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RESUMO  

 

Staphylococcus aureus pode expressar diferentes fatores de virulência e resistência a vários 

agentes antimicrobianos em casos de mastite bovina. O presente estudo teve como objetivo 

avaliar os fatores de virulência e os mecanismos genéticos de resistência à drogas em 400 

isolados de S. aureus de mastite bovina no Brasil, bem como verificar a associação entre essas 

características, ano de isolamento e origem geográfico. A identificação dos genes de 

virulência e resistência foi realizada por PCR singleplex e multiplex. A identificação 

fenotípica de formação de exopolissacarídeos (biofilme) foi realizado no caldo Triptona de 

Soja com Vermelho Congo e sacarose e incubados a 37 °C por 48 horas. Como resultado, 

83,5% dos isolados foram produtores de biofilme. Os genes de resistência icaAD foram 

detectados em 98,5% isolados. Os genes luk (leucocidina Panton-Valentine), seb 

(enterotoxina estafilocócica B), sec (enterotoxina estafilocócica C), sed (enterotoxina 

estafilocócica D), tst (toxina 1 da síndrome do choque tóxico) foram observados em 3,5%, 

0,5%, 1%, 0,25% e 0,74% dos isolados, respectivamente. Os genes das hemolisinas foram 

observados em 82,85% (hla + hlb +), 16,5% (hla +), 0,75% (hlb +). O gene blaZ, associado à 

resistência à penicilina, foi detectado em 82,03% dos isolados, enquanto os genes tetK de 

resistência à tetraciclina e aac(6’) -Ie–aph(2’)-Ia de resistência à aminoglicosídeos foi exibido 

em 33,87% e 45.15% dos isolados, respectivamente. O gene mepA associado a resistência a 

fluoroquinolonas foi detectado pela primeira vez em todos os isolados. Os genes de 

resistência identificados com menor frequência foram tetM (3,22%), tetL (1,61%), ermA 

(14,29%), ermB (14,29%), ermC (33,3%), ermT (9,52%), ermY (4,76%), msrA (9,52). %), 

mphC (9,52%). Concluí-se que houve uma alta frequência de S. aureus carregando genes de 

virulência para biofilme e hemolisina. Além disso, foi encontrada uma grande variedade de 

genes de resistência que conferem resistência a todas as classes de antimicrobianos utilizados 

em animais e população humana. Esses resultados mostram o potencial patogênico de S. 

aureus isolados de mastite bovina para causar doenças tanto em humanos quanto em animais. 

 

Palavras-chave: Staphylococci. Infecção intramamária. Biofilme. icaAD. blaZ. mepA. 

 



 

ABSTRACT 

 

Staphylococcus aureus can present many mechanisms in order to remain in mammary gland. 

The present study aimed to evaluate virulence factors and genetic mechanisms of drug 

resistance in 400 S. aureus strains isolated from bovine mastitis in Brazil, as well as to assess 

the association between these characteristics, year of isolation and geographic origin of the 

strains. Singleplex and multiplex PCR was used to identify virulence factors and drug 

resistance encoding genes. Detection of biofilm-forming was carried out using Congo red 

Tryptic Soy Broth assay. As a result, 83.5% isolates were biofilm-forming and 98.5% strains 

exhibited the biofilm gene icaAD. Virulence genes luk (Panton–Valentine Leukocidin), seb 

(Staphylococcal Enterotoxin B), sec (Staphylococcal Enterotoxin C), sed (Staphylococcal 

Enterotoxin D), tst (Toxic shock syndrome toxin 1) were observed in 3.5%, 0.5%, 1%, 0.25% 

and 0.74% of the strains, respectively. Hemolysin genes were observed in 82.85% (hla+hlb+), 

16.5% (hla+) and 0.75% (hlb+) isolates. The gene blaZ, associated with penicillin resistance, 

was detected in 82.03% isolates, whereas tetracycline resistance gene tetK and 

aminoglycoside gene aac(6’)-Ie–aph(2’)-Ia were observed in 33.87% and 45.15%, 

respectively. Fluoroquinolone resistance gene mepA was detected for the first time in all 

fluoroquinolone resistance S. aureus isolates. Resistance genes tetM (3.22%), tetL (1.61%), 

ermA (14.29%), ermB (14.29%), ermC (33.3%), ermT (9.52%), ermY (4.76%), msrA (9.52%) 

and mphC (9.52%) were detected in low frequency among the isolates. Our results showed a 

high frequency of S. aureus carrying mainly biofilm and hemolysin genes. Moreover, a wide 

variety of antimicrobial resistance genes that confers resistance to all classes of antimicrobial 

agents used in animals and human population were observed. These results highlight the 

pathogenic potential of S. aureus from cattle to cause severe disease in both humans and 

animals. 

 

Keywords: Staphylococci. Intramammary infection. Biofilm. icaAD. blaZ. mepA. 
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PRIMEIRA PARTE 

1. GENERAL INTRODUCTION 

Bovine mastitis is considered one of the most prevalent disease with the greatest 

impact on dairy cattle production worldwide, since it reduces the quantity and quality of milk 

produced (KEEFE, 2012; HOGEVEEN; VAN, 2017). Staphylococcus aureus is considered 

the main agent involved in bovine mastitis (ROLLIN et al., 2015; BOBBO et al., 2017). The 

ability to cause infections are related to the expression of various virulence factors, structures, 

products or mechanisms (KOT et al., 2016; MELLO et al., 2016; MONISTERO et al., 2018), 

frequently acquired by mobile genetic elements (LOWY, 1998) that facilitates adhesion and 

colonization in the mammary glandular epithelium resulting in persistence in the tissue’s host. 

Although this problem affects directly animals, it is also of concern for human health since 

strains carrying these virulence genes can reach human population by variety of routes.  

 

Antimicrobial resistance is also a biggest concern in animal and public health. It is 

known that genetic modifications by mutation and selection or by gene exchange between 

bacteria occurs as a naturally phenomenon over time (BISWAS et al., 2008). Nonetheless, a 

selection of drug resistance isolates can be accelerated due to incorrect use of drugs. Besides, 

it has been set that low concentrations of antimicrobial agents in animals can allow for 

enrichment and selection of bacteria carrying multidrug-resistance plasmids, causing, 

maintenance, multiplication and spread of these genes between bacteria (TER KUILE et al., 

2016). The presence of antimicrobial resistance genes (ARGs) often located on mobile genetic 

elements, allows easily transmission between different hosts including humans, animals, and 

environment.  

 

Hence, from the animal and public health point of view, it is essential to define which 

microorganisms are involved in the etiology of bovine mastitis and their potential to cause 

severe infections.  

Thus, in the first paper will be presented a review of the role of virulence and 

antimicrobial resistance genes in bovine mastitis, the relationship between them and its risk to 

human health. 

In the second paper, will be presented a research paper about the identification of the 

principal virulence and antimicrobial resistance genes in S. aureus isolated from bovine 
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mastitis in Brazil, as well as to verify the association of among these characteristics, the year 

of isolation and geographic origin of the strains. 

 

2. OBJECTIVES 

The objectives of this study are: 

 

2.1 GENERAL OBJETIVE 

i. Characterize S. aureus isolated from bovine mastitis. 

 

2.2 SPECIFIC OBJECTIVES 

i. Define the virulence profile of S. aureus isolated from bovine mastitis. 

ii. Define genetic determinants of antimicrobial resistance in S. aureus isolated from 

bovine mastitis. 

iii. Verify association between virulence factors and drug resistance. 

 

3. REFERENCES 
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dairy science, v. 100, n. 6, p. 4868-4883,  2017.  

 

HOGEVEEN, H.; VAN, M. D. V. Assessing the economic impact of an endemic disease: the 
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36, n. 1, p. 217-226,  2017.  
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28, n. 2, p. 203-216, 2012/07/01/ 2012. ISSN 0749-0720. Disponível em: < 

http://www.sciencedirect.com/science/article/pii/S0749072012000278 >. Access in: 7 July. 

2018. 
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Relationship between virulence and antimicrobial resistance in Staphylococcus aureus 

from bovine mastitis 

Highlights 

• Implication of the expression of virulence factors for bovine mastitis and human health. 

• Presence of AMR in S. aureus from bovine mastitis and its importance in humans. 

• Relationship between β-lactams and the expression of virulence factors. 

ABSTRACT 

Staphylococcus aureus can present many mechanisms of virulence and antimicrobial 

resistance in mammary gland infection. The pathogenicity of S. aureus infection is attributed 

to a wide array of virulence determinants rather than to any single one. In addition, different 

mechanisms of antimicrobial resistance play an important role in the permanence of the 

bacteria in the host. The possibility of exchange resistance genes among different bacteria is a 

serious concern in livestock husbandry, as well as in the treatment of other staphylococci 

human infections. Thus, the aim of this review is to summarize the literature on the role of 

virulence and antimicrobial resistance genes in bovine mastitis, the relationship between them 

and its risk to human health. 

Keywords: Staphylococci, Intramammary Infection, Bovine, Virulence Factors, Resistance 

Mechanism, Public Health. 

1. Introduction 

Bovine mastitis is one of the most prevalent disease that affects the world dairy 

production because it decreases quantity and quality of milk produced [1]. The interaction 

between host, environment and infectious agents results in mastitis disease [2]. 

Staphylococcus aureus is the main agent involved in bovine mastitis [3, 4]. It is important to 

know which virulence factors, structures, products or mechanisms are produced and how it 

facilitates adhesion and colonization of the microorganism in the mammary glandular 

epithelium resulting in persistence, success in its installation and maintenance in the tissue’s 

host. Although this problem affects directly animals, it is also of concern for human health 

since strains carrying these virulence genes can reach human population by variety of routes, 

being foodstuffs one of these.  
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Antimicrobial resistance is also a biggest concern in animal and public health. It is 

known that genetic modifications by mutation and selection or by gene exchange between 

bacteria occurs as a naturally phenomenon over time [5]. Nonetheless, a selection of drug 

resistance isolates can be accelerated due to incorrect use of drugs. It has been set that low 

concentrations of antimicrobial agents in animals can allow for enrichment and selection of 

bacteria carrying multidrug-resistance plasmids, causing, maintenance, multiplication and 

spread of these genes between bacteria [6]. In addition, the presence of antimicrobial 

resistance genes (ARGs) often located on mobile genetic elements, allows easily transmission 

between different hosts including humans, animals, and environment.  

