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We consider a recently proposed generalization of unimodular gravity, where the lapse function is
constrained to be equal to a function of the determinant of the spatial metric fðhÞ, as a potential origin of a dark
fluid with a generally h-dependent equation of state parameter. We establish the Hamiltonian analysis and the
canonical path integral for the theory. All the special cases that do not match unimodular gravity involve the
violation of general covariance, and consequently the physical content of the theory is changed significantly.
Particularly, the case of a constant function f is shown to contain an extra physical degree of freedom in each
point of space. Physical consequences of the extra degree of freedom are studied in a linearized theory, where
the extra mode is carried by the trace of themetric perturbation. The trace mode does not propagate as a wave,
since it satisfies an elliptic partial differential equation in spacetime. Consequently, the trace perturbation is
shown to grow exponentially with time, which implies instability. The case of a general fðhÞ involves
additional second-class constraints, which implies the presence of an extra global degree of freedom that
depends only on time (instead of the extra local degree of freedom in the case of a constant f).
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I. INTRODUCTION

Despite the great progress on experimental and theo-
retical understanding in modern cosmology, we still face
difficulties in three major issues: dark matter, dark energy,
and the cosmological constant problem. In view of the
standard model of cosmology, many minimal modifications
of general relativity (GR) have been proposed and explored
in order to attempt to understand the fundamental origin of
one or more of the above problems. The most used
approach for the description of such phenomena involves
the addition of new (global and/or local) degrees of
freedom. Instead of adding new fields, an appealing way
to incorporate new degrees of freedom in this context is by
enforcing a symmetry principle.
One of the simplest modifications of GR that has been

used to elucidate the cosmological constant problem is
unimodular gravity [1,2]. In unimodular gravity, general
covariance is restricted to diffeomorphisms which preserve
the determinant of the metric of spacetime. It is reasonable
to say that, at the classical level, the main conceptual
difference compared to GR is that the cosmological

constant in unimodular gravity is a constant of integration
rather than a coupling constant [2–5].1 Although it was
initially expected that this different point of view could
shed new light on the cosmological constant problem, a
similar problem with the fine-tuning of the cosmological
constant is found as in GR [6].
Based on the key concepts of unimodular gravity, a new

proposal, namely, vacuum energy sequestering [7], has been
presented as a mechanism for providing a radiatively stable
cosmological constant, which is independent of the vacuum
energy contributions from thematter sector. Themain idea of
this mechanism is to impose a global scaling symmetry,
which complements unimodular gravity by introducing a
variational procedure that fixes the values of global variables
so that the cosmological constant is decoupled from the
vacuum energy generated by matter loop corrections. This is
achieved by the addition of (global) conserved quantities into
the gravitational action, which provide a finite value for the
cosmological constant and at the same time cancel out all
quantum-generated vacuum energy contributions of the
matter sector from the gravitational equations of motion.
In order to explain themicroscopic origin of the sequestering
mechanism, a local formulation of the theory has been
proposed [8]. Actually, the local setup is obtained from
theglobal onebyusing a similar reparametrization invariance
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1This fact is also present in a path integral analysis, where the
value of the cosmological constant Λ is included in the initial and
boundary conditions and is not present as a coupling constant in
the Lagrangian [5].
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approach as in the Henneaux-Teitelboim formulation of
unimodular gravity [9].
On the other hand, instead of adding scaling and

reparametrization invariance into unimodular gravity in
order to secure a finite and stable cosmological constant,
other interesting modifications of the symmetries of GR
have been considered for the description of different
physical phenomena. For example, a restriction to foli-
ation-preserving diffeomorphism at high energies (in the
ultraviolet fixed point) has been considered as a way to
solve the renormalizability and ghost problems of the
quantum field theory of gravity [10]. A conformally
invariant extension of GR has been shown to include a
gravitational degree of freedom that mimics dark dust [11].
A new example of such models has been recently proposed,
where, instead of enlarging the group of symmetry, a
certain type of Lorentz violation is incorporated into
unimodular gravity in order to induce a dark fluid [12].
This theory is referred to as generalized unimodular gravity.
A breakdown of (gauge) spacetime symmetry is a well-
known approach to enlarge the physical content of a theory.
The chosen breaking of general covariance is defined in
terms of the Arnowitt-Deser-Misner (ADM) decomposition
of the metric [13]. The unimodular constraint

ffiffiffiffiffiffi−gp ¼ ϵ0,
where ϵ0 is fixed, is replaced with

N ¼ fðhÞ; ð1Þ

where N ¼ ð−g00Þ−1/2 is the lapse function and fðhÞ is a
function of the determinant h of the induced metric hij on
the spatial hypersurfaces Σt of the foliation of spacetime.
This can be seen as a generalization of the unimodular
constraint, since (1) is equivalent to

ffiffiffiffiffiffi
−g

p ¼
ffiffiffi
h

p
fðhÞ: ð2Þ

The motivation for this generalization is twofold [12]: a
minimal breakdown of Lorentz symmetry Oð1; 3Þ to Oð3Þ
and the presence of a special type of matter source at the
classical level, a general barotropic dark fluid with an
equation of state parameter that depends on the metric
determinant h.
Unimodular gravity is included in the generalized theory

as the special case fðhÞ ¼ ϵ0/
ffiffiffi
h

p
. In the special case

fðhÞ ¼ const, the engendered dark fluid behaves as a dust,
which, in principle, could describe pressureless dark matter.
However, care must be paid to the nature of the Lagrange
multiplier that is used to enforce the generalized unim-
odular constraint in the action. Actually, this field can be
seen either as an undetermined variable, which can be
eliminated, or as an extra energy density for the Einstein
equation. Both interpretations describe the same physical
system, but due to subtleties along the analysis of the field
equations it is always possible to overlook constraints

among the variables and then obtain an erroneous result.
This is carefully examined in Sec. II.
A clear understanding of the nature and conclusive

counting of the physical degrees of freedom can unambig-
uously be obtained from a canonical analysis of the theory
rather than from the equations of motion. Hence, the main
goal for the present work is to perform a Hamiltonian
analysis of the generalized unimodular gravity for any
Lorentz-violating function fðhÞ, in order to have a com-
plete understanding of the physical content of the model.
The paper is organized as follows. In Sec. II, we present the
generalized unimodular gravity and its symmetry content,
elucidating the implications of the Lorentz violation into
the field equations and the subtleties involved in the
presence of the dark fluid, particularly regarding the
interpretation of the Lagrange multiplier field λ as a
genuine variable or as an energy density. Section III is
dedicated to the Hamiltonian analysis of the generalized
model. We determine the canonical structure for some
special case of the function fðhÞ and show how the number
and nature of constraints, and consequently the number of
physical degrees of freedom, are changed compared to GR
and (customary) unimodular gravity. In Sec. IV, the
canonical path integral is established for the special case
f ¼ const and general fðhÞ, highlighting the difference in
their physical content, i.e., degrees of freedom. In Sec. V,
we consider a linearization of the generalized theory in
order to examine the dynamics of the extra physical degree
of freedom. Final remarks are presented in Sec. VI.

II. GENERALIZED UNIMODULAR GRAVITY

The action for generalized unimodular gravity can be
defined by adding the constraint (1) into the Einstein-
Hilbert action by means of a Lagrange multiplier λ [12]:

S½gμν;λ� ¼
Z

d4x

�
M2

P

2

ffiffiffiffiffiffi
−g

p
R−λ

�
1ffiffiffiffiffiffiffiffiffiffi
−g00

p −fðhÞ
��

: ð3Þ

Matter fields are coupled to the metric in the usual way.
We rewrite the full action for the generalized unimodular

theory of gravity as

S½gμν; λ;Ψ� ¼
Z

d4x

�
M2

P

2

ffiffiffiffiffiffi
−g

p
R − λð ffiffiffiffiffiffi

−g
p

−
ffiffiffi
h

p
fðhÞÞ

�

þ Sm½gμν;Ψ�; ð4Þ

where matter fields are denoted by Ψ. The omitted
boundary terms of the action are the same as in GR
[14], as well as in unimodular gravity [5]. The action (4)
differs from the one (3) proposed in Ref. [12] only by the
nature of the Lagrange multiplier field λ. In (3), the
Lagrange multiplier is a scalar density of unit weight on
Σt. Our λ in (4), on the other hand, is a scalar field on
spacetime and of course on Σt as well. As a result, the first
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term of the constraint part of the action (4) is generally
invariant, while the second term breaks general covariance.
The difference to conventional formulations of unimodular
gravity [5] appears in the second term of the constraint part.
Compared to the action of unimodular gravity with a fixed
metric determinant,

ffiffiffiffiffiffi−gp ¼ ϵ0 (see [5]), the fixed scalar
density ϵ0 has been replaced with a function of the spatial
metric determinant as

ffiffiffi
h

p
fðhÞ. Generalized unimodular

gravity reduces to the traditional theory when the function
f is chosen as fðhÞ ¼ ϵ0/

ffiffiffi
h

p
. We emphasize that the

inclusion of the constraint (2) in the action (4) is not
equivalent to imposing the constraint as a gauge-fixing
condition in GR, since the Hamiltonian constraints in the
given two theories are different. Therefore, the constraint
(2) has physical consequences. The number of physical
degrees of freedom is shown to depend on the choice of the
function f. For instance, in the case of a constant function
f, the Hamiltonian constraint becomes a second-class
constraint, which is used to determine the variable λ.
Then there is one less constraint on the metric, and hence
an extra physical degree of freedom is present.
In the general fðhÞ case, the symmetry under diffeo-

morphisms is restricted as follows. Consider an infinitesi-
mal diffeomorphism generated by ξμ:

