these four systems because they were implemented following commonly ar-

chitectural standards and hence most of their methods are probably located in the correct classes.

We randomly moved to different classes 20 methods of JHotDraw and JUnit, and five methods

of MyAppointments and MyWebMarket.

The information about these methods and classes (original and the one it has been moved

to), we called Gold Set. We rely on the Gold Set to verify if our approach recommends moving

those methods back to their original classes. In theory, it would be chosen the fitness function

that recommends more methods from the Gold Set.

33

Next step of calibration process consists of elaborating different strategies for the

fitness function configuration to observe which one is the most effective w.r.t. the larger

number of methods from the Gold Set being moved back to their original classes.

3.3.2 Strategies

For this calibration process stage, we define five different types of fitness functions using

two different kinds of metrics values—the absolute and relative values of QMOOD quality

attributes—and we run our approach in the modified versions of the systems for each type of

calibration.

Absolute values refer to original values of each calculated metric, and the relative values

refer to improvement (or worsening) percentages of the metrics after a Move Method refactor-

ing. For example, a system has absolute values of 1, 2, and 3 for reusability, flexibility, and

understandability, respectively. After a refactoring, the new version of the system has the abso-

lute values of 2, 3, and 4, respectively. In terms of absolute values, each metric increased by 1

its value, while in relative values, each metric increased by 100%, 50% and 33.3%, respectively.

We assume S as a system, S′ as its version after a Move Method refactoring, and M as

a metrics set consisting of reusability, flexibility, understandability, functionality, extendibility,

and effectiveness. Also, we consider M% as the set with the percentage difference between the

values of each metric of M in S and S′.

In first calibration type, our criterion is the more simplistic where we verified if none

of the quality attributes decreased and at least one attribute increased. Therefore, Equation 3.1

uses absolute values of each metric before and after the refactoring, while Equation 3.2 uses

relative values.

Abs#1: ∀m ∈M, m(S′)≥ m(S)∧∃m ∈M, m(S′)> m(S) (3.1)

Rel#1: ∀m% ∈M%, m%≥ 0∧∃m% ∈M%, m% > 0 (3.2)

Nevertheless, we discovered that the effectiveness values get worse in the majority of

the Gold Set and hence we discarded correct recommendations. In the second calibration,

since the effectiveness rarely changed in the first calibration, we adjusted the fitness function

to disregard this quality attribute, while maintaining the other criteria from the first calibra-

tion. Therefore, we altered the absolute and relative fitness functions (Equations 3.3 and 3.4,

respectively).

34

Abs#2: ∀m ∈M \{effectiveness}, m(S′)≥ m(S)

∧ ∃m ∈M \{effectiveness}, m(S′)> m(S)
(3.3)

Rel#2: ∀m% ∈M%\{effectiveness}, m%≥ 0

∧ ∃m% ∈M%\{effectiveness}, m% > 0
(3.4)

In the third calibration, our criterion is as simplistic as the first one where we compare

the overall sum of all six quality attributes. Thus, Equation 3.5 represents absolute version of

the function fitness and Equation 3.6 represents the relative one.

Abs#3: s = sum(M),

s(S′)> s(S)
(3.5)

Rel#3: sum(M%)> 0 (3.6)

In the fourth calibration, we modified the fitness function based on the following two

observations: (i) in the second calibration, flexibility, understandability, and extensibility im-

proved but the remaining attributes (reusability and functionality) decreased; and (ii) Shatnawi

and Li stated that Move Method refactoring usually increases the values for flexibility, under-

standability, and extensibility (SHATNAWI; LI, 2011). Therefore, particularly in this calibra-

tion, we consider only these three attributes, disregarding the others. Therefore, consider M′ as a

subset of M consisting of flexibility, understandability, and extensibility metrics and M′% as the

percentage difference between the values of each metric of M′ in S and S′. Equations 3.7 and 3.8

represent absolute and relative versions of the fitness function, respectively.

Abs#4: ∀m ∈M’, m(S′)≥ m(S)

∧ ∃m ∈M’, m(S′)> m(S)
(3.7)

Rel#4: ∀m% ∈M’%, m%≥ 0

∧ ∃m% ∈M’%, m% > 0
(3.8)

In the fifth and last calibration type, we used the following three design metrics (Ta-

ble 2.1): CAM (cohesion), DCC (coupling), and CIS (messaging). We chose these metrics

35

because they are the QMOOD design metrics that usually change when a Move Method refac-

toring occurs. We then establish the criteria for the fitness function that cohesion, coupling,

and messaging cannot decrease. Therefore, consider DM as a set with CAM, DCC, and CIS

design metrics and DM% as the percentage difference between the values of each design metric

of DM in S and S′. Equations 3.9 and 3.10 represent absolute and relative fitness functions,

respectively.

Abs#5: ∀m ∈ DM, m(S′)≥ m(S)

∧ ∃m ∈ DM, m(S′)> m(S)
(3.9)

Rel#5: ∀m% ∈ DM%, m%≥ 0

∧ ∃m% ∈ DM%, m% > 0
(3.10)

3.3.3 Results

Table 3.3 reports the strategies for each calibration type (ST), the number of recom-

mended methods (RM), the recommendations from the Gold Set (GM) and we also calculated

precision, recall, and f-score, considering GM as true positives, RM−GM as false positives,

and |Gold Set|−GM as false negatives.

We determined that we should focus our analysis on recall values. The measure of

precision and f-score is jeopardized since we cannot ensure that recommendations that do not

belong to the Gold Set are indeed wrong. In other words, we can mostly guarantee that the

methods we moved around (i.e., those that belong to the Gold Set) are misplaced.

The first and second calibration strategies obtained an average recall of 38.8% for both

Abs#1, Rel#1, Abs#2, and Rel#2. The methods recommended for each system in these strate-

gies were the same, and hence they have same number of recommendations and recall values.

For the third calibration, Abs#3 had the average recall of 56.2%, the best result so far,

since is an increase of 17.4% w.r.t. the previous strategies. However, for Rel#3, the average

recall rose to 57.5%, i.e., a subtle increase of 1.3%. It occurs due exclusively to the difference

of recall values calculated for JUnit, which in Abs#3 was 80% and Rel#3 was 85%. Thus, we

now consider Rel#3 to be the best.

In the fourth calibration, the average recall for both Abs#4 and Rel#4 were 56.2% (the

same found for Abs#3), so we keep Rel#3 as the best. Last, in the fifth calibration, Abs#5 had

36

Table 3.3 – Recall, precision, and f-score results for subject systems of calibration

JHotDraw JUnit
ST RM GM P R F RM GM P R F

Abs#1 33 5 15.1% 25.2% 18.8% 30 10 33.3% 50.0% 40.0%
Rel#1 33 5 15.1% 25.2% 18.8% 30 10 33.3% 50.0% 40.0%
Abs#2 33 5 15.1% 25.2% 18.8% 30 10 33.3% 50.0% 40.0%
Rel#2 33 5 15.1% 25.2% 18.8% 30 10 33.3% 50.0% 40.0%
Abs#3 43 13 30.2% 65.0% 41.2% 39 16 41.0% 80.0% 54.2%
Rel#3 43 13 30.2% 65.0% 41.2% 39 17 43.5% 85.0% 57.6%
Abs#4 40 13 32.5% 65.0% 43.3% 36 16 44.4% 80.0% 57.1%
Rel#4 40 13 32.5% 65.0% 43.3% 36 16 44.4% 80.0% 57.1%
Abs#5 36 4 11.1% 20.0% 14.2% 30 9 30.0% 45.0% 36.0%
Rel#5 37 5 13.5% 25.0% 17.5% 52 11 21.1% 55.0% 30.5%

MyAppointments MyWebMarket
ST RM GM P R F RM GM P R F

Abs#1 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Rel#1 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Abs#2 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Rel#2 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Abs#3 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Rel#3 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Abs#4 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Rel#4 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Abs#5 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Rel#5 4 2 50.0% 40.0% 44.4% 3 3 100.0% 60.0% 75.0%
Acronyms: ST - Strategy, Abs - Absolute Calibration, Rel - Relative Calibration,
RM - Recommended Methods, GM - Gold Set Methods, P - Precision, R - Recall, F - F-Score.

an average recall of 36.2%, while Rel#5 had an average of 45%. These values are lower than

the one of Rel#3, so they were discarded.

