
JOSÉ PEREIRA DA SILVA JUNIOR

EFEITO DA FORMONONETINA (7-HIDROXI, 4'-METOXI ISOFLAVONA) NA MICORRIZAÇÃO, CRESCIMENTO E NUTRIÇÃO DO MILHO E SOJA

Dissertação apresentada à Escola Superior de Agricultura de Lavras, como parte das exigências do Curso de Pos-Graduação em Agronomia, area de concentração Solos e Nutrição de Plantas, para obtenção do grau de MESTRE.

LAVRAS

LAVRAS - MINAS GERAIS

1993

EFEITO DA FORMONONETINA (7-HIDROXI, 4'-METOXI ISOFLAVONA) NA MICORRIZAÇÃO, CRESCIMENTO E NUTRIÇÃO DO MILHO E SOJA

JOSÉ PEREIRA DA SILVA JÛNIOR

APROVADA:

Prof Dr. José Oswaldo Siqueira

Orientador

Profe.Dre Fātima Maria S. Moreira

Pesq. Dr. Itamar Ferreira de Sousa

Aos meus pais, José Pereira e Nazareth

DEDICO

Ao contribuinte,
MINHA HOMENAGEM

AGRADECIMENTOS

A Escola Superior de Agricultura de Lavras e ao Departamento de Ciencia do Solo, pela oportunidade oferecida para a realização do Curso e ensinamentos recebidos.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela concessão da bolsa.

Ao professor José Oswaldo Siqueira pelas sugestões e orientação na realização dos trabalhos.

A professora Fátima Maria de Souza Moreira e ao pesquisador Itamar Fereira de Sousa pelas sugestões e atenção.

A estagiária Silvia Renata, companheira de trabalho, pela amizade e colaboração na realização dos trabalhos.

Aos colegas Orivaldo José Saggin Jr., Mirian Josefina Baptista e ao laboratorista Manoel Aparecido da Silva pela amizade, convivência e apoio.

Aos amigos Ricardo, Divania e Gidelma Brito de Lemos, cuja amizade e apoio incondicional foram fundamentais em mais essa jornada.

Aos companheiros de curso Djail dos Santos e Wenceslau Geraldes Teixeira, cuja convivência tornou mais leve e agradável o transcorrer desse período.

Aos funcionários dos Laboratórios de Análise de Solo e Análise Foliar do Departamento de Ciëncia do Solo que contribuiram para a realização deste trabalho.

Aos companheiros Valdemir, Gilmar, Leovegildo, Adriano, Eliane, Cristiane e Hedinaldo, pela amizade e agradável convivência.

A todos os estagiários do Laboratório de Microbiologia do Solo pela amizade.

A todos que de alguma forma contribuiram para a concretização deste projeto.

O Meu Mais Sincero

Obrigado

BIOGRAFIA DO AUTOR

JOSÉ PEREIRA DA SILVA JÜNIOR, filho de José Pereira da Silva e Maria Nazareth Pinheiro da Silva, nasceu em Sapé, estado da Paraíba, no dia 12 de abril de 1968.

Concluiu seus estudos básicos no Colégio Agrícola Vidal de Negreiros da Universidade Federal da Paraíba em 1985, na cidade de Bananeiras (PB).

Em março de 1986 iniciou o curso de Agronomia na Universidade Federal da Paraíba, graduando-se Engenheiro Agrōnomo em agosto de 1990.

Em março de 1991 iniciou o curso de Pós-Graduação em Agronomia, área de concentração em Solos e Nutrição de Plantas, na Escola Superior de Agricultura de Lavras, concluindo-o em dezembro de 1993.

SUMÁRIO

1.	INTRODUÇÃO	1
2.	REVISÃO DE LITERATURA	3
	2.1. As micorrizas vesículo-arbusculares (MVA)	3
	2.2. Fatores que controlam a micorrização	10
	2.3. Composto fenólicos na simbiose MVA	14
ļ		
3.	MATERIAL E MÉTODOS	21
	3.1. Avaliação da resposta à formononetina em diferentes	
	épocas	21
	3.2. Efeito da concentração da solução de formononetina	24
	3.3. Aplicação de formononetina em soja inoculada com	
	diferentes espécies de fungos MVA	25
	3.4. Parâmetros e determinações	27
	3.5. Análise estatística	29

_		
4.	RESULTADOS E DISCUSSÃO	30
	4.1. Avaliação da resposta à formononetina em diferentes	
	épocas	30
	4.2. Efeito da concentração da solução de formononetina	45
	4.3. Aplicação de formononetina em soja inoculada com	
	diferentes espécies de fungos MVA	56
5.	CONCLUSÕES	68
6.	RESUMO	70
7.	SUMMARY	73
8.	REFERÊNCIAS BIBLIOGRÁFICAS	76
	APÊNDICE	91

LISTA DE QUADROS

)uadro		Página
1	Médias nas diferentes épocas de avaliação e	
	dados da análise de regressão de alguns	
	parâmetros da soja com e sem efeito da apli-	
	cação de formononetina no solo	34
2	Médias nas diferentes épocas de avaliação e	
	dados da análise de regressão de alguns	
	parâmetros do milho com e sem efeito da	
	aplicação de formononetina no solo	38
3	Médias e ajustes de regressão para cresci-	
	mento, colonização micorrízica, teores e	
	conteúdos de nutrientes por planta de soja	
	em diferentes concentrações de formononetina	
	aplicada no solo. (Médias de 5 repetições) .	47

Quadro		Págin
4	Médias e ajustes de regressão para crescimen-	
	to, colonização micorrízica, teores e conteú-	
	dos de nutrientes por planta de milho em di-	
	ferentes concentrações de formononetina	
	aplicada no solo. (Médias de 5 repetições) .	52
5	Parâmetros de colonização micorrízica aos 30	
1	e 50 dias em soja inoculada com diferentes	
	fungos MVA em solo com (CF) e sem (SF) apli-	
	cação de formononetina	58
6	Crescimento, produção de matéria fresca da	
	parte aérea e matéria seca de raiz aos 50	
	dias de soja inoculada com diferentes fungos	
	MVA (média de 8 repetições)	63
7	Teores (% e ppm) e conteúdos (mg e ug) de	
	nutrientes aos 30 dias em soja inoculadas com	
	diferentes espécies de fungos MVA (Médias de	
	8 repetições)	65
8	Teores (% e ppm) e conteúdos (mg e ug) de	
	nutrientes aos 50 dias em soja inoculadas com	
	diferentes espécies de fungos MVA (Médias de	
	8 repetições)	66

LISTA DE FIGURAS

Figura		Página
1	Parâmetros de colonização micorrízica da soja na presença e ausência de formononetina (F).	
	Dados transformados	31
2	Resposta dos pontos de entrada primários e secundários da soja na presença e ausência de	
<u>†</u> :	formononetina (Form)	32
3	Parâmetros de colonização micorrízica do milho na presença e ausência de formonone-	
	tina (F). Dados transformados	36
4	Teores foliares de macro e micronutrientes no milho na presença e ausência de formonone-	
	tina (F)	37

Figura		Página
5	Parâmetros de colonização micorrízica da soja	
	e milho em função da concentração da solução	
	de formononetina. Dados transformados	46
5	Produção de matéria seca na parte aérea da	
	soja e milho em função da concentração da	
	solução de formononetina	48
7	Nutrientes na folha da soja em função da	
	concentração da solução de formononetina	50
8	Nutrientes na folha do milho em função da	
	concentração da solução de formononetina	53
9	Percentagem de colonização, pontos de entrada	
	primários e densidade de arbúsculos na soja	
	inoculadas com diferentes fungos MVA na	
	presença e ausência de formononetina (Form).	
	(AM - A. morrowae, GM - G. margarita, GC -	
	G. clarum, GE - G. etunicatum e SH -	
	S. heterogama)	57

7	สมหล
	4 UL G

Página

1. INTRODUÇÃO

Micorriza vesículo-arbuscular (MVA) é uma simbiose mutualista biotrófica resultante da associação entre Glomales e a maioria das plantas vasculares. associação é de ocorrência bastante generalizada, apresentando grande importância nos diversos agro e ecossistemas. Os efeitos benéficos da associação para o crescimento das plantas resulta principalmente do aumento na absorção e utilização de nutrientes minerais, em especial do fósforo, sob condições fertilidade. O processo de colonização das raízes pelos envolve uma série de eventos morfo-fisiológicos e bioquímicos, regulados pelo genoma do fungo e da planta, bem como por fatores No entanto, as bases moleculares ambientais. do processo de colonização são ainda desconhecidas.

Compostos fenólicos do tipo flavonóides têm sido considerados dentre os fatores da planta ativos sobre os fungos MVA. Esses compostos constituem importante classe de metabólitos

secundários das plantas, sendo comumente encontrados nos ecossistemas vegetais, onde atuam como reguladores naturais de vários processos do sistema solo-planta, conforme revisado por SIQUEIRA et al. (1991a).

Vários estudos recentes evidenciam a atividade dos flavonóides na germinação, crescimento micelial de esporos e colonização das raízes pelos fungos MVA, podendo esses compostos atuarem como estimulantes ou inibidores (CHABOT et al., GIANINAZZI-PERSON et al., 1989; MORANDI et al., 1992; NAIR et SIQUEIRA et al., 1991 b,c; e TSAI & PHILLIPS, 1992). al., 1990; flavonóides estudados, destaca-se o Dentre os isoflavonóide formononetina, primeiro composto a ser identificado como estimulante da micorrização (SIQUEIRA et al., 1991b). Α formononetina acelera a colonização micorrízica em baixa densidade de propágulo e exerce efeitos favoráveis crescimento da planta, apresentando grande potencial para aplicação comercial como bioestimulante do solo (SIQUEIRA et al., 1992). A aplicação deste composto poderá contribuir aumentar a produção agrícola e reduzir o impacto da agricultura meio ambiente. No entanto, para viabilizar o uso comercial desse composto na agricultura como regulador da simbiose necessário melhor entendimento do seu modo de ação. No presente trabalho avaliaram-se os efeitos da aplicação de formononetina ao solo na colonização micorrízica, crescimento e nutrição da soja e milho.

2. REVISÃO DE LITERATURA

2.1. As Micorrizas Vesículo-Arbusculares (MVA)

Micorrizas são associações simbióticas mutualistas estágio patogênico, formadas por determinados fungos e as raízes maioria das plantas vasculares. Essas associações foram classificadas por LEWIS (1975) de acordo com suas características morfo-anatômicas ectomicorrizas, micorrizas em: arbutáceas, micorrizas ericáceas, micorrizas orquidáceas e micorrizas vesículo arbusculares (MVA). As ectomicorrizas caracterizam-se pelo desenvolvimento intercelular do fungo no córtex, com formação da rede de Hartig e manto de micélio externo. Já as micorrizas arbutáceas apresentam características semelhantes às ectomicorrizas diferindo destas por terem crescimento do fungo intracelular. micorrizas ericáceas e orquidáceas possuem como característica morfológica a penetração intercelular e intracelular, diferindo entre si principalmente pelos simbiontes envolvidos.

As MVA ocorrem nas raízes da maioria das espécies vegetais formadas por fungos da família Glomales, pertencentes sub-divisão Zigomycotina (MORTON & BENNY, 1990). Nesse tipo de micorriza as hifas fúngicas crescem no parênquima cortical, com penetração inter e intracelular, bem como extraradicularmente, mamificando-se no solo. Na fase de crescimento intraradicular formam estruturas denominadas pelotões, arbúsculos vesículas. Os pelotões alguns casos são resultantes do enovelamento das hifas no interior das células corticais. Os arbúsculos originam-se da intensa ramificação dicotômica das hifas intracelulares, sendo envolvidas por invaginações da membrana plasmática das células hospedeiras. Na interface formada ocorre a troca de nutrientes e metabólitos entre os simbiontes. As vesículas são estruturas geralmente terminais de podendo ser esféricas ou ovais. Elas podem ser inter ou intracelular, dependendo da espécie hospedeira, sendo órgão de reserva ou em alguns casos caracterizada como como estruturas reprodutivas (GEDERMAN, 1968).

O estabelecimento do fungo simbionte na raíz da planta hospedeira resulta de uma série de eventos fisiológicos e bioquímicos, controlados pelo genoma do fungo e da planta hospedeira (SIQUEIRA, 1991). O início desses eventos se dá a partir do crescimento da hifa originada de esporos presentes no solo ou a partir de raízes próximas já colonizadas (SMITH & GIANIMAZZI-PEARSON, 1988). Em função da origem da hifa infectiva,

a colonização pode ser considerada primária ou secundária. colonização primária tem início diretamente do esporo, que a secundária desenvolve-se do micélio externo proveniente colonização primária (HARLEY & SMITH, 1983 e TOMMERUP, 1984). colonização primária verifica-se o crescimento de um ou vários tubos germinativos, sendo produzido um micélio simples, comprimento total de hifa é de poucos centimetros (HARLEY SMITH, 1983). A hifa quando atinge a superficie da epiderme radicular forma apressórios que permitem a penetração no córtex da raíz. 0s pontos de entrada derivados de uma única hifa infectiva e associados ao micélio interno formam a unidade de colonização. A unidade de colonização desenvolve-se para do córtex da raiz com as hifas crescendo inter e intracelular sentido longitudinal (SMITH & GIANINAZZI-PEARSON, 1988). expansão da hifa no tecido cortical há a formação de pelotões, arbúsculos e vesículas respectivamente, a medida que o avança para o interior do tecido (SANDERS & SHEIKH, 1983).

O processo de desenvolvimento de arbúsculos no interior de células do hospedeiro foi estudado por TOTH & MILLER (1984) na simbiose Zea mays X Glomus fasciculatum. Segundo os autores, o fungo penetra a parede celular do hospedeiro e o protoplasto deste invagina-se para acomodar o tecido fúngico. As invaginações se ramificam continuamente até o arbúsculo atingir a sua maturidade, quando chega a ocupar grande parte do volume celular, provocando mais divisão do sistema vacuolar da célula. A seguir,

os arbúsculos sofrem uma degeneração que é marcada pelo rápido colapso das ramificações mais finas em toda a célula. Esse processo continua até permanecer apenas o tronco ou a base do arbúsculo, o qual eventualmente entra em colapso. Com a continuidade da degeneração do arbúsculo e expansão do vacúolo, a célula do hospedeiro pode retornar ao estado de pré-invasão. O período de duração de processo de desenvolvimento e degeneração dos arbúsculos foi estimado pelos autores entre 10 e 12 dias.

desenvolvimento da colonização micorrízica seque dinâmica própria que apresenta três etapas bem definidas: 18 fase "lag", durante a qual a percentagem de micorrizadas permanece pequena; 2ª fase, caracterizada rápido crescimento da colonização e a 3 **a** fase. colonização tende a atingir um valor constante (BUWALDA et al., BRUNDRETT et al. (1985) estudando o desenvolvimento dos estágios iniciais da formação de micorrizas por Glomus vesiforme Karsten em alho-porró verificaram que a quantidade de externa presa a raiz aumentou rapidamente entre o segundo e sexto com os pontos de entrada sendo poucos no segundo dia. dia, autores sugerem que há uma fase "lag" de pelo menos um dia entre o contato da hifa com a raíz e a posterior penetração. Α cronologia dos vários eventos que compõe o processo colonização micorrízica tem sido bastante estudada em condições controladas. BRUNDRETT et al. (1985) observaram penetração com cerca de 2 dias; formação de arbúsculos entre segundo e quarto

dia e formação de vesícula depois do quarto ou quinto dia. Já BÉCARD & FORTIN (1988) verificaram que o início da colonização da epiderme e córtex aparece no terceiro dia após o contato inicial, formando arbúsculo no quinto dia. ALEXANDER et al. (1988), constataram estágios iniciais de desenvolvimento de arbúsculos no segundo dia após ocorrer o início da colonização.

O estabelecimento do fungo MVA na raiz da planta hospedeira geralmente em aumento do crescimento da planta. resposta em crescimento ao estabelecimento, conforme revisado por SMITH é determinada pelo balanço entre os estimulante e detrimental, causado pelo dreno de fotossintato para fungo. De acordo com revisão de LOPES et al. (1993) o efeito estimulante da simbiose pode resultar de um ou mais mecanismos. entre os quais destacam-se: aumento na absorção e conservação de nutrientes; aumento na nodulação e fixação de No atmosférico; alteração na relação planta-patógeno; alteração na relação solo-planta; aumento na produção de fitohormônios; modificações anatômicas e fisiológicas; melhor adaptabilidade das plantas condições adversas.

Respostas em crescimento da planta hospedeira a formação de MVA relacionam-se, principalmente a melhoria do seu estado nutricional em condições de baixa fertilidade. O P é o nutriente cujo aumento de absorção é mais expressivo da resposta à micorrização (LOPES et al., 1983; O'KEEFE & SYLVIA, 1991 e SMITH, 1980). A cronologia dos eventos que levam a resposta em

crescimento segundo O'KEEFE & SYLVIA (1991) pode ser a seguinte: colonização e proliferação de hifas externas, elevação dos níveis de P nos tecidos; e aumento no crescimento. Nesse sentido. rapida colonização contribui para a efetividade da micorrízica (WILSON, 1984), sendo isto de importância primordial culturas anuais. PAULA et al. (1990) verificaram correlações positivas entre colonização e P na planta aos 60 dias, bem como entre colonização e produção de grãos de soja. Os autores observaram que as populações fúngicas mais infectivas uma maior absorção de P e produção de grãos. levaram a Nas populações mais infectivas havia a predominância de Glomus etunicatum. Isto corrobora o estudo de PEREIRA (1986) em soja, qual verificou que espécies de Glomus foram mais eficientes que de Gigaspora, Entrophospora e Acaulospora. Tais resultados levam a crer que aceleração da colonização micorrízica a aumentaria importância da MVA a nos primeiros estádios desenvolvimento da soja.

