
i
i

“A1˙972” — 2018/5/3 — 16:50 — page 1 — #1 i
i

i
i

i
i

Tema
Tendências em Matemática Aplicada e Computacional, 19, N. 1 (2018), 1-13
© 2018 Sociedade Brasileira de Matemática Aplicada e Computacional
www.scielo.br/tema
doi: 10.5540/tema.2018.019.01.0001

A Novel Approach to Find Pseudo–peripheral Vertices for Snay’s Heuristic

S.L. GONZAGA DE OLIVEIRA* and J.A.B. BERNARDES

Received on November 17, 2016 / Accepted on November 16, 2017

ABSTRACT. The solution of linear systems represented by Ax = b is fundamental in many numerical
simulations in science and engineering. Reducing the profile of A can reduce the storage requirements and
time processing costs of solving such linear systems. In this work, we propose a generalized algorithm for
finding pseudo–peripheral vertices for Snay’s heuristic. In experiment performed on 36 instances contained
in the Harwell-Boeing and SuiteSparse matrix collections, it has been found that the number of pseudo–
peripheral vertices selected in Snay’s heuristic may be suitable for small instances, but it is insufficient to
obtain reasonable results in instances that are not small. This paper recommends to select up to 26% (0.3%)
of pseudo–peripheral vertices in relation to the instance size when applied to instances smaller than 3,000
(larger than 20,000) vertices.

Keywords: Profile reduction, sparse matrix, reordering algorithms.

1 INTRODUCTION

Several real-world problems reduce into a linear system in the form Ax = b, where A is an n×n
large-scale sparse matrix, x is the unknown n-vector solution which is sough, and b is a known
n-vector. Thus, the resolution of large sparse linear systems in this form is crucial in various engi-
neering and science applications. It is normally the part of the simulation that requires the highest
processing cost. If the coefficient matrix A is dense, users employ a direct method (e.g., Gaus-
sian Elimination, LU factorization, Cholesky factorization, etc.) to solve the linear system. On
the other hand, in practice A occurs to be sparse, symmetric, and positive definite, e.g., the ones
arising from the discretization of elliptic or parabolic partial differential equations [1]. Reducing
the profile of a sparse symmetric matrix A can benefit the storage requirements and processing
times to solve the linear system.

Let A = [ai j] be an n× n symmetric matrix associated with a connected undirected graph G =

(V,E), where V and E are sets of vertices and edges, respectively. The profile of a matrix A is

defined as pro f ile(A) = ∑
n
i=1

(
i− min

1≤ j<i
(j | ai j 6= 0)

)
[13]. Equivalently, the profile of G for a

vertex labeling S = {s(v1),s(v2), · · · ,s(v|V |)} (i.e. a bijective mapping s : V → {1,2, · · · , |V |}) is

*Corresponding author: Sanderson L. Gonzaga de Oliveira – E-mail: sanderson@dcc.ufla.br.
Universidade Federal de Lavras, Brasil. E-mail: jrassis@posgrad.ufla.br

i
i

“A1˙972” — 2018/5/3 — 16:50 — page 2 — #2 i
i

i
i

i
i

2 A NOVEL APPROACH TO FIND PSEUDO–PERIPHERAL VERTICES FOR SNAY’S HEURISTIC

defined as pro f ile(G) = ∑v∈V max
{v,u}∈E

[|s(v)− s(u)|], where s(v) and s(u) are labels of vertices v

and u, respectively. Then, vertices v,u ∈ V with labels s(v) = i and s(u) = j are associated with
lines i and j of A, respectively. Therefore, aii 6= 0, ai j 6= 0⇔{v,u} ∈ E, and ai j = 0⇔{v,u} /∈ E.
The profile minimization problem is NP-hard [17] and several heuristics for profile reduction
have been proposed since the 1960s [4].

A systematic review [4] reported Snay’s heuristic [19] as one of the most promising heuristics
for profile reduction with low computational costs. This algorithm is an example of heuristics
known as level set reorderings, where the vertices in a graph are labeled taking into account that
the vertices are firstly partitioned into level sets, that is, the vertices are partitioned in relation
to the distance from a given starting vertex. Thus, this starting vertex plays an important role in
this context. In general, the quality of the results will be profoundly affected by the choice of the
starting vertex and by the ordering of the vertices within level sets.

In Snay’s heuristic, an initial step selects 10 pseudo–peripheral vertices as starting vertices of the
graph labeling. The objective of this work is to identify the number of pseudo–peripheral vertices
that Snay’s heuristic must select to obtain the smallest profile of the instance, considering the pro-
file that can be achieved by the heuristic, and also taking into account the computational times
of the heuristic during this process. This paper is a revised and expanded version of a paper pre-
sented at the XXXVI Brazilian National Congress in Applied and Computational Mathematics
(CNMAC 2016) [10].

The remainder of this manuscript is organized as follows. Section 2 outlines the new algorithm
for finding pseudo–peripheral vertices for Snay’s heuristic. Section 3 presents and analyzes the
results. Finally, Section 4 provides the conclusions.

