CLÁUDIO KENDI MORIKAWA

LIMITAÇÕES NUTRICIONAIS PARA O ANDROPOGON (Andropogon gayanus) E BRAQUIARÃO (Brachiaria brizantha) EM LATOSSOLO DA REGIÃO DOS CAMPOS DAS VERTENTES-MG.

Dissertação apresentada à Escola Superior de Agricultura de Lavras, como parte das exigências do Curso de Pós-Graduação em Agronomia, Área de Concentração Solos e Nutrição de Plantas, para obtenção do grau de MESTRE.

ESCOLA SUPERIOR DE AGRICULTURA DE LAVRAS LAVRAS - MINAS GERAIS 1993 2000 P. H.

ATTACHOM HOWELT ON LESS

THE SERVING STREETS OF ANDROPOS SERVING STREETS SERVINGS SERVINGS

ing a street plant of the street of the stre

D wew

LIMITAÇÕES NUTRICIONAIS PARA O ANDROPOGON

(Andropogon gayanus) E BRAQUIARÃO (Brachiaria
brizantha) EM LATOSSOLO DA REGIÃO DOS CAMPOS

DAS VERTENTES - MG.

APROVADA EM 26 DE NOVEMBRO DE 1993

Prof. Dr. Valdemar Faquim

Prof. Dr. Antonio Ricardo Evangelista

Janice Guedes de Carvalho
Prof Dra. Janice Guedes de Carvalho

A Deus,

Aos meus irmãos,

Sérgio, Márcia e Vera

DEDICO

AGRADECIMENTOS

A Deus por ter sido meu guia até o presente momento;

A Escola Superior de Agricultura de Lavras, particularmente ao Departamento de Ciência do Solo, pela oportunidade de trabalho:

Ao CNPq pela concessão da bolsa de estudos;

Ao Professor Valdemar Faquin pelo apoio, orientação e acima de tudo pela amizade;

A Professora Janice Guedes de Carvalho e Professor Antônio Ricardo Evangelista, pelas sugestões;

Ao Valdemir Antônio Laura pela grande amizade que nos une desde os tempos de graduação na UNESP - Campus de Ilha Solteira;

Aos professores, funcionários e colegas da ESAL com os quais convivi, e que de alguma maneira contribuiram para a realização deste trabalho;

Ao Instituto de Zootecnia - Nova Odessa, pela concessão do material de sementes;

Aos Professores Francisco Maximino Fernandes e Vinício Martins do Nascimento, da UNESP - Campus de Ilha Solteira, pela orientação e amizade durante a Iniciação Científica.

SUMÁRIO

		Pagin
1.	INTRODUÇÃO	1
2.	REVISÃO DE LITERATURA	3
	2.1. A Região dos Campos das Vertentes - MG	З
	2.2. Limitações de Solos de Regiões Tropicais	6
	2.3. Adubação de Gramíneas Forrrageiras	12
	2.3.1. Nitrogênio (N)	13
	2.3.2. Fósforo (P)	17
	2.3.3. Potássio (K)	20
	2.3.4. Enxofre (S)	22
	2.3.5. Calagem	23
	2.3.6. Micronutrientes	25
3.	MATERIAL E METODOS	28
	3.1. Local e Período de Condução do Experimento	28
	3.2. Solo e Clima	28
	3.3. Espécie Vegetal	30
	3.4. Delineamento Experimental e Tratamentos	31
	3.5. Montagem e Condução do Experimento	32
	3.6. Parâmetros Avaliados	32
	3.7. Análise Estatística	34

4. RESULTADOS E DISCUSSÃO	35
4.1. Produção de Matéria Seca e Perfilhamento	35
4.2. Teor e Acumulação de Macronutrientes	56
4.2.1. Nitrogênio (N)	56
4.2.2. Fósforo (P)	61
4.2.3. Potássio (K)	66
4.2.4. Enxofre (S)	72
4.2.5. Cálcio (Ca)	77
4.2.6. Magnésio (Mg)	. 82
4.3. Teor de Proteina Bruta	86
4.4. Teor e Acumulação de Micronutrientes	87
4.5. Exigência Nutricional e Eficiência de Utilização	
5. CONCLUSÕES	
RESUMO	
SUMMARY	
REFERÊNCIAS BIBLIOGRÁFICAS	
APENDICE	

LISTA DE QUADROS

QUADROS		Página
1	Principais características químicas e físicas do LU, na camada de 0-20 cm	30
2	Produção de matéria seca pela parte aérea [10, 20 e 30 cortes e total], raiz e perfilhamento de Andropogon e Braquiarão	36
3	Teor e acumulação de nitrogênio na parte aérea e raiz do Andropogon	57
4	Teor e acumulação de nitrogênio na parte aérea e raiz do Braquiarão	58
5	Teor e acumulação de fósforo na parte aérea e raiz do Andropogon	62
6	Teor e acumulação de fósforo na parte aérea e raiz do Braquiarão	63
7	Teor e acumulação de potássio na parte aérea e raiz do Andropogon	67

8	W	viii
0	Teor e acumulação de potássio na parte aérea e raiz do Braquiarão	68
9	Teor e acumulação de enxofre na parte aérea e raiz do Andropogon	73
10	Teor e acumulação de enxofre na parte aérea e raiz do Braquiarão	74
11	Teor e acumulação de cálcio na parte aérea e raiz do Andropogon	78
12	Teor e acumulação de cálcio na parte aérea e raiz do Braquiarão	79
13	Teor e acumulação de magnésio na parte aérea e e raiz do Andropogon	83
14	Teor e acumulação de magnésio na parte aérea e raiz do Braquiarão	84
15	Teores de proteína bruta (%) na parte aérea de Andropogon e Braquiarão	87
16	Teor e acumulação de boro na parte aérea e raiz do Andropogon	88
17	Teor e acumulação de boro na parte aérea e raiz do Braquiarão	89
18	Teor e acumulação de cobre na parte aérea e raiz do Andropogon	93
19	Teor e acumulação de cobre na parte aérea e raiz do Braquiarão	94

		ix
20	Teor e acumulação de zinco na parte aérea e raiz do Andropogon	97
21	Teor e acumulação de zinco na parte aérea e raiz do Braquiarão	98
22	Eficiência de utilização de N, P e K pela parte aérea do Andropogon e do Braquiarão no 10, 20 e 30 cortes e total, e os respectivos índices de	
	utilização	103
23	Eficiência de utilização de S, Ca e Mg pela	
	parte aérea do Andropogon e do Braquiarão no 19, 29 e 39 cortes e total, e os respectivos	•
	índices de utilização	104

LISTA DE FIGURAS

FIGURAS		Página
1	Divisão de Minas Gerais por Zona Geográfica	
	(Anuário Estatístico de Minas Gerais, 1985)	4
2	Divisão de Minas Gerais por Microrregião (195 = Campos da Mantiqueira)	
	(Anuário Estatístico de Minas Gerais, 1985)	4
3	Produção de matéria seca pela parte aérea de	
	Andropogon no 12, 22 e 32 cortes e total (12	
	+29+39). Para o total, colunas com as mesmas	
	letras, não diferem entre si (Tukey 5%)	37
4	Produção de matéria seca pela parte aérea de	
	Braquiarão no 19, 29 e 39 cortes e total (19	
	+29+39). Para o total, colunas com as mesmas	
	letras, não diferem entre si (Tukey 5%)	38
5	Perfilhamento após o 1º corte de Andropogon e	
	Braquiarão. No mesmo tratamento, asterisco	
	(*) indica que as espécies diferem entre si	
	(Tukey 5%), e (ns) sem significância	47

The state of the s

	X.
aérea (1º, 2º e 3º cortes) de Andropogon e	
Braquiarão. No mesmo tratamento, asterisco	
(*) indica que as espécies diferem entre si	
	49
Produção de matéria seca pela raiz de	
significância	50
Produção de matéria seca pela parte sérea	
	52
	0.0
Produção de matéria seca pela parte aérea	
cada tratamento , a relação PA/raiz	53
Producão relativa de matéria com total mala	
pogon e Bramiarão (C1 - 100%)	EA
	(*) indica que as espécies diferem entre si (Tukey 5%), e (ns) sem significância Produção de matéria seca pela raiz de Andropgon e Braquiarão. No mesmo tratamento, asterisco (*) indica que as espécies diferem entre si (Tukey 5%), e (ns) sem significância Produção de matéria seca pela parte aérea (total) e raiz (após 3º corte) do Andropogon. (1) os valores numéricos representam para cada tratamento, a relação PA/raiz Produção de matéria seca pela parte aérea (total) e raiz (após 3º corte) do Braquiarão. (1) os valores numéricos representam para cada tratamento, a relação PA/raiz

1. INTRODUÇÃO

A pecuária leiteira representa para a região dos Campos das Vertentes, um dos seus principais esteios econômicos, e as pastagens constituem a opção mais usada para produção de forragem para os animais. No entanto, apesar de ocupar a 5ª posição como região produtora de leite do Estado, a produtividade é baixa, sendo a má condição das pastagens é um dos principais fatores que contribui para os baixos índices obtidos.

As classes de solo predominantes na região BÃO Cambissolo e Latossolo, sendo que o último, por apresentar melhores condições físicas e topográficas é o mais indicado para formação de pastagens cultivadas. Α baixa fertilidade. certamente, é o fator mais limitante ao bom desenvolvimento das forrageiras neste solo. À semelhança da região dos cerrados , a produtividade das pastagens é baixa e marcadamente estacional, sendo OB indices zootécnicos da exploração agropecuária igualmente baixos. Assim para elevar a produtividade destas áreas é necessário a adoção de técnicas, tais como o uso de corretivos fertilizantes e/ou introdução de forrageiras adaptadas e produtivas, nas condições de solo e clima da região.

Diante disto, informações a respeito das limitações nutricionais deste solo, de doses adequadas de corretivos e de

nutrientes para o máximo desenvolvimento das forrageiras, tornase importante, principalmente, visto a inexistência destas informações para a região.

Um programa de pesquisa direcionado para estudos básicos de solos, forrageiras, manejo e melhoramento das pastagens, visando a formação de um conjunto de conhecimentos que possibilitem o aumento de produtividade e lucratividade da exploração pecuária desta região, está sendo desenvolvido em integração envolvendo a ESAL (Professores e Alunos dos Departamentos de Ciência do Solo e Zootecnia) e pesquisadores da EMBRAPA/CNPGL - Coronel Pacheco (MG), sendo que o presente estudo está inserido neste programa.

Assim, objetivou-se no presente trabalho, através de experimento em vasos, em casa de vegetação, utilizando-se um Latossolo variação Una (LU) representativo da região, avaliar as limitações de fertiidade ao crescimento, produção de matéria seca e nutrição mineral de Braquiarão (Brachiária brizantha cv Marandu) e Andropogon (Andropogon gayanus ev Planaltina).

2. REVISÃO DE LITERATURA

2.1. A Região dos Campos das Vertentes - MG

Na região Campos das Vertentes-MG (Figura 1), situa-se a microrregião Campos da Mantiqueira (Figura 2). Esta, engloba 24 municípios e situa-se em localização geográfica privilegiada em relação aos centros consumidores: Rio-São Paulo-Belo Horizonte. A pecuária de leite é a principal atividade agropecuária desta região e, embora ocupando a 5ª posição como produtora de leite do estado (COSTA Jr, 1985), baixos índices de produtividade são observados. Dentre os fatores que contribuem para a baixa produtividade, destaca-se a má condição das pastagens, que são constituidas de cerca de 60% de nativas de campo, 27% de cultivadas com capim gordura e 11% com espécies de braquiária (EMBRAPA, 1987).

Cambissolo e Latossolo variação Una são os solos predominantes da microrregião Campos da Mantiqueira. Os Latossolos que representam cerca de 30% da microrregião, apresentam melhores condições físicas e topográficas e, portanto, são mais indicados para a formação de pastagens cultivadas.

A baixa fertilidade natural dos Latossolos constituise, certamente, o fator mais limitante ao bom desenvolvimnento e produção das forrageiras. A acidez é elevada, com altos valores

Figura 1 - Divisão de Minas Gerais por Zona Geográfica (Anuário Estatístico de Minas Gerais, 1985)

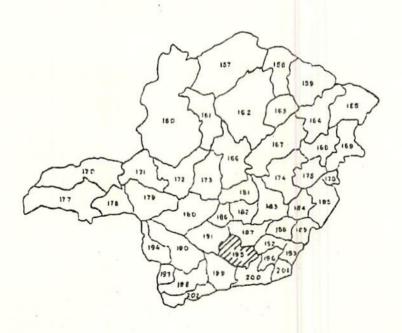


Figura 2 - Divisão de Minas Gerais por Microrregião (195 = Campos da Mantiqueira) (Anuário Estatístico de Minas Gerais, 1985)

de saturação de alumínio, baixos teores de matéria orgânica, P, Ca e Mg (NEIVA, 1990; MARUN, 1990; CURI, 1991 e CARVALHO et al., 1992a). Assim para elevar a produtividade das pastagens desta região, é imprescíndivel a correção da acidez do solo, fornecimento de nutrientes pela adubação e uso de forrageiras mais adaptadas.

Na maioria das vezes, o emprego de corretivos e fertilizantes tem efeitos benéficos na produção e qualidade de forragem e, consequentemente, na produção animal. Porém, para a obtenção da máxima eficiência técnica e econômica da aplicação destes insumos, torna-se necessário a utilização de critérios que considerem a fertilidade do solo e a necessidade nutricional das forrageiras, uma vez que se tratam de insumos caros que têm grande participação no custo de produção.

Os problemas de produção animal em pastagens exclusivamente de gramíneas são devidos, principalmente, às limitações nutricionais decorrentes do baixo valor nutritivo e insuficiência de forragem disponível na época seca, situações freqüentes em regiões tropicais. Esta situação pode ser atenuada, entre outras opções, através do uso de gramíneas forrageiras adaptadas às condições do local e que apresentem alta produção de forragem de boa qualdade.

Atualmente existe grande número de espécies forrageiras, nas condições de clima tropical, cujo potencial poderia ser melhor aproveitado, se fosse conhecido o comportamento e a adaptação às condições edafoclimáticas de cada região. Assim ROCHA (1986), relata que o gênero Brachiaria vem

impondo-se pela sua notável capacidade de domínio ecológico em solos ácidos e de baixa fertilidade, sendo que as espécies B. decumbens e bem recentemente B. brizantha, vêm dando solução provisória à produção animal nos cerrados. Este bom desempenho tem sido relatado em várias regiões da América Tropical. Assim foi observado na região de Vera Cruz - México (HERNANDEZ et al., 1990; VALLES et al., 1987); Súpia - Colômbia (SUAREZ & MACHADO, 1988); Quilichao - Colômbia (ABAUNZA et al., 1991); Guapites - Costa Rica (VALLEJOS et al., 1989) e Amalfi - Colômbia (GIRALDO et al., 1989).

Bons desempenhos também vêm sendo obtidos com Andropogon gayanus, o qual segundo JONES (1979), é uma espécie altamente produtiva, tolerante à baixos níveis de P disponível e altos teores de Al⁺³ trocável. Assim esta espécie foi considerada promissora em Nova Odessa - Brasil (PEDREIRA et al., 1975), Rondônia - Brasil (GONÇALVEZ et al., 1987); Supía - Colômbia (SUAREZ & MACHADO, 1988).

Para a região dos Campos das Vertentes, o Braquiarão e o Andropogon tem sido sugeridos (CURI, 1991).

2.2. Limitações de Solos de Regiões Tropicais

A baixa produtividade da atividade agropecuária resulta das muitas limitações ao crescimento das plantas. Algumas limitações são decorrentes da deficiência de nutrientes e/ou a presença de elementos tóxicos, da deficiência ou excesso de água, de temperaturas desfavoráveis, do impedimento mecânico ao desenvolvimento das raízes, do ataque de

insetos, da incidência de enfermidades e da competição de ervas daninhas. Os principais fatores responsáveis pela baixa produtividade animal nas pastagens naturais são a falta de umidade e a baixa fertilidade natural dos solos. A maioria destas áreas tem regime ústico de umidade do solo, caracterizado por uma forte estação seca.

levantamento sobre a distribuição geográfica dos limitantes nos solos da América Tropical, realzado fatores SANCHES SALINAS (1981), observou-se que as deficiências de nitrogênio е fósforo São de ocorrência generalzada, correspondendo 89 e 82% da área total analsada, sendo que no caso fósforo, 53% dos solos apresentaram alta fixação do elemento. Além da deficiência de K, S, Zn, Ca e Mg, que encontraram em torno de 49 a 54% dos solos da área total, presença de Al tóxico foi observada em mais de 50% dos As principais restrições físicas encontradas foram a baixa retenção de água e alta susceptibilidade à erosão.

90 solos doa pastagens no Brasil 8ão predominantemente Ultissolos e Oxissolos, que apresentam sérias limitações de fertilidade e acidez. Os teores de bases trocáveis (cálcio, magnésio e potássio), como os de fósforo, são baixos e os de alumínio e manganês altos. Sanches et al., citados por COOKE (1985), observaram grandes limitações para o crescimento de plantas nos solos da Bacia Amazônica, onde somente 6% da área não ocorrem maiores limitações. Os autores relatam que em 90% dos solos constataram-se deficiência fósforo, em 73% o alumínio se apresentou em níveis tóxicos, em as reservas de potássio são baixas e em 24% a drenagem 56%

impedida ou há risco de inundação. Outros problemas foram a elevada fixação de fósforo (16% da área) e a alta erodibilidade (8% da área).

Nitrogênio: O baixo dose de N nos solos das regiões tropicais é uma das mais importantes limitações para o crescimento de pastagens. O nitrogênio pode ser encontrado no solo sob a forma orgânica ou mineral. As formas minerais mais comuns são o nitrato (NO_3^-) e o amônio (NH_4^+) , podendo ocorrer no solo. sob certas condições o acúmulo de nitrito (NO_2^-) (AMARAL et al., 1983).

A taxa de mineralzação do N nas pastagens não pedoturbadas é muito baixa, geralmente menos de 1% ano para todo o perfil, sendo um pouco mais alta na camada superficial do solo (Broclington e Normam citados por SPAIN & SALINAS, 1985). Segundo os autores, a quantidade de nitrogênio disponível para as plantas advinda deste processo é geralmente menor que 100 kg N/ha/ano e, frequentemente, somente 10 a 20 kg. Taxas de mineralzação pouco mais elevadas ocorrem por um curto período de tempo depois que 08 solos são pedoturbados por cultivo ou desmatamento, mas em pastagens essas taxas só persistem por poucos anos (HENZELL, 1977).

Fósforo: Um dos maiores problemas no estabelecimento de pastagens nos solos brasileiros reside nos níveis extremamente baixos de fósforo disponível e total apresentados. Acrescenta-se a esta pobreza natural em fósforo nestes solos, a sua alta capacidade de adsorção em

consequência da acidez e elevados teores de óxidos de ferro e alumínio. Segundo SANCHEZ (1981), o fósforo é após o N, o nutriente mais limitante à produça_{o em solos tropicais.}

deficiência de fósforo do solo, além de comprometer o valor nutritivo do pasto. tem primeiramente efeito sobre o estabelecimento e desenvolvimento daa forrageiras, comprometendo a capacidade de suporte das pastagens.

Potássio: Os solos das regiões tropicais são, na sua maioria, pobres em argilominerais que servem como fonte: de potássio, devido ao avançado estágio de intemperismo em que se encontram. Portanto, o K trocável é a principal fonte do nutriente no solo para as plantas. Segundo LOPES (1983), cerca de 85% dos solos dos cerrados são considerados deficientes em potássio.

Ritchey, citado por SPAIN & SALINAS (1985), observou que a taxa de decomposição dos minerais que contém K determina a quantidade de K disponível no solo. Essa taxa é controlada por vários fatores, incluindo a concentração de K na solução, abundância e natureza dos minerais potássicos presentes no solo. Segundo o autor, no caso específico de solos ácidos das regiões tropicais, estes apresentam quantidades pequenas de materiais meteorizáveis que possam fornecer este nutriente.

Segundo KALPAGE(1976), a deficiência de potássio em solos tropicais é mais localzada que a de nitrogênio e fósforo, e têm sido reportado menor resposta ao potássio em regiões tropicais do que em temperadas. A deficiência ocorre mais comumente em solos lateríticos altamente lixiviados das

partes úmidas dos trópicos e também em solos de coloração mais clara e arenosos das regiões mais secas.

Cálcio e Magnésio: Níveis insuficientes de cálcio nos solos do Brasil ocorrem principalmente naqueles que apresentam baixa capacidade de troca de cátions. LOPES (1983), analsando amostras de solo sob cerrado, observou uma alta percentagem de amostras apresentando extrema deficiência de cálcio para a maioria das plantas cultivadas.

Em geral os teores de cálcio no solo diminuem sistematicamente com a profundidade. Este fato parece ser, segundo PAVAN (1986), uma das principais causas que limitam o crescimento radicular em profundidade. Esta idéia é reforçada por SANCHEZ (1981), o qual relata que embora o alumínio seja o principal responsável pelo baixo crescimento das plantas em solos ácidos, o Ca e o Mg influenciam diretamente no crescimento, sobretudo das raízes.

Níveis altos de Mg são encontrados nos solos que apresentam consideráveis quantidades de minerais ferromagnesianos facilmente intemperizaveis, tais biotita, serpentina, hornblenda e olivina e/ou minerais secundários que incluem clorita, vermiculita, ilita montmorilonita. A maior fração do Mg no solo está na não trocável, que inclui todo o Mg dos minerais primários e maior parte dos minerais secundários. Segundo NEPTUNE (1986), a falta ou deficiência de Mg no solo pode surgir sob as seguintes condições: a) solo ácido (pH<5,2); b)% Mg da CTC menor que 6%; c) alto teor de K; d)alta relação K/Mg;

e) concentração inferior a 0,4 meq/cm3 Mg no solo.

Assim, a correção da acidez visando sobretudo a eliminação do alumínio tóxico, supre também a deficiência destes solos em Ca e Mg, desde que o material utilizado para tal finalidade contenha ambos os cátions, ou seja, calcário dolomítico.

Enxofre: A maior parte do enxofre contido nos solos tropicais está na forma orgânica, e generalizadas deficiências e respostas à enxofre tem sido relatadas nestes solos (SANCHES, 1976).

Segundo TABATABAI & BREMNER (1972), o teor de S total diminui com a profundidade, devido principalmente ao menor teor de S orgânico, o qual tende a representar menor proporção do S total. Concomitantemente, ocorre aumento do teor e da proporção de sulfato em profundidade, em relação ao S total o que é devido à lixiviação de SO4 das camadas superficiais e ao aumento do teor dos constituintes do solo que o adsorvem nas camadas subsuperficiais.

Em solos virgens, geralmente corre aumento gradativo e contínuo do teor de SO4 com a profundidade TABATABAI & BREMNER (1972). No entanto, segundo BROMFIELD (1972), em solos cultivados, geralmente acorrem um aumento abrupto no teor de SO4 na camada imediatamente inferior à cultivada.

A deficiência de S nos trópicos é mais comumente observada em solos arenosos e áreas muito lixiviadas. Geralmente solos de regiões tropicais apresentam menores teores de S total e orgânico que os solos de regiões temperadas, devido a maior mineralização e ao maior intemperismo que determinam maiores

perdas, Blair citado por BISSANI & TEDESCO (1988).

O enxofre frequentemente limita a produção de pastagens. Segundo SHIRLEY & MARIANTE (1976), solos deficiêntes em enxofre não são incomuns em áreas úmidas de origem granítica e basáltica, onde normalmente crescem as forrageiras. Na maioria das pastagens as plantas devem obter este nutriente através da mineralização da matéria orgânica e de aplicações de fertilizantes, JONES et al.(1971).

O uso de adubos concentrados que não contém S (
superfosfato triplo, uréia, MAP e DAP) em substituição ao sulfato
de amônio e superfosfato simples, é outra causa do aparecimento
de deficiências de S em plantas.

Micronutrientes: A deficiência de micronutrientes nos solos brasileiros vêm-se ampliando constantemente. São várias as razões, dentre elas podemos citar: utilização de solos pouco férteis das regiões dos cerrados; aumento da produtividade com maiores exigências minerais das plantas cultivadas; uso crescente de calcário e adubos fosfatados, que contribuem para a insolubilização de vários micronutrientes. Contudo, a recomendação de adubação com micronutrientes não pode ser generalizada, como a de macronutrientes. E preciso conhecer as condições de solo e planta em que seu uso é essencial, para evitar gastos inúteis.

2.3. Adubação de gramíneas forrageiras

A necessidade de adubação decorre do fato de o solo não fornecer os nutrientes em quantidades suficientes ao crescimento

adequado das plantas. A quantidade de adubo a aplicar é função da fertilidade do solo, da eficiência dos adubos e de suas reações no solo, das necessidades das culturas e de fatores de ordem econômica.

A adubação das pastagens é indispensável quando se deseja manter uma alta produtividade. No entanto, a resposta à adubação dependerá das espécies forrageiras, condições de clima, solo e manejo, assim como da formulação do adubo. Em particular, nas regiões tropicais, cuidados especiais com a correção da acidez do solo (com fornecimento de Ca e Mg), e da carência de P, constituem-se recomendações usuais na fase de implantação das pastagens, enquanto um adequado suprimento de nitrogênio se faz necessário para a manutenção da produtividade das forrageiras. Os demais macronutrientes (K e S) invariavelmente têm-se mostrado deficientes para o normal desenvolvimento das forrageiras. Nos sistemas que incluem as leguminosas forrageiras, também os micronutrientes assumem destacada consideração.

2.3.1. Nitrogênio: O nitrogênio desempenha um papel fundamental na nutrição mineral das gramíneas, tendo influência marcante sobre a produção e qualidade da forragem. Os níveis de adubação nitrogenada em pastagens tropicais variam grandemente, dependendo das condições de solo e clima, e do nível tecnológico da exploração. Em explorações intensivas têm sido observadas respostas positivas a até 800 kg de N/ha/ano (FERNANDES & ROSSIELO, 1986). Segundo esses autores, a aplicação de N pode ser feita quando do estabelecimento das pastagens, para obtenção de rendimentos máximos em pastagens puras de gramíneas

e para aumentar a produção de matéria seca em períodos de estresse por déficit hídrico ou baixa temperatura. As aplicações de N são também indicadas nos períodos de rebrota das pastagens, para aumentar a sua velocidade de crescimento e o percentual de proteína bruta.

A produção de matéria seca de gramíneas, em resposta à adubação com doses crescentes de nitrogênio, dentro de limites, é normalmente linear, que variam principalmente com o potencial genético das diferentes gramíneas, com a frequência de cortes, e com as condições climáticas (BOIN, 1986).

Existem um grande número de relatos sobre a resposta positiva de gramíneas forrageiras á adubação nitrogenada, sendo esta resposta, avaliada através de diversos parâmetros, entre eles a produção de matéria seca, o teor de proteína e o número de perfilhos. Assim, em experimento de campo, CIAT(1978) avaliaram durante três anos consecutivos, a resposta de três gramineas (A. gayanus 621, B. decumbens 606 e P. maximum 604) a doses de nitrogênio (0, 50, 100, 200 e 400 kg/ha/ano) num Oxissol. No primeiro ano, a B. decumbens 606 respondeu positivamente até a dose de 400 kg/ha de N, enquanto que P. maximum 604 precisou 200 kg/ha de N para atingir seu máximo rendimento de matéria seca e A. gayanus 621 necessitou apenas 100 kg/ha/ano, indicando maior eficiência de utilização do N nativo do solo por parte desta última. Os rendimentos de P. máximum 604 e B. decumbens 606, diminuiram significativamente no segundo ano, sendo que houve respostas lineares até 400 kg/ha/ano, enquanto que para o A. gayanus 621 o rendimento alcançado foi semelhante a sua produção no primeiro ano, no entanto, houve resposta

significativa até 200 kg/ha/ano. No terceiro ano, todas as gramíneas apresentaram reduções significativas no rendimento. Em Carinágua, CIAT(1979), obtiveram resposta positiva da adubação nitrogenada, para A. gayanus 621, B. decumbens 606 e M. minutiflora, à doses de 75 a 225 kg/ha, durante a estação chuvosa.

Diferenças na produção de matéria foram Beca constatadas por ALVIM et al. (1990) em experimento a campo, quando submeteram variedades de Braquiária à doses de N (0, 75, 150 kg N/ ha /ano), num Latossolo Vermelho-Amarelo da região da Zona da Mata - MG. Os autores observaram que na ausência de adubação nitrogenada, a B. brizantha BRA-000337 foi a variedade que produziu menor quantidade de matéria seca, enquanto que a B. decumbens BRA-000116 e 000141 foram as mais produtivas; com aplicação de 75 kg/ha de N, a B. brizantha e B. decumbens tiveram produção de matéria seca semelhantes entre вi superiores à B. ruziziencis BRA-000272 e B. humidicola; na dose de 150 kg/ ha de N a B. brizantha foi a espécie mais exigente em N e a que apresentou o maior potencial de produção.

HAGGAR(1975), demonstrou através de vários experimentos de campo, que o A. gayanus é responsivo à adubação nitrogenada e que podem ocorrer incrementos substanciais na produção de matéria seca. No entanto, FARIA et al. (1987), testando a presença e ausência de adubação nitrogenada no A. gayanus, observaram num Alfisol, que não houve efeito da aplicação de 75 kg/ha/ano de N na produção de matéria seca pela gramínea. Segundo JONES(1979) esta gramínea não responde eficientemente à aplicação de altas

doses de N em solos de baixa fertilidade, especialmente quando a precipitação anual for inferior à 600mm.