In this context, the present study aims to review the main virulence factors and 

determinants of drug resistance in S. aureus isolated from bovine mastitis, focusing mainly on 

the association between these characteristics. 

2. Bovine mastitis 

Mastitis is defined as an inflammatory process in the mammary gland that can result 

from trauma, injury, chemical irritation or microbial infection in the udder [7]. Most cases of 

mastitis are caused by microbial invasion in the mammary gland, mainly by bacteria, however 

viruses, yeasts and algae may also be involved [8]. In general, mastitis can be classified as 

clinical / acute or subclinical / subacute, latter frequently leading to development of chronic 

mastitis [9]. Clinical mastitis is the one with obvious signs such as inflammation of at least 

one quarter, change in the appearance of the milk due to the inflammatory response because 

of infection, udder edema, lumps, temperature increase, hardening and pain in the mammary 

gland [10]. On the other hand, in subclinical mastitis, although the infection is present, there 

are no visible signs or variation of the characteristics of the milk [11]. 

Depending on the type of microorganisms causing infection, mastitis can also be 

classified as contagious or environmental. The contagious microorganisms are those that are 

disseminated at the time of milking through the infected quarters, mainly by the hands of the 

milker [12]. Contagious mastitis is usually caused by Staphylococcus aureus, Streptococcus 

agalactiae, coagulase negative Staphylococcus (CoNS), Mycoplasma spp. and 

Corynebacterium bovis. On the other hand, environmental microorganisms are those that are 

not adapted to the mammary gland, acting as opportunist pathogens. This type of mastitis is 

typically caused by ubiquitous bacteria, found in feces, water, contaminated fomites, soil, 
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milking equipment, and outside of contaminated quarters or udder, which, via the teat cistern, 

reach the udder causing infection and often leading to the development of clinical or 

subclinical diseases [12, 13]. The most frequent environmental microorganisms involved in 

mastitis are Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus spp., 

Pseudomonas spp., Streptococcus uberis, Streptococcus dysgalactiae, yeasts, algae and fungi 

[14]. 

3. Bovine mastitis caused by S. aureus 

S. aureus is a Gram-positive cocci, catalase and coagulase-positive, facultative 

anaerobe, with capsule, immobile and not sporulated [15]. Because of capacity of 

contagiousness and the ability to induce long lasting chronic infections, S. aureus is 

considered one of the major pathogens associated with endemic mastitis all over the world 

[16-18]. Although different countries have been implemented mastitis prevention programs, 

the prevalence of S. aureus in cows still remains [19-21]. 

Intramammary infection begins when S. aureus passes through the teat canal, 

interacts with the mammary tissue cells, multiplies in milk and disseminate in the cisterns and 

throughout the duct system [22]. The release of secreted bacterial products acts as microbe-

associated molecular patterns (MAMPs) which contributes to the detection of bacteria by 

the immune system in the mammary gland [23, 24]. The inflammatory response associated 

with mastitis results in a decrease in milk production and quality of milk [25]. In addition, 

mastitis also results in an increase of whey proteins, serum albumin, immunoglobulin, 

chloride, sodium, pH, free fatty acids the milk. Also, in the reduction of the synthesis of 

components of milk, such as lactose, fat, non-fat solids and casein [26]. 

Costs associated with mastitis include milk production losses, pharmaceuticals, 

veterinary services [27, 28]. The importance of S. aureus in milk and other dairy products is 

because its capacity to produce various toxins [29]. Another important fact is the 

antimicrobial residues in food, due to the extensive use of drugs as treatment and control of 

diseases, that can cause sensitization of normal individuals and development of antimicrobial 

resistant strains [30]. The presence of genes in S. aureus that initially where though to be 

restricted only to animals, in recent years have been also identified in humans, this highlight 

the necessity to characterize isolates from bovine mastitis. 
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4. Importance of virulence factors of S. aureus to bovine mastitis and in public health 

S. aureus presents multiple virulence factors, some of them related to the severity of 

intramammary infection [31]. There is a complex network of transcriptional regulatory factors 

that control the expression of genes that encode virulence factors of S. aureus [32]. Thus, it 

was observed that during in vitro culture of S. aureus the virulence factors associated with the 

bacterial surface are firstly expressed in the logarithmic phase of growth, while the secretion 

factors are released in the post logarithmic phase. This biphasic expression of virulence 

factors could fulfill the function of organizing the infection process [33]. Initially, surface 

adhesins would recognize the structures of the host, facilitating colonization and later 

multiplication of the microorganism and secretion of toxins (α, β and γ hemolysins, 

leukotoxins, enterotoxins) and enzymes (serine proteases cysteine, proteases, lipases) [34]. 

However, it has been postulated that, in order to reach intracellular persistence, S. aureus 

must avoid the immune and inflammatory response of the host, for which it would negatively 

regulate the expression of virulence factors [35]. This sophisticated regulatory network would 

be the key in the pathogenesis of infection by S. aureus that leads chronicity of the disease 

and at the same time, allows adaptation of microorganism to microenvironment changes 

during the course of the infection and its survival [35]. In the following lines, will be 

described main virulence genes that affect cattle and have implications for human health.  

4.1 Enterotoxins 

S. aureus can express many enterotoxin genes. Among Staphylococcal enterotoxins 

(SEs) and staphylococcal enterotoxin-like proteins genes, sea, sec, sed, see, seg, seh, sei, selj, 

selk, sell, selm, seln, selo, selp, selq and selu have been detected in S. aureus isolated from 

raw milk samples in earlier studies [22, 36].  

Several studies have shown that most S. aureus strains isolated from bovine mastitis 

harbor one or more enterotoxin genes [37]. Thus, the frequency of genes in dairy herds are 

variable, some reports mention that S. aureus isolates have at least one gene encoding 

superantigen toxin [38]. In contrast, other studies showed that enterotoxin genes were absent 

or seldom detected in S. aureus isolated from cows with mastitis [22, 39, 40]. Nonetheless, 

recently studies have reported the impact of toxins in the mammary gland. For example, it 

was observed that effect of staphylococcal enterotoxin H in vitro, induced bovine mammary 

epithelial cells (bMECs) apoptosis. The stimulation of lymphocyte proliferation decreased the 

viability of bMECs and induced the cells to undergo apoptosis in a time-dependent manner 
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[41]. Another study that analyzed the biological characteristics and potential pathogenic 

activity of enterotoxin C, observed that super antigenic activity, induces proinflammatory 

cytokine release and inflammation responses, and subsequently induces mammary tissue 

damage [42]. 

From public health point of view, S. aureus can produce a wide variety of 

enterotoxins, however 95% of cases of food poisoning are caused by the group consisting of 

the exotoxin’s sea, seb, sec, sed and see [29]. SEs keep their biological and immunological 

activities even following pasteurization, food processing and exposure to gastrointestinal 

proteases [43]. The fact of detecting SEs in cow´s milk represents not only a problem for the 

dairy husbandry but also a high risk to public health due to consumption of unpasteurized 

milk and products derived from milk. 

4.2 Toxic shock syndrome toxin 

Intoxication in humans is most commonly determined by toxic shock syndrome toxin 

1 (TSST-1). TSST- 1 can disturb the host immune response by causing a non-specific 

polyclonal activation of immune cells [44]. This toxin presents numerous immunomodulating 

effects such as induce the release of interleukin 1 and the tumor necrosis factor from 

monocytes [45]. It has been observed that when bovine T‐lymphocytes are experimentally 

exposed, TSST‐1 can act as a superantigen for bovine immune cells, and thus potentially 

contributes to the mammary pathology associated with S. aureus infections [45]. A study in 

120 S. aureus isolates from bovine mastitis, that compares the molecular-epidemiologic 

profiles of strains from different countries around the world, founded that 37% of 

Argentinian, 23% of German, 16% of Tunisian and 6% of Italian isolates carried tst gene [46]. 

Besides, it has been reported that co-production of TSST-1 and SEs by S. aureus may 

contribute to a more severe inflammatory reaction [47].  

In humans, toxic shock syndrome by TSST-1 is a relatively rare condition, however it 

is difficult to obtain accurate estimates of the incidence of S. aureus intoxications because 

most cases are not reported [48]. This syndrome is characterized by causing fever, 

hypotension, congestion in various organs and lethal shock [49], stimulates the non-specific 

proliferation of T cells and induces production of IL-1, IFN-ɣ and TNF-α [50]. Although 

pasteurization kills S. aureus, heat-stable TSST-1 can retain their biological activity [43]. 

Strong resistance to pepsin and trypsin digestion has also been observed, even after treatment 
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TSST-1 continuous keeping significant super antigenic and lethal shock activities [51]. Due to 

the importance of this toxin in bovine and public health, is necessary an efficient screening to 

detect prevalence of enterotoxin in S. aureus strains isolated from bovine milk and derivates. 

4.3 Hemolysin 

Hemolysins are considered important virulence factors of S. aureus that contribute to 

bacterial invasion and escape from the host immune response [52]. S. aureus mainly produce 

α and β hemolysins, encoded by hla and hlb genes, respectively [53, 54]. The most prominent 

cytotoxin produced by S. aureus is α -hemolysin present in a wide range of host cells. Its 

pathogenicity depends on its hemolytic, dermonecrotic and neurotoxic effects [44, 55]. 

However, some studies consider that β-hemolysin is produced by most S. aureus isolates from 

strains isolated from bovine mastitis and chronic skin infections in humans [53, 56]. Despite 

of not causing cell lysis, β-hemolysin is a highly active sphingomyelinase against bovine 

erythrocytes [57, 58]. The destruction of sphingomyelin increases the permeability of the 

plasma membrane with progressive loss of the negative electrical charge of the cell surface, 

allowing easy adherence of the bacterial cell [56]. It was detected a high percentage of S. 

aureus strains harboring hla and hlb gene isolated from bovine mastitis [59]. In fact, 

interaction between α and β hemolysin increased both the adherence to bovine mammary 

epithelial cells and the proliferation of S. aureus [56]. Also, a capacity of these toxins to be 

stable in high temperatures [60], makes this an important fact for public health because of 

consumption of products derived from milk represents a high risk to humans. 

