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“But then ...” I venture to remark, “you are still far from the solution. ...” 

“I am very close to one,” William said, “but I don’t know which.” 

“Therefore you don’t have a single answer to your questions?” 

“Adso, if I did I would teach theology in Paris.” 

“In Paris do they always have the true answer?” 

“Never,” William said, “but they are very sure of their errors.” 

“And you,” I said with childish impertinence, “never commit errors?” 

“Often,” he answered. “But instead of conceiving only one, I imagine many, so I become the 

slave of none.” 

 

Dialogue between Adso of Melk and William of Baskerville 

Umberto Eco, The Name of the Rose, 1983 



GENERAL ABSTRACT 

Soil erosion models are a potentially powerful tool. They tell us where and when erosion and 

deposition occur, along with their magnitude. They simulate erosion and sediment transport 

responses to land use and climate changes. They identify erosion hot spots in large areas while 

mathematically describing complex non-stationary processes. But how confident are we in the 

capability of erosion models to fulfill their potential, and how do we establish such trust? As 

any model of real-world phenomena, soil erosion models must be tested against empirical 

evidence to have their performance evaluated. However, evaluating soil erosion models is 

complicated due to the uncertainties involved in the estimation of model parameters and system 

responses. Hence, in paper 01 of this thesis I studied some of the theoretical and practical issues 

regarding the evaluation of soil erosion models. I undertook a scientometric analysis to 

investigate how model evaluation has been approached in soil erosion research and performed 

a meta-analysis of model performance to understand the mechanisms that influence model 

predictive accuracy. I reviewed how soil erosion models have been evaluated at different 

temporal and spatial scales, focusing on the methods and sources of data used for model testing. 

I presented a case study to illustrate how model realizations can be tested as hypotheses in face 

of the epistemic uncertainty in models and the observational data. I concluded that model 

evaluation topics are often neglected in soil erosion research and that calibration seems to be 

the main mechanism of improvement of model performance. Finally, I discussed some 

philosophical aspects of hypothesis testing in environmental modelling. I disputed the notion 

that erosion models could be validated and called for change of attitude about model evaluation; 

highlighting the importance of pursuing multiple lines of evidence to investigate the usefulness, 

consistency, and fit-for-purposeness of a model. In paper 02 I performed a methodological 

investigation of sediment fingerprinting as a tool for modelling sediment provenance in large 

river catchments. I studied how pedogenetic processes can lead to the expression of the 

geochemical signals used for sediment fingerprinting source apportionments, and how this 

expression is controlled by sediment particle size. I argued that understanding the underlying 

processes leading to source signal development could improve the selection of geochemical 

tracers for sediment fingerprinting purposes. I demonstrated how this could be achieved by 

testing my approach for source stratification and element selection against a set of artificial 

mixtures. Moreover, I described how particle size affects sediment transport on large river 

systems, concluding that different types of sampling strategies and source stratification methods 

might be necessary for modelling the provenance of particular size fractions. In paper 03 I build 

on some of the methods developed in paper 02 in order to create framework for evaluating soil 

erosion models with sediment fingerprinting source apportionments. I applied the Generalized 

Likelihood Uncertainty Estimation (GLUE) methodology to the Sediment Delivery Distributed 

(SEDD) model at a large catchment (~6600 km²) in Southeast Brazil. I assessed the model 

usefulness for identifying the main sediment sources in the catchment by evaluating behavioral 

model realizations against sediment fingerprinting source apportionments. From a 

falsificationist perspective, the SEDD model could not be rejected, as many model realizations 

yielded adequate system representations of catchment sediment loads. Moreover, I found that 

the partial agreement between fingerprinting and SEDD results provided some conditional 



corroboration of the models capability to simulate sediment provenance in the catchment – at 

least with some degree of spatial aggregation. However, this approach led to highly uncertain 

grid-based estimates of soil erosion and sediment delivery rates, which brought me to question 

the model usefulness for quantifying sediment transport dynamics. I concluded that multiple 

sources of data can – and should be – incorporated into the evaluation of spatially-distributed 

soil erosion models. Finally, I argued that although my results were case-specific, similar levels 

of error could be expected in soil erosion models elsewhere. This thesis demonstrated how 

uncertainty permeates all facets of soil erosion modelling and the very things we call 

observational data. Any deterministic “validation” of soil erosion models should be strongly 

refuted, and modelers such be made accountable for translating uncertainty to decision-makers. 

Keywords: Uncertainty. Sediment fingerprinting. RUSLE model. SEDD model. Morgan-

Morgan-Finey model. Generalized Likelihood Uncertainty Estimation. 



RESUMO GERAL 

Modelos de erosão do solo são ferramentas potencialmente úteis. Tais modelos descrevem onde 

e quando ocorrem o desprendimento, transporte e deposição de partículas do solo, e com qual 

magnitude. Modelos podem também identificar locais propensos à erosão enquanto descrevem 

matematicamente uma interação complexa de processos não-estacionários. Porém, até que 

ponto é possível confiar na capacidade de modelos de erosão do solo em cumprir seu potencial 

e como estabelecemos tal confiança? Como qualquer modelo representativo de fenômenos do 

mundo real, modelos de erosão precisam ser testados contra evidências empíricas para que sua 

capacidade preditiva seja avaliada. Porém, avaliar modelos de erosão é uma tarefa complicada 

devido às incertezas associadas à estimativa de parâmetros e a medição de respostas dos 

sistemas. Dessa forma, no primeiro artigo dessa tese foram abordados alguns dos problemas 

teóricos e práticos relativos à avaliação de modelos de erosão do solo. Além disso, uma análise 

cientométrica foi utilizada para investigar como a avaliação de modelos tem sido abordada por 

pesquisadores. Uma meta-análise sobre a exatidão preditiva de modelos de erosão foi realizada 

para identificar os mecanismos que influenciam o seu desempenho. Neste artigo também foi 

realizada uma revisão sobre a avaliação de modelos em diferentes escalas espaços-temporais, 

com foco nos métodos e fontes de dados usados para o teste de modelos de erosão. Foi 

demonstrado como a avaliação de modelos é um tópico negligenciado na pesquisa de erosão do 

solo e como a calibração de parâmetros é o principal mecanismo responsável pelo aumento da 

exatidão preditiva. Finalmente, foram discutidos aspectos filosóficos sobre o teste de hipóteses 

em modelos nas ciências naturais, refutando-se a noção de que modelos de erosão podem ser 

validados e salientando-se a necessidade de múltiplas linhas de evidência para avaliar a 

utilidade, consistência e a adequação à finalidade desses modelos. No segundo artigo da tese, 

foi realizada uma investigação metodológica sobre o uso de técnicas de rastreamento como 

ferramentas para modelagem da proveniência de sedimentos em grandes bacias hidrográficas. 

Avaliaram-se também como processos pedogenéticos podem levar à expressão de sinais 

geoquímicos utilizados no rastreamento de sedimentos, e como essa expressão é influenciada 

pelo tamanho de partículas. Argumentou-se que a compreensão dos processos controlando o 

desenvolvimento de sinais de fontes pode facilitar a escolha de traçadores geoquímicos. Para 

demonstrar esta suposição, uma abordagem processual para escolha de traçadores e delimitação 

de fontes de sedimentos foi testada contra misturas artificiais, em diferentes frações texturais 

de sedimentos. No terceiro artigo da tese, alguns dos métodos desenvolvidos no artigo anterior 

foram usados para criar uma estrutura para avaliar modelos de erosão a partir de técnicas de 

rastreamento de sedimentos. Uma metodologia de estimativa de incertezas foi aplicada em um 

modelo espacial de erosão e entrega de sedimentos em uma grande bacia hidrográfica (~6000 

km2) localizada no sudeste do Brasil. A utilidade do modelo para identificar as principais fontes 

de sedimentos na bacia foi avaliada comparando-se as predições do modelo contra os resultados 

obtidos por meio do rastreamento geoquímico de sedimentos. Dentro de uma perspectiva 

falsificacionista, o modelo não pode ser rejeitado, uma vez que várias realizações geraram 

respostas quantitativas aceitáveis da produção total de sedimentos na bacia. Ademais, uma 

concordância parcial entre as predições do modelo e os resultados do rastreamento geoquímico 

corroborou condicionalmente a capacidade do modelo em simular a dinâmica 

hidrossedimentológica na bacia – ao menos com certo grau de agregação espacial. Porém, as 



estimativas espacialmente contínuas de perdas de solo e entrega de sedimentos foram altamente 

incertas, o que gerou um questionamento quanto à utilidade do modelo para quantificar 

espacialmente o transporte de sedimentos na bacia. Apesar de estes resultados serem específicos 

ao estudo de caso, níveis de incerteza semelhantes podem ser esperados em modelos de erosão 

aplicados em outras situações. De forma geral, esta tese demonstrou como a incerteza permeia 

todos os aspectos da modelagem da erosão e das próprias coisas que consideramos dados 

observacionais. Qualquer “validação” determinística de modelos de erosão do solo deve, 

portanto, ser peremptoriamente refutada. Ademais, analistas e cientistas devem ser 

responsabilizados por traduzir a incerteza associada a estes modelos para usuários finais. 

Palavras-chave: Incerteza. Rastreamento de sedimentos. Modelo RUSLE. Modelo SEDD. 

Modelo Morgan-Morgan-Finey. Generalized Likelihood Uncertainty Estimation. 
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GENERAL INTRODUCTION 

Keith Beven (2009) wrote that his research career has been an attempt to cope with the failure 

of the hydrological model he worked on during his PhD. In a sense, I believe that this thesis has 

been my attempt to cope with the success of the soil erosion models I worked with during my 

Master’s degree. This may sound counter intuitive: as scientists, we want our models to be 

successful; we want them to provide insightful descriptions of phenomena and, by doing so, we 

want them to make accurate estimates of system responses. Then why did I need to cope with 

the success of the models I was using? 

The cause of the uneasiness I felt about my results at the time now seem obvious and formally 

definable: given the errors involved in the characterization of a complex system, such as the 

soil and the processes driving its redistribution by water, there are many acceptable 

representations of reality. This is defined and equifinality or non-singularity (Beven, 2009, 

2006). To put it in practical terms, I felt like any model, given enough freedom, would be able 

to make good predictions of sediment transport rates at the outlet of the catchment I was 

monitoring. So the problem was not with the success of the models, the problem was with the 

data and the tests I was using to evaluate them. 

While writing my Master’s thesis, I could hardly translate my frustration into words, and I had 

no idea about how to deal with it in a scientifically sound manner. Of course, I was not the first 

one to be bothered about the issues I am describing. But it sure felt like it, considering that the 

vast majority of papers I was reading did not mention these issues and did not offer a 

methodology to address them. This all changed when John Quinton, who is now one of my 

supervisors, came to visit Lavras in late 2015. John supplied me with the literature and the 

concepts that would help me formalize the questions I wanted to ask in what would become my 

PhD research. This is the result. 
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Originally, the objective of this thesis was to develop a sediment fingerprinting study that would 

improve the evaluation of large-scale spatially-distributed soil erosion models. As sediment 

fingerprinting provides quantitative information about sediment provenance (Collins et al., 

2017; Koiter et al., 2013; Laceby et al., 2019), my idea was to use this technique to create extra 

lines of evidence to test the models capability to represent sediment dynamics within 

catchments. Although I understand I have accomplished this task, the focus of the thesis 

ultimately shifted to a more general investigation about model evaluation and data uncertainty. 

Since the first paper of this thesis provides an in depth introduction to these topics, as well as a 

literature review, I will refrain from prolonging this general introduction and focus on an 

overview of the studies here presented. 

The main objective of this thesis is to investigate methods and sources of data that allow us to 

assess the usefulness and consistency of soil erosion models, at different temporal and spatial 

scales. Moreover, it aims to examine what makes a useful soil erosion model and to scrutinize 

the uncertainty in models and the observational data of system responses. 

In Paper 01, I studied how erosion models have been tested, and discussed the advantages and 

limitations of previously employed methodologies. Paper 01 provides a scientometric 

investigation of erosion modeling research topics, as well as a meta-analysis of model predictive 

accuracy. Taking into account the outcomes of these analyses, I presented a way forward for 

improving the evaluation of soil erosion models, discussing some philosophical aspects of 

hypothesis testing in environmental models. In practical terms, I presented a case study that 

demonstrates how process-based erosion models can be evaluated at plot-scale while 

considering the uncertainty in model structures and the observational data. Therefore, Paper 01 

established the theoretical background from which the rest of the thesis is structured upon. 



12 

 

Paper 02 provides a more applied sediment fingerprinting study, although still focusing on 

methodological advances that would ultimately enable me to create an uncertainty-based 

framework for incorporating fingerprinting data into erosion model testing. For this research, I 

investigated how pedogenetic processes can lead to the expression of the geochemical signals 

used for sediment fingerprinting source apportionments, and how this expression is controlled 

by sediment particle size. I argued that understanding the underlying processes leading to source 

signal development could improve the selection of geochemical tracers for sediment 

fingerprinting purposes. I demonstrated how this could be achieved by testing my approach to 

source stratification and element selection against a set of artificial mixtures. Moreover, I 

analyzed how particle size affects sediment transport on large river systems and developed a 

bootstrapping method to simulate sediment fingerprinting un-mixing model solutions. 

In Paper 03 I focused on representing the uncertainty in commonly used empirical spatially-

distributed soil erosion and sediment delivery models. Namely, the Revised Universal Soil Loss 

Equation (RUSLE) (Renard et al., 1997) and the Sediment Delivery Distributed model (SEDD) 

(Ferro and Minacapilli, 1995; Ferro and Porto, 2000). I applied the models within Generalized 

Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992) methodology at a large 

catchment (~6600 km²) in Southeast Brazil. I conditioned the model parameters based on 

measured sediment loads and tested the behavioral model realizations against sediment 

fingerprinting sources apportionments. For this research, I developed a hierarchical tributary 

sampling design for sediment fingerprinting that aimed to facilitate a comparison against 

erosion/sediment delivery models. This was the largest sediment fingerprinting research ever 

conducted in Brazilian river basins. To the best of my knowledge, it was also the first study to 

provide a method for incorporating sediment fingerprinting source apportionments into soil 

erosion model testing that fully represents the uncertainty in model structures, forcing 

observational data, and the independent evaluation data. 
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On the evaluation of soil erosion models: are we doing enough? 
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1 Soil Science Department, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil 

2 Pentland Centre for Sustainability in Business, Lancaster Environment Centre, Lancaster 

University, Lancaster, UK 

3 Lancaster Environment Centre, Lancaster University, Lancaster, UK 

Abstract 

As any model of real-world phenomena, soil erosion models must be tested against empirical 

evidence to have their performance evaluated. This is critical to develop knowledge and 

confidence in model predictions. However, evaluating soil erosion models is complicated due 

to the uncertainties involved in the estimation of model parameters and measurements of system 

responses. Here, we undertake a term co-occurrence analysis to investigate how model 

evaluation is approached in soil erosion research. The analysis illustrates how model testing is 

often neglected, and how model evaluation topics are segregated from current research interests. 

We perform a meta-analysis of model performance to understand the mechanisms that influence 

model predictive accuracy. Results indicate that different models do not systematically 

outperform each other, and that calibration seems to be the main mechanism of model 

improvement. We review how soil erosion models have been evaluated at different temporal 

and spatial scales, focusing on the methods, assumptions, and data used for model testing. We 

discuss the implications of uncertainty and equifinality in soil erosion models, and implement 

a case study of uncertainty assessment that enables models to be tested as hypotheses. A 

comment on the way forward for the evaluation of erosion models is presented, discussing 

philosophical aspects of hypothesis testing in environmental modelling. We refute the notion 

that soil erosion models can be validated, and emphasize the necessity of defining fit-for-
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purpose tests, based on multiple sources of data, that allow for a broad investigation of model 

usefulness and consistency. 

Keywords: soil erosion models; model evaluation; model validation; model calibration; data 

uncertainty; term co-occurrence analysis. 

1 Introduction 

There is no shortage of soil erosion models, model applications, and model users. But just how 

useful are these models? How far can we trust them, and how do we establish such trust? Ideally, 

soil erosion models should be a valuable tool for scientists, policymakers, and stakeholders. For 

scientists, erosion models provide a framework to formalize their conceptual interpretation of 

the processes that regulate the detachment, transport, and deposition of soil particles. This 

interpretative description of a phenomenon is key to provide understanding and insight (Bailer-

Jones, 2009), which is scientifically relevant on its own. Moreover, erosion models are used to 

make quantitative predictions and scenario-based simulations about how soil is redistributed in 

potentially complex landscapes, at multiple spatial and temporal scales (e.g., Eekhout et al., 

2018; Panagos et al., 2015; Prasuhn et al., 2013; Shrestha and Jetten, 2018; Smith et al., 2018). 

Policymakers and stakeholders might find these predictions useful, as they may help 

substantiate environmentally sensitive decisions regarding soil, water, and food security. 

With any model of real-world phenomena, it is critical that they are tested against observations 

if our conceptual understanding of how things work is to be evaluated, and thus continuously 

improved. Testing is also essential to ascertain the degree of confidence which can be attributed 

to model predictions under a given set of circumstances. However, gathering data to test soil 

erosion models is difficult. Erosion is a spatially and temporally variable phenomenon, 

potentially affected by non-stationary processes (Nearing, 2000; Quinton, 2004). Quantitative 

erosion measurements therefore require multiple observations in time and space. These 
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measurements always carry a level of uncertainty, are expensive and time consuming 

(Stroosnijder, 2005). Nonetheless, erosion models must be tested: if we fail to understand how 

far erosion models deviate from reality, then how useful can these models be – for scientists or 

decision-makers? 

In this review paper we undertake a scientometric analysis to understand how model evaluation 

is approached in soil erosion modelling research. We analyze how erosion models have been 

evaluated, at different spatial and temporal scales, focusing on the concepts, methods, and the 

data used to test these models. We employ a meta-analysis to investigate model performance 

and present a case study describing how the uncertainties in both observational data and model 

structures can be incorporated into evaluation. While describing the advantages and limitations 

of previously employed approaches to model testing, we provide perspective on what is needed 

to improve the evaluation of soil erosion models. 

2 Model evaluation in soil erosion research: a scientometric term co-occurrence analysis 

Term co-occurrence is used in scientometrics to investigate conceptual structures in research 

fields (Mora-Valentín et al., 2018). The analysis is based on the premise that the relatedness of 

research topics can be established according to the frequency with which terms co-occur in 

research articles. Specifically, VOSviewer is a free software (Van Eck and Waltman, 2010) that 

allows for the construction of distance-based co-occurrence maps, where terms retrieved from 

titles and abstracts are clustered and mapped according to their relatedness in a similarity 

matrix. 

In order to obtain data-based insight regarding how model evaluation concepts relate to 

conceptual structures in erosion modelling research, we performed a term co-occurrence 

analysis using VOSviewer. We carried out a bibliographic research in October 2018 in the Web 

of Science database. The query “soil erosion model*” returned 550 articles, with publishing 
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dates from 1985 to 2018. We chose this specific query because it provided an adequate filter of 

unrelated articles while still allowing for a broad, although not exhaustive, representation of 

erosion modelling research. Titles, abstracts, and bibliographic information from the returned 

articles were exported to a text file. A thesaurus file was used to merge synonyms and to exclude 

general expressions (i.e., aim, study area, and conclusion). A minimum of 15 occurrences was 

set as a threshold for including terms in the analysis. This process resulted in the inclusion of 

178 terms, from which 106 were selected based on a relevance score calculated by VOSviewer. 

The relevance score is useful for filtering the more informative terms that better represent 

specific topics (Van Eck and Waltman, 2018). The resulting co-occurrence network map is 

displayed in Figure 1, and the text files for exploring the map in VOSviewer are provided as 

the supplementary material. 
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Fig. 1. Term co-occurrence network map. Clusters are identified by color (Cluster 1: green; Cluster 2: red; Cluster 3: yellow; Cluster 4: blue). 