Têm sido observada interação do N com outros nutrientes afetando a resposta de algumas gramineas à adubação nitrogenada, observado por CARVALHO et al. (1990) que, ao avaliar como experimento a campo, a resposta de B. decumbens à quatro doses de nitrogênio (0, 100, 200 e 400 kg/ha/ano) e três doses potássio (0, 75 e 150 kg/ha/ano), observaram num Latossolo Vermelho-Amarelo, um efeito positivo da adubação nitrogenada sobre a produção de matéria seca, no entanto, esse dependeu da aplicação de potássio. Na ausência de K, a resposta à N foi limitadda, contudo com o aumento do dose de K, houve acentuada resposta ao N. Já VALLEJOS(1986) em experimento semelhante, ao avaliar a aplicação de N e K, num Entisol. encontraram maior produção de matéria seca da B. decumbens com aplicação de 50 kg/ha de N na presença de 17 kg/ha de K e, aumentar o K aplicado para 34 kg/ha, os rendimentos tenderam a diminuir, porém a produção se manteve superior à testemunha(adubação). A interação entre N e P foi estudada por KEYA (1973) que, testando em experimento a campo, três doses de nitrogênio (0, 100 e 300 kg/ha/ano) e dois doses de fósforo (O e 150 kg/ha/ano) em solos do Kenya, sobre a produtividade de pastagens H. dissoluta, H. filipendula e H. cymbaria, verificou que não houve interação entre estes nutrientes. No entanto, o nitrogênio proporcionou resposta positiva e linear na produção de matéria seca, enquanto que a proteina bruta teve resposta quadrática nos tratamentos que receberam fósforo e linear nos tratamentos que não o receberam.

Outros trabalhos também têm mostrado respostas positivas de várias gramíneas à adubação nitrogenada como: MONTEIRO & WERNER (1977), com P. maximum num Latossolo Vermelho-Amarelo; VILELA et al. (1981), com B. decumbens num Latossolo Amarelo; e COSTA & STEWERDL (1981), com B. decumbens num Planossolo.

Efeitos de local, época de aplicação, intervalos entre cortes e solo, podem ser apontados como alguns fatores que afetam a resposta de uma forrageira à adubação nitrogenada. FAVORETTO (1981), submeteu o capim colonião à quatro frequências de cortes (28, 35, 42 e 49 dias) e quatro doses de nitrogênio (0, 75, 100 e 125 kg/ha). A adubação nitrogenada proporcionou maior produção de matéria seca e também maior teor de proteína bruta, ao passo que, a medida que se aumentou a frequência de corte ocorreu uma diminuição na produção de matéria seca e um aumento no teor de proteína bruta.

2.3.2. Fósforo: Embora o fósforo seja classificado como um macronutriente primário e de grande importância na adubação, seus teores nas plantas são bem mais baixos do que os de N e K, aproximando-se mais dos teores dos macronutrientes secundários RAIJ (1991). No entanto, participa de um grande número de compostos nas plantas que são essenciais em diversos processos metabólicos, fazendo parte de compostos com função de armazenamento e transferência de energia na forma de ATP (RAIJ, 1991), e componente dos carbohidratos fosforilados, dos nucleotídeos e dos fosfolipídeos.

O desenvolvimento das forrageiras é frequentemente

limitado pela baixa disponibilidade de fósforo nos solos, o que compromete e prejudica os índices zootécnicos da pecuária bovina, pois além da grande importância no estabelecimento das forrageiras (SARAIVA et al., 1986), favorece ainda, o perfilhamento e o desenvolvimento da parte aérea e das raízes. Sua deficiência, segundo EPSTEIN (1975), causa disturbios imediatos e severos no metabolismo e no desenvolvimento das plantas.

Diversos trabalhos evidenciam a importância do P na produção das forrageiras tropicais. Assim WERNER et al. (1967a), em P. maximum; McCLUNG et al. (1958), em Hyparrhenia rufa (Nees) Stapf; Shunke citado por EMBRAPA (1985), em B. brizantha cv Marandu e A. gayanus cv Planaltina; COSTA et al. (1992b), em B. brizantha cv Marandu; COSTA et al. (1992a), em A. gayanus cv Planaltina, verificaram que a aplicação de P promoveu aumentos significativos na produção de matéria seca das gramíneas estudadas.

SALINAS & SANCHEZ (1976) afirmam que existem diferenças entre espécies cultivadas e entre variedades dentro da mesma espécie quanto à tolerância a baixos doses de fósforo disponível no solo.

O suprimento adequado de P desde o início do desenvolvimento vegetal, é importante para a formação dos primórdios das partes reprodutivas. Além disso, estimula o desenvolvimento radicular e é essencial para a boa formação de sementes, incrementando a precocidade da produção. Assim, a importância do P no estabelecimento de algumas gramíneas foi observada por GUSS et al. (1990) que, estudando a exigência de P,

em vários tipos de solo, entre eles o Latossolo Vermelho-Amarelo, para o estabelecimento de quatro espécies de Braquiárias (B. brizantha, B. decumbens, B. ruziziensis e B. humidícola). observaram que a B. ruziziensis apresentou o maior potencial resposta ao fósforo e a B. humidicola o menor, embora todas tenham respondido até a dose de 180 mg P/dm³ de solo no primeiro corte. e de 90 mg P/dm³ no segundo. Nos solos arenosos, condições de menor disponibilidade de P, a B. humidicola perfilhou mais e, após o primeiro corte, alcançou produção semelhante às das outras espécies, e as superou nos solos argilosos. Os doses críticos de fósforo no solo variaram de 46 a 80 ug P/cm 3 , para a *B. humidicola*, de 60 a 87 ug P/cm 3 para B. ruziziensis e de 32 a 58 ug P/ cm3 para B. brizantha e B. decumbens.

Respostas positivas à aplicação de fósforo foram observadas a campo por CIAT (1978) que, estudando o efeito de quatro doses de fósforo (0, 50, 100 e 400 kg de P_2O_5 /ha) B. decumbens, P. maximum, H. rufa e A. gayanus, encontraram . para um periodo de 4 cortes, num Oxissol de Carinágua, respostas significativas em todos os doses aplicados. No entanto, a resposta mais expressiva foi com o dose de 50 kg de P_2O_5 /ha para todas as espécies, exceto para H. rufa, que respondeu linearmente ÀB do elemento até 100 kg de P_2O_5 / ha. Em experimento em casa de vegetação. FALADE (1975) estudou em vasos o efeito da aplicação de doses de P (0; 7.5; 15: 30 e 60 ppm de P), na produção matéria seca de P. maximum, P. purpureum, C. plectostachyum, P.

purpureum (roxo) e A. gayanus. Observou que o máximo crescimento ocorreu nos seguintes doses de P: 30; 7,5; 60; 15 e 15 ppm respectivamente para: A. gayanus, P. purpureum, P. purpureum (roxo), P. maximum e C. plectostachyum.

GONÇALVES et al. (1982), conseguiram acréscimos substanciais de rendimento de forragem de Brachiaria 8P B. decumbens, com aplicação de Flórida e apenae kg 50 P₂O₅/ha; as demais braquiárias tiveram acréscimos inferiores a 15% sob a mesma dose. A adição de P ao solo aumentou significativamente o teor do elemento no tecido vegetal, porém insuficiente para atender as exigências de bovinos pastejo (0.18%). Pesquisadores do CIAT (1982), afirmam gramineas forrageiras tropicais, ainda que, recebendo elevadas doses de P nao apresentam teores deste elemento no tecido acima de 0,15%.

Portanto, para aumentar a produtividade e valor nutritivo, deve-se adicionar fertilizantes fosfatados aos solos com baixos teores de P. bem como selecionar espécies forrageiras que o utilizem eficientemente.

2.3.3. Potássio: O potássio, ao contrário do N, P e S, não entra na formação de compostos orgânicos, permanecendo ativo na planta e pode ser liberado facilmente quando os restos voltam ao solo. Em geral, as gramímeas forrageiras são exigentes em potássio, porém a importância da adubação potássica dependerá, em grande parte, da utilização da massa produzida. Assim, se as gramíneas forem colhidas periódicamente para feno ou silagem, uma grande quantidade do elemento será exportada.

O potássio adquire major importancia em pastagens

consorciadas do que em pastagens exclusivamente de gramíneas, pois para o estabelecimento efetivo do consórcio, é necessário um bom suprimento deste nutriente, já que as leguminosas têm menor habilidade em absorvê-lo, implicando que teores baixos ou insuficientes no solo traria problemas na efetividade do consórcio, podendo haver supressão total da leguminosa. Em pastagens exclusivas, o problema é menos pronunciado, principalmente se o manejo empregado for o de pastejo (WERNER, 1986 e WERNER et al., 1983), pois segundo SANCHEZ (1981) e WERNER (1986), admite-se que, em sistemas de pastejo, haverá uma reciclagem da maior parte do K, através das fezes e urina dos animais. No entanto, em solos com baixo teor de K é necessário correção, ou quando o manejo é intensivo, onde são feitas adubações pesadas com N, é preciso supri-las com K para não haver limitação ao efeito do N (COMASTRI, 1977; CIAT, 1981).

Interação entre N e K foi constatada em experimento a campo por CARVALHO et al. (1990) que, estudando três doses de potassio (0, 75 e 150 kg/ha/ano) e quatro doses de nitrogênio (0, 100, 200 e 400 kg/ha/ano) num Latossolo Vermelho-Amarelo, observaram que os doses de potássio afetaram a resposta da B. decumbens ao nitrogênio, sendo que, na ausência de potássio a resposta ao N foi limitada, no entanto, com o aumento do dose de K houve acentuada resposta ao N.

O efeito da interação entre K e N sobre a produção de matéria seca do colonião foi observada por MONTEIRO et al.(1980) que, testando doses de K (0 e 60 kg/ha) e doses de N (0, 75, 150 e 225 kg/ha) num Podzólico Vermelho-Amarelo variação

Laras, observaram que a aplicação de 60 kg/ha de K na ausência de adubação nitrogenada, resultou em produção de matéria seca relativamente maior que a aplicação de 150 kg/ha de N sem adubação potássica. Já CIAT(1985), estudando o efeito de doses de K que variaram de O a 40 kg K/ha sobre B. decumbens 606, B. humidicola 679 e A. gayanus 621, em cultivo exclusivo e consorciado, não encontraram respostas significativas à aplicação de potássio sobre a produção de matéria seca de B. decumbens 606 e B. humidicola 679, quando em cultivo exclusivo. Contudo, A. gayanus 621, respondeu positivamente a aplicações de K tanto em cultivo exclusivo quanto em consorciado.

2.3.4. Enxofre : O enxofre é absorvido pelas raízes, nas condições de solo, predominantemente na forma de sulfato (EPSTEIN,1975), desempenhando na planta funções vitais, sobretudo no metabolismo das albuminas, nas reações enzimáticas (Beaton citado por VITTI et al., 1988). Assim, esse nutriente é componente dos aminoácidos essenciais, cisteína e metionina. Além disso, o enxofre está ligado à vitaminas biotina e tiamina. sendo também componente da Acetil-CoA, composto que representa o centro nervoso do Ciclo de Krebs influenciando, portanto, todo o metabolismo de gorduras e carboidratos.

JONES (1964), relata que o S frequentemente limita a produção de pastagens. Ensaios realizados no CIAT, citados por SOUZA (1986), mostram resposta diferencial de diversas forrageiras à doses de enxofre (0, 10, 15, 20 e 30 kg de S/ha), durante três cortes. B. humidicola mostrou-se eficiente e não responsiva, o mesmo ocorrendo ao A. gayanus, no entanto com menor

eficiência na utilização de S; P. maximum e B. decumbens foram responsivas até o dose de 20 kg S/ha, sendo a última mais eficiente. Em doses mais elevadas todas as gramíneas tenderam a apresentar eficiência na utilização do S semelhantes, com excessão da B. humidicola, que foi bem superior. CASAGRANDE (1982), conduziram ensaio semelhante com três tipos & SOUZA solo (AQ, LEa fase cerradão, LEd fase de cerrado). e estudaram em experimento a campo a resposta de gramineas forrageiras à quatro doses de S (0, 15, 30 e 60 kg/ha), e após três cortes observaram que, de maneira geral, as forrageiras responderam significativamente até 30 kg S/ha, sendo a В. decumbens tipo "australiana" e Melinis minutiflora cv Cabelo-de-Negro, as que mais responderam em aumento de produção de matéria seca.

2.3.5. Calagem: Os solos tropicais são, normalmente ácidos, seja pela ocorrência de precipitação suficientemente alta para lixiviar quantidades apreciáveis de bases permutáveis do solo, seja pela ausência de minerais primários e secundários responsáveis pela reposição dessas bases. Sendo assim. devido às grandes áreas de solos ácidos, sob aspecto prático, a importância da acidez sobrepuja a da alcalinidade.

A estratégia das pesquisas em fertilidade do solo e nutrição de plantas em pastos tropicais está baseada no manejo dos solos com uma tecnologia de baixos insumos. O objetivo geral é aumentar a eficiência dos fertilizantes, que pode ser conseguida com a calagem e também mediante o uso de espécies forrageiras mais tolerantes às restrições químicas dos solos.

Segundo SPAIN & SALINAS (1985), um dos fatores mais importantes na adaptação das espécies ao meio tropical úmido é sua tolerância ao Al (acidez dos solos, com pH abaixo de 5,0). A tolerância à acidez não quer dizer que as plantas sejam imunes as deficiências de Ca e Mg, que quase sempre ocorrem em solos ácidos. Deste modo, tais elementos são exigidos como nutrientes, sendo necessário aplicar pequenas quantidades de fertilizantes ou calcário com o objetivo de suprí-los.

A não necessidade de calagem tem outra vantagem: níveis marginais de micronutrientes, que se encontram comumente em solos do trópico úmido, tornam-se mais limitantes após calagem, sobretudo o Zn. CARVALHO et al. (1984), relatam a seguinte sequência de tolerância ao Al : Braquiárias = Andropogom = Capim Gordura > Colonião = Jaraguá = Capim Elefante. Assim, verifica-se que as Braquiárias e o Andropogom estão dentre as gramíneas mais tolerantes ao Al .

COUTO et al. (1985), em experimento de campo, estudando presença/ausência de calagem e doses de fósforo num Latossolo Roxo. no desenvolvimento de quatro gramineas tropicais, observaram que o A. gayanus cv Planaltina e em menor intensidade Setaria anceps cv Kazungula foram mais produtivas que o P. maximum cv Makueni e P. maximum cv Green Panic, tanto na presença como na ausência de calagem. Já CIAT (1978), testando em solo doses de calcário de 0; 0.5; 2 e 6 t de calcário/ha acido. para atingir valores de saturação de Al na camada superficial do solo 90, 80, 50 e 10, respectivamente, observaram que tanto a B. de decumbens quanto P. maximum não reponderam à calagem, mostrando alto dose de tolerância ao Al e sugerindo serem pouco exigentes

em Ca e Mg.

2.3.6. Micronutrientes: Apesar da essencialidade dos micronutrientes ter sido demonstrada há várias décadas, somente nos últimos anos é que sua importância foi relatada, de modo mais ou menos conclusivo, para certas condições de solo e culturas no Brasil. Segundo MATTOS & COLOZZA (1986), embora as deficiências de micronutrientes nas plantas forrageiras ainda não tenham assumido proporções generalizadas e limitantes à produção, não se pode esquecer de sua importância na nutrição animal, embora nem todos os micronutrientes de interesse para a nutrição das plantas o sejam para os animais.

os micronutrientes, o boro, o cobre. molibidênio e o zinco são os que tem sido alvo de maior atenção por parte dos pesquisadores brasileiros em seus estudos de nutrição de plantas forrageiras. No entanto, a pesquisa micronutrientes em gramíneas é escassa em relação às leguminosas as condições de clima tropical e alguns resultados reportados por alguns autores, conduzidos em diferentes locais e envolvendo algumas gramíneas forrageiras cultivadas em vários tipos de solo, evidenciam a ocorrência diminuta ou nenhuma alteração na produção de matéria seca dessas plantas decorrência da presença ou ausência dos micronutrientes adubação. Assim, em experimento em casa de vegetação, WERNER MATTOS (1972) estudando o efeito da aplicação conjunta micronutrientes B + Cu + Fe + Mo + Zn (0.5; 2.0; 2.0; 0.25; 2.0 kg/ha. respectivamente), em um LVE-orto (pH H_2O original 5,3 e apos calagem. de 5.8). sobre o capim-gordura, observaram

cmissão desses micronutrientes não provocou expressiva variação na produção de matéria seca e perfilhamento desta gramínea. Constataram, no entanto, a ocorrência de estrias cloróticas e coloração verde mais claro no tratamento com omissão dos micronutrientes. Em experimento semelhante WERNER et al. (1967b). avaliando aplicação conjunta de B, Cu, Fe, Mo e Zn nas mesmas doses, num Latossolo Vermelho-Escuro de Andradina -SP (pH original de 5,8 e após calagem pH 6,3), não constataram efeito significativo com a presença desses nutrientes, na produção de matéria seca e perfilhamento do P. maximum.

Após 4 anos, alguma resposta à micronutrientes foram obtidas por pesquisadores do CIAT (1985), em ensaio a campo, num Oxissol, que constataram tendência de redução na produção de matéria seca de 4 gramíneas forrageiras, entre elas o A. gayanus 621 e B. brizantha 679, à aplicação de doses de Mn(0;0,25;0,5 e 1,0 kg/ha). Para os demais nutrientes (B, Cu e Zn), apenas o Zn apresentou, na dose de 2,0 kg/ha, efeito residual positivo. Também em ensaio de campo num Latossolo Vermelho-Amarelo, SERRÃO et al. (1971), utilizando a técnica do elemento faltante, obtiveram com a omissão de uma mistura de micronutrientes (B, Cu, Zn e Mo), reduções de 11,3; 11,0 e 2,1% na produção de matéria seba da B. ruziziensis, B. decumbens e P. purpureum, respectivamente.

Assim, de acordo com a revisão de literatura, verifica-se que a resposta de gramíneas forrageiras à adubação é bastante variada, dependendo do tipo de solo, local e da espécie empregada. De maneira geral, o N e o P são aqueles nutrientes que normalmente mais limitam o crescimento das forrageiras em

pastagens, acompanhados em menor grau pelo K e S. Como as gramíneas forrageiras são tidas como tolerantes à acidez e ao Al³⁺ tóxico, respostas à calagem são menos frequentes, a não ser para espécies mais exigentes. Para os micronutrientes, um menor número de informações é encontrada na literatura, sendo que o B, o Cu e o Zn tem recebido maior atenção da pesquisa.

3. MATERIAL E METODOS

3.1 Local e Período de Condução do Experimento

O experimento foi conduzido em casa de vegetação: do Departamento de Ciência do Solo da Escola Superior de Agricultura de Lavras (MG), durante o período de outubro/91 a fevereiro/92.

3.2. Solo e Clima

O solo utilizado no presente estudo trata-se de um Latossolo variação Una - LU (CURI, 1991) coletado em fazenda particular na região do município de São João Del Rey, MG (Microrregião Campos da Mantiqueira). O município está situado a uma latitude de 21º 08° sul, longitude 44º 15° 40" oeste e a uma altitude de 910 metros acima do nível do mar. O clima da região, pelo sistema de Köppen, é o tipo CWa, com precipitação pluviométrica anual de 1.436,7mm (média de 32 anos), sendo o período de maior ocorrência de chuvas de novembro a abril e temperatura média anual de 19,2°C, com máxima de 21,6°C e minima de 13,7°C (BRASIL, 1969).

O solo foi coletado na camada arável (0-20cm) sendo, posteriormente, seco ao ar, destorroado e passado em peneira de

5 mm de malha. Em seguida, foi retirada uma amostra para análises químicas e físicas (Quadro 1).

As determinações químicas realizadas foram: pH em H_2O ; matéria orgânica, Ca, Mg, e Al (extraídos pelo KCl 1N); P, K, Zn, Cu e Mn (extraídos pelo HCl 0,05N + H_2SO_4 0,025N); N pelo método Kjeldhal; e Fe_2O_3 pelo ataque sulfúrico, conforme VETTORI (1969) com modificações da EMBRAPA (1979). O enxofre (S- SO_4^-), foi determinado por turbidimetria (BLANCHAR et al., 1965). O boro foi extraído com água quente e determinado no extrato de acordo com o método da curcumina de Dible et al., descrito por JACKSON (1970). As análises físicas realizadas foram densidade de partícula, densidade do solo e textura.

Os resultados das análises químicas e físicas do solo (Quadro 1), estão de acordo com caracterização feita por OLIVEIRA et al.(1992), de que os Latossolos variação Una (LU), apresentam-se como solos distróficos ou álicos e ácidos ou muito ácidos (pH normalmente 4,5 a 5,0). As características físicas permitem definir sua classe textural como argilosa (VIEIRA et al. 1988). Relacionado à sua fertilidade natural o solo utilizado neste trabalho mostra-se com valores elevados de acidez e matéria orgânica, além de baixos níveis de P, Ca e Mg, nível médio de K, saturação em bases muito baixa e baixos níveis de alumínio trocável, de acordo com a COMISSÃO DE FERTILIDADE DO SOLO DO ESTADO DE MINAS GERAIS (1989).

Quadro 1 - Principais características químicas e físicas do LU, na camada de 0-20cm.

Parâmentros	Profundidade (0-20 cm)
pH (H ₂ O)	4,9
P (ppm)	1,0
K (ppm)	72
Ca (meg/100 cm ³)	0,5
Mg (meq/100 cm ³)	0,2
Al (meq/100 cm^3)	0,3
H + Al (meg/100 cm3)	4.0
5-50 ₄ (ppm)	4,0 3,7
S-SO ₄ (ppm) S (meq/100 cm ³)	0,9
$c (meg/100 cm^3)$	1,2
$\Gamma \text{ (meq/100 cm}^3)$	5,4
n (%)	25
J (%)	16
3 (ppm)	0,3
Cu (ppm)	1,9
Zn (ppm)	1,1
in (ppm)	10,3
Fe ₂ O ₃ (%)	12
Mat. Organica (%)	4,4
Areia (%)	33
Limo (%)	30
Argila (%)	37
Os (g/cm ³)	1,2
Op (g/cm ³)	2,6

Análises realizadas nos laboratórios de Análise Química e Fisica de Solo - DCS/ESAL

3.3. Espécie Vegetal

As espécies utilizadas como plantas indicadoras foram o Braquiarão (Brachiaria brizantha cv. Marandu) e o Andropogon (Andropogon gayanus cv. Planaltina), cujas sementes foram obtidas no Instituto de Zootenia, Nova Odessa - SP. Estas espécies foram sugeridas por CURI (1991) para a região, em função da capacidade que apresentam em desenvolver-se em solos de baixa fertilidade.

3.4. Delineamento Experimental e Tratamentos

O delineamento experimental utilizado foi o inteiramente casualisado, com onze tratamentos fundamentados na técnica do elemento faltante, duas gramíneas forrageiras e quatro repetições. Os tratamentos corresponderam: testemunha (solo natural); Completo 1 (N, P, K, S, B, Cu e Zn + calagem); Completo 2 (Completo 1 - calagem + Ca e Mg na forma de sulfato); Completo 1 - calagem; Completo 1 -N; Completo 1 -P; Completo 1 -K; Completo 1 - S; Completo 1 - Micro (B, Cu, Zn); Completo 2 - Ca; Completo 2 - Mg, simbolizados como: TEST, C1, C2, - CAL, - N, - P. - K, - S, - MICRO, - Ca e - Mg, respectivamente.

O cálculo da calagem para o tratamento Completo 1 foi feito através do método de saturação de bases proposto por QUAGGIO(1983), elevando-se V para 60% de T (CTC a pH 7,0), empregando-se calcário dolomítico comercial calcinado e micro-pulverizado.

As doses dos nutrientes utilizadas nos diversos tratamentos, quando pertinente, foram as seguintes: N = 200ppm sendo 1/3 no plantio, 1/3 aos 15 dias e 1/3 aos 30 dias após a emergência; K = 150ppm, parcelado tal como o N; P = 200ppm; Ca = 75ppm; Mg = 15ppm; S = 50ppm; B = 0,5ppm; Cu = 1,5ppm; Zn = 5ppm;, todos aplicados no plantio e usando-se fontes p.a.. As fontes dos nutrientes foram o NH4NO3, NH4H2PO4, (NH4)2SO4, KH2PO4, K2SO4, H3PO4, CaSO4, KNO3, H3BO3, CuCl2, ZnCl2, fornecidas sempre nas quantidades especificadas em cada tratamento.

3.5. Montagem e Condução do Experimento

Foram utilizados vasos plásticos com capacidade para dm³ de solo. Quando pertinente, o calcário foi aplicado em 24/10/91 permanecendo 30 dias em incubação com umidade adequada. Após isto, o solo dos vasos foram secos e aplicados os tratamentos, que também permaneceram 30 dias em incubação com umidade adequada. Em seguida, foram semeadas cerca de 40 sementes por vaso para cada espécie e após a emergência das plântulas, foi realizado desbaste deixando-se 4 plantas por vaso.

Durante o período experimental, a umidade dos vasos foi mantida a 60% da VTP (Volume Total de Poros), de acordo com FREIRE et al. (1980), aferida através de pesagens diárias dos vasos, completando-se o peso com água desmineralizada.

Foram realizados três cortes a cada 45 dias, sendo os dois primeiros a 3cm do solo, e o último rente ao solo. Após o último corte, depois de seca, a terra dos vasos foi revolvida e o sistema radicular retirado e lavado cuidadosamente em água corrente e posteriormente em água desmineralizada.

3.6. Parâmetros Avaliados

Produção de matéria seca e perfilhamento: O material vegetal, parte aérea (P.A.) de cada corte e raízes após o último corte, foi seco em estufa com circulação de ar, a 70°C até peso constante, realizando-se em seguida a pesagem da matéria seca. Após, foram separadamente triturados em moinho Willey com

peneira de 20 malhas por polegada (0,42 mmm) e acondicionadas em frascos de vidro devidamente identificados para posteriores análises químicas. O número de perfilhos foi determinado após o 1º corte.

Teor e acumulação de nutrientes: Os teores dos nutrientes na matéria seca da parte aérea de cada corte e das raízes após o último corte foram determinados como a seguir: N pelo método Kjeldhal conforme MALAVOLTA et al.(1989); P. K, Ca, Mg, S, Cu, Fe, Mn e Zn através da digestão nitroperclórica (MALAVOLTA el al., 1989), e a concentração, no extrato como se segue: P - Colorimetria; K - Fotometria de Chama; S - Turbidimetria; Ca, Mg, Cu, Fe, Mn e Zn - Espectrofotometria de absorção atômica e o Boro de acordo com o método da Curcumina de Dible et al., conforme JACKSON (1970).

A quantidade dos nutrientes acumulada nos tecidos da parte aérea e nas raízes, foi calculada com base no teor destes no tecido e a produção de matéria seca.

Teor de proteína bruta : Os cálculos dos teores de proteína bruta foram feitos da seguinte forma:

 $PB = N \times 6,25$

onde : PB = teor de proteína bruta (%)

N = teor de nitrogênio (%)

Eficiência de utilização: A eficiência de utilização (EU) dos nutrientes foi calculada segundo SIDDIQUI & GLASS(1981),

da seguinte forma:

$$EU = \frac{(MS)^2}{Q}$$

onde : MS = matéria seca (g)

Q = quantidade do nutriente (mg)

Para comparação da eficiência de utilização de nutrientes entre o Braquiarão (b) e Andropogon (a), calculou-se o índice de utilização (I), que é definido pelo quociente :

$$I_{b,a} = \frac{EU_b}{EU_a}$$

3.7. Análise Estatistica

Foram realizadas análises de variância dos seguintes parâmetros: matéria seca da parte aérea em cada corte e total; perfilhamento; matéria seca das raízes; teores dos nutrientes na parte aérea em cada corte e nas raízes; acumulação dos nutrientes na parte aérea em cada corte, total na parte aérea e nas raízes, de acordo com GOMES (1985).

4. RESULTADOS E DISCUSSÃO

Os resumos da análise de variância dos parâmetros avaliados sao apresentados em APENDICE. Os tratamentos apresentaram efeitos significativos sobre todos os parâmetros avaliados.

4.1. Produção de Matéria Seca e Perfilhamento

A produção de matéria seca pela parte aérea no 1º, 2º e 3º cortes e total (1º+2º+3º), pelas raízes (após 3º corte) e o perfilhamento (no 1º corte) do Andropogon e Braquiarão, encontram-se no Quadro 2. Para melhor visualização do comportamento das forrageiras em função dos tratamentos, os valores do Quadro 2 foram plotados em histogramas. Assim, têm-se nas Figuras 3 e 4 a produção de matéria seca pela parte aérea do Andropogon e Braquiarão, respectivamente.