2 A NEW ALGORITHM FOR FINDING PSEUDO–PERIPHERAL VERTICES

Snay’s heuristic [19] is composed of two main steps. The first step is a heuristic algorithm that
determines a starting vertex s for the graph labeling. The second step then labels the vertices,
beginning from s, and chooses the next vertex to be labeled from a set of eligible vertices by
means of a modified breadth-first search (BFS) procedure. In short, given a connected graph
G = (V,E) and a starting vertex v ∈ V , the breadth-first search procedure traverses the graph
vertices in ascending-distance order from v, where distance is a single path with fewest edges
between two vertices.

In addition to vertices adjacent to vertices already labeled, Snay’s heuristic considers also as
candidate vertices to be labeled those vertices contained in the second level of vertices already
labeled. To choose the next vertex to be labeled, its priority function considers the current degree
of a vertex. Specifically, Snay’s heuristic sorts candidate vertices in ascending-degree order, con-
sidering only adjacencies to vertices that are neither labeled nor are adjacent to vertices already
labeled. Algorithm 1 [13] shows a pseudocode of Snay’s heuristic.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A1˙972” — 2018/5/3 — 16:50 — page 3 — #3 i
i

i
i

i
i

GONZAGA DE OLIVEIRA and BERNARDES 3

Algorithm 1: Second step of Snay’s heuristic.

Input: a connected graph G = (V,E); a starting vertex s ∈V ;
Output: a graph labeling L = {l1, l2, · · · , l|V |} for V (i.e. L is a bijective mapping from V

to the set {1,2, · · · , |V |}), where |V | is the cardinality of V ;
1 begin

// every vertex contains a status inactive
2 l1← s;
3 s.status← labeled;
4 H←∅;
5 C←∅;
6 for (i← 2; i≤ |V |; i← i+1) do
7 N← Ad j(G, li−1)− ({l1, l2, · · · , li−1}∪H), where

Ad j(G,u) = {w ∈V : {u,w} ∈ E};
8 (∀v ∈ N) v.status← hope f ul;
9 H← H ∪N;

10 C←C∪N;
11 foreach (u ∈ N) do
12 (∀v ∈ Ad j(G,u)−{l1, l2, · · · , li−1}) v.status← candidate;
13 C←C∪ (Ad j(G,u)−{l1, l2, · · · , li−1});
14 end
15 min←+∞;
16 v← /0;
17 foreach (w ∈C) do
18 wr← |Ad j(G,w)− ({l1, l2, · · · , li−1}∪H) |;
19 if (w ∈ H) then wr← wr−1 ;
20 if (wr < min) then
21 min← wr;
22 v← w;
23 end
24 end
25 li← v;
26 v.status← labeled;
27 H← H−{v};
28 C←C−{v};
29 end
30 return (L);
31 end

The starting vertex s is established with the first label in Snay’s heuristic (see line 2 in Algo-
rithm 1). H is a set composed of adjacent vertices to the vertices already labeled (i.e. the set
{l1, l2, ..., li−1}). N is a set composed of adjacent vertices to the last vertex labeled li−1 (except
vertices already labeled and vertices contained in the H set: see line 7). Every adjacent vertex
to the last vertex labeled li−1 is added to the H and C sets during iteration i (in lines 9 and 10,
respectively). C is a set composed of candidate vertices to be labeled: vertices contained in the
H set (see line 9) and adjacent vertices to vertices in H (see lines 11–14), i.e. adjacent vertices
to each vertex contained in the N set are also added to the C set. Therefore, H ⊆C. In addition,
let’s consider that each vertex is an object (i.e. in an object–oriented programming language)

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A1˙972” — 2018/5/3 — 16:50 — page 4 — #4 i
i

i
i

i
i

4 A NOVEL APPROACH TO FIND PSEUDO–PERIPHERAL VERTICES FOR SNAY’S HEURISTIC

that contains at least two attributes: the value r of adjacencies to vertices that neither have been
labeled nor belong to the C set, and a status attribute. This status attribute indicates if the vertex
was already labeled (see lines 3 and 26), if it belongs to the C−H (a candidate vertex) or H (a
hopeful vertex, according to Snay’s terminology [19]) sets, or if it has not been considered in the
algorithm yet (an inactive vertex).

The foreach loop in lines 17–24 selects a vertex with minimum degree (considering only vertices
that are neither labeled nor are adjacent to a vertex already labeled: see line 18) to be labeled
in line 25. This vertex is removed from the H and C sets in lines 27 and 28, respectively. Adja-
cent vertices to vertices already labeled (i.e ∀v ∈ H) have a higher priority than other candidate
vertices (see line 19). Finally, this algorithm returns a reordering of graph G = (V,E) in line 30.
This results in concentrating the lower and upper triangular parts of A [corresponding to a graph
G = (V,E)] towards its main diagonal. This is an efficient heuristic that reduces a profile of a
matrix A to a considerable extent at low cost [4].

