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Abstract

Human presence and activity in tropical forest is thought to exert top-down regulation over the various ‘green-world’
pathways of plant-based foodwebs. However, these effects have never been explored for the ‘brown-world’ pathways of
fecal-detritus webs. The strong effects of humans on tropical game mammals are likely to indirectly influence fecal
detritivores (including Scarabaeine dung beetles), with subsequent indirect impacts on detrivore-mediated and plant-
facilitating detrital processes. Across a 380-km gradient of human influence in the western Brazilian Amazon, we conducted
the first landscape-level assessment of human-induced cascade effects on the fecal detritus pathway, by coupling data on
human impact, game mammal and detritivore community structure, and rate measurements of a key detritus process (i.e.
dung beetle-mediated secondary seed dispersal). We found evidence that human impact indirectly influences both the
diversity and biomass of fecal detritivores, but not detritivore-mediated processes. Cascade strength varied across
detritivore groups defined by species’ traits. We found smaller-bodied dung beetles were at higher risk of local decline in
areas of human presence, and that body size was a better predictor of cascade structure than fecal resource manipulation
strategy. Cascade strength was also stronger in upland, unflooded forests, than in seasonally flooded forests. Our results
suggest that the impact of human activity in tropical forest on fecal-detritus food web structure is mediated by both
species’ traits and habitat type. Further research will be required to determine the conditions under which these cascade
effects influence fecal-detritus web function.
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Introduction

Abundant evidence now supports a role for vertebrate

regulation of the structure and function of foodwebs [1–4]. While

the majority of trophic cascade research has been conducted along

plant-based pathways [5–7], comparatively little is known about

cascade dynamics in along detritus pathways [7]. In particular, the

fecal detritus pathway makes a major contribution to terrestrial

nutrient cycles [8] and is expected to be sensitive to top-down

regulation of the availability or diversity of fecal detritus inputs

[6,9]. Top-down regulation of the fecal detritus web may arise

from tri-trophic indirect interactions, with implications for plants

that are either negative (e.g. via predator-mediated reductions in

detritivore densities) [5], or positive (e.g. via predator-mediated

changes in detritivore behavior) [10].

Alternatively, predator-mediated reduction in herbivore fecal

resource availability may instigate four-level trophic cascades

along the fecal detritus web. For example, mammal overhunting in

tropical forests is predicted to negatively impact fecal detritivore

communities by reducing the diversity and availability of fecal

detritus inputs from the game mammals targeted by rural hunters

[11,12]. These indirect impacts should further cascade to influence

plant growth and demography by reducing rates of detrivore-

mediated, plant-facilitating processes including nutrient cycling

and secondary seed dispersal [10,12,13]. A range of cascading

influences of human activity on tropical forest function has been

explored along plant-based pathways [14,15], but these effects

have never been examined along fecal detritus-based pathways.

Resolving these uncertainties is critical to a more complete
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understanding of the ecological impacts of human activity in

tropical forests.

Along a 380-km gradient of human impact along the Juruá

River in the western Brazilian Amazon (Fig. 1), we quantified the

influence of human activity on a four-level fecal detritus-based

pathway, composed of game mammals, fecal detritivores (i.e.

Scarabaeine dung beetles), and fecal detritus process rates (i.e.

dung beetle-mediated secondary burial of excreted seeds) [16]. We

relied on these data to address two related questions.

First, does human activity in tropical forest influence the

community structure of fecal detritivores by decreasing the

availability and diversity of mammal fecal inputs? The ability of

trophic cascades to substantially alter the biomass or diversity of

entire trophic levels (i.e. community-level cascades) remains

controversial [17]. Community-wide cascades are considered

unlikely in tropical terrestrial habitats [17,18], as high spatial

heterogeneity and high species and trait diversity [19–21] may

lead to compensatory responses that mask the detection of

community-level change [19]. However, top-down regulation of

the fecal detritus web may result in community-level responses by

fecal detritivores, given their strong dependence on game mammal

feces [11,12] and the lack of density or biomass compensation in

perturbed dung beetle communities, particularly within the

Neotropics [33].

Alternatively, the strength of trophic cascades may be driven by

variation in values of species’ trait important for trophic

interaction [22–25]. Human activity-mediated reductions in the

availability and diversity of game mammal feces are hypothesized

to disproportionately penalize larger-bodied species whose repro-

ductive output is most closely associated with the large fecal

deposits of large-bodied game vertebrates [12]. Fecal resource

decline may also differentially influence dung beetle species with

different morphologies associated with feces handling and

relocation (nesting). Species with ‘tunneler’ and ‘dweller’ strategies

appear to be morphologically equipped to manipulate the soft

fecal masses produced by those large-bodied primates that are

targeted by rural hunters [26]. In contrast, ‘roller’ species

commonly manipulate small, pelleted feces, and may more easily

handle the feces of non-hunted, smaller-bodied mammals.