Embora o aumento da absorção do P pela ação da MVA seja confirmado em inúmeros trabalhos, a ação dessa associação sobre a cinética de absorção do P é ainda discutida. O'KEEFE & SYLVIA (1991) sugerem que a alteração da cinética de absorção de P nas MVA resulta do aumento dos sítios de absorção, implicando num maior Vmax (taxa máxima de absorção), ou pelo aumento da absorção por unidade de superfície absortiva, com redução do Km (concentração de P na qual a taxa de absorção é metade da taxa

máxima). Contudo, alta efetividade de fungo MVA pode advir não só do aumento da absorção de P, mas também da melhoria na utilização distribuição desse nutriente na planta (PAULA et al., PAULA et al. (1988) verificaram que a colonização da soja por Glomus macrocarpun reduziu o requerimento externo de P e aumentou eficiência de uso do P absorvido. Plantas micorrizadas adubadas com apenas 30 ppm de P₂O₅ atingiram a produção que foi obtida com 240 ppm de P₂O₅. Isto evidencia a importância micorrização com espécies efetivas de fungos MVA no aumento eficiência da adubação fosfatada. Em leguminosas a interação sinergística entre rizóbio e fungos MVA eleva a atividade nitrogenase (PAULINO et al., 1986), podendo propiciar nutrição mais equilibrada de P e N favorecendo a produção & SIQUEIRA, 1990). Ainda em relação a nutrição, FABER (1990) em experimento conduzido com milho observaram que sintomas de deficiência em Zn foram parcialmente reduzidos micorrização, porém não foi encontrada correlação entre os teores Zn nas plantas e percentagem de colonização. Segundo autores, a formação de MVA pode aumentar a absorção de solos onde este nutriente encontra-se em nível muito baixo. micorrização pode ainda reduzir a concentração de nutrientes na planta, sendo creditada tal redução ao de diluição desses nutrientes no tecido vegetal (PAULA et al., 1988).

Apesar dos benefícios das MVAs em culturas anuais, utilização a nível de campo apresenta sérias dificuldades. 0ssolos agricolas apresentam geralmente baixas densidades de e diversidade de espécies (JOHNSON & PFLEGER, Além disso, há diferenças inter e intraespecíficas nos fungos MVA em relação a efetividade simbiótica (MAHMUD, 1983; PAULA et al., 1987 e PEREIRA, 1986). A inoculação com diferentes espécies levar a aumentos da colonização e da produção das culturas, observado por MIRANDA (1982) em sorgo e soja em solo de cerrado. Contudo a adoção desta prática é inviável em culturas anuais função da grande quantidade de inóculo exigida (BAGYARAJ, 1991). A adoção de práticas de manejo com a finalidade de maximizar efeitos de espécies nativas parece ser a única estratégia existente com o nível atual de conhecimento sobre a simbiose MVA.

2.2. Fatores que Controlam a Micorrização

estabelecimento e funcionamento das MVA são afetados controlados pela interação entre fungo, planta e pelos ambientais (clima e solo). Além dos genes da planta envolvidos estabelecimento da simbiose MVA (DUC et al., 1989), de natureza morfológica e metabólica das raízes exercem influência sobre a colonização micorrízica. de crescimento. distribuição espacial e duração da fase de susceptibilidade, são aspectos morfológicos da que

determinam o contato fungo-raiz, e consequentemente a colonização (BRUNDRETT, 1991). GRAHAM et al. (1981) estudando o mecanismo controle da simbiose MVA pela planta via P, verificaram que alteração da exsudação radicular ocasionada pelo aumento đa permeabilidade da membrana é um importante fator no controle da atividade do fungo e consequetemente na formação de MVA. Por outro lado, a produção de metabólicos secundários ser considerada COMO parte características das diferenciais importantes entre espécies micorrízicas e não micorrízicas. Exsudatos de plantas hospedeiras estimulam a germinação crescimento de hifa (ELIAS & SAFIR, 1987; BECARD & PICHÉ, TOMMERUP, 1984), exercendo efeito subsequente no processo colonização. Já os exsudatos de plantas não hospedeiras não aprésentam esse estímulo (BECARD & PICHÉ, 1989 e TOMMERUP, 1984).

influência exercida por raízes, células exsudatos e extratos radiculares e celulares sobre a germinação de esporos e crescimento micelial evidencia а produção liberação de fatores que estimulam a atividade do fungos MVA (BECARD & PICHÉ, 1989; ELIAS & SAFIR, 1987 e PAULA & SIQUEIRA, 1990). ELIAS & SAFIR (1987) verificaram que exsudatos de de plântulas de trevo deficientes em P possuíam fatores estimulantes, enquanto que nos exsudatos de plântulas bem nutridas em P isto não foi observado. Isso reforça os indícios de que as plantas produzem compostos capazes de estimular De fato, células de Pueraria phaseoloides Benth fungos MVA.

produzem fatores estimulantes ao crescimento micelial in vitro (PAULA & SIQUEIRA, 1990). BECARD & PICHÉ (1989) sugeriram dois mecanismos distintos para o estímulo das raizes ao crescimento micelial: um nutricional e outro indutivo. A raiz pode induzir o fungo a utilizar melhor suas próprias reservas através de sinal químico que atua diretamente no crescimento ou elimina a auto-inibição.

A colonização depende muito da densidade de propágulo viáveis. WILSON (1984) trabalhando com 3 espécies de (Gigaspora decipiens, Glomus fasciculatum e Glomus tenue), observou que a colonização era mais rápida em alto nível inóculo. SANDERS & SHEIKH (1983) observaram que a redução densidade de esporo de 2,5 esporos/g para 0,25 esporo, ocasionou um atraso no desenvolvimento da colonização micorrízica no milho. Contudo, ao considerarem amplitude maior de diluição (100 a 10-5 esporos/g) verificaram aos 14 dias inexistência colonização nas diluições mais baixas, enquanto que a colonização na densidade de 25 esporos/g foi semelhante a observada em esporos/g. Segundo os autores, isto indica uma saturação das raizes nas densidades mais elevadas. A taxa e extensão da colonização micorrízica é função também da taxa de formação de unlidades de colonização por hifas extraradiculares da velocidade de crescimento do fungo dentro da raiz SMITH, 1983). WILSON (1984) verificou que a maior infectividade Glomus fasciculatum Gederman & Trappe quando comparado com

Gigaspora decipiens Hall & Abott e Glomus tenue Greenall (Hall) ocorreu em decorrência do seu maior crescimento no interior da raiz. Maiores taxas de colonização podem advir ainda da maior capacidade de germinar em determinadas condições (VAN NUFFELEN & SCHENCK, 1984).

Além de fatores inerentes aos simbiontes, fatores ambientais tem influência marcante sobre a micorrização. Α redução da fotoradiação tem efeito depressivo sobre colonização micorrizica e pontos de entrada (TESTER et al, 1986). edáficos podem atuar em diferentes fases da associação diferentemente nos dois simbiontes. A alta disponibilidade de nutrientes no solo acarreta reduções significativas na ocorrência e intensidade da simbiose MVA (JENSEN & JAKOBSEN. 1980). O P caracteriza-se como o fator edáfico maior importância no controle do nível de colonização e dos das MVA (SMITH. 1980). Altos níveis de P no solo, reduzem colonização micorrízica (COOPER, 1975; FERNANDES et al., 1987 SIQUEIRA & COLOZZI-FILHO, 1986). O nível critico de P para o desenvolvimento da simbiose é função da quantidade e difusão de P nφ solo, da espécie vegetal e do nível de outros fatores crescimento da planta (COOPER, 1975). 0 N também afeta das raízes por fungos MVA (SYLVIA & NEAL, 1990). colonização Outros fatores edáficos, tais como umidade, aeração, temperatura podem afetar a colonização das raízes por fungos MVA e pH. acordo com o revisado por LOPES et al. (1983). Em solos ácidos o

pH não é o único fator que controla a colonização visto que Al, Mn e metais pesados podem atuar como agentes fungistáticos (SIQUEIRA et al., 1984). A calagem reduz a ação fungistática desses metais, favorecendo a micorrização.

Outro aspecto de manejo a ser considerado em agrossistemas é a utilização de defensivos, que afeta os fungos MVA e a micorrização (TRAPPE et al., 1984), sendo seu efeito variável em função do modo de ação, seletividade e sítio de aplicação.

2.4. Compostos Fenólicos na Simbiose MVA

compostos fenólicos de origem vegetal são metabólitos secundários, sintetizados a partir das rotas metabólitas fénilpropanóides e flavonóides/chalcona. Os ácidos fenólicos, flavonóides e seus derivados destacam-se entre os composto fenólicos que se refere a produção no е ocorrência ecossistemas (SIQUEIRA et al., 1991a). Os flavonóides constituem uma das classes de compostos mais características que ocorrem vegetais superiores. Muitos são pigmentos de flores, porém geralmente estão presentes em todas as partes da planta. flavonóides são subdivididos em chalconas, flavononas, flavonas, flavonois isoflavonóides de acordo com a disposição dos aneis e grau de oxidação (HAHLBROCK, 1981).

Os compostos fenólicos presentes no solo exercem grande influência sobre os vários processos biológicos do sistema solo-

planta, refletindo sobre a produtividade dos agrossistemas e equilibrio dos ecossistemas. RICE (1984) destaca acão alelopática dos compostos fenólicos. incluindo entre aleloquímicos os fenóis, taninos, ácidos fenólicos, coumarinas, isoflavonóides dentre outros. flavonóides е Além da alelopática sobre as plantas e microorganismos no fenólicos estão envolvidos no estabelecimento funcionamento de relações simbióticas patogênicas e mutualistas (LYNN & CHANG, 1990). Em simbioses patogênicas, esses compostos podem atuar no mecanismo de defesa das plantas (DIXON 1990 e LAMB et al., 1989) ou como sinal molecular necessário reconhecimento e expressão de gens de virulência, simbioses patogênicas entre Angiosperma parasíticas do gênero Striga com Gramíneas e nas bactérias do gênero Agrobacterium LAMB, 1990; HALVERSON & STACEY, 1986 e LINN & CHANG, (DIXON & 1990).

Na simbiose entre rizóbio e as leguminosas ocorrem relações bem específicas, as quais são controladas por diversos gens. Esses gens são agrupados em gens nod ou fix de acordo com categoria funcional, sendo que os gens nod são necessários eventos iniciais da nodulação (SPRENT, 1989). Os expressam-se constitutivamente e uma série de outros gens nod, requerem o nodD e fatores da planta nodABC, para expressão (LINN & CHANG, 1990). Componentes de exsudatos radiculares e de sementes identificados como indutores da

transcrição dos gens nod, são fenólicos do tipo flavonóides (HARTWIG et al., 1989). Vários flavanóides foram identificados indutores e inibidores da nodulação, destacando-se entre indutores várias flavonas, flavononas e isoflavonas os (FIRMIN et al., 1986); chalconas (MAXWELL et al., 1989); antocianidinas e flavonois (HUNGRIA et al., 1991). Há porém, uma variação da ação de diferentes flavonóides sobre as diversas espécies rizóbio. Os gens nod em Rhizobium trifolii são induzidos por mais 20 diferentes flavonóides, enquanto que os de Rhizobium meliloti induzido por apenas 8 compostos. Bradyrhizobium japonicum e Rhizobium leguminosarum biovar phaseolli são induzidos pelas isoflavonas genisteina, daidzina e pela coumarina kaempferol, que apresenta ação inibitória em outras espécies de rizóbio, tais como Rhizobium trifolli (SIQUEIRA et al., 1991a). A formononetina possui atividade diversa em diferentes espécies de rizóbio. induz gens nod em R. fredii, não possui atividade (KOSSLAK et al.,1987) e R. trifolii B. japonicum (REDMOND et al.,1986). função da presença de indutores e inibidores rizosfera, a intensidade de nodulação poderia ser determinada pela concentração relativa desses compostos (FIRMIN al.. 1986).

Devido a ocorrência generalizada dos compostos fenólicos como metabólito secundário nas plantas, e a atividade reguladora destes compostos em outros sistemas simbióticos, espera-se que esses sejam também ativos na simbiose MVA. GIANINAZZI-PEARSON et

al. (1989) verificaram que os flavonóides narigenina, hesperetina e apigenina, indutores ativos de gens nod em rizóbio, também estimularam a germinação e crescimento do fungo MVA Gigaspora margarita, podendo atuar como sinais moleculares no processo colonização micorrízica. De fato NAIR et al. (1991) isolaram de raízes de trevo os isoflavonóides formononetina (7-hidroxi, 4'isoflavona) e biochanina A (5,7-dihidroxi, metoxi 4'metoxi isoflavona) que mostraram-se estimulantes ao crescimento assimbiótico de fungo MVA. Esses compostos quando aplicados no na concentração de 5 ppm estimularam a colonização micorrízica em raízes de trevo, milho e sorgo, aumentando também o crescimento das plantas (SIQUEIRA et al. 1991b, c). Ouando esses compostos foram aplicados na ausência de propágulos de fungos MVA não houve resposta no crescimento das plantas, indicando que seus efeitos são via estímulo na micorrização (SIQUEIRA et al., 1991c). Ao testarem no trevo outros flavonóides (chrysina, luteolina, genesteina, naringenina, 7.8dihidroxiflavona e hesperetina) os autores verificaram que apenas chrysina teve efeito semelhante aos isoflavonóides formononetina e biochanina A, porém em concentrações elevadas. A densidade de esporo no solo interfere no efeito estimulante da formononetina. SIQUEIRA et al. (1991c) verificaram que houve maximização dos efeitos benéficos da aplicação da formononetina quando a densidade de esporo no solo era em torno de 2 esporos/g solo. Em outro estudo, verificou-se

micorrização reduziu as injúrias causadas por a herbicida aumentou o crescimento do milho em solo com problemas "carryover" ocasionado pelo acúmulo do herbicida imazaquin (Scepter^R). aplicação de formononetina nessas condições reduziu as injúrias a um nível mínimo quando havia a presença de propágulos de fungos MVA (SIQUEIRA et al., 1991b). Em experimento conduzido em condições de campo, SIQUEIRA et al. (1992) observaram a aplicação de formononetina ao solo aumentou os teores que de Mg e S na parte aérea da soja, e a produtividade da soja Ça, do milho. Mais recentemente, BECARD et al. (1992) verificaram que flavonóides apigenina e biochanina A, já descritos por GIANINAZZI-PEARSON et al. (1989) e NAIR et al. (1991)**estimulantes** do crescimento assimbiótico de fungos MVA, mostraram-se inibitórios para Gigaspora margarita. Neste ensaio apenas flavonois quercetina, miricetina kaempferol estimularam crescimento assimbiótico fúngico. Atividade inibitória da formononetina sobre a germinação de fungo MVA foi observada por TSAI & PHILLIPS (1992). Baseados em resultados obtidos com flavonas, flavononas flavonois е isoflavonóides. CHABOT et al. (1992) sugeriram a existência de especificidade de estrutura química dos compostos dos flavonóides no estímulo drescimento assimbiótico de fungos MVA.

Tem sido verificado efeito diferencial de um mesmo composto sobre a germinação e o crescimento assimbiótico dos fungos MVA. BAPTISTA (1993) observou que a quercetina teve efeito

inibidor sobre a germinação e estimulante sobre o crescimento, enquanto a formononetina embora não tenha mostrado efeito sobre a germinação, estimulou o crescimento assimbiótico.

Em adição ao efeito estimulante, compostos fenólicos podem apresentar efeito detrimental sobre as MVA. Solo cultivado com aspargo durante 20 anos possui alta concentração de compostos fenólicos. como os ácidos cafeico. ferúlico metilenodioxicinâmico, os quais reduzem a colonização micorrízica do aspargo (PERDERSEN et al., 1991). Ácido ferúlico também apresentou um efeito inibitório sobre a colonização micorrizica de aspargo e crescimento micelial do fungo Glomus fasciculatum in vitro (WACKER et al., 1990). A produção de fenólicos pelo aspargo colonização trazendo consequências réduz negativas ao crescimento do aspargo, agravando assim seu potencial autoalelopático e o declinio desta cultura (PEDERSEN et al., 1991).

modo, verifica-se que os compostos fenólicos, e mais precisamente, os flavonóides desempenham uma importante função nas simbioses mutualistas, sendo inclusive a ação estimulante do isoflavonóide formononetina patenteada nos EUA para uso aditivo de solo ou sementes (US patent, 1991). Em vista espera-se que a racionalização do uso comercial da formononetina como aditivo de solo possa maximizar os beneficios dos fungos MVA para a agricultrua. O fato de que a maioria dos solos possuem baixa densidade de esporos, e a dificuldade para inocular economicamente culturas anuais, são evidências do grande

potencial para o uso dessa substância especialmente nas culturas anuais como o milho e soja. Estas espécies vegetais são muito dependente da micorrização nos solos tropicais (FERNANDES et al., 1987) e ocupam vastas áreas de cultivo no Brasil. Uma no requerimento externo de P, ocasionada pela manipulação da atividade dos fungos MVA nativos, representaria uma considerável redução do consumo de fertilizantes culturas, com consequente queda dos custos de produção. Em vista potencial, estudos visando avaliar deste os efeitos formononetina sobre as espécies vegetais micorrizo-dependentes, são cruciais para o desenvolvimento do uso deste composto agricultura.