Observa-se que o comportamento das espécies seguiu a mesma tendência em função dos tratamentos. Para ambas as forrageiras, a testemunha (solo natural) e a omissão do P apresentaram-se extremamente limitantes ao crescimento. As omissões do N, S e calagem também apresentaram efeito depressivo, entretanto, em menores proporções. A omissão dos micronutrientes

QUADRO 2 - Produção de matéria seca pela parte aérea [1º, 2º e 3º cortes e total (2)], raiz e perfilhamento de Andropogon e Braquiarão. (1)

	Andropogon						Braquiarão						
Tratamento	Parte aérea				Raíz	Perfilhos	Parte aérea				-[J/JEA]-	Perfilhos	
	1º corte	2º corte	3º corte	Total	RdIZ	por	1º corte	2º corte	3º corte	Total	Raíz	por vaso	
	g/vaso						g	/vaso					
TEST.	0,0 c ⁽³⁾	0,3 d	1,2 d	1,6 e	1,5 d	4,0 d	0,0 d ⁽³⁾	0,4 c	1,0 e	1,4 f	1,5 f	4,0 d	
C1	15,2 a	27,1 a	14,6 a	56,9 a	65,3 a	49,0 ab	38,8 ab	17,4 a	16,4 ab	72,6 abc	57,1 ab	31,2 a	
C2	14,6 a	24,8 ab	14,6 a	54,0 a	51,6 b	50,7 ab	36,7 ab	15,9 a	13,8 bc	62,3 bc	54,8 bc	23,2 b	
-CAL	14,3 a	22,2 ab	12,9 ab	49,4 ab	52,6 b	53,7 a	31,1 b	14,8 a	13,2 c	59,2 cd	50,1 c	28,2 ab	
-N	9,1 b	3,6 d	4,3 c	16,9 d	17,5 c	22,2 c	14,5 c	2,2 c	3,1 e	19,7 e	13,3 ef	12,0 c	
-P	0,0 c ⁽³⁾	0,1 d	0,4 d	0,6 e	0,6 d	4,0 d	0,0 d ⁽³⁾	0,8 c	1,3 e	2,1 f	1,4 f	4,0 d	
-K	13,1 ab	23,0 ab	13,4 ab	49,5 ab	21,5 c	46,2 ab	31,7 b	9,0 b	7,4 d	48,2 d	17,4 e	31,0 a	
-S	14,3 a	9,5 c	6,5 c	30,3 c	28,1 c	39,2 b	32,8 b	7,5 b	9,0 d	49,3 d	35,3 d	21,7 b	
-MICRO	16,6 a	23,3 ab	14,5 a	54,4 a	62,0 ab	46,0 ab	44,2 a	17,3 a	17,9 a	79,3 a	64,2 abc	30,5 a	
-Ca	13,3 a	20,3 b	12,1 b	45,7 b	55,5 ab	50,7 ab	35,0 b	15,7 a	13,6 bc	64,2 bc	66,8 ab	25,7 ab	
-Mg	14,4 a	23,4 ab	12,8 ab	50,6 ab	57,7 ab	50,0 ab	38,6 ab	14,7 a	13,7 bc	66,5 bc	69,6 a	22,7 b	
C.V. (%)	14,6	14,3	15,2	9,8	13,6	15,7	14,6	14,3	15,2	9,8	13,6	15,7	

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Soma de todos os cortes.

⁽³⁾ Devido ao pequeno crescimento das plantas, a parte aérea não foi colhida no 1^{Ω} corte.

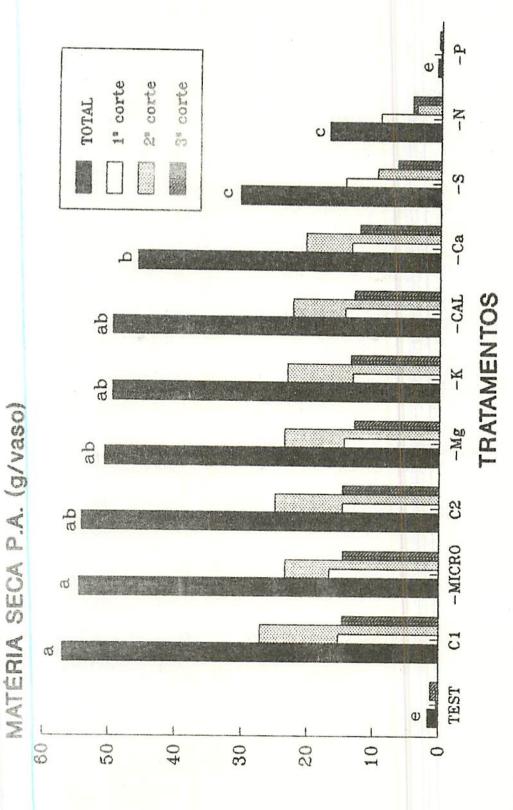


FIGURA 3 - Produção de matéria seca pela parte aérea de Andropogon no 1º, 2º e 3º cortes e total $(1^4+2^2+3^9)$. Para o total, colunas com as mesmas letras, não diferem entre si (Tukey 5%).



FIGURA 4 - Produção de matéria seca pela parte aérea de Braquiarão no 1º, 2º e 3º cortes e total (1º+2º+3º). Para o total, colunas com as mesmas letras, não diferem entre si (Tukey 5%).

(B, Cu e Zn), tiveram pouco ou nenhuma influência sobre o crescimento das gramíneas.

Embora o Andropogon e Braquiarao sejam consideradas espécies de baixa e média exigência nutricional, e tolerantes à baixos níveis de P, na ausência de aplicação de qualquer nutriente (solo natural) e na omissão do P da adubação, o crescimento das forrageiras foi totalmente inibido no 1º corte e drásticamente reduzido nos 2º e 3º cortes (Quadro 2 e Figuras 3 e 4). Estes resultados comprovam a baixa fertilidade natural do solo estudado e revelam o P como principal nutriente limitante ao bom desenvolvimento do Andropogon e Braquiarão.

Resultados obtidos neste experimento são corroborados por vários trabalhos que comprovam a importância do P para a produção de gramíneas forrageiras. Assim, SARAIVA et al. (1986) num Podzólico Vermelho-Amarelo e CARVALHO et al. (1992a) num Latossolo Vermelho-Amarelo, constataram como sendo o P, o principal nutriente limitante ao desenvolvimento do M. minutiflora. Também WERNER et al. (1967b) em casa de vegetação e ITALIANO et al. (1982) em experimento de campo, utilizando solos de pastagens degradadas, através da técnica do elemento faltante, verificaram que o P foi o principal nutriente limitante ao crescimento do P. maximum. Em experimento a campo, CARVALHO et al. (1992b) avaliando a resposta do A. gayanus cv. Planaltina a doses de P (0, 50, 100, 200 e 400 kg/ha) num Latossolo Vermelho-Amarelo, observaram resposta acentuada desta gramínea a este nutriente.

A comprovada importância do P na produção de gramíneas forrageiras relatada pela literatura e os resultados obtidos

neste trabalho, indicam a necessidade de estudos sobre adubação instatada neste solo. Visando adequá-la às necessidades das plantas, tipo de solo e às condições sócio-econômicas do agricultor da região.

O decréscimo na produção de gramineas é geralmente atribuido à deficiência de nitrogênio. Neste trabalho, após o P, foi o nutriente que mais limitou o crescimento das forrageiras, pois em todos os cortes houve redução (P<0,05) na produção de matéria seca com a omissão do N, entretanto, em menor proporção do que com a omissão do P. Corroboram com resultados MONTEIRO & WERNER (1977) e PAULINO & WERNER que relatam a importância do P no estabelecimento inicial e do (desde que o P não seja limitante) na manutenção da produção de matéria seca do P. maximum e H. rufa, respectivamente. Outros trabalhos como o de BOGDAN (1977), MATTOS & WERNER (1979), VICENT-CHANDLER et al. (1989) e WERNER et al. (1967a), outros, também comprovam o grande efeito da adubação nitrogenada na produtividade de diversas gramineas forrageiras.

Resultados semelhantes foram obtidos por FERRARI NETO (1991), trabalhando com um Latossolo Vermelho Escuro da região Noroeste do Estado do Paraná, onde constatou que o P e o N foram os nutrientes que mais limitaram o crescimento do *P. maximum* e *B. decumbens*.

Embora este solo apresentasse alto teor de matéria orgânica (Quadro 1), principal fonte de N no solo, a quantidade de N mineralizada no período experimental, possivelmente, foi insuficiente para atender a exigência da planta. A queda

scentuada na produção de matéria seca do 19 para o 29 e 39 contes, demonstram um rápido esgotamento do N mineral do solo que foi utilizado pela planta no 19 crescimento.

Diante disto, assim como ocorreu com o P, é notória a necessidade de estudos sobre adubação nitrogenada, afim de determinar as necessidades mínimas das forrageiras em N, para se obter uma produtividade economicamente viável.

Apesar da análise do solo ter revelado teor médio de solo (Quadro 1), a omissão deste nutriente da adubação, no reduziu (P<0,05) a produção de matéria seca do Braquiarão no 29 e 30 cortes. Isto pode ser explicado pelo rápido esgotamento do K solo no 19 corte, provocado pela alta demanda da planta, recebeu elevadas doses dos outros nutrientes neste tratamento. Assim, o K disponível no solo no 20 e 30 cortes, não suficiente para manter a produção de matéria seca à niveis semelhantes ao tratamento Completo (C1). Estes resultados corroborados por GOMIDE (1966) e SERRAO & SIMAO NETO (1971), observaram respostas positivas de algumas gramíneas forrageiras ao potássio. Já WERNER & MATTOS (1972), em solo com 62 ppm de K, observaram que quando o K foi omitido do tratamento "Completo", houve apenas ligeiras reduções (não significativas), no peso seco do M. minutiflora.

Também utilizando a técnica do elemento faltante em casa de vegetação, FERRARI NETO (1991) obteve resultados semelhantes. O autor observou em 2 cortes, que a omissão do potássio reduziu significativamente o crescimento do *P. maximum* e *B. decumbens*, em ambos os cortes, sendo que o crescimento da rebrota do *P. maximum* foi totalmente inibido. FRANÇA & HAAG(1985)

natritiva, produções de matéria seca drásticamente reduzidas pela omissão do potássio. Entretanto, PAULINO et al. (1986) não observaram reduções significativas no crescimento da B. humidicola e S. anceps, com a omissão do K em solos Hidromórficos.

A variabilidade de resposta ao K está relacionada às diferenças de exigência entre espécies forrageiras, tipos de solo e também às doses dos demais nutrientes, sobretudo do N. Assim, ao contrário do que ocorreu com o Braquiarão, a omissão do potássio para o Andropogon apresentou apenas uma tendência de redução (P>0,05) do crescimento desta graminea. Entretanto, ocorreram sintomas visíveis e característicos de deficiência de K a partir de 10 dias após a 1ª rebrota, persistindo também na 2ª rebrota.

Portanto. no solo em estudo, para obtenção de altas produtividades, deve-se além do P e N, fornecer doses adequadas de K, sobretudo num sistema de cortes, onde tanto a absorção quanto a exportação do K são elevadas. Caso contrário, pode haver esgotamento de K do solo e consequente limitações na produção de forragem.

A omissão do Mg não afetou o crescimento das forrageiras (P>0,05), o mesmo ocorreu com a omissão do Ca para o Braquiarão, resultados de certa forma esperados, tendo em vista que, geralmente, as gramineas forrageiras são pouco exigentes nestes cátions. No entanto, a omissão do Ca reduziu (P<0,05) a produção de matéria seca do Andropogon no 29 e 39 cortes e no

Corroboram com este resultado COUTO et al. (1985) que, Perimento de campo, estudando o efeito residual da calagem num Roxo fase cerrado ao desenvolvimento __cossolo de quatro gramineas tropicais, entre elas o A. gayanus cv. Planaltina, observaram que apesar desta forrageira ser tolerante à seu desenvolvimento foi melhor com a aplicação de calcário, atribuindo o fato ao fornecimento de Ca e Mg pelo corretivo. 0s resultados concordam também com os obtidos por CARVALHO et al. (1985), em experimento de casa de vegetação, utilizando técnica do elemento faltante num Latossolo Vermelho - Amarelo. da região da Zona da Mata - MG, onde observaram que a omissão do Ca reduziu o crescimento do M. minutiflora. Também em casa de vegetação, PAULINO & WERNER(1983) trabalhando com dois níveis de cálcio (0 e 150 kg/ha de Ca) num Latossolo Vermelho-Amarelo, observaram que a ausência do Ca reduziu tanto o crescimento quanto a rebrota do P. maximum. Resultados de THOMAS et al.(1981), também mostraram que o A. gayanus responde positivamente à aplicação de Ca e Mg.

tratamento C2, o qual não recebeu calagem, mas receb**eu Ca** e Mg na forma de sulfato, não influenciou rescimento das forrageiras, mostrando que o pH do solo não afetou o desempenho das mesmas. Este resultado já era esperado, vieto que ambas as gramineas são consideradas tolerantes acidez. O mesmo não foi observado por PAULINO et al.(1986), em experimento de casa de vegetação com solos Hidromórficos, que observaram no tratamento onde a calagem foi omitida, mas que recebeu Ca e Mg como nutrientes, um ligeiro aumento na produção de matéria seca pela B. humidicola no 1º corte e pela S. anceps 20 corte, em relação ao tratamento completo. Os autores atribuiram o fato a que os nutrientes Ca e Mg estariam deficientes no solo para assegurar um adequado crescimento das forrageiras.

Embora não significativa (P>0,05), a omissão da calagem (-CAL) apresentou uma tendência de redução na produção de matéria seca da parte aéres do Andropogon e do Braquiarão, sendo que neste, no 3º corte, a redução foi significativa (P<0,05), sugerindo a calagem ser uma prática importante, principalmente fonte de Ca e Mg como nutrientes neste Resultados Bolo. semelhantes foram obtidos por LUCHETTA et al. (1992),experimento em casa de vegetação, utilizando 6 doses de calcário correspondentes a saturação em bases (V) igual a 4 (solo natural), 20, 36, 52, 68 e 84%, num Latossolo Vermelho-Escuro, onde observaram que o nível 68% promoveu um aumento de 103% produção de matéria seca para a B. brizantha e de 77% para Andropogon gayanus.

Após o Peo N. o S foi o nutriente que mais limitou o crescimento das gramineas forrageiras. Assim como ocorreu com a omissão do K para o Braquiarão. a omissão do S reduziu (P<0,05) o o crescimento das forrageiras no 2º e 3º cortes e no total, mostrando que o solo não foi capaz de suprir as necessidades das plantas neste nutriente em cortes sucessivos. Resultados semelhantes foram obtidos com P. maximum por WERNER et al. (1967b). em ensaio em vasos, utilizando a técnica do elemento faltante, num Latossolo Vermelho-Escuro de Andradina -SP, onde constataram que os elementos que mais limitaram o crescimento da

Evaminea foram o P, N e S em ordem decrescente de importância. Elembém obtiveram resposta à enxofre SARAIVA et al. (1986) com M. Minutiflors; HADDAD (1983) e MONTEIRO & CARRIEL (1987) com P. Maximum e CASAGRANDE & SOUZA (1982) com Brachiaria e outras gramineas. No trabalho de caracterização forrageira do A. Mayanus, THOMAS et al. (1981) afirmam que esta espécie é responsiva ao enxofre. Outros trabalhos não obtiveram resposta ao S, citando-se PAULINO et al.(1986) e WERNER & MATTOS(1972) em B. humidicola, S. anceps e M. minutiflora.

Estas diferentes respostas de gramineas ao enxofre está associada à espécie vegetal, tipo de solo, teor de matéria orgânica e doses de outros nutrientes (principalmente N e K). Molung et al., citados por WERNER & MONTEIRO (1988), afirmam que as respostas de pastagens exclusivas de gramineas à adubação com S não serão fenômeno comum. a menos que o suprimento de N e P sejam adequados, o que ocorreu no presente trabalho.

Tal como ocorre com o N. a matéria orgânica do solo é a principal fonte de S às plantas. Embora o solo apresentasse um alto teor de matéria orgânica, o teor de S disponível, 3,7 ppm (Quadro 1). foi insuficiente para atender as exigências das forrageiras no 22 e 32 cortes, mostrando que a mineralização do S orgânico no período experimental foi limitada.

No presente trabalho, à exceção da testemunha e do tratamento menos Micro. todos demais receberam B, Cu Zn. Confirmando O que já era esperado, a omissão destes micronutrientes, não teve efeito significativo sobre crescimento das forrageiras (Quadro 2 e Figuras 4). Resultados semelhantes foram obtidos por WERNER et al. (1967b),

Com relação ao perfilhamento, pelo Quadro 2 e Figura 5, observa-se que o Andropogon foi mais prolífico que o Braquiarão, sendo esta diferença explicada por características intrinsecas às espécies. 8O nutrientes cuja omissão mais limitaram perfilhamento das forrageiras foram em ordem decrescente o P, o N e o S, e para o Braquiarão, além destes, o Mg. Corroboram com os resultados WERNER & MATTOS (1972), que enfatizam a importância do fósforo no perfilhamento em gramineas reproduzidas por sementes, devido a pouca reserva que a semente possui, fato este agravado pela generalizada deficiência de P em solos das regiões tropicais. CARVALHO (1985), relata que, geralmente, as maiores respostas a fósforo pelas forrageiras são observadas com mais frequência na fase de estabelecimento do que na fase de produção, devido ao papel relevante deste elemento no desenvolvimento radicular das plantulas e no perfilhamento das gramineas.

A importância do N no perfilhamento é relatada por ISEPON (1987) e PAULINO et al. (1987), afirmando que o N por ser principal componente das proteínas, as quais participam

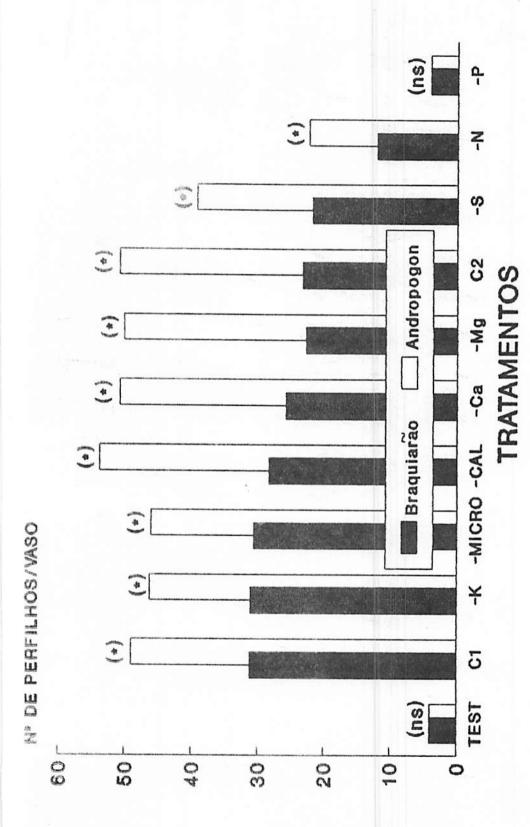


FIGURA 5 - Perfilhamento após o 1º corte de Andropogon e Braquiarão. No mesmo tratamento, asterisco (*) indica que as espécies diferem entre si (Tukey 5%), e (ns) sem significância.

Perfilhos e consequentemente no peso da touceira.

Na Figura 6, visualiza-se o maior potencial produtivo de matéria seca da parte aérea do Braquiarão em relação ao Andropogon. A exceção da testemunha e dos tratamentos menos N e menos K, nos quais as forrageiras tiveram produção de matéria seca da parte aérea semelhante, nos demais o Braquiarão foi mais produtivo.

Quanto à produção de matéria seca pelas raízes (Quadro 2 e Figura 7), o efeito dos tratamentos foi bastante parecido ao observado para a matéria seca da parte aérea para ambas forrageiras. A testemunha (solo natural) e a omissão do P apresentaram-se extremamente limitantes ao crescimento do sistema radicular. Embora em menor magnitude, também a omissão do N, K, S e calagem, promoveram uma redução significativa no crescimento das raízes. Na Figura 7, observa-se que o Braquiarão apresentou maior peso de matéria seca de raízes em relação ao Andropogon, apenas nos tratamentos -P. -Ca e -Mg e, de maneira geral, em ordem decrescente de limitação para ambas as espécies foi -P, -N, -K. -S e -CAL.

Houve uma tendência, apesar de não significativa, do Andropogon apresentar maior produção de matéria seca de raiz do que o Braquiarão no tratamento completo (C1) (Quadro 2 e Figura 7). THOMAS et al. (1981) afirmam que o Andropogon gayanus apresenta desenvolvimento de um denso sistema radicular, motivo pelo qual é cosiderado tolerante à seca.

Como os efeitos dos tratamentos sobre a crescimento da

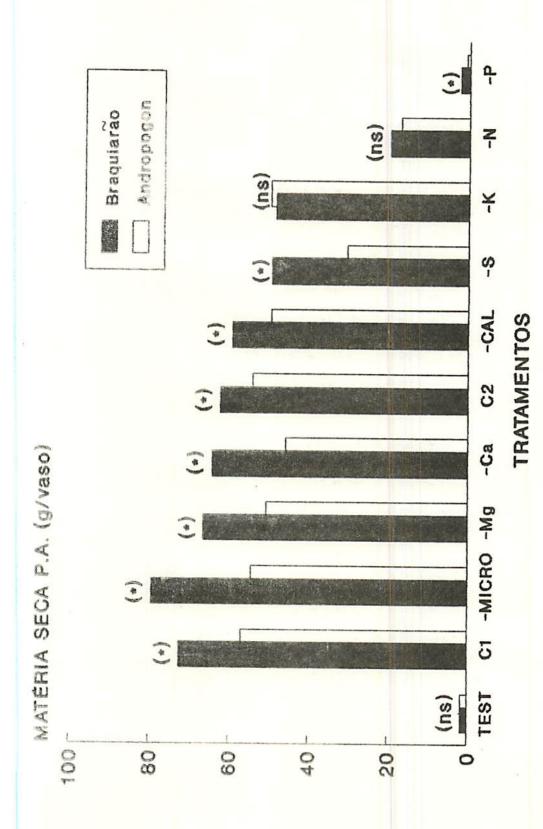


FIGURA 6 - Produção de matéria seca total pela parte aérea (1º+2º+3º cortes) de Andropogon e Braquiarão. No mesmo tratamento, asterisco (*) indica que as espécies diferem entre si (Tukey 5%), e (ns) sem significância.

MGURA 7 - Produção de matéria seca pela raiz de Andropogon e Braquiarão. No mesmo tratamento, (*) indica que as espécies diferem entre si (Tukey 5%), e (ns) sem significância.

. Che dérea e da raiz foram bastante parecidos, as relações parte t realinaiz (PA/raiz) variaram pouco em função dos tratamentos. mostram os valores numéricos das Figuras 8 e 9, onde Soserva para o Andropogon, a relação PA/raiz variou de 0,8 a 1,1 e para o Braguiarão de 0,9 a 1,5; à exceção para ambas forrageiras, do tratamento menos K, cujos valores foram bastante superiores. Resultados semelhantes foram obtidos por FERRARI NETO (1991), que atribuiu ao fato do pequeno crescimento do sistema radicular neste tratamento (-K), possivelmente, à absorção translocação do K nativo do solo para a parte aérea em crescimento, porém em quantidades insuficientes para exercer a função de transportador de fotoassimilados até o sistema radicular, como foi demonstrado por HARTT (1969) em cana acúcar, afirmando que a redução na translocação ocorre mesmo do aparecimento dos sintômas de deficiência. A pequena translocação de fotoassimilados da parte aérea para a raíz resultou em pequeno crescimento desta em relação à parte aérea (Figuras 8 e 9).

Levando em consideração o DMS5% do parâmetro Matéria Seca Total da parte aérea (19+29+39 cortes), verifica-se uma redução na produção de matéria seca total, em relação ao tratamento Completo (C1), acima de 14 e 16% como significativa para o Andropogon e Braquiarão, respectivamente. Estes valores de redução são bem inferiores aos relatados por Kilian & Velly citados por CHAMINADE (1972) de 60% ou mais, como deficiência severa do nutriente em questão. Através da Figura 10, observa-se que, em ordem decrescente de limitação, considerando a média das duas espécies, os tratamentos testemunha, menos P, menos N,

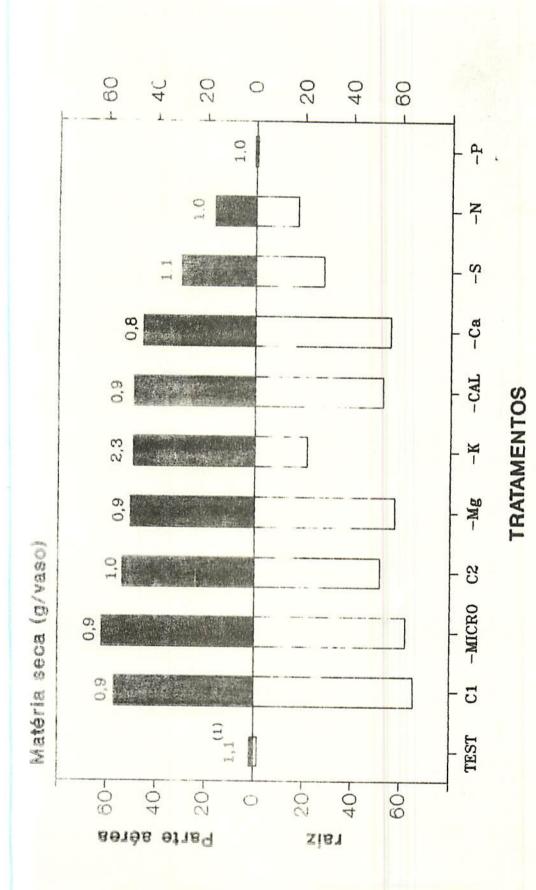


FIGURA 8 - Produção de matéria seca pela parte aérea (total) e raiz (após 3º corte) de Andropogon. (1) os valores numéricos representam para cada tratamento, a relação PA/raiz

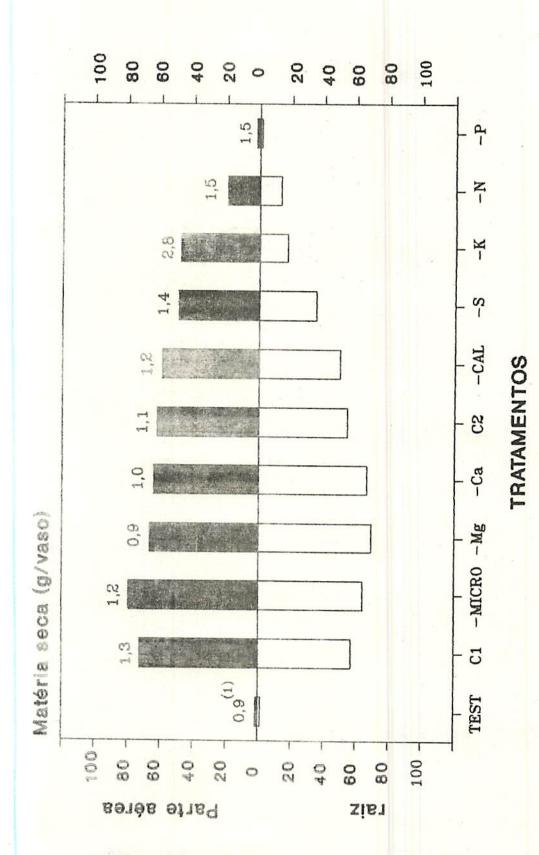


FIGURA 9 - Produção de matéria seca pela parte aérea (total) e raiz (após 3º corte) de Braquiarão. (1) os valores numéricos representam para cada tratamento, a relação PA/raiz

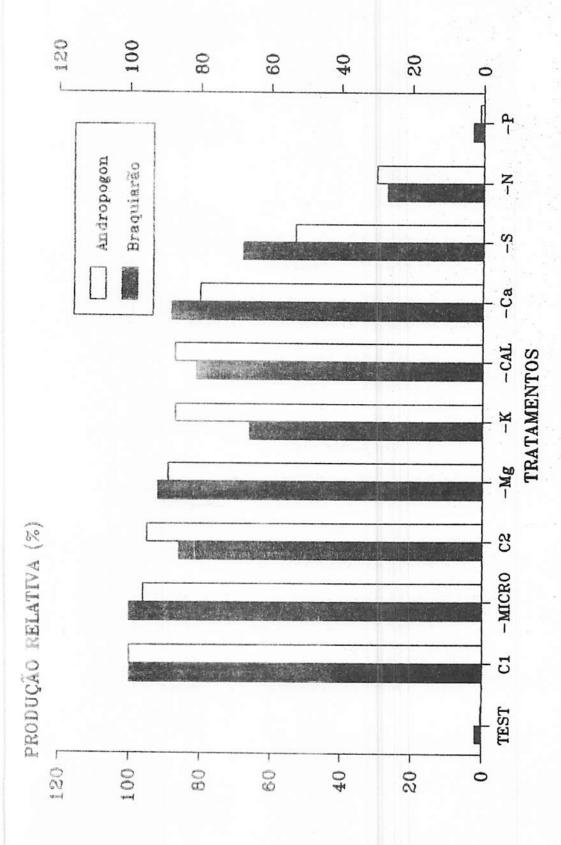


FIGURA 10 - Produção relativa de matéria seca total pela parte aérea (1º, 2º e 3º cortes) de Andropogon e Braquiarão. (C1 = 100%

nos três cortes (total) em 98, 98, 72, 40 e 24%,

Deve-se destacar ainda o comportamento diferenciado das inrrageiras quanto à produção de matéria seca pela parte aérea, a eda corte, como pode ser observado no Quadro 2 e nas Figuras 3 e d O Braquiarão agresantou acentuada queda do 19 para o 29 e cortes, mostrando a pequena capacidade de suprimento de natrientes deste solo em relação à sua exigência, mesmo adubação inicial. Já o Andropogon apresentou considerável aumento 19 para 29 corte, e posterior redução no 39 corte, mostrando crescimento inicial lento em relação ao Braquiarão. Estas diferenças podem ser devidas à características intrinsecas das espécies. Corroboram com os resultados THOMAS et al. (1981), que afirmam que o Andropogon apresenta crescimento inicial lento até atingir altura de 15 a 20 cm. Sendo esta característica uma das principais limitações à introdução desta forrageira em campos nativos, pois possibilita a competição acentuada de espécies naticas (CARVALHO, 1992) (1). BOTREL (1992) afirma que espécies adaptadas a solos ácidos e de baixa fertilidade, como Andropogon, constituem boas opções para formação de pastagens, devido à boa produção de forragem e baixos investimentos Terbilizantes ē corretivos necessários fase na de abbandiadimento.