Second, can human impact-mediated trophic cascades influence

a key detrital process - the secondary dispersal by dung beetles of

seeds excreted in mammal feces? We used a field experiment to

quantify the proportion of seeds buried by detrivores across a

gradient of human impact. We expected that (i) heavier human

impact would be correlated with reduced seed burial rates due to

the indirect influence of hunting on community-level dung beetle

biomass and diversity, (ii) the negative effects of human impact

would be disproportionately strong for the largest sized seeds [27],

and that (iii) the biomass of large-bodied beetle species would be

most strongly correlated with seed dispersal rates across all seed

sizes [36].

To better understand the generality of top-down trophic

processes in fecal detritus webs, we explored these questions

across two common Amazonian forest types. Upland forests (terra

firme) represent the dominant forest type across the Amazon, and

are associated with heavily leached and oligotrophic soils.

Seasonally flooded forests (várzea) along white-water rivers

account cover roughly 180,000 km2 of the 7 million km2 (2.6%)

of the Amazon basin [28]. These forests differ dramatically in

several factors that may influence cascade strength, including

edaphic productivity [29,30], vertebrate diversity [29,31] and the

seasonality and intensity of human resource use and access [32],

including patterns of hunting and fishing [33].

Methods

Study area
The study was conducted along the Juruá river in the municipal

district of Carauari, state of Amazonas, Brazil. The regional

vegetation is classified as lowland tropical forest, encompassing a

mosaic of 17.9% of várzea forest and 80.6% of terra firme forests on

higher elevations (Fig. 1; [34]).

Data on mammal and dung beetle communities and seed burial

rates were collected across a total of 26 sites located within and

immediately adjacent to two multiple-use protected areas: the

Médio Juruá Extractive Reserve (ResEx; 253,227 ha) and the

Uacari Sustainable Development Reserve (RDS; 632,949 ha).

These reserves are contiguous and bisected by the Juruá River, a

large white-water tributary of the Amazon (Solimões) River (Fig. 1).

The two reserves share near-identical extractive histories and

ecological, socioeconomic and cultural contexts [35,36]. Elevation

across the study region ranges from 65 to 170 masl. Meteorolog-

ical data collected daily at the Bauana Ecological Field Station

near the center of the study landscape indicated that the mean

annual rainfall in 2008–2009 was 4,154 mm. Rainfall is strongly

seasonal, with a rainy season from December–May and a

persistent flood pulse from January to June.

Within the reserve system, approximately 4,100 local residents

are distributed across 74 variable-sized human settlements.

Adjacent to the reserve system lies the municipal town of Carauari

and the satellite community of Riozinho, with a total estimated

population of 25,200 [37]. Reserve residents variously engage in

hunting, fishing and forest extraction as well as small-scale

agriculture for both local subsistence and commerce [32].

Figure 1. Map of study region. Panels show location of: (top left) the
state of Amazonas within Brazil, (top right) the two focal reserves within
the state of Amazonas, and (bottom) the distribution of sampled
communities (white circles) and settlement size (scaled to size of circle)
within and immediately adjacent to the two focal reserves (the Médio
Juruá Extractive Reserve and the Uacarı́ Sustainable Development
Reserve). Shaded and white areas indicate terra firme and várzea forest,
respectively.
doi:10.1371/journal.pone.0075819.g001
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Subsistence hunting is legal in Brazilian multiple-use protected

areas and reserve residents hunt with shotguns to supplement an

otherwise fish and manioc-based diet.

Human impact
Human impact was represented as the size of each permanent

human settlement (i.e. number of households) nearest each census

transect [41]. This measure of human influence on wildlife acts as

a proxy for the diversity of ways in which humans impact multi-

species game communities, including population response to

current and historical human hunting pressure [38], the induce-

ment of avoidance behaviors in game species exposed to human

hunting [23], and the impact of localized land-use change [39].

Both settlement age and size (i.e. number of households or hunters)

have been successfully used as proxies for the influence of humans

on game mammal populations [38,40–42], and provide an

estimate of the magnitude of exploitation pressure that is

independent of the status of hunted populations [26,43,44],

hunting effort (e.g. hours hunting/km2) [45,46], frequency [47]

or biomass offtake [48]. While human settlement age is often a

stronger predictor of game mammal responses [38] than

settlement size [26], the dynamism of human settlement patterns

in this study region [36,49] precluded the accurate use of

settlement age as a proxy for human impact. In this study region,

settlement size was inversely correlated with straight-line distances

to the nearest urban center (Carauari, r25 = 20.59, p = 0.001).

Mammal Surveys
Between January 2008 and December 2010, medium and large-

bodied ($1 kg) terrestrial mammal assemblages were character-

ized using standardized line-transect surveys across a total of 26

sites (terra firme forest N = 15, várzea forest N = 11) distributed across

the study region [50]. Medium to large-bodied mammals represent

the preferred game species among traditional hunters [38] and

account for a disproportionate fraction of the total vertebrate

biomass in tropical forests [51]. Each transect of 4,500–5,000 m in

length (mean length: 4,8176337.3 m, n = 26) was surveyed both

in the morning and afternoon, over a period of 4–5 consecutive

rainless days every month by a trained field assistant from the

nearest village, at a mean velocity of 1.2 km/h [50]. Species

identity, group size and location were recorded for each

encounter. Data on mammal individuals were pooled across space

(i.e. along the transect length) and time (i.e. across all census

events, 2008–2010), and divided by the total number of kilometers

walked, resulting in estimates of abundance corrected for sampling

effort for each species observed. For social species, when the

number of individuals in a group encounter could not be estimated

in the field, the mean group size for that species from the same

season and transect was used.

