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In this paper, we study the quantum behavior of the noncommutative Jackiw-Pi model. After
establishing the Becchi-Rouet-Store-Tyutin (BRST) invariant action, the perturbative renormalizability
is discussed, allowing us to introduce the renormalized mass and gauge coupling. We then proceed to
compute the one-loop correction to the basic 1PI functions, necessary to determine the renormalized
parameters (mass and charge), next we discuss the physical behavior of these parameters.
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I. INTRODUCTION

Mass generation for quantum fields has always been an
important subject extensively studied even after the estab-
lishment of the standard model by means of Higgs mecha-
nism. Interestingly on its own, mass generation is seen by a
completely new optics when the dimensionality of space-
time is lowered to (1þ 1) and (2þ 1) dimensions. Mainly,
in such cases there is a compatibility between gauge
symmetry and massive vector fields, where nonperturbative
effects play an important role and topological terms are
allowed, respectively. The first example of the presence of a
massive photon without breaking the gauge symmetry is the
toy model QED2, the so-called Schwinger model [1,2].
Furthermore, gauge field theories when defined in three
space-time dimensions carry notorious attention since the
early works of Deser, Jackiw, and Templeton [3]. These
(2þ 1)-dimensional field models possess not only interest-
ing mathematical structure in their solution, but rather they
are well motivated by allowing a gauge field theoretical
description of (planar) condensed matter phenomena, such
as high-Tc superconductivity and quantum Hall effect,
among other examples [4].
In more details, the Chern-Simons term is a topological

theory which when is added to the three-dimensional
Maxwell/Yang-Mills action, renders the gauge field a mas-
sive mode, while preserving gauge invariance. However, the

price to pay due to the presence of a Chern-Simons
topological mass term is the violation of parity-invariance.
On the other hand, if parity invariance is required to be
preserved, one might approach this mass-gap generation
mechanism through the doublet mechanism. Using this
method Jackiw and Pi have suggested a theory for massive
vector fields, which is simultaneously gauge invariant and
parity preserving, this is namely the Jackiw-Pimodel [5,6]. In
this case, the two vector fields have opposite parity trans-
formations, which generate a mass-gap through a mixed
Chern-Simons-like term preserving parity; moreover, the
parity transformation is defined to include a field exchange
together with the coordinate reflection, and this is a sym-
metry of the doubled theory. Many aspects concerning the
Becchi-Rouet-Store-Tyutin (BRST) quantization of the
Jackiw-Pimodel have been studied [7–14]. Actually, a subtle
point concerning the Jackiw-Pi model is that it possess two
independent local gauge symmetries (inherent due to the
doublet mechanism), this clash among symmetries is known
as bifurcation effect [15]. We shall revisit this point from a
BRST point of view as presented in Ref. [9].
Recently a proposal of extending Jackiw-Pi model to a

noncommutative spacetime has been presented [14]. There
the Batalin-Vilkovisky formalism has been used in con-
junction with the enveloping algebra approach for non-
Abelian noncommutative field theory [16] to give a proper
formulation for quantization. Because of the recent
improvement concerning the precision of the measure-
ments of experiments (LHC, ILC, etc.) investigating
particle properties in the search of direct evidence of
new physics, noncommutative (NC) gauge field theory
has received significant attention due to its interesting way
to engender Lorentz violating effects and also by its richer
phenomenological aspects [17–20]. One may also say that
noncommutativity of the coordinates of the spacetime
emerges naturally in the description of fractional quantum
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Hall effect [21], and find application in the study of planar
physics in condensed matter and statistical physics.
It is well known that the Maxwell-Chern-Simons theory,

like the Jackiw-Pi model, is UV finite, while its NC version
exhibits UV/IR mixing at one-loop order [22]. The UV/IR
effect is one of the main drawback features of the NC field
theories, so due to the potential application of Jackiw-Pi
model into planar physical systems with parity symmetry, it
is rather interesting to explore theoretical aspects and
studying whether we still encounter this IR instabilities
in the NC Jackiw-Pi model. Also, an underlying question in
the analysis is that whether a parity even NC field theory is
sufficient to render a NC gauge model free of noncommu-
tative IR instabilities, i.e., an additional discrete symmetry
can change significantly the physical behavior of a field
theory. We wish to present a detailed account for the BRST
renormalizability of the model from the point of view of
Ref. [9], and also to compute the first order perturbative
correction for the basic 1PI functions. This paper is
organized as follows. In Sec. II we present an overview
on the Jackiw-Pi model, exploring the presence of a double
Abelian symmetry, or bifurcation effect, and the resulting
BRST structure used for the gauge fixing and ghosts. We
extend this BRST description to the noncommutative case,
where the non-Abelian structure is replaced by the Moyal
star product.1 Discrete symmetries in the NC Jackiw-Pi
model is also discussed. In Sec. III all the Feynman rules
are presented for the propagators and 1PI vertices, in
addition, a discussion for the renormalizability for the full
theory is presented. Section IV is devoted to present and
compute the graphs corresponding to the one-loop self-
energy functions necessary to determine the renormalized
mass and coupling constant. In Sec. V the expressions for
the finite counter-terms are computed, as well as we discuss
the physical behavior of the renormalized mass and
coupling constant. Final remarks are presented in Sec. VI.

II. JACKIW-PI MODEL

Before starting with the noncommutative extension of
the Jackiw-Pi model, let us briefly review the main parts of
its construction, so that it would help us to highlight some
important points in the noncommutative construction. The
Jackiw-Pi model is a non-Abelian gauge invariant, mass
generating, parity preserving theory whose dynamics is
governed by the Lagrangian

L ¼ Tr
�
−
1

2
FμνFμν −

1

2
GμνGμν þmϵμνλFμνϕλ

�
; ð2:1Þ

where Aμ and ϕμ are parity even and odd vector bosonic
fields, respectively, and m is a mass parameter. This
Lagrangian can be understood as describing a charged
vector mesons ϕμ minimally coupled with a gauge potential
Aμ, where the fields have opposite parity transformations,
which generates a mass-gap through a mixed Chern-
Simons-like term preserving parity. Moreover, the two-
form curvatures and covariant derivative are given as

Fμν ¼ ∂μAν − ∂νAμ þ ig½Aμ; Aν�; ð2:2Þ

Gμν ¼ Dμϕν −Dνϕμ; ð2:3Þ

where Dμ• ¼ ∂μ •þig½Aμ; •�. It is worth mentioning that
the full nonlinear theory (2.1) does have an interesting
symmetry structure. In addition to the (Yang-Mills) gauge
symmetry

