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Abstract
Patterns of biodiversity respond to habitat disturbances and different land-uses. Those patterns possibly 
vary according to the spatial scale under analysis. Although other studies have shown such responses for 
different systems, no study has ever demonstrated spatial-scale influences in subterranean terrestrial com-
munities. Therefore, the objective of this paper was to analyze how land use and cave physical structure 
could influence the terrestrial cave invertebrate species composition. We also determined the influence of 
different spatial scale on the structure of invertebrate cave composition. We collected environmental data 
at local scale (e.g. cave size, substrate and environmental stability). For spatial scale we determined land 
uses at three different landscape scales; we gathered these data into circular areas of different sizes (50, 
100 and 250 meters) with centroids in the cave entrances. We finally performed three Distance Based 
Linear Modeling analyses to test for differences among the predictability of environmental variables when 
comparing different spatial scales. The best explanatory variable for cave invertebrate similarities was the 
percentage of covering of the external environment by limestone outcrops. We confirm the scale-depend-
ence hypothesis through the different patterns showed among distinct buffer areas. Models become more 
precise when larger scales were analyzed to explain cave invertebrate composition. This suggests that larger 
scales capture important environmental features that explain the cave fauna similarities more precisely. 
Additionally, we found a strong influence of limestone outcrops at all landscape scale structuring cave 
communities.
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Introduction

Environmental heterogeneity in natural landscapes has been historically replaced by 
anthropogenic mosaics around the world. As a consequence, several hypothesis de-
scribing how landscape characteristics affect biodiversity patterns have been proposed 
(Tscharntke et al. 2012). Ecological functions and processes are dependent on larger 
spatial scales than a single habitat patch (Gustafson 1998, Steffan-Dewenter et al. 
2002). Biodiversity is often positively correlated with the amount of available habi-
tat (Fahrig 2003), but the effect of land-use changes on biodiversity depends on the 
landscape context (MacDonald et al. 2000) and on the spatial scale that has been 
analyzed (McGlinn and Hurlbert 2012, Dumbrell et al. 2008, Zimmermann et al. 
2010, Morueta-Holme et al. 2013). Furthermore, ecological communities are struc-
tured under processes that act on the landscape, in which both regional and local scales 
are important factors (Harrison and Cornell 2008).

In the context of landscape influences on biodiversity distribution patterns, caves are 
good models since they represent simplified and fragile ecosystems (Culver 1982, Culver 
and Pipan 2009). Since the cave communities are dependent on the allochthonous input 
of nutrients, alterations in the availability, properties and abundance of these nutrients 
in the landscape surrounding the caves may affect cave biodiversity. Despite their fragil-
ity, caves are under several anthropogenic pressures, and only few studies evaluated how 
such human activities can affect the invertebrate cave communities, such as inadequate 
tourism (e.g. Poulson et al. 1995, Moldovan et al. 2003, Pellegrini and Ferreira 2012). 
Such studies are even scarcer when considering human impact at landscape scale, such 
as agriculture, urban development, deforestation and mineral resources extraction (Eme 
et al. 2014, Zagmajster et al. 2014). All these activities lead to aquifer pollution, cave 
destruction, and biodiversity loss (Beynen et al. 2012). Considering this, the current 
Brazilian legislation (Brazil. Decree no 6.640/2008) imposes that caves should bear a 
protection area of 250 meters in radius surrounding the cave linear projection on the 
surface (Portaria IBAMA no 887/1990). Although other studies have shown responses 
for different spatial scales under analysis (e.g. Steffan-Dewenter et al. 2002), few studies 
have demonstrated such influences in subterranean communities patterns (Eme et al. 
2014, Zagmajster et al. 2014).

The main goal of this paper is to explain cave invertebrate composition through 
environmental variables from within the cave and also from the landscape surround-
ing the caves at different spatial scales. To that end, we tested the hypothesis that the 
spatial scale affects the predictability of environmental variables. We also checked for 
grouping patterns among cave fauna according to the most explanatory variables.
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Methods

Study area

The present study was carried out at the conservation unit “Parque Estadual do Sumi-
douro” – PESU (Sinkhole State Park), in the suburban mesoregion of Belo Horizonte, 
Minas Gerais state, Brazil (Fig. 1). The PESU is in a karstic area, presenting a Savanna 
wet tropical weather. The caves are located in an anthropic landscape, in which there 
are areas with native vegetation but most areas are covered with cattle pasture (Iniesta 
et al. 2012). We chose 10 caves in this park based on the main surrounding landscape 
matrix, vegetation cover and land-use types, thus encompassing a heterogeneous land-
scape around the caves. The caves present sizes ranging from 16.85 to 137.68 meters. 
We performed one sampling event at each cave.