Dung Beetle Surveys
Dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) were

sampled using standardized baited pitfall traps (20 cm diameter,

15 cm depth) buried flush with the ground and baited with 20 g of

fresh human dung. Human feces are routinely used as standard-

ized collection protocol in Neotropical dung beetle biodiversity

studies [52], as they attract species beetles known to use both

primate, herbivore and omnivore feces [53], are frequently

reported to attract a wider breadth of species and higher

community biomass than other fecal bait types [53–55], and are

consistently availability in remote study regions, permitting a

minimum level of methodological consistency between studies.

In each of 15 terra firme and 11 várzea forest sites, a total of 15

traps were placed every 50 m along linear transects, beginning at

the 400 m mark of the same transect used for surveying mammals.

These trail segments were those nearest to local communities

along each transect, thereby maximizing any spatial effects of

human activities on the fecal detritus system. Trapping was

conducted twice at each site, coinciding with the late-dry (August–

September 2009) and early-wet seasons (December–January

2010). Fewer sites were sampled in the wet season due to

accessibility issues (terra firme N = 10, várzea N = 8). Traps were

operated for one 24-h period at each site. Captured specimens

were separated to species [56]. Dung beetle body mass is a

particularly important trait for understanding response to resource

availability [9], habitat change [57] and influence on ecological

functions, specifically seed dispersal [58]. Body mass estimates for

each species were obtained by weighing between 1 and 30

individuals on a balance accurate to 0?0001 g after drying in a

constant-temperature oven at 60uC for one week. Nesting strategy

information was obtained from the literature and corroborated by

experts [57]. Three principal nesting strategies are recognized:

paracoprid (i.e. tunneler) species locate their nests underneath the

fecal deposit; telocoprid (i.e. roller) species locate their nests at great

horizontal distances from the fecal deposit; and endocoprid (i.e.

dweller) species nest directly within fecal deposits [59].

Seed Burial Rates
We set up a seed burial experiment the day before dung beetles

were sampled. The sampling protocol consisted of establishing

four circular, 1 m diameter mesocosm plots, spaced 100 m apart,

and located within the first 400 m of transects used to survey

mammal and beetles. Due to logistical constraints, we only

measured seed burial within terra firme forest (n = 15) transects, and

within the dry season. The border of each mesocosm arena was

delimited by a mesh fence (approximately 15 cm tall plastic

netting), and at the center of each mesocosm, we placed a single

150 g experimental fecal deposit of fresh human feces. Each fecal

deposit was mixed with 70 plastic seed mimics in three size classes

(1 cm diameter, N = 10, 10 mm diameter, N = 20, 5 mm diam-

eter, N = 40). Seed mimics (rather than real seeds) are an ideal

proxy for real seeds in tropical forest, as they are not subject to

rodent or ant seed predation or removal and have similar burial

rates by beetles [16]. This study design allows dung beetles to

freely enter the mesocosm, and engage in the feeding and

reproductive activities that translate into feces removal and seed

burial, while preventing the removal of brood balls by species with

a ‘rolling’ nesting strategy. After a 24-h exposure period to the

dung beetle community, we measured the number of seed mimics

of each size class buried $1 cm under the soil surface. Further

details and images of mesocosm setups can be found in Braga et al.

(2013).

All necessary permits were obtained for this work from the

Brazilian Council Scientific and Technological Development

(CNPq) and the Brazilian Institute of Environment and Renew-

able Natural Resources (IBAMA) under SISBIO permit 16620-1.

Collections took place in lands within sustainable development

forest reserves, under the jurisdiction of State of Amazonas

Secretariat for the Environment and Sustainable Development

(SDS-CEUC) and the Chico Mendes Institute of Biodiversity

Conservation (ICMBio). No protected species were captured,

sampling of all mammal species were restricted to non-invasive

line-transect censuses, and no primates, rodents, ungulates (or

indeed any mammals at all) were handled during the study.

Data Analysis
We examined the evidence for three distinct cascade structures,

represented as either community-level (Fig. 2a, d) or trait-defined

Trophic Cascades in a Fecal Detritus Pathway
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cascades (Fig. 2b, c, e, f). Each hypothesis was examined with two

dung beetle metrics (i.e. species richness and total biomass) and

analyzed separately for the two forest types (terra firme and várzea).

We explored all models with both multiple generalized linear

mixed models (GLMM) and generalized multilevel path analysis

(GMPA) to examine the causal support for overall cascade

structure with statistical controls [60].

To examine community-level cascades with generalized multi-

ple linear mixed models, we modeled (i) game mammal abundance

as a function of human impact (i.e. settlement size), (ii) dung beetle

community species richness or biomass as a function of human

impact and game mammal abundance, and (iii) the probability of

seed burial as a function of human impact, game mammal

abundance and dung beetle species richness or biomass. To

discern which dung beetle community attribute (i.e. species

richness or biomass) best explained seed burial probability, we

compared two separate models including either beetle species

richness or biomass with AIC-based model comparison.