3. MATERIAL E MÉTODOS

O estudo foi conduzido em casa de vegetação do Departamento de Ciência do Solo (DCS) da Escola Superior de Agricultura de Lavras (ESAL), constando de três experimentos visando avaliar a atividade da formononetina na simbiose micorrízica em soja e milho, separadamente. No primeiro experimento avaliou-se a a resposta à formononetina em diferentes épocas, no segundo avaliou-se a concentração da solução de formononetina e no terceiro avaliaram-se os efeitos da aplicação de formononetina na soja inoculada com diferentes espécies fúngicas.

3.1. Avaliação da Resposta à Formononetina em Diferentes Épocas

O experimento foi conduzido em vasos plásticos contendo 4,5 Kg de material de solo. Utilizou-se material de Latossolo Vermelho Amarelo fase cerrado coletado na estação experimental da Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), localizada no município de Patrocínio-MG. O material de solo foi

peneirado em malha de 4mm, seco ao ar e armazenado até ser usado. Antes de ser usado o material de solo recebeu calagem com calcário dolomítico (PRNT=92%) na base de 3,6 ton/ha, sendo em seguida umedecido e incubado por 30 dias, quando apresentou as seguintes características químicas: pH em água (1 : 2,5)= 6,; Ca = 3,2 meq/100 cm³, Mg = 1,2 meq/cm³, Al = 0,1 meq/cm³, extraídos com KCl 1N e determinado por titulometria; P = 1 ppm, K = 50 ppm, extraídos com Mehlich I e determinados P por colorimetria e K por fotometria de chama. Após a calagem o solo foi adubado com P na base de 120 e 80 ppm de P₂O₅ para a soja e milho respectivamente, tendo como fonte o superfosfato simples. A aplicação de superfosfato simples elevou o nível de P no solo para 22 e 15 ppm, respectivamente.

O solo não foi fumigado e apresentava 0,30 esporo/ml, tendo como espécies nativas predominantes Gigaspora margarita Becker & Hall, Glomus ocultum Walker e Acaulospora scrobiculata Trappe. Para elevar a densidade de esporo do solo, adicionou-se inóculo de Glomus etunicatum Becker & Gederman obtido de vaso de cultivo com Brachiaria decumbens Stapf. A densidade de esporo no inóculo era de 80 esporo/g determinada através da extração por peneiramento úmido (GEDERMAN & NICOLSON, 1963) e centrifugações em água e sacarose 50%, seguida da contagem em microscópio esteroscópio (20x). Após a inoculação o solo apresentou a densidade média de 1,85 esporo/ml.

O delineamento experimental foi inteiramente casualizado num esquema fatorial 2 x 4 com 5 repetições, sendo dois níveis de

formononetina (contole e 5 ppm) e quatro épocas de avaliação para cada cultura separadamente. Cada vaso correspondeu a parcela experimental. O milho foi avaliado aos 18, 30, 36 e 42 dias enquanto a soja foi avaliada aos 18, 30, 36 e 51 dias do plantio de sementes pré-germinadas. Utilizou-se em todos experimentos formononetina (7-hidroxi, 4'-metoxi isoflavona) sintética, fornecida pela Rhizotech, Inc. (Hopewell, New Jersey, USA). Para obter-se a solução, a formononetina foi dissolvida pequeno volume de metanol (menos de 1% do volume final), depois diluída em água destilada até a obtenção da concentração desejada (SIQUEIRA et al., 1991c). Nas testemunhas foi aplicado água destilada com igual volume de metanol. O volume de solução aplicado foi de 400ml/vaso, equivalente a 444 ug de formononetina por Kg de solo e correspondendo a 50% do volume total de poros (VTP). A aplicação foi realizada através perfurações feitas superfície do solo.

Após aplicação das soluções, sementes de soja (variedade Doko) e milho (variedade IAC-106) pré-germinadas em estufa de germinação foram plantadas no solo. As sementes de soja foram inoculadas com inóculo de Bradyrhizobium japonicum em turfa proviniente do CNPAB-EMBRAPA (Seropédica-RJ). Plantou-se três sementes por vaso e após sete dias fez-se o debaste, deixando-se duas plantas por vaso. O período de condução do experimento foi de 42 e 51 dias para o milho e soja respectivamente. Durante o período experimental a umidade dos vasos foi controlada através

da pesagem diária dos mesmos a fim de manter 65% do VTP. Semanalmente realizava-se o rodízio dos vasos com finalidade de eliminar possíveis diferenças ambientais na casa de vegetação. Nas diferentes épocas de avaliações foram determinados parâmetros de crescimento, número de nódulos na soja, estado nutricional das plantas e colonização micorrízica. A descrição dos parâmetros e determinações desse experimento, bem como dos demais encontra-se no item 3.4.

3.2. Efeito da Concentração da Solução de Formononetina

experimento utilizou-se o mesmo material de igual procedimento pré-plantio do primeiro experimento. O tipo de vaso e quantidade de material de solo também foram idênticos. Os tratamentos constaram da aplicação de soluções de formononetina 10 e 15 ug/ml, equivalente a 444, 888 e 1322 formononetina por Kg de solo, além do tratamento controle formononetina. 0 delineamento estatístico utilizado foi inteiramente casualizado com cinco repetições, com cada correspondendo a uma parcela experimental. O milho e a soja foram analisados separadamente. A instalação e condução foram 51 e 42 dias do plantio na soja e realizadas aos no respectivamente. Nas avaliações foram determinados parâmetros de crescimento, número de nódulos da soja, estado nutricional das plantas e colonização micorrízica.

3.3. Aplicação de Formononetina em Soja Inoculada com Diferentes Espécies de Fungos MVA

O experimento foi conduzido em vaso plástico contendo 1,6 kg de material de Latossolo Vermelho Amarelo obtido e preparado como no primeiro experimento. Após a calagem e incubação o solo apresentou as seguintes características químicas: pH em água (1:2,5)=6,1; Ca=3,3 meq/100 cm³, Mg=1,0 meq/cm³, Al=0,1 meq/cm³, extraídos com KCl 1N e determinado por titulometria; P=2 ppm, K=62 ppm, extraídos com Mehlich I e determinados P por colorimetria e K por fotometria de chama. O solo foi fumigado com Bromex (brometo de metila 98% e cloropicrina 2%) em caixa de alvenaria vedada, sendo aplicado 393 cm³ de Bromex por m³ de solo.

O delineamento experimental foi inteiramente casualizado num esquema fatorial 7 X 2 (7 tratamentos de inoculação e 2 níveis de formononetina) com 8 repetições. Cada repetição foi constituída de um vaso. Os tratamentos constaram da inoculação com espécies fungo MVA, sendo Acaulospora morrowae Spain e de Schenck, Gisgaspora margarita Becker & Hall, Glomus Nicolson & Schenck, Glomus etunicatum Becker & Scutellospora heterogama (Nicolson & Gederman) Walker & duas testemunhas não inoculadas (NI e NI+P), combinadas a presença (5 ppm) e ausência de formononetina. Na testemunha NI + foi aplicado 120 ppm de P₂O₅ na forma P de superfosfato

simples, o que correspondeu a 34 ppm de P no solo. Nos outros tratamentos foi aplicado 60 ppm de P_2O_5 na mesma forma anteriormente citada, correspondendo a 8 ppm de P no solo.

Todos os fungos utilizados foram multiplicados em vasos de B. decumbens Stapf. A inoculação com suspensão cultivo com đe esporos foi feita por ocasião do plantio de sementes prégerminadas. As suspensões de esporos foram preparadas por meio da dos esporos dos vasos de cultivos através đo peneiramento via úmida, seguida da padronização da densidade. Foram aplicados aproximadamente 150 esporos por vaso. objetivo de equilibrar a microbiota nos vários tratamentos. foi adicionado em todos os tratamentos 10 ml/vaso đе filtrado, obtido da suspensão de 50 cm³ de substrato dos vasos cultivo em 15 litros de áqua, e tamisação em peneiras com malhas de 0,710 e 0,053 mm e filtragem em papel de filtro.

A preparação e aplicação da solução de formononetina foram realizadas de forma semelhante aos experimentos anteriores. O volume da solução aplicada foi de 150 ml/vaso, fornecendo ug de formononetina por Kg de solo. A inoculação com rizóbio e o plantio seguiram o mesmo procedimento adotado para a soja no primeiro experimento. No entanto, em cada vaso foi apenas uma planta. O experimento foi conduzido ao longo 50 a partir do plantio. Durante esse período manteve-se umidade dos vasos em 65% do VTP, fazendo a reposição da através de regas com pesagens diárias. Foram realizadas

avaliações, aos 30 e 50 dias, sendo colhida 4 repetições em cada avaliação. Os parâmetros avaliados e suas determinações foram idênticos aos dos experimentos anteriores, e encontram-se descritos no item 3.4.

3.4. Parâmetros e Determinações

Nos três experimentos foram avaliados parâmetros de crescimento e estado nutricional das plantas de nutrientes, número de nódulos na soja e micorrização. A micorrização foi avaliada através da percentagem de colonização, comprimento de raiz colonizada, densidade de arbúsculos, vesículas e pontos de entradas primários e secundários.

Nas avaliações as plantas foram coletadas e lavadas, em seguida foi feita a separação da raiz e parte aérea. Esta última foi pesada para a determinação do peso de matéria fresca. Posteriormente a parte aérea e a raiz foram secas em estufa de circulação forçada até peso constante para obtenção do peso de matéria seca da parte aérea e raiz. A parte aérea foi moída em moinho tipo Willey e encaminhada a análise de tecido para a determinação dos teores foliares dos nutrientes.

O estado nutricional das plantas foi avaliado através dos teores de N, P, K, Ca, Mg, S, Cu, Fe, Mn, Zn e B. Os extratos dos tecidos foram preparados por digestão sulfúrica com sais e catalizadores para o N; digestão nítrico-perclórica para P, K,

Ca, Mg, S, Cu, Zn, Fe, Mn e digestão via seca para o B (HUNTER, 1974). Os teores de P foram determinados por colorimetria (azul-de-molibidênio); K por fotometria de chama; Ca, Mg, Cu, Zn, Fe e Mn por espectrofotometria de absorção atômica (SARRUGE & HAAG, 1974); N pelo método de Kjeldahl modificado; B por colorimetria (curcumina) e S por turbidimetria de sulfato de bário (TABATABAI & BREMNER, 1970).

Os conteúdos de nutrientes foram calculados a partir dos teores conforme equações a seguir:

M= P.mf.10 e m= p.mf

onde:

M= conteúdo do macronutriente (mg)

P= teor foliar do macronutiente (%)

mf= matéria seca foliar (g)

m= conteúdo do micronutriente (ug)

p= teor foliar do micronutriente (ppm)

Para a determinação dos parâmetros referentes a colonização micorrízica as raízes foram clarificadas e coloridas de acordo com metodologia descrita por KORMANIK & McGRAW (1982). A percentagem de colonização foi estimada pelo método de placa quadriculada (GIOVANNETTI & MOSSE, 1980). Para a estimativa do comprimento de raiz colonizada, do número de arbúsculos, vesículas e pontos entradas primários e secundários, montaram-se lâminas, com trinta segmentos de raiz de 1cm de comprimento

cada. Os segmentos foram escolhidos ao acaso entre as raízes clarificadas e coloridas. Como fixador foi utlizado glicerina. Para cada repetição montou-se uma lâmina. Em seguida as lâminas foram avaliadas através da observação das estruturas em microscópio de luz com aumento de 100x a 200x. Os resultados médios da contagem por segmento foram expressos em nº/cm de raiz.

3.5. Análise Estatística

Os dados obtidos foram submetidos a análise de variância, correlações lineares e testes de médias (Tukey 5%) pelo programa estatístico SANEST (Instituto Agronômico de Campinas) conforme modelo de delineamento experimental adotado. A fim de se obter homocedasticidade, os dados de comprimento de raiz colonizada e de densidades de arbúsculos, vesículas, pontos de entradas primários, secundários e número de nódulos foram transformados em (X + 0,5); a percentagem de colonização transformados em arcsen (X/100) e o peso de matéria seca de raiz da soja transformados em log(X + 0,5).

4. RESULTADOS E DISCUSSÃO

4.1. Avaliação da Resposta à Formononetina em Diferentes Épocas

Todos os parâmetros de avaliação do processo de colonização micorrízica da soja e do milho foram significativamente afetados pela aplicação de formononetina no solo (Quadros A-1 e A-2).

Na soja o efeito estimulante da formononetina sobre colonização foi dependente da época de avaliação nos parâmetros percentagem de colonização, comprimento de raiz colonizada, densidades de arbúsculos e vesículas (Figura 1). Enquanto nas densidades de pontos de entradas primários e secundários o efeito estimulante da formononetina ocorreu independente da época avaliação (Figura 2). Os parâmetros onde o estímulo đa formononetina ocorreu em função da época de avaliação (Figura 1), verificou-se aos 18 dias verificou-se que a presença formononetina teve efeito estimulante significativo

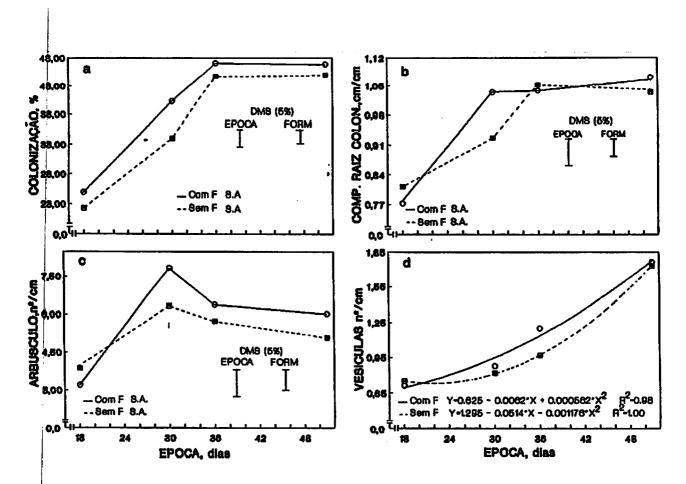


Figura 1. Parâmetros de colonização micorrízica da soja na presença e ausência de formononetina (F). Dados transformados. S.A. - sem ajuste.

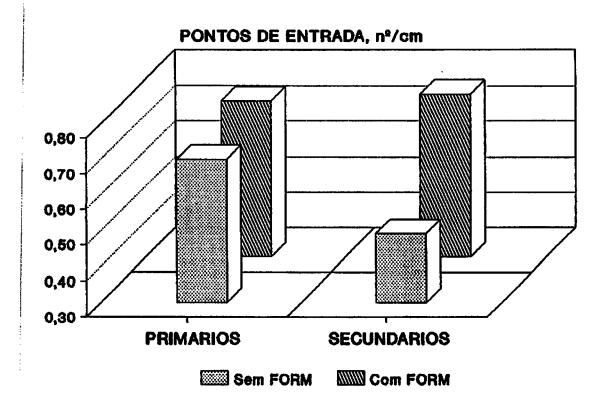


Figura 2. Pontos de entrada primários e secundários da soja na presença e ausência de formononetina (Form).

percentagem de colonização. Aos 30 dias aumento do efeito estimulante da formononetina quando comparado com o observado aos 18 dias. Aos 30 dias atingiu-se o efeito estimulante máximo da formononetina nos parâmetros percentagem de colonização, comprimento de raiz colonizada e densidades de arbúsculos. Na densidade de vesículas o mesmo só foi observado aos 36 dias.

A aplicação de formononetina no solo teve pouca influência sobre o crescimento da soja. Aumento significativo, porém pequeno, só foi verificado para matéria seca de parte aérea (Quadro 1). Não houve efeito da formononetina sobre o teor ou conteúdo de nenhum nutriente avaliado, nem tampouco sobre nodulação. Alterações significativas do número de nódulos, dos teores e conteúdos da maioria dos nutrientes só foram observadas em função do período de desenvolvimento das plantas (Quadro 1). Os teores de Zn e Cu não se modificaram ao longo do período experimental.

No milho o efeito estimulante da formononetina dependente da época de avaliação em todos os parâmetros colonização avaliados, excetuando-se os pontos de sécundários onde tal efeito ocorreu independente da avaliada. O valores médios de pontos entrada secundários por centimetro de raiz nas avaliações realizadas foram 1,26 e 0,67 unidade na presenca е ausência đe formononetina. réspectivamente, com aumento médio da ordem de 88%. Aos 18 dias apenas na percentagem de colonização houve efeito

QUADRO 1. Médias nas diferentes épocas de avaliação e dados da análise de regressão de alguns parâmetros da soja com e sem efeito da aplicação de formononetina ao solo.

