DILSON NEANDER BOTELHO ALVES

DESEMPENHO DA BOMBA INJETORA E DO TANQUE DE DERIVAÇÃO DE FLUXO NA APLICAÇÃO DE CLORETO DE POTÁSSIO EM MICROASPERSÃO

Dissertação apresentada à Escola Superior de Agricultura de Lavras, como parte das exigências do Curso de Pós-Graduação em Engenharia Agrícola, área de concentração em Irrigação e Drenagem para obtenção do grau de "MESTRE".

ESCOLA SUPERIOR DE AGRICULTURA DE LAVRAS

1992

DEREVHO DA ECMBA INJETORA E DO TANQUE DE L'HIVAÇÃO DE FLUXO NA APLICAÇÃO DE CLORETO DE POTÁS ID EM MICROTORIO

Dimensional a recentiona a recenti Supernos de Agricultura de Lavrus, como parte das exigências dos Curso de Pós-Graduegilo con Eneralmeia Agricola, área de construção eño em Irrigação e Dremagem para obtenção do grav de "MESTRE"; DESEMPENHO DA BOMBA INJETORA E DO TANQUE DE DERIVAÇÃO

DE FLUXO NA APLICAÇÃO DE CLORETO DE POTÁSSIO

EM MICROASPERSÃO

DILSON NEANDER BOTELHO ALVES

APROVADA: 25/08/92

Aniw

Prof. Dr. Manoel Alves de Faria

(Orientador)

Prof. Dr. Antonio Marciano da Silva (Co-orientador)

Prof. Dr./Luiz Antonio Lima (Co-orientador)

Prof. Dr. Elí Ferreira

LAVRAS MINAS GERAIS -BRASIL AGOSTO - 1992 1. F

A minha mãe, dona Célia

.

÷

. **I**g.

· • •

.

Ao meu pai, Geraldo

A minha esposa, Márcia

Aos meus filhos: Igor, Icaro e Otávia

Dedico

AGRADECIMENTOS

Ao Professor Dr. Elí Ferreira pela indicação, apoio e estímulo para cursar o Mestrado em Engenharia Agrícola na ESAL.

Aos Professores Drs: Antonio Marciano da Silva, Jair Vieira, Manoel Alves de Faria, Luiz Antonio Lima, pelo apoio dado durante o curso bem como as valiosas orientações e sugestões.

A Escola Superior de Agricultura de Lavras, por intermédio do Departamento de Engenharia pela oportunidade de realizar o Curso de Mestrado em Engenharia Agrícola.

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela bolsa de estudos concedida.

Aos funcionários Srs. Oswaldo Francisco de Carvalho e Lindenberg Naves da Silva, pelas tarefas de construção e montagem dos equipamentos, trabalhos importantes desta pesquisa.

Aos colegas de curso, que direta ou indiretamente contribuíram para o êxito deste trabalho.

Agradecimento especial ao meu irmão, Engenheiro Agrícola Dalcio Ricardo Botelho Alves pelo acompanhamento durante toda a montagem do experimento, coleta de dados e processamento dos mesmos.

v

BIOGRAFIA

.

DILSON NEANDER BOTELHO ALVES, filho de Geraldo Alves e Célia Botelho Alves, nasceu a 16 de novembro de 1957 em Lavras, Minas Gerais.

Em 1977, iniciou o curso superior na Escola Superior de Agricultura de Lavras onde obteve o título de Engenheiro Agrícola em dezembro de 1981.

Em janeiro de 1982, iniciou as atividades profissionais no setor privado, na área de irrigação e drenagem no norte do Estado de Minas Gerais.

Concursado na EMATER-MG em 1988, esteve trabalhando em Januária - M.G.

Licenciado da EMATER-MG em janeiro de 1990, ingressou no Curso de Pós-Graduação em Engenharia Agrícola, na área de Irrigação e Drenagem, a nível de mestrado na Escola Superior de Agricultura de Lavras - Minas Gerais.

SUMARIO

.

٠

÷

Lista de Quadros	ix
Lista de Figuras	xiii
1. Introdução	01
2. Revisão de Literatura	03
3. Material e Métodos	16
3.1. Características do Sistema de Irrigação	16
3.2. Sistema de Injeção de Fertilizante	17
3.2.1. Bomba Injetora	17
3.2.2. Tanque de Derivação de Fluxo	19
3.3. Aplicação do Fertilizante	19
3.4. Coleta e Análise das Amostras	23
3.5. Uniformidade de Distribuição do Fertilizante	24
4. Resultado e Discussão	25
4.1. Vazões dos Microaspersores na Linha de irrigação	25

vii

- -----

ı	4.2. Distribuição de Fertilizante com Tanque de Derivação	27
	4.3. Injeção de Fertilizante com Bomba Injetora	38
	4.4. Distribuição do Fertilizante com os Injetores	44
5.	Conclusões	47
6.	Resumo	49 [.]
7.	Summary	51
8.	Referências Bibliográficas	53
Aı	pêndice	56

viii

LISTA DE QUADROS

.

•

•

٠

QUAD	RO Página	
1	Instante da coleta de solução	21
2	Condutividade elétrica para solução de KCl a 25 ° C em μ S/cm	24
	Vazão nos microaspersores (l/h), espaçados de 3 metros na linha de irrigação com diâmetro interno de 12,07 mm e pressão no início da linha de 50 mca	
	(490 KPa)	26
	Valores de condutividade elétrica (µS/cm) para diferentes concentrações (ppm) de K	31
(Concentração de potássio (ppm) aplicada com tanque de derivação de fluxo calibrado para 60 minutos de fertirrigação, obtidas para vários tempos e microaspersores	
6 (Concentração de potássio (ppm) aplicada com tanque de derivação de fluxo calibrado para 90 minutos de fertirrigação, obtidas para vários tempos e	32
7 (microaspersores Concentração de potássio (ppm) aplicada com tanque de derivação de fluxo calibrado para 120 minutos de fertirrigação, obtidas para vários tempos e	33
r	microaspersores	34

ix

8	Estimativa de potássio (miligramas) aplicado com tanque de derivação de fluxo,		
	para tempos de fertirrigação de 60; 90 e 120 minutos	37	
9	Concentração de potássio (ppm) das amostras de água coletadas nos microas-		
•	persores no teste com bomba injetora calibrada para tempo de fertirrigação		
	de 60 minutos	40	
10	Concentração de potássio (ppm) das amostras de água coletadas nos microas-		
	persores no teste com bomba injetora calibrada para tempo de fertirrigação		
	de 90 minutos	41	
11	Concentração de potássio (ppm) das amostras de água coletadas nos microas-		
	persores no teste com bomba injetora calibrada para tempo de fertirrigação		
	de 120 minutos	42	
12	Estimativa de potássio (miligramas) aplicado através de cada microaspersor,		
	com uso de bomba injetora, para tempos de aplicação de 60; 90 e 120 minutos.	45	
13	Uniformidade de distribuição do fertilizante para os dois equipamentos de fertir-		
	rigação e diferentes tempos de aplicação	46	
14	Variação da concentração de potássio no tanque de derivação de fluxo para tem-		
	po de aplicação de 60 minutos	58	
15	Variação da concentração de potássio no tanque de derivação de fluxo para tem-		
	po de aplicação de 90 minutos	59	
16	Variação da concentração de potássio no tanque de derivação de fluxo para tem-		
	po de aplicação de 120 minutos	60	

•

•

17 Condutividade elétrica (μ S/cm) de amostras de água coletadas nos microasper-

x

		xi
	sores durante o teste com tanque de derivação de fluxo e tempo de fertirrigação	
	de 60 minutos	61
18	Condutividade elétrica (μ S/cm) de amostras de água coletadas nos microasper-	
	sores durante o teste com tanque de derivação de fluxo e tempo de fertirrigação	
	de 90 minutos	62
19	Condutividade elétrica (μ S/cm) de amostras de água coletadas nos microasper-	
	sores durante o teste com tanque de derivação de fluxo e tempo de fertirrigação	
	de 120 minutos	63
20	Quantidade de potássio (miligramas) aplicado através de cada microaspersor	
	com uso de tanque de derivação de fluxo, para tempo de fertirrigação de	
	60 minutos	64
21	Quantidade de potássio (miligramas) aplicado através de cada microaspersor	
	com uso de tanque de derivação de fluxo, para tempo de fertirrigação de	
	90 minutos	65
22	Quantidade de potássio (miligramas) aplicado através de cada microaspersor	
	com uso de tanque de derivação de fluxo, para tempo de fertirrigação de	
	120 minutos	66
23	Condutividade elétrica (μ S/cm) de amostras de água coletadas nos microasper-	
	sores durante o teste com bomba injetora e tempo de fertirrigação de 60	
	minutos	67
24	Condutividade elétrica (μ S/cm) de amostras de água coletadas nos microasper-	
	sores durante o teste com bomba injetora e tempo de fertirrigação de 90	
	minutos	68

•

٠

25	Condutividade elétrica (μ S/cm) de amostras de água coletadas nos microasper-		
	sores durante o teste com bomba injetora e tempo de fertirrigação de 120		
	minutos	69	
26.	Estimativa da potássio (miligramas) aplicado através de microaspersor com uso		
	de bomba injetora para tempo de fertirrigação de 60 minutos	7 0	
27	Estimativa da potássio (miligramas) aplicado através de microaspersor com uso		
	de bomba injetora para tempo de fertirrigação de 90 minutos	71	
28	Estimativa da potássio (miligramas) aplicado através de microaspersor com uso		
	de bomba injetora para tempo de fertirrigação de 120 minutos	72	

.

٠

•

.

.

xii

LISTA DE FIGURAS

•

i

J

•

FIGUR	A	Página
1	Esquema do cabeçal de controle com bomba injetora	18
2	Esquema do cabeçal de controle com tanque de derivação de fluxo	20
3	Concentração de potássio (ppm) no interior do tanque de derivação de fluxo, para os tempos de duração de fertirrigação de 60, 90 e 120	
	minutos	29
4.	Estimativa de potássio (gramas) aplicado por microaspersor, nos tem- pos de aplicação de 60, 90 e 120 minutos com uso de tanque de deri-	
	vação de fluxo	36
5	Estimativa de potássio (gramas) aplicado por microaspersor, nos tem-	
	pos de aplicação de 60, 90 e 120 minutos com uso de bomba injetora	43

•

1 - INTRODUÇÃO

Nas últimas décadas, a irrigação alcançou consideráveis avanços, que permitiram o aumento substancial de áreas irrigadas, inclusive em regiões onde a água é limitada pela ocorrência de irregularidades, caracterizadas por escassez pluviométricas.

Além de deficiências pluviométricas, essas regiões apresentam elevadas temperaturas, altos índices de luminosidade e altas taxas de evaporação capazes de aumentar a demanda hídrica e exigir o uso de métodos de irrigação mais eficientes, que proporcionem viabilidade técnica e econômica aos projetos de agricultura irrigada. Neste contexto, o método de irrigação localizada tem-se apresentado como alternativa bastante eficaz para expansão das áreas irrigadas.

De um modo geral, uma das vantagens da irrigação está em permitir o uso intensivo das áreas de cultivo, fato que pode levar o solo a um empobrecimento de nutrientes caso não haja adubações de restituição. Essas adubações podem ser feitas com o emprego do próprio sistema de irrigação como condutor e distribuidor do fertilizante, que além de possibilitar outras vantagens proporciona uma grande economia de mão-de-obra quando comparado com a adubação tradicional. Esta prática de aplicação de nutrientes via água de irrigação é conhecida como fertirrigação. A fertirrigação tem sido usada já há algum tempo na aplicação de uréia, amônia anidra, vinhaça e outras formulações químicas, porém carece de melhores conhecimentos técnicos tais como :

- tipo de injetor de fertilizante mais apropriado;

- dosagens;

ż

- tempo de aplicação e

- distribuição do fertilizante ao longo da linha de irrigação.