δξgμν ¼ ∇μξν þ∇νξμ: ð5Þ

According to (2), the action is invariant under (5) if the
diffeomorphisms are restricted by

δξ
ffiffiffiffiffiffi
−g

p ¼ δξð
ffiffiffi
h

p
fðhÞÞ; ð6Þ

which holds when ξμ satisfies the condition

∇μξ
μ ¼ N−1ðfðhÞ þ 2hf0ðhÞÞhij∇iξj; ð7Þ

where f0ðhÞ ¼ dfðhÞ/dh and ξi ¼ giμξμ, i ¼ 1, 2, 3. In
the special case of unimodular gravity, we obtain the
metric determinant-preserving diffeomorphisms, δξ

ffiffiffiffiffiffi−gp ¼
0 ⇒ ∇μξ

μ ¼ 0.
The field equation obtained by varying λ is precisely (2)

or equivalently (1), and the field equations for matter are
identical to those in GR. The field equations obtained by
varying the action (4) with respect to gμν is

Gμν ¼ M−2
P ðTμν þ τμνÞ; ð8Þ

where Gμν is the Einstein tensor, Tμν is the usual stress-

energy tensor of matter, Tμν ¼ − 2ffiffiffiffi−gp δSm
δgμν, and the stress-

energy tensor of the additional (dark) fluid is written as

τμν ¼ −λgμν þ λN−1ðfðhÞ þ 2hf0ðhÞÞhμν: ð9Þ

Here hμν is the metric induced by gμν onto the spatial
hypersurface Σt:

hμν ¼ gμν þ nμnν; ð10Þ

where nμ is the unit normal to Σt:

nμ ¼ −N∇μt ¼ −Nδ0μ: ð11Þ

The stress-energy tensor (9) can be written in the form of a
perfect fluid with a velocity nμ:

τμν ¼ ðρþ pÞnμnν þ pgμν; ð12Þ

where the energy density ρ and the pressure p are
identified, respectively, as

ρ ¼ λ; p ¼ −λþ λN−1ðfðhÞ þ 2hf0ðhÞÞ: ð13Þ

When the constraint (1) is satisfied, the pressure reduces to

p ¼ λ
2hf0ðhÞ
fðhÞ : ð14Þ

Thus, the dark fluid satisfies the equation of state p ¼ wρ
with a parameter w that generally depends on the deter-
minant of the spatial metric as

wðhÞ ¼ 2hf0ðhÞ
fðhÞ : ð15Þ

In the case of a constant function f, we have dark dust with
energy density λ and no pressure (w ¼ 0).
While the appearance of the dark fluid (12) in the stress-

energy tensor is evident, it is crucial to acknowledge that the
energy density λ is arbitrary. Although the field λ is not a
dynamical variable, in the sense of not having a field
equation, it cannot be fixed at will either, sincewe considered
λ to be a genuine variable of the action in order to impose the
generalized unimodular condition (1). This suggests that
there is an extra physical degree of freedom in the theory due
to the presence of the variable λ, which is not carried by this
scalar field, sincewe have no dynamical field equation for it.
When such a nondynamical variable is present in the action,
we can always attempt to eliminate it by using a field
equation that involves the variable. In this case, the relevant
equation is the full projection of the modified Einstein
equation (8) perpendicular to Σt

2:

Gnn ¼ M−2
P ðE þ λÞ; ð16Þ

2The projection of the Einstein tensor along the unit normal nμ

is written in terms of the intrinsic scalar curvature ð3ÞR and
extrinsic curvature Kij of the spatial hypersurface Σt as

Gμνnμnν ¼
1

2
ðð3ÞRþ K2 − KijKijÞ:
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where we denoteGnn ¼ Gμνnμnν and E ¼ Tμνnμnν. E is the
energy density of matter measured by an Eulerian observer
with four-velocity nμ, i.e., an observer comoving with the
dark fluid. Since λ is arbitrary and not measurable, it is
appropriate to regard that Eq. (16) determines λ, rather than
determining the given projection of the Einstein tensor for an
energy density E þ λ.3 Therefore, we regard that λ is
determined by the projection Gnn of the Einstein tensor
and the energy density of matter as

λ ¼ M2
PGnn − E: ð17Þ

That is inserted back into the remaining projections of the
modified Einstein equation, namely, to the full projection of
(8) onto Σt and to the mixed projection of (8) onto Σt and nμ.
In the case of a constant f, the field equation (8) is

rewritten using (17) as

Gμν −Gnnnμnν ¼ M−2
P ðTμν − EnμnνÞ: ð18Þ

This is the Einstein equation with its projection
perpendicular to Σt subtracted. Since there is now one
equation less to determine the gravitational field than in
GR, consequently there should appear an extra physical
degree of freedom in the gravitational sector.
The case of a general function f can be analyzed in a

similar way. However, the field equation is more involved:

Gμν −Gnn

�
nμnν þ

2hf0ðhÞ
fðhÞ hμν

�

¼ M−2
P

�
Tμν − E

�
nμnν þ

2hf0ðhÞ
fðhÞ hμν

��
; ð19Þ

so that it is less evident how many independent equations
exist for the gravitational field. Since the full projection
perpendicular to Σt still vanishes trivially, we can expect an
increase in the number of degrees of freedom (at least
globally).
On the other hand, an alternative approach to the field

equations is to keep λ and begin to regard the dark fluid as a
true additional matter source in the Einstein equation (8).
Essentially, the field λwould no longer be a regular variable
of the gravitational theory, and instead we begin to consider
it as the energy density of an additional perfect fluid (12).
Then the dark fluid behaves as any perfect fluid with energy
density λ and (h-dependent) pressure (14). Assuming that
the stress-energy tensor of normal matter is conserved,
∇νTμν ¼ 0, we may take the divergence of the modified
Einstein equation (8), so that the stress-energy tensor of the
dark fluid (12) must be conserved as well, ∇ντμν ¼ 0. In
unimodular gravity, this gives∇μλ ¼ 0, which means that λ

is a constant, namely, the cosmological constant. In the
present generalized theory, we obtain a more involved
conservation equation as

ð∇n þ KÞ½λð1þ wðhÞÞ�nμ þ∇μ½λwðhÞ�
þ λð1þ wðhÞÞaμ ¼ 0; ð20Þ

where ∇n ¼ nμ∇μ, K is the trace of the extrinsic curvature
of the hypersurface Σt, and aμ ¼ nν∇νnμ is the acceleration
of an Eulerian observer. The projections of (20) along nμ

and onto Σt are written as

∇nλþ λð1þ wðhÞÞK ¼ 0; ð21Þ

∂i½λwðhÞ� þ λð1þ wðhÞÞai ¼ 0; ð22Þ

where ∇nλ ¼ 1
N ð∂tλ − Ni∂iλÞ and we have assumed that

fðhÞ behaves as a scalar on the spatial hypersurface, so that
the pressure behaves as a scalar as well, and consequently its
covariant derivative on the spatial hypersurface reduces to a
partial derivative, hμi∇μ½λwðhÞ� ¼ Di½λwðhÞ� ¼ ∂i½λwðhÞ�.
These equations can be solved for λ with appropriate
boundary conditions. In the case of a constant f, the
conservation equations have the usual form for a dust:

∇nλþ Kλ ¼ 0; λai ¼ 0: ð23Þ

The trivial solution of a constant λ for these equations is
permitted only if K ¼ 0. When K ≠ 0, λ is a nontrivial
solution to the first equation, and the second equation
becomes ai ¼ 0.
While the analysis of generalized unimodular gravity can

be achieved at the level of field equations for any function
f, as described above, there is a risk of overlooking
constraints among the variables. Thus, we shall perform
a Hamiltonian analysis of the theory, which will reveal all
the constraints and the structure of the gauge symmetry.
Moreover, the canonical analysis will provide a conclusive
counting and the physical nature of the degrees of freedom.