Thus, we chose calibration Rel#3, which obtained the highest average recall value of

57.5%, to be used by our approach as the fitness function, i.e., the criterion of comparing the

metrics by improvement percentage of the sum of QMOOD quality attributes.

3.4 Tool support

We implemented our approach as a plug-in for the Eclipse IDE, called QMove1. We

decided to implement the tool as a plug-in for Eclipse since this platform has automated refac-

toring features, including Move Method one. Figure 3.3 shows a high-level representation of

QMove architecture with its following three main modules: (i) refactorings detection, (ii) met-

rics calculation, and (iii) refactorings recommendations.

1 https://github.com/pqes/QMove, verified on July 4th, 2018

37

Figure 3.3 – UML class diagram of QMove’s architecture

• Refactorings Detection: it receives and makes a copy of the system project under

analysis, creates a list with all its methods, detects methods that can be automatically

moved, moves the method to other classes, and moves it back to its original class.

Eclipse JTD (Java Development Tools) assists in performing these refactorings by pro-

viding libraries that facilitate Move Method operations.

• Metrics Calculation: it calculates the six QMOOD metrics. We reused and adapted part

of the source code of Eclipse Metrics Plugin 32 to calculate the metrics.

• Refactorings Recommendations: it displays the refactorings recommendations list to

the user and applies the refactorings. The latter task is also assisted by Eclipse JDT.

Figure 3.4 demonstrates an example of using QMove on a system. When developers

run the tool, it shows a view with the recommended refactoring sequence. The view shows

the method’s current location, the suggested class to move it, and the percentage increase in

QMOOD quality metrics with the refactoring performed. Note, for instance, that recommen-

dation ID 1 suggests to move methodB2 from pckg.B to pckg.A since it improves 68.28% of

metrics values. For each recommendation, QMove allows to apply it or check detailed in-

formation w.r.t. its QMOOD metrics values. Note again that, while effectiveness remains the

same, recommendation ID 1 improves extendibility from -2.5 to -2 (+0.5), flexibility from -1.5

to -1.25 (+0.25), functionality from 2.56 to 2.625 (+0.065), reusability from 4.291 to 4.676

(+0.385), and understandability from -5.555 to -5.047 (+0.508). Finally, there is also the option

to automatically apply all refactorings in the order our approach suggests.

2 https://github.com/qxo/eclipse-metrics-plugin

38

Figure 3.4 – QMove plug-in screenshot

One could question rec. ID 1 improves 68.28% and rec. ID 2 improves 196.85%. How-

ever, as we previously detailed in our motivation example (Section 3.1), rec. ID 1 is the best in

version S1 and rec. ID 2 is the best in version S2. Particularly in this example, rec. ID 2 in S1

would improve 58.95%, which is less than 68.28%. However, if the user decides to apply only

one refactoring out of sequence, e.g., recs. ID 2 or 3 applied first than rec. ID 1, QMove starts

a re-execution to guarantee that the generated refactoring sequence improves quality as showed

in recommendations view, which may not happen if a refactoring is applied outside the defined

sequence.

39

4 EVALUATION

This section evaluates our approach, where we performed three types of evaluation.

Section 4.1 reports a synthesized analysis running our QMove tool on 13 open-source systems.

Section 4.2 compares QMove with two state-of-the-art tools similar to ours by running JMove

and JDeodorant on the same 13 systems used in the previous evaluation. Finally, Section 4.3

reports an evaluation in a real scenario, where we ran our tool, JMove, and JDeodorant in two

proprietary systems together with their software architects.

4.1 Synthesized evaluation

This section evaluates our proposed refactoring approach through QMove. We rely

on 13 open-source systems (Table 4.1) that possess well-defined architectures and are active

projects. These systems have been used in the evaluation of a third-party work (TERRA et al.,

2017), which facilitates comparing our approach to JMove and JDeodorant.

Table 4.1 – Subject systems in the evaluation process

System Version # of classes # of methods LOC
Ant 1.8.2 1,474 12,318 127,507
ArgoUML 0.34 1,291 8,077 67,514
Cayenne 3.0.1 2,795 17,070 192,431
DrJava r5387 788 7,156 89,477
FreeCol 0.10.3 809 7,134 106,412
FreeMind 0.9.0 658 4,885 52,757
JMeter 2.5.1 940 7,990 94,778
JRuby 1.7.3 1,925 18,153 243,984
JTOpen 7.8 1,812 21,630 342,032
Maven 3.0.5 647 4,888 65,685
Megamek 0.35.18 1,775 11,369 242,836
WCT 1.5.2 539 5,130 48,191
Weka 3.6.9 1,535 17,851 272,611

Similarly to our calibration, we modified the subject systems by randomly moving their

methods to other classes. Those methods represent our Gold Set and our evaluation consists

in verifying whether QMove recommend to move methods from our Gold Set back to their

original classes.1 Table 4.2 reports the evaluation results for each system, the total number of

1 We do not rely on the same Gold Set from (TERRA et al., 2017) because we use a more recent version
of Eclipse to implement and run our approach. We noticed, nevertheless, that Eclipse Photon has more
preconditions to apply a Move Method than used to be when the nowadays version could not move
back some methods from (TERRA et al., 2017).

40

recommended methods, the Gold Set (GS) size, the recommendations from the Gold Set, and

the achieved f-score, precision, and recall.

Table 4.2 – Recall, precision, and f-score results for subject systems of evaluation

System Recs. GS Size Recs. GS F-score Prec. Recall
Ant 135 25 25 31.2% 18.5% 100.0%
ArgoUML 71 32 13 25.2% 18.3% 40.6%
Cayenne 245 47 46 31.5% 18.7% 97.8%
DrJava 90 18 16 29.6% 17.7% 88.8%
FreeCol 112 17 13 20.1% 11.6% 76.4%
FreeMind 47 12 11 37.2% 23.4% 91.6%
JMeter 52 25 22 57.1% 42.3% 88.0%
JRuby 101 41 23 32.3% 22.7% 56.1%
JTOpen 162 39 36 35.8% 22.2% 92.3%
Maven 36 24 22 73.3% 64.1% 91.6%
Megamek 193 35 32 28.0% 16.5% 91.4%
WCT 46 29 25 66.6% 54.3% 86.2%
Weka 114 31 29 40.0% 25.4% 93.5%
Average 39.1% 27.1% 84.2%

Our evaluation results shows 84.2% average recall for methods in the Gold Set. This

result is similar to the one found in the calibration process, where the highest recall in our

chosen strategy was 85%. On the other hand, the average f-score and precision in the evaluation

were lower than the calibration. It is somehow expected since the systems used in the calibration

process have been carefully implemented following commonly architectural standards.

We also performed a more detailed analysis of the recommendations, considering the

precision and recall values for each recommendation, allowing the behavior observation of these

values during the execution of our approach. Therefore, Figures 4.1 and 4.2 show a graph

containing the precision and recall results, respectively, for all subject systems. We used the

logarithmic scale for a better representation of data variation, mostly in relation to the first

found recommendations.

We can note that precision values in general tend to be higher in the first recommen-

dations, and throughout of the remaining recommendations, the precision undergoes a decline

until the last recommended method. Regarding recall, the observed behavior is the opposite

of precision, i.e., a low recall in the first recommendations and a high value in the last rec-

ommendations. This behavior shows a tendency that the first recommendations provided by

QMove have high accurate in finding methods that are erroneously located, and throughout the

remaining recommendations, most of these methods are recommended but with less precision.