To examine trait-defined cascades with a GLMM approach, we

re-ran these same models after separating both the dependent and

independent variables into groups defined by species traits relevant

to trophic interactions. We separated game mammals into broad

taxonomic groups (i.e. primate, ungulate and rodent) that both

encounter differential selective hunting pressure (e.g. Jerozolimski

and Peres 2003) and present distinct feces morphologies and

deposition locations (i.e. arboreal vs. terrestrial) [9,61] for dung

beetles. We separated dung beetles into two distinct trait groups

based on body mass (i.e. small: ,0.1 g and large: $0.1 g) and

nesting strategies (i.e. roller, tunneler or dweller). For terra firme

models that included seed burial, we separated seeds into size

classes (i.e. small: 2 mm ,0.1 g, medium 5 mm: and large:

10 mm). To discern which property of dung beetle community

structure (i.e. species richness or biomass) and trait-defined

pathway (i.e. body size or nesting strategy) best explained seed

burial probability, we compared four separate models for each

seed size class with AIC-based model comparison. All analyses

used beetle data taken from the 10 traps farthest ($300 m) from

the nearest mesocosm used to measure function to avoid potential

bias in beetle capture rates. Ungulates and rodents were excluded

from várzea forest models due to their rarity in this dataset. All

predictors were centered on their means to facilitate interpreta-

tion. For all models, we used appropriate error structures (i.e.

Poisson or Binomial) and incorporated both season (i.e. wet or dry)

and transect identity as random effects in an unreplicated, crossed

design [62].

To additionally assess the causal influence of human impact on

cascade structure, we used generalized multilevel path models

(GMPA) to examine the support for overall cascade structure [60].

GMPA is a generalization of Shipley’s d-sep test, wherein a

generalized linear mixed model (GLMM) can be used to test a

series of related claims of independence in a path diagram. The

hypothetical causal structure defined by a DAG can be tested with

directional separation tests (d-sep) that quantify if the proposed

model corresponds to the patterns of dependence or independence

in the data [63]. This d-sep approach involves first finding the

‘basis set’ BU of independence claims implied by a DAG that

express the full set of dependence and independence claims

implied by the causal graph, when taken as a set (e.g. Table S6).

BU is obtained by listing each of the k pairs of variables (Xi, Xj) in a

causal graph that lack an arrow between them and then

conditioning each of those k pairs by the set of variables Z that

are either a direct cause of Xi or of Xj (Table S6). The probability

pi associated with each of the k independence claims in BU is

obtained using appropriate statistical tests (in our case, GLMMs).

The overall hypothesized causal structure implied by the path

diagram can then be tested by combining values of pi using Fisher’s

test statistic C as:

C~{2
Xk

i
ln(pi)C ð1Þ

The proposed causal model is rejected if the P value associated

with the C statistic is smaller than the specified a-level (here,

a= 0.05) after comparison to a chi-square (x2) distribution with 2k

degrees of freedom. A significant P value supports a rejection of

the proposed DAG, as it implies that the data depart significantly

from what would be expected under such a causal model [60].

Figure 2. Three alternative trophic cascade structures along the detritus pathway in terra firme and várzea forest. Cascade structures
are represented as either community-level (A, D) or trait-defined (B–F). Mammal abbreviations include: primate (P), rodent (R) and ungulate (U). Dung
beetle size classes include: small (S) and large (L). Dung beetle nesting strategies include: tunneler (T), roller (R) and dweller (D).
doi:10.1371/journal.pone.0075819.g002
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We represented each of our three overall hypotheses about

community and trait-defined trophic cascade structure with a

DAG (Fig. 2) and tested the k independence claims implied by

each proposed causal path models (see TS6). These GMPAs used

identical model structures as the GLMMs described above. Values

of pi were taken from the P value associated with the t statistic for

the regression coefficient of the composite variable. All analyses

were conducted using the ‘nlme’ [64] package in the R

environment [65].

Results

Across the 26 forest transects sampled for both mammals and

dung beetles, we conducted a total of 8,430 km of mammal census

walks (3246344 km, mean 61 SD, range 80–1,260 km). These

transects were associated with 15 neighboring human settlements,

varying in size from five to 500 households (78625.9 households,

median 61 SD). Human communities adjacent to terra firme or

várzea forest sites were similar in both size (terra firme 22.5629.5

households, várzea 19.3623.3 households, mean 6 SD, t23 = 0.3,

p = 0.76) and distance to censused transects (terra firme

0.7860.39 km, várzea 0.8460.35 km, mean 6 SD, t23 = 20.38,

p = 0.78).

Mammal surveys resulted in observations of 38 species (see

Table S1). Primates accounted for 38% of all individuals detected,

followed by rodents (18%) and ungulates (16%). Of all species

encountered, 58% are considered hunted game species in the

region (unpublished data). The mean number of mammal

individuals encountered was similar between terra firme and várzea

sites (terra firme 1.2761.4, várzea 0.9060.78 individuals/km, mean

6 SD, t23 = 0.8, p.0.1), while terra firme sites supported

significantly higher mammal species richness (terra firme

0.01561.4, várzea 0.00960.78 species/km, mean 6 SD,

t22 = 3.2, p = 0.004).