Snay’s heuristic labels the vertices in a graph G = (V,E) starting with 10 pseudo–peripheral
vertices, i.e. 10 labelings are provided in this heuristic. More specifically, in the first step of
Snay’s heuristic [19], 10 pseudo–peripheral vertices are selected as starting vertices for each of
the 10 graph labelings obtained in the second step of the heuristic. The method for determining
the starting vertex proposed by Snay [19] consists of considering, starting from a random vertex
v ∈V , a set D composed of five vertices belonging to the last level of the level structure rooted at
v. Let G=(V,E) be a connected and simple graph. Given a vertex v∈V , the level structure rooted
at v, with depth `(v), is a partitioning L (v) = {L0(v),L1(v), . . . ,L`(v)(v)}, where L0(v) = {v},
Li(v) = Ad j(Li−1(v))−

⋃i−1
j=0 L j(v), for i = 1,2, 3, . . . , `(v) and Ad j(U) = {w ∈ V : (u ∈U ⊆

V) {u,w} ∈ E} returns the adjacent vertices to the argument [13].

Snay’s algorithm for finding pseudo–peripheral vertices also builds the set Q comprised of five
vertices belonging to L`(u)(u), where u ∈ D⊆ L`(v)(v). Thus, the D∪Q set contains the 10 start-
ing vertices of Snay’s heuristic [19]. Then, Snay’s heuristic [19] returns the graph labeling that
provides the smaller profile among the 10 graph labelings computed (see Algorithm 1).

As described, Snay’s algorithm returns 10 pseudo–peripheral vertices. This algorithm was gen-
eralized in this present work in order to receive the parameter ν so that this generalized Snay’s
algorithm for finding pseudo–peripheral vertices returns a set containing 2 ·ν vertices. Algorithm
2 shows a pseudo–code of this generalized algorithm. Algorithm 2 receives a graph G = (V,E)
and the value ν ∈ N∗ of pseudo–peripheral vertices to be selected for both D and Q sets. Algo-
rithm 2 returns a set of pseudo–peripheral vertices D∪Q. Therefore, Snay’s algorithm for finding
pseudo–peripheral vertices [19] is a special case of Algorithm 2, when setting ν = 5.

The condition in line 2 in Algorithm 2 ensures that |V | ≥ 2 ·ν . A random vertex is assigned to
the vertex v in line 3. In line 4, L (v) is built. The construction of the set D (Q) is started in line 5
(21). The variable k, initialized in line 7 (22), is used to ensure that |D|= |Q|= ν , since L`(v)(v)[
L`(u)(u)

]
may have less than ν vertices. The variable i, initialized in line 8 (23), is used in the

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A1˙972” — 2018/5/3 — 16:50 — page 5 — #5 i
i

i
i

i
i

GONZAGA DE OLIVEIRA and BERNARDES 5

Algorithm 2: GeneralizedPseudoPeripheralVerticesSnay (pseudo–peripheral vertices to
be employed in Snay’s heuristic).

Input: graph G = (V,E); value ν ∈ N∗ of pseudo–peripheral vertices to be selected in
both sets D and Q;

Output: a set of pseudo–peripheral vertices D∪Q, where |D∪Q|= 2 ·ν ;
1 begin
2 if (|V |< 2 ·ν) then return;
3 v← RandomVertex(V);
4 L (v)← BFS(v);
5 D←∅; // |D|= ν

6 u← /0; // u ∈ L`(v)(v)
7 k← 0;
8 i← 0;
9 while (i < ν) do

10 foreach (w ∈ L`(v)−k(v)) do
11 D← D∪{w};
12 i← i+1;
13 if (u = /0) then
14 u← w;
15 L (u)← BFS(u);
16 end

// go to line 17 if the condition is satisfied
17 if (i≥ ν) then break;
18 end
19 k← k+1;
20 end
21 Q←∅; // |Q|= ν

22 k← 0;
23 i← 0;
24 while (i < ν) do
25 foreach (w ∈ L`(u)−k(u)−D) do
26 Q← Q∪{w};
27 i← i+1;

// go to line 26 if the condition is satisfied
28 if (i≥ ν) then break;
29 end
30 k← k+1;
31 end
32 return D∪Q;
33 end

while loop in lines 9–20 (24–31), where ν vertices are inserted into D in line 11 (Q in line 26).
L (u) is built in line 15.

For clarity, Algorithm 2 shows two similar parts of pseudo–codes in lines 5–20 (to build the D
set) and 21–31 (to build the Q set). Finally, the algorithm returns the D∪Q set in line 32, where
|D∪Q|= 2 ·ν .

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A1˙972” — 2018/5/3 — 16:50 — page 6 — #6 i
i

i
i

i
i

6 A NOVEL APPROACH TO FIND PSEUDO–PERIPHERAL VERTICES FOR SNAY’S HEURISTIC

Algorithm 3 [13] evaluates the profile of the matrix corresponding to the graph G = (V,E) so
that the vertices in V are reordered according to Algorithm 1 (see line 7 in Algorithm 3) for
each pseudo–peripheral vertex returned in Algorithm 2 (see line 3 in Algorithm 3). Algorithm 3
receives a graph G = (V,E) and a value ν ∈ N∗, where 2 · ν pseudo–peripheral are selected in
Algorithm 2. Algorithm 3 returns a vertex labeling of the vertices contained in V .