4.4 Leukotoxins 

Leukotoxins belong to a family of pore-forming toxins and are responsible for the 

destruction of phagocytic cells, such as monocytes and polymorphonuclear cells. The 

staphylococcal Panton-Valentine Leukocidin (PVL) is encoded by LukS-PV and LukF-PV 

genes and the more recently described LukM/FPV(P83) is encoded by LukF-PV83/LukM [61, 

62]. Toxic effect depends on the synergistic action of both class S (slow elution)-related and 

class F (fast elution)- related proteins on polymorphonuclear cells and monocytes [63]. S. 

aureus can acquire two phages encoded leukocidins, PVL and a bicomponent leucocidin 

LukMF´. However, while the PVL genes is associated to human strains, LukMF´ genes are 

associated with animal strains, especially with isolates from bovine mastitis [64, 65].  
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The main role of PVL is associated with necrosis of skin and soft tissues and its 

presence has been reported worldwide [66]. On the other hand, LukMF is highly expressed 

and is the most potent toxin killing bovine neutrophils [67]. The presence of LukF-

PV83/LukM can lead to reduction of host defense and facilitate more rapid colonization of the 

bovine udder by pathogens, and its presence determine whether S. aureus behaves as an 

obligatory or accidental pathogen for the host organism [64]. Considering this, LukF-

PV83/LukM positive strains could be regarded as obligatory pathogens to cattle, which also 

implied that they might easily spread and persist in herds. On the other hand, LukF-P83/LukM 

negative strains could be accidental strains in cattle, possibly being transferred from other 

species such as humans or rodents into cows [64]. 

4.5 Biofilm forming 

The ability of Staphylococci to form biofilms is one of the virulence factors that 

facilitate the adherence and colonization of these pathogens to the mammary gland 

epithelium, contributing to the evasion of the immunological defenses and for the recurrent or 

persistent infections, and thereby avoiding its eradication [68]. Biofilm is an 

exopolysaccharide, a slime matrix around multiple layers of cells. Staphylococcus biofilm 

formation mechanisms involve the participation of many kinds of proteins, and genes [69]. 

Firstly, the bacteria adhere to a surface mediated by a capsular antigen polysaccharide/adhesin 

(PS/A). Then, multiply to form a multilayered biofilm, which is associated with production of 

polysaccharide intercellular adhesin (PIA). Synthesis of PIA and PS/A in staphylococcal 

species, is mediated by the intercellular adhesion operon (ica) formed by the icaA, icaB, icaC 

and icaD genes and a regulatory gene, icaR, that encodes the proteins ICAA, ICAB, ICAC 

and ICAD [70, 71]. The presence of the ica locus in all the mastitis S. aureus isolates 

confirms its potential role as a virulence factor in the pathogenesis of mastitis in ruminants. 

However, ica-independent biofilm formation by S. aureus has also been reported, although in 

a small percentage of clinical isolates [72], suggesting potential that surface proteins such as 

Aap and Bap and secretory proteins can replace the function of PIA during biofilm 

development by ica-deficient strains of S. aureus [73, 74]. 

5. Impact of antimicrobial resistance to bovine mastitis and in public health 

Antimicrobial drugs have been used for many years in animals. A study estimates that 

between 2010 to 2030, global consumption of antimicrobials in livestock production will 

increase by two thirds, and that it will double Brazil, Russia, India, China, and South Africa 
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[75].Due to the emergence of multiresistant strains reports in humans and animals, it becomes 

critical to develop new drugs that allows to control multiresistance. In the following lines are 

described the mechanism of antimicrobial resistance of principal drugs frequently used in 

dairy herds. 

5.1 Resistance to β -lactams 

After the introduction of penicillin as treatment, a methicillin-resistant Staphylococcus 

aureus (MRSA) isolate was reported in England. Since then, S. aureus has become an 

important pathogen involved in antimicrobial resistance. Resistance to penicillin is caused by 

the production of penicillinases (β-lactamase), this enzyme inactivates the antibiotic through 

hydrolysis of the peptide bond in the β-lactam ring in antibiotics such as penicillin G, 

carboxypenicillins and ureidopenicillins [76]. The mechanism of resistance is encoded by 

blaZ gene, which typically resides on a large transposon on a plasmid. In the absence of 

penicillin, β-lactamase is expressed at low level [76, 77]. A study in S. aureus isolates from 

bovine mastitis in Brazil, detected that 84% isolates harbored blaZ gene [78]. This high 

prevalence of blaZ gene in S. aureus isolates from bovine mastitis has also been reported in 

different countries [79, 80]. 

Resistance to methicillin is conferred by the production of the penicillin-binding 

protein (PBP2a) encoded by mecA gene, which has a low affinity for β-lactam [81, 82]. 

Methicillin-resistant Staphylococcus aureus (MRSA) appears when methicillin-susceptible S. 

aureus (MSSA) exogenously acquires a staphylococcal cassette chromosome mec (SCCmec), 

transmissible among staphylococcal species as a mobile element [83]. SCCmec typing is one 

of the most important molecular tools for understanding the epidemiology and clonal relation 

of MRSA isolates, because SCCmec is a vehicle for drug resistance genes [84]. Recent 

evidence suggests that Livestock-associated methicillin-resistant Staphylococcus aureus (LA-

MRSA) may be present in people who are in close contact with animals [85], representing a 

high risk of zoonoses. 

On the other hand, it was determined that there are others chromosomally determined 

factors that cause resistance, for example the operon femAB, which acts as a regulatory gene. 

The cooperation between femA and mecA genes is essential for the expression of methicillin 

resistance in S. aureus [86]. 
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In addition, a new divergent mecA homolog (mecC) was described in a novel SCCmec 

designated as type XI [87]. An epidemiological study by García-Álvarez, Holden [88] on 

bovine mastitis in England described an isolate of S. aureus phenotypically MRSA (resistant 

to oxacillin and cefoxitin), but did not contain the mecA gene or the PBP2a protein. Genetic 

study of this strain revealed the presence of mecC gene. This gene shared 69% homology with 

the mecA gene and encoded for production of a protein that had 63% amino acid homology 

with PBP2a. The proteins encoded by mecC, have less affinity for oxacillin than cefoxitin, 

which would explain the difficulties on the detection by phenotypic methods [89, 90]. In 

addition, a retrospective study carried out in Denmark and United Kingdom identified mecC 

in 65 strains, isolated from cattle and humans. The majority of MRSA mecC isolates belong 

to the CC130 clonal complex and less frequently to the ST42518 type sequence [88]. Both 

genetic lineages of MRSA are usually from animals, suggesting a zoonotic origin of the mecC 

gene, probably from ruminants and that subsequently spread to humans. The MRSA mecC 

strains predominantly cause skin and soft tissue infections, but they have also been described 

as causative agents of bone infections [91], nosocomial pneumonia [88] and bacteremia [92]. 

Likewise, these strains produce a variety of infections in various species of domestic animals 

and livestock, they have been mainly described as a cause of mastitis in dairy cows [93]. 

MRSA strains from animals are not only important from the point of view of animal health 

and economic perspective, but also because can act as a zoonotic reservoir, enter the food 

chain and cause antimicrobial resistance in humans. 

5.2 Resistance to tetracyclines 

Tetracyclines are broad-spectrum antimicrobials that have been widely used in human 

and veterinary medicine. The main resistance mechanisms against tetracycline in S. aureus 

are efflux pump, that is a result of the acquisition of tetK or tetL by mobile tet genes, and the 

ribosomal protection, that is conferred by the tetM and tetO genes [94]. It is also mention by 

Trzcinski, Cooper [95] that both, efflux and ribosomal protection are inducible in S. aureus by 

subinhibitory concentrations of tetracycline. Moreover, it is discussed that in animals 

staphylococci, resistance to tetracyclines is often mediated by the genes tetK and tetL [94]. A 

study in S. aureus isolated from bovine mastitis found that 90% S. aureus isolates from 

bovine mastitis, harbored at least one of the tet genes, being the most prevalent tetK. Whereas, 

tetL, tetM and tetO genes were found in 8·8%, 2·2% and 1·1% isolates, respectively [78]. 
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It was reported a presence of tetK, tetL and tetM genes in bovine and swine nares, 

highlighting their importance in public health because these genes are on mobile genetic 

element, as small plasmids or conjugative transposons and can spread and cause treatment 

failure both in veterinary and human medicine [96]. Furthermore, is also to mention that 

tetracycline resistant strains are more frequently isolated from farmers and veterinarians than 

from people without contact with livestock especially pigs [97]. 

5.3 Resistance to macrolides, lincosamides and streptogramins 

Antimicrobials such as macrolides, lincosamide and streptogramin (MLSB) are widely 

used in the treatment of staphylococcal infections. Main genes associated with MLSB 

resistance are erm, msr, mph, vat and lnu. The erm genes that have been detected in 

staphylococci of animal origin, being ermA and ermB genes associated with transposons. The 

ermA gene has been identified in S. aureus, mostly MRSA and the ermB gene has been 

detected in LA-MRSA, both genes from cattle [98]. It is interesting to mention that plasmids 

that harbor gene ermC are commonly located on small plasmids and usually not carry 

additional resistance genes, while ermT is often found on large multi resistance plasmids [99]. 

These genes have been identified in S. aureus (including MRSA) from cattle [98, 99]. The 

msrA gene confers resistance to macrolides and streptogramin type B [100], whereas the gene 

mphC only confers resistance to macrolides [101, 102]. Interesting, mphC often occurs linked 

to msrA but when mphC phosphotransferase is alone low-level resistance to macrolides is 

observed [103]. On the other hand, the lnuA gene that confers resistance to lincosamides is 

often located on small plasmids and has been identified in S. aureus including MRSA from 

dairy cattle [104]. Genes vatA, vatB or vatC confers inactivation to streptogramin A 

antibiotics in staphylococci [105].  

MLSB, especially macrolides, are frequently used as treatment in bovine mastitis 

because its excellent diffusion into the mammary gland, have long half-life effect, low protein 

binding, lipid solubility and high intracellular concentration. S. aureus can harbor different 

genes that brings resistance to MLSB, isolates carrying more than one resistance gene has 

been reported [80]. This fact suggests that one or several new resistance mechanisms for 

macrolides may be widespread among S. aureus isolates. 