Estes resultados, em que as forrageiras apresentam

⁽¹⁾ CARVALHO, M.M. Pesquisadora da EMBRAPA/CNPGL - Coronel Pacheco - MG, comunicação pessoal.

es potenciais de crescimento, em diferentes idades, que cada espécie deve receber manejo exclusivo da trabação.

4.2. leor e Acumulação de Macronutrientes

4.2.1. Withougenio (N)

Quadros 3 e 4 são mostrados os teores e a acumulação de N na parte aérea e raiz do Andropogon e Braquiarão, respectivamente. Embora os tratamentos tenham apresentado efeitos significativos sobre os teores de N na parte aérea das espécies, ties foram bem mais pronunciados na testemunha e menos P (20 e 3º cortes) e no menos N; nos demais as variações foram bem menores. As elevadas concentrações observadas nos tratamentos testemunha e menos P, podem ser explicadas pelo crescimento das plantas, promovendo um efeito de concentração N na matéria seca (efeito Steembjerg). Na omissão do N ab Edubação (-N), os seus teores foram bastante baixos, sendo que as plantas mostraram sintomas de deficiência do elemento em todos os cortes, o que ocasionou uma acentuada redução na produção estária seca (Quadro 2 e Figuras 3 e 4); isto mostra a baixa capacidade deste solo em suprir N às plantas. A pequena variacão nos teores de Ninos demais tratomentos foi devido também à pequena variação na produção de matéria seca entre eles (Quadro embora se esperasse um aumento na concentração nos tratamentos menos S e menos K, devido ao menor crescimento.

A elevada concentração de N observada na matéria seca

QUADRO 3 - Veor e ocumeloção de nitrogênio na parte aéres a raíz de Andropagos.

Tratamentc		Te	sor (%)		Accimula (mg/vaso)					
		Parte aére			er i januarista ki denna (14.1.47 i januarista (15.4.4					
	1º corte 2º				1º corte	2º corte	3^{Ω} corte		- Raiz	
TEST.	(2)	2,63 a	1,97 b	1,18 a	(2)	8 cd	26 3	33 Ġ	8 e	
21	2,10 ab	0,87 c	0,99 c	0,84 b	337 a	251 b	144 5	762 ab	549 b	
C 2	2,30 ab	1,07 bc	1,02 c	0,82 b	332 a	26 6 ab	148 b	746 ab	424 c	
-CAL	2,23 ab	0,96 c	1,04 c	0,57 c	320 a	215 b	135 b	670 ab	298 đ	
-N	0,85 c	0,90 c	0,85 c	0,56 c	€ 08	38 cd	37 cā	155 đ	99 e	
P	(2)	2,24 a	3,37 a	1,28 a	(2)	3 đ	14 đ	17 d	7 e	
-K	1,89 ab	1,50 b	1,64 b	1,30 a	2 4 7 a	347 a	221 a	815 a	280 đ	
- S	1,74 b	1,01 c	1,03 c	0,74 bc	249 a	96 c	67 c	412 c	211 d	
-MICRO	2,17 ab	0,93 c	0,93 c	0,78 b	360 a	218 b	135 b	713 ab	487 bc	
-Ca	2,55 a	1,11 bc	1,05 c	0,74 bc	340 a	227 b	128 b	695 ab	414 c	
-Mg	1,90 b	1,04 c	1,02 c	1,23 a	267 a	244 b	130 b	641 b	709 a	
C.V. (%)	11,9	14,1	17,5	9,2	18,5	19,7	17,3	12,8	16,8	

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1^{Ω} corte.

QUADRO 4 - Teor e acumulação de nitiogênio na parce aéres e raiz do Biaquiarab. 141

		Te	eor (%)		Acimelo (mg/vaso)					
Tratamento		Parte aére	a	- Reíz	And the state of t					
	1º corte	2º corte	2º corte 3º corte		1º conte	2º corte	3º corte	Total	- Raíz	
TEST.	(2)	2,57 a	3,42 ā	1,26 a	(2)	11 c	05 e:	46 c	19 c	
C1	1,21 ab	1,15 c	1,24 bc	0,62 cd	469	20 0 a	203 ai	872 a	357 a	
C2	1,22 ab	1,25 c	1,21 bc	0,59 de	448 a	200 a	167 abc	815 ab	324 a	
-CAL	1.53 a	1,37 c	1,43 bc	0,60 cd	479 a	22 2 a	188 abc	869 a	303 a	
-N	0,68 b	0,90 c	0,69 c	0, 44 e	99 b	20 c	22 f	141 c	58 bc	
- P	(2)	2,19 ab	3,02 a	1,25 a	(2)	17 c	36 ef	5 3 c	18 c	
-K	1 41 a	1,91 b	1,93 b	0,83 b	44 8 a	174 a	144 bcd	766 ab	144 b	
-s	1,43 a	1,32 c	1,03 c	0,75 bc	436 a	95 b	93 de	624 b	267 a	
-MICRO	1,07 ab	1,16 c	1,14 bc	0,52 de	4 75 a	200 a	206 a	881 a	338 a	
-Ca	1,29 a	1,22 c	1,21 bc	0,51 de	4 53 a	192 a	165 abc	810 ab	342 a	
-Mg	1,19 ab	1,28 c	0,97 c	0,52 đe	462 a	189 a	133 cd	784 ab	366 a	
C.V. (%)	11,9	14,1	17,5	9,2	18,5	19,7	17,3	12,8	16,8	

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

 $^{^{(2)}}$ Parte aérea não coletada no 1º corte.

Assercação no 1º corte (Quadro 3), foi devido ao seu pequeno en elemento neste corte, relativamente ao 2º corte (Quadro 2), o promoveu um aumento da concentração do elemento no tecido.

Nas raizes, os teores de N tiveram um comportamento

emperimento a campo, ORELLANA & HAAG (1982)estudando a nutri so mineral do A. gayanus, numa Terra chaenvarem que os teores de N não tiveram correlação com a (80. 100, 120 a 140 dias após a emergência) das plantas. teores de N nas folhas permaneceram estáveis a 1,36% dos 80 .aos 120 dias, decrescendo para 1,2% aos 140 dias, enquanto qué no caple variaram de 0,79% aos 80 dias para 0,5% aos 140 dias. lambém a campo. GumIDE et al. (1987) observaram em 4 cortes, correspondente a 112 dias de período experimental, num Latossolo Vermelno Escuro, teores médios de 1,42% de N na matéria seca da parts aérea do Andropogon. FALADE (1975) observaram teores de varisado de 1,99 a 2,21% na matéria seca da parte aérea do Snoropogon, colhido quando apresentavam de 45 a 60 cm de altura, mum solo com pH em CaCl2 de 6,4 e 3,6% de matéria orgânica.

Em casa de vegetação, NOVAES (1985) estudando o efeito de fontes de fósforo num solo ácido de cerrado, observaram teores midios de N na matéria seca da parte aérea do A. gayanus, variando de 0,65 a 1,65 % aos 47 dias de idade. Também em casa de vagetação, SILVA (1992) observaram num total de 5 cortes, aos 51, 31, 111, 142 e 172 dias após a emergência das plantas, teores médios de 1,62; 1,18; 1,06; 2,13 e 1,86% N, respectivamente.

Para o Braquiarão, os teores de N em todos tratamentos. à exceção da testemunha e menos P, foram inferiores à 2,9% tido ioweller(1983) como concentração normal para gramineas la lagairas em pré-florescimento. Em experimento em casa de vegetação utilizando um Latossolo variação Una, MARUN(1990) inservou teores de 1,49 a 1,57 % N na matéria seca da parte aérea de B. brizantha, aos 45 dias após o plantio.

O melhor método para se avaliar a eficiência de um solo em suprir determinado nutriente para as plantas, é determinar a quantidade absorvida do mesmo por cultivos ou cortes sucessivos, sob condições de disponibilidade adequada dos demais nutrientes. Assim, os valores de quantidade total de N acumulado pela parte aérea e raíz des gramíneas (Quadros 3 e 4) observados no tratamento menos N. são extremamente baixos, mostrando a pequena capacidade do se o em suprir as exigências das plantas, apresentando-se, portanto, como um fator altamente limitante ao crescimento das forrageiras. Resultados semelhantes foram obtidos por FERRARI NETO (1991) com P. maximum e B. decumbens, num Latorsclo Vermelho-Escuro.

Quanto ao acúmulo de N na parte aérea, em ambas forrageiras foram constatados maiores acúmulos (Quadros 3 e 4) no 1º corte, em relação aos demais, à exceção do tratamento menos K para o Andropogon. É interessante observar que, apesar do Andropogon ter apresentado maior produção de matéria seca no 2º corte, o maior acúmulo de N occareu no 1º corte, fato este 100 quenciado pelos maiores teores deste elemento.

Como a acumulação de um nutriente é dependente do teor deste no tecido e principalmente da produção de matéria seca, observa-se que a acumulação total de N na parte aérea das

forrageiras, seguiu a mesma tendência da produção de matéria seca total (Figuras 3 e 4). Os dados apontaram, portanto, o N como um fator altamente limitante ao crescimento das forrageiras. Estes resultados indicam que a adubação nitrogenada é um importante fator a ser considerado quando se pretende uma exploração racional das pastagens neste solo.

4.2.2. Fósforo (P) :

Tal como ocorreu para o N, os tratamentos influenciaram significativamente os teores e acumulação de P na parte aérea e raiz tanto no Andropogon quanto no Braquiarão (Quadros 5 e 6).

Os tratamentos menos N, menos K e menos S apresentaram maiores teores de P na parte aérea; isto pode ser explicado pelo reduzido crescimento das plantas, provocando um efeito concentração (efeito Steembjerg). Por outro lado, os menores teores de P na parte aérea ocorreram na testemunha e menos P (29 3º cortes) levando à uma acentuada redução na produção matéria seca (Quadro 2 e Figuras 3 e 4), mostrando uma baixa capacidade do solo em suprir P às plantas. A elevada concentração de P observada na matéria seca do A. gayanus no 1º corte 5), foi devido ao seu pequeno crescimento neste corte relativamente ao 2º corte (Quadro 2), o que promoveu um aumento na concentração do elemento nos tecidos.

Comparando-se os teores de P entre forrageiras, verifica-se que o Andropogom a tende apresentar teores mais elevados deste nutriente, principalmente no 1º corte. Para o Andropogon, os tratamentos testemunha e menos P, apresentaram

QUADRO 5 - Teor e acumulação de fósforo na parte aérea e raíz do Andropogon. (1)

Tratamento		T (eor (%)		Acúmulo (mg/vaso)				
	Parte aérea			Raíz	Parte aérea				
	1º corte	2º corte	3º corte	Raiz	1º corte	2º corte	3º corte	Total	- Raíz
TEST.	(2)	0,05 e	0,05 f	0,06 d	(2)	0,1 d	0,6 c	0,7 f	2 c
C1	0,17 bcd	0,11 c	0,09 de	0,07 cd	26 abcd	31,0 b	13,0 b	70,0 bc	85 a
C2	0,16 bcd	0,08 de	0,08 def	0,07 cd	24 bcd	19,0 c	11,0 b	54,0 d	68 a
-CAL	0,19 ab	0,08 de	0,08 de	0,07 cd	28 abc	19,0 c	11,0 b	58,0 cd	71 a
-N	0,13 d	0,16 b	0,28 ъ	0,13 a	12 e	6,0 d	12,0 b	30,0 e	14 bc
-P	(2)	0,05 e	0,06 ef	0,06 d	(2)	0,1	0,3 c	0,4 f	1 c
-к	0,15 cd	0,19 a	0,19 c	0,10 b	20 de	45,0 a	25,0 a	90,0 a	20 bc
-s	0,23 a	0,21 a	0,35 a	0,11 ab	33 a	20,0 c	22,0 a	75,0 b	25 ъ
-MICRO	0,18 bc	0,08 de	0,08 de	0,07 cd	30 ab	18,0 c	12,0 b	60,0 cd	83 a
-Ca	0,18 bc	0,09 cd	0,09 d	0,08 c	24 bcd	19,0 c	11,0 b	54,0 d	67 a
-Mg	0,15 cd	0,08 d	0,08 de	0,06 d	22 cd	19,0 c	11,0 b	52,0 d	87 a
C.V. (%)	13,4	10,2	11,2	10,2	16,9	15,9	14,1	11,6	16,5

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1º corte.

QUADRO 6 - Teor e acumulação de fósforo na parte aérea e raíz do Braquiarão. (1)

Tratamento	-	T	eor (%)		Acúmulo (mg/vaso)				
	Parte aérea			Raíz					
	1º corte	2º corte	3º corte	RAIZ	1º corte	2º corte	3º corte	Total	- Raíz
TEST.	(2)	0,07 cd	0,06 cd	0,04 c	(2)	0,3 d	0,6 c	0,9 d	0,6 e
C1	0,09 b	0,08 c	0,10 c	0,04 c	35 ab	15,0 b	17,0 ab	67,0 b	23,0 ab
C2	0,09 b	0,09 c	0,10 c	0,04 c	34 ab	15,0 b	14,0 ab	63,0 b	22,0 ab
-CAL	0,10 ab	0,10 c	0,05 c	0,04 c	33 b	14,0 b	14,0 ab	61,0 b	21,0 ab
-N	0,09 b	0,27 a	0,44 a	0,06 ab	13 c	6,0 c	14,0 ab	33,0 c	8,0 de
- P	(2)	0,05 d	0,05 d	0,05 bc	(2)	0,4 d	0,7 c	1,1 d	0,7 e
-K	0,14 a	0,25 a	0,24 b	0,07 a	46 a	22,0 a	18,0 a	86,0 a	13,0 cd
-S	0,11 ab	0,16 b	0,20 b	0,05 bc	35 ab	12,0 b	18,0 a	65,0 b	18,0 bc
-MICRO	0,09 b	0,09 c	0,08 cd	0,04 c	40 ab	15,0 b	15,0 ab	70,0 ab	27,0 a
-C <mark>a</mark>	0,10 b	0,09 c	0,09 cd	0,04 c	36 ab	14,0 b	13,0 b	63,0 b	27,0 a
-Mg	0,09 b	0,09 c	0,10 c	0,04 c	37 ab	13,0 b	14,0 ab	64,0 b	28,0 a
C.V. (%)	13,4	10,2	11,2	10,2	16,9	15,9	14,1	11,6	16,5

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1º corte.

teores de P abaixo da faixa crítica, para 90% da máxima produção, observada por FONSECA (1987) de 0,07 a 0,21% para a forrageira, em diversos Latossolos Vermelho-Amarelo, provenientes de várias regiões de Minas Gerais. Em experimento em casa de vegetação, SILVA (1992) observou para esta gramínea, teores de P variando de 0,09 a 0,23% na matéria seca da parte aérea, em 5 cortes durante período experimental de 172 dias.

Por outro lado, os teores de P no 1º corte para o Braquiarão, estão muito abaixo do nível crítico de 0,13%, correspondente à 80% da máxima produção, observado por CORREA (1991) aos 80 dias após emergência das plantas, num Latossolo Vermelho-Amarelo. Também, inferiores ao nível crítico observado, em experimentos de casa de vegetação por outros autores, como CORREA et al. (1992) de 0,13% aos 50 dias após emergência num Latossolo Vermelho-Amarelo e GUSS (1988), de 0,14% aos 48 dias após plantio em vários tipos de solo, entre eles o Latossolo Vermelho-Amarelo.

Assim como o N, os teores de P no Andropogon, tenderam a diminuir do 1º para o 2º corte, em todos tratamentos, à exceção do menos N, menos P e menos K. Essas variações nos teores, em geral, provavelmente, ocorreram em parte pelo efeito de diluição, visto que aparecem inversamente associados às produções de matéria seca (Quadro 2). Além disso, um outro fator a ser considerado, é o estadio de maturidade em que foram colhidas as plantas, como observaram HAAG et al. (1967) e GOMIDE et al. (1969) que, constataram também para o P, em ensaio com vários capins tropicais, diminuição em seus teores à medida que as plantas caminham para a maturidade, apesar de terem recebido

adubação fosfatada adequada. Em experimento a campo, numa Terra Roxa, ORELLANA & HAAG (1982) constataram teores de P nas folhas do Andropogon variando de 0,12% aos 80 dias até 0,07% aos 140 dias de idade, e nos caules variando de 0,11 a 0,07% no mesmo período. Para o Braquiarão MARUN (1990), em experimento em casa de vegetação, utilizando um Latossolo variação Una, observou teores de P variando de 0,11 a 0,12% na matéria seca, aos 45 dias após o plantio.

Apesar dos tratamentos terem apresentado efeitos significativos sobre os teores de P na raiz do Braquiarão, seus efeitos não foram tão pronunciados como ocorreu com o Andropogon. Neste, os teores tiveram comportamento bastante parecido com o observado na parte aérea; o mesmo não foi observado para o Braquiarão.

Para ambas as forrageiras, verifica-se que as plantas da testemunha e do tratamento menos P, além do reduzido crescimento, apresentaram na parte aérea, teores de P muito aquém daqueles observados no Completo (C1), revelando acentuada deficiência deste elemento no solo. Estes resultados são corroborados por WERNER et al. (1968), os quais afirmam que um baixo nível de P disponível no solo acarreta, além de diminuição na produção, baixos teores na forragem, com graves consequências para a nutrição dos animais que a consumirem.

Segundo a NATIONAL RESEARSH COUNCIL (1976), indices compreendidos entre os valores 0,18 e 0,23% de P na forragem, são concentrações suficientes para bovinos em crescimento e adultos. Portanto, apenas o Andropogon, no 1º corte, apresentou teores

próximos ao mínimo adequado. No entanto, é bom ressaltar que dificilmente as gramíneas tropicais, ainda que recebam elevadas doses de P, apresentam teores dentro destes limites (CIAT, 1982). Assim, a inclusao deste nutriente na suplementação mineral dos animais é necessária.

O Braquiarão apresentou no 1º corte maiores acúmulos de P que o Andropogon. Entretanto, no 2º corte, à exceção da testemunha e dos tratamentos menos P e menos N, ocorreu o inverso.

Assim como ocorreu com o N, pelos Quadros 5 e 6 observa-se que a acumulação total de P nas forrageiras, séguiu mesma tendência da produção de matéria seca total (Figuras 3 e 4). Pela baixa acumulação de P nos tecidos das plantas onde o P foi omitido, pode-se concluir que este solo apresenta uma baixa capacidade de suprimento do nutriente para as plantas.

4.2.3. Potássio (K) :

Os valores de teor e acumulação de K na parte aérea e raiz das forrageiras, em função dos tratamentos, são apresentados nos Quadros 7 e 8, respectivamente.

O comportamento dos teores de K na parte aérea das forrageiras foram bastante semelhantes ao observado para o N. Embora os tratamentos tenham influenciado significativamente os teores de K nos tecidos de ambas forrageiras, eles foram bem mais pronunciados naqueles que proporcionaram menor crescimento das plantas (efeito Steembjerg), como a testemunha, menos P (20 e 30 cortes), menos N e menos S. Nos demais tratamentos, à exceção do

QUADRO 7 - Teor e acumulação de potássio na parte aérea e raíz do Andropogon. (1)

Tratamento		T	eor (%)		Acúmulo (mg/vaso)					
	Parte aérea			Po (a						
	1º corte	2º corte	3º corte	Raíz	1º corte	2º corte	3º corte	Total	— Raíz	
TEST.	(2)	1,49 a	1,33 b	0,25 b	(2)	5 c	16 c	21 e	4 đ	
C1	2,54 ab	0,69 c	0,64 cd	0,15 bcd	383 a	187 a	92 a	662 a	102 a	
C2	2,79 ab	0,71 c	0,69 cd	0,11 cd	407 a	177 a	100 a	684 a	57 bc	
-CAL	2,43 ab	0,79 c	0,71 cd	0,18 bc	350 a	177 a	93 a	620 a	95 ab	
-N	2,26 b	1,45 a	1,23 b	0,47 a	208 b	53 bc	52 b	313 c	80 ab	
-P	(2)	1,50 a	1,63 a	0,44 a	(2)	2 c	7 c	9 e	3 đ	
-K	0,94 c	0,13 d	0,09 e	0,06 a	123 b	30 c	12 c	165 d	13 d	
-s	2,32 b	1,04 b	0,80 c	0,12 cd	331 a	98 b	51 b	480 b	35 cd	
-MICRO	2,33 b	0,70 c	0,53 d	0,13 cd	386 a	164 a	78 a	628 a	81 ab	
-Ca	3,03 a	0,86 bc	0,66 cd	0,15 bcd	401 a	174 a	77 a	652 a	82 ab	
-Mg	2,78 ab	0,79 c	0,62 cd	0,18 bc	393 a	186 a	80 a	659 a	104 a	
C.V. (%)	12,8	11,9	19,2	19,8	12,7	18,4	28,4	10,3	22,3	

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1º corte.

QUADRO 8 - Teor e acumulação de potássio na parte aérea e raíz do Braquiarão. (1)

		Te	eor (%)		Acúmulo (mg/vaso)				
Tratamento	Parte aérea		D- (-						
	1º corte	2º corte	3º corte	· Raíz	1º corte	2º corte	3º corte	Total	- Raíz
TEST.	(2)	2,19 ab	2,26 ab	0,43 a	(2)	9 đ	23 cd	32 đ	6 c
C1	1,24 cd	0,67 d	0,51 cd	0,12 cd	44 5 a	117 a	84 ab	645 ab	70 a
C2	1,27 bcd	0,72 cd	0,66 cd	0,14 cd	464 a	115 a	90 a	668 a	76 a
-CAL	1,54 b	0,83 cd	0,72 cd	0,14 cd	474 a	122 a	94 a	690 a	69 a
-N	2,43 a	2,26 a	1,76 b	0,35 ab	352 b	4 9 c	55 abcd	455 c	47 b
-P	(2)	1,85 b	2,56 a	0,33 b	(2)	14 d	31 bcd	45 đ	5 с
-K	0,33 e	0,15 e	0,16 e	0,06 d	104 c	14 d	12 d	130 d	10 c
-s	1,35 bc	1,08 c	1,08 c	0,17 c	423 ab	75 b	103 a	601 ab	61 ab
-MICRO	0,91 d	0,68 đ	0,44 d	0,11 cd	401 ab	117 a	79 abc	598 ab	70 a
-Ca	1,00 cd	0,79 cd	0,58 cd	0,11 cd	348 b	124 a	79 abc	550 bc	73 a
-Mg	0,91 d	0,81 cd	0,65 cd	0,11 cd	352 b	119 a	89 a	561 b	78 a
C.V. (%)	12,8	11,9	19,2	19,8	12,7	18,4	28,4	10,3	22,3

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1^{Ω} corte.

menos K, os valores foram bastante próximos uns dos outros. O crescimento da parte aérea é que condicionou a concentração de K na matéria seca: os maiores teores observados nos tratamentos citados foram devido ao menor crescimento das plantas, promovendo uma concentração de K no tecido; a pequena variação dos teores nos demais tratamentos foi devido a pequena variação na produção de matéria seca entre eles (Quadro 2 e Figuras 3 e 4).

omissão do K na adubação promoveu uma redução drástica dos seus teores na matéria seca de ambas espécies, mas o comportamento das forrageiras foram diferentes em produção de matéria seca (Quadro 2). O Andropogon apresentou apenas uma tendência de diminuição do crescimento em relação ao tratamento completo nos três cortes; já o Braquiarão apresentou uma significativa na produção de matéria seca nos três cortes. importante ressaltar que durante o período experimental, tanto Andropogon quanto o Braquiarão mostraram sintomas típicos de deficiência de K, o que é uma indicação clara que este solo capacidade limitada de fornecimento do elemento às plantas. Em sistema de manejo para produção de feno. o K é bastante exportado da área, o que poderá agravar o problema mais precocemente; sistema de pastejo, cerca de 80% do K ingerido pelos animais reciclado ao solo pelas excreções (SANCHEZ, 1981).

Também como observado para o N. as concentrações de K na matéria seca do Andropogon no 12 corte foram mais elevadas que os demais (Quadro 7), o que pode ser explicado pelo menor crescimento da forrageira neste corte. A diminuição dos teores de K observada com a sucessão de cortes pode ser explicada pelo esgotamento do elemento disponível no solo pelos cortes iniciais,

reduzindo a quantidade disponivel para os cortes posteriores. Este fato tem sido bem registrado na literatura (SILVA, 1992; ORELLANA & HAAG, 1982; HAAGAR, 1970 em A. gayanus e HAAG et al., 1967; WEBER & HAAG. 1984; CARRIEL et al., 1989; FERRARI NETO, 1991; em várias outras gramíneas).

De forma geral, comparando-se as duas forrageiras, verifica-se que os teores na parte aérea tendem a ser semelhantes. à exceção do 1º corte, no qual o Andropogon tende apresentar teores superiores aos do Braquiarão.

Os teores de K no 1º corte do Andropogon, à exceção do tratamento menos K. estão próximos a 2,3% obtido por KAYONGO-MALE & THOMAS (1975) para o gênero Andropogon aos 30 dias após a rebrota, e superiores a 0,28% constatado por GONÇALVES (1984). em experimento a campo com Andropogon coletado a idade de 49 dias e em excelentes condições de ser pastejado num Latossolo Amarelo região de Porto Velho-RO. O teor de K do 1º corte da tratamento onde o mesmo foi omitido está proximo a 0,95%, nível crítico obtido por CIAT (1981) para o estabelecimento da gramínea, em 8 semanas de crescimento num Oxissol. Já no 29 e 30 cortes, houve redução deste teor, no entanto, insuficiente para reduzir o crescimento, mas suficiente para induzir típicos de deficiência do elemento. RODRIGUES (1992) estudando o efeito de diferentes combinações calcário-gesso agrícola Latossolo variação Una, proveniente da região dos Campos das Vertentes -MG, observou teores de K variando de 1,0 a 2,5%, em plantas com idade entre 80 e 165 dias. Para o Braquiarão, MARUN (1990) em experimento em casa de vegetação, utilizando

Latossolo variação Una, observou teores de K variando de 1,44 a 1,84%. aos 45 dias após o plantio.

Por outro lado, como visto, a omissão do K reduziu o crescimento do Braquiarão e considerando-se 0,82%, como nível crítico para o estabelecimento do *B. brizantha* (CIAT, 1981), verifica-se que no 1º corte, apenas o tratamento menos K apresentou teor inferior àquele tido como adequado.

Em todos os cortes, os teores de K nas forrageiras são superiores a 0.7% K, considerada concentração suficiente para suprir as necessidades de vacas em lactação (NATIONAL ACADEMY: OF SCIENCE, 1971).

O comportamento das forrageiras quanto ao acúmulo de K nos tecidos foi similar àquele apresentado para o N. Observa-se uma tendência do Braquiarão apresentar, no 1º corte. acumulação de K na parte aérea mais elevado que o Andropogon, no entanto. no 2º corte isto não foi verificado. Como a acumulação de um nutriente é dependente do teor deste no tecido e da produção de matéria seca, verifica-se que a acumulação total de K nas forrageiras seguiu a mesma tendência da produção de matéria seca (Quadro 2).

Os resultados indicam, assim como ocorreu para o N e o P. o K é outro nutriente limitante ao crescimento destas forrageiras, devendo sempre ser considerado nas adubações, principalmente quando se visa alta produtividade. No manejo da adubação potássica deve-se considerar além das exigências das forrageiras, o tipo de solo e o destino da forrageira, uma vez que quando destinados a fenação, a exportação de K é alta, tornando a adubação potássica mais crítica.

4.2.4. Enxofre (S):

Os valores de teor e acumulação de enxofre na parte aérea e raiz de Andropogon e Braquiarão, são apresentados nos Quadros 9 e 10.

Embora os tratamentos tenham apresentado efeitos significativos sobre os teores de S na parte aérea das forrageiras no 1º corte, eles foram bem mais pronunciados no menos N e menos S, além do menos K para o Braquiarão; nos demais as variações foram bem menores, acompanhando a pequena variação na produção de matéria seca (Quadro 2) entre eles. Nos 29 e cortes, os maiores teores de S, em ambas forrageiras, ocorreram testemunha, menos N, menos P e menos K e foram devido ao reduzido crescimento das plantas, relativamente aos outros tratamentos, causando um efeito de concentração do elemento nos tecidos (efeito Steembjerg).