Labels and circle sizes are proportional to the number of occurrences. Lines indentify major links between terms, and line thickness represents 

association strength. The distance between terms also reflects association strength. Some term labels are not displayed because of scale (e.g., the 

circle for the term “outlet” overlaps the one for the term “calibration"). We have provided text files for plotting the co-occurrence map in VOSviewer 

as supplementary material. 
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The co-occurrence map identifies four clusters that express different research fronts in erosion 

modelling. Cluster 1 is primarily driven by model application, as denoted by the presence of 

terms such as “assessment”, “estimation”, and “erosion rates” (Figure 1). The occurrence of the 

terms “GIS”, “map”, “remote sensing”, “DEM”, and “spatial patterns” demonstrates this 

research front is influenced by spatially distributed erosion modelling. These terms may also 

indicate an interest in large-scale model applications, which is corroborated by the co-

occurrence of terms such as “world” and “region”. The temporal scale of model application is 

coarse, as the association to the term “year” shows. The model names USLE and RUSLE (all 

model names, acronyms, and their respective references are listed in Table 1) are grouped 

within Cluster 1, indicating these are the preferred models in this research front. 

Table 1 Acronyms, model names, and references. 

Acronym Model name Reference 

AGNPS A Non-Source Pollution Model Young et al. (1989) 

ANSWERS Areal Nonpoint Source Watershed 

Environment Response 

Simulation 

Beasley and Huggins (1982) 

EUROSEM European Soil Erosion Model Morgan et al. (1998) 

LISEM LImburg Soil Erosion Model De Roo et al. (1996a, 1996b) 

MMF Morgan-Morgan-Finey Model Morgan (2001); Morgan et al. 

(1984) 

PESERA Pan European Soil Erosion Risk 

Assessment 

Kirkby et al. (2008) 

RUSLE Revised Universal Soil Loss 

Equation 

Renard et al. (1997) 

SedNet Sediment and River Network 

Model 

Wilkinson et al. (2004) 

SWAT Soil and Water Assessment Tool Arnold et al. (1998) 

USLE Universal Soil Loss Equation Wischmeier and Smith (1978) 
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USLE-M Modified Universal Soil Loss 

Equation 

Kinnel and Risse (1998) 

USLE-MM Modified-Modified Universal 

Soil Loss Equation 

Bagarello et al. (2008) 

USPED Unit Stream Power-based Erosion 

Deposition 

Mitasova et al. (1996) 

WaTEM/SEDEM Water and Tillage Erosion Model 

and Sediment Delivery Model 

Van Oost et al. (2000); Van 

Rompaey et al. (2001); Verstraeten 

et al. (2010) 

WEPP Water Erosion Prediction Project Flanagan and Nearing (1995) 

 

On the opposite side of the network map, the research front depicted by Cluster 2 is concerned 

with process description (Figure 1). Most terms in Cluster 2 are related to erosion-driving 

processes (e.g. “overland flow”, “sediment transport”, “infiltration”, and “detachment”), 

mathematical description of these processes (e.g. “equation” and “coefficient”), and to 

experimental data (e.g. “treatment”, “experiment”, and “sample”). Moreover, Cluster 2 research 

front is focused on finer time scales, as indicated by the links with terms such as “rainfall event”, 

“min” and “temporal variation”. EUROSEM is the only model name grouped within Cluster 2. 

On the bottom-left corner of the network map, Cluster 3 encompasses erosion modelling 

research related to scenario-based simulations (Figure 1). This is expressed by the occurrence 

of terms such as “scenario”, “trend”, “increase”, and “decrease”. The main themes appear to be 

land use and climate change scenarios. The location of Cluster 3 on the network map indicates 

it is more strongly related, and has more connections to Cluster 1, with fewer links to Clusters 

2 and 4. 

On the top of the network map, Cluster 4 clearly distinguishes research focused on model 

evaluation (Figure 1). Terms associated to the description of model efficiency (e.g., 

“performance”, “accuracy”, “capability”, “limitation”, and “applicability”) and important 
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topics regarding model evaluation (e.g., “calibration”, “validation”, “uncertainty”, “sensitivity 

analysis”, and “field data”) are plotted within Cluster 4. The model names WEPP and LISEM 

are grouped within this cluster, although overlapping Cluster 2 in the network map. This 

indicates that the use of these models is frequently associated to some form of model evaluation. 

Interestingly, the term “outlet” is also found within Cluster 4. “Outlet” also has a strong 

connection to terms like “discharge”, “sediment transport”, “calibration”, and “validation”. 

This demonstrates how erosion model testing commonly relies on system outlet measurements 

of sediment fluxes. 

The fact that model evaluation topics are clustered separately from other fronts in erosion 

modelling research highlights two distinct trends. First, more optimistically, it demonstrates 

that there is a specific interest in model evaluation: researchers are trying to test their models, 

which is essential to develop knowledge and confidence in model predictions. Second, it 

illustrates that such interest is perhaps too specific: models are mostly tested in evaluation-

oriented studies, and not in general model applications. The latter conclusion can be 

corroborated by the fact that the terms “validation”, “validate”, or “validated” only appear in 8 

% of the titles and abstracts of the analyzed articles. Related words, such as “tested” or 

“verified” did not meet the occurrence threshold and/or the VOSviewer relevance score. 

In Figure 2 we plotted the co-occurrence map using overlay visualization. Circle colors are 

rendered according to normalized average year of publication of the articles in which the labeled 

terms occur. Although the range of the average years of publication is relatively narrow (2003-

2013), Figure 2 demonstrates a clear trend towards the outer regions of Clusters 1 and 3. This 

indicates that erosion modelling research has recently focused on model application and 

scenario-based simulations, possibly trying to understand the impacts of land use and climate 

change on future erosion rates. Terms such as “assessment”, “impact”, “scenario”, 
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“magnitude”, “land use change”, and “climate change” seem to be current popular topics. 

Figure 2 also indicates a growing interest in RUSLE (e.g., “RUSLE”, “soil erodibility”, and 

“rainfall erosivity”) and on large scale modelling (e.g., “region” and “remote sensing”). Overall, 

process description (Cluster 2) and model evaluation (Cluster 4) research articles have earlier 

publication dates. 
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Fig. 2. Overlay visualization of the term co-occurrence network map. Colors are rendered according to the normalized average year of publication 

of the articles in which the terms occur. Normalization was performed by subtracting the term average by the overall mean and dividing it by the 

standard deviation. Earlier research topics are colored blue and more recent ones in yellow. 
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This recent publication trend may indicate that researchers are confident about the capacity of 

erosion models to estimate soil loss rates and sediment yields, to indentify erosion hot-spots in 

large catchments, and to simulate erosion responses to land use and climate change. However, 

comprehensive evaluation-oriented studies have demonstrated that the predictive accuracy of 

un-calibrated erosion models is often limited (de Vente et al., 2013; Jetten et al., 1999; Van 

Rompaey et al., 2003), that the variability of soil erosion measurements is large and poorly 

understood (Nearing, 2000), that the quality of spatial predictions is questionable (Evans and 

Brazier, 2005; Jetten et al., 2003; Takken et al., 1999), and that model outputs are considerably 

uncertain (Brazier et al., 2000; Quinton, 1997). Hence, what do we expect to achieve from 

increasingly complex, large scale and simulation-driven erosion model applications without 

further testing? What have we learned from previous attempts to evaluate soil erosion models? 

In the remainder of this review we will discuss different approaches to erosion model evaluation 

while trying to answer these questions. 

3 Evaluation of soil erosion models 

The basic approach to the evaluation of soil erosion models is testing their predictive accuracy 

against measured empirical data, which, as the term co-occurrence analysis demonstrates, are 

most often sediment transport rates at the outlet of a system. Transport rates are usually 

expressed in terms of mass area-1 time-1. Although the use of these units has been criticized for 

not accounting for scale dependency (Parsons et al., 2009), it is perhaps the best available 

system for quantifying erosion (Boardman, 2006). 

The use of the mass area-1 time-1 unit system and the outlet approach to erosion quantification 

are connected to the earliest and most widely used devices for measuring soil losses and runoff: 

the erosion plots (Dotterweich, 2013). These plots operate by conducting runoff from a 

delimited upslope area to collection tanks, in which sediments are collected and quantified (see 
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Kinnell, 2016). Soil loss measurements from erosion plots have therefore also been used to 

build/test erosion models (e.g., Morgan, 2001; Renard et al., 1997; Risse et al., 1993; 

Wischmeier and Smith, 1978; Zhang et al., 1996), and similar outlet-based approaches to model 

testing have been expanded to spatially distributed catchment scale model applications (e.g., 

Amore et al., 2004; Fernandez et al., 2003; Jain and Ramsankaran, 2018; Tanyaş et al., 2015). 

For distributed models, however, investigating the quality of the spatial predictions is an 

important part of model evaluation. Other issues regarding process representation and 

parameter estimation can have quite different ramifications according to the spatial scale of the 

model applications. Therefore, in the next sections we review separately how erosion models 

have been evaluated at I) plot scale model applications, and at II) larger scales spatially 

distributed applications (e.g., field, catchment, regional), with an emphasis on spatial data used 

for model testing in the latter case. 

3.1 Evaluating soil erosion models at the plot scale 

At first, testing erosion models at plot scale seems reasonably straightforward. As many models 

were initially developed to predict erosion rates from hillslope segments, model outputs were 

analogous to soil losses from erosion plots. Therefore, once models had been parameterized 

and run, their outputs could be directly compared to measured sediment transport rates at the 

outlet of erosion plots. Model efficiency could then be described by performance metrics such 

as the coefficient of determination (R2) or the Nash-Sutcliffe efficiency index (NSE) (Nash and 

Sutcliffe, 1970). However, there are several approaches to model evaluation, even at plot scale. 

Different approaches can be more or less useful according to the purpose of the evaluation, the 

structure of the models, and the robustness of the dataset. 

The simplest approach is a “blind” evaluation. Models are parameterized, run, and tested against 

observed soil losses. In the case of empirical models, such as USLE-family models, 
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parameterization is carried out based on plot characteristics and rainfall measurements that 

allow for the selection/calculation of appropriate parameter (i.e., factor) values (e.g. Rapp et al., 

2001; Risse et al., 1993). For process-based models, measuring soil, plant, and rainfall/runoff 

properties is usually necessary. If these measurements are not feasible, parameter values can be 

retrieved from the literature, estimated by transfer functions or by knowledge-based 

approximations (e.g., Bulygina et al., 2018; Fernández et al., 2010; Flanagan and 

Frankenberger, 2012; Veihe et al., 2001). According to Quinton (1994), “blind” evaluation is 

useful to test model performance in a specific set of soil, topography, and land use 

characteristics. This can provide an indication of the confidence with which a model can be 

applied to these specific conditions. 

However, the parameterization of erosion models, particularly process-based, can be 

challenging. Some parameters may not be directly measurable, and therefore might have to be 

estimated based on regression techniques and expert judgments (Brazier et al., 2001). 

Moreover, establishing initial conditions for continuous simulation models is problematic, as 

detailed temporal measurements of model parameters are rarely available (Beven, 2009; 

Quinton, 1997). Therefore, soil erosion models are often calibrated, meaning one or multiple 

parameters and/or boundary conditions are adjusted so that prediction error is minimized. 

For calibrated erosion models, common approaches to evaluation rely on some kind of split-off 

sub-setting, in which a dataset is used for model calibration (or training) and another set is used 

for “validation” (or testing). This split-off can be I) temporal, in which soils losses observed 

during a certain period of time are used as the training dataset and analogous records from a 

different period are used for testing (e.g., Anache et al., 2018; Jetten et al., 1999; Licciardello 

et al., 2013; Veihe et al., 2001); or II) spatial, in which models are calibrated using data from a 

given plot, or set of plots, and are subsequently tested on different plots with similar conditions 
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(e.g., Bagarello et al., 2013; Vieira et al., 2014). Although split-off sub-setting is commonly 

employed to test calibrated erosion models, some studies have used the same dataset for both 

calibration and testing (e.g., Kinnell et al., 2018; Mahmoodabadi and Cerdà, 2013).  

Considering that models often have a large number of parameters, that parameter measurements 

are subject to considerable uncertainty and may therefore assume a wide range of values, 

calibrated erosion models are sometimes capable of reproducing the right answer for the wrong 

reasons (Govers, 2011; Jetten et al., 2003; Quinton, 1994). Hence, it can be argued that using 

the same dataset for calibration and testing is the least robust approach. Moreover, although 

temporal split-off tests can provide information on the capability of a calibrated model to 

simulate the responses of erosion rates to temporal changes in soil properties, plant growth, and 

rainfall events; such tests are restricted to the very specific systems used during 

calibration/testing. As demonstrated by Nearing et al. (1999) and Wendt et al. (1986), the 

variability of erosion rates on replicate plots is large and poorly explained by the differences in 

plot characteristics, at least considering our ability to measure them. Hence, even if a model is 

able to make perfect predictions of erosion rates for one plot, such a model would always fail 

to provide the same efficiency for a replicate. As argued by Beven (2009), “an ‘optimum’ model 

can only be conditionally optimal”, as the solution to an inverse problem will depend on the 

optimization function being used, the errors in the calibration data, and the evaluation criteria. 

Temporal split-off tests may therefore transmit an overestimated sense of confidence to model 

estimates, unless it is made clear that the reported model performance should not be expected 

elsewhere then in the calibrated system. In this sense, spatial split-off tests seem more powerful, 

as in this approach model performance will reflect some of the variability of erosion 

measurements in very similar systems. Successive interactions of temporal and spatial split-off 

tests, as in Klemes (1986) hierarchical scheme, can therefore provide a framework to evaluate 
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the performance of calibrated models regarding their transferability in time and space, which is 

a desirable feature for erosion models (Beven and Young, 2013; Quinton, 1994). 

A robust framework for incorporating the variability of erosion plot data into model evaluation 

is provided by Nearing (2000), who developed a criterion based on the difference of erosion 

rates between replicate plots. Nearing (2000) argued that “the replication of an individual plot 

may be considered a ‘real-world’ physical model of that plot”. However, erosion rates on 

replicate plots can be quite variable, particularly for events of lower magnitude (Nearing et al., 

1999; Wendt et al., 1986). This is most likely the result of the spatial variability of the soil 

properties and the underlying processes driving soil erosion, which we are unable to measure 

and to represent deterministically in model structures. Hence, Nearing (2000) stated that 

acceptable model errors could be defined according to the measured variability of erosion rates 

between replicates. That is, if the differences between modeled and observed soil losses are 

within the 95 % occurrence interval of the differences between replicate measurements, then 

the model error should be considered acceptable. This is based on the premise that a 

mathematical model should not be expected to outperform a “real-world” physical model. 

3.1.2 A meta-analysis of erosion model performance at the plot scale 

Still building on the variability of replicate plot data, Govers (2011) argued that models have 

already achieved the upper limit of erosion predictability. Such limit would be equivalent to the 

predictability observed in replicate plots provided by Nearing (2006) (R² = 0.77 for erosion 

rates >75 ton ha-1). Govers (2011) demonstrates that many evaluation studies have reported 

similar R² values to the ones obtained in replicate plots, particularly for annual and average 

annual erosion rates, and that sophisticated process-based models do not out perform more 

simple USLE-family models. 
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In order to investigate the performance of erosion models at plot scale, we compiled the results 

from several model evaluation studies which compared predicted and observed soil losses 

(Table 2). As the NSE was the preferred metric used to describe model efficiency by authors, 

our analysis focused on such index. This yielded 112 data entries, which were grouped by 

model, by the temporal scale of the application, and by the use or not of calibration. Results are 

displayed in Figure 3. 

Table 2 References for the compiled NSE values on Figure 3. 

Reference Location Data entries Models 

Amorim et al. (2010) Brazil 3 RUSLE, USLE, WEPP 

Anache et al. (2018) Brazil 2 WEPP 

Bagarello et al. (2013) Italy 2 USLE-M, USLE-MM 

Bulygina et al. (2018) USA 1 WEPP 

Di Stefano et al. (2017) Italy 3 

USLE-M, USLE-MM, 

USLE 

Fernández et al. (2010) Spain 7 MMF, RUSLE 

Fernández et al. (2016) Spain 4 PESERA, RUSLE 

Fernández et al. (2018) Spain 2 RUSLE, WEPP 

Flanagan and Frankenberger 

(2012) USA 4 WEPP 

Kinnel (2017) USA 43 

RUSLE, RUSLE2, 

USLE, USLE-M, WEPP 

Kinnel et al. (2018) China 2 RUSLE, USLE-M 

Larsen and MacDonald 

(2007) USA 4 WEPP 

Licciardello et al. (2013) Spain 12 WEPP 

Mahmoodabadi and Cerdà 

(2013) Iran 3 WEPP 

Morgan (2001) Multiple 2 MMF 

Rapp et al. (2001) USA 2 RUSLE, USLE 
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Risse et al. (1993) USA 2 RUSLE, USLE 

Spaeth et al. (2003) USA 6 RUSLE, USLE 

Tiwari et al. (2000) USA 2 WEPP 

Vieira et al. (2014) Portugal 6 MMF 
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Fig. 3. NSE values reported in erosion modelling studies grouped by: a) model; b) temporal scale of model application; c) model and the use or 

not of calibration; d) temporal scale of model application and use or not of calibration. The width of the boxes is scaled according to the size of the 

datasets for each group. In figures 3c and 3d we only display models and temporal scales which were used both with and without calibration. For 

better visualization, NSE values have undergone log-linear transformation.
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Our literature review corroborates part of Glovers (2011) conclusion: models do not 

systematically outperform each other regarding the accuracy of erosion predictions (Figure 3a). 

Moreover, we found that model performance is not necessarily linked to the temporal scale of 

the application (Figure 3b, d), and that, apparently, mathematical models are quite capable of 

outperforming the physical “real-world” models; at least considering the way they have been 

evaluated. For instance, Licciardello et al. (2009) achieved, after calibration, R2 values of 0.90 

for annual erosion predictions using PESERA. Anache et al. (2018) reported R² values of 1.00 

and NSE values of 0.93 for seasonal calibrated WEPP estimates. Kinnel (2017) reports NSE 

values of 0.89 for event-based USLE-M predictions, also after calibration. Using event-based 

calibrated WEPP predictions, Mahmoodabadi and Cerdà (2013) reported NSE values of 0.90. 

Hence, does this mean that mathematical models do a better job at estimating soil losses than 

“real-world” physical models? Probably not: if the mathematical models were applied to a 

wider range of replicates in a more robust evaluation scheme, their performance would be 

bounded by variability of erosion plot data and our inability to represent it deterministically.  

Overall, the compilation of NSE values reported in erosion modelling studies displayed in 

Figure 3 seems to indicate that calibration is the main mechanism for improving model 

performance. This is made particularly clear when models and the temporal scale of model 

application are compared separately (Figures 3c, d). If calibration is really the main way of 

affecting model performance, we must come to the conclusion that different models or different 

model realizations can be equally accurate, or equally acceptable. This is because of the 

conditional nature of parameter optimization, as we previously discussed. Hence, how can we 

ever reject a model? Moreover, how can we know if a model is making accurate estimates for 

the right reasons? 
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The concept that, given the errors involved in the characterization of a system, many 

representations of reality can be considered acceptable, is defined by Beven (2006) as 

equifinality. This seemly uncomfortable assertion has serious implications on the evaluation of 

environmental models, which are often ignored in erosion modelling research. If one is aware 

of the epistemic uncertainties necessarily embedded into model structures, as well as of the 

inevitable errors associated to the measurements of temporal and spatially variable parameters, 

it is hardly justifiable that model outputs should be presented in a deterministic fashion. Hence, 

Quinton (1994) argues that, even if a model is applied “blind”, some sort of uncertainty measure 

should be provided. During calibration, dealing with uncertainty and equifinality is perhaps 

even more urgent. Without it, confidence in model predictions can be overestimated, as model 

deficiencies can be concealed by optimization. Moreover, as we discussed, (quite) different 

parameter sets can produce adequate representations of reality. If multiple model realizations 

are empirically equivalent, then why should one be preferable over another? For spatially 

distributed models, the degrees of freedom afforded by parameterization are even larger, as well 

as the uncertainties surrounding parameter estimation. Methods for incorporating equifinality 

and uncertainty analysis to erosion model evaluation will be discussed in section 4 of this 

review. 