δθAμ ¼ Dμθ; δθϕμ ¼ ig½ϕμ; θ�: ð2:4Þ

The (massive) mixing term in L is also invariant upon the
(non-Yang-Mills) symmetry

δχAμ ¼ 0; δχϕμ ¼ Dμχ: ð2:5Þ

However, this second transformation does not leave the
nonlinear part of Gμν invariant, since δχGμν ¼ ½Fμν; χ�. In
other words, this shows that the quadratic theory possesses
two independent, Abelian gauge symmetries; while with
interaction, only one non-Abelian symmetry survives
[5,11]. This clash among the two local Abelian invariance
symmetries is the so-called bifurcation effect [15]. This
presents an intricate quantization problem that is solved by
enlarging the gauge symmetry with an additional scalar
field ρ, that transforms accordingly

δθρ ¼ ig½ρ; θ�
δχρ ¼ −χ: ð2:6Þ

So that, the replacement

Ga
μν → Ga

μν þ fabcFb
μνρ

c; ð2:7Þ

in the Lagrangian density (2.1) allows Hamiltonian path
integral quantization [5,11]. It is even possible that in
addition to the above replacement, a kinetic term for the ρ
field is present in the form TrðDμρ −mϕμÞ2, this new
model is the so-called extended Jackiw-Pi model [13].
The corresponding BRST transformations of these

fields, stemmed from these gauge transformations (δθ
and δχ), are [11]

sAμ ¼ Dμc; sc ¼ −gc2; sc̄ ¼ 0;

sb ¼ 0; sρ ¼ −ξþ ig½ρ; c� ð2:8Þ

1The noncommutativity we will be using in the paper is
defined by the algebra ½x̂μ; x̂ν� ¼ iθμν. So to construct a non-
commutative field theory, using the Weyl-Moyal (symbol)
correspondence, allowing to the ordinary product be replaced
by the Moyal star product as defined below.
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sϕμ ¼ Dμξþ ig½ϕμ; c�; sξ ¼ −g½ξ; c�;
sξ̄ ¼ 0; sπ ¼ 0; ð2:9Þ

where c and ξ are two sorts of Faddeev-Popov ghosts, while
c̄ and ξ̄ Faddeev-Popov antighosts, and b and π are
Nakanishi-Lautrup auxiliary fields.
The gauge fixing is then obtained in the BRST formalism

as usual, and reads

Lg:f ¼ Tr

�
b∂μAμ − c̄∂μDμcþ π∂μϕ

μ

− ξ̄∂μðDμξþ ig½ϕμ; c�Þ þ
α

2
b2 þ β

2
π2
�
: ð2:10Þ

Additionally, due to the transformations (2.6) we can also
consider the gauge fixing ρ ¼ 0, without loss of generality.
In this sense, using this BRST description, all the vector
fields have nonsingular behavior, and their propagators can
suitably be defined [11].

A. Noncommutative framework

The noncommutative extension of the Jackiw-Pi model
is defined by the following Lagrangian density [14]

L¼−
1

4
Fμν⋆Fμν−

1

4
ðGμνþ ig½Fμν;ρ�⋆Þ⋆ðGμνþ ig½Fμν;ρ�⋆Þ

þm
2
ϵμνλFμν⋆ϕλ; ð2:11Þ

where ½; �⋆ is the Moyal bracket. Notice that this Lagrangian
can be understood as before describing a charged vector
mesons ϕμ minimally coupled with a gauge potential Aμ,
being the main difference between the two forms due to the
presence of the Moyal star product engendering the non-
Abelian interaction structure. The Moyal star product
between functions is described as

fðxÞ⋆gðxÞ ¼ fðxÞ exp
�
i
2
θμν∂⃖μ ∂⃗ν

�
gðxÞ: ð2:12Þ

The two-form curvatures in this setup are given as

Fμν ¼ ∂μAν − ∂νAμ þ ig½Aμ; Aν�⋆; ð2:13Þ

Gμν ¼ ∇μϕν −∇νϕμ; ð2:14Þ

where ∇μ• ¼ ∂μ •þig½Aμ; •�⋆. As we have discussed, we
can extend the original structure (2.9) and establish the
corresponding BRST transformations of this noncommu-
tative setup,

sAμ ¼ ∇μc; sc ¼ −gc2; sc̄ ¼ 0;

sb ¼ 0; sρ ¼ −ξþ ig½ρ; c�⋆ ð2:15Þ

sϕμ ¼ ∇μξþ ig½ϕμ; c�⋆; sξ ¼ −g½ξ; c�⋆;
sξ̄ ¼ 0; sπ ¼ 0; ð2:16Þ

where the ghosts, antighosts and auxiliary fields are the same
as before in the non-Abelian setup Eq. (2.9). Finally, the
gauge fixing is obtained in the BRST formalism, and reads

Lg:f ¼ s

�
c̄∂μAμþ ξ̄∂μϕμþ

α

2
c̄bþβ

2
ξ̄π

�
¼ b⋆∂μAμþ∂μc̄⋆∇μcþπ⋆∂μϕ

μ

þ∂μξ̄⋆ð∇μξþ ig½ϕμ;c�⋆Þþ
α

2
b⋆bþβ

2
π⋆π: ð2:17Þ

Once again, we can consider the gauge fixing ρ ¼ 0, without
loss of generality. This construction assures that all the vector
fields have awell-defined structure, so that we can proceed to
the computation of propagators and vertex functions.

1. Discrete symmetries

In order to have a full view of the NC Jackiw-Pi model,
we shall next analyze the behavior of the Lagrangian
density (2.11) under discrete symmetries: parity, charge
conjugation and time reversal. This is also motivated
because Jackiw-Pi model is seen as a parity invariant
extension of Chern-Simons theory, so it is crucial to
establish under which conditions this holds on a non-
commutative spacetime. It should be emphasized that the
algebra ½xμ; xν� ¼ iθμν, with the assumption that θ0i ¼ 0,
plays an important role in the present analysis.

(i) Parity
Parity transformation in 2þ 1 dimensions is in-

deed a reflection described by x1 → −x1 and
x2 → x2. Under parity, the gauge field transforms as

A0 → A0; A1 → −A1; A2 → A2; ð2:18Þ

Now under the change θij → −θij we find that
FμνFμν is parity invariant. Furthermore, with this
additional condition, and by imposing that the vector
field ϕμ transforms as

ϕ0 → −ϕ0; ϕ1 → ϕ1; ϕ2 → −ϕ2; ð2:19Þ

it is easy to establish that the remaining terms of
(2.11) are parity invariant also in the noncommuta-
tive case.