O presente trabalho tem por objetivo estudar a hidráulica da fertirrigação por microaspersão com emprego de tanque de derivação de fluxo e bomba injetora, utilizando-se o fon potássio proveniente de solução de KCl, como indicador da distribuição espacial e temporal do fertilizante no sistema de irrigação.

2 - REVISÃO DE LITERATURA

÷

Segundo BARROS et alii (1987), a incorporação de nutrientes ao solo pelos métodos tradicionais representa um custo final muito alto e recomendam como alternativa para contornar este problema, aplicá-los via água de irrigação.

ABREU et alii (1987) recomendam que para a fertirrigação ser bem sucedida é necessário que os fertilizantes ou uma combinação dos mesmos resultem em concentrações solúveis em água, evitando portanto a formação de precipitados que podem causar obstruções nas tubulações e emissores.

A adição de produtos químicos à água de irrigação deve atender os seguintes requisitos (BUCKS & NAKAYAMA, 1980) não ser corrosivo; ser econômico; ser solúvel em água; não obstruir os componentes do sistema; não ser perigoso para o uso no campo; e não reagir adversamente com sais ou outros elementos químicos contidos na água de irrigação.

Segundo COSTA & BRITO (1988) os métodos pressurizados de irrigação são os que mais se prestam a aplicação de produtos químicos já que nestes sistemas a água é conduzida e aplicada através de condutos fechados e sob pressão, permitindo melhor controle das aplicações. Apesar de no sistema de irrigação por microaspersão a água ser distribuída em gotas menores que na irrigação por aspersão, POST et alli (1986) afirmam que as perdas de água por evaporação e arrastamento pelo vento não são muito acentuadas, já que os microaspersores são fixos e são situados próximos à superfície do solo. Os autores afirmam ainda que uma das vantagens da microaspersão em relação a irrigação por gotejamento, é a maior velocidade da água nas tubulações de distribuição, capaz de evitar a sedimentação das partículas sólidas, implicando em menores riscos de obstruções das tubulações e emissores.

Segundo a ABNT (1987), o microaspersor pode ser caracterizado como emissor pontual que asperge água sobre uma pequena área circular, retangular ou setorial e em geral com vazão inferior a 200 litros por hora.

No sistema de irrigação localizada a uniformidade de aplicação da água ao longo da linha lateral está relacionada com a variação de vazão dos emissores. Esta variação é devida às perdas de energia da água por atrito ao longo do tubo e junto às inserções dos emissores, ganhos ou perdas de energia de posição, qualidade da matéria prima e dos processos de fabricação, obstrução e efeitos da temperatura da água sobre o regime de escoamento, e geometria do emissor, (Howell & Hiller, 1974), citados por PINTO et alii (1988)).

GOLDBERG et alii (1976) afirmam que principais sistemas de aplicação de fertilizantes em irrigação são:

a) Tanque de Fertilizantes ou Tanque de Derivação - o conjunto opera com um tanque em paralelo à tubulação de irrigação e a aplicação de fertilizante dá-se por diferença de pressão entre os pontos de entrada e saída. Parte da água de irrigação flui através do tanque, diluindo a solução de fertilizantes e transportando-a para toda a rede de distribuição.

b) Bomba Injetora - a solução contida num reservatório é introduzida ao sistema de irrigação por meio de uma bomba podendo ser acionada por energia elétrica ou água de irrigação.

c) Aplicadores Tipo Venturi - a solução fertilizante é succionada de um tanque utilizando-se o Princípio de Venturi .

d) Tubo Ligado a Sucção da Bomba - a solução de fertilizantes é aspirada junto com a água, passando portanto pelo conjunto de bombas, podendo provocar desgastes por corrosão e abrasão dos mesmos.

Segundo COSTA (1982) e ZANINI (1987), os sistemas que utilizam pressão positiva são os mais utilizados, em razão de não haver variação temporal da concentração dos fertilizantes no reservatório.

As bombas injetoras podem ser de pistão ou de membrana, acionadas por motor e podem ter vazão regulável no intervalo de 20 a 600 l/h. Existem também bombas constituídas por uma pequena câmara que alternadamente se esvazia e enche, acionada pela pressão da rede de irrigação, sendo que no enchimento da câmara há sucção do fertilizante do depósito e no esvaziamento o mesmo é injetado na rede de irrigação.

HOLMAN (1978) comenta que as bombas injetoras podem ter acionamento hidráulico ou elétrico e permitem amplo ajuste para regulagem do volume de solução aplicado durante a fertirrigação, ou seja, a taxa de injeção.

ZANINI (1987) cita que os produtores podem ter dificuldade para determinar e controlar a vazão derivada ao tanque, parâmetro importante na fertirrigação com emprego de tanque de derivação de fluxo.

O comitê de irrigação da ASAE (1983) recomenda que para o controle preciso da concentração de fertilizantes, amostras periódicas devem ser tomadas em pontos estratégicos do sistema de irrigação, tais como:

- após o tanque;
- no início da unidade;
- nas linhas laterais média e
- última das unidades de irrigação.

PIZARRO (1987) afirma que a concentração dos fertilizantes usados na fertirrigação constitui um dos principais fatores para o êxito desta prática e que os teores de fertilizantes na água de irrigação não devem ultrapassar 700 ppm e como intervalo básico, cita de 200 a 400 ppm, principalmente em fertirrigação através de gotejadores, pode ocorrer precipitação dos nutrientes da solução, devido a reduzida velocidade da água na tubulação, e com uso da microaspersão pode-se chegar até 700 ppm.

A determinação da concentração dos fertilizantes no tanque após determinado tempo de fertirrigação pode ser obtida, segundo FAO (1986), por:

 $Ct = Co \exp [-X]$ eq. 1

onde:

Ct = concentração do fertilizante no tanque de derivação após determinado tempo de aplicação (ppm),

6

١

X = relação entre volume de água que passou pelo tanque até esse tempo, e o volume do tanque (adimensional).

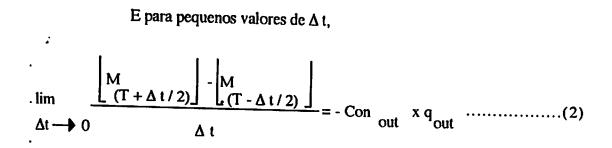
A equação 1 pode ser obtida considerando que a variação da quantidade de fertilizante num período de tempo At pode ser definida como a quantidade de fertilizante que entrou no tanque, subtraída da quantidade que sai no mesmo período, ou seja :

$$\begin{bmatrix} variação na massa \\ de fertilizante no \\ tempo \Delta t \end{bmatrix} = \begin{bmatrix} massa de fertilizante \\ que entra no tanque \end{bmatrix} - \begin{bmatrix} massa de fertilizante \\ que sai do tanque \end{bmatrix}$$

que pode ser reescrito como :

$$\begin{bmatrix} M \\ (T + \Delta t / 2) \end{bmatrix} - \begin{bmatrix} M \\ (T - \Delta t / 2) \end{bmatrix} = Con_{in} \times q_{in} \times \Delta t - Con_{out} \times q_{out} \times \Delta t$$

onde Con in e Con out refere-se as concentrações de fertilizante na água que entra e sai do tanque, com vazão q in e q out. -


Dividindo os termos por
$$\Delta t$$
,

$$\begin{bmatrix}
M \\
(T + \Delta t/2)
\end{bmatrix} - \begin{bmatrix}
M \\
(T - \Delta t/2)
\end{bmatrix} = Con x q - Con x q out out$$

Ø,

1

.

Visto que a concentração de fertilizantes na água que entra no tanque é zero. Sabe-se também que a concentração de fertilizantes na água que sai do tanque pode ser escrito como :

onde Mout é a massa de sais na água que sai do tanque e V é o volume do tanque. Substituindo a equação 3 na equação 2 tem-se :

$$\frac{dM}{dt} = \frac{M}{v} x^{q} out$$

ou

$$\int \frac{1}{M} dM = -\int \frac{q_{out}}{V} dt;$$

que após integração resulta em:

$$In M_{out} = \frac{-q_{out}}{V}t + CONST$$

onde CONST refere-se a constante de integração. A equação acima pode ser reescrita da seguinte forma:

$$M_{out} = e^{const} e^{\frac{-q_{out}}{V}t}$$

ou simplesmente

•

.

.

٩

onde a constante K pode ser encontrada sabendo-se que no tempo t = 0 a massa de sais seria M o. Substituindo na equação (4),

$$Mo = K e \frac{q}{V}^{0}$$

de onde obtem-se que K = M o. Portanto, a equação (4) pode ser reescrita como :

$$M = Mo e^{\frac{-q}{V}t}$$

Dividindo-se ambos os lados da equação acima pelo volume do tanque V tem-se :

. .

$$\frac{M}{V} = \frac{Moe^{\frac{q}{V}t}}{V}$$

101

ou, seja:

onde $C_t \in C_0$ representam respectivamente as concentrações de fertilizantes no instante t e no instante inicial (t = 0). Pode-se observar que a equação (5) é idêntica a equação (1) pois o produto q x t representa o volume que passou pelo tanque durante o tempo t e V, já definido anteriormente, refere-se ao volume do tanque.

Da equação (5)pode-se escrever o tempo necessário para obter a concentração de fertilizantes no tanque após um período de tempo t, isto é:

$$\ln\left[\frac{C_{t}}{C_{o}}\right] = \frac{-q t}{V} \qquad (6)$$

ou seja :

$$t = \frac{V}{q} \ln \left[\frac{C_o}{C_t} \right] \qquad (7)$$

ZANINI (1987) recomenda que para se obter boa uniformidade de distribuição de fertilizante na água de irrigação, o valor de X na equação (1) deve ser maior ou igual a quatro. Como X refere-se ao termo do lado direito da equação (6), pode-se escrever, segundo este critério que:

$$\left| \ln \left[\frac{C_{l}}{C_{o}} \right] \right| \le 4$$

ou seja

$$\frac{C_l}{C_o} \le 0,0183$$

que pode ser interpretado como sendo ideal a fertirrigação onde a concentração residual seja inferior ou igual a 1,83% da concentração inicial de fertilizantes no tanque.

PIZARRO (1987) descreve procedimentos básicos que podem melhorar a uniformidade de distribuição dos fertilizantes na fertirrigação, tais como:

- proporcionar a mistura constante da solução no tanque;

- instalar mais de um equipamento injetor em unidades distintas;

- usar fertilizantes solúveis;
- empregar sistema de irrigação que permita boa uniformidade de distribuição de água.

HOLMAN (1978) sugere que para se obter uma cobertura uniforme pelo fertilizante aplicado em fertirrigação, é preferível a injeção vagarosa, pois do contrário o material poderá se concentrar parcialmente no campo.

GOLDBERG et alii (1976) utilizaram tanques de derivação de fluxo de pequenos volumes e mostraram que a distribuição é uniforme, especialmente quando o diâmetro da tubulação é pequeno e a pressão alta; e em casos opostos tornou-se necessário injetar o fertilizante em menores taxas. Concluíram também que o diâmetro e o comprimento dos tubos de entrada e saída do tanque podem influenciar consideravelmente a taxa de injeção.

11

PINTO et alii (1988) testaram vários índices propostos para determinar a uniformidade de distribuição de água em sistemas de irrigação localizada, tendo o de CHRISTIANSEN (1942) mostrado melhor resultado para irrigação por microaspersão.

÷

ŵ

O critério sugerido por CHRISTIANSEN (1942) é uma medida da dispersão dos dados obtidos no ensaio e pode ser definido como:

$$CUC = 100 * \left[\frac{\sum_{i=1}^{n} |x_i - x|}{1 - \frac{1 = 1}{n x}} \right](8)$$

onde:

CUC = coeficiente de uniformidade de CHRISTIANSEN (%),

- x = quantidade média de fertilizante obtida nos pontos amostrados (ml ou grama),
- xi = quantidade de fertilizante obtido no emissor de ordem i (ml ou grama),

n = número de observações (adimensional).