Terrestrial invertebrate collection

We only used terrestrial invertebrates for our analysis because they account for most 
of cave richness and abundance in Brazilian caves (Pinto-da-Rocha 1995), especially 
considering the caves in study, poor in water bodies. In each cave, we collected inver-
tebrates manually, using tweezers and brushes, with special attention to microhabitats 
such as under wood trunks and rocks, as well as other organic matter accumulations. 
In the laboratory, the collected specimens were identified to the lowest taxonomic 
level possible and separated into morphotypes in order to obtain species presence/
absence for each cave (Oliver and Beattie 1996). Such morphospecies separation is 
sufficient for ecological biodiversity studies and conservation purposes. Oliver and 
Beattie (1996) demonstrated that morphospecies identified by non-specialists could 
led to estimates of richness comparable with those elaborated using species identified 
by specialists. Furthermore, Oliver and Beattie (1996a) have shown that the use of 
morphospecies provides results usually concordant with conventional species inven-
tories. Biological material is deposited in the Zoology Collection (Coleção de Inver-
tebrados Subterrâneos de Lavras), Seção de Invertebrados Subterrâneos (from ISLA 
3478 to ISLA 3618).

Local environmental data collection

We considered environmental variables at different spatial scales, thus encompassing 
traits inside the cave (local scale), and those belonging to the landscape scale. At the 
local scale, we measured the linear extension of the cave and number and size of the 
entrances. We used those variables to estimate the cave Environmental Stability In-
dex (ESI), proposed by Ferreira (2004) and also used by Bento et al. (in press). This 
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Figure 1. Spatial characterization of landscape at “Parque Estadual do Sumidouro”. Different colors 
represent distinct vegetation cover or land-use types. The numbers indicate the sampled caves, indicated 
by name. Legend: 1 Gruta Ninho de Pérolas 2 Gruta Macaco das Cavernas 3 Lapa da Várzea 4 Gruta 
do Grilão 5 Gruta Helictites 6 Lapa das Pacas 7 Gruta do Sumidouro 8 Gruta Lagoa Seca 9 Gruta do 
Feneme 10 Gruta do Lixo.

index accounts for outside interference on the cave environment, as a ratio between 
the number and size of entrances (as their spatial distribution) and the cave size (Eq. 
1). In Eq.1, LE is the linear extension (total length) of the cave, ∑EE is the sum of all 
entrances extension, NE is the number of entrances, and DEE is the average distance 
from all entrances to a reference cave entrance (remaining that all distance between 
entrances must be considered). Big caves with small entrances would be more stable 
than small caves with big entrances, which would possess an internal environment 
more disturbed by the external environment.
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In order to determine the habitat heterogeneity inside each cave, we classified 
and quantified the different types of habitat. We divided each cave main conduit 
into at least 11 transects, equally distanced. Bigger caves were divided with more 
transects with a maximum distance between them corresponding to 15 meters. Each 
transect was then subdivided at five points, and at these points we visually examined 
substrate type (guano, water, trash, organic matter and the size of inorganic grains), 
along the five equidistant points, encompassing a minimal number of 55 measure-
ments for each cave. The size of inorganic grains was classified into eight classes 
(bedrock, large boulders, boulders, cobbles, coarse gravel, fine gravel, sand, silt and 
hardpan). This methodology was modified from Peck et al. (2006) and from Hughes 
and Peck (2008). We used these values to assess habitat heterogeneity parameter as 
explained hereafter. Considering the local scale, the cavities under study showed dif-
ferent patterns in their physical variables. Based on the 55 habitat measurements, we 
calculated the proportion of each habitat class within each cave and estimated the 
habitat heterogeneity using Shannon`s diversity index, using such values of habitat 
classes encountered in each cave. We calculate Shannon`s index using PAST 3.11 
software (Hammer et al. 2001).

Landscape environmental data collection

In order to obtain environmental variables at a landscape scale we quantified the main 
land-use types at different buffers through image classification and matrix characteri-
zation. These buffers were circular areas centered at each cave entrance, with a radius 
of 50 m, 100 m, and 250 m. For those caves with multiple entrances, the biggest 
entrance was used as reference in this analysis. Therefore, we delimited three circular 
areas, named respectively Buffer 50 m, Buffer 100 m, and Buffer 250 m (Figure 1). The 
percentages of each land-use type at each buffer were then included as environmental 
variables on further tests.