(ii) Charge conjugation
Under a charge conjugation transformation, the

gauge field changes as Aμ → −Aμ. However, one can
realize that the noncommutative Maxwell term is not
C-invariant unless we consider θij → −θij. Now the
remaining interacting terms betweenAμ andϕμ in the
Lagrangian density (2.11) are invariant under charge
conjugation if the charged vector field transforms as
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ϕμ → −ϕμ. Establishing thus the conditions that
leave the full Lagrangian C-invariant.

(iii) Time reversal
Under a time reversal transformation, x0 → −x0,

the gauge field now changes as

A0 → A0; A1 → −A1; A2 → −A2; ð2:20Þ
and with the change θij → −θij, one see that the NC
Maxwell’s term is T-invariant. Additionally, impos-
ing that the vector field ϕμ transforms under the time
reversal as

ϕ0 → −ϕ0; ϕ1 → ϕ1; ϕ2 → ϕ2; ð2:21Þ
the remaining interacting terms between Aμ and ϕμ

in the Lagrangian density (2.11) are shown to be
invariant under time reversal.

This analysis shows that the NC Jackiw-Pi model is
invariant under all discrete symmetries, this result is in
contrast with the usual NC Maxwell-Chern-Simons model
[22], enlarging thus the possibilities of applications. The
behavior of the NC Jackiw-Pi model under discrete
symmetries can be summarized as the following:

Term P C T CP PT CPT

FμνFμν þ þ þ þ þ þ
GμνGμν þ þ þ þ þ þ
ϵμνρFμνϕρ þ þ þ þ þ þ

III. PROPAGATORS AND RENORMALIZABILITY

As it is well known, from the functional methods, the 1PI
function is given in terms of the connected function as

Γ½Φi� ¼ W½Ji� −
Z

d3xJiðxÞΦiðxÞ;

where Φi denotes collectively the whole set of fields,
and Ji the respective set of currents. Moreover, at zeroth
order, the effective action is precisely the free action
Γð0Þ½Φi� ¼

R
d3xðLþ Lg:fÞ. From these relations we find

that the tree-level propagators at momentum space read

iDμνðkÞ ¼
1

k2 −m2

�
ημν −

kμkν
k2

�
−

α

k2
kμkν
k2

; ð3:1Þ

iSμνðkÞ ¼
1

k2 −m2

�
ημν −

kμkν
k2

�
−

β

k2
kμkν
k2

; ð3:2Þ

iWμνðkÞ ¼ −i
m

k2ðk2 −m2Þ ϵμνλk
λ; ð3:3Þ

where the propagatorsDμν, Sμν andWμν are related with the
vev’s 〈AμAν〉, 〈ϕμϕν〉 and 〈Aμϕν〉, respectively. Moreover,
for the ghost fields 〈c̄c〉 and 〈ξ̄ξ〉 are given by

DcðpÞ ¼ DξðpÞ ¼
i
p2

: ð3:4Þ

The respective vertex Feynman rules are below2

(i) The three gauge field vertex 〈AμAνAσ〉

Ψμνσðp1;p2;p3Þ¼ 2ig½ησμðp1−p3Þνþηνσðp3−p2Þμþημνðp2−p1Þσ�sin
�
1

2
ðp1×p2Þ

�
ð3:5Þ

(ii) The four gauge field vertex 〈AμAνAσAρ〉

Ψμνσρðp1; p2; p3; p4Þ ¼ −4g2
�
ðημσηνρ − ημρηνσÞ sin

�
1

2
ðp1 × p2Þ

�
sin

�
1

2
ðp3 × p4Þ

�

þ ðηνσημρ − ησρηνμÞ sin
�
1

2
ðp3 × p1Þ

�
sin

�
1

2
ðp2 × p4Þ

�

þ ðησρηνμ − ηνρημσÞ sin
�
1

2
ðp1 × p4Þ

�
sin

�
1

2
ðp2 × p3Þ

��
ð3:6Þ

(iii) The two charged and one gauge field vertex 〈Aμϕνϕσ〉

Υμνσðp1; p2; p3Þ ¼ 2ig½ðp2Þσημν þ ðp3 − p2Þμησν − ðp3Þνημσ� sin
�
1

2
ðp1 × p2Þ

�
ð3:7Þ

(iv) The two charged and two gauge fields vertex 〈AμAνϕσϕρ〉

Υμνσρðp1; p2; p3; p4Þ ¼ −4g2
�
ðημνησρ − ησνημρÞ sin

�
1

2
ðp1 × p3Þ

�
sin

�
1

2
ðp2 × p4Þ

�

þ ðημνηρσ − ηρνημσÞ sin
�
1

2
ðp1 × p4Þ

�
sin

�
1

2
ðp2 × p3Þ

��
ð3:8Þ

2These n-point vertex functions have an implicit energy-momentum conservation constraint δð3Þðp1 þ � � � þ pnÞ.
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(v) The one charged and two gauge fields vertex
〈AμAνϕσ〉

Γμνσðp1;p2;p3Þ¼ 2mgϵμνσ sin

�
1

2
ðp1×p2Þ

�
ð3:9Þ

(vi) The two ghosts and one gauge fields vertex
〈Aμc̄c〉 ¼ 〈Aμξ̄ξ〉

Ψμðp2;p3Þ¼2ig

�
ðp2Þμ sin

�
1

2
ðp2×p3Þ

��
: ð3:10Þ

(vii) The mixed two ghosts and one charged fields vertex
〈ϕμξ̄c〉

Δμðp2;p3Þ¼2ig

�
ðp2Þμ sin

�
1

2
ðp2×p3Þ

��
: ð3:11Þ

We shall next proceed in establishing the one-loop
renormalization of the noncommutative model by making
use of the Slavnov-Taylor identities among the Green’s
functions and also the universality of the gauge coupling.