Parametros		Época	(dias)		Regressão					
rarametros	18	30	36	51	Ajuste	R ²	P	CV (%)		
Mat.Fr.P.Aerea(g)	3,61	9,32	21,65	44,69	L	0,94	0,00001	16,50		
Mat. Seca Raiz (g) Mat. Seca	0,21	0,48	1,00	3,45	Q	0,99	0,00001	3,13		
P.Aerea(g) S/F	0,43	1,57	3,08	9,84	Q	1,00	0,00001	7,27		
C/F	0,45	1,69	3,37	10,20	à	1,00	0,00001	.,		
Altura (cm)	30,22	49,65	63,25	85,10	Ĺ	0,99	0,00001	5,29		
Nº Nodulos/planta	_	15	24	26	Q	0,99	0,00001	10,14		
N(%)	6,20	5,32	4,08	3,08	Ľ	0,96	0,00001	6,51		
P(%)	0,18	0,23	0,25	0,20	L	0,93	0,002	8,05		
Ca (%)	1,58	1,57	1,83	1,86	L	0,94	0,0001	7,89		
Mg(%)	0.58	0,57	0,66	0,65	L	0,97	0,0001	10,90		
S (%)	0,22	0,23	0,24	0,15	Q	0,96	0,002	13,04		
Fe (ppm)	202	201	169	164	L	0,76	0,01	18,06		
Mn (ppm)	96	87	86	77	L	0,97	0,00001	7,67		
N(mg)	14,08	46,18	81,35	114,96	L	0,97	0,00001	12,69		
P(mg)	0,41	1,96	4,25	7,72	L	0,97	0,00001	14,89		
K(mg)	3,26	11,72	25,56	38,15	L	0,98	0,00001	22,58		
Ca (mg)	3,70	13,67	30,58	69,70	L	0,94	0,00001	18,57		
Mg (mg)	1,37	4,94	11,01	24,25	L	0,95	0,00001	16,71		
S (mg)	0,52	1,96	4,02	5,76	L	0,96	0,00001	15,63		
Cu (ug)	2	8	16	35	L	0,96	0,00001	32,75		
Fe (ug)	47	175	281	613	L	0,97	0,00001	25,49		
Zn (ug)	9	34	65	135	L	0,96	0,00001	22,72		
Mn (ug)	22	75	144	289	L	0,97	0,00001	22,93		

^{*} L. Q - Ajuste de regressão Linear e Quadrático respectivamente.

^{*} S/F - Sem Formononetina

C/F - Com Formononetina

estimulante do composto (Figura 3). No entanto, aos 30 dias observa-se estímulo da formononetina em todos os parâmetros. Nessa época, como observado na soja, verificaram-se os maiores estímulos da formononetina na maioria dos parâmetros de colonização. Apenas na densidade de vesículas este estímulo máximo ocorreu aos 42 dias.

Não houve efeito da formononetina sobre o crescimento do milho, porém houve aumentos dos teores de K, Ca, S, Zn, Fe e Mm e dos conteúdos de Zn e Fe, além da redução do conteúdo de Cu (Figura 4, Quadro 2). Durante o período experimental esse efeito foi constante nos teores de K, Fe e Ca, ao passo que nos teores de S, Zn e Mn, e conteúdos de Zn, Fe e Cu houve uma variação em função da época de avaliação.

A aplicação da solução de formononetina no solo estimulou o processo de colonização, acelerando a maioria dos parâmetros avaliados nas duas espécies de plantas (Figuras 1 e 3). No milho, a aplicação de formononetina além de acelerar micorrização, elevou o nível do platô atingido pela colonização e densidade das estruturas dela decorrente. Embora a formononetina tenha acelerado a formação de MVA na soja, a dinâmica das etapas do processo de colonização foi menos alterada do que no milho.Na soja, a resposta à aplicação de formononetina foi menor do que no milho em todos os parâmetros de colonização, a exceção dos pontos de entradas secundários.

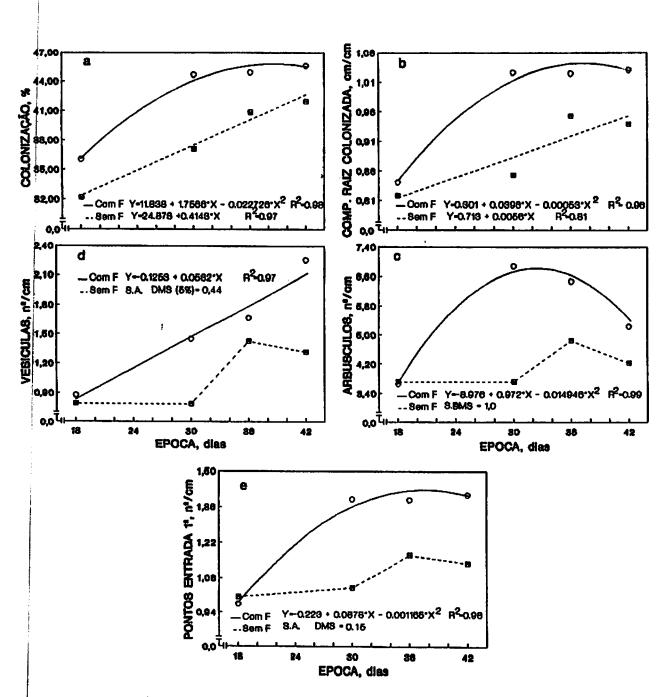


Figura 3. Parâmetros de colonização micorrízica do milho na presença e ausência de formononetina (F). Dados transformados. S.A. - sem ajuste.

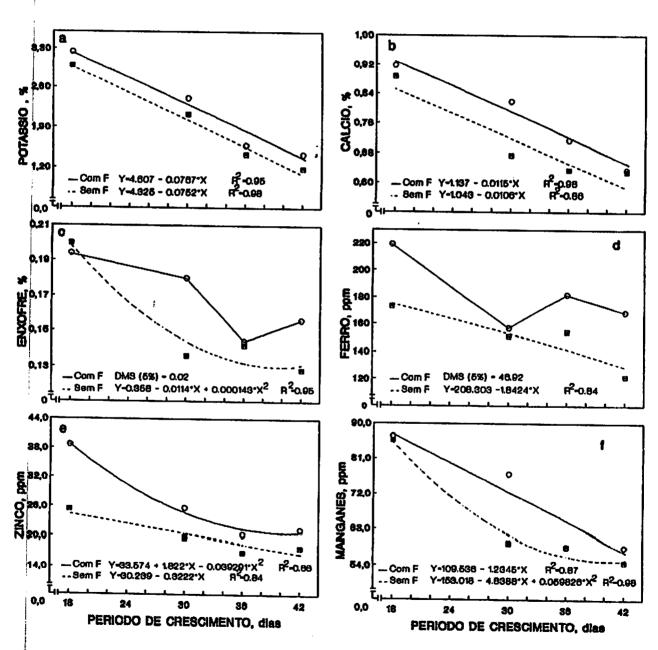


Figura 4. Teores foliares de macro e micronutrientes no milho na presença e ausência de formononetina (F). S.A. - sem ajuste.

QUADRO 2. Médias nas diferentes épocas de avaliação e dados da análise de regressão de alguns parâmetros do milho com e sem efeito da aplicação de formononetina no solo.

Parāmetros		Épocas	(dias)		Re			
	18	30	36	42	Ajuste	R ²	P	CV (%)
Mat. Fresca			# # # # # w w w w					
P Aerea (g)	9,50	24,30	38,48	64,97	Q	0,99	0,00001	13,38
Mat. Seca Raiz Mat. Seca	(g) 0,87	1,49	2,81	4,50	q	0,99	0,00001	18,32
P. Aérea (g)	0,64	2,00	4,49	7,02	Q	0,99	0,0001	16,89
Altura (cm)	59,50	99,00	128,00	144,40		0,99	0,00001	6,93
P(%)	0,16	0,17	0,12	0,12	Q	0,77	0,02	13,54
Cu (ppm) S/F	14	10	17	13	S.À	_	_	10,44
C/F	13	16	13	13	S.A	_	_	,
Fe (ppm) S/F	172	150	154	121	. L	0,84	0,01	16,50
C/F	219	156	182	168	S.A	-	_	
B(ppm) - S/F	62	52	33	40	L	0,79	0,00001	13,75
C/F	53	58	42	41	S.A	_		,
N(mg)	13,42	39,64	80,73	114,36	Q	0,99	0,00001	19,42
P(mg)	0,67	2,11	3,09	4,50	•	0,97	0,00001	22,88
K (mg)	12,95	28,51	37,09	48,61	L	0,99	0,00001	18,22
Ca (mg)	3,79	9,62	16,24	23,54	Q	0,99	0,001	21,34
(mg)	2,68	9,02	15,75	24,09	Q	0,99	0,0004	21,94
S (mg)	0,82	2,01	3,54	5,29	ġ	0,99	0,0006	23,89
Cu (ug) S/F	6	15	44	50	Ĺ	0,87	0,00001	25,32
C/F	6	18	27	48	Q	0,99	0,02	•
Fe (ug) S/F	61	175	396	464	Ĺ	0,93	0,00001	26,26
C/F	95	187	424	669	Q	0,98	0,001	-
Zn (ug) S/F	9	24	43	69	ġ	0,99	0,0001	20,12
C/F	15	30	43	78	ò	0,99	0,001	,
Mn (ug)	36	87	144	210	ò	0,99	0,001	22,90
B (ug)	24	69	92	149	`q	0,99	0,006	24,4

^{*} I,Q - Ajuste de regressão Linear e Quadrático respectivamente

S.A - Sem ajuste de regressão * S/F - Sem Formononetina

^{* \$/}F - Sem Formononetina
C/F - Com Formononetina

diferenças observadas no nível de resposta do processo colonização da soja e do milho à formononetina podem estar relacionados a natureza dos exsudatos da soia. Entre os isoflavonóides exsudados pela soja, D'ARCY-LAMETA (1986) identificou comestrol. MORANDI et al. (1992) observou estimulante do comestrol sobre o crescimento micelial Gigaspora margarita. É possível que a presença de um estimulante fungo MVA no exsudato da soja tenha reduzido o efeito do estimulante da formononetina na soja.

efeito estimulante da formononetina na micorrização observado neste estudo corrobora os resultados obtidos por SIQUEIRA et al. (1991b e c) com milho e trevo. No entanto, o nivel de resposta difere um pouco do obtido por esses principalmente no trevo, quando obtiveram aumento na percentagem colonização da ordem de 200%. No presente experimento OS valores de aumento na percentagem de colonização não ultrapassaram 36% no milho e 34% na soja. Possivelmente tal comportamento tenha ocorrido, em consequência da densidade de (1,85 esporo/g solo) ter sido alta para as condições do experimento, visto que esse fator tem grande influência no nível de resposta a formononetina (SIQUEIRA et al., 1991c). A densidade esporo elevada pode ser comprovada pelo alto nível colonização que as duas espécies vegetais apresentaram mesmo na ausēncia de formononetina. Os valores de percentagem de colonização verificados na soja assemelham-se aqueles observados

por PAULA et al. (1987) em solo não fumigado e inoculado, e aos mais elevados resultados obtidos por PEREIRA (1986). No milho, a colonização esteve em nível mais alto do que o observado por FERNANDES et al. (1987) e semelhantes aos melhores resultados obtidos por FABER et al. (1990).

O modo de ação da formononetina sobre a micorrização não pode ser precisado aqui. Contudo, alguns aspectos podem discutidos. A diferenciação da hifa em apressório e arbúsculo foi citada por BECARD & PICHE (1989) como mecanismo para a indução de crescimento em fungos MVA. Baseado na atuação dos flavonóides produtos de sua degradação no processo de reconhecimento do por plantas parasíticas, que infectam raiz, а formononetina poderia atuar como indutores da formação de (pontos de entradas) e arbúsculo em apressório fungos (SIQUEIRA et al., 1991c). Considerando que a formononetina estimulasse a colonização micorrízica através da inducão formação de arbúsculos, teria-se nas primeiras avaliações estímulo da formononetina apenas ou principalmente sobre este parâmetro. Porém isto não ocorreu neste estudo, sendo que primeira avaliação a aplicação de formononetina praticamente não teve efeito sobre a densidade de arbúsculos. O efeito estimulante formononetina sobre os pontos de entradas primários secundários na soja, e os secundários no milho independente da época de avaliação indica que o estímulo sobre à formação de MVA poderia estar ocorrendo através da indução a formação de

apressórios. Contudo, estudos em condições mais controladas são necessários para comprovar isto.

Entre os fatores que regulam a intensidade da micorrização BRUNDRETT (1991) coloca aqueles que influenciam o contato fungoraiz. O estímulo do crescimento assimbiótico na fase de précolonização possibilitaria um aumento do contato fungo-raiz, acelerando a micorrização. A redução do estímulo da formononetina na colonização micorrízica em densidades de esporos mais elevados (SIQUEIRA et al, 1991c) endossa essa hipótese. O aumento da densidade esporo leva a uma elevação do contato fungo-raiz e acelera a velocidade de colonização (WILSON, 1984). Nessas condições o aumento do crescimento fúngico na fase de précolonização perderia sua importância como determinante do contato fungo-raiz, reduzindo conseqüentemente seu efeito estimulante na micorrização.

O crescimento assimbiótico de fungos MVA é estimulado pela formononetina (NAIR et al., 1991 e BAPTISTA, 1993), além de outros compostos flavonóides (GIANINAZZI-PEARSON et al., 1989; BECARD et al., 1992; CHABOT et al., 1992; MORANDI et al., 1992). Isto indica o possível envolvimento dos flavonóides como sinais da planta na simbiose MVA. O estímulo ao crescimento assimbiótico do fungo MVA na fase de pré-colonização poderia levar a aceleração do processo de colonização pela aplicação de formononetina. Esse efeito na fase de pré-colonização pode explicar a generalização do estímulo da aplicação do composto

todas as fases da colonização, bem como o fato do efeito da formononetina sobre os pontos de entradas primários e secundários na soja, e secundários no milho ocorrer independente da época avaliação. Embora esse mecanismo deva ser considerado. necessário lembrar que todos esses resultados de crescimento assimbiótico têm sido obtidos em condições axênicas. diferindo bastante das condições nas quais realizou-se este experimento, onde a presença da microbiota do solo e da própria planta dificulta sobremaneira comparações com os resultados obtidos in vitro. Já foi demonstrado que bactérias isoladas rizosfera de Cicer arietinum são capazes de degradar (BARZ, 1970). Embora não se tenha esse tipo de formononetina informação no milho ou na soja, não se pode descartar a hipótese de que os resultados obtidos sejam decorrentes da da degradação da formononetina pela microbiota rizosférica. Além disso, pouco se sabe a respeito da ação da formononetina ou de produtos de sua degradação sobre a soja e o milho. Flavonóides tem sido reportados como reguladores de auxinas, estimulando ou inibindo crescimento radicular dependendo do tipo e concentração do composto (RAO, 1990). formononetina não teve efeito sobre o crescimento da raiz da soja ou do milho, indicando que o composto não estaria atuando dessa forma.

A fomononetina não teve efeito sobre a nodulação da soja por Bradyrhizobium japonicum corroborando os resultados obtidos por KOSSLAK et al. (1987) que não observaram efeito desse composto na indução de gens nod de Bradyrhizobium japonicum.

Embora tenha havido aumento da colonização pela aplicação da formononetina, a magnitude desse efeito na soja parece ter sido suficiente apenas para afetar o seu crescimento, porém não os teores de conteúdos dos nutrientes. Apesar do principal mecanismo de resposta das plantas a micorrização ser via aumento absorção de nutrientes, outros mecanismos, como alteração relação água-solo-planta e aumento da produção de fitohormônios, podem levar a resposta em crescimento da planta (LOPES al.,1983). No milho, onde o nível de estímulo a colonização maior, observou-se aumento nos teores e conteúdos de alguns nutrientes, no entanto isto não se reverteu em maior crescimento. Isto indica que o aumento dos teores de nutrientes observado era desnecessário para o crescimento do milho, evidenciando a menor dependência micorrízica do milho em relação a soja nas condições experimentais. Diferenças na dependência micorrízica entre as duas espécies foram observadas por FERNANDES et al. (1987), quando verificaram que a soja apresentava maior dependêcia micorrízica quando comparado ao milho.

O nível de P no solo (22 ppm na soja e 15 ppm no milho) parece estar envolvido nas respostas de crescimento da soja e do milho à formononetina. O P é o nutriente cujo aumento da absorção é mais expressivo da resposta à micorrização (SMITH, 1980; LOPES et al., 1983; OKEEFE & SILVIA, 1991). Apesar disso, mesmo no

milho, onde se verificou alteração nos teores de alguns nutrientes, o teor de P não foi afetado pela aplicação de formononetina, nem pelo consequente aumento da micorrização. Tal fato leva crer que a magnitude do aumento da micorrização foi insuficiente para aumentar a absorção de P pelo milho nas condições experimentais. No caso da soja, a constatação de que o nível de P encontrava-se alto se dá pelo fato de que os teores de P aqui obtidos são semelhantes ao apresentado em plantas de soja bem supridas de P (FERNANDES et al., 1987; PEREIRA, 1986 e PAULA et al., 1990).