BERNARDO (1987) cita outros índices para obtenção da uniformidade de distribuição de água que adaptados para a distribuição de fertilizante podem ser assim representados :

a) Coeficiente Estatístico de Uniformidade (CUE)

CUE = $\left[1 - \frac{s}{\dot{q}}\right] * 100$ (9)

12 :

onde :

÷

- CUE = Coeficiente Estatístico de Uniformidade (%),
- s = Desvio Padrão dos dados obtidos (ml ou grama),
- q = quantidade média de fertilizante obtida nos pontos amostrados (ml ou grama).
- b) Coeficiente de Uniformidade de Aplicação (CUA)

$$CUA = 100 * \left[\frac{x}{X} \right]$$
 (10)

onde :

- X = média do primeiro quartil de dados coletados, após ordenados crescentemente (ml ou grama)
- x = quantidade média de fertilizante obtida nos pontos amostrados (ml ou grama)

FARIA & SILVA (1987) avaliando a hidráulica da linha de irrigação com microaspersor ASBRASIL, indicam 36 microaspersores como número máximo para ser usado em tubo 1/2" para que a variação de vazão não ultrapasse 10% em um espaçamento de 3 metros entre emissores. Este limite de variação da vazão foi proposto por KELLER & KARMELI (1975) e tem sido empregado no mundo todo.

HAGIN & TUCKER (1982) afirmam que a aplicação de potássio na água de irrigação é relativamente livre de problemas dada a alta solubilidade da maioria dos sais de potássio. O cloreto de potássio tem a 20° C solubilidade de 34 partes solubilizadas em 100 partes de água, enquanto que o nitrato de potássio apresenta o valor de 32 na mesma temperatura. A solubilidade de sulfato de potássio é menor (11 partes solubilizada a 20° C), e em água com elevado teor de cálcio, pode haver formação de sulfato de cálcio que é menos solúvel ainda. Assim, o sulfato de potássio é menos recomendável para fertirrigação do que o cloreto de potássio e o nitrato de potássio.

Segundo COSTA et alii (1986) a mobilidade de potássio em solos argilosos é pequena, sendo recomendada sua aplicação no sulco, por ocasião do plantio. Já em solos constituídos de textura arenosa, é possível que a aspersão parcelada da água de irrigação forneça melhores resultados.

Trabalhando com tanque de derivação de fluxo, FEITOSA FILHO (1990), constatou que os valores de concentração relativa do fertilizante reduziram com o aumento do volume derivado e que estas reduções foram cada vez menores com o transcorrer do tempo, apresentando comportamento exponencial, corroborando com o valor encontrado por ZANINI (1987).

FEITOSA FILHO (1990), observou que nos primeiros 5 minutos de fertirrigação com tanque de derivação de fluxo quantidades maiores de potássio foram aplicadas pelos primeiros emissores quando comparados aos emissores do final da linha lateral. Entretanto com o passar do tempo, houve uma inversão dos valores, havendo portanto uma compensação no total aplicado por cada emissor. O autor afirma também que a distribuição de potássio ao longo da linha lateral pode ser representada por um modelo linear com inclinação bem próxima de zero, onde a quantidade aplicada no emissor central é bastante próxima da quantidade média aplicada.

ZANINI (1987) comenta que o decréscimo da quantidade de cloreto aplicado ao longo do comprimento da linha de emissores é devido ao tempo despendido para o avanço da solução fertilizante do início até o final da lateral. O mesmo autor verificou em fertirrigação com tanque de derivação de fluxo para tempos de aplicação de 40; 80 e 160 minutos, coeficientes de variação de 2,00; 0,73 e 0,40 respectivamente. Com bomba injetora regulada para fempo de aplicação de 40 minutos o coeficiente de variação foi de 0,89.

Objetivando estender os conhecimentos de fertirrigação para outros sistemas, este trabalho apresenta a distribuição espacial de fertilizantes via água de irrigação em lateral com microaspersores. O estudo compreende o emprego de bomba injetora e tanque de derivação de fluxo. O presente trabalho propoem ainda métodos alternativos para determinação do teor de fertilizante na água de irrigação.

3 - MATERIAL E MÉTODOS

2

A unidade de teste foi instalada no pátio do Laboratório de Hidráulica, do Departamento de Engenharia da Escola Superior de Agricultura de Lavras - ESAL - Minas Gerais. O experimento foi conduzido sobre solo nú e com topografia plana.

3.1. Características do sistema de irrigação

O sistema de irrigação montado compunha-se de um cabeçal de controle formado por um conjunto motobomba, um filtro de areia, um filtro de tela e de dois sistemas de injetores de fertilizantes (T D F e B I), e de uma linha de microaspersores. O fertilizante utilizado nos testes foi cloreto de potássio, aplicado por dois sistemas de injeção de fertilizantes (tanque de derivação de fluxo e bomba injetora), com tempo de aplicação de fertilizante de 60; 90 e 120 minutos.

A linha de irrigação foi instalada com um tubo de polietileno de diâmetro nominal de 1/2 polegada e diâmetro interno de 12,07 milímetros. O comprimento total da linha foi de 108 metros onde foram acoplados 36 microaspersores espaçados de 3 metros entre sí, número máximo de aspersores segundo FARIA & SILVA (1987). O comprimento escolhido para linha foi estabelecido segundo a recomendação de KELLER & KARMELLI (1975), e de acordo com trabalho de FARIA & SILVA (1987) de que a variação máxima de vazão entre os emissores extremos seja no máximo 10 %.

A água para as irrigações foi bombeada de um reservatório de 8 metros cúbicos de capacidade (sendo reabastecido diretamente pelo sistema de distribuição d'água do laboratório), empregando uma bomba centrífuga com vazão de 6 metros cúbicos por hora e pressão de serviço de 60 metros de coluna de água (588 KPa), acionada por motor elétrico de 6 c.v. (4.4 KW). A velocidade da água na linha foi máxima no início da tubulação, chegando atingir 5,77 m/s e decresceu até 0,16 m/s no trecho correspondente ao último emissor.

Os microaspersores utilizados foram da marca ASBRASIL, autoreguláveis e com pressão de serviço entre 20 e 50 mca, (196 e 490 KPa) fornecendo vazão entre 50 e 75 l/h.

3.2. Sistema de injeção de fertilizante

3.2.1. Bomba injetora

A bomba injetora utilizada no experimento é do tipo pistão, com uma pequena câmara que alternadamente se enche e se esvazia, acionada pela pressão da rede de irrigação. Quando a câmara enche a solução de um depósito é succionada e quando se esvazia a solução é injetada na rede de irrigação. A água utilizada para o acionamento é ejetada e não se mistura com a solução de fertilizante, fazendo com que a solução contida em um recipiente aberto não sofra diluição durante a aplicação. Os detalhes da instalação e cabeçal de controle podem ser vistos na Figura 1.

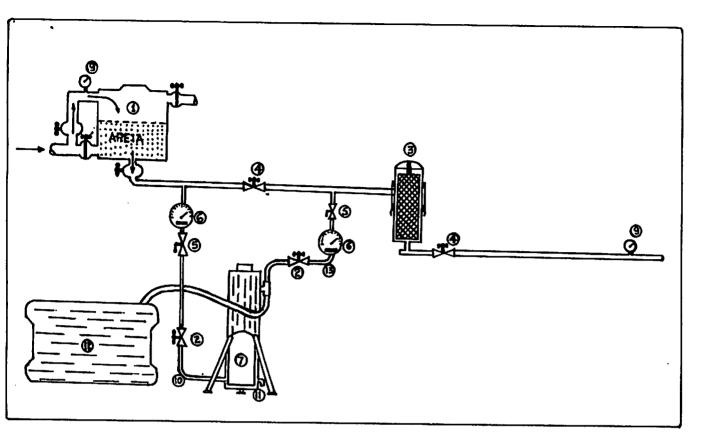


Figura 1 - Esquema do Cabeçal de Controle com Bomba Injetora

- 1. filtro de areia
- 2. registro de fechamento lento 1/2"
- 3. filtro de tela
- 4. registro de fechamento lento 2"
- 5. registro de lechamento rápido 3/4"
- 6. hidrômetros domiciliares
- 7. bomba injetora de fertizantes

- 8. mangueira de sucção
- 9. manômetro de Bourdon
- 10. mangueira de entrada de água na bomba para seu acionamento
- 11. Ejeção de água da bomba
- 12. reservatório de solução de fertilizantes
- 13. mangueira de injeção da solução fertilizantes

3.2.2. Tanque de Derivação de Fluxo

O tanque de derivação de fluxo utilizado consistiu em um depósito cilíndrico e metálico com capacidade para 74,5 litros. O tanque foi conectado em paralelo à linha de irrigação, e parte do fluxo da linha principal foi derivada continuamente para o tanque e retornada à linha de irrigação.

O depósito constou de duas tomadas de água, sendo uma de entrada e outra de saída, conectada à rede de irrigação em dois pontos próximos, separados por um registro cujo objetivo único era estabelecer um diferencial de pressão para que parte da água de irrigação circulasse pelo circuito paralelo onde estava o tanque.

Para promover agitação do fertilizante, a entrada de água no tanque deu-se na parte inferior e de forma tangencial à parede do mesmo.

O tanque era provido de uma válvula de saída na parte inferior, e de uma tomada d'agua situada na entrada, e um medidor de vazão conforme mostrado na Figura 2.

3.3. Aplicação do fertilizante

÷.

Foram usados tempos de aplicação de 60; 90 e 120 minutos, tanto para bomba injetora quanto para tanque de derivação de fluxo, e o instante para coleta das amostras de água com a fertirrigação executada pelo tanque de derivação se deu quando a concentração relativa no tanque reduziu em intervalos de 10%, resultando em 10 instantes distintos determinados pela Equação 2.

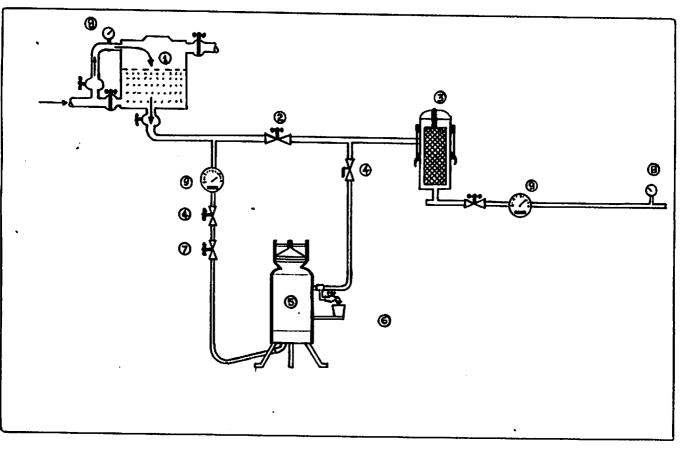


Figura 2 - Esquema do Cabeçal de Controle com Tanque de Derivação de Fluxo.

1.filtro de areia
 2.registro de fechamento lento 2"
 3. filtro de tela
 4.registro de fechamento rápido de 3/4"
 5.tanque de fertilizante

6.ponto de coleta7.registro de fechamento lento 1/2"

8. manômetro Bourdon

9.hidrômetro domiciliar

Para fertirrigação com bomba injetora não se tem variação na concentração. Entretanto, com objetivo de comparação foram usados os mesmos tempos de coleta estabelecidos para o tanque de derivação de fluxo. Esses instantes são apresentados no Quadro 1. A concentração inicial e a quantidade de fertilizante aplicado foram determinadas usando-se a Equação de Conservação de Massa para o tanque e bomba injetora, admitindo que resíduos da ordem de 1,83% da concentração inicial no caso do tanque de derivação de fluxo seriam desprezíveis. O volume de água que passou pelo tanque foi de 4 vezes o volume do tanque.