Spatial characterization of PESU required a RapidEye remote sensing image from 
2010; images were obtained in LEMAF (Laboratório de Estudos e Projetos em Manejo 
Florestal), in the Federal University of Lavras, Lavras city, Brazil. We created an im-
age subset delimiting only the park area. Then we segmented and classified that sub-
set into five classes: native vegetation, water, cattle pasture, limestone outcrop, and 
others (which included roads, cities, constructions, bare land and general urbanized 
areas) (Figure 2), using algorithm K Nearest Neighbor with the software ENVI EX 
v.4.8 (ITT 2010).
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Figure 2. Study area location, sampling design used in sampled caves at “Parque Estadual do Sumi-
douro”, and the Buffers of 50m, 100m, and 250m for analyzing the effect of spatial scale on the explana-
tory power of environmental variables in the cave invertebrate communities.

Data analysis

In order to detect if the geographic distance is responsible for the highest similarities 
between the studied caves, we performed a Mantel test with PAST 3.11 software (Ham-
mer et al. 2001). Environmental variables at different scales were used to analyze cave 
invertebrate communities. The influence of spatial scale (Buffer 50 m, Buffer 100 m, 
and Buffer 250 m) on invertebrate fauna composition was assessed with three inde-
pendent Distance Based Linear Modeling (DistLM) analyses (software PRIMER 6.0). 
We performed the analyses based on species composition data, by a resemble matrix 
using Jaccard index (qualitative data) for calculating the species similarities between the 
caves. As predictor variables, we used environmental data: percentage of land-use types 
at each buffer scale (thus representing the landscape spatial scale), added to local scale 
information (linear extension, environmental stability index and Shannon`s diversity 
index for substrate). We chose adjusted R² as a selection criterion using the Best proce-
dure, which examines the value of the selection criterion for all possible combinations 
of predictor variables (Anderson et al. 2008).
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Results

We found 186 invertebrate species, distributed along at least 78 families and 23 orders 
(Table 1). Among them, the order Diptera was the most representative, presenting 
40 species, which belong to at least 17 families. The order Araneae, with 14 families 
and 33 species was the second richest. We found three troglomorphic species, two 
belonging to the order Collembola (Entomobryomorpha and Hypogastruroidea) and 
one Isopoda (Platyarthridae, Trichorhina sp.). Entomobryomorpha was found in two 
caves, while Hypogastruroidea was restricted to a single cave. Trichorhina sp. was more 
broadly distributed, being found in four caves.

We found no correlation between geographical distance and caves invertebrate 
similarity (Correlation R MANTEL TEST = -0.3366; p = 0.9111).

Lapa das Pacas Cave had the highest Environmental Stability Index (ESI=3.53). 
Ninho de Pérolas Cave presented the smallest value, ESI = -0.56 (Table 2). The habitat 
varied highly among caves. Only two caves showed bat guano, Gruta do Sumidouro 
and Lapa da Várzea. Water bodies were also found in only two caves, Gruta do Sumi-
douro and Lapa das Pacas. Gruta do Sumidouro Cave presented 12 different types of 
habitats and the Shannon diversity index for this parameter was 2.25, the highest value 
among the caves analyzed. The lowest Shannon diversity value was found at the Lapa 
da Várzea Cave (1.30) with only 6 different types of habitats (Table 3).

At landscape scale we found four main types of land cover: limestone outcrop, 
cattle pasture, native vegetation and others. At all buffers the two principal land covers 
were pasture and native vegetation. The only buffer with water was the 250 m buffer 
of the Gruta do Sumidouro Cave (Table 4).

Limestone outcrop was the most important predictor variable of community com-
position (Jaccard index - considering species identity in the community) in all buffer 
scales, although other variables varied with landscape scale. The best model for the 
50 m Buffer presented an adjusted R² value of 0.40, and used only two variables (lime-
stone outcrop and others). The best model solution for Buffer 100 m presented an ad-
justed R² value of 0.45, and revealed three variables, limestone outcrop, cattle pasture 
and native vegetation. Finally, the best model for Buffer 250 m showed an adjusted R² 
value of 0.73 and used four variables (limestone outcrop, water, environmental stabil-
ity index and substrate Shannon`s diversity index) (Table 5). Therefore, large-scale 
models have higher R² values.