A formononetina foi isolada como estimulante de MVA a partir de raízes de trevo deficientes em P (NAIR et al., 1991). Em virtude disso, possivelmente sua ação constitui um mecanismo da planta para adquirir nutrientes nessas condições. Logo, respostas em crescimento só serão obtidas numa faixa de P no solo na qual a planta necessite do estabelecimento da MVA e num nível de potencial de inóculo onde o fungo MVA não seja capaz de colonizar a planta de forma eficiente. Como nas condições experimentais o P parece não ter sido limitante e a infectividade foi alta, não houve efeito da formononetina sobre o crescimento do milho, enquanto na soja esse efeito foi negligível.

4.2. Efeito da Concentração da Solução de Formononetina

Os efeitos da aplicação de soluções de formononetina com diferentes concentrações sobre os vários parâmetros avaliados na soja e milho encontram-se no Quadro 3 e 4 e Figuras 5,6,7 e 8.

Na soja em todos os parâmetros da colonização avaliados houve resposta a concentração da solução de formononetina (Figura 5). Na percentagem de colonização e densidade de arbúsculo a resposta a concentração seguiu modelo quadrático (Figura 5 a,c). Já a densidade de vesícula respondeu linearmente a concentração (Figura 5 d). No comprimento de raiz colonizada e nas densidades de pontos de entradas primários e secundários não houve ajuste significativo apesar da resposta a concentração (Figura 5 b, e,f). As concentrações (ug/ml) de máximo efeito para os vários os parâmetros foram as seguintes: percentagem de colonização - 6,8; comprimento de raiz colonizada - 10,0; densidade de arbúsculos - 9,6; densidade de vesículas - 15,0; densidade de pontos de entrada primários - 9,1 e densidade de pontos de entrada secundários - 8,6.

O aumento da concentração da solução de formononetina teve pouco efeito sobre o crescimento da soja (Quadro 3 e Figura 6). Efeito significativo só foi observado para matéria seca da parte aérea, que teve pequena resposta linear positiva ao aumento da concentração (Figura 6). Entre os nutrientes, a variação da concentração afetou os teores e conteúdo de Zn e B, além do

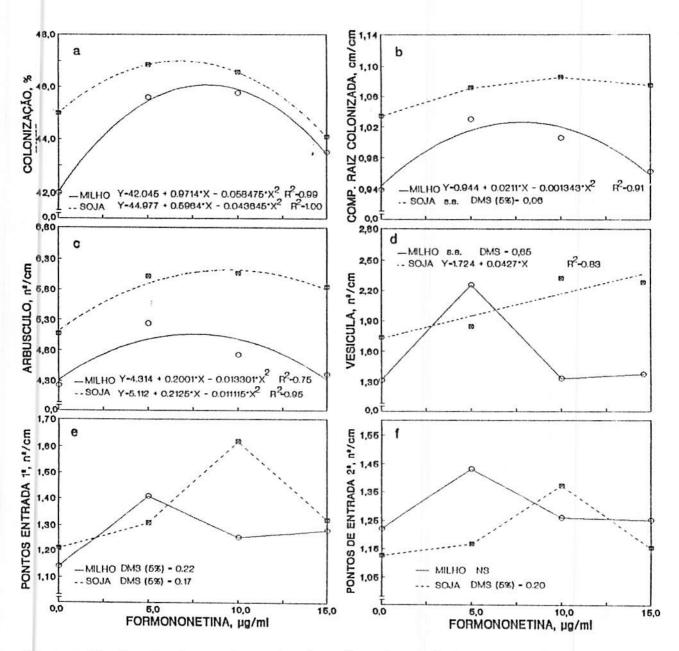


Figura 5. Parâmetros de colonização micorrízica da soja e milho em função da concentração da solução de formononetina. Dados transformados. N.S. - não significativo (P 0,05). S.A. - sem ajuste.

GUADRO 3: Médias e ajustes de regressão para crescimento, colonização micorrízica, teores e conteúdos de nutrientes por planta de soja em diferentes concentrações de formonometina aplicadas no solo. (Médias de 5 repetições)

Par a metro	Conc. Form. (ug/ml)							
	0	5	10	15	CPI	cv cx	Regressão	R ²
Hat. Fresca P. Aérea (g)	43,90	45,49	45,46	45,79	3,64	3,66	-	_
Hat. Seca Raiz (g)	3,54	3,38	3,65	3,47	0,07	9,53	_	_
Altura (cm)	86,70	83,50	87,40	87,50	17,75	3,87	-	-
M ^o Nódulos/planta	27	26	22	22	0,23	9,60	_	_
й (X)	3,18	2,99	3,21	3,06	0,05	5,75	-	-
(X)	0,21	0,20	0,20	0,20	6,7 x 10 ⁻⁵	7,34	_	_
((X)	1,08	0,97	0,97	1,00	0,01	13,22	-	-
za (X)	1,91	1,82	1,78	1,81	0,02	5,24	_	_
tg (%)	0,66	0,64	0,61	0,61	3,0 x 10 ⁻³	8,67	_	_
s (X)	0,16	0,15	0,16	0,13	8,6 x 10 ⁻⁴	11,97	-	_
on (bbw)	9	9	8	8	2,41	20,76	_	_
Fe (ppm)	162	165	132	157	1125,35	12,48	-	_
in (ppm)	75	79	73	76	31,75	11,41	-	_
P (mg)	8,63	8,62	9,00	8,71	0,16	6,45	-	_
((mg)	44,26	40,72	43,94	43,92	12,83	13,62	-	-
Ca (mg)	78,79	76,81	80,34	79,67	11,79	7,04	_	_
Mg (mg)	27,31	27,02	27,61	26,94	0,46	10,88	_	_
S (sg)	6,43	6,55	7,09	5,70	1,62	13,14	_	_
(ug)	38	40	36	36	13,31	20,52	_	_
Fe (ug)	668	669	599	<i>69</i> 0	10229	14,38	-	_
tn (ug)	309	334	330	333	712	12,62	-	_
In (ug)	153	147	168	188	1601*	10,92	[**	0,8
3 (ug)	388	366	309	334	6003*	10,62	_ L*	0,6

^{*, ** ---&}gt; Significativo a 5 e 1% respectivamente pelo teste F de Snedecor.

^{----&}gt; Ajuste de regressão Linear.

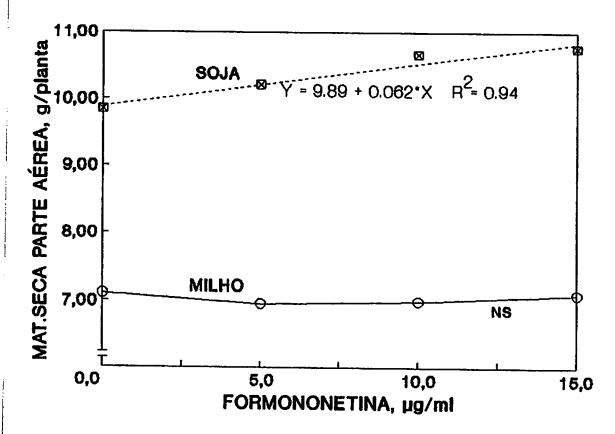


Figura 6. Produção de matéria seca da parte aérea da soja e do milho em função da concentração da solução de formononetina. N.S. - não significativo (P 0,05).

conteúdo de N (Quadro 3, Figura 7). O teor de Zn resposta crescente a partir da concentração de 5 ug/ml. Apesar de não ser possível concluir que esse efeito da formononetina seja mediado pelo seu estímulo sobre a micorrização, aumento absorção de Zn tem sido observado como um dos efeitos micorrização, e isto é creditado à baixa mobilidade que este nutriente apresenta no solo (FERNANDES et al., 1987; FABER et Não foi encontrado ajuste significativo para o al., 1990). conteúdo de porém o teste de média revela que N, concentração de 10 ug/ml houve aumento significativo em relação ao controle. Esta concentração está próxima daquelas onde obteve o máximo de efeito sobre os parâmetros de colonização (6,8 - 10 ug/ml). A formononetina não teve efeito sobre a nodulação (Quadro 3). Em vista disso, é possível que o efeito formononetina sobre o conteúdo de N seja via micorrização. Α ação da micorrização sobre o conteúdo de N em relaciona-se a maior absorção de P e ao efeito deste nutriente sobre o processo de fixação de N (ASIMI et al., 1980; PAULA et 1987). Porém, devido a ausência de efeito sobre a absorção de P, é provável que o aumento no conteúdo de N seja decorrente um aumento da atividade da nitrogenase em resposta colonização micorrizica (PAULINO et al., 1986; PAULA et al., 1987).

Todos os parâmetros de colonização do milho responderam a concentração de formononetina, com exceção dos pontos de entrada

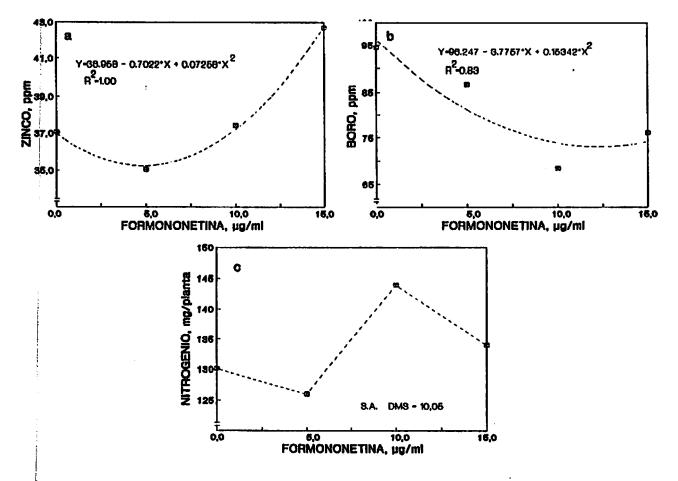


Figura 7. Teores foliares de Zn e B e quantidade acumulada de N na soja em função da concentração da solução de formononetina. S.A. - sem ajuste.

secundários (Figura 5). A percentagem de colonização, comprimento de raiz colonizada e densidade de arbúsculos apresentaram resposta quadrática a concentração de formononetina (Figura 5 a, b,c). A densidade de vesículas e pontos de entrada primários apesar de ter mostrado resposta, não apresentou ajuste significativo (Figura 5 d,e). O efeito estimulante máximo da formononetina nos vários parâmetros de colonização foi observado nas seguintes concentrações (ug/ml): percentagem de colonização -8,3; comprimento de raiz colonizada - 7,9; densidade de vesículas - 5,0; densidade de pontos de entrada primários - 8,6.

No milho, embora não tenha sido observado aumento crescimento (Figura 6), os teores de K e Mn e os conteúdos de K e responderam significativamente ao aumento da concentração (Quadro 4, Figura 8). Os efeitos sobre a absorção formononetina apresenta boa correlação com aqueles observados de colonização micorrízica. A concentração de efeito máximo sobre teor e conteúdo de K (8,0 ug/ml) é semelhante ao observado para os parâmetros de colonização (5 - 8,6 ug/ml). O milho é espécie que possui alta demanda por K e devido a isso o aumento área de absorção pode ter levado a um consumo de đả luxo condição se possuía alto nível de K no solo (50 ppm). decorrência disso o aumento na absorção de K não se reverteu aumento de crescimento.

Verificaram-se respostas significativas dos parâmetros de colonização à alteração da concentração da solução de

QUADRO 4: Médias e ajustes de regressão para crescimento, colonização micorrizica, teores e conteúdos de nutrientes por planta de milho em diferentes concentrações de formonometina aplicadas no solo. (Médias de 5 repetições).

Parâmetros	Conc. Form. (ug/ml)							
	0	5	10	15	QH .	cv (%)	Regressão	R ²
Hat. Fresca P . Aérea (g)	64,63	63,51	67,40	65,44	7,11	8,98	-	
Mat. Seco Raiz (g)	4,55	4,44	4,38	4,59	0,05	17,35	-	_
Altura (cm)	144,30	144,50	142,60	152,60	100,43	4,17	-	_
N (%)	3,03	3,12	3,07	3,16	0,02	10,60	_	_
P (%)	0,11	0,13	0,12	0,12	1,78 x10 ⁻⁴	7,71	-	_
Pa (X)	0,63	0,63	0,72	0,65	0,01	11,32	•	-
tg (%)	0,63	0,66	0,72	0,61	0,01	9,63	_	_
s (X)	0,13	0,14	0,14	0,13	8,5x10 ⁻⁵	8,82	-	_
Du (ppm)	13	13	12	11	2,88	10,43	_	-
Fe (ppm)	121	168	122	114	3053*	23,01	s.a.	_
Zn (ppm)	18	21	21	21	12,20	13,84	-	-
B (ppm)	40	41	51	39	167,02	18,80	_	_
N (mg)	114,40	114,33	116,67	115,17	5,94	16,20	-	_
P (mg)	4,32	4,68	4,44	4,30	0,15	12,58	_	_
Ca (mg)	23,58	23,21	26,85	23,57	13,93	14,70	_	_
Hg (mg)	24,03	24,18	26,89	22,16	18,89	12,18	-	-
S (mg)	4,99	5,06	5,25	4,83	0,15	14,30	-	-
Cu (ug)	50	48	45	41	60,27	16,53	-	_
fe (ug)	465	669	454	415	64905**	18,60	QAR	0,5
th (ug)	206	215	250	243	2214	16,40	_	_
Zn (ug)	69	78	80	71	117,41	17,00	_	_
B (ug)	148	150	194	142	2828*	18,55	s.a.	_

^{#, ## ---&}gt; Significativo a 5 e 1% respectivamente pelo teste F de Snedecor.

Q ----> Ajuste de regressão Quadrático

s.a. ---> Sem ajuste de regressão para os modelos estudados.

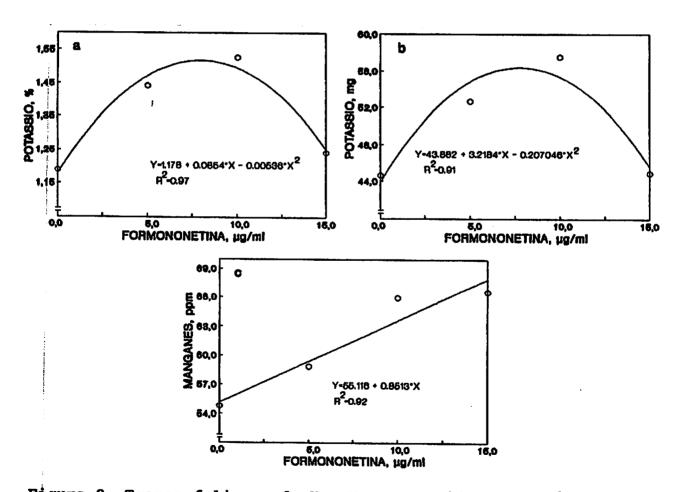


Figura 8. Teores foliares de K e Mn e quantidade de acúmulo de K no milho em função da concentração da solução de formonometina.

formononetina nas duas culturas. A faixa de concentração da solução de formononetina onde se observou o efeito estimulante máximo do composto sobre a micorrização nas duas culturas foi 10 ug/ml. Embora fora dessa faixa tenha havido redução do estímulo à micorrização, não foi observado efeito inibitório concentrações elevadas. Essa faixa de concentração encontra-se bem próxima dos resultados obtidos em trevo por SIQUEIRA et al. (1991c), quando verificaram efeito estimulante da formononetina a 10 ug/ml, porém não a 20 ug/ml. Os autores constataram 5 também que não houve efeito inibitório desse composto mesmo a ug/ml. Estas concentações estimulantes também corroboram resultados de NAIR et al. (1991) in vitro, que verificaram efeito estimulante da formononetina ao crescimento assimbiótico de fungo MVA na concentração de 5 ug/ml.

Os efeitos relativos ficaram abaixo do observado no experimento anterior, no entanto, deve ser considerado que o efeito máximo naquele experimento ocorreu por volta dos 30 dias, enquanto que a avaliação deste experimento foi realizada aos 42 e 51 dias para o milho e soja respectivamente.

Dentre os parâmetros de colonização micorrízica avaliados a percentagem de colonização foi o que apresentou menor estímulo. A avaliação mais detalhada da colonização, através da observação de arbúsculos e vesículas, foi plenamente justificada pela maior sensibilidade que esses parâmetros apresentaram ao aumento da concentração de formononetina na época em que o experimento foi avaliado.

O aumento da densidade de arbúsculos e vesículas, observado neste estudo, reveste-se de grande importância. Estas estruturas estão diretamente envolvidas no processo de transferência de nutrientes, principalmente o P, para hospedeiro (CLARKSON, 1985). Considerando que o gradiente de P entre a hifa do fungo MVA e o solo atinge 1000:1 (SMITH & GIANINAZZI-PEARSON, 1988), o aumento da densidades de vesículas e arbúsculos possibilitaria uma maior capacidade do fungo MVA para armazenar e transferir P. Isso seria importante para o aumento do fluxo de P entre o fungo simbionte e a planta hospedeira, em condições de baixa fertilidade.

Os resultados obtidos demonstraram que o efeito estimulante formononetina sobre a micorrização é influenciado pela concentração da solução aplicada. A pequena variação nas concentrações de efeito máximo da formononetina nos vários parâmetros avaliados nas duas culturas, indica a viabilidade de utilização de uma única formulação da solução de formononetina no milho e na soja, que estaria entre 5 - 10 ug/ml.