A. Renormalizability analysis

Let us focus on the interacting part of the NC Jackiw-Pi
model coming from Eqs. (2.11) and (2.17)

Lint¼−ig∂μAν⋆½Aμ;Aν�⋆þ
g2

4
½Aμ;Aν�⋆⋆½Aμ;Aν�⋆

þ igm
2

ϵμνλ½Aμ;Aν�⋆⋆ϕλ− igð∂μϕν−∂νϕμÞ⋆½Aμ;ϕν�⋆

þg2

2
ð½Aμ;ϕν�⋆− ½Aν;ϕμ�⋆Þ⋆½Aμ;ϕν�⋆

þ ig∂μc̄⋆½Aμ;c�⋆þ ig∂μξ̄⋆½Aμ;ξ�⋆þ ig∂μξ̄⋆½ϕμ;c�⋆;
ð3:12Þ

which is BRST invariant by construction. In order to check
the universality of the gauge coupling by renormalization,
which is a result of the Slavnov-Taylor identities, we start
by introducing the renormalized fields as below

Að0Þ
μ ¼

ffiffiffiffiffi
Z3

p
Aμ; ϕð0Þ

μ ¼
ffiffiffiffiffi
Z2

p
ϕμ;

cð0Þμ ¼
ffiffiffiffiffi
Z̃3

q
c; ξð0Þ ¼

ffiffiffiffiffi
Z̃2

q
ξ;

The first point to note before proceeding is that the
Chern-Simons coupling m is also renormalized from the
mixing propagator 〈Aϕ〉, which gives

m
ffiffiffiffiffiffiffiffiffiffi
Z2Z3

p
¼ mrenZm; ð3:13Þ

which defines the renormalization constant Zm related to
the parameter mren. Introducing renormalization constants

for the basic vertices we have that Z3A, Z4A, Z1, Z̃1, Z̃4, Z̃
gh
3 ,

Z̃gh
2 , and Z̃gh

4 are related respectively to the 〈AAA〉, 〈AAAA〉,
〈ϕAA〉, 〈ϕϕA〉, 〈ϕϕAA〉, 〈c̄cA〉, 〈ξ̄ξA〉, and 〈ξ̄cϕ〉 vertex
functions.
We note that the universality of the coupling constants is

used when defining them, i.e., different vertex functions
couple with the same gauge coupling. Relations among
these constants follow from the Slavnov-Taylor identities
that can be casted simply into the form

Z4A

Z3A
¼ Z3A

Z3

¼ Z1

Zm
¼ Z̃gh

3

Z̃3

¼ Z̃gh
2

Z̃2

¼ Z̃1

Z2

¼ Z̃4

Z̃1

: ð3:14Þ

Notice though that the constant Z̃gh
4 cannot be exactly

related to others like in (3.14), it can be expressed as

Z̃gh
4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2Z̃

gh
2 Z̃gh

3

Z3

s
; ð3:15Þ

being then determined by means of other basic
constants. In conclusion, to compute the coupling constant
renormalization

gren ¼ Zgg:

It is convenient to consider the form

Zg ¼
Z1=2
3 Z̃3

Z̃gh
3

: ð3:16Þ

This is the simplest form for the coupling renormalization
constant in the absence of the matter fields, which takes
into account the least number of graphs for the corrections
associated with the propagators 〈AA〉 and 〈c̄c〉, and 〈c̄cA〉
vertex function. On the other hand, to determine the

renormalized mass mren ¼
ffiffiffiffiffiffiffiffi
Z2Z3

p
Zm

m we should additionally
compute corrections to the propagators 〈ϕϕ〉 and 〈Aϕ〉.
Nonetheless, we shall focus on the discussion about the
corrections to the tree-level propagators and subsequently
onto the renormalization of the gauge coupling g and mass
parameter m.

IV. RADIATIVE CORRECTIONS

Having derived the relevant Feynman rules, we shall now
proceed on the computation of the one-loop radiative
corrections to the basic 1PI functions. Due to the highly
intricate form of these momentum dependent functions,
which are rather difficult to compute exactly (and no
substantial information would be obtained), we will con-
sider the low-energy limit so that these expressions can be
computed analytically. This is also known as the highly
noncommutative limit, i.e., p2=m2 → 0 while p̃ is kept
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finite. Moreover, we shall consider Landau gauge on our
analysis, which amounts to take α ¼ 0 and β ¼ 0.

A. One-loop 〈AA〉 self-energy

We have eleven graphs contributing to the photon
polarization tensor at one-loop order; these are depicted
in Fig. 1. All the contributions can easily be written using
the aforementioned Feynman rules, also they have a similar
structure that can be cast into a simple form as

ΠμνðpÞ ¼ 2g2
Z

ddk
ð2πÞd

Nμν

½ðpþ kÞ2 −m2�½k2 −m2�ðpþ kÞ2k2

× sin2
�
p× k
2

�
; ð4:1Þ

being the tensor structure on the numerator consists of the
eleven contributions

Nμν ¼ Nμν
ðaÞ þ Nμν

ðcÞ − 2ðNμν
ðbÞ þ Nμν

ðdÞÞ þm4Nμν
ðeÞ −m2ðNμν

ðfÞ

þ Nμν
ðgÞ þ Nμν

ðh;1Þ þ Nμν
ðh;2Þ þ Nμν

ðiÞÞ − 4Nμν
ðjÞ; ð4:2Þ

where, due to the length of their expressions, the respective
contributions are explicitly given by Eqs. (A1). It should be
noticed that the momentum integrals are defined using
dimensional regularization, allowing us to define and
manipulating them properly. In particular, we can separate
the planar and nonplanar contributions by using the
trigonometric relation 2sin2ðp×k

2
Þ ¼ 1 − cos ðp × kÞ.

As discussed before, we shall consider the low-energy
limit of the above self-energy expression (4.1). Hence,
evaluating the momentum integral with help of Feynman
parametrization we find the result for the planar part

ΠμνðpÞjp ¼
11ig2

6π
m

�
ημν −

pμpν

p2

�
; ð4:3Þ

in turn, the highly noncommutative limit of the nonplanar
part, remember that p̃ is kept finite, yields