QUADRO 1 - Instante da coleta de solução -

Concentração relativa no tanque de	Tempo	de aplicação o (em minutos)	
derivação (%)	60	90	120
100	-		
90	01,34	02,22	03,10
80	03,21	05,01	06,42
70	05,21	08,02	10,42
60	07,40	11,30	15,20
50	10,24	15,36	20,48
40	13,45	20,37	27,29
30	18,04	27,05	36,08
20	24,09	36,13	48,18
10	34,32	51,49	69,09
1,83	60,00	90,00	120,00

A quantidade de KCl aplicada pelo sistema, foi estabelecida conforme LOPES & GUIMARÃES (1989). Sendo as necessidades da cultura (citrus) variável em função do desenvolvimento da mesma, para aplicação considerou-se a cultura no estágio adulto, o que ocorre a partir do 6° ano. A demanda de fertilizante é de 90 gramas de K₂O em janeiro e 90 gramas de K₂O em abril, para a região Sudeste do Brasil.

Considerando o turno de rega comumente empregado de 4 dias, a fertirrigação pode ser dividida em 6 etapas por mês.

Sendo 36 microaspersores (equivalendo a 36 pés) tem-se a quantidade a ser aplicada de 859,43 gr de KCl por irrigação, tanto com tanque de derivação quanto com bomba injetora. Os cálculos para transformação de K₂O encontram-se no apêndice.

Para bomba injetora a taxa de injeção é proporcional à frequência de golpes e curso do pistão. A frequência foi regulada com auxílio de um registro localizado na tubulação de entrada de água na bomba, controlando-se a vazão.

Trabalhando com a vazão máxima para as características do teste, obteve-se uma taxa de injeção de 360 litros por hora.

Para fornecer 360 litros com tempos diferentes, tem-se:

2° teste - 90 minutos......240 l/h;

O volume de solução aplicada com fertilizante foi a média de 3 testes medidos em um reservatório de volume conhecido e confirmado por um hidrômetro domiciliar instalado na tubulação que liga a bomba injetora à rede. O reservatório onde foi preparada a solução de fertilizante impedia, com sua geometria característica, que toda solução fosse succionada pela bomba injetora e por isso, foram preparados 500 litros de solução na concentração inicial prevista e considerando a pureza do KCl de 99,5% gastou-se 1.193,65 gr de KCl/500 litros apesar de só serem aplicados 360 litros.

Para o tanque de derivação de fluxo a regulagem foi feita considerando-se que o volume mínimo a passar pelo tanque deve ser de 4 vezes a capacidade do mesmo o que implicou em se aplicar apenas 859,43 gr de KCl por teste, sendo as seguintes vazões derivadas:

1° teste -	60 minutos	298 1/h;
2° teste -	90 minutos	199 1/h;
3° teste -	120 minutos	149 I/h.

3.4. Coleta e Análise das Amostras

As amostras de solução de KCI foram coletadas em recipientes de vidro com capacidade de 150 ml, durante aproximadamente 5 segundos.

Em cada fertirrigação as amostras foram coletadas em microaspersores alternados resultando em 18 pontos de amostragem.

De posse das amostras coletadas imediatamente determinou-se a condutividade elétrica (CE) das mesmas, para estimar a concentração de potássio (ppm) nas amostras, utilizando-se para tal uma curva padrão (ppm x CE) obtida a partir de soluções com concentrações conhecidas de KCl. Tais soluções foram preparadas com KCl-PA (99,5 % de pureza) e diluído na mesma água usada nos testes.

Para determinação da curva padrão usou-se soluções com concentrações de potássio variando de 2 a 1500 ppm.

O Condutivímetro usado foi o CONDUCTOMETER E 587, da METROHM AG CH-9100 HERISAU - SWITZERLAND. Os valores da condutividade elétrica obtídos para diferentes concentrações de KCl podem ser vistos no Quadro 2.

QUADRO 2 - Condutividade elétrica para solução de KCl a 25° C cm μ S/cm.

CONC. DE KCI (mol/l)	C E (esperada)	C E (observada)
0,02	2767,0	2754,0
0,01	1413,8	1401,4
0,005	717,8	705,6

Pelos dados do Quadro 2 verificou-se exatidão significativa.

3.5. Uniformidade de distribuição de fertilizante

Conhecidas as concentrações em cada tempo para cada emissor, seus valores foram transformados em massa que em função do tempo, forneceram a quantidade de potássio distribuída pelos emissores na fertirrigação. Para análise dos resultados foram calculados o coeficiente de variação da quantidade de fertilizante aplicado ao longo da linha.

4. RESULTADOS E DISCUSSÃO

ż

4.1. Vazões dos microaspersores na linha de irrigação

Encontram-se apresentados no Quadro 3 as vazões que foram obtidas em cada microaspersor, cujos valores correspondem a uma média obtida após 3 determinações.

Com a vazão média de cada microaspersor e sua respectiva distância ao cabeçal de controle, determinou-se por meio de regressão linear a seguinte equação:

Qa = 80.87 - 0.2784 d(11)

 $r^2 = 0,9878$

onde :

Qa = vazão média em cada microaspersor (l/h).

d =distância entre o emissor considerado ao cabeçal de controle (metros).

Embora os microaspersores sejam supostamente autoreguláveis, a oscilação na vazão dos mesmos pode ser atribuída em parte à variação de pressão na rede. Esta variação encontra-se entre os valores aceitáveis recomendados por KELLER e KARMELLI (1975).

						·	<u> </u>		
ż	Lei	itura (m	ul/15 se	g) Vazão		Leitur	a (ml/)	15 seg)	Vazão
Emissor	1	2	3	(l/h)	Emissor	1	2	3	(l/h)
1	320	315	310	75.6	19	310	310	310	74.4
2	320	320	320	76.8	20	345	345	345	82.8
3	335	335	345	81.2	21	315	315	310	75.2
4	320	310	320	76.0	22	310	305	310	74.0
5	335	335	335	80.4	23	270	275	275	65.6
6	335	340	340	81.2	24	315	315	315	75.6
7	345	340	340	82.0	25	285	285	285	68.4
8	345	345	345	82.8	26	330	330	330	79.2
9	330	330	330	79.2	27	305	310	305	73.6
10	330	330	330	79.2	28	300	300	300	72.0
11	325	320	320	77.2	29	295	295	300	71.2
12	335	335	335	80.4	30	300	300	300	72.0
13	320	330	325	78.0	31	285	295	285	69.2
14	320	310	315	75.6	32	310	300	300	72.8
15	320	330	325	78.0	33	315	320	325	76.8
16	330	325	325	78.4	34	300	310	310	73.6
17	295	300	300	71.6	35	300	310	310	73.6
18	325	320	325	7 7.6	36	270	27 0	270	64.8

QUADRO 3 - Vazão nos microaspersores (l/h), espaçados de 3 metros na linha de irrigação com diâmetro interno de 12,07 mm e pressão no início da linha de 50 m.c.a. (490 KPa).

CUC = 95,39 %

Média = 75.72 l/h

C V = 5.97 %

4.2. Distribuição de fertilizante com tanque de derivação

Para cada tempo de duração da fertirrigação analisou-se as variações de concentração de potássio no interior do tanque de derivação, minuto a minuto. Os dados obtidos estão apresentados nos Quadros 14, 15 e 16, mostrados no Apêndice. Com esses dados, determinou-se as equações 12, 13 e 14 conforme modelo proposto pela FAO (1986) e também utilizado por PIZARRO (1987) e ZANINI (1987).

a) Concentração em função do tempo de fertirrigação de 60 minutos

 $C 60 = 7.667,62 \exp^{-0.0787} t$ (12)

 $r^2 = 0.9864$

onde:

C 60 = concentração de potássio no interior do tanque, ppm ;

t = tempo a partir do início da fertirrigação, min;

b) Concentração em função do tempo de fertirrigação de 90 minutos

 $C 90 = 8.893,54 \exp - 0.0596 t$ (13)

 $r^2 = 0,9652$

onde :

C 90 = concentração de potássio no interior do tanque, ppm ;

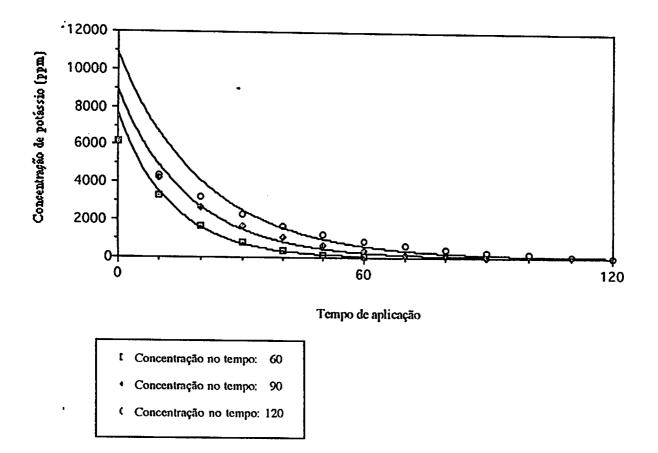
t = tempo a partir do início da fertirrigação, min;

c) Concentração em função do tempo de fertirrigação de 120 minutos C 120 = 10.826,51 exp-0,0484 t(14) $r^2 = 0,7977$

onde :

د

C 120 = concentração de potássio no interior do tanque, ppm


t = tempo a partir do início da fertirrigação, min.

As representações gráficas das equações 12; 13 e 14 encontram-se na Figura 3.

Analisando os Quadros 14; 15 e 16 apresentados no Apêndice e a Figura 3, nota-se que nos primeiros minutos de fertirrigação, a redução da concentração de potássio é muito mais acentuada, que nos instantes seguintes.

O comportamento da concentração de potássio no tanque de derivação para cada tempo de fertirrigação mostra que a variação da concentração é mais acentuada em tempos de aplicação menores do que em tempos de aplicação maiores.

Estes resultados concordam com os valores encontrados por ZANINI (1987) e PIZZARRO (1987) os quais afirmam que a variação da concentração dos fertilizantes no interior da tanque de derivação, é definida por um modelo exponencial, tendo valores decrescente com o passar do tempo de aplicação. Este comportamento já era esperado pois o fenômeno é descrito pela Equação 1, proposta pela FAO (1986).

(dados observados sobre curva gerada à partir das cquações)

FIGURA 3 - Concentração de potássio (ppm) no interior do Tanque de Derivação de Fluxo, para os tempos de aplicação de 60, 90 120 minutos Após trabalhar com tanque de derivação de fluxo, e tempo de fertirrigação de 60, 90 e 120 minutos FEITOSA FILHO(1990) encontrou as seguintes equações :

(15)	C 60 = $3124,938 \exp^{-0.0717}$ (
(16)	$C 90 = 4320,586 \exp - 0,0503 t$
(17)	C 120 = $4091,821 \exp^{-0.0448} t$

÷

Analisando o logaritmo das equações 12, 13 e 14, observou-se que apenas as equações 12 e 13 apresentaram normalidade dos resíduos. Construindo-se intervalos de confiança de 1% (DRAPPER & SMITH - 1988) para o coeficiente angular verificou-se uma diferença significativa entre os respectivos coeficientes encontrados por FEITOSA FILHO (1990) nas equações 15 e 16.

Nos Quadros 17, 18 e 19 apresentados no Apêndice, tem-se os valores das condutividades elétricas encontradas para as várias amostras referentes aos testes com o tanque de derivação de fluxo nos tempos de aplicação de 60, 90 e 120 minutos, respectivamente.

Com esses dados e a equação 18 gerada à partir dos dados apresentados no Quadro 4 determinou-se as concentrações de potássio para os vários testes, conforme apresentadas nos Quadros 5, 6 e 7.

Analisando os Quadros 5, 6 e 7 pode-se observar para tanque de derivação de fluxo que no princípio da fertirrigação as concentrações no início da linha são menores que a concentração inicial do tanque dado ao tempo para a onda de solução de fertilizante chegar a rede. Este valor aumenta até um determinado limite e decresce no final da aplicação em função da baixa concentração no interior do tanque.

CONC. DE K (ppm)	CE (μ S/cm)	CONC. De K (ppm)	CE (µS/cm)
262.24	1020	13.11	162
131.12	560	6.56	142
52.45	300	3.28	130
26.22	205	1.64	125

QUADRO 4 - Valores de condutividade elétrica (μ S/cm) para diferente concentrações (ppm) de K.