A baixa concentração de S observada no tratamento menos S (19, 29 e 39 cortes) promoveu um pequeno crescimento das plantas, em decorrência da deficiência deste elemento, mostrando a baixa capacidade deste solo em suprir S às forrageiras. Por outro lado, a maior concentração de S observada na matéria seca do Andropogon no 19 corte para os demais tratamentos (Quadro 9), foi devido ao seu pequeno crescimento neste corte, relativamente ao 29 corte (Quadro 2), o que promoveu um aumento na concentração do elemento nos tecidos.

De forma geral, as forrageiras apresentaram em todos os

QUADRO 9 - Teor e acumulação de enxofre na parte aérea e raíz do Andropogon. (1)

Tratamento		T	eor (%)		Acúmulo (mg/vaso)				
		Parte aérea			Parte aérea				
	1º corte	2º corte	3º corte	- Raíz	1º corte	2º corte	3º corte	Total	- Raíz
TEST.	(2)	0,10 a	0,09 bc	0,15 ab	(2)	0,3 c	1,1 fg	1,4 c	2 h
71	0,08 bc	0,05 b	0,06 cd	0,08 de	13 b	15,0 b	9,0 cd	36,0 b	56 de
2	0,13 a	0,04 bc	0,04 d	0,08 e	19 a	10,0 b	6,0 de	35,0 b	41 ef
CAL	0,11 abc	0,04 bc	0,05 d	0,11 cd	16 ab	9,0 b	7,0 de	32,0 b	58 cd
-N	0,03 d	0,04 bc	0,10 b	0,15 ab	3 C	1,0 c	4,0 ef	8,0 c	26 fg
- P	(2)	0,09 a	0,05 d	0,16 a	(2)	0,1 c	0,2 g	0,3 c	1 h
-K	0,10 abc	0,11 a	0,31 a	0,15 ab	13 b	25,0 a	41,0 a	79,0 a	32 fg
·S	0,03 d	0,02 c	0,03 d	0,08 de	5 c	2,0 c	2,0 fg	9,0 c	24 g
MICRO	0,08 c	0,05 b	0,10 b	0,15 ab	14 b	12,0 b	15,0 b	41,0 b	95 a
-Ca	0,12 ab	0,05 b	0,10 b	0,14 abc	15 ab	11,0 b	12,0 c	38,0 b	75 b
-Mg	0,09 bc	0,05 b	0,09 b	0,13 bc	13 b	13,0 b	12,0 c	38,0 b	74 bc
C.V. (%)	18,5	11,9	13,8	8,7	23,4	21,3	14,6	12,3	17,5

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1^{Q} corte.

Tratamento		Te	eor (%)		Acúmulo (mg/vaso)				
		Parte aérea							
	1º corte	2º corte	3º corte	Raíz	1º corte	2º corte	3º corte	Total	- Raíz
TEST.	(2)	0,10 b	0,10 bc	0,12 b	(2)	0,5 d	1,1 g	1,6 d	2 f
C1	0,06 b	0,08 b	0,07 d	0,13 b	24 a	15,0 bc	12,0 a	51,0 b	76 ab
C2	0,05 b	0,05 b	0,08 cd	0,12 b	20 b	15,0 bc	11,0 ab	46,0 b	67 ab
-CAL	0,06 b	0,08 b	0,06 d	0,11 b	20 b	12,0 c	8,0 bcd	40,0 b	56 bc
-N	0,04 bc	0,11 b	0,15 a	0,14 ab	6 c	2,0 d	5,0 ef	13,0 c	18 ef
-P	(2)	0,11 b	0,11 b	0,12 b	(2)	0,9 d	1,4 g	2,3 d	2 f
-K	0,14 a	0,32 a	0,17 a	0,16 a	46 a	28,0 a	12,0 a	86,0 a	27 de
-S	0,02 c	0,03 c	0,02 c	0,12 b	6 c	2,0 d	2,0 fg	10,0 cd	43 cd
-MICRO	0,05 b	0,10 b	0,06 d	0,12 b	24 b	18,0 b	10,0 abc	52,0 b	75 ab
-Ca	0,06 b	0,10 b	0,05 d	0,12 b	22 b	15,0 bc	7,0 de	44,0 b	82 a
-Mg	0,06 b	0,09 b	0,05 d	0,11 b	22 b	14,0 c	8,0 cde	44,0 b	78 ab
C.V. (%)	18,5	11,9	13,8	8,7	23,4	21,3	14,6	12,3	17,5

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1^{Ω} corte.

cortes, teores de S inferiores a 0,15%, considerado por HOWELER (1983) como limiar de deficiência em S para gramíneas forrageiras em pré-florescimento e, considerando-se 0,10% como nível crítico para gramíneas tropicais (CIAT, 1979) e 0,18% como nível crítico para 80% da produção máxima do Andropogon (CIAT, 1981), verifica-se que os teores deste nutriente nas forrageiras estão bem abaixo destes valores (Quadros 10 e 11).

Em experimento em casa de vegetação, RODRIGUES (1992) estudando o efeito de diferentes combinações calcário-gesso agrícola em Latossolo variação Una, proveniente da região.dos Campos das Vertentes - MG, observou teores de S variando de 0,06 a 0,08%, em plantas com idade entre 80 e 165 dias. Também em casa de vegetação, FALADE (1975) observou teores de S variando de 0,18 a 0,25 %, em plantas colhidas com altura de 45 a 60 cm, num solo com pH em CaCl₂ de 6,4 e 3,6% de matéria orgânica. Para o Braquiarão MARUN (1990), em experimento em casa de vegetação, utilizando um Latossolo variação Una, observou teores de S variando de 0,16 a 0,18% na matéria seca da parte aérea, aos 45 dias após o plantio.

Do 1º para 2º corte, à exceção da testemunha e dos tratamentos menos N, menos P e menos K, houve uma tendência de redução nos teores de S na parte aérea do Andropogon, no entanto, para o Braquiarão, em todos tratamentos, o contrário foi observado. Devido ao menor crescimento do Braquiarão no 2º corte (provocado pelo esgotamento de N e K, durante o 1º crescimento), ocorreu um aumento na concentração de S nos tecidos, caracterizando um efeito de concentração. Para o Andropogon, devido ao maior crescimento no 2º corte, houve uma diluição do S

na matéria seca.

Comparando-se os teores dos macronutrientes da parte aérea com os das raízes, nos tratamentos onde os mesmos foram omitidos, observa-se que o enxofre foi o único cujo teor e acúmulo na raíz, apresentaram-se em maior valor que o da parte aérea, evidenciando limitado transporte (raiz -> parte aérea), mesmo sob sintomas claros de deficiência.

Considerando-se 0,20% S na matéria seca da forragem como requerimento mineral para vaca leiteira em lactação (NATIONAL ACADEMY OF SCIENCE, 1971), verifica-se que as forrageiras apresentaram teores insuficientes para suprir as necessidades do animal.

Pelo Quadro 2, observa-se que ambas forrageiras tiveram comportamento semelhante quanto ao acúmulo total de S em função dos tratamentos, no entanto, o Braquiarão apresentou maiores acúmulos, à exceção dos tratamentos menos Mg, menos N e menos S, nos quais as gramíneas tiveram acúmulos semelhantes. Os maiores acúmulos ocorreram nos tratamentos que tiveram maior produção de matéria seca. O baixo acúmulo de S no tratamento menos S, em relação ao Completo (C1), comprova a baixa capacidade do solo em suprir as exigências das forrageiras neste nutriente, embora, pelo alto teor de matéria orgânica (Quadro 1), esperava-se uma menor limitação do elemento, como já comentado no ítem referente a produção de matéria seca.

Pela limitação na produção de matéria seca promovida pelo tratamento menos S em ambas espécies (Quadro 2) e pelos seus baixos teores na parte aérea (Quadros 9 e 10), conclui-se que o S tal como observado para o N, P, e K, é outro nutriente limitante à nutrição do Andropogon e Braquiarão, devendo portanto, ser considerado na adubação destas gramíneas quando cultivadas neste solo.

A deficiência em enxofre do solo em estudo pode se tornar mais crítica com a prática da queimada, constantemente adotada por agricultores da região.

4.2.5. Cálcio (Ca):

Os valores de teor e acumulação de cálcio pela parte aérea e raiz no Andropogon e Braquiarão, são apresentados nos Quadros 11 e 12.

Embora os tratamentos tenham apresentado efeitos significativos sobre os teores de Ca na parte aérea das espécies, eles foram bem mais pronunciados no menos K, em todos os cortes. Neste tratamento, verificaram-se maiores teores de Ca na parte aérea das forrageiras, entretanto, o efeito de concentração não foi determinante para a ocorrência de teores elevados, já que em outros tratamentos com significativa redução no crescimento (-N, -P, -S e testemunha), não se observaram teores de Ca tão altos quanto no tratamento menos K. Resultados semelhantes foram obtidos em casa de vegetação, por FERRARI NETO (1991) em P. maximum e B. decumbens, num Latossolo Vermelho-Escuro, o qual atribuiu aos altos teores de cálcio a interação entre Ca e K. que segundo MALAVOLTA (1980), apresenta uma inibição competitiva a nível da membrana plasmática. Nos demais tratamentos, à exceção da testemunha, a adubação promoveu um melhor equilíbrio entre

		T	eor (%)		Acúmulo (mg/vaso)				
Tratamento	Parte aérea				Parte aérea				
	1º corte	2º corte	3º corte	- Raíz	1º corte	2º corte 3º corte	Total	Raíz	
TEST.	(2)	0,57 bc	0,53 cd	0,16 cd	(2)	2,0 g 6 e	8,0 h	2,0 e	
C1	0,64 bc	0,62 bc	0,68 bc	0,19 bc	98 abc	168,0 b 99 b	365,0 b	127,0 a	
C2	0,59 bcd	0,53 bc	0,64 bcd	0,15 cd	86 bc	131,0 cd 93 b	310,0 cd	78,0 b	
-CAL	0,59 bcd	0,52 bc	0,61 bcd	0,12 de	84 bc	113,0 de 78 bc	275,0 de	65,0 bc	
-N	0,47 d	0,66 b	0,60 bcd	0,22 ab	42 d	23,0 g 25 de	90,0 g	39,0 d	
- P	(2)	0,56 bc	0,92 a	0,26 a	(2)	0,8 g 4 e	4,8 h	1,5 e	
-K	0,98 a	0,88 a	0,97 a	0,16 cd	128 a	203,0 a 131 a	462,0 a	34,0 d	
-S	0,52 cd	0,57 bc	0,51 cd	0,17 c	74 c	54,0 f 33 d	161,0 f	47,0 cd	
-MICRO	0,63 bc	0,61 bc	0,56 cd	0,12 de	105 ab	141,0 c 81 b	327,0 bc	76,0 b	
-Ca	0,59 bcd	0,50 c	0,48 d	0,09 e	78 bc	102,0 e 58 c	238,0 c	50,0 cd	
-Mg	0,66 b	0,67 b	0,73 b	0,12 de	96 bc	156,0 bc 94 b	346,0 bc	69,0 bc	
C.V. (%)	9,6	8,9	11,1	15,1	14,7	12,6 13,2	10,8	17,5	

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

Parte aérea não coletada no 1° corte.

Teor	19)	3 avim. 1 a	/m == /=== = = 1
reor	(9)	ACUMULO	(mg/vaso)

Tratamento		Parte aérea		Raíz		Parte aé	rea			
	1º corte	2º corte	3º corte	Raiz	1º corte	2º corte	3º corte	Total	- Raíz	
TEST.	(2)	0,46 f	0,40 e	0,14 bc	(2)	2 f	4 f	6 d	2 f	
:1	0,51 b	1,05 bc	0,88 ab	0,13 bc	198 bc	183 a	145 b	526 a	76 a	
22	0,45b	0,88 bcd	0,65 cd	0,08 c	167 cd	140 b	90 cd	397 b	43 bc	
-CAL	0,43 b	0,63 ef	0,40 e	0,09 c	135 de	93 de	53 ef	281 c	48 b	
-N	0,42 b	0,80 de	0,49 de	0,16 c	60 f	17 f	15 gh	92 d	22 de	
. p	(2)	0,88 bcd	0,69 c	0,31 a	(2)	7 f	8 h	15 d	4 ef	
-K	1,15 a	1,47 a	1,00 a	0,17 b	363 a	132 bc	74 de	569 a	28 cd	
·S	0,46 b	0,83 cde	0,37 e	0,13 bc	153 cde	66 e	34 fg	253 c	46 bc	
MICRO	0,49 b	1,11 b	0,94 a	0,13 bc	218 b	192 a	169 a	579 a	84 a	
-Ca	0,27 c	0,63 ef	0,42 e	0,08 c	96 ef	99 cde	57 e	252 c	55 b	
-Mg	0,41 b	0,89 bcd	0,73 bc	0,11 bc	161 cd	131 bcd	100 c	392 b	76 a	
C.V. (%)	9,6	8,9	11,1	15,1	14,7	12,6	13,2	10,8	17,5	

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1^{Ω} corte.

estes dois cátions.

Apesar da omissão do cálcio da adubação (tratamento menos Ca), não ter afetado significativamente o crescimento do Braquiarão, a análise da planta revelou teores deste nutriente sempre inferiores aos do Completo (C1). Portanto pode-se inferir que o solo foi capaz de suprir as necessidades desta graminea, durante o período experimental. Para o Andropogon a omissão do Ca (-Ca) reduziu (F<0,05) o crescimento desta gramínea apenas no 3º corte (Quadro 2); observa-se no Quadro 11 que o teor do elemento também foi inferior (P<0,05) ao tratamento completo, mostrando níveis deficientes do elemento.

Verifica-se uma tendência de aumento nos teores de Ca na parte aérea do Braquiarão do 1º para o 2º corte, o que também tem sido observado em outras gramíneas por HAAG et al. (1967), ZAGO & GOMIDE (1982), CARRIEL et al.(1989) e FERRARI NETO (1991). Isto, possivelmente, ocorreu devido ao menor crescimento no 2º corte, provocado pelo esgotamento do N e K, durante o 1º crescimento, o que, de certa forma, proporcionou aumento nos teores de Ca nos tecidos. O mesmo comportamento não foi observado para o Andropogon, no qual, os teores de Ca tendem a uma pequena redução do 1º para 2º corte, nos tratamentos que não tiveram redução significativa no crescimento. Isto porque no 1º corte, o Andropogon apresentou menor produção de matéria seca do que no 2º corte (Quadro 2).

Os teores de Ca. em ambas forrageiras, à exceção do tratamento menos Ca no 12 corte do Braquiarão, estão próximos ou superiores a 0,40%, relatado por HOWELER (1983), como teor normal

gramíneas forrageiras em pré-florescimento, e superiores para 0,23 0.37%. tidos como críticos por CIAT (1981)estabelecimento de Andropogon e Braquiarão, respectivamente. observaram 0,26% Ca na matéria seca (1984) do Andropogon, com idade de 49 dias e em excelentes condições de ser pastejado num Latossolo Amarelo da região de Porto Velho -GOMIDE et al. (1987) em experimento a campo num Já. Latossolo Vermelho-Escuro, estudando a composição mineral do Andropogon, verificaram médios de 0,42% teores Ca durante período 112 dias, num total de 4 cortes realizados: em experimental de intervalos de 28 dias. Para o Braquiarão, MARUN (1990)em experimento em casa de vegetação, utilizando um Latossolo variação Una, observou teores de Ca variando de 0.43 a 0.66%, aos 45 dias após o plantio.

Em ambas forrageiras, os teores de Ca nas raizes foram menores que os observados na parte aérea, sendo que o Andropgon tendeu a apresentar maiores teores que o Braquiarão. De maneira geral, os teores apresentaram-se maiores nos tratamentos que promoveram menor crescimento das raízes (Quadro 2), caracterizando um efeito de concentração.

Os teores de Ca apresentados na parte aérea das forrageiras em todos os cortes e tratamentos, são suficientes para a manutenção de vacas em lactação que, segundo NATIONAL ACADEMY OF SCIENCE (1971), está em torno de 0.20 %.

Quanto ao acúmulo total de Ca. verifica-se que este tende acompanhar a produção total de matéria seca (Quadro 2). Assim. os maiores acúmulos totais, tanto na parte aérea quanto nas raízes, ocorreram nos tratamentos com maior produção de

matéria seca. Entretanto, os menores acúmulos ocorreram nos tratamentos testemunha, menos N e menos P, onde houve as maiores reduções no crescimento das forrageiras.

Diante dos resultados obtidos na produção de matéria seca (Quadro 2) e pelos teores de Ca (Quadros 11 e 12), que foram diferentes entre os tratamentos Completo (C1), menos Ca e menos CAL, conclui-se que este nutriente é um fator limitante ao crescimento destas gramíneas, e que a calagem é necessária, principalmente, como fonte de Ca.

4.2.6. Magnésio (Mg) :

Os valores de teor e acumulação de Mg na parte aérea e raiz das forrageiras, são apresentados nos Quadros 13 e 14.

Assim como ocorreu com o cálcio, o tratamento menos K, proporcionou os maiores (P<0.05) teores e acumulação de Mg pela parte aérea do Andropogon nos três cortes e no Braquiarão no 19 corte. O efeito de concentração não foi fator determinante para a elevação dos teores de Mg na parte aérea, visto que nos tratamentos com significativa redução no crescimento, não se observaram teores de Mg tão altos quanto no tratamento menos K. A interação K-Mg, tal como comentado para o Ca. é que explica melhor os resultados. Segundo MENGEL & KIRKEY (1982), altos teores de Mg podem ocorrer em plantas supridas com baixo nivel de K. o que não se explicaria apenas como um efeito de concentração mas, provavelmente, por uma alta absorção de Mg em baixos níveis de K.

GONÇALVES (1984), em experimento a campo, observou

Tratamento		Т	eor (%)		Acúmulo (mg/vaso)				
		Parte aérea			Parte aérea				
	1º corte	$2^{\underline{o}}$ corte	3º corte	- Raíz	1º corte	2º corte	3º corte	Total	Raíz
TEST.	(2)	0,16 ef	0,21 e	0,06 bcd	(2)	0,5 f	2,5 f	3,0 g	0,9 e
C1	0,37 bc	0,39 b	0,36 bc	0,07 abc	56 bc	105,0 b	53,0 b	214,0 b	44,0 a
C2	0,28 def	0,22 de	0,18 ef	0,04 cd	41 cde	54,0 c	26,0 d	121,0 c	19,0 d
-CAL	0,26 ef	0,15 ef	0,12 fg	0,03 d	36 de	35,0 e	16,0 e	87,0 de	16,0 cd
-N	0,25 f	0,25 d	0,28 a	0,10 a	23 e	9,0 f	12,0 e	44,0 f	17,0 cd
- P	(2)	0,32 bc	0,30 cd	0,08 ab	(2)	0,5 f	1,3 f	1,8 g	0,4 e
-K	0,68 a	0,64 a	0,45 a	0,05 bcd	89 a	147,0 a	61,0 a	297,0 a	11,0 de
-S	0,35 bcd	0,39 b	0,38 b	0,08 ab	50 cd	37,0 de	24,0 d	111,0 cd	18,0 cd
-MICRO	0,42 b	0,39 b	0,31 bcd	0,05 bcd	70 b	91,0 b	46,0 c	207,0 b	34,0 ab
-Ca	0,33 cde	0,25 cd	0,19 e	0,05 bcd	44 cd	52,0 cd	23,0 d	119,0 c	24,0. bc
-Mg	0,23 f	0,14 f	0,10 g	0,03 d	33 de	33,0 e	12,0 e	78,0 e	20,0 cd
C.V. (%)	10,2	10,1	10,8	26,5	19,1	16,3	13,9	13,5	24,0

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1^{Ω} corte.

QUADRO 14 - Teor e acumulação de magnésio na parte aérea e raíz do Braquiarão. (1)

Tratamento		T	eor (%)		Acúmulo (mg/vaso)				
	Parte aérea			Raíz		···			
	1º corte	2º corte	3º corte	· Kalz	1º corte	2º corte	3º corte	Total	Raíz
TEST.	(2)	0,38 d	0,35 bcd	0,10 b	(2)	1,6 d	3,6 f	5,2 e	1,4 f
C1	0,52 b	0,44 cd	0,30 cd	0,03 cđ	203 bc	77,0 a	50,0 a	330,0 a	20,0 ab
C2	0,28 cd	0,18 e	0,16 e	0,03 cd	101 d	28,0 c	22,0 cd	151,0 c	15,0 bc
-CAL	0,24 de	0,12 e	0,11 e	0,02 d	75 d	17,0 cd	14,0 de	106,0 cd	10,0 cde
-N	0,36 c	0,60 b	0,45 a	0,09 b	52 đ	13,0 cd	14,0 de	79,0 d	11,0 cd
-P	(2)	0,47 cd	0,42 ab	0,16 a	(2)	3,6 d	5,0 ef	8,6 e	2,3 ef
-K	0,95 a	0,53 bc	0,35 bc	0,03 cd	301 a	48,0 b	26,0 bc	375,0 a	6,0 def
-s	0,49 b	0,71 a	0,38 ab	0,06 bc	162 c	53,0 b	35,0 b	250,0 ь	21,0 ab
-MICRO	0,50 b	0,42 d	0,27 e	0,04 cd	220 b	73,0 a	48,0 a	341,0 a	26,0 a
-Ca	0,24 de	0,17 e	0,13 e	0,03 cd	83 d	27,0 c	18,0 cd	128,0 cd	17,0 bc
-Mg	0,15 e	0,11 e	0,10 e	0,02 d	59 d	17,0 cd	14,0 de	90,0 a	14,0 bc
C.V. (%)	10,2	10,1	10,8	26,5	19,1	16,3	13,9	13,5	24,0

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1^{Ω} corte.

teor médio de 0.48% de Mg na matéria seca do Andropogon, coletado na idade de 49 dias e em excelentes condições de pastejado num Latossolo Amarelo da região de Porto Velho-RO. Em casa de vegetação. RODRIGUES (1992) estudando o efeito de diferentes combinações calcário-gesso agrícola em Latossolo variação Una, proveniente da região dos Campos das Vertentes observou teores de Mg variando de 0.15 a 0,40%, em plantas MG. com idade entre 80 e 165 dias. Para o Braquiarão, MARUN (1990) em experimento em casa de vegetação, utilizando um Latossolo variação Una, observou teores de Mg variando de 0,28 a 1,02%, aos 45 dias após o plantio.

O desequilibrio entre K e Mg no tratamento menos K. pode ser observado considerando-se 2,25 como relação K/Mg ideal numa planta bem nutrida (BITTENCOURT et al., 1987). Verifica-se que os valores obtidos para o Andropogon (1,38) e Braquiarão (0.34), estão bem abaixo do ideal.

Assim como ocorreu com os teores de Ca, os teores de Mg na raiz de ambas forrageiras foram inferiores aos observados na parte aérea.

Os teores de Mg encontrados na parte aérea do Andropogon e do Braquiarão, em todos os cortes e tratamentos. atendem às necessidades de vacas em lactação que. segundo NATIONAL ACADEMY OF SCIENCE (1971). está em torno de 0,20%, sendo que a sua deficiência na forrageira pode causar nos animais o disturbio conhecido como tetania das pastagens.

Tal como o N. P. K e S. os maiores acúmulos totais de Mg tanto na parte aérea quanto nas raízes, ocorreram nos tratamentos com maior produção de matéria seca. Comparando-se as

gramineas. verifica-se que o Braquiarão apresentou, de forma geral, maiores acúmulos totais de Mg na parte aérea do que o Andropogon, à exceção do tratamento menos Ca, onde as forrageiras tiveram acumulação semelhante. No entanto, nas raízes houve tendência do inverso, como pode ser observado nos Quadros 13 e 14.

4.3. Teor de Proteína Bruta

Os teores de proteína bruta na matéria seca da parte aérea de Andropogon e Braquiarão são apresentados no Quadro Uma vez que a determinação dos teores de proteina bruta foram feitos a partir dos teores de N na matéria seca da parte aérea das forrageiras, o seu comportamento, em função dos tratamentos. seguiu o mesmo observado para o nitrogênio. Oyenuga 1957, citado por PAULINO (1979), estudando a composição bromatológica Andropogon gayanus, observou em plantas em fase de florescimento, teores de proteína bruta de 8.5 e 7.5% aos 49 e 91 dias de idade, respectivamente. Para a Brachiaria brizantha ev. Marandu, EMBRAPA (1985) encontraram teores de proteina bruta na matéria seca da graminea variando de 6.21 a 7.05% na época águas, na região de Campo Grande - MS.

Considerando-se o teor de proteina bruta de 3%, citado por JARDIM et al.(1962), como teor abaixo do qual se considera uma pastagem deficiente em proteína para produção animal, observa-se pelo Quadro 15, que no tratamento Completo (C1), apenas o Andropogom, no 19 corte, apresentou teor suficiente para

Quadro 15 - Teores de proteína bruta (%) na parte aérea de Andropogon e Braquiarão.

Tratamento	Ar	dropogon		Braquiarão				
11 a camento	1º corte	2º corte	3º corte	1º corte	2º corte	3º cort		
TEST	(1)	16,4	12,3	(1)	16,1	21,4		
C1	13,1	5,4	6,2	7,6	7,2	7,7		
C2	14,4	6,7	6,4	7,6	7,8	7,6		
-CAL	13,9	6,0	6,5	9,6	8,6	8,9		
-N -P	5,3	5,6	5,3	4,2	5,6	4,3		
	(1)	14,0	21,0	(1)	13,7	18,9		
-K	11,8	9,4	10,2	8,8	11,9	12,1		
-S	10,9	6,3	6,4	8,9	8,2	6,4		
-MICRO	13,6	5,8	5,8	6,7	7,2	7,1		
-Ca	15,9	6,9	6,6	8,1	7,6	7,6		
-Mg	11,9	6,5	6,4	7,4	8,0	6,1		

⁽¹⁾ parte aérea não coletada no 1º corte

suprir as necessidades dos animais. Assim, quando se quer aumentar a produtividade dos animais em pastagens exclusivamente com estas gramíneas, torna-se importante o fornecimento de alimentos mais ricos em proteína como suplementação.

4.4. Teor e Acumulação de Micronutrientes

Dos micronutrientes, os únicos determinados pela análise química da planta foram o B, Cu e Zn, uma vez que estes foram os envolvidos nos tratamentos. Embora os micronutrientes tenham sido plicados em conjunto, seus teores e acumulação em função dos tratamentos serão discutidos individualmente a seguir.

Nos Quadros 16 e 17. são apresentados os valores de teor e acúmulo de B pela parte aérea e raiz de Andropogon e Braquiarão, respectivamente.

QUADRO 16 - Teor e acumulação de boro na parte aérea e raíz do Andropogon. (1)

		Teo	c (ppm)		Acúmulo (mg/vaso)					
Tratamento	Parte aérea									
	1º corte	2º corte	3º corte	Raíz	1º corte	2º corte	3º corte	Total	Raíz	
TEST.	(2)	27,3 ab	30,6 a	3,7 bc	(2)	0,01 f	0,04 e	0,05 e	0,01 ef	
C1	11,9 cd	22,1 de	17,6 c	3,3 c	0,18 bc	0,60 a	0,26 bcd	1,04 ab	0,21 bc	
C2	11,1 d	18,7 ef	20,7 bc	5,0 abc	0,16 cd	0,46 cd	0,30 abc	0,93 b	0,26 ab	
-CAL	14,8 bc	26,0 bc	26,2 ab	2,9 c	0,21 abc	0,57 ab	0,34 ab	1,13 a	0,15 bcd	
-N	12,4 cd	30,6 a	17,0 cd	7,0 a	0,11 de	0,11 f	0,07 e	0,29 d	0,12 cde	
- P	(2)	28,4 ab	10,6 d	4,1 bc	(2)	0,01 f	0,01 e	0,02 e	0,01 f	
-K	20,7 a	22,7 cd	17,9 c	3,4 bc	0,27 a	0,52 abc	0,24 cd	1,03 ab	0,08 def	
-S	15,8 b	30,6 a	31,0 a	5,1 abc	0,22 ab	0,29 e	0,20 d	0,72 c	0,15 bcd	
-MICRO	6,1 e	15,3 f	20,7 bc	5,8 ab	0,10 e	0,36 de	0,30 abc	0,76 c	0,36 a	
-Ca	12,3 cd	15,9 f	21,6 bc	3,3 c	0,16 cd	0,32 e	0,26 bcd	0,74 c	0,18 bcd	
-Mg	10,7 d	19,9 de	28,6 a	2,9 c	0,15 cde	0,46 bcd	0,36 a	0,98 ab	0,17 bcd	
C.V. (%)	11,1	6,5	13,2	29,2	19,9	14,7	19,9	10,9	40,6	

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1^{Ω} corte.