ΠμνðpÞjn:p ¼ −
ig2

32π
m

�
ημν −

pμpν

p2

�

×

�
42þ 20

m2p̃2
−

11

mjp̃j −
416mjp̃j

9
þ � � �

�

þO
�
m4jp̃j
p2

�
: ð4:4Þ

As expected the polarization tensor has a parity even
structure. Hence, writing by convenience ΠμνðpÞ ¼
ðημν − pμpν

p2 ÞΠðpÞ, the complete contribution for the one-loop

scalar polarization reads

ΠðpÞ ¼ ig2m
96π

�
50 −

60

m2p̃2
þ 33

mjp̃j þ
416mjp̃j

3
þ � � �

�

þO
�
m4jp̃j
p2

�
: ð4:5Þ

It is worth noticing that taking the limit m → 0 does not
render a vanishing expression for the scalar polarization,
which shows the presence of a UV/IR mixing effect, in
contrast with the Maxwell action, which is a free theory. On
the other hand, for the general case where m ≠ 0, we see
that the same terms in Eq. (4.5) exhibit the UV/IR mixing
effect that does not correspond to any counterpart term in
commutative Maxwell theory, and shows that the theory is
not infrared finite.
The one-loop polarization tensor (4.5) allows us to

determine the constant Z3 in order to establish the

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 1. Graphs (a) to (j) represent the one-loop contributions to the self-energy of the gauge field. Wavy lines stand for the gauge field
Aμ, curly lines for the charged vector field ϕμ, double solid lines for the mixed propagator 〈Aϕ〉, and dashed lines stand for ghost fields.
In graphs (e) and (h) a circle represents the 〈AAϕ〉 vertex, a square the 〈AAA〉 vertex, and a star the 〈Aϕϕ〉 vertex, such vertex functions
can be permuted giving rise to a new contribution.
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renormalized mass and coupling. With this result we clearly
see that the highly noncommutative limit is interesting
because it gives a simpler form for the polarization tensor,
allowing thus to easily establish a connection with inter-
esting physical discussion as we will see below.

B. One-loop 〈ϕϕ〉 self-energy

In the case of the charged vector field self-energy we
have five graphs contributing at one-loop order; these are
depicted in Fig. 2. Once again, all the contributions can
easily be constructed with help of the Feynman rules. Since
they all have a similar structure, one can write the complete
one-loop self energy into a simple form as

ΛμνðpÞ¼ 2g2
Z

ddk
ð2πÞd

Mμν

½ðpþkÞ2−m2�½k2−m2�ðpþkÞ2k2

×sin2
�
p×k
2

�
; ð4:6Þ

where all the contributions were summed into a tensor
structure in the numerator

Mμν ¼ Mμν
ðaÞ − 2Mμν

ðeÞ −m2ðMμν
ðbÞ þMμν

ðcÞ þMμν
ðdÞÞ; ð4:7Þ

where the expression for each one of the contributions is
explicitly written in Eqs. (A2) of the Appendix.
The momentum integration can be computed straight-

forwardly with using the Feynman parametrization. But in
order to discuss interesting physical situations we reserve

ourselves to the low-energy limit. In this case, the planar
part of the self-energy reads

ΛμνðpÞjp ¼
17i
12

mg2
�
ημν −

pμpν

p2

�
; ð4:8Þ

while the nonplanar part is simply given by

ΛμνðpÞjn:p ¼ −
17i
12π

mg2
�
ημν −

pμpν

p2

�
e−mjp̃j: ð4:9Þ

Hence, writing by convenience ΛμνðpÞ¼
ðημν−pμpν

p2 ÞΛðpÞ, the complete one-loop contribution to

the scalar self-energy function ΛðpÞ at the low-energy
limit is

ΛðpÞ ¼ 17i
12π

mg2ð1 − e−mjp̃jÞ ≈ 17i
12π

m2g2jp̃j: ð4:10Þ

In contrast with Eq. (4.5), we see that Eq. (4.10) at the case
where m ≠ 0 and θ ≠ 0, presents no UV/IR mixing effect,
showing that this sector is infrared finite. As expected this
self-energy function vanishes when m → 0. Moreover, we
shall use Eq. (4.10) to compute Z2 and then determine the
renormalized mass and coupling.

C. One-loop 〈Aϕ〉 self-energy

In the case of the one-loop correction to the mixed
propagator 〈Aϕ〉 we have eight graphs contributing; these
are shown in Fig. 3. By making use of the Feynman rules
these contributions can be cast into a single suitable form.

(a) (b) (c) (d)

(e) (f) (g)

FIG. 3. Graphs (a) to (g) represent the one-loop contributions to the self-energy to the mixed propagator 〈Aϕ〉.

(a) (b) (c) (d) (e)

FIG. 2. Graphs (a) to (e) represent the one-loop contributions to the self-energy of the charged vector field.

NONCOMMUTATIVE JACKIW-PI MODEL: ONE-LOOP … PHYS. REV. D 97, 125007 (2018)

125007-7



Once again, all these contributions have a similar
structure, allowing one to write the complete one-loop self
energy as

ΞμνðpÞ ¼ −2img2
Z

ddk
ð2πÞd sin2

�
p × k
2

�

×
Rμν

½ðpþ kÞ2 −m2�½k2 −m2�ðpþ kÞ2k2 ; ð4:11Þ

with the tensor structure conveniently summarized as

Rμν ¼ Rμν
ðaÞ −m2ðRμν

ðbÞ þ Rμν
ðdÞÞ þ Rμν

ðcÞ þ Rμν
ðe;1Þ

þ Rμν
ðe;2Þ þ Rμν

ðfÞ þ 2Rμν
ðgÞ; ð4:12Þ

where the explicit lengthy expressions Rμν
ð:Þ are presented in

Eqs. (A3) of the Appendix. After computing separately the
planar and nonplanar parts, we find that the resulting
expression reads

ΞðpÞ ¼ −
g2

32π

�
39

5
þ 66

m2p̃2
−
77

6
mjp̃j

�
; ð4:13Þ

where we have made use of the relation ΞμνðpÞ ¼
ϵμνσpσΞðpÞ by simplicity.
With (4.13) we can already proceed to compute the

renormalization constant Zm. It is not difficult to see that
for the general case where m ≠ 0 and θ ≠ 0, we see that
Eq. (4.13) displays the UV/IR mixing effect that does
not correspond to any counterpart term in commutative
theory, showing thus that the theory is not infrared
finite.
Although we can already determine the renormalized

mass after determining the constants Z3, Z2 and Zm, we are
left to compute the renormalization constants associated
with the ghost fields 〈c̄c〉 and gauge–ghost vertex 〈Ac̄c〉 so
that the renormalization of the gauge coupling is also
established.