4.3. Aplicação de Formononetina em Soja Inoculada com Diferentes Espécies de Fungos MVA

Os efeitos da aplicação de formononetina na colonização micorrízica da soja por diferentes fungos MVA, avaliados aos 30 e 50 dias encontram-se no Quadro 5 e Figura 9.

formononetina exerceu efeitos significativos sobre todos os parâmetros avaliados aos 30 dias, exceto nos pontos Os parâmetros da colonização diferiram para OS diferentes fungos e também para os efeitos da formononetina, que não exerceu efeitos significativos em todos os fungos. aplicação de formononetina aumentou a percentagem de colonização plantas inoculadas com A. morrowae, G. clarum e heterogama. Houve aumento do comprimento de raiz colonizada plantas com A. morrowae e G. clarum. Observou-se também aumento da densidade de arbúsculos naquelas plantas com A. morrowae, heterogama e G. etunicatum. Aumento na densidade de vesículas foi observado apenas nas plantas inoculadas com G. clarum, ocorrência de vesículas só foi observado em G. etunicatum e clarum. A formononetina não exerceu efeito inibitório em nenhum dos parâmetros avaliados em nenhuma das espécies estudadas.

Aos trinta dias as espécies G. clarum e G. etunicatum apresentaram maior colonização, sendo essas espécies superiores as demais na maioria dos parâmetros de colonização, independente da presença de formononetina. Por outro lado, A. morrowae e S.

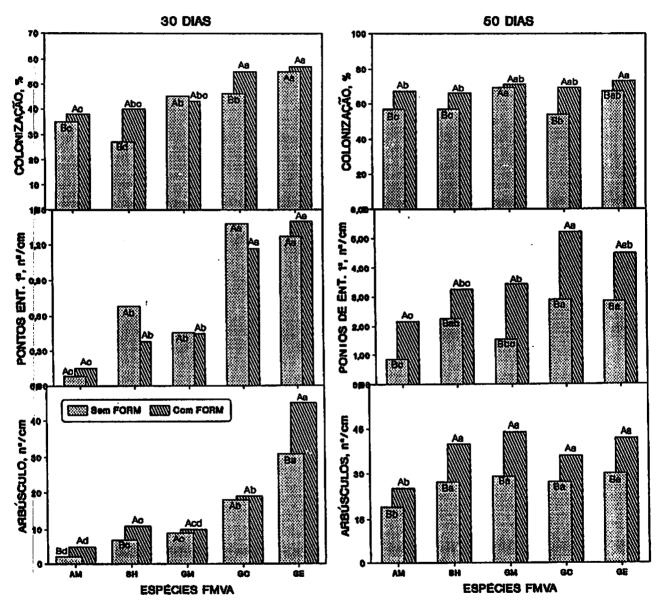


Figura 9. Percentagem de colonização, pontos de entrada primários soja densidade de arbúsculos na inoculadas COM ausência đe MVA presença diferentes fungos na formononetina (Form). (AM morrowae, GM margarita, GC - G. clarum, GE - G. etunicatum e SH S. heterogama).

QUADRO 5. Parâmetros de colonização micorrízica aos 30 e 50 dias em soja inoculada com diferentes fungos MVA em solo com (CF) e sem (SF) aplicação de formononetina.

Espécies FHVA	•	raiz la (cm/cm)		iculas ⁹ /cm)	Pont. Ent. 29 (nº/cm)	
	SF	CF	SF	CF	SF	CF
			30 di	as ————		
Acaulospora morrovae	0,21 Bb	0,31 Ab	-	-	0,01Ab	0,01Ab
Gigaspora margarita	0,32 Aab	0,31 Ab	-	-	0,17Aab	0,20Aab
Glomus clarum	0,46 Ba	0,59 Aa	0,20 Ba	0,40 Aa	0,24Aa	0,42Aa
Glomus etunicatum	0,47 Aa	0,55 Aa	0,11 Aa	0,15 Aa	0,39Aa	0,39Aa
Scutellospora heterogama	0,25 Ab	0,31 Ab	- 50 di	_	0,07Ab	0,15Ab
Acaulospora morrowae	0,66 Bc	0,78 Ab		4,85 Aa	0,29 Bb	0,93 Ab
Gigaspora margarita	0,78 Aa	0,84 Aab	-	-	0,84 Ba	1,67 Aa
Glodus clarum	0,76 Bab	0,90 Aa	1,33 Bb	5,03 Aa	1,30 Ba	2,16 Aa
Glomus etunicatum	0,74 Bab	0,86 Aab	1,82 6b	3,82 Aa	1,04 Ba	1,97 Aa
Scutellospora heterogama	0,68 Bbc	0,80 Aab	-	_	0,96 Ba	1,74 Aa

Médias seguidas de mesma letra não diferem entre si pelo teste de Tukey ao nivel de 5% de probabilidade. Letra maiúscula compara médias na linha e minúscula na coluna.

heterogama foram as espécies que demonstraram menor eficiência em colonizar a soja.

A percentagem de aumento nos parâmetros de colonização devido ao efeito estimulante da formononetina foi maior nas espécies que apresentaram colonização mais lenta, enquadrando-se nessa categoria S. heterogama tratando-se de percentagem colonização e A. morrowae no que se refere a formação de Apesar do estímulo da micorrização nas espécies arbúsculos. de colonização mais lenta, o nível de colonização alcançado por essas espécies na presença de formononetina foi inferior aos das espécies de colonização mais rápida na ausência deste composto. Não houve efeito estimulante da formononetina em nenhum parâmetro de colonização G. margarita nessa época de avaliação.

Na avaliação realizada aos 50 dias verificaram-se comportamento diferenciado entre as espécies estimulantes significativos da formononetina (Quadro 5, 9). O efeito estimulante da formononetina sobre parâmetros da colonização foi mais generalizada do observado aos 30 dias. Apenas não houve estímulo significativo do composto na densidade de vesículas em plantas inoculadas com morrowae. Também a percentagem de colonização e o comprimento raiz colonizada nas plantas inoculadas com G. margarita foram alterados pela formononetina (Quadro 5), comportamento semelhante ao observado aos 30 dias. Porém, ao contrário do ocorreu aos 30 dias, nessas plantas a formononetina estimulou a densidade de arbúsculos, vesículas, pontos de entradas primários e secundários.

diferenças nos valores dos parâmetros de colonização entre os fungos aos 50 dias foram menores do que aos 30 dias. Independente da presença de formononetina, fungos etunicatum, G.clarum e G. margarita apresentaram 08 maiores valores de percentagem de colonização, comprimento colonizada, densidades de arbúsculos e pontos de entrada primários (Quadro 5, Figura 9).

dias, observa-se que houve pequeno aumento de colonização em relação a avaliação anterior nas espécies eficientes na colonização como G. clarum e G. etunicatum. Isto evidencia que o processo de colonização atingiu possivelmente seu O efeito estimulante da formononetina nessa platō. assemelha-se ao constatado na última avaliação do experimento de época, visto que o efeito estimulante apresentado foi sempre menor, que o apresentado aos 30 dias. Excetua-se o efeito as vesículas e os pontos de entrada primários e secundários. Em relação a vesícula, por ser uma estrutura mais tardia do processo de colonização o maior efeito estimulador da formononetina tenderia a ocorrer numa época posterior aos demais parâmetros.

A formononetina exerceu efeito estimulante sobre todos os parametros da colonização aos 30 ou 50 dias, a exceção dos pontos de entrada aos 30 dias. Entre os fungos, apenas G. margarita aos 30 dias não sofreu estímulo da formononetina, com isso sendo

verificado apenas aos 50 dias. Esses resultados demonstram generalização do efeito da formononetina sobre a colonização micorrizica, indicando ausência de especificidade na atividade desse composto. No entanto existem variações na forma efeito ocorre entre as diferentes espécies. Diverso portanto dos flavonóides em relação a espécies de rizóbio, onde um pode mudar seu espectro de ação dependendo da espécie em questão (SIQUEIRA et al., 1991a). No caso do estímulo a micorrização, observado na percentagem de colonização como е densidade arbúsculos, a diferença principal verificada nas várias espécies de fungo MVA foi a época em que se deu o estímulo.

nível de colonização dos vários fungos foi bastante elevado, tanto na presença como na ausência de formononetina, estando nos niveis observados em outros estudos soja (MIRANDA, 1982; PAULA et al., 1988 e PEREIRA, 1986). Α elevada taxa de colonização indica que possivelmente o número de utilizado (150 esp./planta) tenha sido alta e inadequada para estudar efeito estimulante da formononetina а micorrização е efetividade das espécies avaliadas neste experimento.

Apesar da formononetina ter estimulado o estabelecimento da simbiose MVA, esse efeito não se manifestou no crescimento e na nodulação da soja. Verificou-se no entanto, efeito significativo das espécies fúngicas ao término do experimento, sendo todos os fungos considerados efetivos (Quadro 6, Figura 10). G. etunicatum

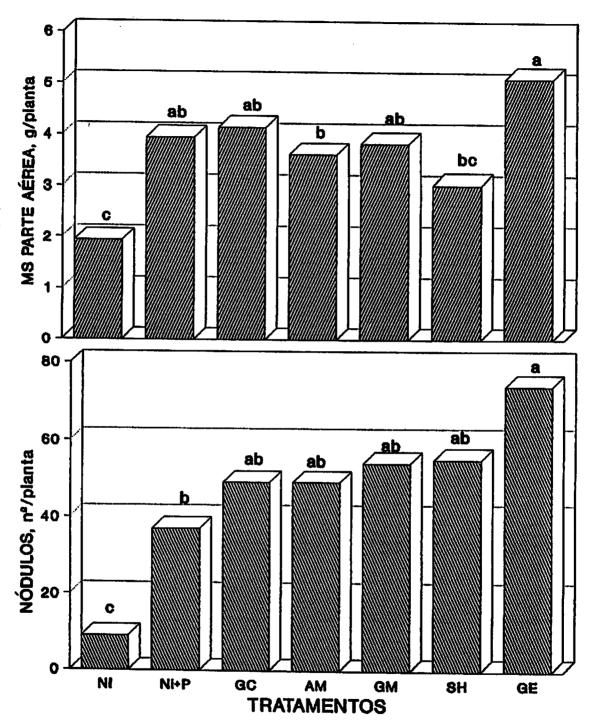


Figura 10. Efeito de diferentes tratamentos de inoculação sobre produção de matéria seca da parte aérea e nodulação da soja aos 50 dias. (NI - não inoculado, NI + P - não inoculado e adubado com P, AM - A. morrowae, GM- G. margarita, GC - G.clarum, GE - G. etunicatum e SH - S. heterogama)

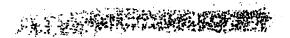
QUADRO 6. Crescimento, produção de matéria fresca da parte aérea e matéria seca da raiz aos 50 dias de soja inoculada com diferentes fungos MVA. (Médias de 8 repetições).

Tratamentas de deseula 2	Altura	Materia fresca	Materia
Tratamentos de inoculação	(cm)	parte aērea (g)	seca raiz
Acaulospora morrowae	62 ab	18 bc	1,17 ab
Gigaspora margarita	65 ab	19 abc	1,26 a
Glomus clarum	70 a	20 ab	1,26 a
Glomus etunicatum	71 a	24 a	1,56 a
Scutellospora heterograma	60 ъ	14 c	1,11 ab
Não inoculado	50 c	9 d	0,71 ab
Não inoculado + P	62 ab	17 bc	1,27 a

Médias seguidas de mesma letra não diferem entre si pelo teste de Tukey ao nível de 5% probabilidade.

destacou-se como o mais efetivo, com aumento da produção de matéria seca de 163% em relação à testemunha NI. G. clarum também mostrou boa efetividade simbiótica (117% de aumento na matéria seca). As espécies que apresentaram maior colonização foram também àquelas que mostraram-se mais efetivas no crescimento. Isso vem a confirmar efetividade elevada para soja de populações contendo G. etunicatum (PAULA et al., 1988 e 1990). O efeito das espécies de fungos MVA sobre a nodulação

indica a ocorrência de sinergismo com B. japonicum, como observado em outros estudos (ASIMI et al, 1980; PAULA et al., 1990 e PAULINO et al., 1986).


Tal como verificado para crescimento, os teores e conteúdos de nutrientes na soja não foram influenciados pela aplicação da formononetina em nenhuma das épocas de avaliação do experimento, havendo efeito apenas para fungos (Quadro 7 e 8). Aos 30 dias houve efeito significativo da inoculação sobre os teores conteúdos de P, K, Ca, Mg, S, Cu e Zn, bem como nos teores de Fe e Mn (Quadro 7). Nessa época não houve efeito significativo da inoculação sobre o teor e conteúdo de N, e conteúdo de Fe. G. etunicatum foi a espécie que teve maior efeito sobre os teores e conteúdos dos nutrientes, aumentando os teores e conteúdos de Mg, S, Cu e Zn, e reduzindo os teores de Fe e redução dos teores desses nutrientes caracteriza-se como efeito diluição, visto que o conteúdo do mesmo não foram alterados. Efeito das espécies fúngicas na absorção de nutrientes também foi observado aos 50 dias. G. etunicatum e G. clarum espécies mais efetivas, aumentando os teores e conteúdos nutrientes, a exceção de Mn.

Verificaram-se correlações significativas (p < 0.01) de teores de P (r = 0,89) e K (r = 0,74) com densidade de arbúsculos aos 30 dias. Isso corrobora OKEEFE & SILVIA (1992), que propuseram que a sequência de resposta em crescimento das plantas a MVA resulta da elevação dos teores de P no tecido

QUADRO 7. Teores (% e ppm) e conteúdos (mg e ug) de nutrientes aos 30 dias em soja inoculada com diferentes espécies de fungos MVA (Médias de 8 repetições).

Tratamentos de Inoculação	Р	K	Ca	Mg	S	Cu	Fe	Zn	Mn
			- x				pr	m —	
Acaulospora morrovae	0,10bc	0,90cde	1,76bc	0,51bc	0,216	7bc	217abc	 31ь	128a
Gigaspora margarita	0,10bc	0,84de	1,84abc	0,52bc	0,22b	8ab	274a	35b	124a
Glanus clerum	0,12bc	1,10bcd	1,71bc	0,52bc	0,23b	9a	223eb	31b	121ab
Glosus etunicatus	0,21a	1,56a	1.90ab	0,57ab	0,27a	9a	148c	46a	109b
Scutellospora heterogama	0,11bc	1,14bc	2.07a	0,58a	0,28a	5c	185bc	32a	117ab
Não inoculado	0,09c	0,80e	1,90ab	0,50c	0,20b	6bc	209abc	35b	123a
Não inoculado + P	0,13b	1,31ab	1,62c	0,49c	0,23b	8ab	228ab	31b	125a
•			— mg				ug	 -	
Acaulospora morrowae	0,43b	3,81bc	7,20b	2,10b	0,87b	3b	88a	13Ь	53a
Gigaspora margarita	0,40b	3,35c	7,36b	2,10b	0,89b	3b	112a	14b	50a
Glamus clerum	0,45b	4,19bc	6,56b	2,00b	0,89ь	4ab	84a	12b	47a
Glomus etunicatum	1,16a	8,50a	10,33a	3,07a	1,45a	5a	82a	25a	59a
Scutellospora heterogama	0,45b	4,70bc	8,59ab	2,40ab	1,15ab	2b	88a	13b	474
Não inoculado	0,37b	3,34c	6,75b	2,03b	0,82b	3b	88a	15b	53a
Não inoculado + P	0,59b	6,05b	8,77ab	2.33ab	1,10ab	3b	101a	14b	54a

^{*} Médias seguidas de mesma letra não diferem entre si pelo Teste de Tukey ao nivel de 5%

Conservation of the second second contraction of the following second se

. Company to the man (MC) (MC) and the property to the common of the com

122 V	guyth, col in accord	4	X	- 43	o*;		el-	99 1	64.	., 4
500		ង្គម៉ាស៊ី 🖰	50364,0	4,285	ar. 21,0	ថាន់លំ	្នក់វិ	្ស ខ្លួស ទី១នី	4.5	2 to 1.7
		9,77,0	-1-41	ें क्षा स्टेस्ट्रिकेट	3 F 1.0	4.11.,8	₫ ≈ #	11.43	:-(:f)	i 31
2500	And the State of t	0,125a	lostil,	1,200.5	41,17,48	7,500,0	- e ⁻⁷	.,	: :18	geris,
1	ប្រធានធំពេញ	$\pm i \Sigma_{i} D$	5.01.1	190 5.7	43.20	5,55,6	ϵ_{i}^{Q}	siliel		
•	and the grade designed	0411,0	cant.if	2,000	65.0	85 O	5.7		est t	
	្ ក្រ វិទ្ធានិ	570.0	e (%), (f	distant, i	0,00	$C(\mathbb{R}_{q}^{-1})$	ede	500000	ස්ද්	at Tr
ែប៉	to the state of the state of	dEr.G	duli.	. 1. 6Re	54,3,0	$d\Sigma_{i}0$	cient.	228ai.		9757
							•			
		and the second second		p.r		T. Transparence and			شلكها للوسالي	
1		0.445	्रामी हैं हैं।	312% V	, edt,8%	1476,n	- Æ	- 45	e. 7 i	. 10
	turk wight in more	: 6.05×0	5CLE	siAE.	er di j	ુ હસાં, ઉ	ĠŰ	350	2.37	1142
3	the fig. ()	uh4 √ 3	ગાસી તા	वस्ति, व	γ_{i+1}, S_i	0.00	3:14	¢#5	$\mathcal{F}_{\mathcal{A}}(\mathcal{F})$	1045
1	gast misseria j	1 - 13 1.1	$\kappa(1,0)$	617.13	عام والأ	627-J	8.4	533		4-7
	হল ৪০০০ বিভাগ লাভাই	3-7.3	o. H. o	८ वस्य 🖓	(1,0,1)	waai	1.		437.	~** ₃
	€. See See See		5.546	<i>⊕</i> (1,3	1117112	457, u	5.			·
	t religios 🛊	331,0	41.0	ತ≎ಕ್ಕತ	4000	1. 11.5		e ! .#		

are no lower or good or cliest range to entry country country of the country of the country of the country of

QUADRO 8. Teores (% e ppm) e conteúdos (mg e ug) de nutrientes aos 50 dias em soja inoculada com diferentes espécies de fungos MVA (Médias de 8 repetições).