Algorithm 3: Evaluates the profile of the matrix corresponding to the graph G = (V,E)
for each starting vertex selected in Algorithm 2.

Input: graph G = (V,E); value ν ∈ N∗;
Output: a vertex labeling S for V ;

1 begin
2 if (2 ·ν > |V |) then ν ← b|V |/2c;

// Algorithm 2
3 C← GeneralizedPseudoPeripheralVerticesSnay(G,ν);
4 small pro f ile←+∞;
5 best labeling←∅;
6 foreach (w ∈C) do
7 S← SnayHeuristic(G,w); // Algorithm 1
8 pro f ile←ComputePro f ile(G,S);
9 if (pro f ile < small pro f ile) then

10 small pro f ile← pro f ile;
11 best labeling← S;
12 end
13 end
14 return best labeling;
15 end

3 RESULTS AND ANALYSIS

Numerical simulations were performed in order to evaluate the relation between the number of
pseudo–peripheral vertices selected in the algorithm for finding pseudo–peripheral vertices (Al-
gorithm 2) and the profile achieved by Snay’s heuristic (Algorithm 1). To apply Snay’s heuristics
in asymmetric instances, the asymmetric matrix is added to its transpose matrix (i.e. A+AT), re-
sulting in a symmetric matrix. Subsequently, the heuristic is applied to the graph corresponding
to the matrix achieved and the vertex labeling obtained is used to label the original asymmet-
ric matrix. This is one of the simplest approach and one that presents the lowest storage and
processing costs among the approaches to transform an asymmetric matrix to a symmetric one.
Moreover, Snay’s heuristic is applied to each connected component of a disconnected graph.
Snay’s heuristic was implemented in the C++ programming language. Sections 3.1 and 3.2 show
simulations performed with instances contained in the Harwell-Boeing and SuiteSparse matrix
collections, respectively.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A1˙972” — 2018/5/3 — 16:50 — page 7 — #7 i
i

i
i

i
i

GONZAGA DE OLIVEIRA and BERNARDES 7

3.1 Experiments with instances contained in the Harwell-Boeing sparse matrix collection

This section shows results of Snay’s heuristic (in conjunction with the algorithms for finding
pseudo–peripheral vertices) applied to 11 instances (ranging from 39 to 2680 vertices) con-
tained in the Harwell-Boeing sparse matrix collection (http://math.nist.gov/MatrixMarket/data/-
Harwell-Boeing) [7]. The workstation used in the execution of the simulations with 11 instances
of the Harwell-Boeing sparse matrix collection contained an Intel® CoreTMi3-4005U (CPU
1.8GHz, 3MB Cache, 4GB of main memory DDR3 1333MHz, termed M1 machine; Intel; Santa
Clara, CA, United States).

A set of values for the input parameter ν (1≤ ν ≤ b|V |/2c) was assigned in Algorithm 3 for each
instance. Then, Algorithm 3 is applied to the corresponding instance and returns the smallest
profile found. Three sequential runs were performed for each instance.

Table 1 shows the name of the instances used, their size, and original profile (pro f ile0). This
table also shows the smallest ν set in Algorithm 2 to reach the smallest profile. Specifically,
Table 1 shows the results of Snay’s heuristic with pseudo–peripheral vertices given by two
algorithms when applied to 11 instances contained in the Harwell-Boeing sparse matrix col-
lection. In addition, this table shows the minimum value of ν used to reach the smallest pro-
file obtained, the smallest profile obtained by Snay’s heuristic with pseudo–peripheral vertices
given by the generalized algorithm [Snay(ν)] and the original Snay’s algorithm [19]. Addi-
tionally, Table 1 shows the execution times (in seconds), %ν = round

(2·ν
instance size ∗100

)
, and

%r = round
(

pro f ile
pro f ile0

∗100
)

[a rate of profile reduction (or increase) provided by the heuristics].
The objective is to minimize %r. Profile numbers in bold face are the best results.

Table 1 shows that the Snay(ν) heuristic provided better profile results in seven of the 11 in-
stances used. Figure 1 shows rates of profile reductions and execution costs of Snay’s [19] and
Snay(ν) heuristics when applied to 11 instances contained in the Harwell-Boeing sparse matrix
collection [7].

3.2 Experiments with instances contained in the University of Florida sparse matrix
collection

The workstation described in the previous section was also used in the execution of the simu-
lations with 25 instances (ranging from 20,000 to 153,226 vertices) contained in the University
of Florida sparse matrix collection [6]. In addition, the other workstations used in the execution
of the simulations with instances of this collection contained an Intel® CoreTM i7-4790K (CPU
4.00GHz, 8MB Cache, 12GB of main memory DDR3 1.6GHz, termed M2 machine) and an
Intel® CoreTM i7-4770 (CPU 3.40GHz, 8MB Cache, 8GB of main memory DDR3 1.333GHz,
termed M3 machine; Intel; Santa Clara, CA, United States).