5.4 Resistance to aminoglycosides 
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Although aminoglycosides are widely used for mastitis treatment [106], the number of 

studies carried out on genotypic resistance are very limited compared to phenotypic resistance 

studies in S. aureus isolated from animals [102, 107]. Resistance to aminoglycosides is based 

on several inactivating enzymes, which differ in their specific substrate spectra. For example, 

the gene aacA-aphD widely distributed in staphylococci of animal origin, including S. aureus 

isolated from bovine mastitis, is located on transposon Tn4001 and confers resistance to 

gentamicin, kanamycin, tobramycin and when over-expressed to amikacin [94, 98]. A recent 

study in bovine clinical mastitis was detected aacA-aphD gene in 23% of S. aureus isolates 

[80]. In contrast, a study in S. aureus from bovine mastitis in Turkey, detected that the most 

prevalent gene was aph (3′)-IIIa [108]. Thus, difference of aminoglycosides resistance genes 

can be attributed to the difference among S. aureus isolates from different geographical 

regions.  

Therefore, is essential to determine resistance to aminoglycosides in S. aureus, in 

order to know its prevalence that will allows us to control the misuse and overuse of 

antimicrobial drugs in dairy cattle and so avoid multiresistant strains. 

5.5 Resistance to fluoroquinolones 

In general, two important mechanisms cause fluoroquinolone resistance in S. aureus. 

The first one is attributed to mutations occurring in the quinolone-resistance determining 

region (QRDR) of GrlA/ GrlB (topoisomerase IV, encoded by genes grlA/grlB) and 

GyrA/GyrB (DNA gyrase, encoded by genes gyrA/ gyrB), which decrease the affinity of the 

drug [109]. Nonetheless, fluoroquinolone resistance can also be mediated by drug efflux, a 

mechanism that is less well characterized. Several efflux pumps have been described in S. 

aureus, including the chromosomally encoded norA, norB, norC, mdeA, mepA, sepA and 

sdrM, as well as the plasmid-encoded qacA/B, qacG, qacH, qacJ and smr [110]. In contrast to 

the data on human S. aureus strains, very little is known about the genetic basis of 

fluoroquinolone resistance in animal staphylococci. It has been reported resistance rates to 

fluoroquinolones, tetracyclines, and macrolides and the corresponding genes in S. aureus 

from poultry [111]. A recent study in China, detected a high frequency of genes norA, gyrA, 

grlA in S. aureus isolated from bovine mastitis [112]. However, more studies necessary in 

order to know the fluoroquinolone resistance profile. 



29 

 

6. Association between virulence and antimicrobial resistance 

In recent years, it has been described different mechanism of antimicrobial agents 

modulating staphylococcal virulence factors. It is known that β-lactams are widely used in 

human and animals. Studies showed that low levels of these drugs can stimulate biofilm 

formation, increasing adhesion protein expression by releasing extracellular DNA (eDNA) 

and modifying the extracellular matrix composition, this was prominently noted in strains 

MRSA than MSSA [113, 114]. The same results were observed for low levels of clindamycin, 

which modify eDNA release and autolysis rate by increasing the expression of adhesion 

factors and secreted proteins, resulting in a more compact and stable biofilm [115]. 

In a study was reported an increase of α-toxin gene expression due to β -lactams and 

fluoroquinolones exposure. It was observed that MRSA strains have more α-toxin production 

when treated with β-lactams than in MSSA [116, 117]. In contrast, the use of clindamycin and 

erythromycin drugs abolished α-toxin expression [116]. Studies indicate that protein synthesis 

inhibitors, especially clindamycin and linezolid, prevent the translation but not transcription 

of α-toxin [117, 118]. 

The increase of PVL expression was also seen when that S. aureus were cultured with 

β -lactams. Similar effects have been seen in TSST-1 expression where the use of β -lactams 

treatment increased its expression and decreased expression after protein synthesis inhibitory 

antibiotic treatment. [117, 119]. Nonetheless, it was noticed that clindamycin and gentamicin 

drugs suppressed TSST-1 production, reducing it by up to 95% and 75%, respectively [120]. 

It could be because clindamycin act mainly by blocking ribosomal function and suppressing 

the protein synthesis of virulence factors as well as the synthesis of regulators of virulence 

expression [121].  

The enterotoxin gene regulation during therapeutic simulations was studied in the 

hollow-fiber model. This study evaluated sec4, sek, seq, and sel2 genes expression during 

treatment with clindamycin, linezolid, minocycline, trimethoprim-sulfamethoxazole, or 

vancomycin. As a result, both clindamycin and linezolid increased enterotoxin expression 

[118]. 

As shown, the use of antimicrobial drugs can influence the expression of virulence 

genes. It was also observed that regulation of virulence genes influences expression of 

antimicrobial resistance genes and vice versa. The gene expression can be indirectly or 
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indirectly influence by a host of environmental factors [122]. S. aureus presents two quorum 

sensing systems that acts on biofilm genes and can control the expression of toxins, virulence 

factor and antimicrobial resistance genes, likewise these genes can up-regulate (Figure 1). It 

has been study that for anaerobic respiration in S. aureus two-component system SrrAB is 

necessary. SrrAB down-regulate the regulatory RNA agr-RNAIII, which contribute in the 

excretion of the virulence factors: serine protease and α-hemolysin. Also, it has been observed 

an increase of extracellular polysaccharide by the increase expression of ica operon [123]. 

Moreover, regulation of antimicrobial resistance through transcription factors has been 

studied in MRSA. A studied showed that regulatory proteins YycH and YycI reduce 

vancomycin  
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Figure 1. Relationship between virulence and antimicrobial resistance genes in Staphylococcus aureus 
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susceptibility in S. aureus, particularly in strains with intermediate level resistance to 

vancomycin [124]. 

7. Final considerations and future perspectives  

The high prevalence of bovine mastitis by S. aureus makes important to understand 

different mechanism of virulence and antimicrobial resistance. However, despite the 

importance, very few studies are carried out. The use of techniques that allows to understand 

the relationship between virulence and resistance genes are necessary. For example, the use 

of high-throughput sequencing techniques, can allows to seek connections between 

resistance genes and virulence factors. An example of this can be the transposon insertion 

site sequencing (TnSeq) experiments that is a useful and often unbiased tool to study the link 

between antimicrobial resistance genes and fitness. 

In brief, further studies are needed for a more robust understanding of what drives 

the link between resistance and virulence facts, and so understand how it influences in the 

pathogenesis of the bacteria, allowing released of multiple virulence factors or expression of 

antimicrobial resistance genes. 
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Detection of virulence and antimicrobial resistance genes in Staphylococcus aureus 

isolated from bovine mastitis in Brazil 

Highlights 

• High prevalence of biofilm and hemolysin genes. 

• First detection of mepA in S. aureus from bovine mastitis. 

•Detection of high prevalence of β-Lactams resistance gene blaZ. 

ABSTRACT 

Staphylococcus aureus can present many mechanisms in order to remain in mammary gland. 

The present study aimed to evaluate virulence factors and genetic mechanisms of drug 

resistance in 400 S. aureus strains isolated from bovine mastitis in Brazil, as well as to assess 

the association between these characteristics and the year of isolation and geographic origin of 

the strains. Singleplex and multiplex PCR were used to identify virulence factors and drug 

resistance encoding genes. Detection of biofilm-forming was carried out using Congo red 

Tryptic Soy Broth assay. As a result, 83.5% isolates were biofilm-forming and 98.5% strains 

exhibited the biofilm gene icaAD. Virulence factors genes luk, seb, sec, sed and tst were 

observed in 3.5%, 0.5%, 1%, 0.25% and 0.74% of the strains, respectively. Hemolysin genes 

were observed in 82.85% (hla+hlb+), 16.5% (hla+) and 0.75% (hlb+) isolates, while 

enterotoxin genes sea and see were not detected. The gene blaZ, associated with penicillin 

resistance, was detected in 82.03% isolates, whereas tetracycline resistance gene tetK and 

aminoglycoside gene aac(6’) -Ie–aph(2’)-Ia were observed in 33.87% and 45.15% of the 

isolates, respectively. Fluoroquinolone resistance gene mepA was detected for the first time in 

all fluoroquinolone resistance S. aureus isolates. Resistance genes tetM (3.22%), tetL 

(1.61%), ermA (14.29%), ermB (14.29%), ermC (33.3%), ermT (9.52%), ermY (4.76%), msrA 

(9.52%) and mphC (9.52%) were detected in low frequency among the isolates. Our results 
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showed a high frequency of S. aureus isolated from bovine mastitis in Brazil carrying mainly 

biofilm and hemolysin genes. Moreover, a wide variety of antimicrobial resistance genes that 

confers resistance to all classes of antimicrobial agents used in animals and human population 

were observed. These results highlight the pathogenic potential of S. aureus from cattle to 

cause severe disease in both humans and animals. 

Keywords: Staphylococci, intramammary infection, biofilm, icaAD, blaZ, mepA. 
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1. INTRODUCTION 

Bovine mastitis is one of the most common disease that affects the world dairy production, 

being responsible for decreasing quantity and quality of milk produced (Hogeveen and Van, 

2017; Keefe, 2012). Staphylococcus aureus is one of the main pathogens isolated from bovine 

mastitis and causes significant production and economic losses (Bobbo et al., 2017; Rollin et 

al., 2015) in different parts of the worlds where dairy farming is expressive. In Brazil several 

studies have showed the importance of S. aureus in the epidemiology of mastitis in cattle 

(Brito et al., 1999; Costa et al., 2013; Mello et al., 2016; Silva et al., 2014). 

The S. aureus ability to cause infections and the severity the diseases are related to the 

expression of various virulence factors, structures, products or mechanisms (Kot et al., 2016; 

Mello et al., 2016; Monistero et al., 2018), frequently acquired by mobile genetic elements 

(Lowy, 1998). It is well documented that S. aureus strains from mastitis can produce a wide 

variety of extracellular toxins, such as enterotoxin, encoded by sea, seb, sec, sed and see 

genes, toxic shock syndrome toxin 1 (tst), Panton–Valentine Leukocidin (PVL) (luk), α and β 

hemolysin (hla and hlb) (Iandolo, 1989; Kot et al., 2016), among others. The ability produce 

toxins by S. aureus strains from animal origin causes harm not only to the animals but also to 

public health, since some of these products, in addition to favoring the infection, are also 

thermostable and remain active even after thermal treatments used in milk (Asao et al., 2003; 

Sabini et al., 2001; Singh et al., 2014). 