A total of 10,819 dung beetle individuals in 90 species were

captured (terra firme: N = 5,887, S = 83; várzea: N = 5,513, S = 57;

see Table S2). Total beetle abundance per trap was higher in

várzea forest (várzea: 19.5629.3, terra firme: 15.4615.0 individuals,

mean 6 SD, t445 = 22.26, p = 0.001), while biomass and species

richness were higher in terra firme (biomass: várzea 0.560.41, terra

firme 0.7360.53 g, mean 6 SD, t727 = 509, p,0.001; species

richness: várzea 5.263.3, terra firme 6.363.9 species, mean 6 SD,

t721 = 4.21, p = 0.001). There were no significant differences in

mean individual beetle body mass between forest types (várzea:

0.1060.08 g, terra firme: 0.1160.07 g, mean 6 SD, t664 = 1.83,

p = 0.10). Dung beetle biomass and species richness per trap were

significantly higher in the dry season (biomass: dry 2.0561.87 g,

wet 0.896856 g, mean 6 SD, t560 = 9.4, p,0.0001; richness: dry

7.063.9, wet 3.962.4 species, mean 6 SD, t560 = 11.0,

p,0.0001).

Most dung beetle species were diurnal (67%) and used a

tunneling nesting strategy (58%). For our analyses, a total of 68

species were classified as ‘small’ (i.e. ,0.1 g; 0.02260.02 g; mean

61 SD, range 0.0001–0.092 g) and 31 species as ‘large’ (i.e.

$0.1 g; 0.25660.187 g; range 0.103–0.79 g). The distribution of

nesting strategies across small and large species was similar, with

the majority classified as ‘tunnelers’ (small: 64%; large: 68%),

while ‘rollers’ represented 30% of small species and 20% of large

species. The proportion of seed mimics (hereafter, seeds) removed

by detritivores per forest site was greatest for large seeds, lowest for

medium seeds and intermediate for small seeds (large 0.2260.27;

medium 0.1960.18; small 0.20, 60.13, mean 6 SD; n = 15 for

each).

Generalized multiple linear mixed model approach
Community-level cascade structure. We found no evi-

dence for community-level cascades in either forest type. Human

impact was not associated with community-level mammal

abundance (Figure S1, Table S3), dung beetle biomass or species

richness (Table S4A, B). Mammal abundance was unrelated with

dung beetle biomass and species richness in both terra firme and

várzea forests (Table S4A, B).

The probability of community-level seed burial was equally well

explained by models that included beetle biomass or species

richness (Table S5A). In neither model was seed burial probability

related to human impact, community-level beetle biomass or

species richness or mammal abundance (all p.0.05, Table S5B).

However, seed burial rate was positively associated with the

biomass of small-bodied dung beetles (z13 = 4.30, p,0.0001) and

ungulate abundance (z13 = 6.59, p,0.0001). Seed dispersal was

further unrelated to the biomass of large-bodied dung beetles and

rodents (all p.0.05) and negatively associated with primate

abundance (z13 = 23.93, p,0.0001).

Trait-defined cascade structures
Across trait-defined mammal groups, only hunted primates in

terra firme forest showed a significant negative relationship with

human impact (t13 = 21.18, p = 0.026; all other p.0.05, see Table

S3). Across beetle body-mass defined models in terra firme forests,

rodent and ungulate abundances were unrelated to beetle body

mass (all p.0.05, see Table S3A). In terra firme forests, both the

biomass and species richness of small beetle species were

negatively correlated with human impact (biomass z244 = 22.76,

p = 0.006; richness z244 = 22.50, p = 0.013; Fig. 3A, C), yet

remained independent of the abundance of all three mammal

groups (all p.0.05, Table S4A). In contrast, the biomass and

species richness of large beetle species were independent of human

impact (all p.0.05, Fig. 3b,d see Table S4B), yet positively

correlated with hunted primate abundance (biomass z244 = 3.65,

p = 0.013; richness z244 = 1.86, p = 0.063; Fig. 3). Both small and

large beetles were unrelated to the abundance of hunted rodents

and ungulates abundances (all p.0.05, see Table S3A). Neither

biomass nor species richness of small beetles in várzea forests were

associated with human impact or primate abundance (all p.0.05,

see Table S4B). Finally, we found strongly positive relationships in

terra firme forests between both beetle species richness and

abundance (r13 = 0.95, p,0.0001) and biomass (r13 = 0.86,

p,0.0001), suggesting the absence of density or biomass

compensation.

Across beetle nesting strategy-defined models, the biomass and

species richness of all three strategies were independent of human

impact in both terra firme and várzea forest (all p.0.05, see Table

S4). In terra firme forest, the biomass of beetles with a ‘dwelling’

strategy was positively correlated with hunted primate abundance

(z244 = 2.03, p = 0.042). The biomass of species with a ‘roller’

strategy was negatively associated with game rodent abundance

(z244 = 21.98, p = 0.048), while the species richness of rollers was

negatively correlated with ungulate abundance in terra firme forest

(z244 = 22.17, p = 0.03). In várzea forest, the abundance of hunted

primates was unrelated to all measures of nesting strategy (all

p.0.05, see Table S4B).