Table 2 shows similar columns to Table 1. Again, a set of values for the input parame-
ter ν [1 ≤ ν ≤ max(ν); see the max(ν) column in Table 2] was assigned in Algorithm 3
for each instance. The ν value associated with the smallest profile obtained in these runs

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A1˙972” — 2018/5/3 — 16:50 — page 8 — #8 i
i

i
i

i
i

8 A NOVEL APPROACH TO FIND PSEUDO–PERIPHERAL VERTICES FOR SNAY’S HEURISTIC

Table 1: Results of Snay’s heuristic [19] with starting vertices given by two algorithms for
finding pseudo–peripheral vertices when applied to 11 instances contained in the Harwell-
Boeing sparse matrix collection [7].

Instance Size
pro− Snay(ν) Snay [19]

Structure
f ile0 ν %ν profile %r t(s) profile %r t(s)

BCSPWR01 39 292 2 10 85 29 0.0002 85 29 0.0003

symmetric

BCSPWR02 49 377 3 12 133 35 0.0003 133 35 0.0004
PLAT362 362 45261 20 11 14084 31 0.0783 14283 32 0.0279
DWT 503 503 35914 13 5 23744 66 0.0785 23803 66 0.0306
DWT 592 592 28805 19 6 19335 67 0.1067 19360 67 0.0376
662 BUS 662 45165 30 9 16164 36 0.1272 17411 39 0.0225

NOS3 960 39101 48 10 53674 137 0.6324 63546 163 0.0740
DWT 992 992 262306 78 16 54024 21 1.1380 62260 24 0.0741
DWT 2680 2680 587863 118 9 344814 59 14.4354 372966 63 0.6247
ORSIRR 2 886 211572 113 26 156640 74 2.3334 199635 94 0.1073

asymmetric
WEST0989 989 250490 96 19 376009 150 0.5156 389834 156 0.2165

for an instance is stored. Then, 10 sequential runs (using Algorithm 3) were performed for
each instance. These executions were performed on the M1 (qpband, crystm03, bloweybl,
mark3jac060sc), M2 (rail 20209, case39, chipcool0, invextr1 new), and M3 (t60k, juba40k,
bauru5727, chem master1, lhr71c, 2cubes sphere, s3dkt3m2, s4dkt3m2, tandem dual, pkustk12,
ASIC 100ks, rajat16, rajat17, rajat18, para-4, c-64b, boyd1) machines.

Table 2 also provides the computational times of the algorithms for finding pseudo–peripheral
vertices [in seconds; see PPV t(s) columns] and the renumbering step [in milliseconds; see Ren.
t(ms) columns] separately. This table shows that the algorithm for finding pseudo-peripheral
vertices shows higher computational times than the renumbering heuristic (Algorithm 1). In par-
ticular, a large number of renumbering steps (Algorithm 1) does not affect significantly the com-
puting time to find a smaller profile. For example, when applied to the crystm03 instance, 228
executions of the reordering algorithm (Algorithm 1) were faster (18ms) than the executions of
the reordering algorithm (19ms) corresponding to the original Snay heuristic [19].

Figure 2 shows that the rates of profile reductions of the Snay(ν) heuristic are similar to the
rates of profile reductions of the original Snay’s heuristic [19] when applied to 25 instances
contained in the SuiteSparse matrix collection [6]. In particular, the Snay(ν) heuristic showed
much better profile results than Snay’s heuristic [19] when applied to the boyd1 instance. Small
max(ν) values were used in these simulations. Numerical experiments with large max(ν) values
(see Table 2) may improve the profile results of the Snay(ν) at higher execution costs.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A1˙972” — 2018/5/3 — 16:50 — page 9 — #9 i
i

i
i

i
i

GONZAGA DE OLIVEIRA and BERNARDES 9

Figure 1: Rates of profile reductions and execution times obtained using Snay’s [19] and
Snay(ν) heuristics when applied to 11 instances contained in the Harwell-Boeing sparse
matrix collection [7].

Figure 2: Rates of profile reductions and execution times, in logarithmic scale, obtained using
Snay’s [19] and Snay(ν) heuristics when applied to 25 instances contained in the SuiteSparse
matrix collection [6].

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A1˙972” — 2018/5/3 — 16:50 — page 10 — #10 i
i

i
i

i
i

10 A NOVEL APPROACH TO FIND PSEUDO–PERIPHERAL VERTICES FOR SNAY’S HEURISTIC

Ta
bl

e
2:

R
es

ul
ts

of
Sn

ay
’s

he
ur

is
tic

[1
9]

w
ith

st
ar

tin
g

ve
rt

ic
es

gi
ve

n
by

tw
o

al
go

ri
th

m
s

fo
rfi

nd
in

g
ps

eu
do

–p
er

ip
he

ra
lv

er
tic

es
w

he
n

ap
pl

ie
d

to
25

in
st

an
ce

s
co

nt
ai

ne
d

in
th

e
Su

ite
Sp

ar
se

m
at

ri
x

co
lle

ct
io

n
[6

].

In
st

an
ce

Si
ze

Pr
ofi

le
Sn

ay
(ν

)
Sn

ay
[1

9]

struc.

ν
%

ν

m
ax

Pr
ofi

le
%

r
PP

V
R

en
.