III. HAMILTONIAN ANALYSIS

A. Hamiltonian and constraints

The gravitational part of the action (4) is written in terms
of ADM variables as

Sg½N;Ni; hij; λ� ¼
Z

dt
Z
Σt

d3x
ffiffiffi
h

p �
M2

P

2
NðKijGijklKkl

þ ð3ÞRÞ − λðN − fðhÞÞ
�
; ð24Þ

where Kij is the extrinsic curvature of the spatial hyper-
surface Σt,

3Actually, when λ is unknown, Eq. (16) cannot be used to find
Gnn, since the source in the right-hand side of the equation is
undetermined.
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Kij ¼
1

2N
ð∂thij − 2DðiNjÞÞ; ð25Þ

the De Witt metric is defined as

Gijkl ¼ 1

2
ðhikhjl þ hilhjkÞ − hijhkl; ð26Þ

and ð3ÞR is the (intrinsic) scalar curvature of Σt. We
introduce the canonical momenta πN , πi, πij, and pλ

conjugate to N, Ni, hij, and λ, respectively. Since the
action (24) is independent of the time derivatives of the
variables N, Ni, and λ, their canonically conjugated
momenta are primary constraints:

πN ≈ 0; πi ≈ 0; pλ ≈ 0: ð27Þ
The momentum conjugate to the metric hij is defined as

πij ¼ M2
P

2

ffiffiffi
h

p
GijklKkl: ð28Þ

The Hamiltonian is obtained as

H ¼
Z
Σt

d3xðNHT þ NiHi −
ffiffiffi
h

p
λfðhÞ

þ vNπN þ viNπi þ vλpλÞ; ð29Þ
where the so-called super-Hamiltonian and supermomentum
are defined as

HT ¼ 2

M2
P

ffiffiffi
h

p πijGijklπ
kl −

M2
P

ffiffiffi
h

p

2
ð3ÞRþ

ffiffiffi
h

p
λ ð30Þ

and

Hi ¼ −2hijDkπ
jk þ ∂iNπN þ ∂iλpλ; ð31Þ

respectively, where we have introduced the inverse De Witt
metric as

Gijkl ¼
1

2
ðhikhjl þ hilhjkÞ −

1

2
hijhkl ð32Þ

and vN , viN , and vλ are unspecified Lagrange multipliers for
the primary constraints. The momentum constraint (31) has
been extendedwith terms that are proportional to the primary
constraints πN andpλ, so that the variablesN and λ transform
as scalar fields under the spatial diffeomorphisms generated
by (31).
The surface terms have been omitted, since we have

confirmed that the surface terms and their contribution to
the total gravitational energy remain identical to the ones in
the cases of GR [14] and unimodular gravity with a fixed
metric determinant [5]. For further details, see the dis-
cussion in Sec. III D.
Consistency of the primary constraints implies the

secondary constraints

HT ≈ 0; Hi ≈ 0; CN ¼ N − fðhÞ ≈ 0: ð33Þ

The Hamiltonian and momentum constraints satisfy the
same Poisson brackets as in GR. The modified unimodular
constraint CN has a nonvanishing Poisson bracket with the
Hamiltonian and momentum constraints

�
CN;

Z
Σt

d3xξHT

�
¼ 2

M2
P
ξ

ffiffiffi
h

p
f0ðhÞhijπij; ð34Þ

�
CN;

Z
Σt

d3xχiHi

�
¼ χi∂iN − χi∂ifðhÞ − 2∂iχ

if0ðhÞh

≈ −2∂iχ
if0ðhÞh: ð35Þ

We see that CN and πN ≈ 0 are necessarily second-class
constraints, since

fCNðxÞ; πNðyÞg ¼ δðx; yÞ: ð36Þ
The consistency of CN is ensured by fixing the Lagrange
multiplier vN as

vN ¼ uN ≡ −
2

M2
P
N

ffiffiffi
h

p
f0ðhÞhijπij þ 2∂iNif0ðhÞh: ð37Þ

The consistency condition for HT,

fHT; Hg ≈ −
2

M2
P
λ

�
fðhÞ
2

þ hf0ðhÞ
�
hijπij þ

ffiffiffi
h

p
vλ ≈ 0;

ð38Þ
fixes the Lagrange multiplier vλ as

vλ ¼ uλ ≡ 2

M2
P
λ

�
fðhÞ
2

þ hf0ðhÞ
�
hijπijffiffiffi

h
p : ð39Þ

The Hamiltonian is then written as

H ¼
Z
Σt

d3xðNH0
T þ NiH0

i −
ffiffiffi
h

p
λfðhÞ þ viNπi þ uλpλÞ;

ð40Þ
where the new Hamiltonian and momentum constraints are
defined, respectively, as

H0
T ¼ HT −

2

M2
P

ffiffiffi
h

p
f0ðhÞhijπijπN ≈ 0 ð41Þ

and

H0
i ¼ Hi − 2∂iðhf0ðhÞπNÞ ≈ 0: ð42Þ

We now see that the consistency condition for Hi,

fHi; Hg ≈ −
ffiffiffi
h

p ∂i½fðhÞ þ 2hf0ðhÞ�λ − 2
ffiffiffi
h

p
hf0ðhÞ∂iλ ≈ 0;

ð43Þ

requires the postulation of a new constraint
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Ci ¼ ½3f0ðhÞ þ 2hf00ðhÞ�∂ihλþ 2hf0ðhÞ∂iλ ≈ 0: ð44Þ

As we have seen before, there are two important special
cases for the generalized theory: fðhÞ ¼ const and
fðhÞ ¼ ϵ0/

ffiffiffi
h

p
. These two cases also stand out in the

canonical structure of the theory. After these two cases
are explained, we shall consider all the other functions f.
When fðhÞ is a constant, the lapse function N is fixed to

a constant by the constraint CN ¼ N − f ≈ 0. Since
f0ðhÞ ¼ 0, the dark fluid of Ref. [12] would have a
vanishing equation of state parameter (15), w ¼ 0, which
is the case of dark dust discussed in Ref. [12]. The present
canonical analysis shows that this case contains an extra
physical degree of freedom in each point of space, which
may explain the spatial inhomogeneities of the dark fluid.
Now the constraint CN has a vanishing Poisson bracket with
HT and Hi, since f0ðhÞ ¼ 0 in (34) and (35). Furthermore,
in this case, the constraint Ci (44) does not appear at all.
Hence, we have four second-class constraints: CN ≈ 0,
πN ≈ 0, HT ≈ 0, and pλ ≈ 0. When the Dirac bracket for
the second-class constraints is introduced, and the con-
straints are imposed strongly, we can eliminate the variables
N, πN , λ, and pλ. The Dirac bracket can be shown to be
equivalent to the Poisson bracket for all the remaining
variables. The Hamiltonian is thus obtained as

H ¼
Z
Σt

d3xðfH0
T þ NiHi þ viNπiÞ; ð45Þ

where the first-class constraints are Hi ¼ −2hijDkπ
jk ≈ 0

and πi ≈ 0, which are associated with the symmetry under
spatial diffeomorphisms, and we denote the super-
Hamiltonian without a cosmological constant as

H0
T ¼ 2

M2
P

ffiffiffi
h

p πijGijklπ
kl −

M2
P

ffiffiffi
h

p

2
ð3ÞR: ð46Þ

Note that H0
T is not a constraint. The constraint HT served

only to determine the variable λ as λ ¼ −H0
T /

ffiffiffi
h

p
. Since the

two terms of the Hamiltonian (40) that involved λ canceled
out when N ¼ fðhÞ was imposed, the value of λ is
irrelevant, and hence the situation is exactly the same as
having no Hamiltonian constraint at all. The Hamiltonian
(45) is equal to the Hamiltonian of GR with the lapse
function fixed to a constant f and without a Hamiltonian
constraint. It is interesting to realize that imposing the lapse
function to a constant with a constraint multiplied by a
Lagrange multiplier field in the action (4) leads to a
breakdown of the diffeomorphism invariance all the way
down to invariance under spatial diffeomorphism.
Moreover, it is worth noticing that the absence of a
Hamiltonian constraint implies the presence of an extra
physical degree of freedom for each point of space, which is
carried by the metric.

When fðhÞ ¼ ϵ0/
ffiffiffi
h

p
, we have the case of unimodular

gravity, where the constraint CN is equivalent toffiffiffiffiffiffi−gp − ϵ0 ≈ 0. More generally, the function f may contain

an additional constant c0 as fðhÞ ¼ ϵ0/
ffiffiffi
h

p þ c0. However,
that case would be related to unimodular gravity via a
translation of the lapse function. In either case, the constraint
(44) is reduced to a simple form: ∂iλ ≈ 0 [5]. Now the spatial
gradient of thevariable λ is constrained tovanish everywhere.
The constant value of λ is the cosmological constant in
unimodular gravity. A complete Hamiltonian analysis of this
case is found inRef. [5]. Classically, this case is equivalent to
GR with a cosmological constant. A subtle difference
appears at the quantum level, since the value of the
cosmological constant is set as a part of the initial conditions
and the path integral may be extended to include integration
over the cosmological constant [3–5].
When f0ðhÞ ≠ 0 everywhere and fðhÞ does not match

the case of unimodular gravity, i.e., 3f0ðhÞ þ 2hf00ðhÞ ≠ 0,
the constraint (44) imposes a relation between the variables
λ and h, and hence it is much more complicated than the
corresponding constraint of unimodular gravity. First we
shall rewrite the constraint (44) to a simpler form by
multiplying it with 1

2
h1/2 and combining the three terms

together. Thus, we can redefine the constraint (44) as

Ci ¼
1ffiffiffi
h

p ∂ið
ffiffiffi
h

p
F1ðhÞλÞ ≈ 0; F1ðhÞ ¼ hf0ðhÞ: ð47Þ

The factor h−1/2 in front of (47) ensures that Ci is a scalar
constraint rather than a density. We denote hf0ðhÞ as F1ðhÞ
for the purpose of reminding us that this function shall be
treated as a scalar along with fðhÞ when integrated.
Generally, for the nth order derivative of f we denote