3.2 Evaluating spatially distributed erosion models: from field to regional scales 

The advent of GIS, the accessibility of computing, and the popularization of remote sensing 

images had a great impact on erosion modelling: models can now be applied at large scales and 

in a distributed manner with relative ease. Contrary to earlier lumped model results, the grid-

based outputs of spatially distributed erosion models make it possible to identify where erosion 

and deposition occur, together with their magnitude, at different temporal and spatial scales. 

This could ultimately help policymaking and resource allocations regarding soil conservation. 
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Hence, a great effort has been put into adapting and scaling erosion models into a GIS 

framework (e.g., Desmet and Govers, 1997; Mitasova et al., 1996; Renschler, 2003; Renschler 

and Harbor, 2002), and some models, such as LISEM and WaTEM/SEDEM, were developed 

in an explicitly distributed, rater-based structure. 

However, evaluating distributed erosion models, where catchments are the predominant spatial 

scale of application, is problematic: the previously discussed issues regarding model evaluation 

are exacerbated, as parameterization becomes even more uncertain and equifinality more likely. 

Moreover, the outlet-based approach to model evaluation – which seems reasonable at plot 

scale – is usually unsatisfactory to describe the performance of distributed erosion models. The 

main reasons for this is that I) at catchment scale, different processes which may not be 

described by model structures can considerably influence sediment yield dynamics (e.g., bank 

erosion, gully erosion, overbank sedimentation, and floodplain deposition) (Favis-Mortlock et 

al., 2001); and II) models can adequately simulate catchment sediment yield while 

misrepresenting the spatial patterns of erosion and deposition (Jetten et al., 2003; Takken et al., 

1999; Van Oost et al., 2004). Therefore, data used for model evaluation must be compatible 

with model structure and process representation (Govers, 2011). Moreover, evaluating 

distributed models requires spatial data, as erosion does not occur at discrete points in space 

(Boardman, 2006). Finally, incorporating the spatial errors of parameter estimation is necessary 

when describing the uncertainty of spatially distributed models. These issues have been 

recognized by erosion modelers, and the attempts made to address them – particularly by 

incorporating spatial data into model testing – will be reviewed in the following. For a 

discussion on outlet sediment yield predictions at catchment scale, covering lumped and 

distributed models, we refer to de Vente and Poesen (2005) and de Vente et al. (2013). 
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Spatially distributed data suitable for model evaluation are generally acquired by I) field-based 

monitoring, in which erosion and depositional features are mapped and often combined 

volumetric measurements of rills, gullies, and sediment deposits (e.g., Desmet and Govers, 

1997; Evans and Brazier, 2005; Hessel et al., 2006; Prasuhn et al., 2013; Takken et al., 1999; 

Van Oost et al., 2004; Vigiak et al., 2005); II) tracing techniques, usually relying on fallout 

radionuclide inventories to model medium/long term soil redistribution rates (e.g., Bacchi et 

al., 2003; Banis et al., 2004; He and Walling, 2003; Lacoste et al., 2014; Porto and Walling, 

2015; Walling et al., 2003; Walling and He, 1998) or fingerprinting techniques for identifying 

sediment sources (e.g., Borrelli et al., 2018; Wilkinson et al., 2013); and III) remote sensing, in 

which high resolution aerial images are used to assess erosion severity in a qualitative/ semi-

quantitative manner by visual identification of erosion signs (e.g., Fischer et al., 2018) (Table 

3). 
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Table 3 Characteristics and suitability of sources of data for evaluating soil erosion models according to the scale and purpose of the application. 

Sources of data Typical scale Characteristics Pros Cons Most useful for 

testing 

Erosion plots 

 

Hillslope/ 

hillslope 

segment 

 Quantitative 

soil loss 

measurements; 

 Point based 

(plot outlet) 

measurements; 

 Measurements 

reflect rill and 

interrill 

processes. 

 Reasonably 

controlled 

experiment

al setting; 

 Direct 

sediment 

transport 

rate 

measureme

nts. 

 

 Requires 

constant 

monitoring/ 

maintenance; 

 Prone to edge 

effects; 

 Does not 

discriminate 

soil 

redistribution 

processes. 

 Empirical and 

process-based 

models; 

 Model 

components 

and sub-

routines; 

 Model 

responses to 

different land 

use/manageme

nt, soil classes, 

and slopes. 
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Fallout radionuclide inventories 

 

Field/ catchment 

 Quantitative; 

 Medium to 

long-term 

estimates; 

 Point-based 

measurements. 

 Provides 

spatially 

referenced 

estimates 

erosion and 

deposition 

rates. 

 

 Indirect 

method; 

 Uncertainty in 

conversion 

models; 

 Uncertainty in 

spatial 

interpolation; 

 Does not 

discriminate 

soil 

redistribution 

processes. 

 Process-based 

erosion 

models; 

 Capability of 

models to 

simulate 

erosion 

rates/patterns; 
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Field-based monitoring 

 

Field/catchment 

 Quantitative or 

semi-

quantitative; 

 Cross-sectional 

rill/gully 

measurements 

 Deposition 

thickness/area 

measurements; 

 Visual 

identification 

of erosion 

signs. 

 Direct 

volumetric 

measureme

nts with 

explicitly 

spatial 

locations; 

 Recognitio

n of soil 

redistributi

on 

processes 

(e.g., gully, 

rill, 

tillage). 

 May not 

account for 

interrill 

erosion; 

 Requires 

constant 

monitoring; 

 Labor 

intensive and 

time 

consuming. 

 Process-based 

erosion 

models; 

 Capability of 

models to 

simulate 

erosion 

rates/patterns; 
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Remote sensing* 

 

Regional 

 Semi-

quantitative; 

 Visual 

identification 

erosion signs. 

 

 Low labor 

requiremen

t, little time 

consuming; 

 Large areas 

are covered 

with 

relative 

ease. 

 Restrictions 

due to 

temporal and 

spatial 

resolution of 

image 

acquirement; 

 Erosion rates 

are not 

measured; 

 May be 

unsuitable for 

non-arable 

land. 

 Model-based 

erosion risk 

assessments; 

 Capability of 

models to 

identify 

relative rank of 

erosion-prone 

areas. 
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Sediment fingerprinting 

 

 

Catchment 

 Quantitative; 

 Identification 

of in-stream 

sediment 

provenance. 

 Represents 

multiple 

phases of 

sediment 

transport; 

 Provides 

insight into 

off-site 

erosion 

impacts. 

 Indirect 

method, also 

model-based 

and uncertain; 

 Estimates 

relative 

contributions 

of sediment 

sources, not 

transport 

rates; 

 Sediment 

remobilization 

and non-

stationarity of 

sources in 

time may 

complicate 

comparisons 

with models. 

 Erosion 

models with 

sediment 

delivery/routin

g components; 

 Capability of 

models to 

simulate off-

site erosion 

impacts and to 

identify 

sediment yield 

sources/compo

nents. 

* Unmanned aerial vehicles and structure-from-motion techniques have shown promising results for reconstructing complex topographic features 

and measuring soil redistribution rates in recent studies (Balaguer-Puig et al., 2018; Fiener et al., 2018). Although to the authors’ knowledge such 

techniques have not yet been used to test erosion models, such an approach might be able to combine some of the capabilities of remote sensing 

and field-based surveys for monitoring soil erosion, and therefore might be useful for evaluating distributed models in a variety of scales. 
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3.2.1 Comparing soil erosion models to field-based monitoring schemes 

Field surveys offer an interesting opportunity for evaluating spatially distributed erosion 

models, as their results often combine qualitative and quantitative data. For instance, the 

Ganspoel and Kindervel datasets (Van Oost et al., 2005) consist of two to three years of 

georeferenced measurements of internal erosion and deposition features, as well as outlet 

sediment transport rates from two Belgium catchments, with drainage areas of 117 ha and 250 

ha. Although direct comparisons between distributed erosion models and field surveys are not 

always straight-forward – interrill erosion may not be accounted for in field monitoring (Evans 

and Brazier, 2005) and volumetric measurements can be considerably uncertain, particularly 

for sediment-deposition features (Castillo et al., 2012; Van Oost et al., 2004) – it is reasonable 

to assume that, in order to be useful, model estimates should compare well to field observations. 

That is, if a model depicts high soil losses for a given location, it should be expected that field 

surveys would also represent the erosion severity for the area (Evans and Brazier, 2005). 

However, this is not always the case: in fact, many studies comparing field-based monitoring 

and distributed soil erosion models report a poor agreement between modeled and surveyed 

erosion patterns (e.g, Evans and Brazier, 2005; Hessel et al., 2006; Jetten et al., 2003; Takken 

et al., 1999; Vigiak et al., 2005). In such cases, models generally display a tendency to 

overestimate both the severity and the extent of erosion rates. 

The poor performance of erosion models against observed field patterns is most commonly 

attributed to I) the uncertainties involved in spatial input parameter estimation, particularly for 

process-based models (Hessel et al., 2006; Jetten et al., 2003; Vigiak et al., 2006a) and II) 

incomplete, incorrect, or unsuitable process descriptions embedded in model structures (Evans 

and Brazier, 2005; Vigiak et al., 2005). Both explanations for poor model performance provide 

insight into what is needed to improve the evaluated models. These conclusions would likely 
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not be possible if model testing was restricted to catchment outlet responses. As argued by 

Quinton (1994), while successful tests can conditionally corroborate a model’s capability to 

reproduce the behavior of a system, they do little to confirm the veracity (i.e., truthfulness) of 

model components. On the other hand, a failure will most likely lead to model improvements. 

Although erosion and deposition patterns simulated by spatially distributed models frequently 

compare poorly to the ones observed in field surveys, erosion risk assessment maps – usually 

produced by USLE-type models or decision trees – have been reported to provide adequate 

identification of erosion-prone areas when evaluated against field data (e.g., Djuma et al., 2017; 

Prasuhn et al., 2013; Vigiak et al., 2006b; Vrieling et al., 2006; Waltner et al., 2018). In such 

cases, however, model testing is less rigorous, although arguably fit-for-purpose; as a more 

qualitative approach is employed by comparing modeled and observed erosion severity classes. 

When actual erosion rates are compared, results are not as encouraging (see Prasuhn et al. 

2013). 

3.2.2 Comparing soil erosion models soil/sediment tracers 

An alternative to field surveys for acquiring spatially distributed data are tracing techniques, 

which are used to quantify soil redistribution rates across landscapes. Tracing usually relies on 

fallout radionuclides (FRN) (137Cs, 210Pb, 7Be) inventories (see Guzmán et al., 2013 for a 

review). The technique is based on the premise that atmospheric input of FRN is homogeneous 

within a given spatial unit (e.g., field, catchment), and that factors controlling FRN movement 

are the same as the physical processes regulating the redistribution of the soil particles to which 

they are adsorbed (Warren et al., 2005). Hence, when FRN inventories from point samples are 

compared to an undisturbed reference site inventory, the decrease or increase of tracer 

concentrations can indicate if an area has been subjected to erosion or deposition (Quine et al., 

1994; Walling and He, 1998). Actual erosion/deposition rates are then estimated by conversion 
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models (Walling and He, 1999), often combined with spatial interpolation procedures (e.g. 

Ferro et al., 1998; Porto and Walling, 2015). 

FRN tracing offers an advantage over field surveys in the sense that medium to long term soil 

redistribution rates and patterns can be estimated based on a single sampling campaign, 

therefore not requiring constant monitoring. This can be more or less useful according to the 

time scale of the erosion model application involved in the testing procedure. On the other hand, 

the conversion of FRN inventories into erosion rates are a source of substantial uncertainty 

(Walling and He, 1999), as well as the interpolation methods used to spatialize point 

observations of tracer concentrations. Some researchers have even questioned the general 

applicability of FRN inventories for estimating soil redistribution rates (see Parsons and Foster, 

2011 for a critical perspective). Another issue regarding the use of tracing techniques to 

evaluate distributed erosion models is that FRN inventories may reflect soil movement due to 

tillage and other farming operations (Bacchi et al., 2003; Lacoste et al., 2014; Quine et al., 

1994), which are not always described in model structures. 

Nonetheless, comparisons between tracing derived soil redistribution rates/patterns and erosion 

model outputs have provided insights into model performance. Some of the most interesting 

comparisons have been achieved when multiple erosion models are evaluated, as different 

models often produce contrasting maps. For instance, He and Walling (2003) demonstrate how 

the ANSWERS and AGNPS models yielded quite different predictions of erosion and 

depositions patterns for a field in the UK. While ANSWERS-predicted soil redistribution rates 

failed to exhibit any relation with 137Cs-estimated rates, AGNPS predictions showed a better 

visual agreement with the latter, although correlation between rates was still poor (R² = 0.26). 

Similarly, Bacchi et al. (2003) tested spatially distributed applications of the USLE and WEPP 

models against 137Cs-derived soil redistribution rates for a sugar-cane field in Brazil. Results 
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were again contrasting, as models yielded quite different spatial predictions and both compared 

poorly to the tracer-estimated patterns of erosion and deposition. Moreover, Warren et al. 

(2005) applied a 3-D enhanced version of the USLE (USPED) to a military training area in the 

USA. Their results demonstrate how the USPED model provided a better agreement with 137Cs-

estimated patterns of soil redistribution than older USLE versions which did not account for in-

field sediment deposition. However, the model errors of erosion/deposition rates (tracer 

estimates were taken as observed values), were – according to the authors – still disappointing 

(RMSE = 7.96 ± 0.62 ton ha-1 yr-1). 

Overall, the evaluation of distributed erosion models by the use of tracing techniques indicate 

that while models can sometimes display a good agreement with tracer-estimated soil 

redistribution patterns, this is frequently not the case. Moreover, tracer-derived rates of soil 

erosion and deposition generally compare poorly to model estimates (Bacchi et al., 2003; 

Belyaev et al., 2004; He and Walling, 2003; Lacoste et al., 2014; Warren et al., 2005). However, 

it is difficult to identify whether this is because of errors in the tracing techniques or because of 

modelling limitations. 

Sediment fingerprinting studies, which aim to identify the origin of sediments rather than to 

model soil redistribution (Guzmán et al., 2013), have also been compared against erosion model 

estimates. The sediment fingerprinting approach allows for the quantification of the relative 

contribution of potential upstream sources to sediment yield (see Koiter et al., 2013 and Laceby 

et al., 2017 for reviews on sediment fingerprinting), which can provide a useful framework for 

distributed erosion model testing. This requires that sediment sources are stratified in 

comparable manner to model outputs. 

For instance, Wilkinson et al. (2013) employed a fingerprinting approach to model the relative 

contributions of different erosion processes (i.e., surface or subsurface) to fine sediment loads 
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in the Burdekin River basin, Australia (~130,000 km²). They also identified the spatial origin 

of the fine sediments reaching catchment outlet by use of a tributary/geological source 

stratification. The results were compared to a spatially distributed sediment budgeting model 

(SedNet), which had been previously tested against sediment yield measurements (Wilkinson 

et al., 2009). However, the fingerprinting and SedNet modelling outputs were contrasting, as 

the approaches identified different sub-catchments as the main contributors to sediment yield. 

Moreover, while SedNet results indicated that hillslope erosion (i.e. rill, sheetwash) was 

responsible for most of the fine sediments reaching catchment outlet, the fingerprinting data 

demonstrated that gully erosion was the dominant process controlling the basin sediment load. 

Similarly, Borrelli et al. (2018) compared WaTEM/SEDEM erosion predictions to a 

fingerprinting study carried out by Alewell et al. (2016). In this case sediment sources were 

stratified by land use, but the comparison revealed once again a poor agreement between the 

independent estimates. Borrelli et al. (2018) supported the model over the fingerprinting data, 

concluding that “the modelling results seem to reject the validity of [fingerprinting] 

estimations”. If anything, as argued by de Vente et al. (2013), the results from Wilkinson et al. 

(2013) and Borrelli et al. (2018) highlight how difficult it is for erosion models to identify where 

sediments originate from and to pinpoint what the dominant erosion processes are, within a 

catchment. Nevertheless, it is important to note that the fingerprinting approach is also uncertain 

and ultimately modeled-based. A comparison between erosion and fingerprinting models 

should explicitly consider the uncertainties present in both. 

3.2.3 Comparing soil erosion models to remote sensing images 

The approaches to distributed erosion model evaluation described so far have important 

limitations when these models are applied at a regional scale. This is because the extensive field 

sampling necessary for tracing techniques might be unattainable. Moreover, the assumption of 
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homogeneous FRN input across large areas would be hardly justifiable. Also, although 

sediment fingerprinting is frequently applied at watersheds with over 1000 km² (see Collins et 

al., 2017 for some examples); this approach will not always be comparable to model outputs – 

particularly if model structures do not include a sediment routing component. Field monitoring 

schemes might also be restrictive at regional scale, considering the time and personnel that 

would be required to constantly survey potentially thousands of fields.  

To overcome these issues, Fischer et al. (2018) developed a semi-quantitative evaluation 

approach based on the visual interpretation aerial imagery. The concept is similar to some of 

the field monitoring approaches previously described (e.g., Prasuhn et al., 2013; Vigiak et al., 

2005; Vrieling et al., 2006), as erosion severity classes are assigned according to the visual 

identification of erosion features. Although Evans and Brazier (2005) combined aerial 

photographs with field surveys on their evaluation of a spatially distributed version of WEPP, 

the study of Fischer et al. (2018) is perhaps the first to be fully based on the interpretation of 

remote sensing images. This enabled the authors to analyze 8100 eroding fields, from which 

aerial photographs were taken after prominent erosive events. Potentially erosion-causing 

events were identified based on daily rainfall maps and farmer reports. The assigned erosion 

severity classes were compared against USLE soil loss estimates for the Bavarian region, in 

Germany (~ 15,000 km²). Results were encouraging, as the visual erosion classes were highly 

correlated to predicted soil losses (R² = 0.91). 

It should be highlighted that the model-based regional erosion risk assessment of Fischer et al. 

(2018) was supported by high resolution rainfall (1km, 5 min) and elevation (5 m) data. Sub-

field soil texture measurements and site-specific cropping information were also available for 

model parameterization. Moreover, much effort has been put into adapting the USLE into 

German conditions (see Fiener and Auerswald, 2016) and therefore Fischer et al. (2018) were 
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able to make use of suitable parameters  to their particular regional settings. Hence, the results 

from the semi-quantitative approach to model evaluation performed by the authors indicate that 

simple USLE-type models seem to be capable of identifying eroding fields at regional scale, 

provided that adequate data is available for parameterization. Although studies such as of 

Prasuhn et al. (2013) and Fischer et al. (2018) are based on high resolution data, this is not the 

case for most erosion model applications at regional or large-catchment scale.  

3.2.4 What have we learned from these comparisons? 

Overall, the lessons learned about distributed erosion model performance based on the 

described attempts to evaluate them at field, catchment or regional scale can be summarized as: 

I) modeled-based erosion risk assessments are able to identify the relative rank of erosion-prone 

fields if high quality data are available for parameterization; II) actual erosion and deposition 

patterns/rates generally compare poorly to independent estimates; III) the capability of models 

to identify sediment sources is limited and very rarely evaluated; IV) acquiring independent 

spatial data for model evaluation is difficult and methods for doing so are subject to 

considerable uncertainty; V) the more rigorously a model is tested then the more likely poor 

performance is found. 