Pr
ofi

le
%

r
PP

V
R

en
.

(ν
)

t(
s)

t(
m

s)
t(

s)
t(

m
s)

qp
ba

nd
20

00
0

75
00

00
00

1
0.

01
13

08
15

00
0

0.
02

0.
01

14
15

00
0

0.
02

0.
01

15

symmetric

ra
il

20
20

9
20

20
9

60
03

22
58

33
0.

33
40

53
60

99
0

8.
93

24
.0

7
3

53
61

20
3

8.
93

3.
33

2
cr

ys
tm

03
24

69
6

13
62

46
95

11
4

0.
92

12
4

24
27

39
33

17
8.

16
15

9.
78

18
24

59
25

27
18

0.
50

4.
08

19
bl

ow
ey

bl
30

00
3

20
00

30
00

5
1

0.
01

28
3

89
99

0
0.

04
10

.8
5

5
89

99
0

0.
04

44
.0

0
6

ca
se

39
40

21
6

60
55

63
01

3
36

0.
18

58
40

32
31

13
0

66
.5

9
36

64
.1

8
14

40
35

40
01

7
66

.6
4

35
3.

80
11

c-
64

b
51

03
5

93
24

39
77

0
76

0.
30

11
0

20
25

36
32

1
21

.7
2

63
20

.0
8

15
21

57
11

60
9

23
.1

3
38

7.
43

15
t6

0k
60

00
5

18
20

66
21

19
4

0.
65

20
0

70
27

92
3

38
.6

0
12

4.
88

17
74

18
04

5
40

.7
4

3.
41

11
s3

dk
t3

m
2

90
44

9
54

98
14

44
11

3
0.

25
20

0
17

28
70

14
6

31
4.

42
36

86
.1

8
49

17
46

05
06

8
31

7.
57

15
0.

92
40

s4
dk

t3
m

2
90

44
9

54
98

14
44

11
3

0.
25

20
1

17
28

61
89

1
31

4.
40

36
96

.1
3

49
17

46
05

06
8

31
7.

57
14

9.
90

41
bo

yd
1

93
27

9
15

08
96

6
9

0.
19

18
70

61
00

46
.7

9
24

77
8.

87
34

93
78

58
38

62
15

.2
4

13
12

1.
90

33
ta

nd
em

du
al

94
06

9
48

74
66

75
5

12
9

0.
27

21
1

16
07

93
18

5
32

.9
9

34
98

.8
9

27
16

09
06

54
5

33
.0

1
13

3.
00

21
pk

us
tk

12
94

65
3

15
80

88
29

0
29

0.
06

34
68

56
64

12
1

43
3.

72
24

41
9.

48
72

69
54

75
84

8
43

9.
93

35
80

.6
0

71
A

SI
C

10
0k

s
99

19
0

47
85

31
93

1
27

0.
05

48
29

95
70

05
49

62
6.

02
13

23
8.

65
42

29
93

58
33

78
62

5.
58

19
11

.0
4

26
2c

ub
es

sp
he

re
10

14
92

48
32

41
27

1
81

0.
16

15
6

23
07

96
77

2
47

.7
6

52
05

.6
0

55
23

11
32

47
6

47
.8

3
29

5.
09

52
ch

ip
co

ol
0

20
08

2
23

08
60

70
37

0.
37

40
68

78
43

02
29

7.
95

20
2.

22
7

68
93

16
98

29
8.

59
25

.6
5

7

asymmetric

m
ar

k3
ja

c0
60

sc
27

44
9

11
79

61
65

28
0.

20
28

30
55

60
70

2
25

90
.3

4
12

94
.1

1
14

30
91

35
33

4
26

20
.6

4
21

8.
44

14
in

ve
xt

r1
ne

w
30

41
2

60
73

20
73

2
50

0.
33

50
42

97
07

01
0

70
.7

5
18

99
.0

9
27

42
97

26
66

1
70

.7
6

22
1.

76
28

ju
ba

40
k

40
33

7
90

82
39

79
54

0.
27

11
9

22
52

70
49

24
.8

0
54

.0
4

7
22

52
72

42
24

.8
0

3.
83

6
ba

ur
u5

72
7

40
36

6
90

90
27

67
54

0.
27

14
0

22
54

38
33

24
.8

0
53

.5
4

7
22

54
40

26
24

.8
0

3.
76

6
ch

em
m

as
te

r1
40

40
1

16
16

08
00

30
0.

15
20

0
10

90
62

98
67

.4
9

15
.8

2
10

10
90

70
35

67
.4

9
2.

41
8

lh
r7

1c
70

30
4

46
57

06
28

3
8

0.
02

63
23

24
13

88
12

49
9.

06
29

87
.0

1
80

23
42

06
87

63
50

2.
91

16
85

.6
2

11
2

ra
ja

t1
6

94
29

4
12

80
04

04
50

1
0.

01
47

36
68

85
66

33
28

6.
62

43
8.

68
18

36
68

85
66

33
28

6.
62

19
97

.3
0

18
ra

ja
t1

7
94

29
4

12
80

04
04

50
1

0.
01

47
36

68
85

66
33

28
6.