QUADRO 17 - Teor e acumulação de boro na parte aérea e raíz do Braquiarão. (1)

		Teo	r (ppm)		Acúmulo (mg/vaso)					
Tratamento	Parte aérea			D-4-	Parte aérea					
	1º corte	2º corte	3º corte	Raíz	1º corte	2º corte	3º corte	Total	- Raíz	
TEST.	(2)	27,4 bc	8,10 e	4,38 bc	(2)	0,01 c	0,01 f	0,02 e	0,006 c	
C1	6,2 c	14,8 de	20,70 b	2,04 bc	0,30 cd	0,26 a	0,34 a	0,84 ab	0,110 c	
C2	6,9 bc	14,9 de	17,90 bc	4,90 b	0,25 bc	0,24 ab	0,24 b	0,73 ab	0,270 ab	
-CAL	9,0 abc	17,3 d	14,35 cd	2,50 bc	0,28 abc	0,26 a	0,19 bcd	0,72 ab	0,130 bc	
-N	9,8 ab	27,1 c	17,10 bc	2,90 bc	0,14 de	0,06 c	0,05 ef	0,25 d	0,040 c	
- P	(2)	51,4 a	16,00 bc	11,90 a	(2)	0,04 c	0,02 f	0,06 e	0,020 c	
-K	12,0 a	30,7 b	26,80 a	2,60 bc	0,38 a	0,27 a	0,20 bcd	0,85 a	0,050 c	
-s	10,5 ab	25,0 c	13,80 cd	2,20 bc	0,08 e	0,18 b	0,13 de	0,39 d	0,090 c	
-MICRO	7,7 bc	15,6 d	12,50 cde	2,20 bc	0,06 e	0,27 a	0,22 bc	0,56 c	0,140 abc	
-Ca	10,0 ab	11,7 e	10,50 de	4,10 bc	0,35 ab	0,18 b	0,14 cd	0,68 bc	0,280 a	
-Mg	8,7 bc	14,4 de	16,80 bc	1,30 c	0,33 abc	0,21 ab	0,23 b	0,77 ab	0,090 c	
C.V. (%)	11,1	6,5	13,2	29,2	19,9	14,7	19,9	10,9	40,6	

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1^{Ω} corte.

Observa-se que 08 tratamentos tiveram efeito pronunciado teores de nos В na parte aérea de ambas forrageiras. Para o Andropogon, não se encontrou explicação plausivel para o fato dos teores de B terem aumentado do 19 para 2º corte, pois esperava-se com o aumento da produção matéria seca no 2º corte, relativamente ao 1º corte (Quadro ocorresse uma diminuição nos teores de B na parte aérea forrageira devido ao efeito de diluição, no entanto, tal fato não ocorreu. Para o Braquiarão, o aumento dos teores de B na parte aérea . do 1º para o 2º corte, foi devido ao menor crescimento da graminea no 2º corte, relativamente ao 1º corte (Quadro 2), o que promoveu um aumento na concentração do elemento nos tecidos.

No 29 e 39 cortes, de forma geral, os menores teores de B foram observados no tratamento menos Micro, para ambas forrageiras, relativamente aos demais tratamentos e, foram devidos a não aplicação deste nutriente na adubação, associado ao baixo teor encontrado no solo (Quadro 1), levando a um baixo teor nos tecidos.

Não foram encontrados na literatura estudos específicos com as forrageiras estudadas, informando os níveis criticos de B na parte aérea. Os valores encontrados foram de caráter geral, superiores a 4 ppm, tido por HOWELER (1983) como limiar de deficiência para gramíneas forrageiras em pré-florescimento. Neubert et al. (1970) citados por GUPTA (1979), apresentam uma faixa bastante ampla de teores considerados suficientes para a nutrição de gramíneas, variando de 10 a 50 ppm de B no material vegetal antes do 12 florescimento. Em experimento a campo, numa

Terra Roxa, ORELLANA & HAAG (1982) estudando a nutrição mineral do Andropogon gayanus, observaram nas idades de 80, 100, 120 e 140 dias, os respectivos teores de B: 11,7; 9,05; 13,5 e 10,2 ppm nas folhas e 11,0; 10,0; 7,7 e 6,0 ppm nos caules.

O teor de 0,3 ppm B observado no solo natural (Quadro está abaixo da faixa crítica geral sugerida por LOPES & 1) CARVALHO (1988) entre 0,4 e 0,6 ppm (extraído com água quente) e limiar de deficiência de 0,3 ppm (Cox & Kamprath (1972) no citados por pesquisadores do CIAT, 1981). Os dados de crescimento das forrageiras para o tratamento menos Micro (Quadro 2) sugerem que estas gramíneas ou são menos exigentes no micronutriente ou o absorvem eficientemente sob condições de baixa disponibilidade. Um outro fator a ser considerado, é o elevado teor de matéria orgánica que o solo apresenta (Quadro 1). Considerando que a matéria orgânica é a principal fonte de B no solo, é tentador admitir que a mineralização do micronutriente no período experimental foi suficiente para atender as exigências das plantas no tratamento menos Micro.

Segundo HODGSON et al. (1962), o boro não é essencial para os animais

Quanto aos teores e acumulação de B pelas raizes, observa-se (Quadros 16 e 17) que ambas forrageiras apresentaram teor e acúmulo deste nutriente bem inferiores aos observados na parte aérea, à excessão da testemunha para o Braquiarão.

Quanto à acumulação total de B em ambas as forrageiras, tanto na parte aérea quanto nas raízes, houve tendência dos mesmos acompanharem a produção de matéria seca (Quadro 2). Verifica-se que os menores acúmulos totais, ocorreram nos

tratamentos testemunha, menos P, menos N, menos K e menos S, e foram devido ao pequeno crescimento das plantas, relativamente aos outros tratamentos.

Os valores de teor e acumulação de Cu na parte aérea e raíz de Andropogon e Braquiarão, são apresentados nos Quadros 18 e 19.

De maneira geral, o Andropogon tendeu a apresentar 1º corte, teores de Cu na parte aérea superiores aos do Braquiarão, ocorrendo o inverso no 2º corte: isto pode ser explicado pelo efeito de diluição e concentração, uma vez que teores aparecem inversamente relacionados com a produção matéria seca (Quadro 2). Os efeitos de diluição e concentração também podem ser usados para explicar as variações dos teores cobre na parte aérea entre o 10 e 20 cortes considerando mesma forrageira (Quadros 18 e 19). Um outro dado de destaque são menores teores de cobre na matéria seca da parte aérea tratamentos menos N. menos P e menos S. Como nestes tratamentos. deficiências destes nutrientes foram drásticas, o ocasionou redução no crescimento (Quadro 2), possivelmente, mesmas tiveram dificuldades em absorver e transportar o cobre das raizes para a parte aérea, promovendo menores teores do nesta parte da planta; corrobora micronutriente com esta explicação os elevados teores de cobre observados nas raízes tratamentos menos N e menos P. No tratamento menos K. o promoveu redução do crescimento do Braquiarão e a mesma tendência foi observada também para o Andropogon (Quadro 2), os teores na parte aérea tendeu a serem mais elevados (Quadros 18 e

QUADRO 18 - Teor e acumulação de cobre na parte aérea e raíz do Andropogon. (1)

Tratamento		Teor	(ppm)			vaso)			
		Parte aére	a	D- (-					
	1º corte	2º corte	3º corte	Raíz	1º corte	2º corte	3º corte	Total	Raíz
TEST.	(2)	13,7 a	8,9 ab	44,6 a	(2)	0,01 d	0,02 d	0,03 de	0,06 ef
C1	11,3 ab	4,3 d	5,5 cde	13,1 d	0,17 a	0,11 b	0,08 b	0,37 b	0,86 ab
C2	11,3 ab	6,3 bc	5,6 cd	12,4 d	0,16 a	0,16 b	0,08 b	0,40 b	0,64 b
-CAL	10,8 ab	5,7 cd	6,1 cd	11,9 d	0,15 a	0,13 b	0,08 b	0,36 b	0,63 bc
-N	5,0 c	7,3 bc	4,4 de	22,3 c	0,05 b	0,03 cd	0,03 c	0,09 cd	0,39 cd
-P	(2)	7,8 b	7,4 bc	34,8 b	(2)	0,01 d	0,01 c	0,02 e	0,02 f
-K	10,0 ab	12,3 a	10,4 a	14,3 cd	0,13 a	0,28 a	0,14 a	0,55 a	0,30 de
-S	5,5 c	5,9 cd	3,4 e	12,4 d	0,08 b	0,06 c	0,02 c	0,16 c	0,35 d
-MICRO	9,3 b	6,8 bc	4,2 de	15,8 cd	0,15 a	0,16 b	0,06 b	0,37 b	0,98 a
-Ca	12,5 a	6,5 bc	5,9 cd	11,9 d	0,16 a	0,13 b	0,07 b	0,38 b	0,66 b
-Mg	9,6 b	6,8 bc	6,6 c	11,3 d	0,14 a	0,16 b	0,08 b	0,38 b	0,65 b
C.V. (%)	12,4	14,3	14,1	19,4	15,7	26,4	19,4	11,2	21,4

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1^{Ω} corte.

QUADRO 19 - Teor e acumulação de cobre na parte aérea e raíz do Braquiarão. (1)

Tratamento		Teor	(ppm)		Acúmulo (mg/vaso)					
	na.	Parte aérea		Raíz	Parte aérea			in the second		
	1º corte	2º corte	3º corte	Raiz	1º corte	2º corte	3º corte	Total	Raíz	
TEST.	(2)	10,7 ab	6,9 b	87,2 a	(2)	0,01 d	0,02 bc	0,03 g	0,13 e	
C1	6,8 ab	8,3 abcd	5,0 bcd	10,1 d	0,26 a	0,15 ab	0,08 a	0,49 ab	0,57 bcd	
C2	5,3 bc	10,1 abc	5,7 bc	11,0 d	0,19 bc	0,16 a	0,08 a	0,43 abc	0,60 bcd	
-CAL	7,4 a	10,5 ab	6,4 bc	11,8 d	0,23 ab	0,16 a	0,08 a	0,47 ab	0,59 bcd	
-N	2,7 e	7,4 bcde	4,7 cd	25,9 c	0,04 d	0,02 d	0,02 bc	0,08 fg	0,34 de	
- P	(2)	7,8 abcde	5,2 bcd	67,7 b	(2)	0,01 d	0,01 c	0,02 g	0,10 e	
-K	6,6 ab	10,9 a	10,6 a	21,1 cd	0,21 ab	0,10 c	0,08 a	0,39 cde	0,37 cde	
-S	2,1 e	4,6 e	3,5 d	18,8 cd	0,07 d	0,03 d	0,03 d	0,14 f	0,66 abc	
-MICRO	3,2 de	5,5 de	4,4 cd	11,4 d	0,14 c	0,09 c	0,08 a	0,32 e	0,72 ab	
-Ca	4,4 cd	7,0 cde	5,8 bc	13,8 cd	0,15 c	0,11 bc	0,08 c	0,34 de	0,93 a	
-Mg	5,6 bc	7,3 bcde	6,2 bc	13,1 d	0,22 ab	0,11 bc	0,08 a	0,41 bcd	0,91 a	
C.V. (%)	12,4	14,3	14,1	19,4	15,7	26,4	19,4	11,2	21,4	

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1º corte.

19). No entanto, o efeito de concentração não foi determinante para este fato; ao que tudo indica, a interação dos cátions K⁺ e Cu⁺⁺ a nível de membrana no processeo de absorção, foi o fator principal para a elevação dos teores de cobre neste tratamento.

Considerando-se de 4 a 8 ppm de Cu, como faixa de concentração normal nas forrageiras (GALLO et al., 1974) e 5 ppm de cobre como limiar de deficiência para plantas em préflorescimento (HOWELER, 1983), verifica-se, de forma geral, que forrageiras apresentaram teores suficientes neste nutriente. Isto associado ao fato do teor de Cu no solo natural (Quadro 1) de 1,9 ppm, estar bem acima de 0,2 ppm, considerado por CIAT (1981) como deficiênte para solos ácidos, e acima da faixa crítica de 0,5 a 0,8 ppm (Mehlich I) proposto por LOPES & CARVALHO (1988). Assim, conclui-se que o solo foi capaz de suprir as plantas neste elemento.

Ao contrário do que ocorreu com o B, para o Cu ambas as forrageiras apresentaram teores e acúmulo deste elemento na matéria seca das raízes superiores aos observados na parte aérea em cada corte (Quadros 18 e 19). Este comportamento confirma o a baixo transporte de cobre no xilema, movimentando-se da raiz para a parte aérea. Como já comentado, nos tratamentos menos N e menos P, este transporte foi bastante prejudicado, o que associado ao efeito de concentração, pela menor produção de matéria seca (Quadro 2), promoveu maiores concentrações do micronutriente nas raízes. Fato semelhane foi observado por FERRARI NETO (1991).

Quanto ao acúmulo total de Cu (Quadros 18 e 19), assim como foi observado com o boro, houve em ambas as forrageiras uma tendência destes acompanharem a produção de matéria seca (Quadro 2). Os menores acúmulos ocorreram nos tratamentos testemunha e menos P, e foram devidos ao reduzido crescimento das plantas nos mesmos.

Considerando-se 10 ppm de Cu como o requerimento de vacas em lactação NATIONAL ACADEMY OF SCIENCE (1971), observa-se que ambas forrageiras apresentaram teores insuficientes para suprir as necessidades destes animais, portanto, é importante a consideração deste elemento na suplementação mineral.

Nos Quadros 20 e 21, são apresentados os teores e acumulação de Zn na parte aérea e raiz do Andropogon e Braquiarão, respectivamente.

Os tratamentos apresentaram um efeito pronunciado nos de Zn na parte aérea de ambas as forrageiras. teores Comparativamente ao tratamento completo (C1), nos tratamentos onde o Ca e o Mg foram aplicados apenas como nutrientes (C2) ou omitidos (-Ca e -Mg), observa-se teores de Zn na parte aérea mais elevados em ambas as forrageiras (Quadros 20 e 21). Como a produção de matéria seca destes tratamentos não apresentaram grande variação, os efeitos de diluição e concentração tiveram pouco ou nenhum efeito nas variações dos teores de Zn. Portanto, ao que tudo indica, as interações competitivas entre os cátions Ca++ e/ ou Mg++ com o Zn++ no processo de absorção ativa a nível de membrana (MALAVOLTA et al., 1989), foi o fator principal pelas variações dos teores de Zn nas forrageiras. Associado a este, a elevação do pH do solo no tratamento completo (C1) também pode ter reduzido a disponibilidade de Zn, visto que, segundo MALAVOLTA (1980), a elevação de uma unidade de pH reduz a

QUADRO 20 - Teor e acumulação de zinco na parte aérea e raíz do Andropogon. (1)

		Teor	(ppm)			A	cúmulo (mg,	/vaso)	
Tratamento	- 19	Parte aére	a	Do (a		Parte aé	rea		
	1º corte	2º corte	3º corte	Raíz	1º corte	2º corte	3º corte	Total	- Raíz
TEST.	(2)	38 b	73 b	44 cd	(2)	0,01 c	0,09 ef	0,10 f	0,06 c
01	35 c	37 c	51 b	52 c	0,54 bc	0,99 bc	0,88 bc	2,42 cd	3,40 a
22	45 bc	61 a	73 b	71 ab	0,65 ab	1,53 a	1,07 b	3,24 ab	3,66 a
-CAL	58 a	58 a	78 b	74 a	0,83 a	1,29 ab	1,02 bc	3,14 b	3,86 a
-N	15 d	37 b	81 b	51 c	0,14 d	0,13 de	0,35 de	0,62 f	0,89 b
P	(2)	38 b	60 b	64 b	(2)	0,01 e	0,02 f	0,03 f	0,04 c
-K	49 ab	63 a	134 a	39 de	0,64 ab	1,45 ab	1,78 a	3,87 a	0,83 b
·S	39 bc	57 a	116 a	33 e	0,55 bc	0,53 d	0,75 c	1,84 de	0,94 b
-MICRO	22 d	27 c	33 c	21 f	0,36 c	0,54 cd	0,48 d	1,38 c	1,34 b
-Ca	58 a	56 a	74 b	66 ab	0,78 a	1,15 ab	0,89 bc	2,82 bc	3,68 a
-Mg	47 ab	51 a	63 b	65 ab	0,68 ab	1,20 ab	0,81 bc	2,69 bc	3,77 a
C.V. (%)	11,7	10,8	13,2	8,3	12,9	26,1	16,0	11,2	12,3

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1^{Ω} corte.

QUADRO 21 - Teor e acumulação de zinco na parte aérea e raíz do Braquiarão. (1)

		Teo	r (ppm)			Ac	cúmulo (mg/	/vaso)	
Tratamento		Parte aére	a	Raíz		Parte aé	rea		
	1º corte	2º corte	3º corte	Raiz	1º corte	2º corte	3º corte	Total	- Raíz
TEST.	(2)	32 b	50 de	42,7 de	(2)	0,01 e	0,05 d	0,06 e	0,06 g
C1	34 de	22 cd	51 d	40,9 de	1,96 de	0,38 abc	0,84 ab	2,55 c	2,34 d
C2	41 cd	25 c	54 cde	56,0 bc	2,78 cd	0,40 ab	0,74 abc	2,65 bc	3,05 b
-CAL	61 a	25 c	55 bcde	72,0 a	2,42 d	0,36 abc	0,73 abc	2,98 ab	3,60 bc
-N	15 f	25 c	35 f	49,0 cd	1,20 e	0,05 e	0,11 d	0,37 e	0,65 f
-P	(2)	48 a	69 b	37,0 e	(2)	0,04 e	0,09 d	0,13 e	0,05 g
-K	45 bc	49 a	87 a	34,0 e	2,37 d	0,43 a	0,65 bc	2,51 c	0,60 fg
-S	28 e	24 c	65 bcd	42,0 de	1,85 de	0,18 d	0,59 c	1,65 d	1,41 e
-MICRO	14 f	17 d	32 f	20,0 f	3,70 bc	0,30 bcd	0,57 c	1,48 d	1,27 e
-Ca	52 ab	23 cd	67 bc	62 ab	4,22 b	0,36 abc	0,91 a	3,08 a	4,11 ab
-Mg	40 cd	19 cd	49 e	60,0 b	5,45 a	0,28 cd	0,69 abc	2,53 c	4,19 a
C.V. (%)	11,7	10,8	13,2	8,3	12,9	26,1	16,0	11,2	12,3

⁽¹⁾ Na mesma coluna, médias seguidas por letras distintas diferem entre si (Tukey 5%).

⁽²⁾ Parte aérea não coletada no 1^{Ω} corte.

disponibilidade de Zn em 100 vezes no solo. Para o tratamento menos K, que também mostrou teores de Zn elevados, a mesma explicação de interação iônica entre K⁺ e o Zn pode ser adotada, mas, com a colaboração do efeito de concentração, visto a menor produção de matéria seca neste tratamento (Quadro 2).

No tratamento menos Micro, visto a produção de matéria seca ser igual ao tratamento completo (C1), os teores de Zn foram inferiores devido a sua não aplicação neste tratamento.

Para o tratamento menos P, esperava-se um aumento pronunciado dos teores de Zn nas plantas, visto também à conhecida interação não competitiva entre os dois elementos (MALAVOLTA, 1980), bem como um efeito de concentração devido ao menor crescimento das plantas, mas tal fato não ocorreu.

Considerando-se 20 ppm o nível crítico de Zn na parte aérea de gramíneas (Jones 1972, citado por CIAT, 1981), observa-se que todos os tratamentos, à exceção do menos Micro (1º e 2º cortes) e menos N (1º corte) para o Braquiarão, apresentaram teores de Zn suficientes para a nutrição das forrageiras. Os menores teores observados com a omissão dos micronutrientes (Quadros 2º e 21) não foi suficiente para reduzir significativamente a produção de matéria seca da parte aérea, relativamente ao tratamento completo (Quadro 2).

Em experimento a campo, numa Terra Roxa, ORELLANA & HAAG (1982) estudando a nutrição mineral de A. gayanus, observaram nas idades de 80, 100, 120 e 140 dias os respectivos teores de Zn: 22,2; 22,2; 24,7 e 27,5 ppm nas folhas e 21,0; 30,0; 28,5 e 28,7 ppm nos caules desta gramínea. CIAT (1981), em experimento a campo, num Oxissol de Carinágua, observaram teores

de Zn na matéria seca do *B. brizantha*, variando de 15,0 a 24,0 ppm na época das chuvas e de 26 a 44 na época da seca.

Como a acumulação de um nutriente é dependente do seu teor e principalmente da produção de matéria seca, assim como ocorreu com a produção de matéria seca (Quadro 2), o Braquiarão apresentou no 1º corte maiores acúmulos de Zn que o Andropogon e, de forma geral, no 2º corte o inverso ocorreu.

Os teores de Zn nas raízes de ambas as forrageiras (Quadros 20 e 21) tenderam a ser maiores que os observados na matéria seca da parte aérea no 1º e 2º cortes, e inferiores aos do 3º corte, mostrando, de certa forma, tal como observado para o cobre, dificuldade das plantas transportarem o Zn para a parte aérea.

O teor de Zn no solo de 1,1 ppm (Quadro 1), está acima de 0,5 ppm considerado nivel crítico para solos ácidos (Cox & Kamprath, 1972 citados por CIAT, 1981) e da faixa crítica proposta por LOPES & CARVALHO (1988) de 0,8 a 1,0 ppm, usando o mesmo extrator utilizado neste experimento (Mehlich I).

Segundo HODGSON et al (1962), apenas animais não ruminantes estão sujeitos à sofrer deficiência de Zn, e apenas quando a maior parte da dieta é composta por forrageiras com baixa concentração de Zn. No entanto, considerando-se o requerimento de 40 ppm Zn para vacas em lactação NATIONAL ACADEMY OF SCIENCE (1971), observa-se de modo geral, que as forrageiras apresentam teores insuficientes para suprir as necessidades dos animais. Portanto, é necessário a inclusão deste elemento na suplementação mineral dos animais.

4.5. Exigência Nutricional e Eficiência de Utilização

O total absorvido pela planta e acumulado na parte aérea (19+29+39 cortes) em mg/vaso, para o tratamento completo (C1), apresentados nos Quadros 3 a 21, foi o seguinte:

Observa-se que as forrageiras apresentaram a mesma sequência de exigência em nutrientes, no entanto, o Braquiarão tende a ser mais exigente que o Andropogon, principalmente em N, Ca, Mg, S e Zn.

Muitas vezes o aumento da produtividade e qualidade das pastagens pode ser conseguido com a melhoria da fertilidade do solo, através da aplicação de corretivos e fertilizantes, entretanto, nem sempre isto é economicamente viável. Assim, torna-se de grande importância a utilização de cultivares de gramíneas eficientes na absorção e uso de nutrientes.

Muitos parâmetros têm sido utilizados para avaliar plantas mais eficientes na absorção e utilização de um nutriente: concentração nos tecidos, conteúdo nas plantas, massa seca e relação de eficiência, que consiste na razão entre a fitomassa e a quantidade de nutriente na fitomassa (GERLLOFF, 1976; CLARK, 1983). Entretanto, a eficiência deve ser relacionada a fitomassa para não se incorrer no erro de selecionar uma planta com alta

eficiência e baixa produção de matéria seca, como é o caso de uma planta extremamente deficiente em um determinado nutriente. Assim, a eficiência de utilização dos macronutrientes foi calculada como proposto por SIDDIQUI & GLASS (1981) e seus valores são apresentados nos Quadros 22 e 23, para os tratamentos testemunha (20 e 30 cortes). C1 e omissão dos macronutrientes.

Observa-se um comportamento diferenciado das espécies:

o Andropogon tende apresentar maiores valores de eficiência de
utilização de N, P, K, S, Ca e Mg no segundo corte devido ao
maior crescimento ocorrido no mesmo (Quadro 2). Entretanto, para
o Braquiarão, os maiores valores de eficiência de utilização para
os mesmos nutrientes ocorreram no primeiro corte, acompanhando as
maiores produções de matéria seca (Quadro 2).

A exceção do N e do P em ambas forrageiras e do Ca no Andropogon, observa-se que a eficiência de utilização dos macronutrientes aumentou nos tratamentos onde foram omitidos, em relação ao tratamento completo (C1). FONSECA (1987) afirma que as plantas utilizam mais eficientemente um nutriente quando o mesmo encontra-se em menor disponibilidade. Os resultados observados para o N e P, mostram que os seus níveis disponíveis no solo foram extremamente limitantes, não permitindo um crecimento adequado das forrageiras.

Levando-se em consideração a produção de matéria seca total. Quando se compara a eficiência de utilização de N, P, K, S. Ca e Mg do Andropogon e Braquiarão, expressos pelo índice de utilização (Quadros 22 e 23), nota-se que o segundo foi, de forma geral, mais eficiente em utilizar os referidos nutrientes, à

QUADRO 22 - Eficiência de utilização de N, P, K pela parte aérea do Andropogon e Braquiarão no 1^{Ω} , 2^{Ω} e 3^{Ω} cortes e total, e os respectivos índices de utilização.

			Efic	iência de	Utilizaçã	ĭo ⁽¹⁾		_		(2)
Tratamento	Corte	Aı	ndropogon		Bı	aquiarão			de Utiliz aq. x And	
		N	P	K	N	P	K	N	P	К
	19			_						
TEST.	2으	0,01	0,3	0,02	0,02	0,60	0,02	2,0	2,00	1 00
	3 <u>0</u>	0,06	2,5	0,09	0,03	1,60	0,02	0,5	0,64	1,00 0,40
	TOTAL	0,07	2,7	0,12	0,05	2,70	0,08	0,7	1,00	0,40
	10	0,71	8,9	0,60	3,20	43,30	3,40	4,5	4,90	5,70
C1	2 <u>0</u>	2,90	23,7	3,90	1,50	20,70	2,60	0,5	0,90	0,70
	3 <u>0</u>	1,50	16,9	2,40	1,30	15,90	3,20	0,9	0,90	1,30
	TOTAL	4,60	46,7	4,90	6,10	79,20	8,20	1,3	1,70	1,70
	10	1,10	_	_	2,10			1,9	·	-
-N	2 <u>0</u>	0,40	_		0,20			0,5		
	3℃	0,50		_	0,40			0,8		
	TOTAL	1,90	_	_	2,80			1,5		
	10				-	_				-
-P	2 <u>0</u>	_	0,3	-		1,61			_	
	3 <u>0</u>	_	0,6			2,26			5,40	
	TOTAL		1,1			4,10			3,80	
						4,10			3,70	
	10		-	1,40			10,20			7,30
-К	<u>2</u> 9	_		17,70			5,90			0,30
	3 <u>0</u>	_	_	14,90			4,80			0,30
	TOTAL		_	14,80			18,40			1,24

⁽¹⁾ $EU = g^2(MS) \times mg^{-1}(nutriente);$ (2) $IU = EU braq. \times EU Andr.^{-1}$

QUADRO 23 - Eficiência de utilização de S, Ca e Mg pela parte aérea do Andropogon e Braquiarão no 1^{Ω} , 2^{Ω} e 3^{Ω} cortes e total, e os respectivos índices de utilização.

			Efic	iência de	Utîlizaçã	io ⁽¹⁾		4		(2)
Tratamento	Corte	An	dropogon		Br	aquiarão			de Utili: .q. x And	
:		S	Ca	Mg	s	Ca	Mg	s	Ca	Mg
	10	_	_							
TEST.	2 <u>º</u>	0,3	0,05	0,2	0,4	0,09	0,11	1,30	1,8	0,5
	30	1,3	0,23	0,6	1,0	0,85	0,30	0,80	1,1	0,5
	TOTAL	1,8	0,30	0,8	1,6	0,42	0,48	0,90	1,4	0,6
***************************************	12	18,2	2,30	4,1	63,3	7,70	7,40	3,50	3,3	1,8
C1	2 <u>0</u>	55,8	4,40	7,1	20,4	1,70	3,90	0,40	0,4	0,5
	3 <u>0</u>	24,7	2,20	4,0	22,1	1,90	5,40	0,90	0,4	1,3
	TOTAL	90,5	8,90	15,2	103,7	10,10	16,00	1,14	1,1	1,0
	10	45,3			220,6			4,90		
·S	2º	47,5			27,0			0,60		
	3℃	23,1			41,7			1,80		
	TOTAL	105,2			262,4			2,50		
	10		2,40	5,7		7,20	12,90		3,0	2,3
CAL	2 <u>0</u>		4,40	14,4		2,30	12,70		0,5	0,9
	3 <u>0</u>		2,10	10,6		3,30	12,30		1,6	1,2
	TOTAL		8,90	28,3		12,40	32,80		1,4	1,2
	10		2,30			13,00			5,6	
Ca	2 <u>0</u>		4,10			2,50			0,6	
	3 <u>0</u>		2,50			3,30			1,3	
	TOTAL		8,50			16,50			1,9	

⁽¹⁾ $EU = g^2(MS) \times mg^{-1}(nutriente)$; (2) $IU = EU braq. \times EU Andr.^{-1}$.

exceção da testemunha, onde o Andropogon apresentou maior eficiência em utilizar o N, K, S e Mg.

Tomando-se o total de matéria seca do tratamento completo (C1) como padrão, considerando que o mesmo tenha sido adequadamente adubado, os Indices de Utilização indicam que o Braquiarão, em condições ideais de fertilidade, utiliza melhor os macronutrientes que o Andropogon, exceção ao Mg onde foi igual. Isto significa que o Braquiarão produz maior quantidade de matéria seca por unidade de nutriente absorvido. Resultados do CIAT (1978) mostram elevada eficiência de utilização do N nativo do solo pelo Andropogon gayanus, e ALVIM et al. (1990), verificaram elevado potencial de resposta em crescimento pela Brachiaria brizantha a uma maior disponibilidade de N no solo.