The latter conclusion (V) might seem somewhat obvious: since all models are approximations, 

deficiencies will always become evident if models examined in enough detail (Beven and 

Young, 2013). Nonetheless, defining the type of tests and the sources of data by which a model 

will be evaluated, as well as the level of agreement one expects between models and 

observations, are important issues regarding model testing (see Beven and Young, 2013; Beven, 

2018). That is, in order to declare a model conditionally useful, or fit-for-purpose, the tests 

involved in the evaluation approach must be also fit-for-purpose. However, testing erosion 

models as hypotheses is difficult because of the uncertainties necessarily associated to model 
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structures, parameter estimation, and the observational data to which models are compared to 

(Beven, 2018). In the next section we review how uncertainty analysis has been incorporated 

into erosion model evaluation and hypothesis testing. It is our hope, however, that the 

methodologies described above will help erosion modelers choose sources of data and 

approaches to model evaluation that will be more suitable to the purpose of their model 

application (see Table 3). 

4 Uncertainty in soil erosion models 

The discussions about model evaluation addressed in this review so far have made the case for 

the necessity of uncertainty analysis in erosion models. That is, given the limitation of our 

knowledge regarding the description of soil erosion processes, our inability to represent the 

variability of parameter values, and the errors associated to erosion measurements; uncertainty 

and equifinality are necessary consequences of any erosion modelling endeavor. 

Still, uncertainty analysis is rarely undertaken. Beven and Brazier (2011) comprehensively 

reviewed the attempts made by erosion modelers to incorporate uncertainty analysis and 

declared that the “assessment of uncertainty in soil erosion models is in its infancy”. This 

remains the case. 

In order not to repeat or summarize the work of Beven and Brazier (2011), we decided to 

perform a case study of uncertainty estimation for a simple process-based erosion model. Since 

we believe one of the reasons not to perform uncertainty analysis stems from the misconception 

that they are too difficult to implement (see Pappenberger and Beven, 2006), we provided a 

clear explanation of our case study, along with a simple demonstration code, which has been 

scripted in the open source programming language R (R Core Team, 2017). But first, a brief 

description of uncertainty analysis tools that we believe are the most useful for common erosion 

model applications is warranted. 



49 

 

4.1 Uncertainty estimation methods for soil erosion models 

The first step of uncertainty analysis is deciding on an estimation method. Detailed guidelines 

are provided by Beven (2009), but perhaps the main factor involved in the decision – 

particularly for erosion models – is the availability of quantitative data for model evaluation. 

4.1.1 Forward uncertainty analysis 

As we have shown, acquiring spatially distributed data for erosion model testing can be quite 

challenging. Moreover, outlet sediment fluxes are not always directly comparable to model 

outputs. Hence, it is frequently the case where no historical data are available for model 

evaluation. Lack of evaluation data will also be necessarily true for scenario-based simulations 

and future forecasts, for obvious reasons. In such circumstances, a forward uncertainty analysis 

can be employed to provide an initial estimate of input error. It is forward because feasible 

assumptions about model structures and parameter values must be “fed forward” by the modeler 

(Beven, 2009). 

Forward uncertainty analysis of erosion models can be performed by Monte Carlo simulations. 

In this approach, distributions of uncertain model parameters must be defined a priori, based on 

replicate measurements, previously reported values, and/or expert judgments. Possible 

parameter values are then sampled throughout a large number of iterations, which in turn will 

produce a set of possible model realizations. The distribution of the resulting model realizations 

is then used to characterize model uncertainty, and the simulations can be extended to allow for 

sensitivity analysis (e.g. Quinton, 2004). Since forward uncertainty assessments are carried out 

in the absence of historical data for evaluation, the estimated model errors will be totally 

dependent on the assumptions made about prior parameter distributions, parameter co-

variation, and model structure (Beven, 2009; Beven and Brazier, 2011). This will necessarily 

lead to some degree of subjectivity. 
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Forward uncertainty analysis might be particularly useful for spatially distributed erosion 

models, which are often applied without any form of evaluation. At the very least, this will 

allow for some spatial representation of parameterization uncertainty. Although simulation-

based error propagation is commonly employed in geostatistics and geoprocessing (e.g., Aerts 

et al., 2003; Hengl et al., 2010; Heuvelink, 1998; Oksanen and Sarjakoski, 2005; Wechsler and 

Kroll, 2006), very few studies have fully incorporated such an approach to distributed erosion 

modelling. 

Noteworthy examples of forward uncertainty analysis within a distributed erosion model 

framework are provided by Biesemans et al. (2000), Van Rompaey and Govers (2002) and 

Tetzlaff et al. (2013). All studies focused on distributed RUSLE model applications, although 

in different scales and under different assumptions about parameterization uncertainty. These 

examples provide an illustration of the subjectivity embedded in forward uncertainty analyses, 

as we will demonstrate. 

Biesemans et al. (2000) applied the RUSLE within a Monte Carlo framework in 1075 ha 

catchment in Belgium. The rainfall erosivity and the support practice factors (R and P factors 

of the RUSLE equation, respectively) were held constant, whereas the soil erodibility factor 

(K), the topographic factor (LS), and the cover management factor (C) were randomly re-

sampled from predetermined distributions. This required spatial information on prior parameter 

distributions, which were acquired by: I) generating auto-correlated DEM error surfaces for 

each iteration; II) a K factor kriging variance grid; and III) a land use map combined with 

minimum and maximum C factor values reported in the literature. The forward uncertainty 

analysis enabled the authors to provide a mean and a standard deviation soil loss map of the 

catchment. They also provided percentile error maps of each factor sampled during the 

simulation, which were used to calculate the contribution of each of these factors to the variance 
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of estimated soil losses. Bisesemans et al. (2000) concluded that the LS factor was the main 

source of uncertainty in their model, which could be reduced by the use of a higher quality 

DEM. The authors further “validated” their model based on estimated catchment sediment 

yields, which were presumably obtained by summing the pixel-based soil loss estimates. The 

standard deviation of the simulated sediment yields was narrow, as to be expected considering 

that the sum of the pixel-based model realizations should somewhat converge. Nonetheless, the 

mean estimated sediment yield showed a good agreement with measured values. 

A similar approach to uncertainty analysis was explored by Van Rompaey and Govers (2002) 

at a 250 ha catchment in Belgium. In this case, however, K factor values were derived from a 

discrete soil map and by the use of a regression equation which relates geometric mean particle 

size to soil erodibility. In order to represent the uncertainty of the model parameter, minimum 

and maximum grain sizes were assigned to specific textural classes in the soil map. For each 

iteration of the Monte Carlo simulation, a new K factor grid was created based on the sampled 

grain sizes. Results from the simulation revealed that the soil loss estimates had an average 

relative error of 111 %. Moreover, a sensitivity analysis performed by the authors indicated that 

the K factor was the main source of uncertainty in the model application. 

The forward uncertainty analysis of Tetzlaff et al. (2013) is somewhat different to the ones 

previously described. The analysis was employed at a much larger catchment (~ 485 km²) in 

Germany, which meant that different sources of uncertainty were associated with model 

parameterization. The authors applied a Monte Carlo simulation to produce mean and standard 

deviation maps of each RUSLE factor, which were later used to propagate model error 

analytically. Tetzlaff et al. (2013) did not represent the uncertainty of spatial estimates of the R 

and K factors, which were assumed to be only associated to measurement errors of rainfall and 

soil texture. Moreover, the spatial auto-correlation of DEM errors was neglected. This approach 
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led the authors to identify the LS factor as a main source of model uncertainty, and the reported 

mean relative error of soil loss estimates was of 34 %. These values are lower than the ones 

reported by Van Rompaey and Govers (2002), which raises the question if the narrower 

uncertainty bounds are a result of the higher quality of the input data or just a consequence of 

the different assumptions made about the sources of error.  

Overall, the few studies which incorporated forward uncertainty analysis to distributed erosion 

model applications represent an improvement over the common deterministic approach. 

However, these studies also illustrate the variations in the uncertainty estimation method: 

forward error assessments rely entirely on the prior and subjective assumptions made by the 

modeler. This element of subjectivity could be somewhat attenuated if pessimistic and 

optimistic assumptions about sources of uncertainty were explored, and if the full distributions 

of possible model outputs were reported. Nonetheless, testing models against observed 

empirical data will always be preferable, as in this case the “true” uncertainty of model 

estimates can be assessed (Beven, 2009). As argued by Oreskes (1998), quantifying input error 

will not make a structurally flawed model reliable. 

4.1.2 Uncertainty analysis in the presence of observational data 

When historical quantitative data are available for model evaluation, the Generalized 

Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992) seems to be the preferred 

tool for dealing with the uncertainty of soil erosion models (e.g., Brazier et al., 2001, 2000; Cea 

et al., 2016; Krueger et al., 2012; Quinton, 1994; Quinton et al., 2011; Vigiak et al., 2006a). 

The GLUE methodology allows for an explicit representation of the uncertainties associated to 

model structures, parameterization, and to the observational data. For a detailed description of 

GLUE we will refer to some of the many studies of Beven (1993, 2006, 2012). The basis of the 

methodology, however, can be summarized in few decision steps (Beven, 2009): 
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I. Decide on a likelihood measure to evaluate model realizations. 

II. Decide on the rejection criteria for non-behavioral model realizations (i.e. not 

acceptable reproductions of the observational data). 

III. Decide which parameters are uncertain. 

IV. Decide on a prior distribution to characterize the uncertainty of the chosen parameters. 

V. Decide on a simulation method for generating model realizations. 

In the GLUE methodology, calibration is not restricted to defining an optimum parameter set 

that minimizes model error against the observational data. Instead, multiple behavioral 

parameter sets and model realizations are retained to represent model uncertainty. A difficulty, 

however, is defining limits of acceptability to declare a model realization as behavioral or not, 

which is critical to enable models, or model realizations, to be tested as hypotheses (Beven, 

2018, 2009). The definition of such limits should reflect our knowledge about the errors and 

uncertainties in the observational data used for model evaluation (Beven, 2018). For erosion 

models being applied at plot scale, we argue that the evaluation criterion of Nearing (2000) 

provides a framework for defining the limits of acceptability for model errors within the GLUE 

methodology. This will be demonstrated in the following case study. Although recent erosion 

modelling efforts have focused on spatially distributed applications, testing models at plot scale 

is still desirable. Erosion plots provide a reasonably controlled experimental setting, allowing 

for more detailed parameterization and a greater scrutiny of process descriptions. 

4.2 Case study: applying GLUE to the revised Morgan-Morgan-Finey model 

The revised MMF (Morgan, 2001) is a simple, but still process-based model, and does not 

require as many inputs as models such as WEPP or EUROSEM. This makes it suitable for the 

straightforward uncertainty analysis we undertook with GLUE. Model parameters and 
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operating equations are displayed in Table 4. The model implementation code in R (R Core 

Team, 2017) and all input data are provided as supplementary material. Full model descriptions 

are available in Morgan (2001, 2005). 

Table 4 Parameters and operating equations for the revised MMF model. 

Description Operating equation Parameter definitions 

Effective rainfall (mm) 𝑅𝑒 = 𝑅(1 − 𝐴) R = rainfall (mm) A = 

proportion of rainfall 

intercepted by vegetation 

Leaf drainage (mm) 𝐿𝑑 = 𝑅𝑒𝐶𝑐 Cc = proportion of canopy 

cover 

Direct throughfall (mm) 𝐷𝑡 = 𝑅𝑒 − 𝐿𝑑  

Kinetic energy of direct 

throughfall for tropical 

climates (J m-2) 

𝐾𝑒𝑡 = 𝐷𝑡(29 −
127.5

𝐼
) 

I = typical rainfall intensity 

value for erosive rain (mm h-

1) 

Kinetic energy of leaf 

drainage (J m-2) 
𝐾𝑒𝑙 =  𝐿𝑑(15.8 𝑃ℎ

0.5) − 5.87 Ph = plant canopy height (m) 

Total kinetic energy (J m-

2) 
𝐾𝑒 = 𝐾𝑒𝑡 + 𝐾𝑒𝑙  

Annual runoff (mm) 
𝑄 = 𝑅𝑒

−𝑅𝑐
𝑅𝑜  

Ro = mean rain per day (mm) 

Soil moisture storage 

capacity (mm) 𝑅𝑐 = 1000 𝑀𝑐  𝐵𝑑 𝐻𝑑(√
𝐸𝑡

𝐸𝑜
) 

Mc = soil moisture content at 

field capacity (% w w-1) Bd = 

bulk density of the soil (Mg 

m-3) Hd = effective 

hydrological depth (m) Et/Eo 

= ratio of actual to potential 

evapotranspiration 

Soil particle detachment 

by raindrop impact (kg 

m-2) 

𝐹 = 0.001 𝐾 𝐾𝑒 K = soil detachability index 

(g J-1) 

Soil particle detachment 

by runoff (kg m-2) 
𝐻 = 𝑍 𝑄1.5 sin 𝑆 (1 − 𝐺𝑐)10−3 S = slope steepness (˚) Gc = 

proportion of ground cover 

Resistance of the soil 
𝑍 =

1

0.5𝜎
 

σ = soil cohesion (kPa) 
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Runoff transport capacity  

(kg m-2) 
𝑇𝑐 = 𝐶 𝑄2 sin 10−3 C = product of the C and P 

factors of the USLE 

Sources: Morgan (2001, 2005) 

The model was applied at two set of replicate plots, which were part of an erosion monitoring 

experiment at the Lavras Federal University, Brazil (Lima et al., 2018). Soils in the area are 

classified as Typic Hapludoxes (Soil Survey Staff, 2014) and the topsoil texture (20 cm) is 

sandy clay. According to the Köppen classification system, the climate is humid subtropical 

(Cwa), with dry winters and temperate summers. Average rainfall is ~ 1500 mm. 

Soil losses were monitored during one cropping season, between December 2013 and April 

2014. Three plots (4 m wide and 24 m long) were left bare and kept free of vegetation by manual 

hoeing. Another three plots (4 m wide and 12 m long) were cultivated with maize, which was 

sown manually and perpendicularly to the slope. Neither set of plots was ploughed or tilled. All 

plots were isolated by galvanized metal sheets, which transported runoff and sediments to 

collection tanks at the bottom of the slope. After each runoff event, soil and water losses were 

determined. 

The model application within the GLUE methodology was performed under two different 

scenarios. For scenario I, all parameters considered uncertain were allowed to vary across the 

full range of possible values reported in the MMF guidelines, regardless of a strict physical 

meaning. For instance, the possible values of land cover parameters, such as the percentage of 

canopy cover (CC) or the percentage of ground cover (GC), were set from zero to one even for 

the bare soil plots. This scenario represents model calibration, or conditioning, under a loose 

belief in the correctness of the physical equations represented by the model (Pappenberger and 

Beven, 2006). For scenario II, actual measurements of parameter values (e.g. bulk density, soil 

moisture at field capacity, canopy cover, and plant height) were used to construct prior 

parameter distributions. If measurements were unattainable (e.g. effective hydrological depth, 
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soil cohesion, soil detachability index), minimum and maximum values were set according to 

our interpretation of model guidelines, but still allowing for some uncertainty in the estimates. 

This second scenario represents model conditioning under the assumption that parameter values 

should not be calibrated outside the range of a feasible physical meaning. It also represents an 

attempt to constrain model uncertainty. 

Model realizations for both scenarios were generated by uniform random sampling, using 

uniform prior parameter distributions and a Monte Carlo simulation with 106 iterations. 

According to Beven (2009), this approach enables the identification of scattered regions of 

behavioral model realizations within the response surface. 

Before the simulations were performed we decided on a rejection criterion for defining model 

realizations as non-behavioral. Our criterion is the one of Nearing (2000), which states that “if 

the difference between the model prediction and the measured value lies within the population 

of differences between the measured data pairs, then the model reasonably reflects the erosion 

for that population”. Nearing (2000) used a large number of replicate storm events (2061) and 

annual soil losses (797) to calculate the 95 % occurrence interval of the relative difference in 

soil losses between replicates (Rdiffocc): 

𝑅𝑑𝑖𝑓𝑓𝑜𝑐𝑐 = 𝑚 𝑙𝑜𝑔10(𝑀) +  𝑏 

where:  

m = 0.236 and b = - 0.641 for the lower limit of the 95 % interval; 

m = -0.179 and b = 0.416 for the upper limit of the 95 % interval; 

M = measured erosion rate (kg m-2) (in our case this corresponds to the mean soil losses 

observed in the three replicate plots for each treatment – bare and maize). 
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Hence, if the relative difference of simulated and observed erosion rates laid outside the above 

defined occurrence intervals, the model realization was considered non-behavioral. This 

approach allows for a representation of the errors involved in soil loss measurements at plot 

scale, and also incorporates the variability of these errors according to the magnitude the 

measured erosion rates. Therefore, the approach enables model rejection: if none of the 

simulations are within the limits of acceptability then the model itself should be rejected as non-

behavioral under the testing conditions. 

Behavioral model realizations were assigned a likelihood measure according to the absolute 

error of the simulations in relation to the measured soil losses. Similarly to Brazier et al. (2000), 

likelihoods were calculated by rescaling the absolute errors so that their sum would add up to 

one and that those simulations with the lowest errors were assigned a greater likelihood. 

Formulae are provided in the supplementary material code. 

Results from the analysis indicate that Nearing’s criterion for defining behavioral models were 

strict enough to eliminate poor simulations, but still retained a large number of acceptable 

model realizations. For the bare plots, 19 % and 33 % of sampled parameter sets in scenarios I 

and II, respectively, yielded behavioral model realizations. For the maize plots, these values 

changed to 48 % and 13 %. As the measured soil loss rates for the maize plots were lower than 

for the bare plots (mean bare = 1.774 kg m-2, mean maize = 0.265 kg m-2), thresholds of model 

acceptability were relatively wider in the first case. This is because equation 1 incorporates the 

higher uncertainty of low erosion rate measurements at plot scale. 

Due to the degree of freedom afforded to the model, simulations from scenario I were able to 

encompass the observed data in both sets of plots, as expected (Figure 4). Model output 

realizations are spread throughout the behavioral response surface and part of them overlap the 
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measured soil losses. Not much can be concluded from these results, and the obvious next step 

would be to evaluate the conditioned parameter sets against new observational data. 

 

Fig. 4. Estimated erosion rates of behavioral realizations of the MMF model for the bare and 

maize plots. Blue dashed lines represent the range of observed soil losses for the replicate plots 

within each treatment. 

Results from scenario II are more interesting. For the bare plots, simulations from the reduced 

parameter space do not systematically underestimate the observational data, as in the case of 

the Scenario I, and a greater part of behavioral models encompass the measured soil losses. By 

plotting individual parameter values against the rescaled likelihood measure, it was clear that 
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more accurate results could be achieved if the range of sampled soil detachability index (K) 

values was narrowed (Figure 5). Whether or not this would result in more accurate predictions 

for new observational data remains to be tested. 