Discussion

There are few studies on spatial patterns of cave communities although some studies 
evaluate differences of spatial scale sampling on species patterns (e.g. Zagmajster et al. 
2008, Eme et al. 2014). Few studies evaluated spatial-scale dependence on community-
land uses relationships for cave invertebrates (e.g. Bento 2011). These studies are impor-
tant to reliably identify essential features and patterns for conservation and management 
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Table 2. Values of physical variables found at each cave at PESU. ESI: Environmental Stability Index; 
LE: Linear Extension; ΣEE: Sum of Entrances Area; NE: Number of Entrances.

CAVE ESI LE ΣEE NE
Gruta do Grilão 0.5983 42.82 2.74 3
Gruta do Lixo 0.0829 16.85 8.28 1

Gruta do Sumidouro 3.3859 137.68 6.47 1
Gruta do Feneme 3.2335 26.13 0.8 1
Gruta Helictites 1.8935 69.48 3.45 1

Gruta Lagoa Seca 1.7884 28.39 7.59 3
Lapa da Várzea 2.806 134.35 2.53 1
Lapa das Pacas 3.5262 319.56 1.41 1

Gruta Macaco das Cavernas 1.5085 42.7 8.19 2
Gruta Ninho de Pérolas -0.5618 27.22 11.42 1

actions. Our findings confirm the scale-dependence hypothesis on explaining similari-
ties among cave communities. Models get more precise at larger scales, it is possible to 
incorporate new explanatory variables that may be absent at smaller scales. The combi-
nation of different scales variables explain better cave community composition.

Karst areas have different historical land uses and human impacts vary according 
to landscape characteristics (Frumkin 1999). While karst depressions are more easily 
cultivated, rocky karst slopes and carbonate outcrops are less suitable for such uses 
(Frumkin 1999). At PESU we could clearly observe this pattern, since impacted ar-
eas, with cattle pasture, are mainly those located in depressed areas. Additionally, the 
best-preserved areas were those located on limestone outcrops or in their surroundings 
and they were the best predictor of cave community structure for all landscape scales. 
Such areas also host denser vegetation ensuring better conditions for cave invertebrate 
communities, most identified species in this study were troglophiles, also present in 
the surface habitats.

The second factor that explained the cave similarity in the 50 m buffer was “oth-
ers”, represented by cities, human constructions, roads and bare land, as results of ur-
banization. According to McIntyre and Hobbs (1999), urbanization is one of the most 
destructive human activities generating habitat change and loss of ecological function. 
As urbanization may cause a strong reduction in invertebrate diversity (Buczkowski 
and Richmond 2012), this effect could influence cave communities in two ways: i) we 
suggest that caves could be a refuge for invertebrate species, especially for those caves 
near such areas or ii) urbanization could reduce both, epigean and hypogean inverte-
brate communities. Here, smaller scales indicated an intensified urbanization impact 
near cave entrances (Figure 3), thus suggesting that caves may offer shelter to inver-
tebrate species, offering optimal conditions for many invertebrate species, especially 
for edaphic species that establish a continuum of life from the surface soil to the deep 
subterranean environment (Gers 1998, Ortuño et al. 2013).

The 100 m buffer indicated, in addition to limestone outcrops, cattle pasture and 
native vegetation as important variables. The landscape cover determines food availability 
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inside caves, which possibly affects cave communities. Although one would expect to 
have richer communities in caves surrounded by forests (as a rich source of organic matter 
that can be brought inside caves), guano also constitutes an important resource for many 
cave invertebrates. Some species are highly dependent on guano, and cave communities 
associated to this resource can be relatively complex (Ferreira and Martins 1999, Ferreira 
et al. 2007). The conversion of forests to pastures may favor some species (Gillieson and 
Thurgate 1999), aside from also reducing foraging habitats for several bat species. Habitat 
loss and fragmentation seems to favor Desmodus rotundus, a hematophagous bat species 
that remains in areas transformed into rural landscapes (Aguiar et al. 2010). The change 
in the organic resource quality can result in a remarkable invertebrate substitution (Souza-
Silva et al. 2011), which, in turn, could result in several changes in patterns and processes 
inherent to the cave fauna. Such changes could eventually enhance the cave community 
instability, which can become more vulnerable to environmental disturbances.