Trait-defined detritivore-mediated process rates
For all three seed size classes, the top AIC model included the

biomass of body-mass-defined trait groups (Table S5). Human

impact was unrelated to the probability of seed burial, irrespective

of seed size (all p.0.05, Table S5). All classes of seed size showed a

strong positive relationship between seed burial probability and
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the biomass of small-bodied beetles (large: z15 = 2.87, p = 0.0041;

medium: z15 = 2.21, p = 0.027; small: z15 = 2.05, p = 0.041), as well

as ungulate abundance (large: z15 = 4.29, p,0.0001; medium:

z15 = 2.87, p = 0.004; small: z15 = 3.62, p,0.0001). The likelihood

of small seed burial was negatively associated with primate

abundance (z59 = 22.51, p = 0.012, Fig. 4). Rodent abundance

was unrelated to seed burial for all size classes (all p. 0.05, see

Table S5B).

Generalized multilevel path analysis approach
We found support for community-level (Fig. 2a, d), but not trait-

defined (Fig. 2b, c, e, f) cascade structure in both terra firme and

várzea forest and for both dung beetle community attributes (terra

firme: biomass C6 = 4.17, p = 0.65, species richness C6 = 5.12,

p = 0.53; várzea: biomass C2 = 1.96, p = 0.37, species richness

C2 = 0.75, p = 0.69). Despite this strong overall model support,

individual path coefficients from both forest types were weak

(Fig. 5), and there was no evidence of significant relationships

between any trophic level in either forest type.

Discussion

To our knowledge, this represents the first landscape-scale study

on the influence of human activity on the structure and function of

the fecal detrital pathway. We show that human presence in

tropical forests can influence the fecal detritus food web structure

via body-size-dependent responses by detritivores. These indirect

impacts on fecal detritivores occurred even in the absence of

strong community-level responses by game mammals to human

Figure 3. Standardized regression coefficients (b) for GLM
models of terra firme dung beetle biomass and species richness.
Models conducted separately for (A, C) small-bodied and (D, E) large-
bodied beetle species; model terms include human impact and game
mammal abundance.
doi:10.1371/journal.pone.0075819.g003

Figure 4. Standardized regression coefficients (b) for GLM models of the probability of secondary seed burial. Model terms include
human impact, game mammal abundance and dung beetle biomass.
doi:10.1371/journal.pone.0075819.g004

Figure 5. Model structure and standardized path coefficients
from generalized multilevel path analysis. Path coefficients (i.e.
standardized regression coefficients) above each DAG of the detrital
pathway in (A) terra firme and (D) várzea forests represent values for
models based on dung beetle biomass; path coefficients below
represent models based on dung beetle species richness. No path
coefficients were significant at the a= 0.05 level.
doi:10.1371/journal.pone.0075819.g005
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activities. Human presence in tropical forest was most strongly

associated with declining abundance of large-bodied primate game

species, as commonly observed elsewhere in tropical forests

[26,66]. We found no evidence that human activity indirectly

influence rates of detritivore-mediated secondary seed dispersal

rates. We also found few consistent relationships between beetle-

mediated seed dispersal and game mammal abundance. Seed

dispersal rates were positively associated with the biomass of small,

but not large-bodied beetles – an unexpected finding given the

previous empirical support for a dominant role of larger-bodied

beetle species in the secondary dispersal of large seeds

[16,58,67,68]. Finally, we found stronger associations between

dung beetles and both human presence and game mammal

abundance in upland terra firme forests, compared to seasonally

flooded várzea forests. Similar to other Neotropical studies, we

detected no evidence of density or biomass compensation across

the fecal detrivore community [69].

We found no consistent patterns of association between dung

beetle nesting strategy and responses to human presence or game

mammal abundance. Beetle species with a ‘dwelling’ strategy were

positively associated with primate abundance in terra firme forest. In

the Neotropics, all dwellers are strictly coprophagous members of

a single genus (Eurysternus). In contrast, species with a ‘rolling’

nesting strategy were negatively associated with the abundance of

both caviomorph rodents (i.e. Dasyprocta fuliginosa, Agouti paca) and

ungulates (i.e. Mazama spp., Tapirus terrestris, Tayassu pecari, Pecari

tajacu). While the predation of adult dung beetles by caviomorph

rodents and ungulates is a possible explanation for these results

[70], future manipulative studies will be required to understand

the mechanisms behind these observed beetle-mammal associa-

tions.

We found stronger support for trophic effects defined by dung

beetle body-size than those defined by nesting strategy. Contrary

to our initial expectations [9], small-bodied beetle species were

disproportionately sensitive to human presence in (upland) tropical

forests. A similarly negative effect on small-bodied beetles was

reported by Andresen and Laurance (2007) in Barro Colorado

Island, Panama, even 15 years after hunting activity had ceased

[11]. Culot et al. (2013) also reported that negative trends between

mammal abundance and dung beetle species richness were

stronger for smaller-bodied beetles [71]. In contrast, human

impact was unrelated to the diversity and biomass larger-bodied

beetles in either forest type. The combination of hunting pressure,

and mammal avoidance near permanent human settlement may

translate into ‘sinks’ of lower feces availability that disproportion-

ately impact smaller beetle species with reduced dispersal abilities

that are incapable of subsidizing their diet in neighboring patches

with greater fecal resources. In contrast, the neutral response by

large beetles to human activity may be a result of three potentially

interacting phenomena: (1) dispersal-mediated buffering, (2)

resource scarcity effects, and/or (3) the human subsidy effect.