For the maize plots, the reduced parameter space from Scenario II considerably narrowed the 

spread of the behavioral models response surface. However, none of the simulations 

encompassed the observational data. That is, if model parameters were set according to actual 

measurements of soil properties and land cover characteristics, the model consistently 

underestimated the measured soil loss rates. The poor results appear to be caused by an 

underestimation of runoff transport capacity, as illustrated by the greater likelihoods associated 

to higher values of the USLE C and P factors, as well as to the lower values of parameters used 

in the calculation of soil moisture storage capacity (e.g., soil moisture, bulk density, and 

effective hydrological depth) (see Figure 5 and Table 2). Since estimated erosion rates seemed 

to be transport limited, model outputs were little sensitive to parameters associated the 

prediction of particle detachment (e.g., soil detachability index and rainfall intensity). Although 

the model application itself cannot be rejected, as many realizations were considered 

behavioral, this systematic underestimation within the conditioning period raises concerns 

about the potential usefulness of model predictions under the testing conditions (see Beven, 

2009). These results illustrate how difficult it can be for erosion models to make accurate 

estimates while trying to constrain output uncertainty. Although these results are certainly case-

specific, our experience indicates that similar problems might expected elsewhere (see Quinton, 

1997). 
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Fig. 5. Dotty plots of behavioral model realizations for the simulations from Scenario II in the bare (a,b) and maize plots (c,d). Each point relates 

a sampled parameter value to the rescaled likelihood of the model realization. High-sensitivity parameters, such as the soil detachability index, 

have higher likelihoods associated to a narrow parameter space. Contrarily, low-sensitivity parameters, such as soil moisture content at field 

capacity display variable likelihood values across the parameter space. 
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In summary, our case study demonstrates how Nearing’s criterion can be incorporated into 

erosion model testing at plot scale within the GLUE methodology. This approach provides an 

objective definition of the limits of acceptability of model error, which is critical to enable 

models to be tested as hypotheses considering the uncertainties in both models and the 

observational data. We have provided a simple demonstration of erosion model conditioning 

while dealing with uncertainty and equifinality, which allows for a more realistic and forthright 

characterization of model performance than a single optimized parameter set. It is our sincere 

hope that the example herein implemented can be expanded and improved by other modelers, 

and that this review as a whole will be an incentive for model evaluation in face of the 

limitations of our knowledge. 

5 A way forward for the evaluation of soil erosion models 

This review has taken a somewhat critical perspective on the evaluation of soil erosion models 

and erosion modelling in general. This is not meant to discredit previous work, but instead to 

raise awareness about the necessity of continuous model testing. Moreover, we have focused 

on the limitations of the reviewed approaches to model evaluation. This is meant to enable 

modelers to make informed decisions about the tests and sources of data that should be more 

suitable for evaluating erosion models according to the context of their application. 

It is our opinion that the way forward for erosion model evaluation involves pursuing fit-for-

purpose tests according to the finality of the model applications (see Jakeman et al., 2006). Such 

tests should encompass multiple lines of evidence, should consider the uncertainties in model 

structures, parameter estimation, and the observational data. Moreover, evaluation should allow 

for a broad investigation regarding the usefulness and consistency of the models, as we explain 

below. 
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When deciding on an evaluation methodology, the purpose of the modelling should be explicit. 

This will allow the modeler to pursue sources of data that will investigate the usefulness of the 

model according to the pre-defined application purpose (see Table 3). For instance, if a model 

is being used to simulate the impacts of land use changes on sediment yields at catchment scale, 

it is desirable that such model is not only able to make reliable quantitative predictions of 

sediment transport rates, but also to identify the spatial provenance of sediment sources. 

Moreover, catchment outlet responses should be sensitive to land use model parameters. 

Investigating the usefulness of a model for such purpose could involve a sensitivity analysis 

and a comparison between model outputs against sediment yield measurements and sediment 

fingerprinting source apportionments. 

Erosion models are necessarily uncertain, and so are the observational data used for evaluation; 

and as such, models cannot be tested as hypotheses if uncertainty is not accounted for. Although 

a strict Popperian falsification of environmental models is somewhat useless, as all models are 

ultimately wrong, we feel the erosion modelling community would benefit by some degree of 

model rejection. That is, given the profusion of available soil erosion models, which are in 

theory able to accomplish the same task, how does one choose an appropriate model for a given 

purpose? Tests that allow for models to be rejected as not fit-for-purpose are therefore 

encouraged. We have supplied an example of how this can be achieved with GLUE, and further 

discussions on the matter can be found in Beven (2018). 

Furthermore, we believe that taking a collaborative fit-for-purpose rejectionist approach is 

important from a public policy and decision-making perspective. Co-development of limits of 

acceptability and satisfactory uncertainty bands between modelers and decision-makers is 

necessary if we are to have tools and predictions that meet stakeholder needs whilst formally 

acknowledging observational errors (Beven and Binley, 2014). If an erosion model is required 
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to support decision-making and no historical data are available for testing, it is still possible to 

provide a forward uncertainty analysis to give an initial assessment of model error. In this case, 

modelers should clearly justify the assumptions made about the sources of uncertainty.  

Quantifying input errors will not lead to reliable predictions if the model itself is structurally 

flawed; however, it might help delineate what inferences can be made from model outputs. For 

instance, Alewell et al. (in press) have recently argued that large-scale erosion model 

applications should not strive to make accurate predictions of soil losses, but instead to explore 

scenarios and system reactions, focusing on understanding relative differences of erosion rates. 

Whether this premise is accepted or not, it is important to note that if models are applied 

deterministically, even simple conclusions regarding relative differences of erosion rates might 

be misleading. For example, policymakers might be prone to subsidize a given set of 

agricultural practices if a model depicts that this would lead to a 20 % decrease in regional gross 

erosion rates. However, they might want to consider different options if model results indicate 

there is a 50 % chance that adopting such practices will reduce soil losses in 20 %.The same 

policymakers might have even more concerns if it is made clear that these errors are only 

associated to parameter estimation, and that no case-specific quantitative/representative data 

are available to corroborate model predictive accuracy. In summary, the modelling community 

needs to take responsibility for analyzing model limitations and uncertainties, and co-

developing evaluation criteria that are fit-for-purpose with the end-user. 

However, situations may arise in which the uncertainties in model estimates and in the 

observational data are so large that the response surface of model realizations will almost 

always overlap the empirical observations. This was somewhat illustrated in our case study, 

and similar outcomes have been reported by others (e.g., Banis et al., 2004; Janes et al., 2018). 

Then how to proceed? A logical conclusion would be to constrain uncertainty, by simplifying 
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models and increasing measurement precision. But to what extent is this possible? Although 

technological developments continuously improve our ability to measure model parameters and 

system responses, the very things we call data are inference-laden signifiers of a reality we 

cannot fully access (Oreskes et al., 1994). In this sense, any real-life/open-system model test 

involves a number of embedded hidden assumptions, many of which are poorly understood or 

completely unknown (Baker, 2017; Oreskes, 1998). Hence, even when models are not rejected, 

is it possible to know if this is because of the quality of model process descriptions or to any of 

these assumptions? 

A complement to model-testing-as-hypotheses is as an investigative/exploratory approach; in 

which hypotheses are pursued to generate knowledge, instead of to test theories (see Baker, 

2017 for a complete philosophical discussion). This involves embracing uncertainty as a 

necessary motivation of science-as-seeking, and exploring observational data not as hard 

substitutes of phenomena, but as signs through which the world communicates to the 

investigator (Baker, 2000, 2017). In this approach, investigating the overall consistency of a 

model as a narrative is more important than testing individual hypotheses as propositions 

(Baker, 2017). 

According to Baker (2017), a hypothesis is consistent when it explains the cause of a system 

response without contradicting physical principles, spatial evidence of related phenomena, or 

other similar relationships. For instance, Pontes (2017) tested the SWAT model in a small 

mountainous catchment in Brazil. The model was applied in a stochastic framework, and 

estimates of outlet sediment transport rates were considered acceptable for both the 

conditioning and the evaluation period. However, a comparison against erosion plot 

measurements revealed that hillslope erosion rates were overestimated. Accurate sediment yield 

predictions were only possible because the model simulated a large sediment channel 



65 

 

deposition. This was not consistent with the catchment characteristics or with the other lines of 

evidence investigated by the author. 

Regardless of how testing models as hypotheses is perceived, it should be clear that 

environmental models cannot be verified or validated, and the use of such terminology is 

misleading. Semantics have been thoroughly discussed by others (e.g., Beven and Young, 2013; 

Oreskes et al., 1994; Oreskes, 1998), but the considerations made throughout this review have 

demonstrated how models are an incomplete descriptions of not fully accessible phenomena. 

Erosion models are therefore necessarily neither true nor free of apparent flaws, and therefore 

cannot be strictly valid. Although these issues have been recognized for a long time, the 

validation terminology still prevails, as demonstrated by our term co-occurrence analysis. As 

argued by Oreskes (1998), although the primary problems of model evaluation are not one of 

linguistic, “the language of validation buries uncertainty; as scientists, we should be doing the 

opposite”. 

In a broader sense, changing the terms with which we describe model evaluation is a step 

towards to something we understand is necessary to improve soil erosion modelling, which is 

a change in attitude regarding model testing. As we have shown, erosion model evaluation is 

often neglected and/or restricted to a deterministic “validation” based on system outlet 

responses, even at catchment scale and regardless of the purpose of the application, in spite of 

the overwhelming criticism on the matter (Brazier et al., 2001; Favis-Mortlock et al., 2001; 

Fiener and Auerswald, 2016; Govers, 2011; Jetten et al., 2003; Takken et al., 1999). Although 

focusing on tests that are designed to prove a model right may promote acceptance and the 

status/authority of the modeler, “this [approach] makes learning difficult and ultimately erodes 

the impact of the model and the credibility of the modeler – and of all modelers” (Sterman, 

2002). Instead, a purpose-oriented critical model evaluation approach, which focuses on model 
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deficiencies, encompasses multiple sources of data, and fully acknowledges uncertainty and 

equifinality, will ultimately lead to model improvements and responsible decision-making. 

6 Conclusions 

If soil erosion models are to influence decision-making in matters of public interest, the level 

of disagreement between models and reality must be clear. Ultimately, comprehensive 

knowledge of model performance can only be acquired by rigorous evaluation, which means 

that erosion models must be thoroughly and continuously tested. Our term co-occurrence 

analysis demonstrates that currently they are not. 

Moreover, the meta-analysis we undertook on erosion model performance indicated that 

different models do not systematically exceed each other regarding their predictive accuracy. 

In fact, calibration appears to be the main mechanism of improvement of model performance 

for estimating soil losses. We have argued that results from calibrated models are only 

interpretable within the very specific systems they have been calibrated to. Given the 

conditional nature of parameter optimization and capability calibrated models to make accurate 

predictions for the wrong reasons, their results should be viewed with some caution. Hence, 

when dealing with erosion models that require calibration, modelers should formally recognize 

that equifinality is a necessary consequence of model conditioning in face of the uncertainties 

associated to models and observational data. We have provided an example of how this can be 

performed with GLUE. 

We have also argued that evaluating spatially distributed models requires representative 

spatially distributed data. Our review has demonstrated that, in general, model-based estimates 

of erosion and deposition rates do not compare well to independent spatial data. However, we 

have shown how difficult and uncertain it is to measure soil redistribution rates across 

landscapes. Therefore, we stress that comparisons between model-based estimates and 
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observational data requires being explicit about the uncertainties present in both. This literature 

review indicates that unless corroborative evidence is presented by modelers, results from 

spatially distributed soil erosion models should be perceived with a healthy dose of skepticism 

– even if they provide satisfactory estimates of catchment sediment yields. It is our opinion that 

corroborative evidence should be consistent with the purpose of the model application. Hence, 

we have provided guidelines that will help modelers to pursue sources of data to evaluate 

models according to the purpose, scale, and the structure of common erosion modelling 

applications. 

Finally, we would like to remember why we are modelling soil erosion in the first place. Soil 

erosion is a threat to food and water security, and its deleterious effects in society have been 

well documented throughout the history of mankind (Montgomery, 2007). In face of the rising 

demands for agricultural production and the concerns regarding climate change (see Davies, 

2017), models that enable us to understand how soil erosion, and all its negative consequences, 

will respond to the uncertain future ahead are increasingly necessary. 

Although action is needed, informed decision-making requires being explicit about the 

limitations of our knowledge (see Sterman, 2002). This review has shown that we, soil erosion 

modelers, have all too often failed to communicate the uncertainties in our models and to 

provide sufficient evidence to corroborate their usefulness. Owning up to this failure, improving 

our attitude towards model evaluation, and changing the way we characterize and communicate 

model performance will ultimately lead to a better understanding of soil erosion. More 

importantly, it might help to build the much-needed confidence to solve real-world problems 

that affect real people – often the most vulnerable – and their livelihoods. 
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Abstract 

Purpose Soils are important regulators of Critical Zone processes that influence the development of 

geochemical signals used for sediment fingerprinting. In this study, pedological knowledge of tropical 

soils was incorporated into sediment source stratification and tracer selection in a large Brazilian 

catchment. 

Materials and methods In the Ingaí River basin (~ 1200 km²), Brazil, three source end-members were 

defined according to the interpretation of soil and geological maps: the upper, mid, and lower catchment. 

A tributary sampling design was employed, and sediment geochemistry of three different size fractions 

was analyzed (2 – 0.2 mm; 0.2 – 0.062 mm, and< 0.062 mm). A commonly used statistical methodology 

to element selection was compared to a knowledge-based approach. The mass balance un-mixing models 

were solved by a Monte Carlo simulation. 

Modeled source contributions were evaluated against a set of artificial mixtures with known source 

proportions. 

Results and discussion For the coarse fraction (2 – 0.2 mm) both approaches to element selection yielded 

high errors compared to the artificial mixtures (23.8 % and 17.8 % for the statistical and the knowledge-

based approach, respectively). The knowledge-based approach provided the lowest errors for the 

intermediate (0.2 – 0.062 mm) (10.9 %) and fine (< 0.062 mm) (11.8 %) fractions. Model predictions 

for catchment outlet target samples were highly uncertain for the coarse and intermediate fractions. This 

is likely the result of the spatial scale of the source stratification not being able to represent sediment 

dynamics for these fractions. Both approaches to element selection show that most of the fine sediments 

(median >90 %) reaching the catchment outlet were derived from Ustorthents in the lower catchment. 

Conclusions The different element selection methods and the artificial mixtures provide multiple lines 

of evidence for evaluating the fingerprint approaches. Our findings highlight the importance of 

considering pedogenetic processes in source stratification, and demonstrate that different sampling 

strategies might be necessary to model specific sediment fractions. 

Keywords Erosion processes • Geochemical fingerprinting • Sediment particle size • Sediment sources 

• Sediment tracing • Tropical soils 
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1 Introduction 

Soil forming processes and ecosystem services provided by the pedosphere are central to the 

Critical Zone (Lin 2010; Banwart 2011). Soil erosion reduces soil quality by reducing soil 

depth, degrading soil structure, and reducing organic carbon and nutrient contents. In addition 

to these on-site effects, increased sediment delivery due to accelerated soil erosion can lead to 

pollution and eutrophication of downstream water bodies (Zamparas and Zacharias 2014; Yang 

et al. 2017). Moreover, high sedimentation rates reduce dam and reservoir storage capacity, 

compromising water supply and hydroelectric power generation (Hu et al. 2009; Zhao et al. 

2017). These off-site consequences of soil erosion are often experienced at significant distances 

downstream. Knowledge of sediment transport processes and identifying the origin of 

sediments in river catchments is therefore necessary to understand, predict, and remediate off-

site erosion impacts. 

Sediment fingerprinting techniques are often used to identify sediment sources within a 

catchment. As the properties of the material being transported through river networks 

essentially reflect biogeochemical processes occurring in the Critical Zone (Amundson et al. 

2007), the fingerprinting approach is based on the similarity of physical or biogeochemical 

properties between target sediment and their potential upstream sources (Klages and Hsieh 

1975; Yu and Oldfield 1989; Walling and Woodward 1995; Collins et al. 1996). The relative 

source contribution is estimated through parameter  optimization of mass balance un-mixing 

models, which are typically either stochastically solved in a Monte Carlo simulation (Collins et 

al. 2013; Wilkinson et al. 2015; Tiecher et al. 2016) or in a Bayesian framework (Cooper et al. 

2014; Cooper and Krueger 2017). 

Although many different sediment properties have been used to identify sources, sediment 

elemental composition has been commonly used in fingerprinting studies to distinguish source 

contributions according to landuse (Collins et al. 2010; Voli et al. 2013; Cooper et al. 2015; 
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Pulley et al. 2017), geological units (Olley and Caitcheon 2000; Wilkinson et al. 2013; Laceby 

and Olley 2015), and, less frequently, soil classes (Evrard et al. 2013; Lepage et al. 2016; Le 

Gall et al. 2017). In addition to aiding catchment management, Koiter et al. (2013b) argue that 

the information obtained in such studies can be used to understand the underlying processes 

that regulate sediment transport and generate the individual geochemical signatures within 

sources. 

Large catchments present particular problems for fingerprinting studies. The long distances 

between potential upstream sources and the catchment outlet often lead to increased residence 

times, which may intensify fluvial sorting processes and particle size selectivity (Koiter et al. 

2013a, b). Moreover, large catchments often have a diversity of landuses, parent materials, and 

soil classes. In these settings, a landuse based source apportionment may be unsuitable for 

geochemical fingerprinting, due to within landuse soil variability (Pulley et al. 2017). In such 

cases, lithological and/or confluence-based source stratifications might be more effective 

(Collins et al. 2017). While lithology has been proven to be a main control of sediment 

geochemistry in catchments with contrasting felsic/mafic geological units (Laceby et al. 2015), 

pedogenetic processes may provide an important insight to source signal development in 

catchments with less dissimilar parent materials, as demonstrated by Bajard et al. (2017). These 

processes might be particularly relevant in tropical environments, where intense weathering-

leaching may have considerable influence on soil, and ultimately, sediment properties. 

The selection of sediment geochemical properties prior to modeling has received much attention 

in fingerprinting studies, and recent work has brought to question the validity of widely used 

statistical approaches (Smith et al. 2018). To address this, Koiter et al. (2013a) and Laceby et 

al. (2015) have proposed a combination of statistical and process/knowledge-based methods, 

which increases interpretation possibilities of modeling estimates. Ideally, fingerprint 
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properties should be conceptually relatable to upstream processes regarding sediment transport 

and geochemical source signals (Koiter et al. 2013a). Given that the soil is an important 

regulator of these processes, pedological knowledge can offer valuable information regarding 

geochemical tracer selection. 

Furthermore, understanding the relationship between sediment particle size and elemental 

concentration is imperative to improve the knowledge of sediment tracer predictability (Laceby 

et al. 2017). Fluvial processes typically have a sorting effect on sediment particles, which 

usually decrease in median grain size with travelled distance as a result of selective 

transportation and deposition (Walling et al. 2000). Given that soil elemental composition is 

strongly related to particle size, transport selectivity can affect geochemical fingerprinting 

properties (Koiter et al. 2013b). Moreover, different processes regulate sediment transport in 

varying size fractions. While coarser fractions have a greater interaction with channel bed, finer 

loads are controlled primarily by catchment sediment supply and are therefore less influenced 

by river transport capacity (Walling and Collins 2016). Hence, sediment source contributions 

can display contrasting patterns across different size fractions (Haddadchi et al. 2016). 

Although the influence of particle size on sediment source signals is widely recognized, 

relatively few studies have focused on tracing different particle size fractions (e.g. Motha et al. 

2002; Hatfield and Maher 2009; Haddadchi et al. 2016). 

The evaluation of sediment fingerprinting approaches is crucial to enable informed decision 

making based on modeled source apportionments. However, gathering independent data to test 

the outputs of fingerprinting models is problematic, as reliable alternative techniques to 

quantify source contributions (i.e. suspended sediment yield measurements from multiple sub-

catchments or source unit end-members) can be operationally complex and expensive (Collins 

et al. 2017). Therefore, artificial mixtures with known proportions of sediment source groups 
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have been increasingly used to, at the very least, test the accuracy of un-mixing model estimates 

(Haddadchi et al. 2014; Sherriff et al. 2015; Pulley et al. 2017; Cooper and Krueger 2017). With 

this approach, the robustness of the models is assessed by a comparison of calculated source 

contributions and known mixture proportions (Haddadchi et al. 2014). 

The goal of this research is to develop a tributary tracing technique that incorporates pedological 

knowledge of tropical soil formation/erosion processes into sediment source apportionment and 

tracer selection across multiple particle size fractions. The study is conducted in the Ingaí River 

basin (~1200 km²), Brazil, which has a complex geological and pedological heterogeneity. We 

compare a knowledge-based element tracer selection to a statistical methodology, which are 

both evaluated against a set of artificial mixtures. While others have incorporated knowledge-

based criteria to the selection of fingerprinting properties, our approach is the first to be 

comprehensively grounded on pedological reasoning, highlighting the role of soils as regulators 

of the processes leading to source signal development. Multiple particle size fractions are 

analyzed to understand the relationship between particle size and source signal, as well as their 

interaction with fluvial transport processes. The outcomes of this research will help develop 

appropriate strategies for sediment fingerprinting and management in tropical environments, 

while also contributing to our knowledge of processes affecting sediment geochemistry and 

transport across different particle sizes. 