62
43

4.
67

24
36

68
85

66
33

28
6.

62
20

33
.0

1
26

ra
ja

t1
8

94
29

4
11

88
60

66
64

45
0.

10
54

30
69

75
02

98
25

8.
26

18
33

1.
96

37
30

85
98

66
25

25
9.

63
16

63
.8

6
24

pa
ra

-4
15

32
26

26
60

70
87

20
0.

03
30

10
28

21
00

64
38

64
.4

2
19

25
5.

92
12

3
11

15
39

25
47

41
92

.0
9

50
72

.5
9

13
0

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A1˙972” — 2018/5/3 — 16:50 — page 11 — #11 i
i

i
i

i
i

GONZAGA DE OLIVEIRA and BERNARDES 11

4 CONCLUSIONS

In general, Snay’s heuristic with starting vertices given by the generalized algorithm for finding
pseudo–peripheral vertices [Snay(ν)] achieved better profile results than Snay’s heuristic with
starting vertices given by the original Snay’s algorithm for finding pseudo–peripheral vertices
[19], at a higher execution time. On the other hand, among 36 instances used, these algorithms
increased the profile of 14 instances. Little (or no) gain can be obtained if the profile of the
original instance is small. For example, a previous publication [14] reports that in certain cases
several reordering algorithms do not reduce the computational times of the Jacobi-preconditioned
conjugate gradient method.

From the results obtained with the simulations performed in this work, it is possible to realize
that the selection of 10 pseudo–peripheral vertices for Snay’s heuristic [19] is a reasonable choice
when the heuristic is applied to very small instances. On the other hand, when the instance is not
small, it would be necessary to choose a larger number of pseudo–peripheral vertices to find the
smallest profile (that Snay’s heuristic can achieve) of an instance. The user can set the ν value
depending on the class of matrices in context. Specifically, assigning the ν parameter up to 26%
(e.g., see the ORSIRR 2 instance extracted from a oil reservoir simulation problem; see Table 1)
of the instance size is a reasonable choice to obtain a small profile for small instances. In addition,
we recommend to assign the ν parameter up to 0.3% of pseudo–peripheral vertices in relation to
the instance size when applied to instances larger than 20,000 vertices. This percentage is directly
proportional to the execution time of the heuristic, i.e. the user can assign a lower percentage to
obtain a lower execution cost when using the Snay(ν) heuristic. The reason for this is because the
processing times to execute several renumbering steps may not compensate the profile results.

Specifically, this algorithm provided better profile results in half of the 36 instances used. As
mentioned, Figure 2 shows that in general the rates of profile reductions provided by the Snay(ν)
heuristic were not significantly better than the rates of profile reductions yielded by the original
Snay’s heuristic [19] when applied to instances contained in the SuiteSparse matrix collection
[6]. This present computational experiment makes it possible to realize that searching for better
profile results may not compensate the computational effort employed. A low-cost algorithm
for finding pseudo-peripheral vertices is desirable, mainly if the objective is to reduce execution
costs of iterative solvers for linear systems, such as the Generalized minimal residual (GMRES)
[18] (e.g. see [2, 5]) and conjugate gradient methods [15, 16] (e.g. see [12]). Specifically, the use
of only one pseudo-peripheral vertex (with eccentricity very close to the diameter of the graph)
may be a better choice. An example is the George-Liu algorithm [9] that is commonly used in
computational experiments in this field (e.g. [8, 2, 5, 11, 12]). In particular, the use of Snay’s
heuristic with starting vertex given by the George-Liu algorithm [9] showed promising results in
preliminary simulations [3] and we plan to extend our numerical experiments.

The computational times of the renumbering step (Algorithm 1) of Snay’s heuristic [19] depend
mainly on the starting vertex of the vertex labeling (that is, the pseudo–peripheral vertex selected
in Algorithm 2). Specifically, the computational times of Snay’s heuristic [19] depend primarily

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A1˙972” — 2018/5/3 — 16:50 — page 12 — #12 i
i

i
i

i
i

12 A NOVEL APPROACH TO FIND PSEUDO–PERIPHERAL VERTICES FOR SNAY’S HEURISTIC

on the number of candidate vertices (to be labeled) at each iteration. We intend to present the
complexity analysis of Snay’s heuristic [19] in a future work.

We intend to compare the heuristics evaluated in [11, 12] with Snay’s heuristic with pseudo–
peripheral vertices given by the generalized algorithm to find peripheral vertices proposed in this
work, with the parameter ν established after exploratory investigations in the set of instances to
be used. In addition, a systematic review of algorithms for finding pseudo–peripheral vertices is
a next step in this present work.

ACKNOWLEDGEMENTS

This work was undertaken with the support of the FAPEMIG - Fundação de Amparo à Pesquisa
do Estado de Minas Gerais (Minas Gerais Research Support Foundation, Brazil). In addition, we
would like to thank the reviewers for their valuable comments and suggestions.