FnðhÞ ¼ hnfðnÞðhÞ: ð48Þ

Let us return to the canonical analysis, and the con-
sistency condition for Ci can be obtained as (ξi is an
arbitrary smearing function)

�Z
Σt

d3x
ffiffiffi
h

p
ξiCi; H

�
≈
Z
Σt

d3x∂kξ
k

�
2

M2
P
½fðhÞF1ðhÞ

− F2
1ðhÞ þ fðhÞF2ðhÞ�λhijπij

−
ffiffiffi
h

p
NiCi − ∂iNi

ffiffiffi
h

p
½3F1ðhÞ

þ 2F2ðhÞ�λ
�
; ð49Þ

which has to vanish on the constraint surface. The local
version of the condition is obtained by integration by parts
and by setting ξk ¼ h−1/2ðxÞδki δðx; zÞ. Therefore we need to
impose a new constraints as
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CNi ¼ 1ffiffiffi
h

p ∂i

�
∂jNj

ffiffiffi
h

p
½3F1ðhÞ þ 2F2ðhÞ�

−
2

M2
P
½fðhÞF1ðhÞ − F2

1ðhÞ þ fðhÞF2ðhÞ�hjkπjk
�
≈ 0:

ð50Þ

This constraint can be regarded as a condition on the shift
vector Ni (or rather on its spatial divergence), and it is a
second-order partial differential equation (PDE) for Ni. The
constraint (50) does not constrain the divergence-free
component of Ni. Therefore, we consider a Helmholtz
decomposition of the shift vector

Ni ¼ Ni
l þ Ni

t; ð51Þ

where ∂iNi
t ¼ 0, so that ∂iNi ¼ ∂iNi

l . We could introduce a
scalar potential ϕ and a vector potential Ai to write the
components as

Ni
l ¼ −∂iϕ; Ni

t ¼ ϵijk∂jAk; ð52Þ

but this is not necessary for our present purposes. The
canonical momenta πi should be decomposed correspond-
ingly:

πi ¼ πijl þ πijt; ð53Þ

so that the nonvanishing Poisson brackets between the
components of (51) and (53) are

fNi
lðxÞ; πjjlðyÞg ¼ δijδðx; yÞ;

fNi
tðxÞ; πjjtðyÞg ¼ δijδðx; yÞ: ð54Þ

Now (50) constrains only the longitudinal component Ni
l ,

while the transverse component Ni
t is left to be determined

with a gauge condition (like the whole shift vector in GR).
Let us consider solutions to (50) in order to check that

the constraint is physically acceptable. Notice that proving
the existence of a physically solution is crucial for the
viability of the generalized unimodular theory of gravity.
Integrating CNi ¼ 0 gives a first-order PDE as

ffiffiffi
h

p
½3F1ðhÞ þ 2F2ðhÞ�∂iNi

l −
2

M2
P
½fðhÞF1ðhÞ

− F2
1ðhÞ þ fðhÞF2ðhÞ�hijπij ¼ c1; ð55Þ

where c1 is a constant of integration, which can be rewritten
as

∂iNi
l ¼

2

M2
P

�
fðhÞF1ðhÞ − F2

1ðhÞ þ fðhÞF2ðhÞ
3F1ðhÞ þ 2F2ðhÞ

�
hijπijffiffiffi

h
p

þ c1ffiffiffi
h

p ½3F1ðhÞ þ 2F2ðhÞ�
: ð56Þ

This PDE for the shift vector has the form of a Gauss’ law
with a complicated source term that depends on the
canonical variables hij and πij. Boundary conditions should
be chosen to match the assumed physical setting. In
general, we can use the corresponding boundary conditions
of GR, since the field equations closely resemble those of
GR [12]. Fortunately, there is a class of functions fðhÞ for
which the constraint (50) has a much simpler form.
The constraint (50) becomes a homogeneous PDE

when the function fðhÞ is such that fðhÞF1ðhÞ − F2
1ðhÞ þ

fðhÞF2ðhÞ ¼ 0, i.e.,

hfðhÞf00ðhÞ − h½f0ðhÞ�2 þ fðhÞf0ðhÞ ¼ 0: ð57Þ

Remarkably, this condition is satisfied by any power-law
function

fðhÞ ¼ αnhn; ð58Þ

where the power n ∈ R − f0;− 1
2
g and αn is a fixed scalar

density of weight −2n. Since (57) is quadratic in f, a power
series function f does not generally satisfy it. For example,
fðhÞ ¼ αnhn þ βmhm satisfies (57) if m ¼ n, and hence
fðhÞ reduces to (58). From now on, we shall concentrate
the analysis on power-law functions (58). The constraint
(50) becomes

CNi ¼ 1ffiffiffi
h

p ∂ið∂jNj
ffiffiffi
h

p
αnhnÞ ≈ 0; ð59Þ

where we have dropped a finite constant factor nð2nþ 1Þ.
The integrated form of the condition (56) is written as

∂iNi
l ¼

c1ffiffiffi
h

p
αnhn

: ð60Þ

Since αnhn ¼ fðhÞ ≈ N > 1, the sign of the right-hand side
of (60) is set by the sign of the constant c1. For c1 > 0 the
shift vector field has sources everywhere, while for c1 < 0
there are wells everywhere. The condition (60) takes a
particularly simple form if we choose the constant of
integration as c1 ¼ 0, since then the divergence of the
shift vector vanishes:

∂iNi
l ¼ 0: ð61Þ

This equation clearly admits a physically viable solution,
for example, Ni

l ¼ 0.
The consistency of CNi under time evolution can be

ensured by fixing the Lagrange multiplier viN of the
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constraint πi ≈ 0, since CNi has a nonvanishing Poisson
bracket with πi, so that CNi and πi ≈ 0 are second-class
constraints. The consistency condition for the constraint
(59) is obtained as

�Z
Σt

d3x
ffiffiffi
h

p
ξiCNi ; H

�
≈
Z
Σt

d3x∂iξ
i

�
−αnhnþð1/2Þ∂jv

j
N

þ 2nþ 1

M2
P

∂jNjðαnhnÞ2hklπkl

−
�
nþ 1

2

�
∂jNjðNk∂kh

þ 2∂kNkhÞαnhn−ð1/2Þ
�
; ð62Þ

which has to vanish. We used the constraint CN to write
N ≈ αnhn after the evaluation of the Poisson bracket. We
decompose viN in the same way as the shift vector (51),
since only its divergence appears in the consistency
condition:

viN ¼ viNjl þ viNjt; ∂iviNjt ¼ 0: ð63Þ

The consistency condition (62) can be satisfied by solving
the longitudinal component of the Lagrange multiplier viN
from the following PDE:

∂i

�
αnhnþð1/2Þ∂jv

j
Njl −

2nþ 1

M2
P

∂jN
j
l ðαnhnÞ2hklπkl

þ
�
nþ 1

2

�
∂jN

j
l ðNk∂khþ 2∂kNk

l hÞαnhn−ð1/2Þ
�
¼ 0:

ð64Þ

Together, (50) and (64) form a system of second-order
PDEs that should be solved for the shift vector Ni and the
Lagrange multiplier vector viN. We do not attempt to solve
(64), in general, but rather settle for showing that a
physically viable solution exist. We can also integrate
(64) to obtain a first-order PDE as

αnhnþð1/2Þ∂jv
j
Njl −

2nþ 1

M2
P

∂jN
j
l ðαnhnÞ2hklπkl

þ
�
nþ 1

2

�
∂jN

j
l ðNk∂khþ 2∂kNk

l hÞαnhn−ð1/2Þ ¼ c2;

ð65Þ

where c2 is a constant of integration. When the constants of
integration are chosen as c1 ¼ c2 ¼ 0 in (60) and (64), we
obtain from (65) that the divergence of the longitudinal
component of the Lagrange multiplier vector viN vanishes:

∂iviNjl ¼ 0; ð66Þ

which can be solved for a given boundary condition. The
transverse component of the Lagrange multiplier vector viN
is left undetermined (until gauge fixing). This completes
the proof that the structure of constraints is consistent under
time evolution.
Let us consider a concrete example of boundary con-

ditions and discuss the conditions (60) and (65) further. On
an asymptotically flat spacetime, we choose the boundary
conditions in asymptotic coordinates as [15]

N ¼ 1þO

�
1

r

�
; Ni ¼ O

�
1

r

�
;

hij ¼ δij þO
�
1

r

�
; πij ¼ O

�
1

r2

�
: ð67Þ

Thus, ∂iNi behaves as Oðr−2Þ in the asymptotic region,
where the asymptotic radial coordinate r is very large. The
right-hand side of (60) behaves similarly as ∂iNi when (58)
behaves asymptotically as Oðr2Þ. Since h behaves as
1þOðr−1Þ, and hence hn behaves as 1þ nOðr−1Þ, in turn
αn should exhibit a behavior Oðr2Þ in the asymptotic
region. Then from (65) we see that the Lagrange multiplier
viN must behave as Oðr−1Þ in the asymptotic region, i.e., in
the same manner as the shift vector.