First, the high vagility of large dung beetles may enable the

detection and pursuit of fecal resources across wider spatial extents

[72], which can buffer the fitness effects of local resource scarcity,

relative to smaller beetles. Such effects may be more likely at early

stages of defaunation, when local resource depletion operates in

patches of higher and lower resources, rather than across an entire

region.

Alternatively, the neutral abundance response of larger-bodied

beetles in areas of human settled areas may arise from a positive

relationship between local resource scarcity and capture rates

[73,74]. Such resource scarcity effects are a common practical

issue for field studies that use attractive baits [75], are more likely

to influence capture rates of larger individuals with elevated

dispersal abilities, responding to food resources detected over

wider spatial scales. Future work should attempt to determine the

role of such scarcity effects on observational studies that report

perplexingly strong and negative relationships between beetle

abundance and mammal biomass [71]. Third and finally, local

subsidies of human fecal resources may positively influence either

the population density or observed capture rates of larger-bodied

beetles, given the ready attraction of dung beetles to primate

(including human) feces, and the frequent occurrence of open-air

defecation in this study system (Nichols, pers. obs.). We consider

this final alternative hypothesis to be relatively unlikely, both

because a human fecal subsidy should positively influence small

and large-bodied beetles, and because the positive impact of this

subsidy should be tempered by the strongly negative abundance

responses to the agricultural land-use that surround human

settlements [76].

For large-bodied dung beetles in terra firme forest, we observed a

decoupled response to human activity (neutral) and the abundance

of large-bodied ateline primates (positive) that were themselves

strongly impacted by human activity. This decoupled response

may reflect the high demographic consequences of dispersal

through the faunal depletion zone for large-bodied primates

[38,77,78]; effects that may be relatively neutral for large-bodied

beetles.

Any of these three of these size-biased processes may translate

into a degree of functional ‘spatial insurance’ [72] across the

heterogeneous fecal resource landscape of hunted tropical forests.

The persistence of such spatial insurance is likely to be sensitive to

activities that reduce connectivity between fecal resource patches,

including increased mammal offtake around permanent human

settlements and localized land-use changes following agricultural

expansion. Taken together, these results suggest that the lasting

human footprint on dung beetle persistence may accrue through

two distinct pathways: early declines of small-bodied beetle species,

compounded by subsequent declines of large-bodied specialists.

We found no relationship between human activity in tropical

forest and detritivore-mediated rates of secondary seed dispersal.

Strong attenuation between top-down forces and processes related

to plant growth and demography are not uncommon in trophic

cascade studies, particularly those that focus on density-mediated

indirect interactions between predators and plants [79,80]. We

also found a strong, unexpected relationship between the biomass

of small-bodied beetle species and the probability of burial for

large seeds. These results differ from those reported from an

identical experimental design in another western Amazonian site,

where both the biomass and richness of larger-bodied beetles and

richness (though not biomass) of small beetles were positively

associated with large seed burial rate [81]. These contradictory

results echo a lack of clear, consistent associations between dung

beetle community attributes and beetle-mediated ecological

function in observational studies [67,74,82].

We posit that part of this variability may arise from a

widespread sampling artifact. In studies that collect data on

ecological process rates and biodiversity in separate steps (i.e.

through mesocosms and pitfall traps, as used here), differences in

the size of the baits used to measure function (150 g) or attract

beetle diversity in pitfalls (20 g) may introduce a large-beetle bias

in ecological process measurements, as larger-bodied beetles can

respond from greater distances to the larger scent plumes emitted

by functional mesocosms. Horgan (2005) reported marked

differences in observed beetle-function relationships when meso-

cosm data were compared with biodiversity data collected either

directly within the mesocosms, or in neighboring pitfall traps (as

used here). This suggests that size-biased sampling artifacts can
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indeed influence the observed correlations between dung beetle

community attributes and function. This artifact can be overcome

with simple modifications to the collection of either paired

functional or biodiversity data.

We also found that forest type strongly mediated trophic

cascade strength, with clearer evidence for human impact-induced

cascade effects in terra firme, rather than várzea forests. These

differences were strong, and are likely associated with the

biological and socio-economic features unique to each forest

types, despite their naturally close spatial proximity. Biomass of all

vertebrates [83] and large-bodied primates in particular [84] can

be orders of magnitude lower in upland, oligotrophic forests than

in neighboring seasonally flooded forests [30], potentially leaving

stronger signatures of co-decline in areas where hunting pressure

was recently or historically high. In addition, as opportunistic

hunting typically accompanies extractive and agricultural activities

[45,85], the year-round accessibility of terra firme forests, and

location of manioc fields within terra firme sites may support the

exploitation of large-bodied primates in upland forest, beyond the

threshold at which active pursuit is predicted on the basis of

hunting effort alone [86]. These general differences between terra

firme and várzea forests were specifically present across our study

region, where the two forest types differed in mean basal area [34],

vertebrate community structure (this study; Endo unpublished)

and patterns of human forest access and use [87,88].