Considering the 250 m buffers, the model incorporated three different explana-
tory variables aside from the limestone outcrops: water bodies, environmental stabil-
ity index and habitat heterogeneity. The importance of the allochthonous nutrient 
input through water transport is well known (e.g. Hawes 1939, Culver 1982, Romero 
2009). Water acts as a molding agent and a vehicle in which nutrients, gases, minerals 
and even microorganisms are transported underground (Culver and Pipan 2009). The 
only cave that presented epigean water in the 250 m buffer was the Gruta do Sumi-
douro. That water is a lake connected to the cave by a sink and its invertebrate fauna 

Figure 3. Detailed figure of Gruta Helictites showing different land uses within the 50, 100 and 250 m 
buffers.
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is unique because flood pulses continually disturb and remove the accumulated food 
resource (Souza-Silva et al. 2011). In addition, floods may help maintain a regular food 
supply to caves, thus operating as distribution agents (Hawes 1939), contributing to 
the faunal singularity.

The higher community similarity among caves with similar values of ESI was ex-
pected. Stable associations by community in some cave sectors, which exhibit optimal 
climatic conditions, were reported for some invertebrate species (Di Russo et al. 1997). In 
this context, Bento et al. (in press) conducted a work in 24 cavities in the Brazilian Caat-
inga (semi-arid landscape) and found that more stable caves showed less variation in the 
invertebrate community composition when comparing their communities in both seasons 
(rainy and dry) than less stable caves. In this paper cave stability was calculated by the same 
index used in this study. Considering these, the more stable the cave environment the 
more similar the faunal elements at PESU, favoring some species over others (Tobin et al. 
2013); especially species with high specialization for cave life, or edaphic spaces.

The habitat diversity hypothesis proposes that species diversity in a landscape will 
increase as the greater structural complexity increases, because of the higher resource 
abundance and the potential addition to the number of partitionable niche dimen-
sions (MacArthur and MacArthur 1961). Environmental heterogeneity is correlated 
to patterns of groundwater crustacean richness (Eme et al. 2014), although it is not 
correlated to distribution patterns of this group (Zagmajster et al. 2014). Furthermore, 
cracks and stones, which increase environmental heterogeneity, may provide shelter 
for small invertebrates in caves (Carchini et al.1982). We found that habitat heteroge-
neity is an important factor explaining community composition.

Although the landscape scale explains better species composition, the local scale 
model suggests an influence of the habitat heterogeneity and stability on cave commu-
nity. The variables ESI and habitat heterogeneity were important only in Buffer 250 m, 
the largest evaluated scale. In smaller buffers, such local variables were not important 
probably because other landscape variables had already explained the community varia-
tion. In that case, including ESI and habitat heterogeneity in smaller buffers would not 
increase the model explanation. It has long been known that cave ecosystems are highly 
vulnerable to external events, even those occurring at some distance from the cave (Gil-
lieson and Thurgate 1999). This indicates the importance of studies on larger areas, 
which could avoid erroneous conclusions on the real influence of each epigean envi-
ronmental variable on the cave communities. It is worthy to mention that in situations 
of geographically closer caves, as Ninho de Pérolas Cave and Gruta do Grilão Cave, 
the results found could be at least in part due to the 250 meters buffer superposition. 
However, the distance between caves was not related to caves invertebrate similarity.

Landscape use can even make terrestrial troglophile populations more isolated, 
severely reducing their dispersal possibilities, by conversion from forest to pasture 
(Eberhard et al. 1991). Hence, results of community influences by landscape structure 
(predominance of natural vegetation or disturbed spaces) clearly indicate the need 
to conserve the adjacent landscapes of caves in karstic zones. Furthermore, attention 
should be given not only for intact landscapes, but also to continuous forest corridors 
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between caves, that promote fauna dispersal between habitat patches, that should be 
also protected. In this study, the caves surrounding landscapes show impacts of the hu-
man use, and the small remaining forest patches were important for cave invertebrate 
species maintenance.

Considering the current Brazilian legislation (Brazil. Decree no 6.640/2008), there 
is an obligation to protect the area corresponding to the cave linear projection on the 
surface and also a radius of 250 meters around this projection (Portaria IBAMA no 
887/1990). Unfortunately, there are no studies showing an eventual efficiency of such 
radius to preserve cave communities. Our study could be the first step to improve Bra-
zilian legislation, since it provides a new methodology to evaluate three aspects: cave 
invertebrate communities, cave physical traits and surface land use.
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