D. One-loop 〈c̄c〉 self-energy

In order to determine the constant Z̃3 we shall now
proceed to the computation of the one-loop self-energy
related with the ghost fields. The relevant graphs are shown
in Fig. 4. These contributions can be written down with
Feynman rules as the following

GðpÞ¼−8g2
Z

ddk
ð2πÞd

ðpþkÞμpνðk2ηνμ−kνkμÞ
k2ðk2−m2ÞðpþkÞ2 sin2

�
p×k
2

�
:

ð4:14Þ

We can readily compute the planar contribution as

GðpÞjp ¼ −
ig2

2π
p2

Z
1

0

dz
Z

1−z

0

dy
1ffiffiffiffi
Δ

p ; ð4:15Þ

whereΔ ¼ ym2 − zð1 − zÞp2, while the computation of the
nonplanar part is rather complicated and reads

GðpÞjn:p ¼
ig2

2π
p2

Z
1

0

dz
Z

1−z

0

dy
1ffiffiffiffi
Δ

p
�
1þ

ffiffiffiffi
Δ

p jp̃j
2

�
e−

ffiffiffi
Δ

p jp̃j:

ð4:16Þ

In accordance with the previous analysis we consider the
full contribution in the low-energy limit, i.e., p2=m2 → 0,
so that we obtain a simple result

GðpÞ ≈ −
ig2

4π
p2jp̃j

Z
1

0

dz
Z

1−z

0

dy½1þ
ffiffiffiffi
Δ

p
jp̃j þ � � ��

≈ −
ig2

8π
p2jp̃j: ð4:17Þ

Hence the leading contribution for the ghost self-energy
given by (4.17) is finite and does not presents the UV/IR
mixing effect. This simple expression implies into a
straightforward computation of the respective renormaliza-
tion constant.

E. One-loop 〈Ac̄c〉 vertex

At last, we proceed to compute the one-loop correction
to the 〈Ac̄c〉 vertex function. There are three diagrams
contributing at this order, these are shown at Fig. 5. The
first contribution can be expressed as

(a) (b)

FIG. 4. Graphs (a) and (b) represent the one-loop contribution
to the self-energy to the ghost propagator 〈c̄c〉.

µµµ

(a) (b) (c)

FIG. 5. Graphs (a) to (c) represent the one-loop contribution to
the vertex 〈c̄cA〉.
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Θμ
ðaÞðp; q; q − pÞ ¼ −8ig3

Z
ddk
ð2πÞd

sinðp×k
2
Þ sinððq−pÞ×k

2
Þ sinðq×ðpþkÞ

2
Þ

k2ðk2 −m2Þðq − p − kÞ2ðkþ pÞ2ððkþ pÞ2 −m2ÞN
μ
ðaÞ; ð4:18Þ

with the numerator written as

N μ
ðaÞ ¼ ðq−p−kÞαqβ½ð2pþkÞνημρþð2kþpÞμηνρþðk−pÞρημν�ðηναk2−kνkαÞðηβρðkþpÞ2− ðkþpÞβðkþpÞρÞ; ð4:19Þ

while one can easily show that the diagrams (b) and (c) give the same contribution,

Θμ
ðbÞðp; q; q − pÞ ¼ −8ig3

Z
ddk
ð2πÞd

sinðp×ðk−qÞ
2

Þ sinððq−pÞ×k
2

Þ sinðq×k
2
Þ

k2ðk2 −m2Þðq − p − kÞ2ðq − kÞ2N
μ
ðbÞ; ð4:20Þ

where

N μ
ðbÞ ¼ ðq − kÞμðq − p − kÞνðηνρk2 − kνkρÞqρ ð4:21Þ

In this sense, we have that the full contribution is given by

Θμðp; q; q − pÞ ¼ Θμ
ðaÞðp; q; q − pÞ þ 2Θμ

ðbÞðp; q; q − pÞ:

However, the computation of the expressions (4.18) and
(4.20) involve complicated manipulations to separate the
planar and non-planar parts; moreover, such expressions
vanish in the highly noncommutative limit. The full
expression for the diagram (a) can then be written as

Θμ
ðaÞðp; q; q − pÞ ≈ −

g3

16π
qμq2 sin

�
p × q
2

�
Fðq; p;mÞ;

ð4:22Þ

whereas the diagram (b) reads

Θμ
ðbÞðp; q; q − pÞ ≈ −

g3

16π
qμq2 sin

�
p × q
2

�
Gðq; p;mÞ;

ð4:23Þ

where Fðq; p;mÞ and Gðq; p;mÞ are a finite, but compli-
cated, function of the external momenta and Feynman
parameters.
In this sense, the one-loop contribution is expressed as

Θμðp; q; q − pÞ ≈ −
g3

16π
qμq2 sin

�
p × q
2

�
Hðq; p;mÞ;

ð4:24Þ

where we have introduced by simplicity Hðq; p;mÞ ¼
Fðq; p;mÞ þ 2Gðq; p;mÞ. Notice, however, since the con-
tribution (4.24) is proportional to the external momentum,
we see that it vanishes rapidly when p2=m2 → 0. In this
sense, although finite, the one-loop contribution 〈Ac̄c〉
vertex function is zero in the highly noncommutative limit,

which implies that the respective renormalization constant
is equal to unit, i.e., Z̃gh

3 ¼ 1.

V. RENORMALIZED MASS AND CHARGE

After computing explicitly the one-loop corrections to
the 1PI functions of interest, we can now proceed in
determining the effect of such corrections on the behavior
of the physical mass and charge. By writing the renorm-
alization constant in terms of a counterterm, Zi ¼ 1þ δZi

,

the renormalized mass m ¼
ffiffiffiffiffiffiffiffi
Z2Z3

p
Zm

m0 reads

m2
ren ¼ m2 þm2ðδZ2

þ δZ3
− 2δZm

Þ; ð5:1Þ

where each counterterm is evaluated under the conditions

iδZ3
¼ 1

p2
ΠðpÞ

����
p2¼m2

; iδZ2
¼ 1

p2
ΛðpÞ

����
p2¼m2

;

δZ̃m
¼ −

1

m
ΞðpÞ

����
p2¼m2

: ð5:2Þ

Due to our interest, we shall determine the above counter-
terms in the low-energy limit, so that we can make use of
the previous results of the radiative corrections. Notice that
with the renormalized mass (5.1) we can determine the
dispersion relation for the fields Aμ and ϕμ, p2 ¼ m2

ren,
which is corrected by

ω2
p ¼ ⃗p2 þm2 þm2ðδZ2

þ δZ3
− 2δZm

Þ: ð5:3Þ

Hence, making use of the above expressions for the
counterterms, the one-loop physical dispersion relation is
explicitly written as