41

Figure 4.1 – Precision graph of QMove for the evaluated systems

Figure 4.2 – Recall graph of QMove for the evaluated systems

In order to find the situation where our approach provides the best possible precision and

recall values, we made further analysis through precision and recall values at different stages of

the Move Method recommendations, specifically when we set the number of recommendations

as three (Top3), five (Top5), ten (Top10), and n (TopN), being n the size of the gold set for

each system used in the evaluation (e.g., n = 25 for Ant according to Table 4.2).

Figure 4.3 graphically illustrates the precision behavior and shows the data referring to

the average precision of Top3 to TopN, the letter represented by the dotted line. The average

precision is 71.8% for the first three recommendations, 67.7% for the first five, 66.9% for the

first ten, and 52.1% for the first n recommendations. Note that our approach is more precise in

the first recommendations to move methods that improve QMOOD quality attributes.

Figure 4.4 contains a graph representing the recall value for the TopN recommendations,

as well as containing a dotted line representing the average recall rate for all analyzed systems.

42

Figure 4.3 – Precision graph of QMove for Top3 to TopN recommendations

It shows that the first n recommendations have an average recall of 53.1%, with a standard

deviation of 25.6%. Thus, considering the number of randomly moved methods for each system,

the tendency is that 53.1% of them are recommended to return to their original classes with a

52.1% precision.

Figure 4.4 – Recall graph of QMove for TopN recommendations

Another strategy to verify the results is using f-score value in the same way that was

used in the calibration (Section 3.3). Thereupon, we generate graphs for each of the 13 systems

used in the evaluation, containing the precision, recall, and f-score behavior (Figure 4.5). All

the graphs are in logarithmic scale, and the abscissa axis has the size of 250, to simplify the

comparison between them.

Our goal is to observe the point that the f-score has its highest value, which means the

highest values of precision and recall, before the f-score values begin to decline. This indicates

43

Figure 4.5 – Recall, precision, and f-score graph for each evaluated systems

44

the number of recommendations necessary for our approach to detect as many Gold Set methods

as possible, while maintaining a high precision and recall rate.

By analyzing the graphs represented in Figure 4.5, we detected the points where f-score

has its highest value, and for each point we extracted the corresponding precision, recall, and

recommendation number. We also calculated the positions of the recommendations in function

of n, where n is the size of the Gold Set for that system. Table 4.3 reports the results of this

analysis showing for each system the recommendation position, the recommendation position

in function of n, the f-score, precision, and recall values.

Table 4.3 – Best f-score value for each subject system of evaluation

System Rec. Pos. Rec(n) F-Score Prec. Recall
Ant 17th 0.68 66.6% 82.3% 56.0%
ArgoUML 11th 0.34 41.8% 81.8% 28.1%
Cayenne 55th 1.17 56.8% 52.7% 61.7%
DrJava 22nd 1.22 60.0% 54.5% 66.6%
FreeCol 6th 0.35 17.3% 33.3% 11.7%
FreeMind 10th 0.83 81.8% 90.0% 75.0%
JMeter 30th 1.2 80.0% 73.3% 88.0%
JRuby 78th 1.90 38.6% 29.4% 56.1%
JTOpen 32nd 0.82 87.3% 96.8% 79.4%
Maven 25th 1.04 85.7% 84.0% 87.5%
Megamek 37th 1.05 66.6% 64.8% 68.5%
WCT 29th 1 65.5% 65.5% 65.5%
Weka 101th 3.25 43.9% 28.7% 93.5%
Average 35th 1.14 62.6% 64.4% 64.5%

As can be seen, the extracted data resulted in an average of 62.6% of the f-score values,

with a standard deviation of 20.93%. Consequently, to find the number of recommendations

needed to have the highest precision and recall values of 64.4% and 64.5%, respectively, are

1.14 x n. Therefore, considering all the systems used in the evaluation, our approach is able to

detect, among the first 1.14 x n Move Method recommendations, 64.5% of methods contained

in the Gold Set with 64.4% precision.

4.2 Comparative evaluation

We perform a comparative analysis between our approach and the JMove and JDeodor-

ant tools. We used the same systems used in our synthesized evaluation (refer to Table 4.1). In

this section, we ran JMove and JDeodorant on these 13 systems to verify if they recommend

moving back the methods from our Gold Set.

45

Table 4.4 reports the comparative results for QMove, JMove, and JDeodorant (JDeo).

It is shown the Gold Set size of evaluated systems, the number of refactoring recommenda-

tions (Recs.), the number of refactorings related to methods from the Gold Set (Recs. GS), and

the total summation of each these mentioned values.

Table 4.4 – Comparative between QMove, JMove, and JDeodorant recommendations

Recs. Recs. GS
System GS Size QMove JMove JDeo QMove JMove JDeo

Ant 25 135 139 63 25 0 6
ArgoUML 32 71 48 9 13 6 4
Cayenne 47 245 158 199 46 11 11
DrJava 18 90 106 50 16 5 7
FreeCol 17 112 194 164 13 13 3
FreeMind 12 47 54 39 11 3 2
JMeter 25 52 59 46 22 2 3
JRuby 41 101 574 206 23 25 12
JTOpen 39 162 140 87 36 17 22
Maven 24 36 85 40 22 11 6
Megamek 35 193 244 131 32 9 18
WCT 29 46 44 51 25 5 12
Weka 31 114 246 279 29 6 11
Total 375 1404 2091 1364 313 113 117

As we can see in Table 4.4, QMove recommended 313 of 375 Gold Set methods, more

than those recommended by JMove (113) and JDeodorant (117). In addition, QMove recom-

mended a total of 1,404 refactorings, while JMove and JDeodorant recommended 2,091 and

1,364, respectively.

By comparing the results for each evaluated system, QMove recommended more Gold

Set methods in 11 of 13 systems, except FreeCol, where both QMove and JMove recommended

13 Gold Set methods, and JRuby, where JMove and QMove recommended 25 and 23 Gold Set

methods, respectively. However, in both systems, JMove recommended a higher total number of

refactorings for FreeCol (194) and JRuby (574), while QMove recommended 112 for FreeCol

and 101 for JRuby.

Since Table 4.4 has absolute values on the results obtained, we performed a complemen-

tary analysis about the relation of the total recommended methods and the Gold Set methods.

Therefore, Table 4.5 reports the recall, precision, and f-score values calculated for each evalu-

ated system analyzed by QMove, JMove, and JDeodorant.

By comparing the average values reported in Table 4.5, QMove performed better than the

other tools for all metrics. QMove f-score was 39.1%, which is more than twice as JDeodorant

46

Table 4.5 – Recall, precision, and f-score values for QMove, JMove, and JDeodorant tools

Recall Precision F-score
System QMove JMove JDeo QMove JMove JDeo QMove JMove JDeo

Ant 100.0% 0.0% 24.0% 18.5% 0.0% 9.5% 31.2% 0.0% 13.6%
ArgoUML 40.6% 18.7% 12.5% 18.3% 12.5% 44.4% 25.2% 15.0% 19.5%
Cayenne 97.8% 23.4% 23.4% 18.7% 6.9% 5.5% 31.5% 10.7% 8.9%
DrJava 88.8% 27.7% 38.8% 17.7% 4.7% 14.0% 29.6% 8.0% 20.5%
FreeCol 76.4% 76.4% 17.6% 11.6% 6.7% 1.8% 20.1% 12.3% 3.3%
FreeMind 91.6% 25.0% 16.6% 23.4% 5.5% 5.1% 37.2% 9.0% 7.8%
JMeter 88.0% 8.0% 12.0% 42.3% 3.3% 6.5% 57.1% 4.7% 8.4%
JRuby 56.1% 60.9% 29.2% 22.7% 4.3% 5.8% 32.3% 8.1% 9.7%
JTOpen 92.3% 43.5% 56.4% 22.2% 12.1% 25.2% 35.8% 18.9% 34.9%
Maven 91.6% 45.8% 25.0% 61.1% 12.9% 15.0% 73.3% 20.1% 18.7%
Megamek 91.4% 25.7% 51.4% 16.5% 3.6% 13.7% 28.0% 6.4% 21.6%
WCT 86.2% 17.2% 41.3% 54.3% 11.3% 23.5% 66.6% 13.7% 30.0%
Weka 93.5% 19.3% 35.4% 25.4% 2.4% 3.9% 40.0% 4.3% 7.1%
Average 84.2% 30.1% 29.5% 27.1% 6.6% 13.4% 39.1% 10.1% 15.7%

(15.7%) and almost four times as JMove (10.1%). Considering precision and recall, QMove

also performed at least twice as much as the other tools, with 84.2% and 27.1% of recall and

precision, respectively, while JMove had 30.1% of recall and 6.6% of precision, and JDeodorant

had 29.5% and 13.4% of recall and precision, respectively.