B. Generally noncovariant constraints with
spatially nonlocal linear dependence

Like in conventional unimodular gravity [5], we prefer a
single local constraint over the gradient one (47). In both
unimodular gravity [5,16] and the local theory of vacuum
energy sequestering [17], we can use a technique that
decomposes the variables which are involved in the con-
straints into time-dependent zero modes and spacetime-
dependent average-free modes whose integral over Σt
vanishes. The decomposition enabled a transparent count-
ing and identification of the physical degrees of freedom
and a rigorous treatment of the nonlocal linear dependence
of the constraints [5,17] according to the Batalin-
Vilkovisky formalism [18]. Unfortunately, that technique
does not work well in the present case of generalized
unimodular gravity, since the relevant constraints (47) and
(59) consist of partial derivatives of scalar densities instead
of derivatives of scalars. The reason for the problem can be
traced back to the way that the general covariance is broken
by the generalized unimodular condition (2).
We shall explain the problem briefly. A scalar field ϕ,

such as λ, could be decomposed to a time-dependent
component and a space-dependent component as

ϕðt; xÞ ¼ ϕ0ðtÞ þ ϕ̄ðt; xÞ; ð68Þ

where the zero mode describes the time-dependent average
of ϕ over space:
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ϕ0ðtÞ ¼
1

VΣt

Z
Σt

d3x
ffiffiffi
h

p
ϕðt; xÞ; VΣt

¼
Z
Σt

d3x
ffiffiffi
h

p

ð69Þ

and the spacetime-dependent component has a vanishing
integral over space:

Z
Σt

d3x
ffiffiffi
h

p
ϕ̄ðt; xÞ ¼ 0: ð70Þ

Then the spatial derivative ∂iϕ ¼ ∂iϕ̄, and hence a con-
straint ∂iϕ ¼ 0, would mean that ϕ̄ is a constant on the
spatial hypersurface and the condition (70) would impose
that constant to zero ϕ̄ ¼ 0. In unimodular gravity [5], this
enables us to replace the constraint ∂iλ ≈ 0 with λ̄ ≈ 0,
leaving the zero mode λ0 unconstrained. Unfortunately, a
scalar density ρ, such as

ffiffiffi
h

p
F1ðhÞλ, cannot be decomposed

into a constant component and a space-dependent compo-
nent. Instead, we would have to decompose a scalar density
of unit weight as

ρ ¼
ffiffiffi
h

p

VΣt

ρ0 þ ρ̄; ρ0 ¼
Z
Σt

d3xρ;
Z
Σt

d3xρ̄ ¼ 0;

ð71Þ

so that the integrals are well defined. Now the spatial partial
derivative of ρ is written as

∂iρ ¼ ∂i

ffiffiffi
h

p ρ0
VΣt

þ ∂iρ̄: ð72Þ

Therefore, ∂iρ ¼ 0 does not imply ∂iρ̄ ¼ 0. Instead, ∂iρ ¼
0 imposes a relation between ρ0, ∂iρ̄, and the metric.
Therefore, the constraints (47) and (59) cannot be decom-
posed in a suitable form with this approach. Note that the
problem would not appear if the constraints (47) and (59)
involved covariant derivatives, but that is not the case due to
the breakdown of general covariance.
Therefore, we need a method for handling constraints of

the form ∂iρ ≈ 0, which are not generally covariant when ρ
is a scalar density on the spatial hypersurface. Our general
solution to the problem is based on the introduction of a
new variable qðtÞ that is an arbitrary function of time. The
constraint ∂iρ ≈ 0 can be replaced with a new constraint
ρ − q ≈ 0. Those two constraints are equivalent, assuming
that the variable q is an arbitrary function of time, since the
former constraint is invariant under the translation ρ →
ρþ ϵ for any ϵðtÞ. The time evolution of q is not
determined by the equations of motion. This ensures that
q is an arbitrary function of time, which carries a single
degree of freedom, a so-called zero mode. We shall treat
qðtÞ as an external variable or a background function. Note
that the constraints ∂iρ ≈ 0 across the spatial hypersurface
are linearly dependent,

R
Σt
d3x∂iρ ¼ 0, since the value of ρ

at xi → �∞ with each i ¼ 1, 2, 3 (or at the spatial
boundary if one exists) is the same. However, a bonus
of the new approach is that the new constraints ρ − q ≈ 0
are not linearly dependent across the spatial hypersurface,
since q is an independent function instead of a component
of the decomposition of ρ. Thus, while the constraints
ρ − q ≈ 0 clearly imply ∂iρ ≈ 0, and vice versa, the former
constraints do not share the nonlocal linear dependence of
the latter constraints.
We observe that the above method could be used as well

when ρ is a scalar, like in unimodular gravity [5,16] and in
the local theory of vacuum energy sequestering [17]. In
those cases, the advantage of the approach would be to
avoid the decomposition of variables and eliminate the
nonlocal linear dependence of the constraints. In the
present case of generalized unimodular gravity, however,
the new approach is a necessity rather than an option.
Now we shall use the above method for the constraint

(47), which also leads to a replacement of the secondary
constraint (59). We introduce a new variable qðtÞ, which
depends only on time. The constraint (47) is replaced with a
constraint of the form

C1 ¼
ffiffiffi
h

p
F1ðhÞλ − q ≈ 0: ð73Þ

The consistency condition for (73) implies a secondary
constraint that replaces (59). It is obtained asffiffiffi
h

p
fðhÞ∂iNi ≈ 0, which can be simplified to define the

constraint as

C2 ¼ ∂iNi
l ≈ 0; ð74Þ

where the decomposition of the shift vector (51) is also
used. Observe that (74) already appeared in (61) as a
specific solution to the constraint (59). The constraints (73)
and (74) do not exhibit the nonlocal linear dependence of
the constraints (47) and (59). Now that we have proved that
the structure of constraints is consistent under time evo-
lution and written them in a suitable linearly independent
form, we proceed to the canonical analysis regarding the
physical degrees of freedom of the generalized theory in its
different cases.

C. Counting of physical degrees of freedom

In the case of a constant function fðhÞ, there are three
physical degrees of freedom for each point of space. The
extra physical degree of freedom compared to GR is due to
the absence of a Hamiltonian constraint for the Hamiltonian
(45), since (46) is no longer a constraint. Consequently, there
is also a nonvanishing bulk contribution to the Hamiltonian
on the constraint surface: H ≈

R
Σt
d3xfH0

T ≠ 0. In GR, the
Hamiltonian constraint is regarded to fix the conformal factor
of themetric hij [19], which leaves the conformally invariant
metric independent. The absence of a Hamiltonian constraint
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in the present case means that the conformal factor of the
metric becomes an independent dynamical variable.
In the case of unimodular gravity, fðhÞ ¼ ϵ0/

ffiffiffi
h

p
, there

are the same two local physical degrees of freedom as in
GR and an extra zero mode that describes the cosmological
constant [5].
All the remaining choices for fðhÞ share the same

physical degrees of freedom. We can identify the sec-
ond-class constraints of the theory as CN , πN , C1, pλ, C2,
and πijl. The first four constraints can be used to eliminate
the variables N, πN , λ, and pλ, while the last two second-
class constraints fix the longitudinal component of the shift
vector. The Dirac bracket can be shown to be equivalent to
the Poisson bracket for the remaining variables. The
Hamiltonian is thus written as

H ¼
Z
Σt

d3x½fðhÞH0
T þ ðNi

t þ Ni
lÞHi þ viNπijt�; ð75Þ

where Ni
l is the solution to (60) under given boundary

conditions, and the Hamiltonian constraint was written as

HT ¼ H0
T þ q

F1ðhÞ

¼ 2

M2
P

ffiffiffi
h

p πijGijklπ
kl −

M2
P

ffiffiffi
h

p

2
ð3ÞRþ q

F1ðhÞ
≈ 0: ð76Þ

Therefore, in the case of a general function fðhÞ, we have
the same two local physical degrees of freedom as in GR
and an additional time-dependent variable qðtÞ. The latter is
an external zero mode produced by the restriction of
general covariance. While the evolution of qðtÞ is not
determined by the equations of motion, it has to be
consistent with the boundary conditions and evolution of
metric variables, since they are related by the Hamiltonian
constraint (76), and the equation of the motion for the
momentum πij depends explicitly on q. The Hamiltonian
on the constraint surface again contains a nonvanishing
bulk contribution, but thanks to the constraint (76) it is now
given as H ≈ −q

R
Σt
d3xfðhÞ/F1ðhÞ. Next, we discuss how

the above bulk terms contribute to the definition of total
gravitational energy of generalized unimodular gravity.