5. CONCLUSORS

Nas condições em que o trabalho foi conduzido, os resultados permitem as seguintes conclusões :

O solo natural apresentou fertilidade extremamente limitante ao bom desenvolvimento das forrageiras Andropogon e Braquiarão, sendo que o P foi o principal nutriente limitante, seguido pelo N, K e S. A omissão dos micronutrientes (B, Cu, e Zn) não limitou a produção das forrageiras no período estudado. A calagem mostrou-se necessária, principalmente como fonte de Ca e Mg.

Considerando-se a média de produção de matéria seca das duas espécies, os tratamentos testemunha, menos P, menos N, menos S e menos K, reduziram a produção de matéria seca da parte aérea nos três cortes (total) em 90, 90, 72, 40 e 24%, respectivamente, em relação ao Completo (C1). O perfilhamento de ambas as espécies foi afetado pelas omissões de P e N, além do S e Mg para o Braquiarão.

O Braquiarão apresentou maior potencial de produção de matéria seca que o Andropogon, e utilizou mais eficientemente os macronutrientes, à exceção do Mg.

Para obtenção de um crescimento adequado das forrageiras neste solo, este deverá receber calagem, além de uma adequada adubação com P, N, K e S.

RESUMO

Morikawa, Cláudio Kendi. MS., Limitações Nutricionais para o Andropogon (*Andropogon gayanus*) e Braquiarão (*Brachiaria brizantha*) em Latossolo da Região dos Campos das Vertentes - MG. Lavras, ESAL, 1993. 136p. (Dissertação MS - Agronomia/ Solos e Nutrição de Plantas)*

A pecuária leiteira representa para a região dos Campos das Vertentes, um dos seus principais esteios econômicos, e as pastagens constituem a opção mais usada para produção de forragem para os animais. No entanto, apesar de ocupar a 5ª posição como região produtora de leite do Estado, a produtividade é baixa, sendo a má condição das pastagens é um dos principais fatores que contribui para os baixos índices obtidos.

As classes de solo predominantes na região são Cambissolo e Latossolo, sendo que o último, por apresentar melhores condições físicas e topográficas é o mais indicado para formação de pastagens cultivadas. A baixa fertilidade, certamente, fator mais limitante bom desenvolvimento das ao forrageiras neste solo. À semelhança da região dos cerrados, a produtividade das pastagens é baixa e marcadamente estacional, sendo os índices zootécnicos da exploração agropecuária igualmente baixos. Assim para elevar a produtividade destas áreas é necessário a adoção de técnicas, tais como o uso de corretivos

^{*} Orientador : Valdemar Faquin

e fertilizantes e/ou introdução de forrageiras adaptadas e produtivas, nas condições de solo e clima.

Um programa de pesquisa direcionado para estudos de solos, forrageiras, manejo e melhoramento básicos das pastagens, visando a formação de um conjunto de conhecimentos que possibilitem o aumento de produtividade e lucratividade exploração pecuária desta região, está sendo desenvolvido em integração envolvendo ESAL (Professores a Alunos dos Departamentos de Ciência do Solo e Zootecnia) e pesquisadores da EMBRAPA/CNPGL - Coronel Pacheco (MG), sendo que o presente estudo está inserido neste programa.

Assim, objetivou-se no presente trabalho, através de um experimento em vasos e da técnica do elemento faltante em casa de vegetação, utilizando-se um Latossolo variação Una (LU) representativo da região, avaliar as limitações de fertilidade ao crescimento, produção de matéria seca e nutrição mineral de Braquiarão (Brachiária brizantha ev Marandu) e Andropogon (Andropogon gayanus ev Planaltina).

Os resultados mostraram que o solo natural apresentou fertilidade extremamente limitante ao bom desenvolvimento das forrageiras Andropogon e Braquiarão, sendo que o P foi o principal nutriente limitante, seguido pelo N, K e S. A omissão dos micronutrientes (B, Cu, e Zn) não limitou a produção das forrageiras no período estudado. A calagem mostrou-se necessária, principalmente como fonte de Ca e Mg.

Consideramdo-se a média de produção de matéria seca das duas espécies, os tratamentos testemunha, menos P, menos N, menos

S e menos K, reduziram a produção de matéria seca da parte aérea nos três cortes (total) em 98, 98, 72, 40 e 24%, respectivamente em relação ao Completo (C1). O perfilhamento de ambas as espécies foi afetado pelas omissões de P e N, além do S e Mg para o Braquiarão.

O Braquiarão apresentou maior potencial de produção de matéria seca que o Andropogon, e utilizou mais eficientemente os macronutrientes, à exceção do Mg.

Para obtenção de um crescimento adequado das forrageiras neste solo, este deverá receber calagem, além de .uma adequada adubação com P, N, K e S.

SUMMARY

Morikawa, Cláudio Kendi, M.S., Nutritional Limitations for Andropogon gayanus and Brachiaria brizantha in Oxissol of Campos das Vertentes Region, Minas Gerais State, Brasil. Lavras, ESAL, 1993. 136p. (MS Thesis, Agronomy/ Soil and Plant Nutrition)*

Dairy farming is one of the major economical supports of the Campos das Vertentes region, and pastures make up the most used option for forage prodution. Nevertheless, in spite of ranking fifth (5th) as a milk producing region in the State (Minas Gerais), the productivity is low, being the poor condition of pastures one of the chief factors contributing for the low obtained indices.

The classes of soil prevailing in the region are Latosols (Oxisols) and Cambisols (Inceptisols). The Oxisols have better physical and topographical conditions and are more suitable for formation of cultivated pastures. Low fertility is, by all means, the most limiting factor to the good development of forage plants in this soil. The forages productivity is low and seazonal, being the animal perfomance indices likewise low. Thus, in order to raise the productivity of these areas, it is necessary the adoption of technics, such as the use of corretives and fertilizers and/or the introduction of forage plants, both adapted and productive, under conditions of soil and climate of

^{*} Adviser : Valdemar Faquim

the region.

A research programme pointed towards basic studies of soils, forage plants and pastures management, aiming the formation of a set of knowledge to increase productivity and profilatability of livestock exploration in the region, is being developed in integration, enconpassing ESAL (Departaments of Animal Science and Soil Science) and researchers of the EMBRAPA/CNPGL - Coronel Pacheco (MG), being the present work is inserted in this programme.

Thus, this work had objetive to evaluate fertility limitations of Brachiaria brizantha cv. Marandu and Andropogon gayanus cv. Planaltina for growth, dry matter yield and mineral nutrition through pots experiment and technics of missing element in greenhouse, by utilizing a Una variant Latosol (Oxisol), representive of the region.

The results showed the natural soil presented fertility extremely limiting to the good development of the Andropogon and Brachiaria, being P the chief limiting nutrient, followed by N, K and S. The omission of micronutrients (B, Cu and Zn) did not limit the production of the forage plants during the investigated period. Liming proved to be necessary, chiefly as a source of Ca and Mg.

Taking into account the dry matter production of both species, the control, minus P, minus N, minus S and minus K treatments reduced the dry matter production of aerial part in the three cuts (total) by 98, 98, 72, 40 and 24%, respectively, with regard to the complet treatment (C1). Tillering of both

species was affected by omissions of P and N, in addition to S and Mg for Brachiaria.

The Brachiaris showed higher potencial of dry matter production than Andropogon and utilized more efficiently the macronutrients, with exception of Mg.

In order to obtaine an adequate growth of forage plants on this soil, it must be limed, in addition to a suitable fertilization with P, N, K and S.

REFERENCIAS BIBLIOGRAFICAS

- ABAUNZA, M.A.; LASCANO, C.E.; GIRALDO, H. & TOLEDO, J.M. Valor nutritivo y aceptabilidad de gramíneas y leguminosas forrajeras tropicales en suelos ácidos. Pasturas Tropicales, Cali, 12(2):2-9, 1991.
- ALVIM, M.J.; BOTREL, M. de A.; VERNEQUE, R. da S. & SALVATI, J.A. Aplicação de nitrogênio em acessos de Brachiaria.
 Efeito sobre a produção de matéria seca. Pasturas Tropicales, Cali, 12(2):2-6, 1990.
- AMARAL, S.N.M.B.; VELLOSO, A.G.X.; LEAL, R.J. & ROSSIELO, R.O.P. Desnitrificação e imobilização de nitrogênio em solo tratado com vinhaça. Revista Brasileira de Ciência do Solo, Campinas, 7:263-8, 1983.
- BISSANI, C.A. & TEDESCO, M.J. O enxofre no solo. In: REUNIÃO BRASILEIRA DE FERTILIDADE DO SOLO, 17, Londrina, 1988. Anais... Londrina, EMBRAPA-CNPS/IAPAR/SBCS, 1988. Cap. 1, p.11-29.
- 5. BITTENCOURT, A.M.; FILGUEIRAS, M.R.T.; CASTRO, V.R.O. & ANDRADE, H.A. de S. Composição mineral de algumas espécies de gramíneas forrageiras ao longo de seu ciclo vegetativo. Pesquisa Agropecuária Brasileira, Brasília, 22(9/10):1009-1017, Set./Out. 1987.
- 6 BLANCHAR, R.N.; REHM, G. & CALDWELL, A.C. Sulfur in plant material digestion with nitric and perchloric acids. Soil Science Society of America Proceedings, Madson, 29(1):71-2, Jan./Feb. 1965.
- 7. BOGDAN, A.V. Tropical pasture and fodder plants: grasses and legumes. London, Longman, 1977. 475p. (Tropical Agriculture Series).
- 8. BOIN, C. Produção animal em pastos adubados. In: SIMPOSIO SOBRE ADUBAÇÃO E CALAGEM DE PASTAGENS, 1, Nova Odessa, 1985. Anais... Firacicaba, Associação Brasileira para Pesquisa da Potassa e do Fosfato, 1986. p.383-419.

- 9. BOTREL, M.A. Alternativas para formação de pastagens na região Campos das Vertentes. In: REUNIAO DE TRABALHO: PASTAGENS NATIVAS E DESENVOLVIMENTO DE PASTAGENS PARA GADO DE CORTE NA ZONA DOS CAMPOS DAS VERTENTES, Lavras, ESAL/EMBRAPA-CNPGL, 1992. (No prelo).
- BRASIL, Ministério da Agricultura. Escritório de Metodologia. Normais Climatológicos (Minas Gerais, Espirito Santo, Rio de Janeiro, Guanabara). Rio de Janeiro, 1969. v.3, 98p.
- 11. BROMFIELD, A.R. Sulfur in Northern Nigerian Soils. 1. the effects of cultivation and fertilizers on total S and sulfate patterns in soils profiles. Agricultural Science, Budapest, 78:465-70, 1972.
- 12. CARRIEL, J.M.; WERNER, J.C.; ABRAMIDES, P.L.G.; MONTEIRO, F.A. & MERELLES, N.M.F. Limitações nutricionais de um Podizólico Vermelho-Amarelo para o cultivo de três gramíneas forrageiras. Boletim da Indústria Animal, Nova Odessa, 46(1):61-73, 1989.
- CARVALHO, M.M. Melhoramento da produtividade das pastagens através da adubação. Informe Agropecuário, Belo Horizonte, 11(132):23-32, 1985.
- 14. ; BOTREL, M. de A. & CRUZ FILHO, A.B. da. Estudo exploratório de um Latoosolo Vermelho-Amarelo da Zona dos Campos das Vertentes, MG. Revista Brasileira de Zootecnia, Viçosa, 21(2):320-8, 1992a.
- 15. _____; CRUZ FILHO, A.B. & BROTEL, M.A. Formação de pastagens. In: CURSO DE PECUARIA LEITEIRA PARA TECNICOS DA NESTLE, 3, São Paulo, Nestlé, 1984. p.8-18.
- 16. ; FREITAS, V. de P. & CRUZ FILHO, A.B. da.
 Requerimento de fósforo para o estabelecimento de duas
 gramíneas tropicais em um solo ácido. In: REUNIAO
 BRASILEIRA DE ZOOTECNIA, 19, Lavras, 1992. Anais...
 Lavras, SBZ, 1992b. p.439.
- 17. ; MARTINS, C.E.; VERNEQUE, R.S. & SIQUEIRA, C.
 Resposta de B. decumbens à fertilização com nitrogênic
 e potássio em um solo ácido. REUNIÃO ANUAL DA SOCIEDADE
 BRASILEIRA DE ZOOTECNIA, Campinas, 27:249, 1990. (Resumos).
- 18. ; OLIVEIRA, F.T.T. de; SARAIVA, O.F. & MARTINS, C.E. Fatores nutricionais limitantes ao crescimento de forrageiras tropicais em dois solos da Zona da Mata, MG. 1. Latossolo Vermelho-Amarelo. Pesquisa Agropecuária Brasileira, Brasília, 20(5):519-28, Maio 1985.

- 19. CASAGRANDE, J.C. & SOUZA, O.C. Efeito de níveis de enxofre sobre quatro gramíneas forrageiras tropicais em solos sob vegetação de cerrado do Mato Grosso do Sul, Brasil. Pesquisa Agropecuária Brasileira, Brasília, 17(1):21-5, 1982.
- 20. CENTRO INTERNACIONAL DE AGRICULTURA TROPICAL. Fertilidade del suelo y nutricion de la planta. In:____. Informe anual 1978: programa de ganado de carne. Cali, 1978. p.886-8104.
- 21. _____. Fertilidade del suelo y nutricion de la planta. In:____. Informe anual 1979: Programa de pastos tropicales. Cali, 1979. p.63-68.
- 22. _____. Fertilidade del suelo y nutricion de la planta.
 In:____. Informe anual 1980: Programa de pastos
 tropicales. Cali, 1981. p.57-68.
- 23. _____. Fertilidade del suelo y nutricion de la planta.
 In:____. Informe anual 1981: Programa de pastos
 tropicales. Cali, 1982. p.171-94.
- 24. _____. Nutrition mineral de plantas forrajeras. In:____.

 Informe anual 1977: programa de ganado de carne. Cali,
 1978. p.A61-5.
- 25. _____. Suelos/nutricion plantas. In:____. Informe anual 1984: Programa de pastos tropicales. Cali, 1985. p.113-51.
- 26. CHAMINADE, R. Recherches sur la fertlité el la fertilization des sols em régions tropicales. L'Agronomie Tropicale, France, 27(9):891-904, sept. 1972.
- 27. CLARK, R.B. Plant genotype differences in the utake, translocations, acumulation, and use of mineral elemento for plant grawth. Plant and soil, the Hague, 72(2-3):175-196, 1983.
- 28. COMASTRI FILHO, J.A. A variação da produtividade, digestibilidade, e conposição química do Capim Elefante "mineiro" (Penisetum purpureum, Shum) com a sucessão de cortes e a aplicação de nitrogênio, fósforo e potássio. Viçosa, UFV, 1977. 51p. (Dissertação de MS).
- 29. COMISSÃO DE FERTILIDADE DO SOLO DO ESTADO DE MINAS GERAIS.

 Recomendações para o uso de corretivos e fertilizantes em

 Minas Gerais, 4ª aproximação, Lavras, EPAMIG, 1989. 176p.
- 30. COOKE, G.W. Pesquisas dos fatores que limitam os rendimentos e sua importância no desenvolvimnto de sistemas agrícolas. In: REUNIAO BRASILEIRA DE FERTILIDADE DO SOLO, 16, Ilhéus, 1984. Anais... Ilhéus, CEPLAC/SBCS, 1985. p.1-44.

- 31. CORREA, L. de A. Níveis críticos de fósforo para o estabelecimento de Brachiaria decumbens Stapf, Brachiarai brizantha (Hochst) Stapf cv. Marandu e Panicum maximum Jacq., em Latossolo Vermelho Amarelo, álico. Piracicaba, ESALQ, 1991. 83p.
- 32. _____; HAAG, H.F. & FREITAS, A.R. de. Níveis críticos de fósforo para o estabelecimento de *Brachiaria decumbens* (Hochst) Stapf cv. Marandu e *Panicum maximum* Jacq., em Latossolo-Vermelho Amarelo, álico. II. Ensaio em casa de vegetação. Reunião Anual da Sociedade Brasileira de Zootecnia, Lavras, 29:451, 1993. (Resumos).
- 33. COSTA, L.P. & STEWERDL, L. Efeito de doses crescentes de nitrogênio na produção de feno de Capim-Pangola (*Digitaria decumbens*). In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 18, Goiânia, 1981. Anais... Goiânia, SBZ, 1981. p.28
- 34. COSTA, N.L.; PAULINO, V.T.; CARDELLI, M.A.; OLIVEIRA, J.R.C. & RODRIGUES, A.N.A. Efeito de fontes e doses de fósforo sobre a produção de forragem de *Andropogon gayanus* cv. Planaltina. In: REUNIÃO BRASILEIRA DE FERTILIDADE DO SOLO, 20, Piracicaba, 1992. Anais... Piracicaba, USP/ESALQ/SBCS, 1992a. p.314-15.
- 35. ; PAULINO, V.T.; RODRIGUES, A.N.A. & OLIVEIRA, J.R. da C.Resposta de *Brachiaria brizantha* cv. Marandu à fontes e doses de fósforo. Reunião Anual da Sociedade Brasileira de Zootecnia, Brasília, 28:50, 1992b. (Resumos).
- 36. COSTA Jr, M. A pecuária leiteira no Brasil e em Minas Gerais. Belo Horizonte, 1985. 52p.
- 37. COUTO, W.; LEITE, G.G. & KORNELIUS, E. The residual effect of P and lime on the perfomance of four tropical grasses in a high P fixing Oxisol. Agronomy Journal, Madison, 77:539-42, 1985.
- 38. CURI, N. Relação solo-pastagens na região dos Campos das Vertentes (MG). Lavras, 1991. 28p. (Relatório apresentado ao CNPq).
 - 39. EMPRESA BRASILEIRA DE PESQUISA AGROPECUARIA. Serviço Nacional de Levantamento e Conservação dos Solos. Manual de métodos de análise de solo. Rio de Janeiro, 1979. n.p.
- 40. ______. Centro Nacional de Pesquisa de Gado de Corte.

 Brachiaria brizantha cv Marandu. 2. ed., Campo Grande,
 EMBRAPA-CNPGC, 1985. 31p. (EMBRAPA-CNPGC, Documentos, 21).
- 41. _____. Centro Nacional de Pesquisa de Gado de Leite.

 Programa de pesquisa em pastagens para a região dos
 "Campos das Vertentes". Coronel Pacheco, 1987. 5p.

- 42. EPSTEIN, E. Nutrição mineral das plantas, princípios e perspectivas. Trad. por E. Malavolta. Rio de Janeiro, Livros Técnicos e Científicos, 1975.
- 43. FALADE, J.A. The effect of phosphorus on growth and mineral composition of five tropical grasses. East African Agricultural and Foresty Journal, Nairobi, 40(4):342-50, 1975.
- 44. FARIA, J.M.; ARRIOJA, L.; CHACON, E.; BERROTERAN, J. & CHACIN, F. Efecto del corte y de la aplicacion de nitrogeno en el crecimiento de *Andropogon gayanus*. Pasturas Topicales, Cali, 9(3):2-8, 1987.
- 45. FAVORETTO, V. Frequência de corte e níveis de nitrogênio em Capim-Colonião: 1. Produção de Matoria Seca e capacidade de suporte estimada. In: REUNIAO DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 18, Goiânia, 1981. Anais... Goiânia SBZ, 1981. p.129.
- 46. FERNANDES, M.S. & ROSSIELO, R.O.P. Aspectos do metabolismo e utilização do nitrogênio em gramíneas tropicais.
 In: SIMPOSIO SOBRE CALAGEM E ADUBAÇÃO DE PASTAGENS, 1, Nova Odessa, 1985. Anais... Piracicaba, Associação Brasileira para Pesquisa da Potassa e do Fosfato, 1986. p.93-123.
- 47. FERRARI NETO, J. Limitações nutricionais para Colonião (Panicum maximum Jacq) e Braquiária (Brachiaria decumbens Stapf) em Latossolo da Região Noroeste do Estado do Paraná. Lavras, ESAL, 1991. 126p. (Dissertação Mestrado).
- 48. FONSECA, D.M. da. Níveis críticos de fósforo em amostras de solos para o estabelecimento de Andropogon gayanus, Brachiaria decumbens e Hiparrhenia rufa. Viçosa, UFV, 1987. 146p. (Dissertação Mestrado).
- 49. FRANÇA, A.F.S. & HAAG, H.P. Nutrição mineral de gramíneas tropicais. 1. Carências nutricionais de Capim Tobiatã (*Panicum maximum* Jacq). Anais da Escola Superior de Agricultura "Luiz de Queiróz", Piracicaba, ESALQ, 42:83-95, 1985.
- 50. FREIRE, J.C.; RIBEIRO, M.A.V.; BAHIA, V.G.; LOPES A.S. & AQUINO, L.H. de. Resposta do milho cultivado em casa de vegetação a níveis de água em solos da região de Lavras, MG. Revista Brasileira de Ciência do Solo, Campinas, 4(1):5-8, jan./abr. 1980.
- 51. GALLO, J.R.; HIROCE, R.; BATAGLIA, O.C.; FURLANI, P.R.; FURLANI, A.M.C.; MATTOS, H.B; SARTINI, H.J. & FONSECA, M.P. Composição química inorgânica de forrajeiras do estado de São Paulo. Boletim da Indústria Animal, Nova Odessa, 31(1):115-37, Jan./Jun. 1974.

- 52. GERLOFF, G.C. Plant influences in the use of nitrogen, phosphorus and potassium. In: WORKSHOP ON PLANT ADAPTATION ON MINERAL STRESS IN PLOBLEM SOILS, Beltsville, 1976. Proceedings. Ithaca, Cornell University, 1976. p.161-73.
- 53. GIRALDO, L.A.; HINCAPIE, A.C.; VASQUEZ, M.E. & ZAPATA, C.M. Evaluación de gramíneas y leguminosas forrageras en Amalfi, Colombia. Pasturas Tropicales, Cali, 11(2):20-4, 1989.
- 54. GOMES, F.P. Curso de estatística experimental. 2. ed. São Paulo, Nobel, 1985. 466p.
- 55. GOMIDE, J.A. Estudo em pequenas parcelas sobre a fertilização do capim gordura (*Melinis minutiflora*). Revista Ceres, Viçosa, 13(75):165-81, 1966.
- 56. ____; CRUZ, M.E. & ZAGO, C.P. Crescimento e composição mineral dos capins Andropogon (A. gayanus), jaraguá (H. rufa) e setária (S. sphacelata cv. Kazungula). In: REUNIAO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 24, Brasília, 1987. Resumos... Brasília, SBZ, 1987. p193.
- 57. _____; NOLLER, C.H.; MOTT, G.O.; CONRAD, J.H. & HILL, D.L. Mineral composition of six tropical grasses as influenced by plant age and nitrogen fertilization. Agronomy Journal, Madison, 61(1):120-3, 1969.
- 58. GONÇALVES, C.A. Produtividade e composição química de gramíneas forrageiras em Rondônia. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 21, Belo Horizote, 1984. Resumos... Belo Horizonte, SBZ, 1987. p427.
- 59. _____; COSTA, N. de & OLIVEIRA, A. Avaliação de gramíneas e leguminosas forrageiras em Presidente Médici, Rondônia, Brasil. Pasturas Tropicales, Cali, 9(1):2-5, 1987.
- 60. ; MEDEIROS, J. de C.V. & OLIVEIRA, J.R. de C. Intodução e avaliação de gramineas e leguminosas em Rondônia. Porto Velho, EMBRAPA-UEPAE, 1982. 22p. (EMBRAPA-UEPAE. Circular Técnica. 1).
- 61. GUPTA, U.C. Boron nutrition of Crops. Advances in Agronomy, New York, 31:273-303, 1979.
- 62. GUSS, A. Exigência de fósforo para estabelcimento de gramíneas e leguminosas forrageiras tropicais em solos com diferentes características físicas e químicas. Viçosa, UFV, 1988. 74p. (Dissertação Doutorado)
- 63. ; GOMIDE, J.A. & NOVAIS, R.F. de. Exigência de fósforo para o estabelecimento de quatro espécies de Brachiaria em solos com características fisico-químicas distintas. Revista Sociedade Brasileira de Zootecnia, Viçosa, 19(4):278-89, 1990.

- 64. HAAG, H.P.; BOSE, L.V. & ANDRADE, R.G. Absorção de macronutrientes pelos capins colonião, gordura, jaraguá, napier e pangola. Anais da Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, 24: 177-88, 1967.
- 65. HADDAD, C.M. Efeito do enxofre, aplicado na forma de gesso, sobre a produção e qualidade do Capim colonião (*Panicum maximum Jacq*). Piracicaba, ESALQ, 1983. 115p. (Tese Doutorado).
- 66. HAGGAR, R.J. The effect of quality, sources and time of application of nitrogen fertilizers on the yield and quality of Andropogon gayanus at Shika, Nigeria. Journal Agriculture Scince, Cambridge, 84:329-35, 1975.
- 67. _____. Seasonal prodution of Andropogon gayanus. I. Seasonal changes in yield components and chemical composition. Journal of Agricultural Science, Cambridge, 74:487-94, 1970.
- 68. HARTT, C.E. Effect of potassium deficiency upon translocation of ¹⁴C in attached blades and entire plants of sugarcane. Plant Physiology, Urbana, 44(7):1461-9, 1969.
- 69. HENZELL, E.F. Nitrogen nutrition of tropical pastures. In: SKERMAN, P.J. Tropical forages legumes. Rome, FAO, 1977. p.86-97.
- 70. HERNANDEZ, T.; VALLES, B. & CASTILHO, E. Evaluación de Gramíneas y leguminosas forrajeras en Veracruz, México. Pasturas Tropicales, Cali, 12(3):29-33, 1990.
- 71. HODGSON, R.M.; LEACH, Jr. & ALLAWAY, W.H. Micronutrients in Soils and plants in relation to animal nutrition.

 Agricultural and Food Chemistry, New York, 10(3):171-4, 1962.
- 72. HOWELER, R.H. Análisis del tejido vegetal en el diagnóstico de problemas nutricionales: alguns cultivos tropicales. Cali, Centro Internacional de Agricultura Tropical, 1983. 28p.
- 73. ISEPON, O.J. Nutrição e adubação de pastagens. In: CURSO DE ATUALIZAÇÃO EM FERTILIDADE DO SOLO, 1, Ilha Solteira, 1987. Campinas, Fundação Cargill, 1987. cap 13, p.339-410.
- 74. ITALIANO, E.C.; MORAES, E. de & CANTO, A.C. Macronutrientes e FTE em pastagens de capim colonião em degradação. Reunião Anual da Sociedade Brasileira de Zootecnia, Piracicaba, 19:348, 1982. (Resumos).
- 75. JACKSON, M.L. Análise química de suelos. 2. ed. Barcelona, Omega, 1970. 662p.

- 76. JARDIM, W.R.; PEIXOTO, A.M.; MORAES, C.L. de. Composição mineral de pastagens na região de Barretos no Brasil Central. Piracicaba, ESALQ, 1962. 11p. (Boletim técnico científico, 11).
- 77. JONES, C.A. The potencial of *Andropogon gayanus* Kunth in the Oxisol and Ultisol Savanas of Tropical America. Herbage Abstracts, Hurley, 49(1):1-9, 1979.
- 78. JONES, M.B. Effect of applied sulfur on yield and sulfur uptake of various California dryland pasture species.

 Agronomy Journal, Madison, 56:235-7, 1964.
- 79. _____; WILLIANS, W.A. & MARTIN, W.E. Efect of waterlogging and organic matter on the loss of apphed sulfur. Soil Science Society America Proceedings, Madison, 35(4):542-6, July/Aug. 1971.
- 80. KALPAGE, F.S.C.P. Tropical soils: clasification, fertlity and management. New York, St. Martins Press, 1976. 263p.
- 81. KAYONGO-MALE, H & THOMAS, J.W. Mineral composition of some tropical grasses and their relationships to the organic constituintes and estimates of digestibility. East African Agriculture and Foresty Journal, Nairobi, 40(4):428-38, 1975.
- 82. KEYA, N.O.C. The effect of N P fertilizers on the produtivity of Hyparrhenia grassland. East African Agricultural and Foresty Journal, Nairobi, 39(2):195-200, 1973.
- 83. LOPES, A.S. Solos sob "cerrado": características, propriedades e manejo. Piracicaba, Associação Brasileira para Pesquisa do Potassa e do Fosfato, 1983. 162p.
- 84. ——— & CARVALHO, J.G. Micronutrientes: critérios de diagnose para solo e planta, correção de deficiências e excesso. In: REUNIÃO BRASILEIRA DE FERTILIDADE DO SOLO, 17, Londrina, 1986. Anais... Londrina, EMBRAPA—CNPSo/IAPAR/SBCS, 1988. p.133-78.
- 85. LUCHETTA, S.; CRUZ, M.C.P. da & FERREIRA, M.E. Efeito da calagem sobre o crescimento de três espécies de gramíneas forrageiras. In: REUNIAO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 29, Lavras, 1992. Resumos... Lavras, SBZ, 1992. p.447.
- 86. McCLUNG, A.C.; FREITAS, L.M.M.; GALLO, J.R.; QUINN, L.R. & MOTT, G.O. Alguns estudos preliminares sobre possíveis problemas de fertilidade em solos de campos cerrados de São Paulo e Goiás. Bragantia, Campinas, 17(3):29-44, 1958.