By analyzing the results of Table 4.5 for each system individually, QMove obtained

better recall, precision, and f-score values on most systems. However, for FreeCol and JRuby

systems, we had some different results. We can note that QMove and JMove obtained the same

recall value for FreeCol system (76.4%), but the precision value was 11.6% for QMove and

6.7% for JMove, resulting in a better f-score value for QMove (20.1%) than JMove (12.3%).

For JRuby, JMove had a better recall value (60.9%) compared to QMove (56.1%), but precision

and f-score values were better for QMove (22.7% and 32.3%, respectively) than for JMove

(4.3% and 8.1%, respectively). Therefore, in both cases where JMove found the same amount

or more Gold Set methods, QMove achieved greater precision in its results.

Figure 4.6 shows the overlap of the Move Method recommendations belonging to the

Gold Set of the three evaluated tools (QMove, JMove, and JDeodorant) for each of the 13 eval-

uated systems. We can see that in 12 systems QMove obtained a greater number of exclusive

recommendations than the exclusive ones of JMove and JDeodorant, even in JRuby system,

where QMove had a lower number of Gold Set methods recommended, but exclusively recom-

mended 2 more than JMove. Only in FreeCol system, QMove did not have the most exclusive

recommendations (2), with JMove having the largest number (3).

47

Figure 4.6 – Overlapping between results of each evaluated systems

48

Figure 4.7 presents the overlap between the total number of Gold Set methods recom-

mended by QMove, JMove, and JDeodorant, considering all 13 systems evaluated. QMove

exclusively recommended 150 Gold Set methods, while JMove and JDeodorant exclusively

recommended 12 and 13, respectively. QMove and JMove together recommended 66 methods,

and QMove and JDeodorant recommended 69 Gold Set methods. The three tools together rec-

ommended 28 methods, and the refactorings that JMove and JDeodorant both recommended

were only seven. We argue that the techniques are complementary since the state-of-the-art

tools could indicate 32 correct recommendations that QMove could not.

Figure 4.7 – Overlapping between results of all the evaluated systems

We could use other evaluation metrics such as feedback, which is the ratio of all rec-

ommendations with the number of methods that can move automatically, and likelihood, which

checks whether there are useful refactorings among the recommendations, i.e., Gold Set meth-

ods included in a k number of recommendations. Whereas likelihood is important for providing

an indication of how often QMove provides at least one potentially useful result, feedback is

a useful metric for recommendation systems, because a recommender that rarely gives recom-

mendations may not be practical (ROCHA et al., 2016). However, we decided to not use these

evaluation metrics since (i) precision and recall are more accurate metrics and obtained positive

results, (ii) we did not extracted from results the number of methods that could move automati-

cally, and (iii) likelihood in real scenario evaluation could not be useful since the objective was

to verify if the recommendations were well evaluated for expert developers.

4.3 Real scenario evaluation

In order to evaluate our approach in a real scenario, we performed an analysis through

the use of QMove in two proprietary systems developed by a IT company located in Lavras, Mi-

49

nas Gerais, Brazil. Table 4.6 reports data about these systems.2 ReMent is a demand manage-

ment system and Cyssion a concession management system. We chose these systems because

they are in an advanced phase of implementation, have well-defined architectures through the

MVC (Model-View-Controller) model, and are developed in Java.

Table 4.6 – Proprietary systems in the real scenario evaluation

System # of classes # of methods LOC
ReMent 140 222 7,484
Cyssion 216 574 16,021

Besides executing QMove, we also executed JMove and JDeodorant on these systems

in order to compare the results. Two expert developers (one for each system) evaluated recom-

mendations provided by each tool. Using the Likert scale (JAMIESON, 2004), the evaluation

methodology consisted of developers answering, for each recommendation, the question "How

do you rank this Move Method recommendation?". The answer to this question could be one

of five available: (1) Strongly not recommended, (2) Not recommended, (3) Neither recom-

mended nor recommended, (4) Recommended, or (5) Strongly recommended. We leave free

the option of the experts to comment on the reasons for the chosen option, thus gathering useful

information that could contribute to our evaluation.

For ReMent, JMove and JDeodorant gave no recommendations. QMove, on the other

hand, recommended five methods for ReMent, where two were evaluated as “Neither recom-

mended nor recommended” and three as “Strongly not recommended”.

For Cyssion, Table 4.7 reports the evaluation results of the 41, five, and six recommen-

dations triggered by QMove, JMove, and JDeodorant, respectively.

Table 4.7 – Proprietary system Cyssion experts’ evaluation

Rec. Classification QMove JMove JDeodorant
(5) Strongly Recommended 2 0 0
(4) Recommended 4 2 0
(3) Neither Recommended Neither Not Recommended 2 1 1
(2) Not Recommended 6 0 0
(1) Strongly Not Recommended 27 2 5
Total 41 5 6

Considering the positive evaluations, which are those recommendations that were eval-

uated as (4) and (5), QMove had six, against two and zero of JMove and JDeodorant, respec-

tively. Also, including as positive the recommendations that were evaluated as (3) because their

2 We changed the names of the systems for confidentiality purposes.

50

neutrality, QMove would have eight recommendations against three from JMove and one from

JDeodorant. Figure 4.8 shows the overlap between the recommendations found for all three

tools, making it clear that only one recommendation was found at the same time by QMove and

JMove, which is evaluated as (4).

Figure 4.8 – Overlapping between results of proprietary system Cyssion

These results demonstrate that QMove was relatively more effective in finding practi-

cally useful recommendations. However, there were a high number of recommendations evalu-

ated as (1) and (2) for the two systems, and the reasons for this can be explained by comments

from the experts when we were conducting the evaluation.

First, most of the comments focused on justifying evaluations (1) and (2) because of the

meaningless moves, such as moving an accessor method of a private attribute. Second, experts

commented that some recommendations involved methods that were being overwritten from

an interface (@override annotation), and moving them would cause compilation errors. Third

and last, there were comments on methods used by frameworks, and moving them to other

classes would hinder the functioning of the framework. These issues will be considered in our

future work.

We performed an analysis of the correlation between the specialist rates and each

QMOOD metric, i.e., the 11 design metrics (see Table 2.1) and the six quality attributes (see

Table 2.2). We use Spearman’s rank correlation coefficient, a nonparametric (distribution-

free) rank statistic proposed as a measure of the strength of the association between two vari-

ables (HAUKE; KOSSOWSKI, 2011). The coefficient varies between -1 to 1, and the closer to

zero, the lower the correlation between the variables. A coefficient greater than zero means that

the two variables correlate as they grow at the same time, and a coefficient less than zero means

a correlation in which as one variable grows, the other one decreases.

Figure 4.9 reports the Spearman’s coefficients for each QMOOD metric, with positive

correlations displayed in blue and negative correlations in red color. Color intensity are propor-

tional to the correlation coefficients, and a non-correlation is represented by NA (Not Available).