D. Total gravitational energy

For a given solution, we define the total energy asso-
ciated with a time translation along tμ ¼ Nnμ þ Nμ as the
value of the physical Hamiltonian. We assume that the
solution asymptotically approaches a static background
solution. Then the physical Hamiltonian is defined as the
difference of the Hamiltonian of the solution H and the
Hamiltonian of the static background Hb as Hphys ¼
H −Hb. In GR, the total gravitational energy is given
by boundary terms as [14]

EGR ¼ −M2
P

Z
Bt

d2xN
ffiffiffi
σ

p ðð2ÞK − ð2Þ
0 KÞ þ 2

Z
Bt

d2xNirjπij;

ð77Þ

where Bt is the boundary of the spatial hypersurface Σt,
ð2ÞK is the extrinsic curvature of the boundary, σ is the
determinant of the metric induced on Bt, and ri is the unit
normal to Bt. The subscript “0” denotes the quantities
associated with the static background. The total energy for
any background can be obtained from the general expres-
sion above. That includes the ADM energy for an asymp-
totically flat spacetime, as well as the total energy for
asymptotically anti–de Sitter spacetimes and asymptoti-
cally conical spacetimes.
In generalized unimodular gravity, we have shown above

that the bulk Hamiltonian contains a nonvanishing con-
tribution on the constraint surface. Physically, this was
expected, since the field equation (8) contain an additional
stress-energy contribution due to the constraint (2) that
breaks down general covariance.
When f is a constant, the physical Hamiltonian contains

a nonvanishing bulk contribution:

Hphys ¼ HGR
phys þ f

Z
Σt

d3xðH0
T − 0H

0
TÞ: ð78Þ

Since the momentum 0π
ij vanishes for the static back-

ground, we have

0H
0
T ¼ −

M2
P

2

ffiffiffiffiffi
0h

p ð3Þ
0 R: ð79Þ

Hence, we obtain the total energy of a given solution as

E ¼ EGR þ f
Z
Σt

d3x

�
2

M2
P

ffiffiffi
h

p πijGijklπ
kl

−
M2

P

2
ð

ffiffiffi
h

p ð3ÞR −
ffiffiffiffiffi
0h

p ð3Þ
0 RÞ

�
: ð80Þ

In the general case, when fðhÞ is not a constant and it
does not match the case of unimodular gravity, we obtain
the physical Hamiltonian as

Hphys ¼ HGR
phys −

Z
Σt

d3x
�
q
fðhÞ
F1ðhÞ

− q0
fð0hÞ
F1ð0hÞ

�
: ð81Þ

Since the function q of time is not determined by the
dynamical equations, we could assume that the solution for
it matches the background, q ¼ q0. Then the total energy is
given as

E ¼ EGR − q0

Z
Σt

d3x

�
fðhÞ
F1ðhÞ

−
fð0hÞ
F1ð0hÞ

�
: ð82Þ
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The bulk contributions to the total energy in both cases are
inconvenient, but that appears to be a direct consequence of
the given type of violation of general covariance. There is
an important exception. For a power-law function f (58),
the fraction fðhÞ/F1ðhÞ is a constant n−1, which is
independent of h, and hence the bulk contribution to the
total energy (82) vanishes. Consequently, the total energy
of GR (77) is retained in this case.

IV. PATH INTEGRAL

In order to recognize the differences compared to GR
and unimodular gravity at the quantum level, we shall work
out the formal canonical path integral for generalized
unimodular gravity. The case of unimodular gravity, fðhÞ ¼
ϵ0/

ffiffiffi
h

p
, has been analyzed in Ref. [5], and that will serve as a

point of comparison for the present generalized version of the
theory.

A. Constant function f

When f is a constant, we first integrate over the variables
N, πN , λ, and pλ by using the second-class constraints CN ,
πN , HT , and pλ. Then the Hamiltonian appears in the form
(45). Gauge-fixing conditions for the first-class constraints
Hi and πi are introduced as χi and σi ¼ Ni − fi, respec-
tively, and we assume for simplicity that the gauge
conditions have vanishing Poisson brackets with each
other. Once the shift variable has been integrated, the path
integral is obtained as

Z¼N 1

Z Y
xμ
DhijDπijδðχiÞδðHjÞjdetfχi;Hjgj

×exp

�
i
ℏ

Z
dt
Z
Σt

d3xðπij∂thij−fH0
T −fiHiÞ

�
: ð83Þ

Using the integral representation δðHiÞ ∝
R Q

xμDNi×
exp ð− i

ℏ

R
dt

R
Σt
d3xNiHiÞ and shifting the reintroduced

shift variables asNiþfi→Ni, we obtain the path integral as

Z¼N 2

Z Y
xμ
DNiDhijDπijδðχiÞjdetfχi;Hjgj

×exp

�
i
ℏ

Z
dt
Z
Σt

d3xðπij∂thij−fH0
T −NiHiÞ

�
: ð84Þ

Integration over the momentum πij is performed in the same
way as in GR, which gives

Z ¼ N 3

Z Y
xμ
DNiDhijh−3/2δðχiÞj detfχi;Hjgj

× exp

�
i
ℏ
M2

P

2

Z
dt

Z
Σt

d3xf
ffiffiffi
h

p
ðKijGijklKkl þ ð3ÞRÞ

�
;

ð85Þ

where Kij ¼ 1
2f ð∂thij − 2DðiNjÞÞ. Thus, the two major

differences compared toGR remain unaltered at the quantum
level. The lapse is fixed to a constant f, and there is no
Hamiltonian constraint. Therefore, only the functional deter-
minant associated with gauge fixing of the spatial diffeo-
morphisms is present. We may rewrite the path integral
in a form that resembles the covariant path integral of GR
by reintroducing the lapse along with the constraint CN ¼
N − f ¼ ð−g00Þ−1/2 − f as

Z ¼ N 4

Z Y
xμ
Dgμνg00ð−gÞ−3/2δðð−g00Þ−1/2 − fÞδðχiÞ

× j detfχi;Hjgj exp
�
i
ℏ
SEH½gμν�

�
; ð86Þ

where SEH½gμν� is the Einstein-Hilbert action without a
cosmological constant. General covariance is, of course,
broken not only due to the constraint ð−g00Þ−1/2 ¼ f but also
due to absence of the fourth generator HT of spacetime
diffeomorphism. Themeasure of integration has beenwritten
in a gauge-invariant form [20], except for the (gauge)
conditions imposed by the δ functions.

B. General function f ðhÞ
In the general case, i.e., when f0ðhÞ ≠ 0 and

3f0ðhÞ þ 2hf00ðhÞ ≠ 0, we first use the second-class con-
straints as CN , πN , C1, pλ, C2, and πijl to integrate out the
variables N, πN , λ, pλ, Ni

l , and πijl. Hence, we attain the
Hamiltonian (75). Gauge-fixing conditions for the first-
class constraints Hμ ¼ ðHT;HiÞ and πijt are introduced as
χμ and σit ¼ Ni

t − fit , respectively, and we assume that the
gauge conditions have vanishing Poisson brackets with
each other. The pair of constraints πijt and σit is used to
integrate over Ni

t and πijt. Now the path integral can be
written as

Z ¼ N 1

Z Y
xμ
DhijDπijDqδðχμÞδðHνÞj detfχμ;Hνgj

× exp

�
i
ℏ

Z
dt

Z
Σt

d3xðπij∂thij − fðhÞH0
T

− ðfit þ Ni
lÞHiÞ

�
; ð87Þ

where one should notice that Ni
l is the solution to (60) under

given boundary conditions. Using the integral representation
δðHνÞ∝

R Q
xμDNDNi exp ½− i

ℏ

R
dt
R
Σt
d3xðNHT þNiHiÞ�

and shifting the reintroduced lapse and shift variables as
N þ fðhÞ → N and Ni þ fit þ Ni

l → Ni, we obtain the path
integral as
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Z ¼ N 2

Z Y
xμ
DNDNiDhijDπijDqδðχμÞj detfχμ;Hνgj

× exp

�
i
ℏ

Z
dt

Z
Σt

d3x

�
πij∂thij − NH0

T − NiHi

−
qðN − fðhÞÞ

F1ðhÞ
��

: ð88Þ

Finally, we integrate over the momentum πij and the variable
qðtÞ, which gives the path integral as

Z ¼ N 3

Z Y
xμ
Dgμνg00ð−gÞ−3/2δðχμÞNj detfχμ;Hνgjπij½h�

× δ

�Z
Σt

d3x
ð ffiffiffiffiffiffi−gp −

ffiffiffi
h

p
fðhÞÞffiffiffi

h
p

F1ðhÞ

�
exp

�
i
ℏ
SEH½gμν�

�
;

ð89Þ

where πij½h� ¼ M2
P
2

ffiffiffi
h

p
GijklKkl and SEH½gμν� is the Einstein-

Hilbert action without a cosmological constant. The above
integration measure has again been written in a gauge-
invariant form [20]. The difference compared to GR is the
integrated condition on the metric in the measure, which
imposes an integral of the generalized unimodular condition
(2) over the spatial hypersurfaces to be satisfied as

Z
Σt

d3x
ð ffiffiffiffiffiffi−gp −

ffiffiffi
h

p
fðhÞÞffiffiffi

h
p

F1ðhÞ
¼ 0: ð90Þ

That is, the metric in the path integral has to satisfy the
generalized unimodular condition (2) in average, weighted
with

ffiffiffi
h

p
F1ðhÞ, over each spatial hypersurface. In unim-

odular gravity [5], we have a similar integrated condition,R
Σt
d3xð ffiffiffiffiffiffi−gp − ϵ0Þ ¼ 0, but without a weighting factor.

V. PROPAGATION OF PERTURBATIONS
IN THE CASE OF A CONSTANT

FUNCTION f ðhÞ
In order to elucidate the nature of the extra physical

degree of freedom found in the case of a constant f,
we consider a linearization of the theory. In particular,
we obtain the field equations for weak perturbations of the
metric induced on the spatial hypersurfaces and study the
propagation of perturbations in vacuum.
We consider a background spacetime with a metric

of the form

gμνdxμdxν ¼ −dt2 þ hijdxidxj: ð91Þ

Any metric can be written to this form in Gaussian normal
coordinates, but such coordinates usually cover only a
part of spacetime. We set the constant function f to 1, and
we choose to gauge fix the shift vector as Ni ¼ 0.