.....(18)

 $r^2 = 0.9999$

Para o tempo de fertirrigação de 60 minutos (Quadro 5), a variação de concentração ao longo da linha no primeiro tempo mostra que só a primeira metade do comprimento da rede recebeu fertilizante, pois não houve tempo suficiente do mesmo avançar na linha. Nos momentos iniciais da fertirrigação ajustada para 90 minutos (Quadro 6), o produto só não havia chegado nos dois últimos emissores, e para 120 minutos de aplicação pretendido (Quadro 7), no primeiro instante de coleta, constatava-se a presença de fertilizante até o final da rede.

QUADRO 5 - Concentração de potássio (ppm) aplicada com tanque de derivação de fluxo calibrado para 60 minutos de fertirrigação, obtidas para vários tempos e microaspersores.

•

•

* *

Micro	T 1	T2	T3	T4	T5	T 6	Τ7	Т8	Т9	T10
			•					<u> </u>		<u> </u>
1	485	695	622	549	476	403	312	203	113	25
3	640	702	629	549	485	401	312	202	110	25
5	399	698	622	549	483	403	312	200	110	25
7	399	695	626	549	489	403	312	201	113	24
9	265	691	622	549	487	403	301	199	110	24
11	195	709	637	558	491	403	316	201	113	24
13	126	706	631	558	485	403	294	199	113	24
15	72	695	640	564	491	403	316	205	113	25
17	49	720	644	567	494	409	317	205	113	25
19	11	720	644	567	494	407	316	203	113	25
21	4	709	644	567	492	403	317	205	115	25
23	1	722	644	575	494	410	319	206	115	25
25	1	722	655	585	504	412	323	214	116	25
27	1	715	658	584	509	418	327	215	117	25
29	1	72 0	667	584	511	418	339	217	120	25
31	1	722	673	597	513	422	341	217	120	25
33	1	680	679	604	522	436	349	2217		
35	1	298	690	611	540	449	356		123	25
	-			~	~ +€	447	550	239	128	25

٠.

Ž. 4

.

QUADRO 6 - Concentração de potássio (ppm) aplicada com tanque de derivação de fluxo calibrado para 90 minutos de fertirrigação, obtidas para vários tempos e microaspersores.

Micro	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10
1	478	439	393	• 339	206	025	177		<u> </u>	
3					286	235	177	119	60	11
	485	439	393	339	286	235	177	121	60	11
5	485	439	393	339	286	235	177	121	61	11
7	493	439	393	339	286	234	176	121	61	12
9	485	443	393	339	286	236	176	118	62	11
11	482	446	393	339	286	236	176	119	61	11
13	479	450	393	343	286	234	176	119	60	12
15	475	450	393	343	286	233	176	120	60	12
17	460	446	393	343	288	233	177	121	60	12
19.	448	446	393	343	289	236	180	122	62	11
21	448	443	396	343	286	236	181	118	62	11
23	434	446	396	343	290	238	177	122	63	11
25	423	446	396	345	293	239	179	123	65	11
27	389	453	400	348	289	240	182	124	63	11
29	243	450	410	355	300	242	184	124	62	11
31	92	455	407	357	304	243	186	124	64	11
33	1	464	417	357	304	247	186	126	65	12
35	· 1	467	417	371	313	250	193	131	65	13

QUADRO 7 - Concentração de potássio (ppm) aplicada com tanque de derivação de fluxo calibrado para 120 minutos de fertirrigação, obtidas para vários tempos e microaspersores.

Micro	T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10
		·· <u> </u>		•				<u> </u>		······
1	361	325	276	233	203	166	130	85	52	11
3	361	325	281	236	204	166	130	95	52	11
5	361	325	282	236	205	167	130	95	52	11
7	361	325	282	236	204	166	128	95	52	11
9	364	327	286	237	202	167	130	94	53	11
11	357	322	277	237	200	167	131	94	52	11
13	359	322	282	239	204	167	132	95	53	11
15	3 <i>5</i> 9	322	281	236	203	168	134	95	53	11
17	357	322	279	236	203	168	135	95	53	11
19.	357	322	281	236	204	168	135	95	53	
21	362	311	279	235	200	168	135	96	51	11
23	361	286	277	243	200	167	135	97	52	11
25	357	318	281	242	202	170	135	95	51	11
27	361	318	281	242	207	170	138	95	53	11
29	354	3229	282	243	208	168	140	99	54	12
31	3 <i>5</i> 0	329	286	250	211	168	137	99	54	12
33	304	332	286	250	211	179	137		54	12
35	76	342	304	259	215	172			55	12

Pode-se observar também que no final de cada aplicação praticamente todo o fertilizante havia sido distribuído, dado a baixa concentração de fertilizante na rede no final de cada teste.

Com os valores obtidos das concentrações de potássio (ppm) na água de irrigação (Quadros 5, 6 e 7), foram determinadas as quantidades de potássio aplicadas por microaspersor. Esses valores encontram-se nos Quadros 20, 21 e 22, apresentados no Apêndice.

No Quadro 8, apresenta-se a estimativa das quantidades médias de potássio aplicadas por microaspersor ao longo da linha de irrigação, bem como o coeficiente de variação verificado. Na Figura 4, pode-se observar a representação gráfica das quantidades de potássio aplicadas ao longo da linha de irrigação, para os três tempos de fertirrigação usando o tanque de derivação de fluxo.

Pelo Quadro 8, pode-se observar que pela metodologia usada as quantidades médias aplicadas na linha de irrigação variam entre 11,64 gramas e 11,20 gramas de potássio dando uma variação de aproximadamente 4%. Por outro lado esperava-se aplicar 12,45 gramas de potássio.Considerando que se admitia um resíduo de 1,83 % no tanque, deveria encontrar valores próximos de 12,22 gramas de potássio na fertirrigação em cada emissor.

Comparando os valores esperados com os encontrados, tem-se uma variação de 5 a 9%, que possivelmente se deve a metodologia empregada.

Na Figura 4, tem-se para os microaspersores de número 29, 31 e 33 no tempo de fertirrigação de 90 minutos uma acentuada queda na quantidade aplicada de potássio, o que foge ao modelo esperado, devida à própria distribuição de água no sistema no instante do teste, confirmando as citações de KELLER & KARMELI (1975), onde afirmam que a quantidade aplicada de fertilizante é função do volume aspergido pelos emissores.

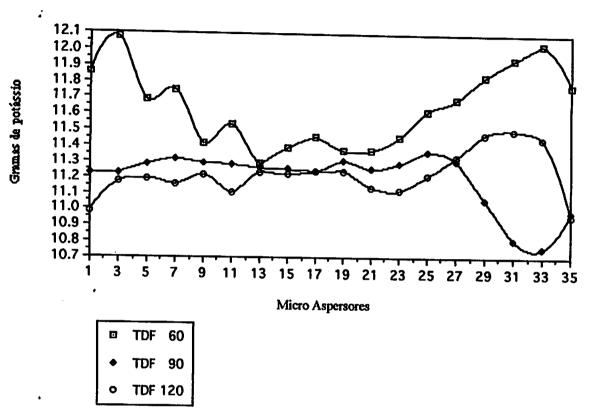


FIGURA 4 - Estimativa de potássio (gramas) aplicado por microaspersor, nos tempos de fertirrigação de 60, 90 e 120 minutos, com uso de tanque de derivação de fluxo.

Aicroaspersor	TDF 60	TDF 90	TDF 120	
1	11859	11227	10988	
3	12074	11227	11170	
5	11686	11284	11192	
7	11750	11318	11159	
9	11419	11294	11218	
11	11534	11281	11108	
13	11291	11262	11234	
15	11391	11253	11220	
17	11456	11241	11236	
19	11372	11307	11243	
21	11374	11256	11142	
23	11455	11288	11118	
25	11620	11365	11212	
27	11691	11311	11333	
29	11836	11064	11480	
31	11945	10809	11504	
33	12040	10756	11452	
35	11780	10985	10960	
MÉDIA	11642.94	11196.00	11220.50	
C.V. (%)	2.04	1.52	1.28	
q (L/MIN)	0.88	0.91	0.90	

.

QUADRO 8 - Estimativa de potássio (miligramas) aplicado com tanque de derivação de fluxo, para tempos de fertirrigação de 60, 90 e 120 minutos.

Nas quantidades de potássio aplicada nos tempos de 60, 90 e 120 minutos, (Quadro 8) pode-se observar que a diferença foi pequena, tendo o coeficiente de variação valores entre 1,28 e 2,04% o que nos permite optar por qualquer dos tempos de fertirrigação, dependendo apenas da maior ou menor concentração do produto que se queira aplicar na água de fertirrigação.

4.3. Injeção de fertilizante com bomba injetora

•

Do mesmo modo que se procedeu para tanque de derivação de fluxo, para bomba injetora foram analisadas as condutividades elétricas de cada amostra coletadas nos tempos amostrados. Apesar de não haver variação de concentração no depósito da bomba injetora, para efeito de comparação os tempos amostrados foram os mesmos usados com tanque de derivação de fluxo. Os Quadros 23, 24 e 25 apresentados no Apêndice, mostram as condutividades elétricas para os testes de 60, 90 e 120 minutos com uso de bomba injetora e nos Quadros 9, 10 e 11 encontram-se as concentrações para os respectivos testes.

Pode-se observar que as concentrações de potássio são bem menores no início e aumentam gradativamente até um valor máximo, onde ocorre tempo suficiente para que a solução chegue ao final da rede tornando-se sua concentração constante à partir desse instante. A partir da segunda coleta para os diversos tempos de aplicação, pode-se observar que as concentrações são bem próximas para os diversos emissores, fato que contribui para aumentar o coeficiente de uniformidade de distribuição de fertilizante. Os valores da concentração de potássio (ppm) na água de irrigação (Quadros 9, 10 e 11) foram utilizados para determinar as quantidades aplicadas de potássio em miligramas por microaspersor nos respectivos tempos de fertirrigação. Da mesma forma que foi feito para o tanque de derivação de fluxo estimou-se as quantidades totais de potássio aplicadas em cada ponto conforme apresentado na Figura 5 e em Apêndice nos Quadros 26, 27 e 28.

Da mesma forma que ocorreu no tanque de derivação de fluxo, a diferença entre as quantidades aplicadas é bastante reduzida (Quadro 12).

As quantidades médias aplicadas na linha de irrigação variaram entre 11,58 e 10,93 gramas de potássio, representando uma diferença de aproximadamente 6% entre os vários tempos de fertirrigação.

QUADRO 9 - Concentração de potássio (ppm) das amostras de água coletadas nos microaspersores no teste com bomba injetora calibrada para tempo de fertirrigação de 60 minutos.

Micro		T2	ТЗ	T4	T5	T6	T7	T8	Т9	T10
1	24	126	132	148	158	169	171	180	182	183
3	20	125	132	146	159	168	171	180	182	183
5	18	125	132	148	160	166	171	179	182	183
7	12	125	132	150	160	168	171	179	180	183
9	09	124	132	148	160	167	171	179	180	183
11	02	121	131	147	160	166	170	180	182	183
13	02	· 120	129	148	159	171	170	178	182	183
15	02	112	130	151	160	17 1	172	178	182	183
17	02	112	130	148	160	166	170	178	182	183
19 •	02	114	132	148	158	170	170	177	182	183
21	02	115	130	148	160	168	170	176	182	183
23	02	115	130	147	159	170	171	175	182	183
25	02	112	129	147	159	170	171	174	182	183
27	02	110	129	146	159	170	171	174	182	183
29	02	108	129	146	158	169	171	174	181	183
31	02	112	130	1 5 0	160	171	174	175	181	181
33	' 02	57	131	150	160	171	174	175	181	181
35	02	47	130	150	160	171	175	175	181	181

QUADRO 10 - Concentração de potássio (ppm) das amostras de água coletadas nos microaspersores no teste com bomba injetora calibrada para tempo de fertirrigação de 90 minutos.