51

Figure 4.9 – Correlation between proprietary system specialist rates and QMOOD metrics

We found five weak correlations between the rated recommendations and the

DCC (−0.24), Flexibility (−0.24), and Extensibility (−0.24) metrics, which decrease while

the recommendation rating increases, and CIS (0.32) and Functionality (0.28), which increase

at the same time as the recommendation rating increases. We also find three very weak cor-

relations between the rated recommendations and the CAM (−0.03), Reusability (0.17), and

Understandability (−0.12). In a nutshell, we could not find any relevant correlation between

the usefulness of a particular recommendation and any underlying metric from QMOOD model.

Concluding this evaluation, QMove was able to find positively evaluated methods in

greater quantity than JMove and JDeodorant, and the number of negatively evaluated recom-

mendations can be reduced with adjustments in the preconditions of QMove.

4.4 Threats to validity

We found two threats to validity and we divided them into an internal and an external

type, and we also discuss the strategies used to mitigate these threats.

Internal Validity: We modified the subject systems to evaluate our approach by randomly mov-

ing methods from one class to another in order to verify whether these methods are recom-

mended to return to their original classes or not. This fully-random methodology implies in the

possibility of a moved method improves QMOOD quality attributes in its new class. In this case,

our approach would not recommend such a method since returning to its original class would

worsen our fitness function. However, since our approach achieved a recall rate of 84.2%, we

can at least assume that most methods worsen quality metrics when they were moved.

External Validity: The subject systems used in the calibration and in the evaluation are imple-

mented in Java. One could argue that this could affect the use of our proposed approach in other

systems that use different programming languages. Nevertheless, our fitness function is based

on the QMOOD model, whose quality metrics can be measured for any object-oriented project,

regardless of the underlying programming language.

52

5 RELATED WORK

In this chapter, we discuss studies that are closely related to ours. Section 5.1 discusses

approaches that search for a refactoring sequence that maximizes QMOOD metric values. Sec-

tion 5.2 discusses approaches that search for a sequence of refactorings that maximizes or mini-

mizes values of other metrics found in the literature or created by the in own authors. Section 5.3

discusses approaches that focus on suggestions for refactorings using other strategies regarding

the use of metrics during the process. Finally, Section 5.4 discusses studies on the impact of

refactorings on a certain set of metrics.

5.1 Refactorings and QMOOD quality attributes

Mkaouer et al. propose a solution that suggests a sequence of refactorings that optimize

QMOOD quality attributes (MKAOUER et al., 2016). For this, the multi-objective genetic al-

gorithm of optimization NSGA-III is used in order to find the sequence of refactorings that

optimize the desired attributes. The algorithm considers possible refactor sequences and pos-

itive or negative weight of each type of refactoring on each QMOOD quality attribute. The

suggested solution, in contrast to the approach proposed in this dissertation, does not have its

own implementation (JDeodorant was used for refactoring) and, because it uses a genetic algo-

rithm, it is possible to generate a non-optimal sequence of refactorings.

Moghadam and Cinnéide present Code-Imp, an automatic refactoring tool for Java lan-

guage (MOGHADAM; CINNÉIDE, 2011). It supports fourteen refactorings, separated at the

method level (e.g., Push Down Method, Pull Up Method, etc.), at the attribute level (e.g., Push

Down Field, Pull Up Field, etc.) and at the class level (e.g., Extract Hierarchy, Make Superclass

Abstract, etc.). With support for various types of research, Code-Imp implements 28 software

quality metrics (e.g., QMOOD Quality Attributes flexibility, reusability and understandability,

cohesion metrics, coupling metrics, interface class size, number of methods, etc.) that can be

combined in various ways to form a fitness function. On its activities, Code-Imp first extracts

the initial AST (Abstract Syntax Tree) from the source code. Then, it look for candidates for

refactorings in AST. A refactoring is acceptable if it satisfies all pre and post-conditions, as well

as meet the requirements of the search technique in use (e.g., improve project quality based on

the total set of metrics, or with an acceptable fall in certain metrics). This process is repeated

many times, and after the final refactoring is applied, the AST is included in the source files.

Although it is a tool that works with several refactorings and metrics, its purpose is more fo-

53

cused on refactorings that perform corrections and adaptations in class hierarchies, thus limiting

their use. However, the Move Method refactoring used in our proposed approach modifies the

source code of the analyzed software system to solve problems in different contexts, as seen in

Section 2.2.

Jensen and Cheng present REMODEL, an approach to refactor object-oriented software

projects using a genetic algorithm to maximize QMOOD metrics, resulting in a set of refac-

toring recommendations for the user (JENSEN; CHENG, 2010). This approach has two ob-

jectives: (i) to improve the quality of the project by QMOOD metrics; and (ii) introduce de-

sign patterns, where appropriate, to improve the maintainability of the software project. The

genetic algorithm used by REMODEL has as individuals pairs consisted of a graphical de-

sign (represents the design of the software being refactored) and a transformation tree (encod-

ing a set of changes in graphical design of an individual), works with six different types of

transformations—Abstraction, Abstract Access, Encapsulate Construction, Delegation, Partial

Abstraction and Packer—and uses the 11 QMOOD design properties in the formulation of their

fitness function. This approach works with types of refactorings different from those presented

by Fowler in his book (FOWLER, 1999) and hence differ from the Move Method refactoring

considered in our proposed approach.

Lee et al. propose an approach to suggest refactorings that remove duplicate codes while

maximizing quality improvement in a software (LEE et al., 2011). Basically, the set of duplicate

methods is first detected and a set of rules is proposed to determine the appropriate refactorings

(Pull Up Method, Text Template Method, Move Method, Extract Class, Extract Superclass,

and Extract Intermediate-Superclass) to the detected duplicate method sets. Subsequently, a

genetic algorithm is applied to determine the most beneficial refactorings that maximize the

fitness function determined by the sum of four QMOOD quality attributes (understandability,

functionality, extensibility, and effectiveness). The scope of this approach is limited to duplicate

methods, unlike the proposed approach in this dissertation that aims to verify all methods of a

software system and to detect mainly those that are not correctly implemented in the class

to which they belong, searching for a sequence of Move Method refactorings that maximize

QMOOD quality attributes by moving the detected methods.

54

5.2 Refactorings and others metrics types

Terra et al. (TERRA et al., 2017) propose JMove, a tool for Move Method refactorings.

The methodology for suggests refactorings is to first evaluate the set of static dependencies

established by a given method m located in a class C. After that, it is computed two Jaccard

similarity coefficients: (i) the average similarity between the set of dependencies established

by method m and by the remaining methods in C; and (ii) the average similarity between the

dependencies established by method m and by the methods in another class C′. If the similarity

measured in the step (ii) is greater than the similarity measured in (i), it is inferred that m is

more similar to the methods in C′ than to the methods in its current class C. Therefore, C′ is a

potential candidate class to receive m. However, JMove deals with methods that have more than

four dependencies, while our approach does not have this restriction, consequently increasing

the scope of recommendation possibilities.

Tsantalis and Chatzigeorgiou (TSANTALIS; CHATZIGEORGIOU, 2009) present

JDeodorant, a tool that suggests Move Method refactorings as solutions to the Feature Envy de-

sign problem. This approach defines some preconditions that preserve behavior and the design

quality for recommendations, such as avoid compilation errors and assure behavior preserva-

tion. JDeodorant also defines a metric called Entity Placement that is used to evaluate whether a

recommendation reduces coupling, defined by the Jaccard distance between the class itself and

outer entities, and improves cohesion, defined by the Jaccard distance between the class itself

and inner entities. JDeodorant is based only on cohesion and coupling metrics, while our ap-

proach, using the QMOOD quality model, provides a broad set of metrics that provides further

improvements to the quality of the system.