Furthermore, the production of extracellular polymeric substances (EPS), among which 

highlights exopolysaccharide (slime), appears to play a crucial role in the infection, adhesion 

and colonization of the microorganism in the mammary glandular epithelium, promoting not 

only the formation of biofilm and its extracellular persistence, but also ensuring success in its 

installation and maintenance in the host tissues (Coelho et al., 2011; Saei, 2012). In fact, 

biofilm production in S. aureus strains isolated from mastitis, which is usually associated with 

the presence of icaA and icaD genes (Vasudevan et al., 2003), may be associated with 
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antimicrobial resistance (Cucarella et al., 2004). The mechanisms responsible for drug 

resistance include the physical and chemical diffusion barrier formed by the 

exopolysaccharide matrix, which make difficult the penetration of antimicrobials, besides 

creating microenvironments that antagonize the antibiotic (Costerton et al., 1999; Marques et 

al., 2017). 

Antimicrobial resistance is a major problem in animal and public health lately. Increase of 

drug resistance has been reported in Brazilian dairy farms and worldwide (Medeiros et al., 

2011; Mehli et al., 2017; Nobrega et al., 2018) among S. aureus strains. Staphylococci of 

animal origin can harbor a wide variety of resistance genes that confer resistance to almost all 

classes of antimicrobial agents approved for use in animals. Antimicrobial resistance genes 

(ARG) commonly reported in Staphylococcus isolated from cattle are mainly mecA and blaZ 

(β-lactams resistance), tetK, tetL and tetM, (tetracycline resistance), ermA, ermB, ermC, ermT, 

ermY, msrA, mphC [macrolide, lincosamide, streptogramin B (MLSB) and macrolide 

phosphotransferase resistance], aac(6’)-Ie–aph(2’)-Ia [aminoglycoside modifying enzyme 

(AME)], mepA (fluoroquinolone resistance, efflux pumps) and grlA/grlB and gyrA/gyrB 

(fluoroquinolone resistance, mutation in topoisomerase IV and DNA gyrase) . Additionally, it 

has been set that carriers of ARG among staphylococci from animals, such as plasmid and 

transposon, play a key role in the transmission of resistance, because they facilitate the 

exchange of resistance genes with staphylococci from human origin and with other Gram-

positive bacteria. This is extremely important because it can increase the risk of antimicrobial 

resistance transmission from animals to humans (Juhász-Kaszanyitzky et al., 2007). 

From the animal and public health point of view, it is essential to define which 

microorganisms are involved in the etiology of bovine mastitis and their potential to cause 

severe infections, in order to adopt appropriate hygienic measures and a rigorous monitoring 

program. Therefore, the aims of this study were to evaluate virulence factors and genetic 
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mechanisms of drug resistance in S. aureus isolated from bovine mastitis in Brazil, as well as 

to verify the association of among these characteristics and the year of isolation and 

geographic origin of the strains. 

2. MATERIALS AND METHODS 

Bacterial strains and culture conditions 

A total of 400 S. aureus strains isolated from cows with mastitis were used in the present 

study. These were representative strains selected from the Collection of Microorganisms of 

Agribusiness Interest from Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Gado de 

Leite (Brazilian Agricultural Research Corporation – Dairy Cattle), selected between 1994 

and 2016 isolated from different Brazilian states. The distribution of the isolates per year and 

state are shown in the Figure 1. The determination of the antimicrobial susceptibility profile 

(cefoxitin, oxacillin, ampicillin, enrofloxacin, ciprofloxacin, cephalothin, ceftiofur, 

amoxicillin + clavulanic acid, erythromycin, neomycin, gentamicin, tetracycline, 

sulfamethoxazole + trimethoprim, penicillin-novobiocin, ampicillin-colistin) of the strains 

was previously performed by Abreu (2016) and is shown in the Supplemental Table S1. 

Strains were reactivated by incubation on Brain Heart Infusion (BHI) agar (Difco, USA) at 

37° C for 24 hours in aerobic conditions. Bacterial mass was inoculated in phosphate buffered 

saline (PBS) (0.01 M pH 7.4) for DNA extraction and in BHI broth (Difco, USA) + 20% 

glycerol and stored at -80 °C to preserve the isolate. 
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Figure 1. Distribution of Staphylococcus aureus isolated from bovine mastitis in Brazil, 

according to year of isolation and state. 

Isolation of DNA  

The extraction of the genomic DNA was performed according to Pitcher et al. (1989). The 

quantity and quality of the extracted DNA was assessed by spectrophotometry using 

NanoVue™ Spectrophotometer (GE Healthcare, USA) according to described by Russell and 

Sambrook (2001). DNA samples were kept at −20°C until the analysis. 

Identification of S. aureus 

All strains were confirmed as S. aureus by amplification of the conserved thermonuclease 

gene (nuc) using the primers described in Table 1. The PCR conditions used were as 

described by Cremonesi et al. (2005), with some modifications in the cycle (annealing for 30 s 

and extension at 72 °C for 30 s). 

Phenotypic detection of biofilm-forming  

For the phenotype identification of biofilm-forming strains, 4 colonies of each strain were 

inoculated in trypticase broth (TSB) (Difco, USA) supplemented with Red Congo (0.8 g / L) 

and sucrose (36 g / L) and incubated for 48 hours at 37 °C, as described by Lee et al. (2016). 
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S. aureus ATCC 51651 and Staphylococcus chromogenes, isolated from bovine mastitis 

(Custódio, 2019), were used as positive and negative controls in all assays, respectively. 

Detection of virulence genes 

Detection of icaAD gene was carried out according to previously described by Sun et al. 

(2003). Identification of the enterotoxin genes sea, seb, sec, sed and see was performed as 

described by Mehrotra et al. (2000), with minor modifications (2.5 mM MgCl2). The presence 

of hemolysin genes hla and hlb was investigated by multiplex PCR according to Jarraud et al. 

(2002). 

Multiplex PCR for detection of toxic shock syndrome toxin (TSST-1) and femA was 

performed as described by Mehrotra et al. (2000), using the following thermal cycle: initial 

denaturation at 94 °C for 5 min, followed by 30 cycles of denaturation at 94 °C for 1 min, 

annealing at 57 °C for 1 min, and extension at 72 °C for 1 min, ending with a final extension 

at 72 °C for 7 min. 

The identification of the Panton-Valentine Leukocidin (PVL) gene was performed by 

singleplex PCR according to Lina et al. (1999), using following thermal cycle: initial 

denaturation at 94 °C for 5 min, followed by 30 cycles of denaturation at 94 °C for 1 min, 

annealing at 62 °C for 1 min, and extension at 72 °C for 1 min, ending with a final extension 

at 72 °C for 7 min.  

All reagents of the PCR mix without DNA was routinely used in each assay, as negative 

control. Positive controls and primers used are described in Table 1. 
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Table 1. Virulence genes investigated in Staphylococcus aureus isolated from bovine mastitis in this study. 

Target Gene Primer sequence (5’ to 3’) 

Annealing 

temperature 

(°C) 

Amplicon 

size (bp)1 

Positive 

control 

(ATCC)2 

Reference 

Thermostable 

Nuclease (S. aureus 

species-specific) 

nuc 
F AGT TCA GCA AAT GCA TCA CA 

R TAG CCA AGC CTT GAC GAA CT 

56 

400 25923 Cremonesi et al. 2005 

Staphylococcal 

Enterotoxin A 
sea 

F GGTTATCAATGTGCGGGTGG 

R CGGCACTTTTTTCTCTTCGG 

57 
102 13565 Mehrotra et al., 2000 

Staphylococcal 

Enterotoxin B 
seb 

F GTATGGTGGTGTAACTGAGC 

R CCAAATAGTGACGAGTTAGG 

57 
164 14458 Mehrotra et al., 2000 

Staphylococcal 

Enterotoxin C 
sec 

F AGATGAAGTAGTTGATGTGTATGG 

R CACACTTTTAGAATCAACCG 

57 
451 19095 Mehrotra et al., 2000 

Staphylococcal 

Enterotoxin D 
sed 

F CCAATAATAGGAGAAAATAAAAG 

R ATTGGTATTTTTTTTCGTTC 

57 
278 23235 Mehrotra et al., 2000 

Staphylococcal 

Enterotoxin E 
see 

F AGGTTTTTTCACAGGTCATCC 

R CTTTTTTTTCTTCGGTCAATC 

57 
209 27644 Mehrotra et al., 2000 

Resistance to 

methicillin 
femA 

F AAAAAAGCACATAACAAGCG 

R GATAAAGAAGAAACCAGCAG 

57 
132 25923 Mehrotra et al., 2000 

Toxic shock 

syndrome toxin 1 
tst 

F ACCCCTGTTCCCTTATCATC 

R TTTTCAGTATTTGTAACGCC 

57 
326 33586 Mehrotra et al., 2000 

Panton–Valentine 

Leukocidin (PVL) 
luk 

F ATCATTAGGTAAAATGTCTGGACATGATCCA 

R GCATCAASTGTATTGGATAGCAAAAGC 

62 
433 25923 Lina et al. 1999b 

α-Hemolysin hla 
F CTGATTACTATCCAAGAAATTCGATTG 

R CTTTCCAGCCTACTTTTTTATCAGT 

53 
209 8096 Jarraud et al. 2002 

β -Hemolysin hlb 
F GTGCACTTACTGACAATAGTGC 

R GTTGATGAGTAGCTACCTTCAGT 

53 
309 13565 Jarraud et al. 2002 

Biofilm icaAD 
F CCTAACTAACGAAAGGTAGG 

R TTAGCGTTGGGTATTCCCTC 

58 
1266 51651 Sun et al.2009 

1Base pairs (bp); 2American Type Culture Collection (ATCC). 
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Detection of antimicrobial resistance genes 

Strains described as resistant, according to the phenotype showed previously (Abreu, 2016) 

were screened for the presence of the following genes. Detection of gene blaZ (β -lactams) 

and tetracycline genes tetK, tetM, tetL was carried out according to Schnellmann et al. (2006) 

and Aarestrup et al. (2000), respectively. The PCR thermal cycle was: initial denaturation at 

94 °C for 5 min, followed by 35 cycles of denaturation at 94 °C for 1 min, annealing 

temperature according to each gene described in Table 2, and extension at 72 °C for 1 min, 

ending with a final extension at 72 °C for 10 min.  