Micro	TI	T2	Т3	T4	T5	T6	Τ7	 T8	Т9	T10
1	93	107	107	112	112	113	113	113	117	123
3	90	103	107	108	110	113	113	113	114	123
5	90	103	107	108	109	113	113	114	114	123
7	84	101	105	107	107	107	110	111	112	123
9	84	100	104	106	107	107	110	110	110	122
11	80	101	105	106	107	107	110	110	110	122
13	77 _.	100	102	103	105	106	109	110	110	122
15	70	98	101	101	105	106	109	107	110	122
17	63	98	101	101	103	106	109	110	110	122
19	54	98	100	101	103	105	106	108	109	122
21	47	98	100	100	100	104	106	107	108	122
23	37	95	99	100	101	102	104	106	107	122
25	19	95	99	100	100	101	104	106	108	122
27	07	94	98	98	100	101	102	104	106	122
29	03	95	98	98	100	101	102	104	107	122
31	02	93	98	98	98	101	103	103	107	122
33	02	94	98	98	100	101	103	103	105	122
35	02	91	96	98	101	101	103	103	103	122

Micro **T1** T2 T3 **T4** T5 T6 T7 **T8** T9 T10 58.

QUADRO 11 - Concentração de potássio (ppm) das amostras de água coletadas nos microaspersores no teste com bomba injetora calibrada para tempo de fertirrigação de 120 minutos.

A diferença maior está na quantidade que se esperava aplicar e que de fato se aplicou (de 7 a 14%) atribuída a metodologia empregada ou resíduos devido a não homogenização da mistura no tanque.

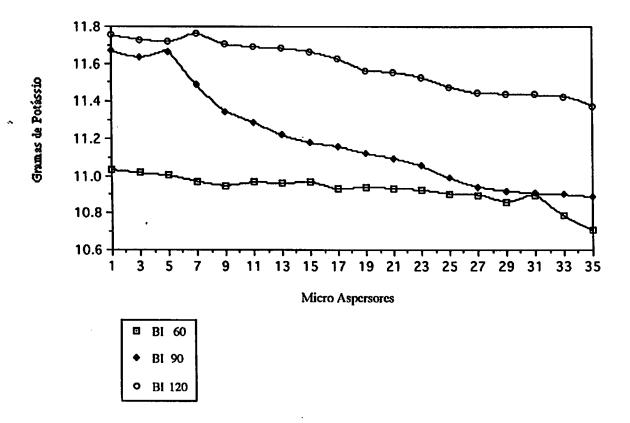


FIGURA 5 - Estimativa de potássio (gramas) aplicado por microaspersor nos tempos de aplicação de 60, 90 e 120 minutos, com uso de bomba injetora

4.4. Distribuição do fertilizante com os injetores

Após estimada as quantidades totais de potássio que foi aplicada pelos emissores e listadas nos Quadros 8 e 12, calculou-se através das Equações 8, 9 e 10 a uniformidade de distribuição do fertilizante, sendo que os resultados estão apresentados no Quadro 13.

Os coeficientes de uniformidade são elevados para os dois sistemas de injeção e qualquer tempo de aplicação, pois estão acima de 96,8%. Esta conclusão pode se fundamentar no limite estabelecido por CHRISTIANSEN (1942) de que para se ter uma distribuição de água aceitável, em sistemas de irrigação, o valor do Coeficiente de Uniformidade de CHRISTIANSEN deve ser superior a 80%, e apesar de ser específico para aplicação de água e extrapolando para fertirrigação, uma vez que a distribuição do fertilizante está relacionada diretamente com a vazão, pode-se aceitar como válido.

Tendo em vista que os testes previam aplicação de 12,45 gramas de potássio para aplicador tipo bomba injetora e 12,22 gramas de potássio para o tanque de derivação de fluxo, pode-se observar no Quadro 13 que em todos os testes as quantidades ficaram abaixo, demonstrando a permanência de resíduos de fertilizantes nos reservatórios ou erros nas estimativas de volume de água aplicado a partir da vazão média dos emissores.

Cabe ressaltar também que tal diferença se atribuída a erros de determinação proporcionariam com a mesma chance excedentes de aplicação, fato que não ocorreu.

É oportuno lembrar entretanto que para se determinar a variabilidade espacial do fertilizante na linha de irrigação aconselha-se a coleta de todo o volume de água aspergido e somente a partir desta solução, seja determinada a quantidade real do produto aplicado, isento de erros na estimativa da vazão.

Micro	TDF 60	TDF 90	TDF 120
1	11033	11671	11754
3	11017	11636	11731
5	11003	11664	11718
7	10971	11486	11762
9	10049	11348	11705
11	10967	11286	11690
. 13	10962	11220	11681
15	10969	11178	11665
17	10930	11156	11624
19	10941	11120	11564
21	10934	11093	11553
23	10926	11052	11527
25	10907	10988	11478
27	10900	10942	11445
29	10863	10921	11441
31	10899	10908	11435
33	10787	10901	11427
35	10707	10888	11377
Média	10929.33	11192.27	11587.61
C.V. (%)	0.62	2.35	1.09

QUADRO 12 - Estimativa de potássio (miligramas) aplicado através de cada microaspersor, com uso de bomba injetora, para tempos de aplicação de 60, 90 e 120 minutos.

•

\$

.

Equi	Tempo de	Potássio	CV	CUC	CUE	CUA
pa	duração	Estimativa				
men	Fertirrigação	Média	(%)	(%)	(%)	(%)
to	(minutos)	(miligramas)				
			<u> </u>			
Tanque	60	11.642,94	2,04	98,21	97,96	97,42
de	80	11.196,00	1,52	98,84	98,45	98,91
Derivação	120	11.220,50	1,28	98,84	98,72	98,40
Bomba	60	10.929,33	0,62	99,07	99,38	99,37
	90	11.192,27	2,35	98,05	97,65	96,81
Injetora	120	11.587,61	1,08	99,00	98,91	98,75

QUADRO 13 - Uniformidade de distribuição do fertilizante para os dois equipamentos de fertirrigação e diferentes tempos de aplicação

÷

.

~

5. CONCLUSÕES

÷.,

Com base nos valores encontrados chegou-se as seguintes conclusões:

1. Os dois injetores de fertilizantes testados apresentaram um bom desempenho na distribuição dos fertilizantes e não há diferença significativa de comportamento para os tempos de aplicação testados.

2. Com o uso de Bomba Injetora, houve uma pequena queda na quantidade aplicada ao longo da rede, com pequena vantagem na quantidade média aplicada para o tempo de 120 minutos.

3. Com o uso de Tanque de Derivação de Fluxo quantidades maiores de potássio foram aplicadas inicialmente nos primeiros emissores em relação aos emissores do final da linha. Posteriormente houve uma inversão destes valores, sendo que no final da fertirrigação houve uma compensação no total aplicado ao longo da linha.

4. Para os injetores testados os tempos de fertirrigação de 60, 90 e 120 minutos mostraram satisfatórios para as fertirrigações. A escolha do tempo de aplicação deve ser determinada em função de outros parâmetros que ainda carecem ser pesquisados tais como o efeito da concentração na distribuição do fertilizante no bulbo molhado ou mesmo nas perdas por arraste causado pelo vento.

5. A redução da concentração do fertilizante no interior do tanque segue um modelo exponencial com redução acentuada no início e menor no final da aplicação.

6. Tendo em vista os coeficientes de uniformidade encontrados para a distribuição de fertilizante testados, podemos aconselhar o uso de tanque de derivação de fluxo, dado a facilidade de manejo, melhor controle do produto aplicado, custo provável menor.

7. A metodologia usada mostrou-se eficaz para estudo da variabilidade temporal da distribuição do fertilizante. O emprego do condutivímetro mostrou-se bastante eficaz, mais rápido e mais barato, caso fosse empregado o fotômetro de chama para as determinações. Entretanto, para avaliação da variação espacial da distribuição recomenda-se usar recipientes maiores que coletem o volume total aspergido pelo emissor.

6. RESUMO

O trabalho foi conduzido no pátio do Laboratório de Hidráulica do Departamento de Engenharia da Escola Superior de Agricultura de Lavras - M.G., com objetivo de estudar a hidráulica da fertirrigação por microaspersão e o desempenho de dois injetores de fertilizantes utilizados na fertirrigação (Tanque de Derivação de Fluxo e Bomba Injetora). Foram analisadas a uniformidade de distribuição através da variação espacial e temporal da quantidade de fertilizante aplicado na linha de irrigação.

A unidade de irrigação foi constituída de um cabeçal de controle com filtros de areia e tela, medidores de vazão e pressão, regulador de pressão, e uma linha de polietileno de diâmetro nominal de 1/2 " e diâmetro interno de 12,07 mm.

Na linha com comprimento de 108 metros foram instalados 36 microaspersores auto reguláveis da marca ASBRASIL, espaçados de 3 metros entre sí e operando com pressão no início da rede de 490,33 KPa (50 mca), e vazão média por microaspersor de 75,72 l/h com Coeficiente de Uniformidade de CHRISTIANSEN de 95,39 %.

Trabalhou-se com tempos de fertirrigação de 60, 90 e 120 minutos para os dois tipos de injetores de fertilizantes e coletou-se amostras de água (contendo cloreto de potássio) em 10 instantes diferentes para cada emissor. Os resultados obtidos permitem que sejam destacadas as seguintes conclusões:

- O emprego do Tanque de Derivação de Fluxo, proporcionou a aplicação de maiores quantidades de potássio nos primeiros emissores quando comparados aos situados no final da linha. Com o tempo houve uma inversão desses valores, capaz de compensar as quantidades e consequentemente igualar a distribuição de fertilizante.

- Os tempos de fertirrigação de 60, 90 e 120 minutos se mostraram adequados pois proporcionaram distribuição razoável do fertilizante, tanto para o Tanque de Derivação de Fluxo quanto para Bomba Injetora.

- Com uso de Bomba Injetora, após o fertilizante atingir o último emissor, não se observou variação espacial da distribuição de fertilizantes.

- Os dois equipamentos proporcionaram boa uniformidade de distribuição de fertilizante na água de irrigação, com índices de uniformidade de CHRISTIANSEN superiores a 96%.

.

7. SUMMARY

,

This research was carried out at the Hidraulic Laboratory of Escola Superior de Agricultura de Lavras -ESAL. The main objective was to investigate the Hidraulic of Fertigation using microsprinkler irrigation. Specifically, the performance of two different types of fertilizer injection systems, the pressure differential and the piston pump injector fertilizers, was determined. The distribution Uniformity of fertilizer with time and space was also evaluated.

The irrigation unit consisted of pump, sand and scren filters, flow and pressure meters, pressure regulator, and a polyethylene tube as lateral with nominal diameter of 1/2" and internal diameter of 12.07 mm. The lateral was 108 meters long where 36 self-regulating microsprinklers were installed 3 meters apart. The working pressure at lateral inlet was 50 mca (490.33 KPa), the average flow rate at each microsprinkler was 75,7 l/h and the Christiansen Coefficient of Uniformity was 95,4%.

The time allowed for application of fertilizers was 60, 90 and 120 minutes. Irrigation water samples from each microsprinkler were collected at ten different times, and Potassium Chloride content was determined.

The results obtained allowed to conclude that:

The use of the pressure differential system (fertilizer tank) allowed distribution of larger amounts of Potassium at the beginning of lateral, compared to the end. Such distribution was inverted with time, allowing the differences in fertilizer distribution with space disappear, promoting an even distribution along the lateral.

The time allowed for fertilizer were all adequate since injection distributions of the fertilizer were obtained for both injection systems. In fact, Christhiansen coefficients calculated based on amount of fertilizer delivered were higher than 96%.