RESUMO. A solução de sistemas de equações lineares, representados por Ax = b, é fun-
damental em diversas aplicações cientı́ficas e em engenharia. Ao se reduzir o profile da
matriz A, pode-se reduzir a ocupação de espaço e o tempo de processamento da resolução
de tais sistemas de equações lineares. Neste trabalho, propomos um algoritmo generalizado
para encontrar vértices pseudoperiféricos para o algoritmo heurı́stico de Snay. Baseados em
experimentos realizados em 36 instâncias contidas nas bases de matrizes Harwell-Boeing
e SuiteSparse, verificou-se que o número de vértices pseudoperiféricos selecionados pelo
algoritmo de Snay pode ser adequado para instâncias pequenas, mas é insuficiente para
obter resultados razoáveis em instâncias que não são pequenas. Neste artigo, recomen-
damos a seleção de até 26% (0,3%) de vértices pseudoperiféricos em relação ao tamanho
da instância, quando o algoritmo heurı́stico de Snay é aplicado em instâncias menores que
3.000 (maiores que 20.000) vértices.

Palavras-chave: Redução de profile, matrizes esparsas, algoritmos de reordenação de
vértices.

REFERENCES

[1] M. Benzi. Preconditioning techniques for large linear systems: a survey. Journal of Computational
Physics, 182 (2002), 418–477.

[2] M. Benzi, D.B. Szyld & A. van Duin. Orderings for incomplete factorization preconditioning of
nonsymmetric problems. SIAM Journal on Scientific Computing, 20(5) (1999), 1652–1670.

[3] J.A.B. Bernardes. Uma modificação na heurı́stica de Snay para redução do custo computacional do
método dos gradientes conjugados. Master’s thesis, Universidade Federal de Lavras (2016).

[4] J.A.B. Bernardes & S.L. Gonzaga de Oliveira. A systematic review of heuristics for profile reduction
of symmetric matrices. Procedia Computer Science, 51 (2015), 221–230.

[5] J.J. Camata, A.L. Rossa, A.M.P. Valli, L. Catabriga, G.F. Carey & A.L.G.A. Coutinho. Reordering
and incomplete preconditioning in serial and parallel adaptive mesh refinement and coarsening flow
solutions. International Journal for Numerical Methods in Fluids, 69 (2012), 802–823.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A1˙972” — 2018/5/3 — 16:50 — page 13 — #13 i
i

i
i

i
i

GONZAGA DE OLIVEIRA and BERNARDES 13

[6] T.A. Davis & Y. Hu. The University of Florida sparse matrix collection. ACM Transactions on
Mathematical Software, 38(1) (2011), 1–25.

[7] I.S. Duff, R.G. Grimes & J.G. Lewis. Sparse matrix test problems. ACM Transactions on
Mathematical Software, 15(1) (1989), 1–14.

[8] A. George & J.W. Liu. Computer solution of large sparse positive definite systems. Prentice-Hall,
Englewood Cliffs (1981).

[9] A. George & J.W.H. Liu. An implementation of a pseudoperipheral node finder. ACM Transactions
on Mathematical Software, 5(3) (1979), 284–295.

[10] S.L. Gonzaga de Oliveira & J.A.B. Bernardes. Um algoritmo pseudo-periférico genérico para
a heurı́stica de Snay. In XXXVI Brazilian National Congress in Applied and Computational
Mathematics (CNMAC), volume 5. Gramado, SBMAC, São Carlos (2017).

[11] S.L. Gonzaga de Oliveira, J.A.B. Bernardes & G.O. Chagas. An evaluation of low-cost heuris-
tics for matrix bandwidth and profile reductions. Computational & Applied Mathematics. DOI:
10.1007/s40314-016-0394-9.

[12] S.L. Gonzaga de Oliveira, J.A.B. Bernardes & G.O. Chagas. An evaluation of reordering algorithms to
reduce the computational cost of the incomplete Cholesky-conjugate gradient method. Computational
& Applied Mathematics. DOI: 10.1007/s40314-017-0490-5.

[13] S.L. Gonzaga de Oliveira & G.O. Chagas. Introdução a heurı́sticas para redução de largura de banda
de matrizes. SBMAC, São Carlos (2014).

[14] S.L. Gonzaga de Oliveira, G.O. Chagas & J.A.B. Bernardes. An analysis of reordering algorithms
to reduce the computational cost of the Jacobi-preconditioned CG solver using high-precision arith-
metic. In Proceedings of the International Conference on Computational Science and Its Applications,
ICCSA. Lecture Notes in Computer Science book series (LNCS), 10404:3-19 (2017).

[15] M.R. Hestenes & E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of
Research of the National Bureau of Standards, 49(36) (1952), 409–436.

[16] C. Lanczos. Solutions of systems of linear equations by minimized iterations. Journal of Research of
the National Bureau of Standards, 49(1) (1952), 33–53.

[17] Y.X. Lin & J.J. Yuan. Profile minimization problem for matrices and graphs. Acta Mathematicae
Applicatae Sinica, 10(1) (1994), 107–122.

[18] Y. Saad & M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7 (1986),
856–869.

[19] R.A. Snay. Reducing the profile of sparse symmetric matrices. Bulletin Geodesique, 50(4) (1976),
341–352.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