Bavota el al. (BAVOTA et al., 2014) propose an approach named Methodbook to identify

Move Method refactoring opportunities aimed at solving Feature Envy bad smell. The proposed

approach follows the Facebook metaphor that analyzes users’ profiles and suggests new friends

or groups of people sharing similar interests using Relational Topic Model (RTM) (CHANG;

BLEI, 2010). Thus, in Methodbook, methods and classes play the same role as people and

groups of people, respectively, in Facebook. Methods’ implementations, that is profiles, con-

tain information about structural (e.g., method calls) and conceptual (i.e., textual) relationships

(e.g., similar identifiers and comments) with other methods in the same class and in the other

classes. Then, Methodbook uses RTM to identify “friends” of a method in order to suggest

Move Method refactoring opportunities in software. In particular, given a method, Methodbook

55

exploits RTM to suggest as a target class the one containing the highest number of “friends”

of the method under analysis. Methodbook uses in its approach a concept of methods recom-

mendations that improves cohesion and coupling of a system, different from our approach that

uses metrics with wider scope, aiming to improve several characteristics related to the quality

of the software.

Napoli et al. propose an approach for suggestions of Move Method refactorings in large

object-oriented systems, improving the modularity of several components at once by calculat-

ing metrics as Fan-in, Fan-out, LCOM, CBO, and the Jaccard similarity coefficient (NAPOLI;

PAPPALARDO; TRAMONTANA, 2013). This approach uses different forms of metric combi-

nations to suggest a Move Method refactoring. As it is focused on large systems, they adopted

the parallel programming strategy to calculate the metrics through threads and hence improving

the performance. Although the application of suggested refactorings indirectly increase cohe-

sion and decrease coupling, its focus on using metrics to detect refactoring opportunities differs

from our proposed approach, which uses QMOOD metrics to detect refactorings that directly

increase the values of these metrics.

Meananeatra et al. propose an approach for the identification and selection of Extract

Method, Replace Temp with Query, Introduce Parameter Object, Preserve Whole Object, and

Decompose Conditional refactorings that solve the long method problem (MEANANEATRA;

RONGVIRIYAPANISH; APIWATTANAPONG, 2011). A method is proposed to select refac-

torings based on software metrics that are defined in terms of data flow and control flow charts.

The method consists of four steps: (i) calculate the MCX (Complexity of Method), LOC and

LCOM metrics to compare maintainability before and after refactorings; (ii) find candidates for

refactoring using the previously measured metrics, (iii) apply each refactoring candidate and

calculate the maintainability metrics later; and (iv) identify the refactoring that provides the

greatest maintainability. The concept of using metrics to detect Code Smells while at the same

time improving software quality features is limited to the concept of source code maintainabil-

ity, whereas our proposed approach involves more concepts than maintainability, provided by

QMOOD quality attributes, e.g., reusability, flexibility, understandability, etc.

Lee and Wu describe an approach of automatic restructuring using metrics that preserve

the behavior of object-oriented projects (LEE; WU, 2001). They defined cohesion and coupling

metrics to quantify the projects and to provide criteria for comparing alternative designs, and

also defined eight types of primitive restructures in CUG (Call-Use Graph) and CAG (Class-

56

Association Graph), e.g., changing the name of a node in a CUG, changing a name of a node in

a CAG, move a member of a class, etc. The authors implemented the approach as a tool for Java

projects. This tool has a converter that extracts information from the analyzed source code and

generates a CMM (Communication Matrix between Methods). Subsequently, a metric analyzer

measures the values of the cohesion and coupling metrics. A genetic algorithm uses primitive

restructurings to decompose or compose classes during the restructuring process, using metric

values to improve design. In addition, a verifier model examines whether the project produced

satisfies design constraints in each generation. This is an approach that automates the metric-

based restructuring process, but if developers do not provide information about the context of

the object-oriented system being parsed, the restructuring becomes less advantageous. Another

weak point is the scope of the restructuring to be focused on cohesion and coupling metrics,

whereas our proposed approach has focus on QMOOD metrics, which have a broader scope in

relation to the quality of software systems.

5.3 Refactorings and different uses of metrics

Griffith et al. propose an approach based on machine learning and metric algorithms

to automate refactorings (GRIFFITH; WAHL; IZURIETA, 2011). The goal of the approach

is to modify object-oriented legacy systems to increase understandability, maintainability, and

reusability. The approach has been implemented and named as TrueRefactor. This tool de-

tects Code Smells by combining CK metrics (Chidamber-Kemerer), used for object-oriented

programs, and size-oriented metrics. For each detected Code Smell, a refactoring sequence is

generated. Thereafter, a genetic algorithm is applied to find the best refactoring sequence that

removes as many Code Smells as possible. Based on the best set of refactoring sequences, a

UML class diagram is produced. In short, this approach uses metrics to detect Code Smells and,

by applying the best refactoring sequence detected, aims to optimize these metrics. In contrast,

refactorings are used to create only a class diagram with code modifications, with the user hav-

ing the responsibility to manually apply those refactorings. However, our proposed approach

automatically applies the recommended refactorings on the system.

Hotta et al. propose CRat, a refactoring support tool for the Template Method design

pattern (HOTTA et al., 2012). In this pattern, programmers create a (abstract) base class with

similar methods and implement the detailed processes in each (concrete) derived class. CRat

detects pairs of methods with duplicate codes in derived classes to be merged and moved to

57

the base class. For each pair of methods that can be refactored, a set of metrics are calculated,

such as degree of similarity, size, number of statements that can be extracted for the base class,

depth of inheritance of the common base class for the proprietary classes of the two methods,

etc. CRat users can therefore filter out possible refactorings by the metric values they want.

However, CRat does not modify the source code automatically, so users need to modify the

source code manually. In addition, metrics only assist users to choose refactorings that have

obtained the best values from them. Our proposed approach provides the option to automatically

apply the suggested refactorings, as well as to use the QMOOD metrics to generate the sequence

of refactorings that improve metric values in all refactorings.

Marinescu et al. (MARINESCU et al., 2005; MARINESCU, 2004) propose iPlasma,

a tool that helps developers and maintainers to detect and localize design problems in a sys-

tem. This tool uses a mechanism, called detection strategy, for formulating metrics-based rules

that capture deviations from good design principles and heuristics, including the detection of

methods displaying a Feature Envy behavior. The metrics can be divided into the following

categories: (i) size metrics; (ii) complexity metrics; (iii) coupling metrics; and (iv) cohesion

metrics. Our approach, in addition to these categories, provides support for other types of fea-

tures through QMOOD metrics, which cover various aspects of software quality.

5.4 Impact of refactorings on metrics

Chaparro et al. propose an approach to predict the impact of 12 types of refactorings on

11 metrics (CHAPARRO et al., 2014). The objective of the approach is to show the variation

of the metrics if a certain refactoring is applied. The 12 refactorings involved are separated into

groups of different contexts, such as moving components (e.g., Move Method and Move Field),

composition of methods (e.g., Extract Method), and generalization (e.g., Pull Up Method). The

11 metrics measure code properties such as coupling (RFC), size (LOC), complexity (CC), and

inheritance (DIT). For each refactor-metric pair, a mathematical function was defined for the

class codes involved in the refactoring and a function for the target class, when appropriate.

Each function results in a value that indicates whether refactoring will impact positively or

negatively on the analyzed metric. The purpose of the approach, therefore, is to use metrics

only to predict the impact on their values if a refactoring is applied, whereas our proposed

approach accurately calculates the variations in metric values by simulating method moves for

each refactoring found in the analyzed system.