Macrolide resistance genes ermA, erm B and ermC, was performed according Sutcliffe et al. 

(1996). The thermal cycle for genes ermA and ermC was: initial denaturation at 95 °C for 5 

min, followed by 30 cycles of denaturation at 95 °C for 30 seconds, annealing at 52 °C for 45 

seconds, and extension at 72 °C for 2 min, ending with a final extension at 72 °C for 7 min. 

For gene ermB, initial denaturation at 93 °C for 3 min, followed by 35 cycles of denaturation 

at 93 °C for 1 min, annealing at 51 °C for 1 min, and extension at 72 °C for 1 min, ending 

with a final extension at 72 °C for 5 min. Macrolide/lincosamide/streptogramin B (MLSB) 

genes ermT and ermY, was performed as described by Gómez-Sanz et al. (2010). The PCR 

conditions were: initial denaturation at 94 °C for 3 min, followed by 30 cycles of denaturation 

at 94 °C for 1 min, annealing temperature according to each gene described in Table 2, and 

extension at 72 °C for 1 min, ending with a final extension at 72 °C for 5 min. Macrolide 

resistance gene msrA, was carried out according to Lina et al. (1999). The PCR thermal cycle 

was: initial denaturation at 94 °C for 5 min, followed by 25 cycles of denaturation at 94 °C for 

1 min, annealing at 50 °C for 1 min, and extension at 72 °C for 1 min 30 seconds, ending with 

a final extension at 72 °C for 7 min. Macrolide resistance gene mphC was performed was 

mentioned by Schnellmann et al. (2006). PCR thermal conditions was: initial denaturation at 
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94 °C for 3 min, followed by 30 cycles of denaturation at 94 °C for 1 min, annealing at 45 °C 

for 1 min, and extension at 72 °C for 1 min, ending with a final extension at 72 °C for 5 min.  

The aminoglycoside resistance gene aac(6’) -Ie–aph(2’)-Ia was performed according to 

Vakulenko et al. (2003). Fluoroquinolone resistance genes mepA, grlA and gyrA was 

developed as described by Couto et al. (2008) and Pan et al. (2002). Only strains resistant to a 

given class were tested for the corresponding resistance gene. Multidrug resistance was 

defined as resistance to three or more antimicrobial groups (Magiorakos et al., 2012). The 

antimicrobial groups were defined according to Clinical and Laboratory Standards Institute 

(CLSI) M100 manual (28th ed.). PCR singleplex was developed for each gene. All reagents 

of the PCR mix without DNA were routinely used in each assay, as negative control. Positive 

controls and primers used are described in Table 2. 
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Table 2. Antimicrobial resistance genes investigated in resistant Staphylococcus aureus isolated from bovine mastitis in this study. 

Target Gene Primer sequence (5’ to 3’) 

Annealing 

temperature 

(°C) 

Amplicon 

size (bp)1 

Positive 

control2 
Reference 

β-Lactams resistance blaZ 
F CAGTTCACATGCCAAAGAG 

R TACACTCTTGGCGGTTTC 

45 
772 

#60 Schnellman

n et al. 2006 

Macrolide resistance - rRNA erm 

methylase 
erm(A) 

F TCTAAAAAGCATGTAAAAGAA 

R CTTCGATAGTTTATTAATATTAG 

52 
645 

#75, #76 #78 Sutcliffe et 

al. 1996 

Macrolide resistance - rRNA erm 

methylase 
erm(B) 

F GAAAAGTACTCAACCAAATA 

R AGTAACGGTACTTAAATTGTTTA 

51 
639 

#76, #60 Sutcliffe et 

al. 1996 

Macrolide resistance - rRNA erm 

methylase 
erm(C) 

F TCAAAACATAATATAGATAAA 

R GCTAATATTGTTTAAATCGTCAAT 

52 
642 

#184, #398 Sutcliffe et 

al. 1996 

Macrolide/lincosamide/streptogrami

n B (MLSB) resistance 
erm(T) 

F CCGCCATTGAAATAGATCCT  

R TTCTGTAGCTGTGCTTTCAAAAA 

50 

200 

#161 Gómez-

Sanz et al. 

2010 

Macrolide resistance - rRNA erm 

methylase 
erm(Y) 

F AGGCCCCTTTTAAAGACGAAGGCA 

R GGCGCGATTGTTCATTTTAAGGCCC 

59 

320 

#60 Gómez-

Sanz et al. 

2010 

Macrolide resistance - Efflux pump msr(A) 

F GGCACAATAAGAGTGTTTAAAGG 

R 

AAGTTATATCATGAATAGATTGTCCT

GTT 

50 

940 

#60, #352 

Lina et al. 

1999a 

Macrolide resistance - macrolide 

phosphotransferase 
mph(C) 

F ATGACTCGACATAATGAAAT 

R CTACTCTTTCATACCTAACTC 

45 
900 

#60, #352 Schnellman

n et al. 2006 

Tetracycline resistance (efflux pump) tet(L) 
F CATTTGGTCTTATTGGATCG  

R ATTACACTTCCGATTTCGG 

49 
456 

#240 Aarestrup et 

al. 2000 

Tetracycline resistance (efflux pump) tet(K) 
F TTAGGTGAAGGGTTAGGTCC 

R GCAAACTCATTCCAGAAGCA 

56 
697 

#184, #82 Aarestrup et 

al. 2000 

Tetracycline resistance (ribossomal 

protection) 
tet(M) 

F GTTAAATAGTGTTCTTGGAG 

R CTAAGATATGGCTCTAACAA 

55 
657 

#75, #78 Aarestrup et 

al. 2000 

Aminoglycosides resistance - 

aminoglycoside-modifying enzyme 

aac(6’) -Ie–

aph(2’)-Ia 

F CAGAGCCTTGGGAAGATGAAG 

R CCTCGTGTAATTCATGTTCTGGC 

55 
348 

#137, #386 Vakulenko 

et al. 2003 
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(AME) 

Fluoroquinolone resistance (efflux 

pump) 
mepA 

F ATGTTGCTGCTGCTCTGTTC  

R TCAACTGTCAAACGATCACG 

53 
718 

ATCC3 

33591 

Couto et al. 

2008 
1Base pairs (bp); 2# strains used as positive controls were from the collection of Laboratório de Bacteriologia, Departamento de Medicina 

Veterinária, Universidade Federal de Lavras; 3American Type Culture Collection (ATCC). 
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Agarose gel electrophoresis for PCR products 

Visualization of the amplified products of all PCR reactions was performed in 1.0% agarose 

gel in tris-borate-EDTA buffer (TBE) (89 mM Tris Base, 89 mM boric acid and 2 mM EDTA 

pH 8.0) and stained with ethidium bromide (0.5 mg / mL). Following electrophoresis, the gels 

were visualized under ultraviolet light and photographed (L-PIX EX, Loccus Biotechnology, 

Brazil). The molecular weight marker 100 bp DNA ladder (KASVI, Brazil) was used in each 

electrophoresis. 

Statistical analyzes 

Prevalence was obtained in cross tabulations and expressed in percentage. All associations 

between the variables were carried out by univariate analysis using chi-square or Fisher's 

exact tests, P < 0.05 was considered significant (Sampaio, 2002). All statistical analyzes were 

performed using GraphPad Prism 5.0 (GraphPad Software, USA). 

3. RESULTS 

All strains were confirmed by PCR as S. aureus. 

Prevalence of biofilm-forming ability and biofilm associated genes 

Prevalence of positive isolates for biofilm-forming was 83.5% (334/400), while 16.5% 

(66/400) of the isolates maintained red color in the medium and were considered negative. 

PCR analysis for detection of the icaAD biofilm gene revealed that 98.5% (394/400) isolates 

harbored icaAD gene. Interestingly, 83.25% (333/400) of the isolates that phenotypically were 

biofilm-forming also exhibited icaAD gene, however 15.25% (61/394) did not produce 

biofilm but harbored these genes. A significant association between phenotype and genotype 

for biofilm was observed (P < 0.001) (-3). Moreover, it was also observed an association 

between biofilm-forming ability and year of isolation (P < 0.05) in the tested S. aureus strains 

(Table 3). The odds of the strain being a biofilm producer in the phenotypic test increased 

over the evaluated years. The years were grouped based on the cumulative distribution in 
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percentiles according to the number of isolates (25%, 50% and 75%) in the following periods 

1994-1998, 1999-2001, 2002-2004 and 2005-2016. 

Table 3. Association between biofilm-forming and the year of isolation and presence of 

icaAD gene among Staphylococcus aureus strains isolated from bovine mastitis in Brazil. 

Variable 
Biofilm-forming1 

P-value2 Odds Ratio  

(95% CI)3 Positive Negative 

Year   0.0244  

1994 to 1998 84/92 8/92  Base category 

1999 to 2001 91/106 15/106  1.73 (0.70 – 4.30) 

2002 to 2004 77/102 25/102  3.41 (1.45 – 8.01) 

2005 to 2016 82/100 18/100  2.30 (0.95 – 5.60) 

icaAD gene   0.0005  

Positive 333/394 61/394  Base category 

Negative 1/6 5/6  27.30 (3.13 – 237.71)  

1Phenotype; 2Chi-square test or Fisher's exact test; 3Confidence Interval  

Prevalence of virulence genes 

The Table 4 summarize the prevalence of the virulence genes investigated among the S 

aureus strains isolated from bovine mastitis. Among the genes associated with virulence, the 

most common in the studied population were those coding for α and β hemolysins. 