The action for the partially gauge-fixed system is thus
written as

S¼
Z

dt
Z
Σt

d3xðπij∂thij−H0
TÞþSm

¼M2
P

2

Z
dt
Z
Σt

d3x

�
1

4
Gijkl∂thij∂thklþð3ÞR

�
þSm; ð92Þ

where Sm is the action for matter. Recall that, in the case of a
constantf, the systemwas shown tobe symmetric only under
diffeomorphisms on the spatial hypersurface, since the
Hamiltonian constraint served only to fix the value of the
auxiliary variable λ. Hence, there is an extra physical degree
of freedom, which is carried by the spatial metric hij. The
field equations for hij are obtained by varying hij as

∂tððδki δlj − hijhklÞ∂thklÞ þ ∂thik∂thjlhkl

− ∂thij∂thklhkl þ 2ð3ÞRij ¼ 2M−2
P Tij; ð93Þ

where Tij ¼ − 2ffiffi
h

p δSm
δhij is the stress tensor for matter.

Then the metric induced on the spatial hypersurfaces is
expanded as

hij ¼ 0hij þ γij; jγijj ≪ 1; ð94Þ
where 0hij is the spatial background metric that satisfies
the field equations for a given distribution of matter. The
inverse of the metric is hij ¼ 0h

ij − γij, where γij ¼
0h

ik
0h

jlγkl. The linearized field equations are obtained as

∂2
t ðγij − 0hijγÞ þ 0D

k
0Diγjk þ 0D

k
0Djγik

− 0D
2γij − 0Di0Djγ ¼ ð2M−2

P ÞT ij; ð95Þ

where γ ¼ 0h
ijγij and 0Di is the covariant derivative deter-

mined by the spatial background metric 0hij, we denote

0D
i ¼ 0h

ij
0Dj and 0D

2 ¼ 0h
ij
0Di0Dj, and T ij represents

perturbation ofmatter fields.We decompose the perturbation
of the spatial metric to a traceless component sij and the trace
component γ as

γij ¼ sij þ
1

3 0hijγ: ð96Þ

The traceless component can further be decomposed to a
transverse (divergence-free) component and a longitudinal
component4:

sij ¼ γTTij þ γLij; ð97Þ

4Alternatively, γij could be first decomposed to transverse and
longitudinal components, and then the trace of the transverse
component could be separated. In other words, the longitudinal
component could be defined with or without a trace. See [21,22]
for details.
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where

0D
jγTTij ¼ 0; γLij ¼ 0DiWj þ 0DjWi −

2

3 0hij0DkW
k:

ð98Þ
The linearized field equations are rewritten as

0□sij − 0D
k
0Disjk − 0D

k
0Djsik þ

2

3 0hij∂2
t γ þ

1

3 0hij0D
2γ

þ 1

3 0Di0Djγ ¼ ð2M−2
P ÞT ij; ð99Þ

where 0□ ¼ −∂2
t þ 0D

2 is the d’Alembertian.
We are interested in the propagation of gravitational

perturbations in vacuum; i.e., we take T ij ¼ 0. For that
purpose, it is appropriate to consider the background to be
the Minkowski spacetime, 0hij ¼ δij. The linearized field
equations (99) are then written as

□sij − ∂k∂isjk − ∂k∂jsik þ
2

3
δij∂2

t γ þ
1

3
δij∂k∂kγ

þ 1

3
∂i∂jγ ¼ 0; ð100Þ

where ∂i¼ δij∂j and□ ¼ −∂2
t þ ∂i∂i is the d’Alembertian

in Minkowski spacetime. In order to fix the symmetry
under spatial diffeomorphisms, we consider two possible
gauge conditions. First, we choose the transverse coordi-
nate condition

∂jsij ¼ 0; ð101Þ
which fixes the longitudinal component:

∂jγLij ¼ ∂j∂jWi þ
1

3
∂i∂jWj ¼ 0: ð102Þ

The field equations simplify to

□γTTij þ 2

3
δij∂2

t γ þ
1

3
δij∂k∂kγ þ

1

3
∂i∂jγ ¼ 0: ð103Þ

The traceless transverse mode and the trace mode are still
coupled due to the last term. In GR, the trace component γ
is not dynamical, since it is determined by the 00
component of the Einstein equation as ∂i∂iγ ¼ 1

3
∂i∂jsij,

so that its appearance in (103) is not a complication.
However, here the trace mode is dynamical, and hence we
prefer to decouple the dynamical equations for sij and γ.
For that purpose, the most elucidating gauge choice is the

harmonic coordinate condition on the spatial hypersurface

∂jγij ¼
1

2
∂iγ; ð104Þ

which is written for the traceless component as

∂jsij ¼
1

6
∂iγ; ð105Þ

i.e., the longitudinal component is determined by the trace
component as

∂jγLij ¼ ∂j∂jWi þ
1

3
∂i∂jWj ¼

1

6
∂iγ: ð106Þ

We emphasize that our harmonic coordinate condition (104)
is not the usual harmonic or Lorentz condition of linearized
GR. The present coordinate condition (104) is defined
on the spatial hypersurface, so that the coordinates satisfy
hijDiDjxk ¼ 0. Now the field equations (100) for the
traceless and trace modes are decoupled as

□sij ¼ 0; ð107Þ

∂2
t γ þ

1

2
∂i∂iγ ¼ 0: ð108Þ

The traceless mode satisfies the standard wave equation, and
these perturbations travel at the speed of light. These are the
usual gravitational waves. The trace mode, however, satisfies
an elliptic PDE in spacetime, which is highly unusual in
physics. Elliptic PDEs are common in space but not in
spacetime.

A. Dynamics of the trace mode

Since the dynamics of the traceless mode is determined
by the usual wave equation, we now focus on the unusual
elliptic form of equation for the trace mode. The dynamical
equation for the trace mode (108) resembles the Laplace
equation in four-dimensional Euclidean space, except that
the equation is anisotropic with respect to time and space
due to the factor 1

2
. The elliptic nature of the equation

means that the trace mode does not propagate in the usual
sense, but rather it spreads out from the source in a
peculiar way.
We can solve the elliptic PDE (108) with conventional

methods, for example, via the separation of variables.
Consider an ansatz of the form

γ ¼ AðtÞBðxÞ: ð109Þ

The PDE is separated as

d2A
dt2

−
k2

2
A ¼ 0; ð110Þ

△Bþ k2B ¼ 0; ð111Þ

where k2 is a separation constant and △ ¼ ∂i∂i is the
spatial Laplacian. Both equations are of a familiar type and
easy to solve with boundary conditions chosen to match the
physical situation, in particular, the shape and symmetry of
the perturbation, which is related to the nature of the matter
source. When k2 > 0, the general solution to (110) is
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AðtÞ ¼ c1ekt/
ffiffi
2

p
þ c2e−kt/

ffiffi
2

p
: ð112Þ

The PDE for B is the Helmholtz equation in three-dimen-
sional space, i.e., the same one obtained for the wave
equation, which can be solved by the separation of
variables in several coordinate systems.
Consider a plane perturbation that travels in the direction

of one of the Cartesian coordinates xi, so that B depends
only on one of the spatial coordinates. Hence, the spatial
equation (111) becomes one dimensional, and it has the
general solution

BðxÞ ¼ c3 sinðkxÞ þ c4 cosðkxÞ: ð113Þ

Hence, in this case, the full solution for the trace perturba-
tion reads

γðt;xÞ¼
X
k

ðc1ekt/
ffiffi
2

p
þc2e−kt/

ffiffi
2

p
Þðc3 sinðkxÞþc4cosðkxÞÞ:

ð114Þ

In order to obtain a specific solution, we need to specify
suitable initial and/or boundary conditions on γ. For
example, we could impose initial conditions as

γð0; xÞ ¼ f0ðxÞ; ∂tγð0; xÞ ¼ f1ðxÞ; ð115Þ

where f0 and f1 are functions such that jf0j ≪ 1 and
jf1j ≪ 1 everywhere. Furthermore, boundary conditions
could be imposed in the spatial direction as well, for
instance, a Dirichlet boundary condition

γðt;−LÞ ¼ γðt; LÞ ¼ bðtÞ: ð116Þ

As an example, we consider solutions that satisfy the
following initial conditions for a given k:

γð0; xÞ ¼ 2a sinðkxÞ;
∂tγð0; xÞ ¼

ffiffiffi
2

p
bk sinðkxÞ; ð117Þ

where a and b are dimensionless constants that satisfy
jbj ≤ jaj ≪ 1, and the boundary conditions are defined as

γðt;−LÞ ¼ γðt; LÞ ¼ 0: ð118Þ

The solution is obtained as

γðt;xÞ¼
X∞
n¼1

ððanþbnÞeknt/
ffiffi
2

p
þðan−bnÞe−knt/

ffiffi
2

p
ÞsinðknxÞ;