- 87. MALAVOLTA, E. Elementos de nutrição mineral de plantas. São Paulo, Editora Agronhmica Ceres, 1980. 251p.
- 88. ——; VITTI, G.C. & OLIVEIRA, J.A. Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba, POTAFOS, 1989. 201p.
- 89. MARUN, F. Produção de matéria seca e nutrição mineral de gramíneas forrageiras em função da relação Ca/Mg do corretivo. Lavras, ESAL, 1990. 81p. (Tese MS).
- 90. MATTOS, H.B. & COLOZZA, M.T. Micronutrientes em pastagens. In: SIMPOSIO SOBRE ADUBAÇÃO E CALAGEM DE PASTAGENS, 1, Nova Odessa, 1985. Anais... Piracicaba, Associação Brasileira para Pesquisa da Potassa e do Fosfato, 1986. p.233-56.
- 91. MATTOS, H.B. & WERNER, J.A. Efeitos de nitrogênio mineral e de leguminosas sobre a produção do capim colonião (*Panicum maximum* Jacq). Boletim da Indústria Animal, São Paulo, 36(1):147-56, 1979.
- 92. MENGEL, K. & KIRKBY, E.A. Principles of plant nutrition. 3. ed. Bern, International Potash Institute, 1982. 655p.
- 93. MONTEIRO, F.A. & CARRIEL, J.M. Aplicação de níveis de enxofre na forma de gesso para cultivo do capim colonião em dois solos arenosos do Estado de São Paulo. Boletim da Indústria Animal, Nova Odessa, 44(2):335-47, 1987.
- 94. ______; LIMA, S.A.A.; WERNER, J.C. & MATOS, H.B.
 Adubação Potássica em leguminosas e Capim Colonião adubado
 com níveis de nitrogênio ou consorciado com leguminosas
 Boletim da Indústria Animal, São Paulo, 37(1):127-48,
 1980.
- 95. _____ & WERNER, J.C. Efeito das adubações nitrogenada e fosfatada em capim-colonião, na formação e em pasto estabelecido. Boletim da Indústria Animal, Nova Odessa, 34(1):91-101, Jan./Jun. 1977.
- 96. NATIONAL ACADEMY OF SCIENCES. Nutrient requeriments of dairy catle. Washington, 1971. 54p. (National Requeeriments of Domesticals Animals, 3).
- 97. NATIONAL RESEARCH COUNCIL. Nutrient requeriments of beef cattle. Washington, National Research Council/National Academic of Science, Washington, 1976. 56p.
- 98. NEIVA, J.N.M. Crescimento e valor nutritivo de pastagens nativas submetidas ou não ao tratamento de queima. Lavras, ESAL, 1990. 97p. (Tese MS).

- 99. NEPTUNE, A.M.L. O magnésio como nutriente para culturas. In: SEMINARIO FOSFORO, CALCIO, MAGNÉSIO, ENXOFRE E MICRONUTRIENTES, São Paulo, 1984. Anais... São Paulo, 1986. p.74-81.
- 100. NOVAES, N.J. Efeito de fontes e doses de fósforo na cultura do Capim-Gamba (*Andropogon gayanus* Kunth variedade Bisquamulatus). Piracicaba, ESALQ, 1985. 105p. (Tese MS)
- 101. OLIVEIRA, J.B. de; JACOMINE, P.K.T. & CAMARGO, M.N. Classes gerais de solos do Brasil: guia auxiliar para seu reconhecimento. Jaboticabal, FUNEP, 1992. 201p.
- 102. ORELLANA, A.P. & HAAG, H.P. Nutrição mineral de Andropogon gayanus Kunth var. bisquamulatus (Hochst) Hack. III.
 Nível crítico de fósforo. Anais da Escola Superior de Agricultura "Luiz de Queiróz", Piracicaba, ESALQ, 35:77-87, 1982.
- 103. PAULINO, V.T. O Capim-Gamba (Andropogon gayanus Kunth) na América Tropical. Zootecnia, Nova Odessa, 17(4):239-252, 1979.
- 104. _____; ANTON, D.P. & COLOZZA, M.T. Problemas nutricionais do gênero Brachiaria e algumas relações com o comportamento animal. Zootecnia, Nova Odessa, 25(3):215-63, Jul/Set. 1987.
- 105. _____; WERNER, J.C.; CARRIEL, J.M. & CLOZZA, M.T.
 Estudo de adubação com *B. humidicola* e *S. anceps* cv.
 Kazungula, em dois solos de várzea do Estado de São
 Paulo. Zootecnia, Nova Odessa, 24(2):181-206, Abr./Jun.
 1986.
- 106. _____ & WERNER, J.C. Efeitos das adubações nitrogenada, fosfatada e cálcica no Capim Jaraguá. Zootecnia, Nova Odessa, 24(4):295-321, Out./Dez. 1983.
- 107. PAVAN, M.A. O cálcio como nutriente para culturas. In: SEMINARIO FOSFORO, CALCIO, MAGNESIO, ENXOFRE E MICRONUTRIENTES, São Paulo, 1984. Anais... São Paulo, 1986. p.82-97.
- 108. PEDREIRA, J.V.S.; NUTI, P. & CAMPOS, B.do E.S. de. Competição de capins para produção de matéria seca. Boletim da Indústria Animal, Nova Odessa, 32(2):319-23, Jul./Dez. 1975.
- 109. QUAGGIO, J.A. Critérios para calagem do solo. In: CURSO DE ATUALIZADFO DE FERTILIDADE DO SOLO, Londrina, IAFAR, 1983.
- 110. RAIJ, B. Van. Fertilidade do solo e adubação. Piracicaba, Ceres/Potafós, 1991. 343p.

- 111. ROCHA, G.L. Perspectivas e problemas de adubação de pastagens no Brasil. In: SIMPOSIO SOBRE CALAGEM E ADUBAÇÃO DE PASTAGENS, 1, Nova Odessa, 1985. Anais... Piracicaba, Associação Brasileira para a Pesquisa da Potassa e do Fosfato, 1986. p.1-30.
- 112. RODRIGUES, J.F. Crescimento de espécies forrageiras e alterações químicas de um Latossolo var Una em diferentes combinações calcário-gesso agrícola. Lavras, ESAL, 1992. 113p. (Tese MS).
- 113. SALINAS, J.G. & SANCHEZ, P.A. Soil-plant relationship affecting varietal and species differences in tolerance to low available soil phosphorus. Ciência e Cultura, São Paulo, 28(2):156-68, Fev. 1976.
- 114. SANCHES, P.A. Properties and management of soils in the tropico. New York, John Wiley, 1976. 618p.
- 115. SANCHES, P.A. & SALINAS, J.G. Low-Imput technology for Managing Oxisols and Ultisols in Tropical America. Advances in Agronomy, New York, 34:280-406, 1981.
- 116. SANCHEZ, P. Suelos del tropico: caracteristicas y manejo. San Jose, IICA, 1981. 660p.
- 117. SARAIVA, O.F.; CARVALHO, M.M.; OLIVEIRA, F.T.T. & MARTINS, C.E. Fatores nutricionais limitantes ao crescimento de forrageiras tropicais em dois solos da Zona da Mata-MG. II. Podzólico Vermelho-Amarelo. Pesquisa Agropecuária Brasileira, Brasília, 21(7):709-14, 1986.
- 118. SERRÃO, E.A.S.; CRUZ, E.S.; SIMÃO NETO, M.; SOUZA, G.F.de; BASTOS, J.B. & GUIMARÃES, M.C. de F. Resposta de três gramíneas (Brachiaria decumbens Stapf., Brachiaria ruziziensis Germain et Everard e Pennicetum purpureum Shum) a elementos fertilizantes em Latossolo Amarelo textura média. Belém, IPEAN, 1971. v.1. nº 2, 38p.
- 119. SERRAO, E.A.S. & SIMAO NETO, M. Informações sobre duas espécies de gramineas forrageiras do gênero Brachiaria na Amazônia, *B. decumbens* Stapf e *B. ruziziensis* German et Everard. Belém, IPEAN. 1971. v.2, nº1, 31p.
- 120. SHIRLEY, P. & MARIANTE, A. Enxofre na nutrição de ruminantes. In: SIMPOSIO LATINO AMERICANO SOBRE PESQUISA DE RUMINANTES EM PASTAGENS, Viçosa, 1976. Anais... Viçosa, ESAL/EPAMIG/USAID, 1976. p.130-47.
- 121. SIDDIQUI, M.Y. & GLASS, A.D.M. Utilization index a modified approach to the estimation and comparison o nutrient utilizatios efficiency in plants. Journal of Plant Nutrition, Madison, 4(3):289-302, 1981.

- 134. VILELA, H.; SANTOS, E.J.; VALENTE, J.O.; SILVESTRE, J.R.A. Efeito da adubação nitrogenada sobre a produtividade de pastagens de B. decumbens. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 18, Goiânia, 1981. Anais... Goiânia, SBZ, 1981. p.112.
- 135. VITTI, G.C.; MALAVOLTA, E. & FERREIRA, M.E. Respostas de culturas anuais e perenes à aplicação de enxofre. In: SIMPOSIO ENXOFRE E MICRONUTRIENTES NA AGRICULTURA BRASILEIRA, Londrina, 1988. Anais... Londrina, 1988. p.61-86.
- 136. WEBER, O.L.S. & HAAG, H.P. Nutrição mineral do *Panicum maximum* cv. Makueni. I. Crescimento, concentração e extração dos macronutrientes. **Anais da Escola Superior de Agricultura "Luiz de Queiróz"**, Piracicaba, ESALQ, 41(2):716-93, 1984.
- 137. WERNER, J.C. Adubação potássica. In: SIMPOSIO SOBRE CALAGEM E ADUBAÇÃO DE PASTAGENS, 1, Nova Odessa, 1985. Anais... Piracicaba, Assoc. Bras. para Pesq. de Potassa e do Fosfato, 1986. p.175-90.
- 138. WERNER, J.C.; KALIL, E.B.; GOMES, F.P.; PEDREIRA, J.V.S.; ROCHA, G.L. & SARTINI, H.J. Competição de adubos fosfatados. Boletim da Indústria Animal, Nova Odessa, 25:139-49, 1968.
- 139. _____ & MATTOS, H.B. Estudo de nutrição do Capim Gordura (*Melinis minutiflora*). Boletim da Indústria Animal, Nova Odessa, 29(1):175-84, Jan./Jun. 1972.
- 140. & MONTEIRO, F.A. Respostas das pastagens à aplicações de enxofre. Zootecnia, Nova Odessa, 28(1):71-85, Jan/Mar. 1988.
- 141. ______ ; _____ & MEIRELLES, N.M.F. Efeito das adubações com fósforo, potássio e molibidênio mais cobre na consorciação de Capim-Gordura com Centrosema. Zootecnia, Nova Odessa, 2(2):109-34, 1983.
- 142. ______; PEREIRA, J.V.S. & QUAGLIATO, J.L. Ensaio exploratório de fertilização de Capim-Colonião com solo de Sertãozinho. Boletim Indústria Animal, São Paulo, 24(único):155-8, 1967a.
- 143. ______; QUAGLIATO, J.L. & MARTINELLI, D. Ensaio de fertilização de Capim-Colonião com solo da "noroeste". Boletim Indústria Animal, São Paulo, 24(único):159-67, 1967b.
- 144. ZAGO, C.P. & GOMIDE, J.A. Valor nutritivo e produtividade do Capim Colonião, submetido a diferentes intervalos de corte. com e sem adubação de reposição. Revista da Sociedade Brasileira de Zootecnia, Viçosa, 11(3):512-28, 1982.

APENDICE

APÊNDICE 1 - Quadrados médios da análise de variância e respectivos níveis de significância dos parâmetros matéria seca da parte aérea do 1º, 2º, 3º e 1º + 2º + 3º cortes, da raíz e dos perfilhos de Andropogon e Braquiarão.

(%) V		9'51	ε'•τ	77'57	8′6	9'ET	L'ST
[sio]	L8						
oubles	99	91'8	99'8	J'56	Ð ' L T	25'12	73,67
oBraiupard : Jarí	OT	** 18,872	**19'58I	** PI' L P I	**8€,480€	**70,082	**08,414
Trat : Andropogon	ΟŢ	**76,81	**64,544	153,02**	1831'03 _{**}	**\$\$,376,34	**09,5141
Interação F× T	ΟŢ	**68,681	**28,5£	**\$5,51	** p p , T Z Z	** <mark>61,</mark> 88	** ⁰ /,261
Tratamento (T)	ОТ	**28,809	**16,888	**Z9'LSZ	**86,787£	**85,7602	**I7,1E31
Porrageiras (F)	I	** \$2,24	**98'50L	sul6'l	7602,41**	su72,82	** ⁵ ′6865
Variação		1º corte	∑orte	30 corte	10 + 20 + 30 cortes	zlsA	Perfilhos
ge	CP			Quadrado 1	oibàn		

ns Não significativo ao nível de 1% de probabilidade.

APÊNDICE 2 Quadrados médios da análise de variância e respectivos níveis de significância dos parâmetros teor (T) e acumulação (A) de N na parte aérea nos cortes (C) e raíz de Andropogon e Braquiarão.

Causas					Quadrad	o médio				
de Variação	GL				Parte aé	rea			R	aíz
		т 1 ⁹ С	A 1º C	T 2º C	A 2º C	т 3º с	A 3º C	A 1º+2º+3º C	Т	А
Forrageiras (F)	1	1,63**	273939,54**	0,66**	29054,86**	1,02**	7927,94**	195343,16**	0,46**	165313,05**
Tratamento (T)	10	4,58**	224293,19**	2,35**	76247,75**	4,89**	32167,68**	825473,65**	0,41**	257312,39**
Interação F × T	10	2,62**	11228,08**	0,07**	5268,96**	0,43**	3326,12**	15920,68**	0,24**	26680,38**
Trat : Andropogon	10	0,94**	29390,83**	1,34**	54697,18**	2,25**	16236,41**	36196,97**	0,32**	203639,09**
Trat : Braquiarão	10	0,24**	58359,78**	1,05**	27622,78**	3,06**	19257,39**	472197,36**	0,33**	80353,64**
Resíduo	66	0,05	2858,39	0,04	925,71	0,065	410,96	5111,61	0,005	2117,14
Total	87									
CV (%)		11,9	18,5	14,1	19,7	17,5	17,3	12,8	9,2	16,8

^{**} Significativo ao nível de 1% de probabilidade.

Quadrados médios da análise de variância e respectivos níveis de significância dos e raíz de parâmetros teor (T) e acumulação (A) de P na parte aérea nos cortes (C) m APÊNDICE

Causas					Quadrado médio	o médio				
de Variação	GL				Parte aé	aérea			Raíz	Iz
		T 19 C	A 12 C	T 2º C	A 2º C	T 3º C	A 39 C	A 10+20+30 C	E	A
Forrageiras (F)	1	0,063**	1366,24**	0,002**	850,47**	0,064**	10,08ns	120,44*	0,029**	4166.47**
Tratamento (T)	10	0,022**	1413,58**	0,028**	756,65**	0,079	350,12**	6368,54**	0.002	1488 27**
Interação F × T	10	0,005	121,74**	0,004**	102,93**	0,010,0	25,65**	85,57**	0,001**	137,49**
Trat : Andropogon	10	0,003**	143,31**	0,011**	675,64**	0,040**	223,87**	3260,25**	0,002	1215.04**
Trat : Braquiarão	10	0,001**	323,76**	0,021**	184,04**	0,050	151,92**		0,0004**	410.72**
Resíduo	99	0,0002	16,53	0,0001	5,45	0,0002	3,01	35,12	0,00004	15,65
Total	87									
CV (%)		13,4	16,9	10,2	15,9	11,2	14,1	11.6	10.2	7 7 7

Significativo ao nível de 5% de probabilidade. Significativo ao nível de 1% de probabilidade. *

APÊNDICE 4 Quadrados médios da análise de variância e respectivos níveis de significância dos parâmetros teor (T) e acumulação (A) de K na parte aérea nos cortes (C) e raíz de Andropogon e Braquiarão.

Causas					Quadrad	o médio				
de Variação	GL				Parte aé	rea			Ra	ıíz
		T 1º C	A 1º C	T 2º C	A 2º C	т 3º С	A 3º C	A 1º+2º+3º C	Т	A
Forrageiras (F)	1	20,23**	21427,89**	0,64**	25868,64**	1,10**	1129,42ns	366,82ns	0,004ns	1378,67**
Tratamento (T)	10	5,68**	229189,96**	2,41**	31760,43**	2,94**	8211,76**	542586,42**	0,118**	8959,98**
Interação F × T	10	1,18**	10419,90**	0,19**	1804,47**	0,32**	598,39ns	14714,91**	0,014**	806,05**
Frat : Andropogon	10	1,44**	3950,87**	0,71**	24032,09**	0,73**	4804,08**	296766,48**	0,07**	6219,44**
Trat : Braquiarão	10	1,31**	50477,69**	1,90**	9527,90**	2,53**	4006,08**	260534,85**	0,06**	3546,60**
Resíduo	66	0,03	1349,03	0,014	316,31	0,031	327,56	2143,44	0,0015	153,20
Total	87									
CV (%)		12,8	12,7	11,9	18,4	19,2	28,4	10,3	19,8	22,3

^{**} Significativo ao nível de 1% de probabilidade.

Quadrados médios da análise de variância e respectivos níveis de significância dos e raíz de e acumulação (A) de S na parte aérea nos cortes (C) parâmetros teor (T) APÊNDICE

Andropogon e Braquiarão.

Causas					Quadrado medio	o medio				
de Variacão	TD				Parte aérea	rea			Rafz	
		T 10 C	A 10 C	T 2º C	A 2º C	T 3º C	A 39 C	A 10+20+30 C	T	A
Forrageiras (F)	н	0,002**	1166,54**	0,062**	116,42**	0,0017**	177,17**	1000,72**	0,00003ns	330 74**
Tratamento (T)	10	0,010**	756,66**	0,017**	533,68**	0,024**	431,53**		0.0026**	11000
Interação F × T	10	0,005**	179,45**	0,006**	** 19'6	0,006**	173,06**		0,0019**	359,66**
Trat : Andropogon	0	0,005	104,97	0,003**	231,70**	0,023**	531,14**	2161,06**	0,004**	3721 70**
Trat : Braquiarão	10	0,005	556,42**	0,020**	311,50**	0,008	73,45**		0,0006**	3861.02**
Resíduo	99	0,0001	10,61	0,0001	4,59	0,00015	1,56		0,00012	64,85
Total	87									
CV (%)		18,5	23,4	11,9	21,3	13,8	14,6	12,3	8,7	17.5

ns Não significativo ** Significativo ao nível de 1% de probabilidade.

APÊNDICE 6 - Quadrados médios da análise de variância e respectivos níveis de significância dos parâmetros teor (T) e acumulação (A) de Ca na parte aérea nos cortes (C) e raíz de Andropogon e Braquiarão.

Causas					Quadrad	o médio				
de Variação	GL				Parte aé	rea			Rai	Z
		T 1º C	A 1º C	т 2º С	A 2º C	Т 3º С	A 3º C	A 1º+2º+3º C	Т	А
Forrageiras (F)	1	0,032**	102927,94**	1,71**	101,93ns	0,013ns	399,21*	109366,95**	0,0109**	2075,72**
Tratamento (T)	10	0,495**	40697,95**	0,26**	35487,39**	0,255**	16011,06**	250490,76**	0,0235**	7589,00**
Interação F × T	10	0,136**	9317,42**	0,08**	1847,19**	0,067**	2717,37**	13106,45**	0,0025**	724,33**
Trat : Andropogon	10	0,084**	2244,23**	0,04**	19468,26**	0,104**	6936,86**	90871,07**	0,01**	5168,76**
Trat : Braquiarão	10	0,245**	29778,71**	0,29**	18008,69**	0,218**	11791,58**	172725,65**	0,02**	3144,58**
Resíduo	66	0,002	316,80	0,004	154,66	0,0051	76,33	861,63	0,0005	73,18
Total	87									
CV (%)		9,6	14,7	8,9	12,6	11,1	13,2	10,8	15,1	17,5

^{*} Significativo ao nível de 5% de probabilidade.

^{**} Significativo ao nível de 1% de probabilidade.

APÊNDICE 7 - Quadrados médios da análise de variância e respectivos níveis de significância dos parâmetros teor (T) e acumulação (A) de Mg na parte aérea nos cortes (C) e raíz de Andropogon e Braquiarão.

Causas					Quadrad	lo médio				
de Variação	GL				Parte ae	érea			Raí	Z
		T 1º C	A 1º C	T 2º C	A 2º C	Т 3º С	A 3º C	A 1º+2º+3º C	T	A
Forrageiras (F)	1	0,17**	119769,36**	0,13**	7645,5**	0,0038*	127,64**	61177,39**	0,00001ns	695,86**
Tratamento (T)	10	0,34**	29665,45**	0,20**	9491,89**	0,102**	2313,88**	98487,71**	0,0069**	799,71**
Interação F × T	10	0,05**	9963,78**	0,05**	1854,92**	0,0167**	269,49**	5872,56**	0,0022**	101,37**
Trat : Andropogon	10	0,08**	1647,09**	0,08**	8561,07**	0,051**	1595,89**	33555,33**	0,002**	658,35**
Trat : Braquiarão	10	0,23**	30004,77**	0,17**	2785,86**	0,068**	787,48**	70804,95**	0,007**	242,73**
Resíduo	66	0,001	219,07	0,001	46,08	0,0008	11,20	375,28	0,0002	14,5
Total	87									
CV (%)		10,2	19,1	10,1	16,3	10,8	13,9	13,5	26,5	24,0

^{*} Significativo ao nível de 5% de probabilidade.

^{**} Significativo ao nível de 1% de probabilidade.

dos	de	
a	(C) e raíz de	
ficânci	e r	
ific	()	
ign:	S	
de signifi	cortes	
S	S	
e respectivos níveis	aérea nos	
in	rea	
NOS	aé	
ecti	de B na parte	
esp	pa	
r.	na	
	e B	
ânc		
ari	(A)	
de variância	umulação	
9	nla	
análise	acun	
aná	e e	rão.
da	(L)	Braquiar
ios	or	Brac
adrados médios	teor	
SO	ros	ogon
Irad	parâmetros	Andropogon e
Quad	par	And
A-1		
SE S		
PÊNDI		
APÉ		

Causas					Quadrad	Quadrado médio				
de Variacão	GL				Parte aérea	rea			Raíz	2]
		T 12 C	A 1º C	T 2º C	A 2º C	T 39 C	A 39 C	A 10+20+30 C	E	A
Forrageiras (F)	1	356,37	0,053**	10,16*	0,552**	855,19**	0,066**	0,594**	6,07*	0,041**
Tratamento (T)	10	** 16 '06	**060,0	489,4**	0,190**	71,24**	0,094		20,70**	0.064**
Interação F × T	10	44,20**	0,019**	165,54**	0,033**	194,15**	**600,0		20,79**	0,013**
Trat : Andropogon	10	64,23**	0,029**	123,59**	0,185**	164,20**	0,061**	0,645**	** 95,9	0,043**
Trat : Braquiarão	10	50,36**	**610,0	531,35**	0,038**	101,15**	0,042**		34,59**	0,034
Resíduo	99	1,46	0,001	2,27	0,001	6,22	0,001		1,36	0,003
Total	87									
CV (8)		11,1	19,9	6,5	14,7	13,2	19,9	10,9	29,2	40,6

Significativo ao nível de 5% de probabilidade. Significativo ao nível de 1% de probabilidade.

Quadrados médios da análise de variância e respectivos níveis de significância dos e raíz de parâmetros teor (T) e acumulação (A) de Cu na parte aérea nos cortes (C) Andropogon e Braquiarão. 0 APÊNDICE

Total Control Contro	Causas					Quadrado médio	o médio				
T 1 2 C A 1 2 C A 2 2 C T 3 2 C A 3 2 C T 3 2 C T 3 2 C T 3 2 C T 3 3 2 C T 3 3 8 7 9 T T 1 2 C T 2 2 C T 3 2 C T 3 2 C T 3 3 2 C T 3 3 8 7 9 T T 1 2 C T 2 2 C T 3 2 C T 3 3 C T 3 2 C T 3 3 8 7 9 T T 1 2 C T 3 2 C T 3 3 C T 3 2 C T 3 3 C T 3 3 C T 3 2 C T 3 3 C T 3 2 C T 3 2 C T 3 3 C T 3 2 C T 3 C	de Variação	GL				Parte aé	rea			Raíz	
Jeiras (F) 1 156,06** 0,019** 7,97* 0,0156** 3,11* 0,00012ns 0,00000nns 1388,79** Mento (T) 10 65,35** 0,05** 380,09** 0,0354** 29,01** 0,01061** 0,256** 2724,46** Andropogon 10 80,41** 0,017** 32,59** 0,028** 17,02** 0,0068** 0,131** 467,65** Andropogon 10 80,41** 0,017** 32,59** 0,028** 17,02** 0,0068** 0,131** 2700,76** O			T 10 C	A 1º C	T 2º C	A 2º C	T 30 C	A 3º C	A 10+20+30 C	H	A
Andropogon 10 80,41** 0,003** 13,07** 0,0073** 1,67* 0,00084** 0,0121** 467,65** Andropogon 10 80,41** 0,017** 32,59** 0,028** 17,02** 0,0068** 0,131** 492,35** Braquiarão 10 39,74** 0,036** 18,49** 0,014** 13,66** 0,00012 0,001 18,17 87 12,4 15,7 14,3 20,4 14,1 19,4 11,2 11,2	Forrageiras (F)	н	156,06**	0,019**	7,97*	0,0156**	3,11*	0,00012ns	0,000001ns	1388,79**	0,28ns
Andropogon 10 80,41** 0,004** 13,07** 0,0073** 1,67* 0,00084** 0,0121** 467,65** Andropogon 10 80,41** 0,017** 32,59** 0,028** 17,02** 0,0068** 0,131** 492,35** Braquiarão 10 39,74** 0,036** 18,49** 0,014** 13,66** 0,0046** 0,137** 2700,76** to 66 0,63 0,0003 1,26 0,0004 0,72 0,00012 0,001 18,17 87 12,4 15,7 14,3 20,4 14,1 19,4 11,2 18,9	Fratamento (T)	10	65,35**	0,05**	380,09**	0,0354**	29,01	0,01061**	0,256**	2724.46**	0.61
Andropogon 10 80,41** 0,017** 32,59** 0,028** 17,02** 0,0068** 0,131** 492,35** Braquiarão 10 39,74** 0,036** 18,49** 0,014** 13,66** 0,0046** 0,137** 2700,76** to 66 0,63 0,0003 1,26 0,0004 0,72 0,00012 0,001 18,17 87 12,4 15,7 14,3 20,4 14,1 19,4 11,2 11,2 18,9	Interação F × T	10	54,81**	0,004**	13,07**	0,0073**	1,67*	0,00084**	0,0121**	467,65**	**670,0
Braquiarão 10 39,74* 0,036** 18,49** 0,014** 13,66** 0,0046** 0,137** 2700,76** 10 66 0,63 0,0003 1,26 0,0004 0,72 0,00012 0,001 18,17 11,4 15,7 14,3 20,4 14,1 19,4 11,2 11,2	frat : Andropogon	10	80,41**	0,017**	32,59**	0,028**	17,02**	0,0068**	0,131**	492,35**	0,38**
66 0,63 0,0003 1,26 0,0004 0,72 0,00012 0,001 18,17 87 12,4 15,7 14,3 20,4 14,1 19,4 11,2 18,9	Trat : Braquiarão	10	39,74	0,036**	18,49**	0,014**	13,66**	0,0046**		2700,76**	0,32**
12,4 15,7 14,3 20,4 14,1 19,4 11,2 18,9	Resíduo	99	0,63	0,0003	1,26	0,0004	0,72	0,00012		18,17	0,012
12,4 15,7 14,3 20,4 14,1 19,4 11,2 18,9	lotal	87			34						
	W (8)		12,4	15,7	14,3	20,4	14,1	19,4	11,2	18,9	21,4

ns Não significativo

^{*} Significative as nivel de 5% de probabilidade.

ALÉNDICE 10 - Quadrados médios da análise de variância e respectivos níveis de significância dos e raíz de parâmetros teor (T) e acumulação (A) de Zn na parte aérea nos cortes (C) Andropogon e Braquiarão.

Causas										
de Variacão	GL				Parte aérea	śrea			Raíz	
		T 1º C	A 1º C	T 2º C	A 2º C	T 39 C	A 3º C	A 19+29+39 C	- EH	A
Forrageiras (F)	Н	. 5,16ns	6,66**	8117,95**	6,66**	9501,85**	0,86**	0,861**	** 70,697	0,223ns
Tralamento (T) Interação F x T	10	2688,17**	2,03**	679,62** 458,16**	1,06**	3191,48** 766,69**	1,15**	11,89**	1843,89** 172,62**	20,01
Tral. : Andropogon	10	1807,36**	0,361**	679,98**	1,34**	2992,85**	** 66,0	7,00**	1147 52**	***
Trat. : Braquiarão	10	1340,82**	2,02**	457,80**	0,098**	965,32**	0,39**	5,31**	868,99	10,37**
Resíduo	99	15,53	600'0	16,49	0,019	77,28	0,0106	0,046	17,0	0,06
Total	87									
CV (%)		11,7	12,9	10,8	26,1	13,2	16,0	11,2	8,3	12.3

ns Não significativo