58

Higo et al. propose a method to estimate the effect of refactorings on source code based

on complexity metrics (HIGO et al., 2008). The proposed method receives the system’s source

code and the refactorings to be applied. Subsequently, the effectiveness of each refactoring is

reported based on the CK metrics calculated for the original and modified source code. This

method was implemented as a tool for Java language. There are eight tool-supported refactor-

ings (Pull Up/Down Field, Move Method, Pull Up/Down Method, Extract Class, and Extract

Super/Subclass). The tool receives the Java source code and calculates the CK metrics; later,

the developer defines the refactorings that will be performed. The structure of the source code

is modified from the refactorings defined by the developer. The CK metrics are recalculated

in the modified source code, and the tool returns the values of the metrics before and after the

changes. Although this method is based on metrics to estimate refactorings that improve their

values, the refactoring process is non-existent. It is up to the developer to inform which refac-

torings will be applied in the source code, whereas our proposed approach automatically detect

the refactorings and apply them to the source code of the analyzed system.

59

6 CONCLUSION

Refactoring is an important activity to improve software internal structure. Even though

there are many refactoring approaches, very few consider their impact on the software qual-

ity. In this dissertation, thereupon, we proposed a search-based approach to recommend Move

Method refactorings that improve QMOOD quality attributes. QMove receive as input a given

software system S and recommends a sequence of refactorings R1,R2, . . . ,Rn that result in sys-

tem versions S1,S2, . . . ,Sn, where the sum of all six QMOOD quality attributes is greater in Si+1

that in Si.

We empirically calibrated our approach to find the best criteria to assess software quality

improvement. First, we modified four systems by randomly moving a subset of its methods to

other classes. Second, we verified which of the ten different strategies would recommend more

of the moved methods to return to their original place. As the result, we calibrate our approach

with the strategy of comparing the metrics by improvement percentage of the sum of QMOOD

quality attributes, which achieved a recall average of 57.5%.

We also implemented QMove, a prototype plug-in for Eclipse IDE that supports our

proposed refactoring approach with our current calibration. The plug-in receives as input a Java

system and outputs the better sequence of Move Method refactorings that improves the overall

software quality.

In our first experiment, we evaluated our approach in 13 open-source systems by ran-

domly moving 375 methods. On average, our approach could move 84.2% of the methods back

to their original classes. More important, our approach is able to detect, among the first 1.14×n

recommendations (where n is the size of the Gold Set for each system), 64.5% of methods con-

tained in the Gold Set with 64.4% precision, on average.

In our second experiment, we compared QMove with JMove and JDeodorant on the

same 13 systems used in the first evaluation. As result, the state-of-the-art tools showed lower

precision, recall, and hence f-score values than the ones achieved by QMove. While QMove re-

call value was 84.2%, JMove and JDeodorant recall values were 30.1% and 29.5%, respectively.

Moreover, QMove recommended more Gold Set methods than JMove and JDeodorant in 11 of

13 evaluated systems. Nevertheless, we argue that the techniques are complementary since the

state-of-the-art tools could indicate 32 correct recommendations that QMove could not.

In our third and last experiment, we evaluated QMove, JMove, and JDeodorant in a real

scenario on the eyes of the software architects. As result, the software architects positively

60

evaluated six out of 46 recommendations from QMove, two out of five from JMove, and none

out of six from JDeodorant. Although QMove found more correct Move Method opportunities,

it triggered much more false positives than the state-of-the-art tools.

6.1 Contributions

This dissertation contains the following contributions:

• A new quality-oriented approach that identifies Move Method refactoring opportunities

in software systems, whose purpose is to support refactoring process by verifying all

possible automatic Move Method possibilities and recommending those that improve the

quality of the system by the six quality attributes from QMOOD model;

• A tool called QMove that identifies Move Method refactorings that can be automatically

applied and detects those that improve QMOOD quality metrics, returning to the user the

best refactoring sequence in order to achieve the best system overall quality; and

• Evaluations that compared our approach with other similar state-of-the-art approaches,

having better results in both synthesized and real scenario analysis, thus contributing to

the academic community in the advancement of state-of-the-art.

6.2 Limitations

Next, we list the limitations in this dissertation:

• Our approach considers only refactorings performed automatically;

• Among the existing refactorings in the literature, we consider only Move Method refac-

toring. Although it is one of the most common refactorings, there are other automatic

refactorings that we do not consider it in our approach; and

• The results obtained in our experiments are inserted in the context of Java systems. There-

fore, although our proposed approach is suitable for any object-oriented programming

language, we cannot extrapolate our results for other programming languages.

61

6.3 Future work

Future work to complement our proposed approach includes:

• To incorporate other types of refactorings, such as Extract Class and Extract Method.

Increasing the number of refactoring types and applying then in a system can generate a

new system with higher quality than a system version with one type of refactoring applied;

• To improve QMove preconditions to avoid false positives, in order to increase the preci-

sion of the recommended refactorings and to obtain better results in further evaluations

of our proposed approach;

• To include other evaluation metrics used for recommendation systems, such as likelihood,

recall rate@k, and feedback. The use of these new forms of evaluation can provide results

that better reflect the use of refactorings in real scenarios, which may influence the choice

of our proposed approach by software developers; and

• To rely on other metrics—such as number of bad smells (FOWLER, 1999), CK (CHI-

DAMBER; KEMERER, 1994) and Martin’s metrics (MARTIN, 1994)—and other

search-based algorithms—such as the multi-objective NSGA-II (DEB et al., 2002) and

SPEA2 (ZITZLER; LAUMANNS; THIELE, 2001)—to allow the users to set up their

own fitness function and the underlying search algorithm.

62
REFERENCES

BANSIYA, J.; DAVIS, C. G. A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering, v. 28, n. 1, p. 4–17, 2002.

BAVOTA, G.; OLIVETO, R.; GETHERS, M.; POSHYVANYK, D.; LUCIA, A. D.
Methodbook: Recommending Move Method refactorings via relational topic models. IEEE
Transactions on Software Engineering, v. 40, n. 7, p. 671–694, 2014.

BOIS, B. D.; DEMEYER, S.; VERELST, J. Refactoring - improving coupling and cohesion
of existing code. In: 11th Working Conference on Reverse Engineering (WCRE). Delft,
Netherlands: IEEE, 2004. p. 144–151.

CHANG, J.; BLEI, D. M. Hierarchical relational models for document networks. The Annals
of Applied Statistics, v. 4, n. 1, p. 124–150, 2010.

CHAPARRO, O.; BAVOTA, G.; MARCUS, A.; PENTA, M. D. On the impact of refactoring
operations on code quality metrics. In: 30th International Conference on Software
Maintenance and Evolution (ICSME). Victoria, Canada: CPS, 2014. p. 456–460.

CHIDAMBER, S. R.; KEMERER, C. F. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, v. 20, n. 6, p. 476–493, 1994.

CHIKOFSKY, E. J.; CROSS, J. H. Reverse engineering and design recovery: A taxonomy.
IEEE Software, v. 7, n. 1, p. 13–17, 1990.

DEB, K.; PRATAP, A.; AGARWAL, S.; MEYARIVAN, T. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, v. 6, n. 2, p.
182–197, 2002.

FAWCETT, T. An introduction to ROC analysis. Pattern recognition letters, v. 27, n. 8, p.
861–874, 2006.

FOWLER, M. Refactoring: improving the design of existing code. Boston, USA:
Addison-Wesley, 1999.

GOUTTE, C.; GAUSSIER, E. A probabilistic interpretation of precision, recall and F-score,
with implication for evaluation. In: 27th European Conference on Information Retrieval
(ECIR). Santiago de Compostela, Spain: ACM, 2005. p. 345–359.

GRIFFITH, I.; WAHL, S.; IZURIETA, C. TrueRefactor: An automated refactoring tool to
improve legacy system and application comprehensibility. In: 24th International Conference
on Computer Applications in Industry and Engineering (CAINE). Honolulu, USA: ISCA,
2011. p. 316–321.

HAUKE, J.; KOSSOWSKI, T. Comparison of values of pearson’s and spearman’s correlation
coefficients on the same sets of data. Quaestiones geographicae, v. 30, n. 2, p. 87–93, 2011.