ð119Þ

where

X∞
n¼1

janj ≪ 1; jbnj ≤ janj; kn ¼
nπ
L

; n ∈ Zþ:

ð120Þ

The time-dependent factor of the perturbation (119) for each
kn is a sum of an exponentially increasing term and an
exponentially decreasing term. Given enough time, the
exponentially increasing term will begin to dominate, which
happens for a given kn when t > ð ffiffiffi

2
p

knÞ−1 lnðan−bnanþbn
Þ. The

only way to avoid the exponential growth of the perturbation
with time is to fine-tune the initial conditions by setting bn
(extremely close) to −an. When bn ¼ −an, the perturbation
diminishes exponentially with time. That kind of evolution
would, however, require an especially fine-tuned source to
produce the perturbation. For general initial conditions, the
perturbation will eventually begin to grow exponentially. An
exponential growth of a perturbation with time is a sign of an
instability. When the initial and boundary conditions are
consistent with a negative separation constant, k2 < 0, the
roles of time and space are interchanged, and hence the plane
perturbation would generally grow exponentially with the
distance in space, once the distance is large enough.
The linearized description is valid only as long as the

perturbation remains small, jγj ≪ 1. For a perturbation
(119) that consists of a single mode kn, that implies the time

must be small enough to satisfy jan þ bnjeknt/
ffiffi
2

p
≪ 1, or

t ≪ −
ffiffiffi
2

p
k−1n ln jan þ bnj by at least one order of magni-

tude. Beyond that, the linearization of the system is invalid,
and hence a nonperturbative treatment would become
necessary.
The length scales k−1n that are present in a perturbation

are comparable to the scales involved in the source that
produces the perturbation. For any observation of gravita-
tional waves, the length scales k−1n involved in the pertur-
bation are very small compared to the distance, in space and
time, between the source and the observer. Thus, unless the
initial conditions are fine-tuned, the exponentials in (119)
are very large, and hence knt is expected to be greater than
lnðan−bnanþbn

Þ. Therefore, the perturbation increases exponen-
tially with time. Similar results can be obtained for
spherical and cylindrical perturbations, where for k2 > 0
the radial dependence of the perturbation is given by the
(spherical) Bessel functions. We conclude that, while
the trace mode and the traceless mode are decoupled in
the chosen gauge, and therefore the usual gravitational
wave solutions for the traceless perturbation are unaltered,
the trace perturbation has been shown to grow exponen-
tially with time, which implies that the trace mode is
unstable. On the other hand, for initial and boundary
conditions that are consistent with a negative separation
constant, k2 < 0, a plane perturbation would be oscillatory
in time, but it would grow exponentially with the distance
in space.
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VI. CONCLUSIONS

We have studied the Hamiltonian formalism and path
integral quantization of generalized unimodular gravity,
where general covariance is broken by imposing the
determinant of the metric of spacetime equal to a function
of the determinant of the spatial metric (2). We emphasized
that there are two ways to look at the theory. Those
different points of view are analogous to the case of
unimodular [23], where the field equation for the metric is
either the traceless Einstein equation or (thanks to the
Bianchi identity) the Einstein equation with a cosmologi-
cal constant. In the first approach, we can eliminate the
field λ that is used to impose the generalized unimodular
constraint, since it is nondynamical and determined by the
Hamiltonian constraint (30) or, equivalently, by the pro-
jection (16) of the modified Einstein equation. This
approach is aligned with the interpretation that λ is a
(nondynamical) variable of the gravitational sector.
Alternatively, after the field equations or the canonical
equations of motion have been derived, one can begin to
regard λ as the energy density of an extra matter compo-
nent. Then λ could be treated as an independent matter
component. We have used the first approach in our
Hamiltonian analysis, so that λ is treated as a gravitational
variable throughout the analysis.
The physical content of the model for a general function

fðhÞ resembles the case of (customary) unimodular gravity.
Both theories contain two local physical degrees of free-
dom, which correspond to the graviton and an additional
zero mode. In the generalized model, however, the zero
mode is not fixed to a constant dynamically, which differs
from unimodular gravity, where the constant value of the
zero mode is the cosmological constant [5]. Instead, the
Hamiltonian constraint of the generalized model contains a
bulk term that depends on time and on the determinant of
the spatial metric (76). That also results in the presence of a
nonvanishing bulk term in the physical Hamiltonian (81).
The corresponding bulk contribution to the total energy
(82) was shown to vanish for a power-law function f (58),
so that the definition of total energy matches the one of GR.
This enhances the prospects of models with a power-law
function, in addition to the fact that the constraint (50) is
simplified greatly for such functions.
Particular attention was paid to the special case of a

constant function f, where an extra degree of freedom is
found in each point of space. This interesting consequence
of a constant f was shown in the Hamiltonian analysis, and
already predicted in a careful treatment of the modified
Einstein field equations (8), and it is clearly visible in the
canonical path integral of the theory. The presence of
the extra degree of freedom can be traced to the fact that the
Hamiltonian constraint (30) is no longer a first-class
constraint but rather a second-class constraint that deter-
mines the variable λ. The appearance of the local extra
degree of freedom is the result of a breakdown of general

covariance down to diffeomorphism invariance on the
spatial hypersurface. That was also shown to imply that
the Hamiltonian contains a nonvanishing bulk contribution
on the constraint surface, which contributes to the defi-
nition of total gravitational energy.
In order to further analyze the implications of the extra

degree of freedom in the case of a constant f, we have
considered the propagation of perturbations in a vacuum.
When the background is chosen as Minkowski spacetime,
and the perturbation of the spatial metric is decomposed in
terms of a traceless component sij and trace component γ,
it was found that the traceless mode satisfies a standard
wave equation, which corresponds to the usual gravita-
tional waves, while the trace mode satisfies an elliptic PDE
in spacetime (108), showing that this mode does not
propagate as a wave, but rather it spreads out in spacetime.
Examining a solution to this equation for a given set of
initial and boundary conditions, it was shown that the trace
mode is oscillatory in space but behaves exponentially
with time (or vice versa, depending on the sign of the value
of the separation constant, which is determined by the
boundary and/or initial conditions). Then the trace mode
was shown to grow exponentially with time, when enough
time has passed. That could be avoided only by fine-tuning
the initial conditions. Hence, the trace mode is generally
unstable on the Minkowski background.
Another point that deserves attention was our proposal of

handling constraints that impose a vanishing gradient, i.e.,
∂iϕ ≈ 0, in favor of local constraints in the Hamiltonian
analysis for the case of a general function fðhÞ. The usual
approach is to decompose the variable ϕ into a time-
dependent zero mode ϕ0 and a spacetime-dependent
average-free mode ϕ̄ [16], so that the above constraint is
replaced with ϕ̄ ≈ 0. Both constraints exhibit a nonlocal
linear dependence, since their integrals over the spatial
hypersurface vanish, and hence the constraint must be
handled according to the formalism of Ref. [18]. This
decomposition enables a clear identification of the physical
degrees of freedom in both unimodular gravity and the local
theory of vacuum energy sequestering. Unfortunately, this
technique does not work in the present case of generalized
unimodular gravity, since the relevant constraints (47) and
(59) consist of partial derivatives of scalar densities instead
of derivatives of scalars.
Our solution to the problem circumvents the need to

perform a decomposition, but rather it is based on the
introduction of a new (nondynamical) variable qðtÞ that is
an arbitrary function of time, carrying a single physical
degree of freedom, a so-called zero mode, so that the
constraint ∂iρ ≈ 0 is replaced with a new constraint
ρ − q ≈ 0. Those two constraints are equivalent assuming
that the variable q is an arbitrary function of time. The
second major difference is that in this approach the new
constraints ρ − q ≈ 0 are no longer linearly dependent
across the spatial hypersurface, since q is an independent
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function instead of a component of the decomposition of ρ.
Hence, in this approach, the quantization of generalized
unimodular theory did not require the treatment of Batalin-
Vilkovisky formalism, and the usual canonical path inte-
gral could be used.
Gravitational theories that violate general covariance are

rather rare for good reasons. This has particularly been the
case since generally covariant formulations of unimodular
gravity were created [9] (see also [2,5,16]). The action of
generalized unimodular gravity (4) does not admit a
generally invariant formulation via reparametrization of
coordinates due to the presence of the function fðhÞ. Thus,
the generalized unimodular theory is a truly noncovariant
modification of GR. One area where nonrelativistic gravity
has been particularly fruitful is Hořava-Lifshitz gravity
[10], where general covariance is sacrificed at high energies
in order to achieve power-counting renormalizability with-
out introducing ghosts. As in generalized unimodular
gravity, the violation of general covariance in Hořava-
Lifshitz gravity implies the presence of an extra scalar
degree of freedom. The extra mode is well behaved in the

current formulation of the theory [24]. It is also possible to
eliminate the extra scalar by either extending the symmetry
of the theory [25] or introducing additional constraints [26].
Naturally, such additions are not useful in generalized
unimodular gravity, since removing the extra degree of
freedom would defeat the purpose of the proposal, which is
the extra fluid element. We emphasize that the Lorentz
violation in generalized unimodular gravity takes place at
all energy scales, which is particularly problematic at low
energies, since that may conflict with observed bounds on
Lorentz violation. A scrutiny of phenomenological viabil-
ity is clearly required.
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