When piston pump was used to inject the fertilizer, no variation in its distribution along the lateral could be observed after the last emitter on lateral was also delivering fertilizer.

i,

4

Å.,

8.REFERÊNCIAS BIBLIOGRÁFICAS

•

~

- ABNT. Projeto 12:02.08-020. Sistema de irrigação localizada. Emissores para sistemas de irrigação localizada. Jul. 1987. 16 p.
- ABREU, J. M. H.; LOPEZ, J. R.; REGALADO, A. P. El riego localizado. Curso Internacional de Riego Localizado. Tenerife, España, Instituto Nacional de Investigaciones Agrárias, 1987. 317p.
- ASAE. Asae Ep. 405. Design, installation, and performance of trickle irrigation systems. Subsurface and Trickle Irrigation Committee. Agricultural Engineers Year Book s. 1.: S.M, 1983. p.507-10.
- BARROS, N. F. de ; BRANDI, R. M. ; COUTO, L. Aplicação de fertilizantes minerais na formação de mudas de *Eucalyptus grandis* (Maiden et HooK), através da água de irrigação. Revista Árvore, Viçosa, UFV, 1 (1):17-25, mar, 1987.
- BERNARDO, S. Manual de Irrigação. Viçosa, UFV, Imprensa Universitária, 1987.
 488p.
- 6. BUCKS, D. A. & NAKAYAMA. F. S. Injection of fertilizer and other chemicals for drip irrigation. **Proc. Agric. Turf. Irrig. Conf.**, 1980, p.166-80.

- 7. CHRISTIANSEN, J. E. Irrigation by sprinkling. Agricultural Experimental Station, Berkeley, 1942.124p. (Bulletin, 670).
- 8. COSTA, E. F. da. IV Curso de Uso e Manejo da Irrigação. Quimigação Aplicação de produtos químicos via água de irrigação por aspersão. Sete Lagoas, M.G., Empresa Brasileira de Pesquisa Agropecuária EMBRAPA CNPMS, 1982. 29p.
 - 9. _____ & BRITO, R. A. L. Aplicador portátil de produtos químicos via água de irrigação. Sete Lagoas, EMBRAPA, 1988. 19P.(Circular técnica, 13).
- 10. _____; FRANÇA, G. E. de; ALVES, V. M. C. Aplicação de fertilizante via água de irrigação. Informe Agropecuário, Belo Horizonte, 12(139): 63-8, julho 1986.

11. FAO. Riego Localizado. Roma, 1986.203 p. (Fao, Estudio Riego y Drenaje, 36).

÷

- 12. FARIA, M. A. & SILVA, A. M. Avaliação de produtos disponíveis para pequena irrigação e adaptação a sistemas de baixo custo. Relatório Final.
 Convênio FINEP/ESAL. Lavras, ESAL, 1987. 120p. (Não publicado).
- 13. FEITOSA FILHO, J. C. Uniformidade de distribuição de fertilidade via água de irrigação por microaspersão, com injetores tipo venturi e tanque de derivação. Viçosa, UFV, 1990. 77p. (Tese de Mestrado).
- 14. GOLDBERG, D.; GORNAT, B. & RIMON, D. Drip irrigation principles, design and agricultural practices. Israel, Drip Irrigation Scientific Publications, 1976.
 296p.
- 15. HAGIN, J. & TUCKER, B. Fertilization of dryland and irrigated soils. Berlin, springer-verlag, 1982. 188p.

- HOLMAN, H. Fertilizer and chemical injection irrigation systems. Citros & vegetable Magazine, Tampa, 41 (7):26-8, 46-8, 1978.
- 17. KELLER, J. & KARMELI, D. Trickle irrigation design. California, Rain Bird
 Sprinkler Manufacturing Corporation, 1975. 133p.
- O'NEILL, M. K.; GARDNER, B. R.; ROTH, R. L. Ortophosphoric acid as a phosphorous fertilizer in trickle irrigation. Soil Sci. Soc. Amer. j.. 43 (2): 283-6, 1979.
- PINTO, J. M.; SOARES, J.M. & NASCIMENTO, T. Análise de coeficiente de uniformidade de distribuição de água em sistemas de irrigação localizada. In: CONGRESSO NACIONAL DE IRRIGAÇÃO E DRENAGEM, 8. Florianópolis, S.C., 1988, Anais... Florianópolis, Associação Brasileira de Irrigação e Drenagem, 1988, V.1.p.309-26.
- 20. PIZARRO, F. Riegos localizados de alta frecuencia. Madrid, Espanã, Mundi-Prensa, 1987. 461p.
- 21. POST, S. E. C.; PECK, D. E.; BRENDER, R. A. et alii. Evaluation of low-flow sprinklers. California Agriculture, 40 (7):27-9, July/August, 1986.
- ZANINI, J. R. Hidráulica de fertirrigação por gotejamento utilizando tanque de derivação de fluxo e bomba injetora. Piracicaba, S.P., ESALQ, 1987.
 103p. (Tese Mcstrado).

APÊNDICE

Memória de cálculo para determinação das quantidades de potássio aplicadas na fertirrigação

.

2

Segundo LOPES & GUIMARAES (1989) deve-se aplicar 90 gramas de K_2O duas vezes ao ano, em se tratando de fruticultura e que parcelando em 6 etapas resulta em 15 gramas de K_2O por fertirrigação.

Feita a conversão resultou em 12,45 gramas de K que equivalem a 23,754 gramas de KCl por pé, ou seja em cada emissor.

No experimento trabalhou-se com KCl - PA (99,5%) que implicou na correção da quantidade para 23,873 gramas de KCl por emissor e sendo 36 emissores resultou no total de 859,43 gramas de KCl por fertirrigação, usada em todos os testes e em todos os tempos de aplicação do fertilizante.

TEMPO	ppm	TEMPO	ppm	TEMPO	ppm
0	6208	•	-	-	-
1	5849	21	1496	41	360
2	5312	22	1413	42	331
3	5205	23	137 0	43	303
4	5132	24	1262	44	292
5	4631	25	1191	45	274
6	4309	26	1119	46	227
7	4022	27	976	47	206
8	3771	28	940	48	191
9 ·	3521	29	832	49	180
10	3341	30	825	50	162
11	3162	31	782	51	134
12	2893	32	707	52	113
13	2696	33	653	53	102
14	2445	34	618	54	98
15	2356	35	582	55	94
16	2177	36	517	56	87
17	1997	37	496	57	69
18	1890	38	460	58	55
19 .	1729	39	438	59	45
20	1621	40	384	60	37

***** *

QUADRO 14 - Variação da concentração de potássio no tanque de derivação de fluxo para tempo de aplicação de 60 minutos.

TEMPO	ppm	TEMPO	ppm	TEMPO	ppm
0	6203		-	•	
. 1	6154	31	1610	61	361
2	5904	32	1560	62	301
3	5704	33	1465	63	286
4.	5530	34	1410	64	246
5	5205	35	1400	65	231
6	4955	36	1315	66	221
7	4556	37	1210	67	216
8	4506	38	1165	68	206
9	4406	39	1150	69	186
10	4206	40	1050	70	161
11	4156	41	960	71	156
12	3907	42	891	72	142
13	3657	43	871	73	137
14	3507	44	861	74	122
15	3457	45	841	75	117
16	3307	46	811	76	112
· 17	3208	47	786	77	102
18	3083	48	784	78	87
19.	2808	48	671	78	84
20	2658	50	611	80	81
21	2508	51	601	81	75
22	2359	52	516	82	72
23	2319	53	506	83	65
24	2169	54	466	84	59
25	2099	55	441	85	56
26	1964	56	436	86	46
27	1909	57	416	87	39
28	1809	58	411	88	36
29	1769	59	381	89	27
30	1635	60	376	90	20

QUADRO 15 - Variação da concentração de potássio no tanque de derivação de fluxo para tempo de aplicação de 90 minutos.

•

× *

.

TEMPÓ	ppm	TEMPO	ppm	TEMPO	ppm	TEMPO	ppm
0	6205	-	_	-		<u> </u>	
: 1	6107	31	2294	61	865	91	275
2	5766	32	2216	62	836	92	250
3	5522	33	2157	63	816	93	245
4	5400	34	2060	64	767	94	241
5	5229	35	1972	65	758	95	231
6	5083	36	1923	66	743	96	221
7	4791	37	1874	67	694	97	206
8	4742	38	1811	68	6 7 0	98	197
9	4498	39	1674	69	645	99	192
10	4400	40	1645	7 0	621	100	182
11	4352	41	1621	71	611	101	172
12	4205	42	1562	72	592	102	158
13	4108	43	1513	73	553	103	153
14	3962	44	1474	74	543	104	148
15	3840	45	1416	75	519	105	143
16	3669	46	1377	76	499	106	138
17	3571	47	1328	77	489	107	133
18	3474	48	1279	78	460	108	128
19	3328	48	1270	79	450	109	109
20	3230	50	1255	80	445	110	104
21	3157	51	1231	81	441	111	70
22	3084	52	1182	82	411	112	65
23	3035	53	1109	83	402	113	41
24	2967	54	1094	84	382	114	36
25 .	2889	55	1084	85	377	115	26
26'	2791	56	1035	86	353	116	16
27	2586	57	987	87	328	117	11
28	2523	58	948	88	314	118	7
29	2411	59	899	89	294	119	2
30	2328	60	889	90	280	120	2

QUADRO 16 - Variação da concentração de potássio no tanque de derivação de fluxo para tempo de aplicação de 120 minutos.

s. *

٠

QUADRO 17 - Condutividade elétrica (µS/cm) de amostras de água coletadas nos microaspersores durante o teste com tanque de derivação de fluxo e tempo de fertirrigação de 60 minutos.

Micro	<u>.</u> T1	T2	T3	T4	T5	T6	Т7	Т8	Т9	T10
1	1781	2500	2250	2000	1750	1500	1188	813	505	202
3	2312	2525	2275	2000	1781	1494	1188			
5	1487	2512						810	494	202
			2250	2000	1775	1500	1188	803	494	202
7	1487	2500	2263	2000	1794	1500	1188	806	505	199
9	1025	2487	2250	2000	1788	1500	1150	800	494	199
11	787	2550	2300	2031	1800	1500	1200	806	505	199
13	550.	2537	2281	2031	1781	1500	1125	800	505	200
15	365	2500	2312	2050	1800	1500	1200	819	505	204
17	284	2587	2325	2063	1813	1518	1206	819	506	204
19	157	2587	2325	2063	1813	1513	1200	815	506	202
21	131	2550	2325	2063	1806	1500	1206	819	513	202
23	118	2594	2325	2088	1813	1525	1213	823	513	202
25	118	2594	2362	2125	1844	1531	1225	850	516	203
27	118	2569	2375	2119	1863	1550	1238	856	519	204
29	118	2587	2406	2119	1868	1550	1281	863	528	204
31	118	2594	2425	2163	1875	1563	1288	863	536	205
33	. 118	2450	2444	2188	1906	1613	1313	875	538	204
35	118	1138	2483	2213	1969	1656	1338	938	556	203

QUADRO 18 - Condutividade elétrica (µS/cm) de amostras de água coletadas nos microaspersores durante o teste com tanque de derivação de fluxo e tempo de fertirrigação de 90 minutos.

٠

Micro	T 1	T2	T3	T4	T5	Т6	T7	T8	Т9	T 10
		·								
1	1757	1623	1464	1281	1098	922	726	527	323	156
3	1781	1623	1464	1281	1098	925	726	531	323	156
5	1781	1623	1464	1281	1098	925	726	531	327	155
7	1809	1623	1464	1281	1098	921	722	534	327	159
9	1781	1635	1464	1281	1098	927	722	527	329	156
11	1769	1647	1464	1281	1098	927	720	527	327	157
13	1760.	1659	1464	1293	1098	921	720	525	323	159
15	1745	1659	1464	1293	1098	915	720	528	323	159
17	1696	1647	1464	1293	1104	915	726	531	323	159
19 .	1653	1647	1464	1293	1110	927	734	536	331	155
21	1653	1635	1476	1293	1098	927	738	522	331	155
23	1604	1647	1476	1293	1113	933	726	536	332	155
25	1568	1647	1476	1299	1122	937	732	538	339	156
27	1452	1671	1488	1312	1110	942	742	544	333	155
29	· 952	1659	1525	1336	1147	946	747	543	329	157
31	433	1678	1513	1342	1159	952	756	543	336	155
33	- 118	1708	1549	1342	1159	964	756	549	342	159
35	118	1720	1 <i>5</i> 49	1391	1190	97 6	778	567	342	161

QUADRO 19 - Condutividade elétrica (µS/cm) de amostras de água coletadas nos microaspersores durante o teste com tanque de derivação de fluxo e tempo de fertirrigação de 120 minutos.