 

2 Materials and methods 

2.1 Catchment description 

The Ingaí River basin (~ 1200 km²) is located within the upper Grande River basin, in 

southeastern Brazil (Fig. 1c). The Ingaí River is formed by sources in the Mantiqueira mountain 
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range and flows into the Capivari River, which is dammed near its confluence with the Grande 

River, at the Funil hydroelectric power plant reservoir. Altitude ranges from approximately 

1780 m in the headwaters to 900 m at the catchment outlet. The predominant climate type 

according to Köppen’s climatic classification is humid subtropical with dry winters and warm 

summers (Cwb) with an average annual precipitation of ~ 1500 mm (Hijmans et al. 2005; 

Alvares et al. 2013). 

The Ingaí River basin is set upon old surfaces, mostly made of metamorphosed Proterozoic and 

Archean rocks (Fig. 1a). The upper catchment is dominated by both paragneiss (38 %) and 

orthogneiss (32 %) (CODEMIG - CPRM 2014) (Table 1). The remaining area contains biotite-

schists of the same formation as the paragneiss, though with a less intense metamorphic facies. 

Although the main soil class is Paleudult (48 %), there are also areas of Hapludoxes (20 %) and 

Ustorthents (16 %) (FEAM 2010) (Fig. 1b). Landuse consists mainly of extensive, minimally 

managed, pastures (64 %), found on the slightly more fertile blocky structured Paleudults (Fig. 

2a). Erosion is typically only evident where cattle trails create preferential water pathways that 

tend to evolve to rills and small gullies. Also, cropland located on steep slopes in the absence 

of soil conservation practices often results in isolated erosion hotspots. 

In the mid-catchment, the relief is gentler and the river valley widens enough to generate some 

clastic Quaternary sediment deposits (CODEMIG - CPRM 2014). The surface is again very 

old, with a predominance of orthogneiss (65 %). Cropland is more widespread, despite the 

major occurrence of Dystrudepts (54 %), which are shallow and highly erodible soils. Gullies 

are a common feature, often associated with degraded pastures and unpaved roads, some of 

which have been used since colonial times in the early 18th century (Fig. 2b).  

In the lower area of the catchment, the Ingaí River crosses a Proterozoic ridge formation 

dominated by quartzite, mica-schist, and phyllite (CODEMIG - CPRM 2014). These same 
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rocks establish the northern boundary of the watershed. The steeper slopes contain Ustorthents 

and rock outcrops (46 %) (FEAM 2010). Soils are very shallow because of naturally high 

erosion rates, which remove the surface soil layer before pedogenetic processes take place at 

greater depths (Resende et al. 2014) (Fig. 2c). The environment restricts agriculture to 

eucalyptus stands and extensive cattle grazing. In addition, mine pits for commercial quartzite 

exploration are found in the region. In the last decade, some of these mines have been fined or 

had their activities suspended due to irregularities regarding deforestation and waste disposal 

(Borges 2011; G1 Sul de Minas 2016). The remaining area of the lower catchment is dominated 

by biotite-schist, metagraywacke, and orthogneiss (Table 1), upon which Hapludoxes (54 %) 

have developed, favored by the gentler landscape. These soils have the most intense agricultural 

use in the watershed: soybean followed by maize and wheat or oats are a common no-till crop 

rotation scheme. 

Accordingly, three geographical source units were established: i) the upper catchment (S1), 

comprised predominantly of Paleudults derived from gneiss; ii) the mid catchment (S2), where 

Dystrudepts are widespread and are also developed from a gneissic parent material; and iii) the 

lower catchment (S3), comprised of a mixture of Ustorthents, that occur in association to 

quartzite/phyllite/mica-schist ridge formations, and Hapludoxes, which are found in more 

gentle slopes formed above biotite and schist-metagraywacke bedrocks. These three 

geographical source end-members will be modeled as the potential contributors of target 

sediment sampled at the catchment outlet. 

 

2.2 Sampling design and sample collection 

A tributary sampling design (Laceby et al. 2015; Le Gall et al. 2016; Vale et al. 2016) was 

utilized within the catchment hydrological network to stratify potential sediment sources based 
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on contributing area soil classes and their underlying parent material (Fig. 1). In the Ingaí 

catchment, the heterogeneity of lythotypes and soil classes makes it difficult to sample sources 

directly. The basic foundation of our approach is that a set of tributaries can be considered a 

specific spatial sediment source. Tributary tracing designs do not rely on hillslope connectivity 

assumptions, given that source samples are retrieved from the riverine system. Moreover, 

potential particle size selectivity during sediment transport is restricted to in-stream processes 

(Laceby et al. 2017). 

Sediment sampling was conducted from July 2017 to February 2018. Composite samples were 

collected from lag deposits, which consisted of sediment drapes located on riverbanks or 

floodplains formed as water level receded after recent floods (Laceby and Olley 2015; Theuring 

et al. 2015). The uppermost sediment layer (1-2 cm) was scraped with a non-metallic trowel. 

Each sample was composed of approximately 15 scrapes. In total 69 source samples (n S1 = 

29, S2 = 21, S3 = 19) and 10 target sediment samples from the catchment outlet were collected. 

 

2.3 Laboratory analysis 

Samples were oven dried at 60 °C before being dry sieved into three particle size fractions: 2-

0.2 mm, 0.2-0.062 mm, and <0.062 mm. Sediment elemental composition was determined by 

X-ray fluorescence (XRF), using a portable XRF spectrometer equipped with a 50 kV/100 µA 

X-ray tube. XRF technology has been increasingly used for quantifying soil geochemistry, 

given that it provides a non-destructive method with rapid results and no chemical waste 

generation (Ribeiro et al. 2017; Silva et al. 2017). The analysis allows for the quantification of 

the following 45 elements: Ag, Al2O3, As, Au, Ba, Bi, CaO, Cd, Ce, Cl, Co, Cr, Cu, Fe, Hf, Hg, 

K2O, La, MgO, Mn, Mo, Nb, Ni, P2O5, Pb, Pd, Pt, Rb, Rh, S, Sb, Se, SiO2, Sn, Sr, Ta, Th, Ti, 

Tl, U, V, W, Y, Zn, Zr. Each sample was measured in triplicates, and the average element 
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concentration was used. Elements below detection limits on all tributary source samples were 

excluded from subsequent analyses (Electronic Supplementary Material Table 1). P2O5 was not 

considered as a possible tracer due to potential biogeochemical transformations during transport 

in aquatic environments (Koiter et al. 2013b; Cooper et al. 2015; Sherriff et al. 2015). 

Unfortunately, the portable XRF spectrometer broke down near the end of analyses. 

Accordingly, for the intermediate particle size fraction, one source sample from the mid 

catchment and two catchment outlet samples were not analyzed. 

 

2.4 Artificial mixtures 

To test the accuracy and precision of the un-mixing models, a set of 10 artificial mixtures with 

different known relative source contributions were produced for each sediment size fraction 

(Table 2). Sub-samples of equal mass were retrieved from each of the individual dried/sieved 

composite samples. The sub-samples from the same source units were then combined in a 

source pool, which was later used to create mixtures with known source mass proportions. 

Elemental composition of the artificial mixtures was used to solve the un-mixing models as if 

the artificial mixtures comprised the outlet target sediment. Similar approaches to model testing 

have been adopted by Cooper et al. (2014), Haddadchi et al. (2014), and Pulley et al. (2017). 

 

2.5 Element selection 

In this study, widely used statistical procedures to tracer selection were compared to a process-

based methodology, where prior knowledge of soil geochemistry is used to identify elements 

that are expected to provide source discrimination. For the statistical approach, a commonly 

used three-step method to element selection was employed. First, box-plots were used to 
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evaluate if elements on target samples plotted within the mixing polygon defined by element 

concentrations on individual source types. Elements on target sediments with a range of 

variation plotting outside the source ranges were excluded, as tracer properties outside mixing 

polygons violate numerical modeling assumptions and may lead to spurious results (Collins et 

al. 2013). Box-plot range of variation is defined as the 25th and 75th percentiles ± extreme values 

within 1.5 times the interquartile range (IQR). The use of these ranges helps to select elements 

which are well bounded by the distributions of the mixing polygon. If only minimum and 

maximum values are taken into account, element distributions from target sediments may plot 

outside all but potentially one of the source samples. This would bias the un-mixing model 

solutions in the Monte Carlo simulation, which samples parameter values from data 

distributions. Elements within the source range were grouped by source and then tested for 

normality with a Shapiro-Wilk test. When the null hypothesis that the data comes from a normal 

distribution was rejected (p < 0.05), the elements were analyzed with a Kruskal-Wallis H-test. 

Otherwise, elements were analyzed with an ANOVA. Elements that provided significant 

discrimination between sources (p < 0.05) were analyzed with a forward step-wise linear 

discriminant analysis (LDA) (niveau = 0.1) in order to select a minimum set of variables that 

maximizes source discrimination (Collins et al. 2010). All statistical analyses were performed 

with R software (R Core Team 2017). Packages MASS (Venables and Ripley 2012) and klaR 

(Weihs et al. 2005) were used for the multivariate analyses. 

The knowledge-based approach to element selection essentially relies on the interpretation of 

the theoretical source apportionment and sampling design. While the upper and mid catchment 

areas have a similar parent material, soil classes may provide an adequate stratification: 

Paleudults from the upper area are more weathered-leached than Dystrudepts from the mid 

catchment, which means that the first soils are deeper, have higher clay content and higher 

residual concentration of Al- and Fe-oxides than the latter (Kämpf and Curi 2012). The lower 



100 

 

catchment provides more of a challenge, given that the soil map presents an association of 

Ustorthents and Hapludoxes. However, a greater tributary density is associated to shallow 

headwaters (Fig. 1), which allows us to assume that sediments from the lower area will have a 

greater connection to the least weathered-leached soils in the catchment. Hence, it is expected 

that this sediment source will be characterized by much higher contents of SiO2, due to minimal 

dessilification. Mica-inherited K2O may also be found in greater quantities than it should be 

expected in the mid and upper areas. Ti and Zr are some of the most resistant elements in the 

soil (Marques et al. 2004; Koiter et al. 2013a) and would be expected to occur at reduced 

concentrations in the lower catchment sediments, reflecting the younger parent material and the 

underdeveloped soils. Accordingly, Al2O3, Fe, K2O, SiO2, Ti, and Zr were proposed as potential 

knowledge-based tracers. Elements from target samples plotting outside the source range of 

variation were excluded from modeling, similarly to the statistical approach, for each sediment 

particle size fraction. The selected knowledge-based tracers were also analyzed with a LDA to 

compare the reclassification accuracy of the element selection methods. 

 

2.6 Modeling 

Source contributions were estimated by minimizing the sum of squared residuals (SSR) of the 

mass balance un-mixing model: 

𝑆𝑆𝑅 =  ∑[(𝐶𝑖 − ∑ 𝑃𝑠𝑆𝑠𝑖)/𝐶𝑖

𝑚

𝑠=1

]2

𝑛

𝑖=1

 
(1) 

 

where n is the number of elements used for modeling, Ci is the concentration of element i in the 

target sediment, m is the number of sources, Ps is the optimized relative contribution of source 
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s, and Ssi is the concentration of element i in source s. Optimization constraints were set to 

ensure that source contributions Ps were non-negative and that their sum equaled 1. 

The un-mixing model was solved by a Monte Carlo simulation with 2500 iterations. In each 

iteration, target and source element concentrations were sampled from a multivariate normal 

distribution, which preserves correlations between variables (Cooper et al. 2014). Prior to 

modeling the multivariate distributions, element concentrations were log transformed to ensure 

a near normal distribution and to avoid possible negative concentration values. During the 

Monte Carlo simulation, element concentrations were back-transformed by an exponential 

function. R packages foreach (Calway et al. 2017) and Rsolnp (Ghalanos and Theussl 2015) 

were used to script the simulations and the optimization functions, respectively. Modeling 

results are presented as the median and the IQR of possible un-mixing model solutions based 

on the Monte Carlo simulations. The IQR is a more adequate measure of variability for highly 

skewed data than the standard deviation, as it is not influenced by extreme values (Sainani 

2012). Local optimization functions typically produce heavily skewed data, as some model 

realizations lead to best fit scenarios where one source provides 100 % of the sediments and 

others 0 % (Cooper et al. 2014). Accordingly, the IQR may provide a more informative 

representation of parameter distributions than broader confidence intervals. 

Model accuracy was evaluated against artificial mixtures according to their Mean Absolute 

Error (MAE): 

𝑀𝐴𝐸 =  ∑
|𝑋𝑠 − 𝑃𝑠|

𝑚

𝑚

𝑠=1

 
(2) 
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where: m is the number of sources, Xs is the known proportion of source s on the artificial 

mixture, and Ps is the median of modeled relative contribution of source s. Sediment 

geochemical data and R un-mixing model scripts are included as Electronic Supplementary 

Material. 

 

3 Results 

3.1 Element selection and source analysis 

Of all the 45 analyzed elements, 19 (42 %) were below detection limit on all source samples 

for the coarse (2 mm – 0.2 mm) and intermediate (0.2 mm – 0.062 mm) fractions, whereas 13 

(29 %) elements were not detected for the fine fraction (< 0.062 mm) (Electronic 

Supplementary Material Table 1). Of the detected elements, only 13 (52 %) plotted within the 

mixing polygons for the coarse fraction, mainly because of higher element concentrations in 

the outlet target sediments (all element selection results are displayed in Table 3). 

Concentrations of major (e.g. K2O and CaO) and trace elements (e.g. Y and Sr) were enriched 

in the outlet sediment when compared to source samples. For the intermediate and fine 

fractions, 22 (88 %) and 30 (97 %) elements plotted within the source mixing polygons, 

respectively. 

Of the elements plotting within the mixing polygon for the coarse and intermediate fractions, 

five (38%) and six (27 %) elements respectively, failed to provide significant discrimination 

between sources according to the Kruskal-Wallis H-test (or ANOVA for normally distributed 

elements) (Electronic Supplementary Material Tables 2-4). For the fine fraction, only four 

elements (13 %) failed to reject the null hypothesis of the employed statistical tests (Electronic 

Supplementary Material Table 5). 
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The forward step-wise LDA selected four elements for modeling the coarse fraction (Fe, Cl, 

SiO2, and V), which were able to correctly reclassify only 64 % of the samples according to a 

cross-validation (Fig. 3). For the intermediate fraction, nine elements (Al2O3, CaO, Fe, K2O, 

Mo, Ti, V, Y, and Zn) selected by the LDA correctly reclassified 84 % of the samples. For the 

fine fraction, eight selected elements (Al2O3, Ba, Ce, K2O, Nb, Pb, Y, and Zr) yielded 90 % 

reclassification accuracy. 

For the knowledge-based elements proposed for modeling (Al2O3, Fe, K2O, SiO2, Ti, and Zr); 

only Al2O3, Fe, SiO2, Ti and Zr plotted within the mixing polygon for the coarse fraction. No 

elements were outside the source range for the intermediate fraction, and therefore all proposed 

elements were used in the un-mixing model. For the fine fraction, a depletion of Fe contents on 

target samples led to the exclusion of this element from analysis. 

The LDA reclassification accuracy was on average 9 % lower for the knowledge-based element 

selection method in comparison to the statistical approach, which could be expected. However, 

a similar trend of increasing accuracy was observed with a decrease of particle size, as the 

percentage of correctly reclassified samples ranged from 58 % for the coarse fraction to 78 % 

and 80 % on the intermediate and fine fractions, respectively. 

Overall, the behavior of the knowledge-based proposed elements for all size fractions was in 

accordance with the anticipated scenario used to stratify sediment sources in the Ingaí 

catchment: sediments from catchment headwaters (S1) are derived from more weathered-

leached soils (mainly Paleudults), with a higher residual concentration of Fe, Al2O3, Ti, and Zr 

(Fig. 4). Samples from the lower catchment (S3) display decreased Fe, Al2O3, Ti, and Zr 

contents and a higher concentration of SiO2, which confirms that these sediments were 

generated from younger soils (mainly Ustorthents). Samples from the mid catchment (S2), 

where Dystrudepts are the main soil class, have intermediate concentrations of the discussed 



104 

 

elements in comparison to S1 and S3. Also expectedly, K2O contents were higher overall on S3 

samples, except for the coarse fraction. 

 

3.2 Artificial mixtures and model evaluation 

The comparison between modeled source contribution and actual mixture proportions 

demonstrate that modeling the coarse fraction yielded the poorest results, with a MAE error of 

23.8% on the statistical variable selection model (M1) and 17.8 % on the knowledge-based 

variable selection model (M2) (Table 4) (Fig. 4). On the intermediate fraction, model error 

decreased from 22.6 % on M1 to 10.9 % on M2. Results from the fine fraction had the lowest 

errors and a more similar model performance between M1 (MAE = 12.9 %) and M2 (MAE = 

11.8%). 

Considering all size fractions, models were more effective at estimating the source 

contributions of artificial mixtures 1-4 (MAE = 9.8%), in which source proportions varied from 

25 to 50 %. Results from artificial mixtures 5-10, in which source proportions ranged from 0 to 

75 %, had increased error (MAE = 21.2%). Overall, the models had a greater difficulty 

distinguishing contributions from S2 (MAE = 18.25%) than from S1 (MAE = 15.0 %) and S3 

(MAE = 16.9 %). Such behavior is particularly evident for the fine fraction, where the MAE of 

M2 decreased from 15.5 % on S2 to 7.2 % on S3. 

 

3.3 Model results for the Ingaí catchment  

Source proportions estimated by M1 and M2 for the coarse fraction are highly uncertain, as 

demonstrated by the prediction intervals on Fig. 6, and no inference can be made based on the 

data. Moreover, considering the median source proportions estimates, the models display 
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contrasting results: M1 indicates that target sediments are derived mainly from S2 (median = 

40 %; IQR = 0-87 %), whereas M2 signals a higher contribution from S1 (median = 39 %; IQR 

= 5-76 %) (Electronic Supplementary Material Table 6). 

Results from the Monte Carlo simulations again demonstrate a high degree of uncertainty for 

the intermediate fraction source apportionments, which are contrasting between models. For 

the intermediate fraction, M1 estimates that the contribution to outlet sediments are dominated 

by S2 (median = 57 %, IQR = 8-100 %), whereas M2 estimates reveal a greater contribution 

from S3 (median = 60 %, IQR = 0-94 %) and S1 (median = 16 %, IQR = 0-61%). 

For the fine fraction, the simulation results display much narrower source apportionment 

estimates. M1 indicates that contributions from S1 (median = 0 %, IQR = 0-3 %) and S2 

(median = 0 %, IQR = 0-18 %) are negligible, with target sediments being almost completely 

derived from S3 (median = 93 %, IQR = 71-100 %). M2 results are nearly identical, estimating 

that S3 (median = 96 %, IQR = 77-100 %) is again the dominant source, with insignificant 

contributions from S1 (median = 0 %, IQR = 0-2 %) and S2 (median = 0 %, IQR = 0-11 %). 

 

4 Discussion 

Source signal development in the Ingaí catchment is controlled primarily by pedogenetic 

processes, which display different degrees of expression across particle sizes. Such behavior 

was reflected throughout this research, starting with the elements indentified by XRF analysis. 