Tratamentos de Inoculação	N	P	К	Ca	Mg	s	Cu	Fe	Zn	Mn
				:				ppm		
Acaulospora morrowae	3,72bc	0,13bc	1,06ab	1,74bc	0,47b	0,16bc	8b	144a	30bc	102b
Gigaspora margarita	3,53bc	0,16b	1,09a	1,81abc	0,49b	0,17b	7b	171a	37b	107b
Glomus clarum	4,02bc	0,19a	1,10a	1,98a	0,58a	0,20a	10a	169a	34bc	107b
Glomus etunicatum	2,91c	0,15b	0,93ab	1,98a	0,56a	0,17b	10a	168a	45a	102Ь
Scutellospora heterogama	4,09bc	0,11cd	0,88b	1,88ab	0,58a	0,14c	6b	194a	28c	111ab
Não inoculado	5,40a	0,09de	0,66c	1,88ab	0,42c	0,17b	4c	159a	34bc	125a
Não inoculado + P	4,21b	0,07e	0,66c	1,62c	0,39c	0,10d	4c	154a	27c	126a
			n	ng				u	ıg	
Acaulospora morrowae	55,85b	2,11cd	16,31bc	28,28bc	7,57cd	2,48bc	12b	231bc	48bcd	163bc
Gigaspora margarita	60,13ab	2,71bc	18,69ab	31,86bc	8,63bc	3,02ab	13b	296ab	64bc	185ab
Glomus clarum	76,41a	3,58a	20,69a	37,17ab	11,00ab	3,79a	20a	323ab	65b	201ab
Glomus etunicatum	66,21ab	3,37ab	21,05a	44,88a	12,64a	3,71a	24a	385a	103a	233a
Scutellospora heterogoma	56,03b	1,63de	12,69cd	27,20bc	6,04cd	1,97cd	9bc	271ab	39d	160bc
Não inoculado	48,92b	0,79f	6,15c	17,24d	5,22d	1,48d	3d	145c	31d	115c
Não inoculado + P	64,67ab	1,11ef	10,37de	25,11cd	6,14cd	1,61d	6cd	246bc	43cd	197ab

^{*} Médias seguidas de mesma letra não diferem entre si pelo Teste de Tukey ao nível de 5%.

provocado pelo aumento da absorção. No entanto, colonização não se correlacionou com produção de matéria seca, mas essa relação pode ocorrer para produção de grãos aos 120 dias, como verificado por PAULA et al. (1990). Em consonância a isso, G. etunicatum que esteve entre as espécies de colonização mais rápida, correspondeu a mais efetiva no que se refere a produção de matéria seca da parte aérea e teor de P. No entanto, isto ocorreu independente da presença de formononetina.

A atividade da formononetina demonstrou ocorrer em todas espécies de fungos MVA, aumentando a micorrização da soja. Porém, como demais experimentos desse estudo aumento da micorrização não se reverteu em benefícios no crescimento das plantas. Pelos resultados, o nível de fósforo solo possibilitava a resposta à micorrização. Portanto, a ausência resposta em crescimento das plantas com o aumento da micorrização estimulado pela formononetina parece estar relacionado ao elevado potencial de inóculo. Este pontencial levou a altos níveis de colonização mesmo na ausência formononetina.

5. CONCLUSÕES

- A formononetina estimulou a micorrização da soja e do milho, sendo o efeito estimulante dependente da época de avaliação e da concentração da solução aplicada.
- Aos trinta dias do plantio ocorreu o maior efeito estimulante da formononetina na maioria dos parâmetros de colonização, nas duas culturas.
- O efeito estimulante da formononetina nos diversos parâmetros da colonização das duas espécies vegetais foi maior quando aplicada em concentração de 5 a 10ug/ml.
- A formononetina estimulou a micorrização da soja por todas as espécies fúngicas estudadas.
- O efeito da formononetina no crescimento das plantas foi negligível na soja e inexistente no milho, porém aplicação de formononetina alterou a nutrição de ambas as culturas.

- Os efeitos nutricionais foram mais intensos no milho, variando em função da época de avaliação e da concentração da solução aplicada.
- Os teores de P, geralmente implicados nas respostas das plantas à micorrização, não foram influenciados pela aplicação de formononetina, sendo os efeitos mais evidentes para os teores K, Ca, S e micronutrientes.

6. RESUMO

Estudaram-se os efeitos da aplicação de formononetina colonização micorrízica, crescimento e nutrição do solo e soja. O estudo constou de 3 experimentos conduzidos em vegetação, sendo: 1) avaliação à da resposta casa formononetina em diferentes épocas; 2) efeito da concentração da solução de formononetina aplicada e 3) efeito da aplicação formononetina em soja inoculada com diferentes espécies fungos No primeiro experimento, sementes pré-germinadas de soja e MVA. foram plantadas em material de Latossolo Vermelho Amarelo não fumigado e inoculado com Glomus etunicatum Becker & Gederman, na presença e ausência de formononetina (0 e 5 ug/ml), a soja avaliada aos 18, 30, 36, 51 dias do plantio, e o milho aos 18, 30, 36, 42 dias. Calagem e adubação fosfatada foram realizadas no solo antes do plantio. Utilizou-se arranjo fatorial 4 com 5 repetições, sendo o primeiro fator nível de formononetina e o segundo época de avaliação. O

experimento foi conduzido de forma idêntica ao primeiro, com os tratamentos constando da aplicação de solução de formononetina 5, 10, 15ug/ml e um controle. A avaliação foi realizada aos dias do plantio no milho e 51 dias na soja. No terceiro experimento, utilizou-se material de LV fumigado e inoculado com cinco espécies fúngicas na presença e ausência de formononetina (5 ug/ml). As espécies testadas foram: Acaulospora morrowae Spain & Schenck, Gigaspora margarita Becker & Hall, Glomus clarum Nicolson & Schenck, Glomus etunicatum Becker & Gederman e Scutellospora heterogama (Nicolson & Gederman) Walker & Sanders. Teve-se ainda duas testemunhas, sendo uma não inoculada (NI) e outra não inoculada e adubada com 120ppm de P205 Avaliações foram realizadas aos 30 e 50 dias do plantio. formononetina estimulou a colonização micorrízica na soja e milho, sendo o efeito estimulante dependente da época avaliação e da concentração da solução aplicada. Aos trinta dias do plantio ocorreu o maior efeito estimulante da formononetina na maioria dos parâmetros de colonização, nas duas culturas. efeito estimulante da formononetina nos diversos parâmetros colonização das duas espécies vegetais foi maior quando aplicados em concentração de 5 a 10 ug/ml. A formononetina estimulou a micorrização da soja por todos as espécies fúngicas estudadas. efeito da formononetina no crescimento das plantas foi negligivel soja e inexistente no milho, porém a aplicação de na formononetina alterou a nutrição de ambas as culturas.

efeitos nutricionais foram mais intensos no milho, variando em função da época de avaliação e da concentração da solução aplicada. Os teores de P, geralmente implicados nas respostas das plantas à micorrização, não foram influenciados pela aplicação de formononetina, sendo os efeitos mais evidentes para os teores K, Ca, S e micronutrientes. Conclui-se que a aplicação de formononetina no solo estimula a micorrização do milho e da soja.

7. SUMMARY

EFFECTS OF FORMONONETIN (7-HYDROXI, 4'-METHOXI ISOFLAVONE) ON MYCORRHIZATION, GROWTH AND NUTRITION OF CORN AND SOYBEAN.

The effects of formononetin application on mycorrhization, growth and nutrition of corn and soybean were studied in three greenhouse experiments. In the first experiment, pre-germinated corn and soybean seeds were planted in a non-fumigated Oxisol, infested with Glomus etunicatum Becker Gerdeman, in the presence and absence of formononetin (0 and 5 ug/ml) application. Before planting soil received lime and P-fertilization. Soybean plants were harvested and assessed at 18, 30, 36 and 51 days after planting, while corn plants were harvested at 18, 30, 36 and 42 days. The experiment was set up in a factorial design 2 x 4, with five replications, being two formononetin levels and four growth period. The second experiment was conducted similarly to the first one and the effects of concentration of the formononetin

solution (0, 5, 10 and 15 ug/ml) were studied. Plants were harvested at 42 and 51 days after planting for corn and soybean, respectively. In the third experiment, it was used fumigated soil planted with soybean inoculated or not with five differents mycorrhizal fungi in the presence and absence of formononetin (5 ug/ml). One non-inoculated and one P-fertilized controls were also included in this experiment. Formononetin effects were assessed at 30 and 50 days after planting. Formononetin stimulated mycorrhizal formation in both corn and soybean. effect was depend upon the growth period and concentration of the formononetin solution applied to soil. At thirty days after planting, formononetin exhibited its maximum effects on colonization parameters assessed on both plant Formononetin stimulating effects were maximum at concentration ranging between 5 to 10 ug/ml. Formononetin effects were detected for all fungal species tested on soybean. In spite of its stimulating effects on mycorrhization, formononetin had negligeble growth effects on soybean and no growth effects corn. However, formononetin caused significant effects nutrition of both species. Nutritional effects of formonometin were greater on corn than on soybean plants. These effects also varied with growth period and formononetin concentration. Leaf phosphorus concentration, commonly involved in mycorrhizal growth responses in low-fertility soils, were not significantly affected by formononetin application. Formononetin nutritional effects

were more frequently found for leaf concentration of K, Ca, S and few micronutrients. It is concluded that soil-applied formononetin stimulates mycorrhizal formation in corn and soybean.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- 01. ALEXANDER, T.; MEIER, R. & WEBER, H.C. Dynamic of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays L. New Phytologist, Cambridge, 110(3):363-70, 1988.
- 02. ASIMI, S.; GIANINAZZI-PEARSON, V. & GIANINAZZI, S. Influence of increasing soil phosphorus levels on interactions between vesicular-arbuscular mycorrhizae and Rhizobium in soybeans. Canadian Journal of Botany, Ottawa, 58:2200-5, 1980.
- 03. BAGYARAJ, D.J. Use of mycorrhizal fungi in practical agriculture. In: REUNIÃO BRASILEIRA SOBRE MICORRIZAS, 4, Mendes, 1991. Anais... Mendes, EMBRAPA/CNPBS/UFRRJ, 1991. p.81-92.

- 04. BAPTISTA, M.J. Efeito de flavonóides na germinação e no crescimento assimbiótico de fungos micorrízicos vesículo-arbusculares. Lavras, ESAL, 1993. 92p. (Tese MS)
- 05. BARZ, W. Isolation of rhizosphere bacterium capable of degrading flavonoids. Phytochemistry, Oxford, 9:1045, 1970.
- 06. BECARD, G.; DOUDS D.D. & PFEFFER, P.E. Extensive in vitro hiphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO₂ and flavonols. Applied and Environmental Microbiology, Washinghton, 58(3):821-5, Mar. 1992.
- 07. _____ & FORTIN, J.A. Early events of vesicular-arbuscular mycorrhiza formation on RI T-DNA transformed roots. New Phytologist, Cambridge, 108:211-8, 1988.
- 08. ____ & PICHE, V. New aspects on the aquisition of biotrophic status by a vesicular arbuscular mycorrhhizal fungus, Gigaspora margarita. New Phytologist, Cambridge, 112:77-83, 1989.
- 09. BRUNDRETT, M. Mycorrhizas in natural ecosystems. Advances in Ecological Research, London, 21:171-311, 1991.

- 10. BRUNDRETT, M.; PICHE, Y. & PETERSON, R.L. A developmental study of the early stages in vesicular-arbuscular mycorrhiza formation. Canadian Journal Botany, Ottawa, 63:189-94, 1985.
- 11. BUWALDA, J.G.; STRIBLEY, D.P. & TINKER, P.B. The development of endomycorrhizal root sistems. V. The detailed pattern of development of infection nd the control of infection level by host in young leek plants. New Phytologist, Cambridge, 96:411-27, 1984.
- 12. CHABOT, S.; BEL-RHLID, R.; CHEVERNET, R. & PICHÉ, Y. Hyphal growth promotion in vitro of the VA mycorrhizal fungus,

 Gigaspora magarita Becker & Hall, by the activity of structurally specific flavonoid compounds under CO2 enriched conditions. New Phytologist, Cambridge, 122: 461-67, 1992.
- 13. CLARKSON, D.T. Factors affecting mineral nutrient acquisition by plants. Annual Review of Plant Physiology, Boca Raton, 36:77-115, 1985.
- 14. COOPER, K.M. Growth responses to the formation of endotrophic mycorrhizas in solanum, leptospemum and New Zeland ferns. In: SANDERS, F.E.; MOSSE, B. & TINKER, P.B. Endomycorrhizas. London, Academic Press, 1975. p.297-306.

- 15. D'ARCY-LAMETA, A. Study of soybean and lentil root exudates.

 II. Identification of some polyphenolic compounds,
 relation with plantlet physiology. Plant Soil, Hague,
 92:113-23, 1986.
- 16. DIXON, R.A. & LAMB, C.J. Molecular comunication in interaction between plants and microbial pathogens.
 Annual Review of Plant Physiology Plant Molecular Biology,
 Palo Alto, 41:339-67, 1990.
- 17. DUC, G.; TROUVELOT, A.; GIANINAZZI-PEARSON, V. & GIANINAZZI,

 A. First report of non-mycorrhizal plant mutants (Myc⁻)

 obtained in pea (Pisum sativum L.) and faba/bean (Vicia faba L.). Plant Science, Limerick, 60:215-22, 1989.
- 18. ELIAS, K.S. & SAFIR, G.R. Hyphal elongation of Glomus fasciculatum in response to root exudates. Applied and Environmental Microbiology, Washington, 53(8):1928-33, 1987.
- 19. FABER, B.A.; ZASOSKI, R.I.; BURAI, R.G. & URIU, K. Zinc uptake by corn as affected by vesicular-arbuscular mycorrhizae. Plant and Soil, Hague, 129(2):121-30 Dec. 1990.

- 20. FERNANDES, A.B.; SIQUEIRA, J.O.; MENEZES, M.A.L. & GUEDES, G.A.A. Efeito diferenciado do fósforo sobre o estabelecimento e efetividade da simbiose endomicorrízica em milho e soja. Revista Brasileira de Ciência do Solo, Campinas, 11(2):101-08, mai/ago. 1987.
- 21. FIRMIN, J.L.; WILSON, K.E.; ROSSEN, L. & JOHNSTON, A.W.B.

 Flavonoids activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature,
 London, 324:90-2, 1986.
- 22. GEDERMAN, J.W. Vesicular-arbuscular mycorrhiza and plant growth. Annual Review of Plant Physiology, Palo Alto, 6:397-418, 1968.
- 23. ____ & NICOLSON, T.H. Spore of mycorrhizal Endogone species extracted from soil by wet sieving and decating.

 Transactions of the British Mycological Society, London,
 46(2):235-44, 1963.
- 24. GIANINAZZI-PEARSON, V.; BRANZANTI, B. & GIANINAZZI, S. In vitro enhancement of spore germination and ealy hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root plant exudates and plant flavonoids. Symbiosis, Balaban, 7:243-55, 1989.

- 25. GIOVANNETTI, M. & MOSSE, B. An evaluation of techniques for measure vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, Cambridge, 84:482-500, 1980.
- 26. GRAHAM, J.H.; LEONARD, R.T. & MENGE, J.A. Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation.

 Plant Physiology, Maryland, 68:548-52, 1981.
- 27. HAHLBROCK, K. Flavonoids. In: STUMPF, P.K. & CONN, E.E. The

 Biochemistry of Plants, New York, Academic Press, 1981.

 v.7, cap.14, p.425-58.
- 28. HALVERSON, L.J. & STACEY, G. Signal exchange in plant microbe interactions. Microbiological Reviews, Palo Alto, 50:193-225, 1986.
- 29. HARLEY, J.L. & SMITH, S.E. Mycorrhizal simbiosis, London, Academic Press, 1983. 483 p.
- 30. HARTWIG, V.A.; MAXWELL, C.A.; JOSEPH, C.M. & PHILLIPS, D.A.