In order to analyze frequency of virulence genes according to the year of isolation, previous 

categorization (1994-1998, 1999-2001, 2002-2004 and 2005-2016) was used for the 

distribution of the isolates per year and the strains were also classified according to the 

number of virulence genes found as follows ≤ 1, 2, 3 and ≥ 4 genes. Most of the strains 

showed at least 3 virulence genes tested [77.0% (308/400)], being icaAD and hla the genes 

were the most prevalent among the tested isolates. Percentual distribution of S. aureus strains 

according to the number of virulence genes exhibited and the year of isolation is shown in the 

Figure 2. As a result, no pattern was observed for the presence of virulence genes over the 
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years among the isolates tested, although the percentage of strains that exhibited 3 virulence 

genes increased over the analyzed period. 

Table 4.  Prevalence of virulence factors genes in Staphylococcus aureus strains isolated from 

bovine mastitis in Brazil. 

Gene N° of isolates % 

Enterotoxins   

sea+ 0/400 0 

seb+ 2/400 0.5 

sec+ 4/400 1.0 

sed+ 1/400 0.25 

see+ None 0 

Toxic shock syndrome toxin – 1 (TSST)   

tst+ 3/400 0.74 

Hemolysin   

hla+hlb- 66/400 16.5 

hla-hlb+ 3/400 0.75 

hla+hlb+ 329/400 82.85 

hla-hlb- 2/400 0.5 

Panton–Valentine Leukocidin (PVL)   

luk+ 14/400 3.5 

Biofilm   

icaAD+ 394/400 98.5 

 

 

Figure 2. Percentual distribution of Staphylococcus aureus isolated from bovine mastitis in 

Brazil, according to the number of virulence genes exhibited (luk, hla, hlb, sea, seb, sec. sed, 

see, tst and icaAD) and the year of isolation. 
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Prevalence of antimicrobial resistance genes 

The prevalence of ARG among resistant S. aureus isolated from bovine mastitis in Brazil are 

showed in Table 5. The genes most frequently found among resistant S. aureus isolates (only 

strains resistant to a given class were tested for the corresponding resistance gene) were mepA 

(fluoroquinolone resistance), blaZ (β -lactam resistance), aac(6’)-Ie–aph(2’)-Ia 

(aminoglycosides resistance), tetK (tetracycline resistance) and ermC (macrolides resistance) 

(Table 5). 

Table 5. Prevalence of antimicrobial resistant genes (ARG) among resistant Staphylococcus 

aureus isolates from bovine mastitis in Brazil. 

Antimicrobial 

class 
Gene 

Number of 

resistant strains1 

Number of strains 

showing ARG2 (%) 

Penicillin blaZ 217 178 (82.03) 

Tetracyclines tetK 62 21 (33.87) 

 tetL 62 1 (1.61) 

 tetM 62 2 (3.22) 

Macrolides ermA 21 3 (14.29) 

 ermB 21 3 (14.29) 

 ermC 21 7 (33.30) 

 ermT 21 2 (9.52) 

 ermY 21  1 (4.76) 

 msrA 21 2 (9.52) 

 mphC 21 2 (9.52) 

Aminoglycosides aac(6’)-Ie–aph(2’)-

Ia 

13 6 (45.15) 

Quinolones mepA 7 7 (100) 
1Strains described as resistance by Abreu (2016); 2ARG -antimicrobial resistance genes. 

Association between virulence and antimicrobial resistance 

Combinations for the presence of virulence genes and ARG were observed, albeit not very 

common [2.5% (10/400)] (Table 6). Furthermore, evaluation of the distribution of the number 

of virulence genes according to the antimicrobial resistance profile revealed that most of the 

resistant strains exhibited at least 3 virulence genes (Figure 3). In addition, it was observed a 

significant association between biofilm-forming and resistance to penicillin (P = 0.002), 

having the penicillin resistance strains 2.44 (95% confidence interval; 1.38 - 4.34) times more 

chance to produce biofilm, compared to susceptible strains. 
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Table 6. Virulence factors and antimicrobial resistance genes (ARG) in Staphylococcus 

aureus isolates from bovine mastitis in Brazil. 

Genes N° of isolates 

hla+hlb+luk+icaAD+blaZ+ 5 

hlb+seb+icaAD+blaZ+ 2 

hla+luk+icaAD+tetK+ 1 

hla+hlb+luk+icaAD+ermB+ 1 

hla+hlb+luk+icaAD+tetK+blaZ+ 1 

 

 

Figure 3. Distribution of Staphylococcus aureus isolated from bovine mastitis in Brazil, 

according to the number of virulence genes exhibited (luk, hla, hlb, sea, seb, sec, sed, see, tst 

and icaAD) and the antimicrobial resistance profile. 

4. DISCUSSION 

A further understanding of the potential for damage of S. aureus isolates from cattle is of 

great importance for animal and human health, since this agent is considered one of the main 

pathogens causing food poisoning (Cretenet et al., 2011) and main agent responsible for the 

contagious mastitis worldwide (Hogeveen and Van, 2017). In the present study, we 

investigated some of the major virulence factors and genetic mechanisms of antimicrobial 
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resistance in S. aureus strains isolated from bovine mastitis and found that Brazilian 

staphylococci of animal origin have a great potential to cause severe infections. 

Biofilm formation and maturation is mediated by synthesis of polysaccharide intercellular 

adhesin (PIA), also known as polymeric N-acetyl-glucosamine (PNAG), which is encoded by 

the icaADBC operon (Foster et al., 2014). There are several methods for the identification of 

biofilm-forming bacterial strains. In this study, the strains were tested using the Congo red 

TSB broth supplemented with sucrose as proposed by Lee et al. (2016) and investigated for 

the presence of icaAD gene, as this gene is commonly detected in biofilm-forming S. aureus 

strains isolated from bovine mastitis. Moreover, also the coexpression of icaA and icaD 

appears to lead a significant increase in enzymatic activity, being related to phenotypic 

expression of the capsular polysaccharide (Felipe et al., 2017; Foster et al., 2014; Gerke et al., 

1998). 

 In the present study, a high frequency (83.25%) of biofilm-forming strains that also harbored 

the icaAD gene was observed. High frequency of icaA and icaD genes in S. aureus isolates 

from bovine mastitis were also reported in similar studies (Castelani et al., 2015; Li et al., 

2012; Vasudevan et al., 2003). As expected, a positive association was observed between 

phenotype and genotype for ability to form biofilm. Thus, these results reveal that icaAD gene 

may be crucial biofilm associated genes since this gene was present in biofilm-positive 

strains. Although in this study was detected a presence of icaAD gene in non-biofilm-forming 

strains (15.25%), this could be because ica expression can be regulated by multiple accessory 

regulators (Li et al., 2012). Besides, in this study was observed, in low frequency, the 

expression of biofilm by strains that did not carry icaAD gene, the reason could be because 

the existence of other ica-independent biofilm formation mechanisms (Cucarella et al., 2004; 

Figueiredo et al., 2017; Mootz et al., 2015). According to Cucarella et al. (2004), biofilm 

production by microorganisms isolated from mastitis is associated with antimicrobial 
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resistance, since presence of exopolysaccharide matrix precludes the antimicrobial 

penetration. For this reason, association between the biofilm-forming ability and the 

antimicrobial susceptibility profile (Abreu, 2016) was investigated, being observed that 

penicillin resistant strains had 2.44 (95% CI: 1.38-4.34) times more chance to produce biofilm 

compared to susceptible strains. Indeed, β-lactams, especially penicillin, are widely used to 

intramammary treatment of bovine mastitis and the strains of the studied population exhibited 

a high level of resistance to this drug. Furthermore, it was also observed a significant 

association between biofilm production and year of isolation (P = 0.02), which could be 

partially explained considering the acceleration of the process of natural selection of 

antimicrobial resistance due the extensive use of these drugs in animal production. 

In addition to issues related to drug resistance, S. aureus is also a pathogen of great 

importance in public health due to its ability to produce a wide variety of enterotoxins, 

frequently involved in foodborne diseases outbreaks (Cretenet et al., 2011). The majority 

(95%) of food poisoning cases are caused by exotoxins sea, seb, sec, sed and see (Hennekinne 

et al., 2010), however, in this study, the presence of enterotoxins genes was observed in low 

frequency among the S. aureus strains isolates from bovine mastitis (Table 4). Similarly, other 

studies conducted in Turkey and Brazil also found low frequency or absence of sec gene in S. 

aureus isolated from cattle (Boynukara et al., 2008; Rall et al., 2014). In contrast, Rall et al. 

(2008) in Brazil, detected a prevalence of 20.5% for this gene, similar frequencies of 15.5% 

and 16.1% were also observed by Akineden et al. (2001) and Cremonesi et al. (2005), in 

Germany and Italy respectively in S. aureus from bovine milk. Regard to the seb and sed 

genes, the results observed in the present study are corroborated by other findings, since 

frequency of these genes seems to appear low in Staphylococcus spp. or were not observed 

(Wang et al., 2009, Ruaro et al., 2013, Liu et al., 2014). Likewise, in present study sea neither 

see genes were detected, similar to the results found by Yang et al. (2012) that did not observe 
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any sea positive S. aureus (n=39) strain among isolates from bovine clinical mastitis in China. 

However, the enterotoxin gene sea was the most frequent detected in Brazil (41%) and 

Turkey (23.6%) in S. aureus isolated from bovine milk, respectively (Boynukara et al., 2008; 

Rall et al., 2008). 

Another important virulence factor related to the production of toxins, the tst gene, which 

encodes toxic shock syndrome toxin-1, was detected a low frequency (0.74%), as well as 

observed in China (2.6%) and Poland (2.4%) for S. aureus isolates from bovine mastitis (Kot 

et al., 2016; Yang et al., 2012). Nonetheless, it is interesting to note that, two tst positive 

strains identified also exhibited the sec gene. A comparable relationship between presence of 

these two genes has been reported in the literature (Fitzgerald et al., 2000; Stephan et al., 

2001). The presence of tst and sec, has been identified as part of the bovine S. aureus 

pathogenicity island SAPIbov (Haenni et al., 2010). Both toxins can exhibit various biological 

activities and act as superantigens for cells of the bovine immune system, contributing to the 

pathological mechanisms of bovine mastitis (Yokomizo et al., 1995), especially in peracute 

mastitis (Zschöck et al., 2004). Moreover, considering that Staphylococcal enterotoxins (SEs) 

and TSST-1 can keep their biological and immunological activities even following 

pasteurization (Asao et al., 2003), the detection of strains able to produce both toxins in cow 

milk samples represents not only an issue for the dairy husbandry but also a threat to public 

health. 