ω2
p¼ p⃗2þm2þmg2

96π

�
16

5
−

456

m2p̃2
þ 33

mjp̃j
�
þO

�
g2m2jp̃j

p2

�
:

ð5:4Þ

From this expression one can define a physical mass

m2
phys ¼ m2 þ mg2

30π due to the one-loop effects of the
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radiative corrections. Notice that this mass shift arises from
the planar NC effect. Moreover, from Eq. (5.4) we can see
the presence of a severe UV/IR instability in the NC
momentum, owing to the nonplanar NC effects, affecting
the propagation of the gauge and vector fields, this
instability originates from Eqs. (4.5) and (4.13), i.e., those
corrections involving the gauge field.
It is notable that the form of the terms representing

UV/IR instability in (5.4) is quite different from that of NC
Maxwell-Chern-Simons (M-CS) theory [22] and also of
NC QED4 [23]. Here in the NC Jackiw-Pi model, there are
strong instabilities due to 1

p̃2 and a soft one by 1
jp̃j, while in

the NC QED4 we have again a 1
p̃2 instability, and in the

NC M-CS theory a soft 1
jp̃j instability. We note that the NC

Jackiw-Pi model has a severe instability when compared to
the NC M-CS theory. Furthermore, in contrast to (5.4),
where we have a shift on the mass coming from the planar
NC effect, we do not have any correction to the mass in the
case of both NC M-CS and NC QED4.
In regard to the renormalization of the gauge coupling,

we should first recall that due to the vanishing behavior of
(4.24) in p2=m2 → 0, it is easy to conclude that Z̃gh

3 ¼ 1. In
this case, the renormalization constant related to the gauge
coupling is simplified to Zg ¼ Z1=2

3 Z̃3. In terms of its
counterterms we rewrite the constant as

Zg ¼ 1þ 1

2
δZ3

þ δZ̃3
; ð5:5Þ

where the gauge-field related counterterm is given by (5.2),
while the ghost counterterm can be determined by the
condition

δZ̃3
¼ −

1

p2
GðpÞ

����
p2¼0

: ð5:6Þ

Finally, we realize that the physical behavior of the
coupling constant is

gren ¼ gþ 25g3

48πm
: ð5:7Þ

We observe that the coupling constant gets renormalized by
planar NC effects, which are absent in the Abelian Jackiw-
Pi model, being a free theory. It is worth mentioning that
the coupling constant g in a (2þ 1) spacetime is dimen-
sionful and hence in order to study the physical behavior of
the theory under a change of the energy scale, it is useful to
introduce a dimensionless coupling constant to get a more
physical information. To this end, it is convenient to rewrite
the renormalized mass and charge as below

gren ¼ gð1þ aλÞ; m2
ren ¼ m2ð1þ bλÞ; ð5:8Þ

where a ¼ 25
48π, b ¼ 1

30π and λ ¼ g2

m. From (5.8), we realize

that the ratio λ ¼ g2

m is in fact the dimensionless expansion

parameter in such dimensionality. Therefore, the physical
behavior of this dimensionless coupling constant can be
expressed by

λren ¼ λð1þ cλÞ; ð5:9Þ
where c ¼ 2a − b

2
and we have also neglected higher order

terms in λ inside the parentheses. Indeed, it is expected to
find such a relation for this model in three dimensions, since
the mass dimension of g is 1

2
and hence the only dimension-

less coupling constant is described as λ ¼ g2

m. We can make
this discussion clearer by making the scale changes gAμ →
Ãμ and gϕμ → ϕ̃μ in the Lagrangian (2.11), so that it reads

L ¼ −
1

4g2
F̃μν⋆F̃μν −

1

4g2
G̃μν⋆G̃μν þ 1

2λ
ϵμναF̃μν⋆ϕ̃α:

ð5:10Þ
We notice two interesting limiting cases:

(i) In the limit g2 → ∞ andm → ∞, we keep the ratio λ
finite, in this case only the mixing term survives.

(ii) On the other hand, when λ → ∞, i.e., m → 0

keeping g2 finite, the mixing term vanishes and
we have massless fields, where they couple solely
through the minimal coupling in G̃μν.

Since the theory isUV finite, further informationwould only
be achievable through a nonperturbative approach for the
beta function.

VI. FINAL REMARKS

In this paper, we have studied the physical aspects of the
noncommutative Jackiw-Pi model. In order to establish the
behavior of the renormalized parameters within the model,
we have proceeded with the computation of the necessary
one-loop corrections, although all of them are UV finite,
some of these functions present UV/IR instabilities in their
expressions, which in turn imply instabilities in the
propagation of the gauge field.
We started by reviewing the main aspects concerning the

gauge structure of the Jackiw-Pi model, with particular
interest in the BRST transformation, allowing thus a
consistent construction of a BRST invariant noncommuta-
tive Jackiw-Pi model. Establishing the BRST structure of
the NC Jackiw-Pi model, we then proceeded to study the
one-loop renormalization of this model, writing the renor-
malized mass and gauge coupling. In order to compute
these renormalized quantities, we compute the necessary
one-loop 1PI functions, although all corrections were UV
finite, the 〈AA〉 and 〈Aϕ〉 self-energy expressions displayed
UV/IR instabilities, which are then reflected in the physical
behavior of the physical renormalized quantities. It is worth
noticing that though the presence of such instabilities, the
tree level parity and gauge invariance of the NC Jackiw-Pi
model were preserved at the one-loop quantum level.
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Furthermore, it is worth to call attention to the fact that
the one-loop analysis at the low-energy limit of the NC
Jackiw-Pi model exhibits a finite shift for the gauge field

mass as m2
phys ¼ m2 þ mg2

30π, while there is no any one-loop
correction to the mass at the low-energy limit in the NC
Maxwell-Chern-Simons model [22]. The UV/IR instabil-
ities discussed here when the limit jθμνj → 0 is taken on the
one-loop self-energy functions are clearly engendered by
quantum effects, since this limit and integration sign do not
commute. Moreover, these instabilities are a shared feature
of both parity even Jackiw-Pi model and Maxwell-Chern-
Simons model [22] when described in the noncommutative
framework at a quantum level, while it seems that these
instabilities are absent when supersymmetry is added, as it
is the case of the NC Aharony-Bergman-Jafferis-
Maldacena model [24]. Due to these results, one can
naively think that the addition of invariance under discrete
symmetries is not sufficient to remove those undesired
instabilities, but rather an enlarged continuous symmetry

invariance such as supersymmetry can achieve a consistent
and true finite result for NC field theories.
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APPENDIX: TENSOR STRUCTURES