Fewer elements were detected for the coarse and intermediate fractions (Table 3), which could 

be expected, since trace elements are retained in greater quantities in finer particles (Antoniadis 

et al. 2017). Moreover, a greater proportion of detected elements for the coarse and intermediate 

fractions were outside the source range. We deliberately avoided using the term conservative 
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behavior to describe this process, as we do not have evidence that the elements failing to plot 

within source range were depleted or enriched during sediment transport due to biogeochemical 

mechanisms or to changes in physical properties, including grain size distributions. 

Nevertheless, the greater number of elements plotting outside source mixing polygons, 

particularly for coarse sediments, may indicate that there has been particle size selectivity 

occurring during mobilization, transportation and deposition processes or there could be a 

missing/unsampled source of coarse material near the catchment outlet (Smith and Blake 2014; 

Laceby et al. 2015). 

By comparing the composition of target and source samples, it can be observed that unlike the 

source sediments, in which Al2O3 increased with decreasing particle size, the highest Al2O3 

contents on the catchment outlet target sediments were associated with the intermediate and 

coarse size fractions (Fig. 7). Moreover, the coarse fraction had the highest Fe and the lowest 

SiO2 concentrations, which is also inconsistent with the tributary source sample patterns. Within 

soils derived from a same parent material, elements found in stable clay minerals (e.g. Al2O3 

and Fe) usually occur in greater residual concentrations on finer particles, as demonstrated by 

Silva et al. (2018). Contrarily, SiO2 decreases with particle size, due to dessilification and of 

the lower stability of quartz in the clay fraction (Fontes 2012). The higher concentration of 

Al2O3 and Fe for the coarse and intermediate fractions of the target sediments may therefore 

suggest that these fractions have received a greater contribution of sediments derived from a 

contrasting parent material compared to the sources influencing the fine fraction. Such parent 

material is likely to have been un- or under-sampled, which may explain the number of elements 

plotting outside the source range for the coarser sediments. 

Results from the analyses of variance and the LDA also demonstrate contrasting patterns 

regarding the geochemical composition of sediments across particle sizes. Fewer elements 
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provided statistical discrimination between sources for the coarse and intermediate sediments 

compared to the finer fraction, according to the employed tests (i.e. ANOVA or Kruskal-Wallis) 

(Table 3). These results demonstrate that the source stratification was more effective for the 

fine fraction, likely because the geochemical source signal in the Ingaí catchment is mainly 

associated to pedogenetic processes (e.g. dessilification, residual accumulation of Al and Fe in 

pedogenetic oxides). These processes are more clearly expressed on finer, more weathered-

leached particles, and particularly on clay minerals (Kämpf et al. 2012). Conversely, the coarser 

particles may be more representative of the parent material (Curi and Kämpf 2012), which is 

less contrasting among the sources in the catchment. These findings may also reflect on the 

poor reclassification accuracy of the LDA for the coarse fraction (64 % and 58 % for the 

statistical and knowledge-based approach, respectively) when compared to the intermediate (84 

% and 78 % for the statistical and knowledge-based approach, respectively) and fine fractions 

(90 % and 80 % for the statistical and knowledge-based approach, respectively). Interestingly, 

the forward step-wise LDA selected elements that were also proposed by the knowledge-based 

approach for all size fractions (SiO2 and Fe for the coarse, Al2O3, Fe, K2O, and Ti for the 

intermediate, and Al2O3, K2O and Zr for the fine). This demonstrates that these elements 

provide both statistical and pedological discrimination between sources. 

The model evaluation against artificial mixtures corroborates the lack of source discrimination 

for the coarse fraction, in which the MAE for both statistical (M1) (23.8 %) and knowledge-

based (M2) (17.8 %) models is higher than what is usually reported on similar studies (e.g. 

Haddadchi et al. 2014; Pulley et al. 2017; Cooper and Krueger 2017). For the intermediate 

fraction, although M2 yielded the lowest MAE (10.9 %) among the analyzed models and 

particle sizes, high errors were again associated to M1 (22.6%). In contrast, M1 (MAE = 12.9 

%) and M2 (11.8 %) displayed a similar performance for the fine sediments, and a greater 

confidence can be ascribed to model predictions for this fraction 
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The modeling results for the catchment outlet target sediments for the coarse fraction again 

demonstrate poor source discrimination, given the uncertainty of the estimates (Fig. 6). 

Moreover, the relative contributions from the upper and mid catchment represented by model 

predictions seem unlikely considering the results for the finer fraction, which predict with little 

uncertainty that target outlet sediments are derived almost entirely from the lower catchment. 

As coarser material is often transported as bed or saltating bed load, at slower rates than the 

finer wash load (Collins and Walling 2016), proximal sources are usually the major contributors 

of coarse sediment particles (Haddadchi et al. 2016). Therefore, estimated source contributions 

from the mid and upper catchment for the coarse fraction are more likely to have been derived 

from other downstream sources, probably in close proximity to the outlet sediment sampling 

location, with a similar soil parent material as the mid and upper regions of the watershed. 

In a similar way, modeling the intermediate fraction indicated a considerable, although also 

very uncertain, contribution from the mid and upper catchment for both models (Fig. 6). Again, 

such contributions seem unlikely to represent sediment dynamics in the catchment, and a 

missing or under-sampled source located proximately to catchment outlet might be biasing 

model predictions. 

A possible provenance of sediments identified as derived from the upper and mid catchment by 

the un-mixing models may be related to a strip of orthogneiss located near the outlet of the Ingaí 

River (Fig. 1). This lithotype comprises only 3 % of the lower catchment and a single composite 

sample was retrieved from a tributary draining the area. The concentrations of Al2O3 (13.9 %), 

Fe (3.6 %), and SiO2 (37.0 %) for the coarse sediments from this particular sample were 

different to the average concentrations of these elements in the other lower catchment samples 

(Al2O3 = 6.1 %, Fe = 2.2 %, SiO2 = 51.6 %). The sample concentrations are however similar to 

the average contents of Al2O3 (13.8 %), Fe (4.3 %) and SiO2 (34.0 %) for the coarse fraction of 
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the target outlet sediments. Nevertheless, this interpretation of the modeling results remains 

speculative, and the most important inference from the data is that the spatial scale of the source 

stratification was not appropriate for fingerprinting the coarse and intermediate size fractions. 

Contrarily to the coarser fractions, the source contributions estimated for the fine sediments are 

consistent among the employed models (Fig 6). The similarity between model results increases 

the confidence in the predictions, which are also corroborated by the small errors of the 

estimated source proportions of the artificial mixtures. Moreover, the results fit with our 

understanding of erosion and sediment transport dynamics in the catchment. 

According to model predictions, the fine sediments collected at the watershed outlet are almost 

entirely derived from the lower catchment. These sediments are primarily associated with the 

shallow and underdeveloped Ustorthents from the quartzitic/mica-schistic ridges within the 

lower catchment, as demonstrated by the higher SiO2 and K2O contents and the lower Al2O3, 

Fe, Ti, and Zr concentrations. This Entisols region is erosion prone: the solum is shallow and 

the underlying C horizon is situated right below the A horizon, decreasing water infiltration and 

increasing runoff propensity (Araújo 2006). These soils are also located on steep slopes and 

have elevated contents of silt and fine sand in relation to clay (Curi et al. 1990). Hence, a large 

sediment supply from these soils in the lower catchment is plausible. Furthermore, the lower 

catchment is much closer to the Ingaí River outlet than the mid and upper areas. Fine sediments 

originated from these upstream sources have a greater probability of being stored on floodplains 

and lower-gradient sections. 

Results reported by Le Gall et al. (2017) also show that the contribution of fine sediments from 

farther upstream sources on large catchments is minor, at least considering the sediments that 

effectively reach the catchment outlet. Such behavior must be analyzed with caution, as 

fingerprinting the origin of outlet sediments does not necessarily represent overland and fluvial 
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transport processes elsewhere in the catchment (Koiter et al. 2013a). These considerations 

might be particularly important in large watersheds, where sediment yield components are 

likely to be subjected to a variety of travel times and transport energies, which will also vary 

with particle size (Parsons 2011), as illustrated by our results. 

The Ingaí River drains approximately 60 % of the Capivari River basin, which is estimated to 

supply over 480,000 t yr-1 of sediment to the Funil hydroelectric power plant reservoir (Batista 

et al. 2017). Accordingly, fine sediment from the Ingaí River may contribute significantly to 

reservoir sedimentation. Soil conservation practices targeting the lower Ingaí Entisols may 

therefore help minimize fine sediment delivery to the Funil reservoir. According to RUSLE-

based estimates (Batista et al. 2017), average erosion rates were the highest in the mid 

catchment area. Therefore, future research should monitor erosion dynamics across multiple 

scales and different particle size fractions in the Ingaí catchment. Ultimately it is important to 

understand how different Critical Zone processes regulate sediment connectivity throughout the 

catchment in order to help target the implementation of best management practices that limit 

the deleterious off-site effects of soil erosion. 

Overall, our results demonstrate that source stratification and geochemical element selection 

for sediment fingerprinting can be carried out based on the knowledge of pedogenetic processes 

that develop source signals in tropical soils. However, such an approach might be less effective 

for coarse sediment particles, particularly if parent material has few geochemical contrasts. In 

this sense, a soil-based source stratification might be more powerful for fine sediment 

fingerprinting than a geological approach, given that pedogenetic processes and soil forming 

factors other than parent material are also able to generate contrasting source signals, 

particularly in tropical soils. Nevertheless, for modeling coarse sediment provenance a 
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geological source stratification may be more appropriate, as pronounced lithological 

dissimilarity might dominate the source signal generation for coarse material. 

The comparison between the element selection methods demonstrated that the commonly used 

three-step statistical approach does not necessarily yield more accurate model predictions, 

which is corroborated by the results of Smith et al. (2018). However, a valuable outcome of 

using both methods is that different model predictions can be compared. If similar results are 

achieved with a different set of variables, a greater confidence can be ascribed to model 

estimates (Laceby et al. 2015).  

A significant advantage of a knowledge-based element selection is that subsequent modeling 

results are more easily relatable to known source characteristics. In the knowledge-based 

approach, processes occurring in the Critical Zone that drive source signal development, erosion 

and sediment transport, can be conjointly analyzed. This contributes to a more comprehensive 

understanding of these processes, and generates multiples lines of evidence to corroborate or 

falsify model assumptions and predictions. The use of the knowledge-based approach 

encourages researchers to understand the fundamental Critical Zone processes driving erosion 

and sediment geochemistry across multiple scales. This increased understanding of 

fundamental processes is instrumental to improve catchment sediment management strategies, 

particularly in erosion-prone tropical environments.  

 

5 Conclusions 

In this research, the pedological knowledge of tropical soils was incorporated into source 

stratification and geochemical element selection in a fingerprinting study across three particle 

size fractions. Our approach provided source discrimination for the fine and intermediate size 
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fractions, as demonstrated by the comparison of the un-mixing model estimates and artificial 

mixture proportions. However, the source stratification was unable to provide sufficient 

geochemical discrimination for the coarse sediments. This probably stems from the fact that 

pedogenetic processes are the main drivers of geochemical contrast and source discrimination 

between fine sediment sources, whereas geological background may be more likely to drive 

these contrasts for the coarser material. Model evaluation against the artificial mixtures also 

indicated that the commonly used three-step statistical approach to variable selection may not 

always provide the most accurate estimates. 

The spatial scale of the source stratification was however unable to represent the coarse and 

intermediate size sediment dynamics in the catchment, which seems to be controlled by very 

proximal sources – at least in the temporal scale of the analysis. Hence, different field sampling 

approaches might be necessary to model specific size fractions in the Ingaí catchment, and 

potentially in other catchments. 

For the fine sediments, both knowledge-based and the statistical methods to geochemical 

element selection yielded very similar results: Ustorthents from the lower catchment ridges are 

by far the main sediment source reaching the Ingaí River outlet. The consistent model results 

increase confidence in the predictions. Moreover, the knowledge-based method facilitates the 

interpretation of the results, as the selected fingerprinting properties can be explicitly related to 

upstream processes regarding source signals and behavioral characteristics of the soils 

comprising each end-member source. This enhanced interpretation of fingerprint models 

provides a framework for an integrated assessment of Critical Zone dynamics, linking soil and 

parent material geochemistry to soil erosion and sediment transport processes in river 

catchments. 
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The source stratification procedure and the knowledge-based element selection for sediment 

fingerprinting described in this study have potential to improve sediment management 

strategies across Brazil and around the world. This approach would be particularly useful in 

large catchments where soil parent materials have similar geochemistry, and source signal 

development of fine sediments is controlled by pedogenetic processes. Ultimately, 

understanding the fundamental pedogenetic processes driving the formation of source 

signatures will likely aid in the management of the dominant Critical Zone processes driving 

erosion in Brazil and in other tropical regions where intense weathering-leaching leads to 

unique expressions of soil forming processes.  
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TABLES 

Table 1. Percentage area distribution of soil classes, lithological units, and land use in the Ingaí 

River basin and source groups. 

 

 Ingaí River basin S1 S2 S3 

Soil classes  area % 

Usorthents and rock outcropts  27 16 18 46 

Dystrudepts  24 16 54 - 

Paleudults  16 48 3 - 

Hapludoxes  33 20 25 54 

Lithology  area % 

Paragneiss  20 38 - - 

Biotite-schist  14 22 20 22 

Quartzite, phyllite, mica-schist  15 - 1 44 

Schist-metagraywacke  14 8 3 31 

Orthogneiss  34 32 65 3 

Clastic sediments  3 - 11 - 

Landuse  area % 

Pasture  49 64 53 31 

Forest  27 26 28 27 

Rupestrian fields*  11 - 1 31 

Cropland  9 7 12 7 

Eucalypt  4 3 5 3 

Other  - - - 1 

S1: upper catchment; S2: mid catchment; S3: lower catchment. *Grassland herbaceous/ sub-

shrubby formation usually associated to quartzitic ridges. 
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Table 2. Artificial mixtures with known source contributions used for model evaluation. 

Artificial Mixtures 

Sources 

S1 S2 S3 

Relative contributions (%) 

1 33 33 33 

2 50 25 25 

3 25 50 25 

4 25 25 50 

5 75 25 0 

6 75 0 25 

7 25 75 0 

8 0 75 25 

9 0 25 75 

10 25 0 75 
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Table 3. Selected elements for modeling after each step of the statistical procedure for each size 

fraction. 

Size 

fraction 

(mm) 

Selection 

step 

Selected elements % correctly 

classified 

samples 

2 - 0.2  1 Al2O3, Bi, Cl, Fe, Mo, Nb, Rh, S, SiO2, Ta, Ti, V, Zr  

2 Al2O3, Cl, Fe, Nb, SiO2, Ti, V, Zr  

3 Fe, SiO2, Cl, V 

 

64 

0.2 - 0.062  1 Al2O3, Bi, CaO, Cl, Cr, Cu, Fe, K2O, Mn, Mo, Nb, Ni, 

Pb, Rb, S, SiO2, Ta, Ti, V, Y, Zn, Zr 

 

2 Al2O3, Bi, Cl, Cu, Fe, K2O, Mo, Nb, Ni, SiO2, Ti, V, Y, 

Zn, Zr 

 

3 Al2O3, CaO, Fe, K2O, Mo, Ti, V, Y, Zn 84 

< 0.062 1 Ag, Al2O3, As, Ba, Bi, CaO, Ce, Cl, Cr, Cu, Hf, K2O, 

Mn, Mo, Nb, Ni, Pb, Rb, Rh, S, SiO2, Sr, Ta, Th, Ti, Tl, 

V, Y, Zn, Zr 

 

2 Ag, Al2O3, As, Ba, Bi, CaO, Ce, Cl, Cu, Hf, K2O, Mo, 

Nb, Ni, Pb, Rb, Rh, SiO2, Sr, Ta, Th, Ti, V, Y, Zn, Zr 

 

3 Al2O3, Ba, Ce, K2O, Nb, Pb, Y, Zr 90 

Step 1: Range of variation; Step 2: Kruskal-Wallis H-test or ANOVA; Step 3: step-wise LDA. 
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Table 4. Mean absolute errors (MAE) of the statistical variable selection model (M1) and the 

knowledge-based variable selection model (M2) for the three analyzed sediment size fractions. 

Artificial  

Mixture 

MAE (%) 

M1 M2 

Size Fraction (mm) 

2 – 0.2 0.2 – 0.062 < 0.062 2 – 0.2 0.2 – 0.062 < 0.062 

1 29.3 17.0 4.0 9.3 1.7 3.0 

2 5.7 24.3 14.3 6.7 5.0 11.7 

3 16.3 8.0 10.0 7.7 6.3 1.3 

4 6.0 15.7 5.0 11.0 9.0 6.0 

5 39.3 20.3 14.7 13.7 19.7 22.3 

6 15.7 31.3 20.0 28.7 14.7 22.0 

7 32.0 20.0 15.3 23.0 16.0 12.7 

8 15.3 22.7 20.3 25.3 9.0 17.0 

9 30.7 36.3 8.0 29.7 10.7 7.3 

10 47.3 30.3 17.3 22.7 17.3 14.7 

Mean 23.8 22.6 12.9 17.8 10.9 11.8 
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FIGURES AND CAPTIONS 

 

Figure 1 Geological (a) and pedological (b) map of the Ingaí River basin, Brazil (c). S1: upper 

catchment; S2: mid catchment; S3: lower catchment. Adapted from CODEMIG – CPRM 

(2014) and FEAM (2010). 
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Figure 2 a) Characteristic landscape of the upper catchment; b) gully erosion formed in the 

intermediate region of the Ingaí basin; c) shallow soils derived from the quartzitic/mica-schistic 

ridges of the lower catchment. 
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Figure 3 LDA bi-plots of source classification using the selected elements from the statistical 

approach. Ellipses represent 90 % confidence intervals. 

 

Figure 4 Scatter plots of the knowledge based proposed elements for each sediment size 

fraction. S1: upper catchment; S2: mid catchment; S3: lower catchment. 
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Figure 5 Scatter plots of known and modeled source contributions of the artificial mixtures for 

each sediment size fraction. S1: upper catchment; S2: mid catchment; S3: lower catchment; 

M1: statistical element selection model; M2: knowledge-based element selection model. 
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Figure 6 Box plots of estimated source contributions based on the 2500 iterations of the Monte 

Carlo simulations. a) coarse fraction (2 – 0.2 mm); b) intermediate fraction (0.2-0.062 mm); c) 

fine fraction (<0.062 mm). S1: upper catchment; S2: mid catchment; S3: lower catchment; M1: 

statistical element selection model; M2: knowledge-based element selection model. 
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Figure 7 Al2O3, Fe, and SiO2 contents on source (S1: upper catchment; S2: mid catchment; S3: 

lower catchment) and target (T) sediments. 
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Abstract 

Evaluating the usefulness of spatially-distributed soil erosion models is inherently difficult. 

Complications stem from the uncertainty in models and measurements of system responses, as 

well from the scarcity of commensurable spatial data for model testing. Here we present a novel 

approach for evaluating distributed soil erosion and sediment delivery models, which 

incorporates sediment source fingerprinting into model testing within a stochastic framework. 

We applied the Generalized Likelihood Uncertainty Estimation (GLUE) methodology to the 

Sediment Delivery Distributed (SEDD) model for a large catchment (~6600 km²) in Southeast 

Brazil. Sediment concentration measurements were used to estimate long-term sediment loads 

with a sediment rating curve. Regression uncertainty was propagated with posterior simulations 

of model coefficients. A Monte Carlo simulation was used to generate SEDD model 

realizations, which were compared against limits of acceptability of model errors derived from 
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the uncertainty in the curve-estimated sediment loads. Given that SEDD calculations of gross 

erosion rates are RUSLE-based, we also performed a forward error analysis of RUSLE outputs. 