Likewise, luk gene was exhibited by few isolates, which was expected since other studies, 

PVL gene was rarely detected in bovine isolates (Fluit, 2012; Shrivastava et al., 2018). 

Interestingly, 93% (13/14) of PVL-positive strains also harbored hla+hlb+icaAD+ genes. 

Despite the low prevalence among the studied S. aureus isolates, it is worth noting that PVL-

positive strains in bovine milk poses a potential public health risk to the community due to its 

characteristic of pore-forming toxins and its association with necrosis of skin and soft tissues. 
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Differently from that observed for genes encoding for SEs, TSST-1 and PVL, our findings for 

the presence of hemolysin genes (hla and hlb) revealed a large proportion (82.85%) of the 

tested isolates positive for both genes, which has also been reported by others (Silva et al., 

2005; Yang et al., 2012). In this sense, the community risk related to the detection of 

hemolysin genes in S. aureus from mastitis are even higher compared to the other toxins 

investigated in the present study, considering the expressive number of isolates carrying these 

genes and that the hemolysins, especially hlb, have relative stability against inactivation in 

high temperatures (thermostable below 90 °C for 30 minutes) (Singh et al., 2014). Moreover, 

the interaction between α and β hemolysins increase both, the adherence to bovine mammary 

epithelial cells and the proliferation of S. aureus (Cifrian et al., 1996). Only two isolates did 

not harbor α and β hemolysin genes, probably because carried other hemolysin gene or none 

(Aarestrup et al., 1999). 

Considering that there is a strong association between virulence and antimicrobial resistance 

genes, whether for the importance in public and animal health or because of common 

mechanisms of dissemination and co-selection, this study was analyzed the distribution of 

ARG among S. aureus isolated from bovine mastitis in Brazil. The blaZ gene, screened 

among β-lactams resistant strains (ampicillin, amoxicillin+clavulanic acid, penicillin-

novobiocin, ceftiofur), was the main genetic mechanism of resistance observed for this 

antimicrobial class, in contrast to mecA gene, which was previously tested in all isolates of the 

present study that were all negative (Abreu, 2016). In fact, resistance to β-lactams are 

principally conferred by mecA and blaZ genes, and the importance of detecting mecA gene in 

S. aureus isolated from bovine mastitis is because its presence implies resistance to almost all 

β-lactams agents. Furthermore, detecting blaZ and, especially, mecA is also important because 

it will help to determine strategies for treatment, control and prevention of dissemination of 

resistance between animals and humans (Becker et al., 2013; Wielders et al., 2001). High 
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prevalence of blaZ among S. aureus isolated from animal origin has also been reported by 

studies conducted in China and Brazil (Marques et al., 2017; Qu et al., 2019). Additionally, in 

the present study for an expressive proportion of the isolates [39/217 (18%)] neither mecA nor 

blaZ were detected, thereby further studies are need in order to identify the genetic 

determinate of resistance for theses isolates that were phenotypically β-lactams resistant. 

Recently mecC gene has also emerged as an important mechanism of resistance to this group 

among S. aureus from mastitis (García-Álvarez et al., 2011). 

For tetracycline resistant S. aureus (tetracycline) the principal gene found was tetK, followed 

by tetM and tetL, as well as observed in a study conducted by Martini et al. (2017) in S. 

aureus isolated from bovine mastitis in Brazil. The detection of these genes in S. aureus from 

animal origin has a critical importance in public health, since these genes are in mobile 

genetic elements, as small plasmids or conjugative transposons, which help to spread several 

resistance genes and consequently can lead treatment failure in both veterinary and human 

medicine (Huys et al., 2005). In this context, resistance to macrolides (such as erythromycin) 

and lincosamide (such as lincomycin and clindamycin), antimicrobials widely used in the 

treatment of staphylococcal infections, are also predominant among staphylococci (Chang et 

al., 1995; Sanchez et al., 1993). The investigation of macrolides, lincosamide and 

streptogramin B (MLSB) resistance genes (erm, msrA and mphC) revealed that most of the 

isolates resistant to macrolides (erythromycin) carried the gene ermC, as well as observed by 

LI et al. (2015) that found ermC as the most prevalent resistance gene in S. aureus isolates. 

Likewise, the low frequency of ermA and ermB genes observed in the present study has also 

been reported elsewhere (Qu et al., 2019), showing that these genes are not commonly 

detected in S. aureus from bovine mastitis. The other genes related to macrolides resistance 

(ermT, msrA and mphC) were found in a lower frequency, suggesting a possible less 

importance of these mechanisms in the resistance to this class in S. aureus from animal origin. 
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It has been mentioned that mphC often occurs linked to msrA and that the presence of mphC 

gene alone confers low-level resistance to macrolides (Lüthje and Schwarz, 2006). In the 

present study, was found two isolates harboring msrA and mphC and one of them associated 

to ermY, blaZ, ermB genes.  

Although aminoglycosides are widely used in Brazil for mastitis treatment (Martins et al., 

2016), few studies are focused on the identification of mechanism of resistance against this 

class.  

In this study, among aminoglycoside resistance genes, aac(6’)-Ie–aph(2’)-Ia (also known as 

aacA-aphD) was detected in 45.15% of S. aureus isolates. Similar studies have reported a 

high prevalence of aac(6’)-Ie–aph(2’)-Ia in S. aureus isolated from mastitis (Goni et al., 

2004; Qu et al., 2019; Schnellmann et al., 2006; Wendlandt et al., 2013). In contrast, a study 

conducted in S. aureus strains from bovine mastitis in Turkey detected the gene aph (3′)-IIIa 

as the most prevalent (Turutoglu et al., 2009). Thus, difference of aminoglycosides resistance 

genes can be attributed to the difference among S. aureus isolates from different geographical 

regions. 

For fluroquinolones, in general, two important mechanisms are responsible for resistance in S. 

aureus. The first one is attributed to mutations occurring in the quinolone-resistance 

determining region (QRDR) of grlA / grlB (topoisomerase IV) and gyrA / gyrB (DNA 

gyrase), which decrease the affinity of the drug (Ng et al., 1996; Takahata et al., 1996). 

Nonetheless, fluoroquinolone resistance can also be mediated by drug efflux, a mechanism 

that is less well characterized. Several efflux pumps have been described in S. aureus, 

including norA, norB, norC, mdeA, mepA, sepA and sdrM genes (Poole, 2007). In this study, 

it was identified by the first-time fluoroquinolone resistance gene mepA in all isolates of S. 

aureus from bovine mastitis that were phenotypically resistance or intermediate susceptible to 

ciprofloxacin or enrofloxacin. Four isolates also carried blaZ and mepA genes. The 
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importance of the detection of the mepA gene among bovine mastitis S. aureus goes beyond 

resistance to fluoroquinolones, as this gene also confers resistance to a wide range of 

compounds, including various dyes and biocides (Correia et al., 2017; Kaatz et al., 2005), 

such as iodine, quaternary ammonium and chlorhexidine, widely used in cows post dipping. A 

recent study in China, detected a high frequency of genes norA, gyrA, grlA in S. aureus 

isolated from bovine mastitis (LI et al., 2015). However more studies are necessary in order to 

know the actual profile of fluoroquinolone resistance among S. aureus from animal origin. 

5. CONCLUSIONS 

Our results showed that S. aureus strains isolated from bovine mastitis in Brazil carried 

mainly biofilm and hemolysin genes, whereas, virulence genes associated with enterotoxins, 

PVL and TSST-1 were less frequently observed. Moreover, a wide variety of resistance genes 

that confer resistance to almost all classes of antimicrobial agents approved for use in animals 

and in human population were found. Together these data point to the great pathogenic 

potential of staphylococcal infections caused by S. aureus of animal origin. 
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8. APPENDIX  

Table 7. Supplemental Table S1. Antimicrobial susceptibility profile of Staphylococcus aureus isolated from bovine mastitis from Minas Gerais, 

Rio de Janeiro, São Paulo and Goiás from 1994 to 2016. Source: ABREU (2016). 

OXA AMP CFL CFO CTF AMC PNM AMC45 ENO CIP ERI NEO GEN TET SUT N° of 

isolates 

S S S S S S S S S S S S S S S 165 

S R S S S S S S  S S S S S S S 145 

S R S S S S S S S S S S S R S 36 

S R S S S S S S S S S S S I S 7 

S S S S S S S S S S I S S S S 5 

S R S S S S S S S S R S S S S 4 

S S S S S S S S S S S S S I S 3 

S S S S S S S S S S S S S R S 3 

S R S S S S I S S S S S S S S 3 

S R S S S S S S S S R R S R S 3 

S R S S S S S S S S R S S R S 3 

S S S S S S S S I S S S S S S 2 

S R S S S S S S S S S I R R S 2 

S S S S I S S S S S S S S S S 1 

S S S S S S S S S S R S S S S 1 

S S S S S S S S S S S S S S I 1 

S R S S S S S S S I S S S S S 1 

S R S S S S S S S R S S S S S 1 

S R S S S S S S S S S S S S I 1 

S R S S S S S S S S S I S I S 1 

S R S S S S S S I S S S S R S 1 
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S: susceptibility, I: intermediate, R: resistance 

CFL, cephalothin; CFO, cefoxitin; OXA, oxacillin; AMC:  amoxicillin–clavulanic acid; AMP, ampicillin; ENO, enrofloxacin, CIP, 

ciprofloxacin; CTF, ceftiofur; AMC45, ampicillin-colistin; ERI, erythromycin; NEO, neomycin; GEN, gentamicin; TET, tetracycline; SUT, 

sulfamethoxazole–trimethoprim. 

S R S S S S I S S S S S S R S 1 

S R S S S S S S S S S S R R S 1 

S S S S S S S S S S R S S R S 1 

S R S S S S S S S S S I S S S 1 

S R S S S S S S S S S I R S S 1 

S R S S S S S S S S I S S I S 1 

S R S S S S S S S S I R S S S 1 

S R S S S S S S I S R S S S S 1 

S R S S S R S S S I I I S S S 1 

S S S S S S S S S S S I R S S 1 

S S S S S S S S S S I I R S S 1 
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