Finally, we found that our use of two analytical approaches (i.e.

GLMM and GMPA) resulted in strikingly different assessments of

both cascade structure and strength. Path analysis suggested that a

community-level model of cascade structure was most appropriate

for both forest types, a result potentially linked to the higher

number of parameters in trait-defined models (see Table S6).

Despite the support for these community models, the individual

path coefficients linking trophic levels were weak, reflecting similar

results to those reported from generalized linear mixed models.

Taken together, these results highlight the complementarity of

these analytical approaches, and suggest that further examination

of the structure of trophic cascades along the fecal detritus

pathway is warranted.

Our study also raises an interesting and currently underexplored

issue, related to the net effects on ecological function of cascade

dynamics in donor-controlled systems. When the indirect interac-

tions that lead to detritivore decline are mediated by a reduction in

the availability of detrital resources, and the ecological processes of

interest result from the consumption of those detrital resources,

does biodiversity loss beget a true net loss of ecological

functioning? This question stems from the donor-controlled nature

of the detritus pathway, and is generalizable to any detritus based

system. While feedbacks between plants and plant consumers in

green-world pathways largely determine overall cascade structure

and strength [17,89], the absence of interactions between detritus

and detritus consumers has been alternatively proposed to weaken

detrital cascades [90] or alternatively strengthen them relative to

plant cascades, by tightly coupling consumption to resource

depletion. A quantitative exploration of these questions will

demand new information on the topology of ecological interaction

networks formed by fecal detritus producers and consumers, as

well as an improved understanding of the spatial dynamics of feces

producer and consumer co-decline.

Our landscape-level study allowed us to detect evidence for a

cascading impact of human activity on detritivores, but not

detritivore-mediated processes [91]. Future manipulated experi-

ments will be necessary to determine the mechanisms by which

human activity influences cascade structure and strength in the

fecal detritus web. In particularly, disentangling the potential

influence of dung beetle mobility on cascade dynamics observed

here will require additional attention to the spatial dimensions of

trophic cascades [92], including spatial patterns of mammal

defaunation [93], the interaction of beetle dispersal ability and

fecal resource availability [94], and how spatial exchanges across

areas exposed to variable levels of hunting pressure may affect

dung beetle-mediated ecological process rates. Recent evidence

also suggests that future inclusion of trait-mediated indirect

interactions in cascade studies will be critical to understanding

cascade dynamics in the fecal detritus systems [10]. Such

mechanisms may include predator-mediated changes in detritivore

behavior, physiology or even stoichiometry [95,96], and impor-

tantly may strongly influence the observed functional and spatial

relationships [97] between detritivores and plant-facilitating

processes, even in the absence of obvious density-mediated effects

[10]. Our findings provide the first landscape-scale evidence that

human presence in tropical forests can influence the structure of

fecal detritus pathways and support the ongoing prioritization of

research that explores the impacts of human use of tropical forest

on food web structure and function.
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Conservation Society, Ministério do Meio Ambiente e ICMBio, Brasil.

51. Peres CA (1999) Nonvolant mammal community structure in different

Amazonian forest types. In: Eisenberg JF, Redford KH, editors. Mammals of
the Neotropics: the Central Neotropics. Chicago: University of Chicago Press.

pp. 564–581.

52. Nichols E, Gardner TA (2011) Dung beetles as a model taxon for conservation

science and management. Dung Beetle Ecology and Evolution

53. Larsen TH, Lopera A, Forsyth A (2006) Extreme trophic and habitat

specialization by Peruvian dung beetles (Coleoptera : Scarabaeidae :

Scarabaeinae). Coleopterists Bulletin 60: 315–324.

54. Howden HF, Nealis VG (1975) Effects of clearing in a tropical rain forest on the

composition of the coprophagous scarab beetle fauna (Coleoptera). Biotropica 7:
77–83.

55. Martin-Piera F, Lobo JM (1996) A comparative discussion of trophic preferences
in dung beetle communities. Miscellania Zoologica Barcelona 19: 13–31.

Trophic Cascades in a Fecal Detritus Pathway

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e75819



56. Vaz-de-Mello FZ, Edmonds WD, Ocampo FC, Schoolmeesters P (2011) A

multilingual key to the genera and subgenera of the subfamily Scarabaeinae of
the New World (Coleoptera: Scarabaeidae). Zootaxa: 1–73.

57. Nichols E, Uriarte M, Bunker DE, Favila M, Slade EM, et al. (2013) Trait-

dependent response of dung beetle populations to tropical forest conversion at
local to global scales. Ecology 94: 180–189.

58. Slade EM, Mann DJ, Villanueva JF, Lewis OT (2007) Experimental evidence
for the effects of dung beetle functional group richness and composition on

ecosystem function in a tropical forest. Journal of Animal Ecology 76: 1094–

1104.
59. Halffter G, Edmonds WD (1982) The Nesting Behavior of Dung Beetles

(Scarabaeinae): an Ecological and Evolutive Approach. México, D. F.: Institúto
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