In order to avoid lengthy expressions along the main text,
we present for completeness some important tensor struc-
tures from the self-energy functions in the Sec. IV. First,
from the one-loop correction for the gauge field 〈AA〉 (4.1)
we have

Nμν
ðaÞ ¼ ½ðp − kÞαημρ þ ðpþ 2kÞμηρα − ð2pþ kÞρηαμ�½ðpþ kÞ2ηαβ − ðpþ kÞαðpþ kÞβ�

× ½−ð2pþ kÞσηνβ þ ðpþ 2kÞνηβσ þ ðp − kÞβησν�½k2ησρ − kσkρ�;
Nμν

ðbÞ ¼ ½ðpþ kÞ2 −m2�ðpþ kÞ2½2k2ημν þ 2kμkν�;
Nμν

ðcÞ ¼ ½kαημρ − ðpþ 2kÞμηρα þ ðpþ kÞρηαμ�½ðpþ kÞ2ηαβ − ðpþ kÞαðpþ kÞβ�
× ½ðpþ kÞσηνβ − ðpþ 2kÞνηβσ þ kβησν�½k2ησρ − kσkρ�;

Nμν
ðdÞ ¼ ½ðpþ kÞ2 −m2�ðpþ kÞ2½−k2ημν − kμkν�;

Nμν
ðeÞ ¼ ϵμραϵαβλϵ

νβσϵσρχðpþ kÞλkχ ;
Nμν

ðfÞ ¼ ϵμραϵνβσ½ðpþ kÞ2ηαβ − ðpþ kÞαðpþ kÞβ�½k2ησρ − kσkρ�;
Nμν

ðgÞ ¼ ϵαβλϵ
νβσðpþ kÞλ½k2ησρ − kσkρ�½ðp − kÞαημρ þ ðpþ 2kÞμηρα − ð2pþ kÞρηαμ�;

Nμν
ðh:1Þ ¼ ϵαβλϵσρχðpþ kÞλkχ ½ðp − kÞαημρ þ ðpþ 2kÞμηρα − ð2pþ kÞρηαμ�½ðpþ kÞσηνβ − ðpþ 2kÞνηβσ þ kβησν�;

Nμν
ðh:2Þ ¼ ϵαβλϵσρχðpþ kÞλkχ ½kαημρ − ðpþ 2kÞμηρα þ ðpþ kÞρηαμ�½−ð2pþ kÞσηνβ þ ðpþ 2kÞνηβσ þ ðp − kÞβησν�;
Nμν

ðiÞ ¼ ϵαβλϵ
νβσðpþ kÞλ½kαημρ − ðpþ 2kÞμηρα þ ðpþ kÞρηαμ�½k2ησρ − kσkρ�;

Nμν
ðjÞ ¼ ½ðpþ kÞ2 −m2�½k2 −m2�kμðpþ kÞν: ðA1Þ

Next, for the vector field 〈ϕϕ〉 contributions, the relevant tensor part from Eq. (4.6) reads expression

Mμν
ðaÞ ¼ ½kαημρ − ðpþ 2kÞμηρα þ ðpþ kÞρηαμ�½ðpþ kÞ2ηαβ − ðpþ kÞαðpþ kÞβ�

× ½ðpþ kÞσηνβ − ðpþ 2kÞνηβσ þ kβησν�½k2ησρ − kσkρ�;
Mμν

ðbÞ ¼ ϵαβλϵσρχðpþ kÞλkχ ½kαημρ − ðpþ 2kÞμηρα þ ðpþ kÞρηαμ�½ðpþ kÞσηνβ − ðpþ 2kÞνηβσ þ kβησν�;
Mμν

ðcÞ ¼ ϵμραϵνβσ½ðpþ kÞ2ηαβ − ðpþ kÞαðpþ kÞβ�½k2ησρ − kσkρ�;
Mμν

ðdÞ ¼ ϵμραϵσρχkχ ½ðpþ kÞ2ηαβ − ðpþ kÞαðpþ kÞβ�½ðpþ kÞσηνβ − ð2kþ pÞνηβσ þ kβησν�;
Mμν

ðeÞ ¼ ½ðpþ kÞ2 −m2�ðpþ kÞ2½−k2ημν − kμkν�: ðA2Þ
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Also, for the one-loop correction of the mixed propagator 〈Aϕ〉, we have from (4.11) that

Rμν
ðaÞ ¼ ϵαβλðpþ kÞλ½kαημρ − ðpþ 2kÞμηρα þ ðpþ kÞρηαμ�½k2ησρ − kσkρ�½ðpþ kÞσηνβ − ðpþ 2kÞνηβσ þ kβησν�;

Rμν
ðbÞ ¼ ϵμραϵνβσϵσρχkχ ½ðpþ kÞ2ηαβ − ðpþ kÞαðpþ kÞβ�;

Rμν
ðcÞ ¼ ϵμρα½ðpþ kÞ2ηαβ − ðpþ kÞαðpþ kÞβ�½k2ησρ − kσkρ�½ðpþ kÞσηνβ − ðpþ 2kÞνηβσ þ kβησν�;

Rμν
ðdÞ ¼ ϵμραϵαβλϵσρχðpþ kÞλkχ ½ðpþ kÞσηνβ − ðpþ 2kÞνηβσ þ kβησν�;

Rμν
ðe:1Þ ¼ ϵνβσ½ðp − kÞαημρ þ ðpþ 2kÞμηρα − ð2pþ kÞρηαμ�½ðpþ kÞ2ηαβ − ðpþ kÞαðpþ kÞβ�½k2ησρ − kσkρ�;

Rμν
ðe:2Þ ¼ ϵμρα½−ð2pþ kÞσηνβ þ ðpþ 2kÞνηβσ þ ðp − kÞβησν�½k2ησρ − kσkρ�½ðpþ kÞ2ηαβ − ðpþ kÞαðpþ kÞβ�;
Rμν
ðfÞ ¼ ϵσρχkχ ½ðp − kÞαημρ þ ðpþ 2kÞμηρα − ð2pþ kÞρηαμ�½ðpþ kÞ2ηαβ − ðpþ kÞαðpþ kÞβ�

× ½ðpþ kÞσηνβ − ðpþ 2kÞνηβσ þ kβησν�;
Rμν
ðgÞ ¼ ϵμνλkλ½ðpþ kÞ2 −m2�ðpþ kÞ2: ðA3Þ
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