Micro	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	T10
1	1354	1232	1064	91 7	815	686	564	409	296	156
3	1354	1232	1080	927	817	686	564	443	296	156
5	1354	1232	1086	927	820	691	564	443	296	156
7	1354	1232	1086	927	817	686	559	442	296	156
9	1366	1238	1098	930	809	689	<i>5</i> 65	439	299	156
11	1342	1220	1068	931	805	689	567	439	295	156
13	1348	1220	1086	937	816	689	571	442	299	156
15	1348	1220	1080	927	815	693	576	442	299	156
17	1342	1220	1074	927	815	695	580	445	299	156
19	1342	1220	1081	927	817	693	580	445	299	156
21	1360	1183	1074	925	803	693	580	447	293	156
23	1354	1098	1068	952	805	689	580	450	296	156
25	1342	1208	1080	949	811	702	58 0	445	293	156
27	1354	1208	1080	946	827	702	592	445	299	156
29	1330	1244	1086	952	830	695	597	458	303	159
31	1318	1244	1098	976	842	695	586	458	303	159
33	1159	1257	1098	976	842	732	586	458	303	159
35	376	1293	1159	1007	854	708	598	464	305	159

s. *

.

QUADRO 20 - Quantidade de potássio (miligramas) aplicado através de cada microaspersor com uso de tanque de derivação de fluxo, para tempo de fertirrigação de 60 minutos.

Micro	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-1 0
1	337	919	1159	1195	1231	1296	1360	1378	1442	1542
3	<u>4</u> 45	1045	1172	1203	1242	1307	1356	1375	1424	1506
5	278	855	1162	1195	1240	1307	1360	137 0	1414	1506
7	278	852	1162	1198	1247	1315	1360	1372	1433	1532
9	184	744	1155	1195	1245	1312	1339	1338	1410	1490
11	136	705	1184	1218	1260	1317	1366	1382	1433	1532
13	88	648	1176	1214	1253	1309	1325	1318	1425	1535
15	50	597	1175	1228	1266	1317	1366	1392	1450	1548
17	34	599	1200	1236	1275	1331	1380	1396	1451	1551
19	8	570	1200	1236	1275	1328	1374	1389	1446	1545
21	3	555	1191	1236	1273	1320	1370	1396	1461	1568
23	1	563	1202	1244	1284	1333	1387	1405	1466	1568
25	. 1	563	1212	1266	1308	1350	1397	1435	1506	158
27	1	558	1208	1268	1313	1366	1415	1450	1518	1594
29	1	562	1221	1277	1315	1368	1439	1489	1539	1623
31	1	563	1228	1296	1332	1377	1450	1495	1550	165
33	1	531	1196	1309	1352	1412	1492	1524	1569	165
35	1	233	869	1328	1383	1457	1529	1592	1677	171

x *

QUADRO 21 - Quantidade de potássio (miligramas) aplicado através de cada microaspersor com uso de tanque derivação de fluxo, para tempo de fertirrigação de 90 minutos.

.

•

Micro	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10
1	518	1105	1139	1156	1166	1189	1211	1234	1272	1235
3	509	1097	1139	1156	1166	1191	1214	1239	1281	1235
5	525	1114	1139	1155	1166	1191	1214	1239	1289	1250
7	534	1124	1138	1156	1166	1188	1206	1238	1295	1270
9	525	1118	1144	1156	1166	1192	1212	1229	1285	1265
11	521	1118	1148	1156	1166	1192	1210	1227	1281	1260
13	519	1120	1153	1161	1173	1188	1205	1225	1268	1250
15	514	1114	1153	1161	1173	1184	1200	1228	1275	1250
17 [.]	498	1093	1149	1161	1176	1188	1205	1239	1281	1250
19	485	1078	1149	1161	11 7 9	1200	1222	1255	1308	1270
21	485	1073	1149	1167	1173	1192	1226	1243	1279	1270
23	469	1060	1153	1167	1181	1206	1220	1245	1310	1275
25	458	1048	1153	1169	1189	1215	1229	1256	1330	1316
27	421	1015	1168	1181	1190	1210	1242	1274	1328	1280
29	263	835	1178	1209	1223	1237	1250	1279	1318	1270
31	100	660	1181	1206	1233	1249	1262	1290	1332	1295
33	1	561	1207	1223	1233	1258	1273	1297	1357	1346
35	1	565	1211	1245	1276	1286	1302	1346	1395	1356

QUADRO 22 - Quantidade de potássio (miligramas) aplicado através de cada microaspersor com uso de tanque derivação de fluxo, para tempo de fertirrigação de 120 minutos.

Micro	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10
1	514	1083	1087	1061	1074	1110	1152	1176	1282	1448
3	514	1083	1096	10 77	1083	1111	1152	1230	1375	1448
5	514	1083	1099	1080	1085	1118	1158	1230	1375	1448
7	514	1083	1099	1080	1083	1111	1146	1221	1372	1448
9	519	1091	1108	1089	1079	1107	1156	1226	1372	1468
11	509	1072	1083	1072	1077	1103	1159	1229	1361	1441
13	512	1075	1099	1094	1089	1113	1163	1240	1380	1468
15	512	1075	1089	1077	1082	1116	1173	1248	1380	1468
17	509	1072	1086	1073	1082	1117	1180	1258	1389	1468
19	509	1072	1090	1077	1083	1117	1178	1259	1389	1468
21	517	1063	1067	1071	1072	1105	1178	1262	1378	1428
23	514	1021	1019	1084	1092	1103	1173	1267	1394	1448
25	509	1066	1083	1090	1095	1120	1188	1259	1372	1428
27	514	1072	1083	1088	1103	1134	1202	1278	1389	1468
29	504	1077	1105	1095	1110	1131	1120	1307	1435	1515
31	499	1072	1111	1117	1136	1141	1187	1289	1435	1514
33	433	1004	1118	1117	1136	1174	1229	1289	1435	1515
35	107	660	1169	1173	1167	1163	1215	1318	1457	1528

م

÷ Micro **T1** T2 Т3 T4 T5 **T6** T7 **T8 T9** T10

 QUADRO 23 - Condutividade elétrica (μS/cm) de amostras de água coletadas nos microaspersores durante o teste com bomba injetora e tempo de fertirrigação de 60 minutos.

QUADRO 24 - Condutividade elétrica (µS/cm) de amostras de água coletadas nos microaspersores durante o teste com bomba injetora e tempo de fertirrigação de 90 minutos.

Micro	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10
1	437	485	485	502	502	505	505	505	519	539
3	426	471	485	488	495	505	505	505	509	539
5	426	485	488	491	505	505	505	509	509	539
7	406	464	478	485	485	485	495	498	502	539
9	406	461	474	481	485	485	495	495	495	536
11	392	464	478	481	485	485	495	495	495	536
13	382	461	467	471	478	481	491	485	495	536
15	358	454	464	464	478	481	491	485	495	536
17	334	454	464	464	47 1	481	491	495	495	536
19	303	454	461	464	471	478	481	488	491	536
21	279	454	461	461	461	474	481	485	488	536
23	245	443	457	461	464	467	474	481	485	536
25	183	443	457	461	461	464	474	481	488	536
27	142	440	454	454	461	464	467	474	481	536
29	128	443	454	454	461	464	467	474	485	536
31	123	437	454	454	454	464	471	471	485	536
33	123	440	454	454	461	464	471	471	478	536
35	123	430	447	454	464	464	471	471	471	536

÷ Micro Tl T2 Т3 **T4** T5 **T6** T7 **T9** T10 **T8**

 QUADRO 25 - Condutividade elétrica (μS/cm) de amostras de água coletadas nos microaspersores durante o teste com bomba injetora e tempo de fertirrigação de 120 minutos.

Micro	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10
1	21	146	284	357	459	602	808	1174	2068	5114
3	17	141	283	355	458	603	806	1174	2068	5114
5	16	138	283	357	462	601	801	1170	2061	5114
7	10	133	283	360	462	604	808	1173	2049	5086
9	8	130	282	357	462	602	803	1170	2049	5086
11	8	130	282	357	462	602	803	1170	2049	5086
13	2	120	277	355	461	601	799	1171	2068	5114
15	2	118	274	354	461	608	811	1164	2056	5114
17	2	111	266	358	467	610	815	1170	2056	5114
19	2	111	266	355	462	601	799	1164	2056	5114
21 .	2	113	271	357	459	604	808	1161	2051	5114
23	2	116	272	355	462	606	806	1157	2044	5114
25	2	114	268	353	460	607	811	1157	2039	5114
27	2	111	265	352	460	606	811	1154	2033	5114
29	1	107	261	351	456	602	808	1154	2026	5098
31	1	111	266	357	465	610	820	1167	2033	5069
33	1	57	207	359	465	610	820	1167	2033	5069
35	1	47	195	357	465	610	822	1171	2033	5069

QUADRO 26 - Estimativa da quantidade de potássio (miligramas) aplicado através de microaspersor com uso de bomba injetora para tempo de fertirrigação 60 minutos.

QUADRO 27 - Estimativa da quantidade de potássio (miligramas) aplicado através de microaspersor com uso de bomba injetora para tempo de fertirrigação 90 minutos.

с.

;	•		_							
Micro	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10
1	127	305	371	430	520	650	839	1187	2037	5203
3	123	294	364	428	514	644	839	1187	2037	5203
5	123	300	372	433	516	644	839	1191	2042	5203
7	115	282	357	423	505	619	807	1166	2022	5191
9	115	281	353	418	502	619	802	1143	1974	5140
11	109	276	357	421	502	619	801	1141	1961	5101
13	105	270	350	409	491	609	791	1129	1959	5108
15	96	256	345	403	486	609	789	1128	1959	5107
17	86	246	345	403	486	609	788	1126	1959	5107
19	74	232	343	4 Ö 1	486	607	785	1126	1959	5107
21	64	221	343	400	482	605	785	1126	1959	5107
23	51	205	341	398	482	604	784	1123	1956	5107
25	26	177	340	398	482	603	782	1120	1953	5108
27	10	158	338	396	478	602	781	1118	1953	5108
29	4	151	338	397	478	599	778	1117	1951	5108
31	2	148	338	397	477	597	776	1115	1951	5108
33	2	148	336	396	477	597	776	1114	1948	5108
35	2	147	334	394	476	595	773	1111	1948	5108

QUADRO 28 - Estimativa da quantidade de potássio (miligramas) aplicado através de microaspersor com uso de bomba injetora para tempo de fertirrigação 120 minutos.

Micro	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10
1	120	296	377	440	528	652	844	1199	2100	5198
3	116	292	377	440	528	652	844	1193	2090	5198
5	112	286	375	440	528	652	844	1193	2090	5198
7	133	309	375	440	528	652	844	1193	2090	5198
9	109	282	375	440	526	648	844	1193	2090	5198
11	104	275	373	440	526	648	844	1193	2090	5198
13	102	273	373	437	522	648	844	1193	2090	5198
15	95	265	373	437	522	648	844	1193	2090	5198
17	76	244	373	437	522	648	844	1193	2090	5198
19	63	230	373	437	522	648	844	1193	2080	5174
21	58	224	373	437	522	648	844	1193	2080	5174
23	46	211	373	437	522	648	844	1193	2080	5174
25	22	185	373	437	522	648	844	1193	2080	5174
27	7	167	373	437	522	648	844	1193	2080	5174
29	5	166	373	437	522	648	844	1193	2080	5174
31	5	166	373	437	520	645	844	1193	2080	5174
33	4	162	370	437	520	645	844	1193	2080	5174
35	4	160	368	437	520	639	831	1179	2066	5174