HEVNER, A. R. Phase containment metrics for software quality improvement. Information
and Software Technology, v. 39, n. 13, p. 867–877, 1997.

HIGO, Y.; MATSUMOTO, Y.; KUSUMOTO, S.; INOUE, K. Refactoring effect estimation
based on complexity metrics. In: 19th Australian Software Engineering Conference
(ASWEC). Perth, Australia: IEEE, 2008. p. 219–228.

63

HOTTA, K.; HIGO, Y.; IGAKI, H.; KUSUMOTO, S. CRat: A refactoring support tool for
form template method. In: 20th International Conference on Program Comprehension
(ICPC). Passau, Germany: IEEE, 2012. p. 250–252.

JAMIESON, S. Likert scales: how to (ab) use them. Medical Education, v. 38, n. 12, p.
1217–1218, 2004.

JENSEN, A. C.; CHENG, B. H. On the use of genetic programming for automated refactoring
and the introduction of design patterns. In: 12th Genetic and Evolutionary Computation
Conference (GECCO). Portland, USA: ACM, 2010. p. 1341–1348.

KATOCH, B.; SHAH, L. K. A systematic analysis on MOOD and QMOOD metrics.
International Journal of Current Engineering and Technology, v. 4, n. 2, p. 620–622, 2014.

KEBIR, S.; BORNE, I.; MESLATI, D. Automatic refactoring of component-based software by
detecting and eliminating bad smells. In: 11th International Conference on Evaluation of
Novel Software Approaches to Software Engineering (ENASE. Rome, Italy: SCITEPRESS,
2016. p. 210–215.

KESSENTINI, M.; KESSENTINI, W.; SAHRAOUI, H.; BOUKADOUM, M.; OUNI, A.
Design defects detection and correction by example. In: 19th International Conference on
Program Comprehension (ICPC). Kingston, Canada: IEEE, 2011. p. 81–90.

KIM, M.; ZIMMERMANN, T.; NAGAPPAN, N. A field study of refactoring challenges and
benefits. In: 20th International Symposium on the Foundations of Software Engineering
(FSE). Cary, USA: ACM, 2012. p. 1–11.

LEE, B.; WU, C. An automatic restructuring approach preserving the behavior of object-
oriented designs. In: 8th Asia Pacific Software Engineering Conference (APSEC). Macau,
China: IEEE, 2001. p. 400–407.

LEE, S.; BAE, G.; CHAE, H. S.; BAE, D.-H.; KWON, Y. R. Automated scheduling for
clone-based refactoring using a competent GA. Software: Practice and Experience, v. 41,
n. 5, p. 521–550, 2011.

MARIANI, T.; VERGILIO, S. R. A systematic review on search-based refactoring.
Information and Software Technology, v. 83, p. 14–34, 2017.

MARINESCU, C.; MARINESCU, R.; MIHANCEA, P. F.; WETTEL, R. iPlasma: An
integrated platform for quality assessment of object-oriented design. In: 21th International
Conference on Software Maintenance (ICSM). Budapest, Hungary: IEEE, 2005. p. 77–80.

MARINESCU, R. Detection strategies: metrics-based rules for detecting design flaws. In:
20th International Conference on Software Maintenance (ICSM). Chicago, USA: IEEE,
2004. p. 350–359.

MARTIN, R. OO design quality metrics – an analysis of dependencies. In: 9th Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).
Portland, USA: ACM, 1994. p. 151–170.

MEANANEATRA, P.; RONGVIRIYAPANISH, S.; APIWATTANAPONG, T. Using software
metrics to select refactoring for long method bad smell. In: 8th International Conference
on Electrical Engineering/Electronics, Computer, Telecommunications, and Information
Technology (ECTI-CON). Khon Kaen, Thailand: IEEE, 2011. p. 492–495.

64

MENS, T.; DEMEYER, S.; BOIS, B. D.; STENTEN, H.; GORP, P. V. Refactoring: Current
research and future trends. Electronic Notes in Theoretical Computer Science, v. 82, n. 3, p.
483–499, 2003.

MENS, T.; TOURWÉ, T. A survey of software refactoring. IEEE Transactions on Software
Engineering, v. 30, n. 2, p. 126–139, 2004.

MKAOUER, M. W.; KESSENTINI, M.; BECHIKH, S.; CINNÉIDE, M. Ó.; DEB, K. On the
use of many quality attributes for software refactoring: a many-objective search-based software
engineering approach. Empirical Software Engineering, v. 21, n. 6, p. 2503–2545, 2016.

MOGHADAM, I. H.; CINNÉIDE, M. O. Code-Imp: A tool for automated search-based
refactoring. In: 4th Workshop on Refactoring Tools (WRT). Waikiki, USA: ACM, 2011. p.
41–44.

NAPOLI, C.; PAPPALARDO, G.; TRAMONTANA, E. Using modularity metrics to assist
Move Method refactoring of large systems. In: 7th International Conference on Complex,
Intelligent, and Software Intensive Systems (CISIS). Taichung, Taiwan: CPS, 2013. p.
529–534.

OLSON, D. L.; DELEN, D. Advanced data mining techniques. Heidelberg, Germany:
Springer Science & Business Media, 2008.

ROCHA, H.; VALENTE, M. T.; MARQUES-NETO, H.; MURPHY, G. C. An empirical
study on recommendations of similar bugs. In: 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). Osaka, Japan: IEEE, 2016. p. 46–56.

SHATNAWI, R.; LI, W. An empirical assessment of refactoring impact on software quality
using a hierarchical quality model. International Journal of Software Engineering and its
Applications, v. 5, n. 4, p. 127–149, 2011.

STROULIA, E.; KAPOOR, R. Metrics of refactoring-based development: An experience
report. In: 7th International Conference on Object-Oriented Information Systems (OOIS).
Calgary, Canada: Springer, 2001. p. 113–122.

TERRA, R.; VALENTE, M. T.; ANQUETIL, N. A lightweight remodularization process
based on structural similarity. In: 10th Brazilian Symposium on Software Components,
Architectures, and Reuse (SBCARS). Maringá, Brazil: IEEE, 2016. p. 111–120.

TERRA, R.; VALENTE, M. T.; MIRANDA, S.; SALES, V. JMove: A novel heuristic and tool
to detect move method refactoring opportunities. Journal of Systems and Software, v. 138, p.
19–36, 2017.

TSANTALIS, N.; CHATZIGEORGIOU, A. Identification of Move Method refactoring
opportunities. IEEE Transactions on Software Engineering, v. 35, n. 3, p. 347–367, 2009.

WANG, H.; KESSENTINI, M.; GROSKY, W.; MEDDEB, H. On the use of time series and
search based software engineering for refactoring recommendation. In: 7th International
Conference on Management of Computational and Collective Intelligence in Digital
Ecosystems (MEDES). Caraguatatuba, Brazil: ACM, 2015. p. 35–42.

ZITZLER, E.; LAUMANNS, M.; THIELE, L. SPEA2: Improving the strength Pareto
evolutionary algorithm. TIK-report, v. 103, p. 1–21, 2001.

	INTRODUCTION
	Problem
	Objectives
	Proposed approach
	Outline of the dissertation
	Publications

	BACKGROUND
	Refactoring
	Move Method
	Software quality metrics
	Quality Model for Object Oriented Design (QMOOD)
	Move Method and QMOOD quality attributes
	Recall, precision, and f-score

	PROPOSED APPROACH
	Motivation example
	Algorithm
	Calibration
	Subject systems
	Strategies
	Results

	Tool support

	EVALUATION
	Synthesized evaluation
	Comparative evaluation
	Real scenario evaluation
	Threats to validity

	RELATED WORK
	Refactorings and QMOOD quality attributes
	Refactorings and others metrics types
	Refactorings and different uses of metrics
	Impact of refactorings on metrics

	CONCLUSION
	Contributions
	Limitations
	Future work

	 REFERENCES