 Interactions among flavonoid nod gene inducers released
 from alfafa seeds and roots. Plant Physiology,
 Washington, 91:1138-42, 1989.

- 31. HUNGRIA, M.; JOSEPH, C.M. & PHILLIPS, D.A. Anthocyanidins and flavonols, major nod gene inducers from seeds of black-seeded common bean (Phaseolus vulgaris L.). Plant Physiology, Maryland, 97:751-8, 1991.
- 32. HUNTER, A.H. Laboratory analysis of vegetal tissues samples.

 Raleigh, International Soil Fertility Evaluation and

 Improvement Program, N.C.S.U., 1975. 5p.
- 33. KORMANIK, P.P. & McGRAW, A.C. Quantification of vesicular mycorrhizae in plant root. In: SCHENCK, N.C., ed. Methods and principles of mycorrhizae research. St. Paul, APS, 1982. p.37-45.
- 34. KOSSLAK, R.M.; BOOKLAND, R.; BARKEI, J.; PAAREN, H.E. & APPELBAUM, E.R. Induction of Bradyrhizobium japonicum common nod genes by isoflavonoids isolated from Glycine max. Proceedings of the National Academic of Sciences of the United States of America, Washington, 84:7428-32, 1987.
- arbuscular mycorrhiza in barley and wheat grow in some danish soils with differents fertilizer treatments. Plant and Soil, Hague, 55(3):403-14, July 1980.

- 36. JOHNSON, N.C. & PFLEGER, F.L. Vesicular-arbuscular mycorrhizae and cultural stresses. In. BETHLENFALVAY, G.J.; LINDERMAN, R.G. Mycorrhizae in sustainable agriculture. Madison, p.71-99. (ASA Special Publication).
- 37. LAMB, C.J.; LAWTON, M.A.; DROW, M. & DIXON, R.A. Signal and transduction mechanisms for activation of plant defenses against microbial attack. Cell, Cambridge, 56:215-24, 1989.
- 38. LEWIS, D.H. Comparative aspects of the carbon nutrition of mycorrhizas. In: SANDERS, F.E.; MOSSE, B. & TINKER, P.B. Endomycorrhizas. London, Academic Press, 1975. p.119-48.
- 39. LINN, D.G. & CHANG, M. Phenolic signals in cohabitation:
 implication for plant development. Annual Review Plant
 Physiology Plant Molecular Biology, Palo Alto, 41:497-526,
 1990.
- 40. LOPES, E.S.; SIQUEIRA, J.O. & ZAMBOLIM, L. Caracterização das micorrizas vesículo- arbusculares (MVA) e seus efeitos no crescimento de plantas. Revista Brasileira de Ciência do Solo, Campinas, 7(1):1-19, jan./abr. 1983.
- 41. MAHMUD, A.W. Response of corn (Zea mays L.) to inoculation with vesicular-arbuscular mycorrhizal fungi in a phosphorus deficient soil. Gainsville, University of Florida, 1983. 159p. (Tese PhD).

- 42. MAXWELL, C.A.; HARTWIG, V.A.; JOSEPH, C.M. & PHILLIPS, D.A.

 A chalcone and two related flavonoids released from alfafa
 roots induced nod genes of Rhizobium meliloti. Plant
 Physiology, Washington, 91:842-47, 1989.
- 43. MIRANDA, J.C.C. Influência de fungos endomicorrízicos inoculados a campo, na cultura de sorgo e soja em um solo sob
 cerrado. Revista Brasileira de Ciência do Solo, Campinas,
 6:19-23, 1982.
- of some plant flavonoids on in vitro behaviour of an arbuscular mycorrhizal fungus. Agronomie, Paris, 12:811-16, 1992.
- 45. MORTON, J.B. & BENNY, G.L. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): A new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families Acanlosporaceae and Gigasporaceae, with an emendations of Glomaceae. Mycotaxon, Ithaca, 37:471-91, Apr./June 1990.
- 46. NAIR, M.G.; SAFIR, G.R. & SIQUEIRA, J.O. Isolation and identification of vesicular-arbuscular mycorrhizastimulatory compounds from clover (Trifolium repens) roots. Applied Environmental Microbiology, Washington, 52:434-9, 1991.

- 47. OKEEFE, D.M. & SILVIA, D.M. Mechanisms of the vesicular-arbuscular mycorrhizal plant growth response. In: ARORA, D.K.; RAI, B.; MUKERJI, K.G. & KNUDSEN, G.R. Handbook of Applied Mycology; Soil and Plants. New York, Marcel Oekker, 1991. Vol. 1, Cap.2, p.35-53.
- 48. PAULA, M.A. & SIQUEIRA, J.O. Stimulation of hyphal growth of the VA mycorrhizal fungus Gigaspora margarita by suspension cultured Pueraria phaseoloides cells and cell products. New Phytologist, Cambridge, 115:69-73,1990.
- 49. _____; ____ & HOSHIKA, E. Crescimento, nutrição e produção de soja inoculada com populações de fungo micorrizicos vesículo-arbusculares. Revista Brasileira de Ciência do Solo, Campinas, 14:151-6, 1990.
- ; OLIVEIRA, L.H. & OLIVEIRA, E. Efetividade simbiótica relativa em soja de populações de fungos
 endomicorrízicos nativos e de isolados de Glomus
 macrocarpum e Gigaspora margarita. Revista de Brasileira
 Ciência do Solo, Campinas, 12:25-31, 1988.
- 51. PAULINO, V.T.; PICCINI, D.F. & BAREA, J.M. Influência de fungos micorrízicos vesículo-arbusculares e fosfatos em leguminosas forrageiras tropicais. Revista Brasileira de Ciência de Solo, Campinas, 10:103-8, 1986.

- 52. PEDERSEN, C.T.; SAFIR, G.R.; SIQUEIRA, J.O. & PARENT, S. Effect of phenolic compounds on asparagus mycorrhyza. Soil Biology Biochemistry, Oxford, 23(5):491-4, 1991.
- 53. PEREIRA, P.B.R. Estudo da eficiência de fungos micorrízicos vesicular-arbusculares para a soja em amostra de um latossolo. Viçosa, UFV, 1986. 73p. (Tese MS).
- 54. RAO, A.S. Root flavonoids. The Botanical Review, Lancaster, 56(1):1-84, 1990.
- 55. REDMOND, J.W.; BATLEY, M.; DJORDJEVIC, M.A.; INNES, R.W.;

 KUEMPEL, P.L. & ROLFE, B.G. Flavones induce expression of nodulation genes in Rhizobium. Nature, London, 323:632-4, 1986.
- 56. RICE, E.L. Allelopathy. 2.ed. London, Academic Press,
- 57. SANDERS, F.E. & SHEIKH, N.A. The development of vesicular-arbuscular mycorrhizal infection in plant root sistems.

 Plant and Soil, The Hague, 71:225-46, 1983.
- 58. SARRUGE, J.R. & HAAG, H.P. Análises quimicas em plantas.
 Piracicaba, ESALQ/USP, 1974. 56p.

- 59. SIQUEIRA, J.O. Fisiologia e bioquímica de micorrizas vesículo arbusculares: alguns aspectos da relação fungo-planta
 e absorção de fósforo.In: REUNIÃO BRASILEIRA SOBRE
 MICORRIZAS, 4, Mendes, 1991. Anais..., Mendes, EMBRAPA/
 CNPBS/UFRRJ, 1991. p.105-31.
- ; BROWN, D.G.; SAFIR, G.R. & NAIR, M.G. Field application of the VA mycorrhiza stimulating isoflavonoid formononetin (RhizotropinTM) on corn and soybean in Brazil. In: THE INTERNATIONAL SIMPOSIUM ON MANAGEMENT OF MYCORRHIZAS, Perth, 1992. Proceedings... Perth, University of Western Australia, 1992. p.132
- ; HUBBEL, D.H. & MAHMUD, A.W. Effect of liming on spore germination, germ tube growth and root colonization by vesicular-arbuscular mycorrhizal fungi. Plant and Soil, The Hague, 76(1/3):115-24, jan. 1984.
- em mudas de cafeeiro. II. Efeito do fósforo no estabelecimento e funcionamento da simbiose. Revista Brasileira de Ciência de Solo, Campinas, 10(3):207-11, 1986.
- 63. SIQUEIRA, J.O.; NAIR, M.G.; HAMMERSCHIMIDI, R. & SAFIR, G.R. Significance of phenolic compounds in plant-soil microbial systems. Critical Review Plant Science, Boca Raton, 10(1):63-121, 1991a.

- 64. SIQUEIRA, J.O.; NAIR, M.G.; HAMMERSCHIMIDI, R. Stimulation of vesicular-arbuscular mycorrhizal formation and plant growth by flavonoid compounds. New Phytologist, Cambridge, 118:87-93, 1991c.
- 65. ____; SAFIR, G.R. & NAIR, M.G. VA-mycorrhizae and mycorrhizal stimulating isoflavonoid compounds reduce plant herbicidae injury. Plant and Soil, The Hague, 134:233-42, 1991b.
- 66. SMITH, S.E. Mycorrhizas of autotrophic higher plants.

 Biological Review, Cambridge, 55:475-510, 1980.
- 67. ____ & GIANINAZZI-PEARSON, V. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annual Review of Physiology, Palo Alto, 39:221-44, 1988.
- 68. SPRENT, J. I. Which steps are essential for the formation of functional legumes nodules? New Phitologist, Cambridge, 111: 129-53, 1989.
- 69. SYLVIA, D.M. & NEAL, L.H. Nitrogen affects the phosphorus response of va mycorrhiza. New Phytologist, Cambridge, 115(2):303-10, jun. 1990.

- 70. TABATABAI, M.A. & BREMNER, J.M. A simple turbidimetric method of determining total sulfur in in plant materials.

 Agronomy Journal, Madison, 62(6):805-06, Nov./Dec. 1970.
- 71. TESTER, D.M.; SMITH, S.E.; SMITH, F.A. & WALKER, N.A.

 Effects of photon irradiance on the growth of shoots and roots on the rate of initiation of mycorrhizal infecction and on the growth of infection units in Trifolium subterraneum L. New Phytologist, Cambrigde, 103:375-90, 1986.
- 72. TOMMERUP, I.C. Development of infection by a vesicular-arbuscular mycorrhizal fungus in Brassica napus L. and Trifolaum subterraneum L. New Phytologist, Cambridge, 98:487-95, 1984.
- 73. TOTH, R. & MILLER, R.M. Dynamics of arbuscule development and degeneration in a Zea mays mycorrhiza. American Journal of Botany, Columbus, 71(4):449-60, Apr. 1984.
- 74. TRAPPE, J.M.; MOLINA, R. & CASTELLANO, M. Reactions of mycorrhizal fungi and mycorrhiza formation to pesticides.
 Annual Review of Phytopathology, Palo Alto, 22:331-59, 1984.

- 75. TSAI, S.M. & PHILLIPS, D.A. Flavonoids released naturaly from alfafa promote development of symbiotic Glomus spore in vitro. Applied and Environmental Microbiology, Washington, 57(5):1485-88, 1991.
- 76. U.S.A. Departament of Commerce-Patent and Trademark Office, SAFIR, G.R.; NAIR, .M.G. & SIQUEIRA, J.O. Method and Compositions for stimulating vesicular-arbuscular mycorrhizal fungi. Patent +5.002.603, 1991.
- 77. VAN NUFFELEN, M. & SCHENCK, N.C. Spore germination,
 penetration and root colonization of six species of
 vesicular-arbuscular mycorrhizal fungi on soybean.
 Canadian Journal of Botany, Ottawa, 62(4):624-28, Apr.
 1984.
- 78. WACKER, T.L.; SAFIR, G.R. & STEPHENS, C.T. Effects of ferulic acid on Glomus fasciculatum and growth of asparagus (Asparagus officinalis L.). Journal Chemistry Ecology, New York, 16:901-9, 1990a.
- 79. WILSON, J.M. Comparative development of infection by three vesicular-arbuscular mycorrhizal fungi. New Phytologist, Cambridge, 97(3):413-26, July 1984.

APÊNDICE

QUADRO A-1: Resumo das análises de variância dos parâmetros avaliados na soja em solo com aplicação de formoncmetima, em diferentes épocas de avaliação.

Parâmetros					
	Época (E)	Formonometina (F)	Interação ExF	Erro	
Colonização	1112,56**	108,15**	9,95*	2,42	
Comp. Raiz Colonizada	0,15**	0,005*	0,01**	0,001	
Pontos Entradas 1º	0,41*	0,14*	0,01	0,01	
Pontos Entradas 2º	0,32**	0,14**	0,02	0,02	
Arbúsculos	22,22**	3,76**	2,12**	0,35	
/esiculas	2,07**	0,05*	0,03*	0,01	
lat. Fresca Raiz	670,07**	0,35	0,10	2,69	
lat. Seca P. Aérea	183,50**	0,39*	0,06	0,08	
Mat. Seca Raiz	22,06**	0,005	0,02	0,04	
Altura	5331,94**	2,63	17,84	9,11	
N (%)	15,68**	0,28	0,10	0,10	
(%)	0,01**	9,9 x 10 ⁻⁶	7.0×10^{-5}	3,0 x 10	
(%)	0,28**	0,003	0,03	0,01	
a (%)	0,25**	2,0 x 10 ⁻⁴	0,02	0,01	
lg (%)	0,02**	8,0 x 10 ⁻⁴	6,5 x 10 ⁻⁴	0,001	
(%)	0,01**	1,6 x 10 ⁻⁴	3,7 x 10 ⁻⁴	4,0 x 10	
e (ppm)	4120,78*	947,05	1655,94	1106,04	
In (ppin)	604,41**	17,22	41,13	44,08	
In (ppa)	43,88	5,76	25,51	24,74	
Cu (ppm)	2,04	1,79	0,67	2,04	
l (mg)	19027,94**	0,78	159,11	66,28	
(mg)	100,65**	0,005	0,34	0,28	
(mg)	2245,45**	1,65	32.72	17,77	
a (mg)	8446,15**	2,06	34,63	29,84	
lg (mg)	1011,09**	0,17	3,09	3,02	
(mg)	52,98**	0,12	0,45	0,23	
e (ug)	587.799,76**	483,33	2970,70	5056,54	
n (ug)	132.844,88**	125,90	9,12	923,85	
in (ug)	29.520,24**	5,20	224,03	192,39	
tu (ug)	2065,53**	4,46	7,32	25,21	
Nº Nódulos/planta	42,23**	0,19	0,21	0,14	

CUMDIRO A-2: Resumo das análises de variâncias dos parâmetros avaliados no milho em solo com aplicação de formonometina em diferentes épocas de avaliação.

	son ว่า em ถึก เ			
0113	Tx3 obperatni	(1) Britanonomio1	Época (E)	
επ, <u>ς</u>	*9L'8	**£7*927	**88 ′ 26L	ošąsinoJo
100'0	**IO'0	**80*0	**SSO*0	sps. Raiz Colonizada
700,0	** 490 *0	**L7'0	**68L'0	ef esbantn3 eotn
960'0	\$20'0	** \$9\$*0	++785,0	ntos Entradas 29
S7'0	**ES'7	**\$9'02	**07'4	pņacnfoa
90'0	**8£*0	**72'Z	**£8. r	รย ุ ตก รู
ro,es	**75*211	*52,401	++9l'S78l	t. Fresca Raiz
9£ ' 0	80.0	ን ይ'0	4+2S*6 <u>4</u>	t. Seca Parte Aérea
02'0	Sr,0	82,0	**************************************	t. Seca Raiz
72 ' SS	9£'£\$	9 7 ,9S	**l7*l98£l	tura
80,0	22,0	10,0	91 ' 0	(X)
2-01 × 7,5	*_OL × 8'S	100,0	**900 * 0	(%)
70'0	800,0	**SS*O	**12'9	(%)
10,0	10'0	*70'0	**************************************	(%)
200,0	100,0	201 × 0,9	\$00 * 0	(%)
~_01 × 1,5	**L00'0	**£00′0	**400'0	(2)
70'272	11,659	**SL'12001	**96*L00S	(mdd)
07,S4	*S6'67L	67,8E	**79 * 896	(mdd)
59'67	*S7'09L	*05'7LE	++Sl,008r	(mqq)
77°22	26'55	**6£'7Z7	**Z\$^69E	(mqq)
20,5	**\Z'Z7	۲۱,0 ۱۱,0	£7'S	(edd)
0Z*S7L	27'6L	99'001	**59'0 7 861	(6u)
SE'0	Sr.,0	٤٥′٥	**E0'9Z	(5u)
75'55	80,54	35,50	**57,225	(Bu)
20,8	15'0	20'0	**LS'SZL	(6w)
66'2	2£'l	67,5 % 0	++8Z 1 Σγ8	(Gu)
7659 87 * 0	\$50722 0 ° 99	*79 <u>//</u> 7 7£10	**257887 05 ° 25	(6a) (6a)
	09'ቱረ	S,09	\$6691,38*	: (Bn)
26'672 28'917	79 ⁴ 657	20'0	**82 * 05995	(6n)
89'99	1£'07	*28,90 č	**SL'EL69	(Bn)
72'97	*S9*E9l	SS,OII	**SO" L7ZE	(fin)