The models usefulness for identifying the sediment sources in the catchment was assessed by 

evaluating behavioral model realizations against sediment fingerprinting source 

apportionments. Accordingly, we developed a hierarchical tributary sampling design, in which 

sink sediments were sampled from multiple nodes in the main river channel. The relative 

contributions of the main sub-catchments in the basin were subsequently estimated by solving 

the fingerprinting un-mixing model with a Monte Carlo simulation. Results indicate that 

gauging station measurements of sediment loads were fairly uncertain (average annual specific 

sediment yields = 0.47 – 11.95 ton ha-1 yr-1). This led to 23.4 % of SEDD model realizations 

being considered behavioral system representations. Spatially-distributed estimates of sediment 

delivery to water courses were also highly uncertain, as grid-based absolute errors of SEDD 

results were hundredfold the median of the predictions. Such uncertainty was influenced by the 

large errors (median = 588 %) associated to RUSLE simulations. A comparison of SEDD 

outputs and fingerprinting source apportionments revealed an overall agreement between 

modeled contributions from individual sub-catchments to sediment loads, although some large 

discrepancies were found in a specific tributary. From a falsificationist perspective the SEDD 

model could not be rejected, as many model realizations were behavioral. The partial agreement 

between fingerprinting and SEDD results provide some conditional corroboration of the models 

capability to identify the sources of sediments in the catchment, at least with some spatial 

aggregation. However, the uncertainty in the grid-based outputs might dispute the models 

usefulness for actually quantifying sediment dynamics. The same can be said about RUSLE 

outputs, which highlights how modeled erosion rates under similar conditions should be 

interpreted with extreme caution. Ultimately, we have shown how multiple sources of data can 

– and should be – incorporated into the evaluation of spatially-distributed soil erosion models. 
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Moreover, we have demonstrated that testing such models requires being explicit about the 

uncertainty in both models and observational data. Although our results are case-specific, 

similar levels of error can be expected in erosion models elsewhere. Failing to represent such 

errors is at best naïve. 
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1 INTRODUCTION 

Spatially-distributed soil erosion and sediment delivery models have received a great attention 

from the erosion modelling community, arguably due to their potential usefulness for 

identifying erosion-prone areas and the main sediment sources within large catchments. 

However, evaluating the usefulness of such models is inherently challenging: measurements of 

model parameters and system responses are necessarily uncertain, the spatial and temporal 

resolution of models and observational data are frequently divergent, and the definition of what 

is a useful model is often subjective (Oreskes and Belitz, 2001). Moreover, our ability to 

measure erosion rates across landscapes is limited and methods for doing so are known be to at 

some level flawed (Parsons, 2019). Since model evaluation is an essential step to recognize 

model failure and to consequently gain knowledge about the modeled phenomena; how should 

we proceed in face of these aforementioned challenges? 

Currently, the most common approach for testing distributed erosion models at the catchment 

scale is based on a comparison between observed and modeled outlet sediment loads. The 

estimation of observed loads usually rely on I) suspended solid measurements and/or sediment 

rating curves (Didoné et al., 2015; Duraes et al., 2016; Jain and Ramsankaran, 2018; Krasa et 

al., 2019; Vigiak et al., 2015); II) temporally-spaced bathymetric surveys or excavations of 

ponds and reservoirs (de Vente et al., 2008; Eekhout et al., 2018; Tanyaş et al., 2015); or III) 

radiometric dating of lake sediment cores (Smith et al., 2018b). Although a comparison against 

sediment loads can give an indication of a models capability to simulate sediment transport 

rates at the outlet of a catchment, it provides no information on the adequacy with which models 

simulate erosion patterns or identify sediment sources. Moreover, models have been known to 

reproduce observed outlet sediment loads for the wrong reasons, through misrepresenting 

internal catchment processes (see Pontes, 2018 for an example).  
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Therefore, the outlet-based approach for testing distributed erosion models has received 

criticism (Favis-Mortlock et al., 2001; Govers, 2011; Jetten et al., 2003; Parsons et al., 2009), 

and modelers have pursued other sources of data to evaluate internal process representations. 

For instance, field monitoring of erosion features combined with volumetric measurements of 

rills, gullies, and sediment deposition drapes can provide spatially referenced information of 

internal erosion dynamics that are commensurate with model simulations (Evans and Brazier, 

2005; Takken et al., 1999; Van Oost et al., 2005). Alternatively, tracing techniques have been 

used to estimate medium to long-term soil redistribution rates, which are also comparable to 

distributed erosion model outputs (Lacoste et al., 2014; Porto and Walling, 2015; Walling et 

al., 2003; Warren et al., 2005). More recently, Fischer et al. (2018) demonstrated how aerial 

images taken after prominent erosion events could be used to visually classify the severity of 

erosion features, and how this classification was appropriate to assess the capability of a 

spatially distributed model to relatively rank erosion-prone areas. 

While the previously described sources of data for model testing are useful for evaluating 

simulations of on-site erosion, they offer little information about sediment transport to water 

courses and subsequent off-site erosion impacts. Therefore, they cannot be used to test the 

sediment delivery or routing components of distributed erosion models. Models such as 

WaTEM/SEDEM (Van Oost et al., 2000; Van Rompaey et al., 2001; Verstraeten et al., 2010), 

Morgan-Morgan-Finey (MMF) (Morgan, 2001; Morgan et al., 1984), and the Sediment 

Delivery Distributed model (SEDD) (Ferro and Minacapilli, 1995; Ferro and Porto, 2000) 

represent hillslope connectivity to the stream network either by routing sediment transport 

capacity along the flowpath or by estimating a topography-based sediment delivery ratio. These 

models are therefore not only able to simulate how much sediment is delivered to water courses, 

but also to identify where it comes from. To evaluate the quality of such simulations, 

quantitative data of sediment provenance is necessary. 
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A technique that provides quantitative apportionments of sediment provenance is sediment 

source fingerprinting. In this approach, physical and biogeochemical attributes of sink 

sediments are used to trace their origin from potential upstream sources (Klages and Hsieh, 

1975; Yu and Oldfield, 1989; Walling and Woodward, 1995). Relative source contributions are 

then calculated by solving end-member un-mixing models based on source and sink sediment 

tracer concentrations (Collins et al., 1997; Cooper et al., 2014; Laceby and Olley, 2015). Such 

estimates are conceivably comparable to the outputs of distributed soil erosion models with a 

sediment routing/delivery component. However, a meaningful comparison requires 

fingerprinting source stratifications to be reasonably analogous to model outputs. 

For sediment fingerprinting, potential upstream sources have been stratified in various manners, 

depending on the purpose, characteristics, and scale of the investigation. Common approaches 

include geological (Laceby et al., 2015; Olley and Caitcheon, 2000), land use (Pulley et al., 

2016; Tiecher et al., 2016), and tributary-based stratifications (Habibi et al., 2019; Nosrati et 

al., 2018; Theuring et al., 2015). But what kind of source apportionments provide meaningful 

comparisons against distributed soil erosion models? 

An interesting example is presented by Wilkinson et al. (2013), in which sediment 

fingerprinting was used to model the contributions of different erosion processes (i.e. surface 

and subsurface) to sediment loads in the Burdekin River basin, Australia (130,000 km²). The 

resulting source apportionments were compared to SedNet model outputs (Wilkinson et al., 

2009). Since SedNet calculates sediment budgets by differentiating inputs from different 

erosion processes (i.e. gullies, sheetwash), results provided a useful analogy. Likewise, Borrelli 

et al. (2018) were able to compare land use source apportionments from Alewell et al. (2016) 

to WaTEM/SEDEM model outputs in a 41 km² catchment on the Swiss Plateau. 
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However, a difficulty when testing erosion models in particular and environmental models in 

general arises from the epistemic uncertainties in model structures, parameter estimation, and 

the forcing/testing data (Beven, 2019). That is, uncertainty is a result of a lack of knowledge 

about I) the modeled phenomena: models are inherently flawed approximations of reality; II) 

model parameters: we cannot measure model parameters in every point in space and even if we 

could, parameters are often empirical abstract aggregations that require calibration; and III) the 

observational data: erosion is a highly variable phenomenon and our methods for measuring it 

are somewhat inadequate. Testing models as hypotheses therefore requires representing the 

uncertainties in both models and the things we call observational data or systems responses 

(Beven, 2018). It also requires a clear definition of model purpose and of the limits of 

acceptability of model error (Beven, 2009, 2006). These concepts provide the foundation of the 

Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992) 

methodology, in which Monte Carlo simulations are used to create a large number of possible 

model realizations by sampling uncertain model parameters. If the response surface does not 

produce acceptable realizations of the observational data, then the model itself can be rejected 

as not useful for prediction – at least under the testing conditions (Beven, 2009). 

Although sediment fingerprinting models are now consistently applied in stochastic structures, 

usually relying on Monte Carlo simulations (Evrard et al., 2013; Pulley et al., 2016; Smith and 

Blake, 2014) or Bayesian inference (Blake et al., 2018; Cooper and Krueger, 2017), soil erosion 

models are more frequently used in a deterministic fashion. Moreover, outlet sediment loads, 

which are the common forcing/testing data with which models are evaluated, are also 

represented deterministically. Therefore, an uncertainty-based framework for incorporating 

sediment fingerprinting into soil erosion model testing is lacking. 
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In this study we present a novel approach to evaluate spatially distributed soil erosion/sediment 

delivery models that represents the uncertainties in both models and observational data. Since 

we understand that the purpose of spatially distributed sediment transport models is to not only 

provide acceptable simulations of outlet transport rates, but also to represent sediment dynamics 

within a catchment, we use sediment loads and sediment fingerprinting source apportionments 

as model evaluation data. By use of the GLUE methodology, we apply the SEDD model to a 

~6600 km² river basin in southeast Brazil. Limits of acceptability of model error are defined 

according to the uncertainty in the outlet sediment load data. Behavioral model simulations are 

then evaluated against sediment fingerprinting source apportionments, which have been 

stratified based on a hierarchical tributary design that facilitates model comparisons along 

different stages of sediment transport. Our approach is implemented on free GIS software and 

programming languages, being fully reproducible and/or adaptable elsewhere. The outcomes 

of this research therefore provide a much needed open source framework for incorporating 

uncertainty analysis into distributed soil erosion models applications. Moreover, it 

demonstrates how sediment fingerprinting, and potentially other sources of data, can be 

assimilated into model testing within a stochastic structure. 

2 METHODS 

2.1 Catchment description 

The Mortes River drains an area of approximately 6600 km² in the south of the State of Minas 

Gerais, Brazil (Figure 1). The river’s headwaters are in Mantiqueira Mountain Range and it 

flows until it’s confluence with the Grande River, at the Funil hydroelectric power plant 

reservoir. Elevation within the basin ranges from 1414 m to 807 m. According to Köppen’s 

classification, the climate in the area is predominantly humid subtropical with dry winters and 
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warm summers (Cwb) (Alvares et al., 2013). Average annual rainfall is approximately 1500 

mm (Fick, 2017), which is almost entirely concentrated in the spring and summer months. 
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Figure 1. Location of the Mortes River basin and the land use map of the catchment. Sub-catchments and sampling locations for sediment 

fingerprinting are also displayed. Legend: MRB: Mortes River basin; CRD: Carandái River sub-catchment; ELV: Elvas River sub-catchment, 

MPQ: Mortes Pequeno River sub-catchment; MRT: Mortes River sub-catchment; PIR: Pirapetinga River sub-catchment; PXE: Peixe River sub-

catchment; STA: Santo Antônio River sub-catchment; T1: mid catchment area; T2: lower catchment area; TAB: Tabões River sub-catchment. 
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Hapludoxes (48 %) and Dystrudepts (35 %) are the main soil classes in the basin (Table 1). The 

first are deep, highly weathered oxidic soils, while the latter are less developed, shallow, and 

erosion-prone. Most of the catchment is occupied by pastures (66 %), often degraded by over-

grazing and/or a lack of management. Remaining forest strips (22 %) are mostly found on ridges 

and buffer strips along the stream network. Croplands, which are mostly composed of maize 

fields for silage production, occupy a small portion of the catchment area (5 %). Eucalypt forests 

(5 %) are commonly planted for charcoal manufacturing. Most of the agricultural areas, notably 

in the Carandaí, Mortes Pequeno, and Pirapetinga sub-catchments, are associated to the 

occurrence of Hapludoxes (Figure 1, Table 1). Dystrudepts support extensive pastures for 

raising dairy cattle and/or eucalypt plantations. 

The Mortes River basin was chosen for this study due to the availability of continuous sediment 

concentration and discharge data from the Ibituruna gauging station (Figure 1). Although water 

discharge records are frequently made available by the Brazilian Water Agency, sediment 

concentration data are difficult to obtain. Moreover, field observations and bathymetric surveys 

have shown that the Mortes River delta is the main sedimentation zone in the Funil reservoir. 

Although the reservoir was filled in 2003, the high sedimentation rates in Mortes River already 

impede navigation near its delta. 
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Table 1. Physiographic attributes of the Mortes River basin and its sub-catchments. 

 MRB CRD ELV MPQ MRT PIR PXE STA T1 T2 TAB 

Soil class Area (%) 

Dystrudepts 35.2 24.3 30.2 37.6 49.5 0.0 36.7 38.6 94.8 6.5 0.0 

Acrudoxes 0.7 0.0 0.0 0.3 0.0 1.0 0.0 0.0 0.0 3.3 10.0 

Hapludoxes 48.2 74.0 61.0 55.8 18.9 89.0 47.4 60.5 1.0 70.9 60.0 

Rhodudults 4.6 0.0 0.0 0.0 0.0 10.0 15.1 0.0 0.5 18.3 30.0 

Paleudults 10.2 0.0 8.8 5.7 30.9 0.0 0.0 0.0 0.0 0.0 0.0 

Ustorthents 0.5 1.7 0.0 0.0 0.7 0.0 0.7 0.8 0.0 0.0 0.0 

Rocky outcrops 0.6 0.0 0.0 0.5 0.0 0.0 0.0 0.0 3.8 1.0 0.0 

Land use Area (%) 

Bare soil 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.6 0.4 0.0 

Cropland 4.6 11.6 3.9 11.1 2.7 5.0 1.4 3.6 0.7 4.8 1.3 

Eucalypt 5.2 5.8 5.9 8.5 5.8 6.2 3.0 5.1 2.3 2.5 2.3 

Forest 21.6 18.0 18.6 14.2 25.1 25.5 22.1 20.4 22.8 27.5 24.4 

Pasture 66.2 60.0 71.2 65.3 64.3 61.9 73.1 68.5 70.5 62.6 71.3 

Rupestrian fields* 1.0 2.7 0.0 0.5 0.2 0.6 0.0 2.0 1.6 1.1 0.5 

Urban area 1.1 1.8 0.1 0.3 1.8 0.7 0.3 0.4 0.5 0.1 0.0 

Water 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 1.0 0.8 0.1 

Slope (θ) 

Mean 9.1 8.3 8.9 7.8 9.9 8.4 9.1 9.9 9.7 8.3 9.7 

Std. Dev. 5.2 4.8 5.0 4.4 5.7 4.5 5.0 5.3 5.5 4.9 5.4 

Elevation (m) 

Min. 807 890 892 869 892 826 865 890 865 807 864 

Max. 1414 1407 1412 1191 1414 1209 1339 1312 1246 1239 1205 

Mean 1035 1073 1061 996 1091 971 1035 1035 956 931 988 

 (km²) 

Area 6608 676 875 566 1817 424 510 509 281 526 259 
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Legend: MRB: Mortes River basin; CRD: Carandái River sub-catchment; ELV: Elvas River sub-catchment, MPQ: Mortes Pequeno River sub-

catchment; MRT: Mortes River sub-catchment; PIR: Pirapetinga River sub-catchment; PXE: Peixe River sub-catchment; STA: Santo Antônio 

River sub-catchment; T1: mid catchment area; T2: lower catchment area; TAB: Tabões River sub-catchment.  

* Grassland herbaceous/sub-shrubby formation that is commonly found on quartzitic ridges and other rocky outcrops. 
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2.2 Sediment load data 

Suspended sediment concentration (mg L-1) and water discharge (m3 s-1) were monitored in the 

Ibituruna gauging station (Figure 1) from March 2008 to December 2012 (Batista et al., 2017). 

Measurements were taken on an approximately monthly basis, resulting in 44 observations. In 

order to estimate long-term sediment loads, we fitted a sediment rating curve relating suspended 

solid concentration to water discharge by ordinary least squares. Both variables were log-

transformed, as the relationship between sediment concentration and discharge in the log-scale 

is approximately linear (Vigiak and Bende-michl, 2013). The goodness-of-fit of the linear 

model was visually assessed with residual and Quantile-Quantile plots. These and all other 

statistical analyses here presented were performed with the R programming language (R Core 

Team, 2019). 

In order to propagate the error of the fitted model, 104 posterior simulations of the model 

coefficients were generated by an informal Bayesian inference function of the R package arm 

(Gelman and Hill, 2007). This function uses the model residual standard errors to create 

multivariate normal distributions of model coefficients, thus preserving their correlation when 

estimating posterior simulations. Next, daily sediment concentrations values were calculated 

based on continuous discharge records from the Brazilian Water Agency on the Ibituruna 

gauging station (1992-2013) and the simulations of model coefficients. Concentrations were 

back-transformed and used to estimate daily sediment loads (ton day-1), which were 

subsequently aggregated into monthly, annual, and average annual transport rates. In summary, 

the 104 simulations of daily sediment concentrations were used to propagate the rating curve 

uncertainty when calculating long-term sediment loads. As pointed out by Vigiak and Bende-

michl (2013), this approach only quantifies the regression uncertainty, and the actual errors 

associated to sediment load calculations might be underestimated. More detailed descriptions 
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of Bayesian and bootstrapping methods for propagating the uncertainty of sediment rating 

curves can be found in Rustomji and Wilkinson (2008) and in Vigiak and Bende-michl (2013). 

2.3 Sediment fingerprinting data 

2.3.1 Sampling design and sample collection 

In order to facilitate a comparison between SEDD model outputs and fingerprinting source 

apportionments, we established a tributary sampling design, in which sub-catchments of the 

Mortes River basin were treated as end-member sediment sources. In addition, we adopted a 

hierarchical approach for sink sediment sampling (Blake et al., 2018; Boudreault et al., 2019; 

Koiter et al., 2013). That is, considering the disconnectivity of the sediment cascade on large 

river basins due to the variability of residence times of sediment storage (Koiter et al., 2013), 

we understood it was important to sample sink sediments at different nodes of the main river 

channel (Figure 1). As a result of our sampling design, three nodes with four potential upstream 

sources each were stratified within the catchment. 

Node 1, the most upstream sink sediment sampling location, has four main tributaries: the 

Mortes River (MRT) itself before its confluence with the Elvas River (ELV), the Carandaí River 

(CRD), and the Santo Antônio River (STA). Due to our hierarchical approach, Node 1 

sediments become a potential source of the next downstream node. Hence, Node 2 sources are 

comprised by the Mortes Pequeno River (MPQ), the Peixe River (PXE), the set of small 

tributaries in the mid catchment (T1), and Node 1. Similarly, Node 3 on the catchment outlet 

receives sediments from the Pirapetinga River (PIR), the Tabões River (TAB), the set of small 

tributaries in the lower catchment (T2), and Node 2. 

Sediment sampling was conducted in two different periods to represent transport dynamics 

during the well-defined seasons of the local climate. During September 2017 (dry season), all 
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nodes and sources were sampled. In February 2018, during the rainy season, we retrieved extra 

samples from the sink sediment nodes. 

Source samples were taken from lag-deposits of tributaries near their confluence with the main 

river channel. The uppermost layer (1-2 cm) of freshly deposited sediments from river margins 

was scrapped with a non-metallic trowel, and approximately 15 scrapes were combined into 

one individual sample. We collected a total of 20 composite samples per each tributary, except 

for sources T1 and T2. These sources are comprised by a set of small tributaries that drain 

directly to the Mortes River (Figure 1). Hence, 25 and 17 samples were retrieved in T1 and T2, 

respectively (4-5 samples from each small tributary). 

Sampling sink sediments from Nodes 1 and 2 followed the same methods described above. 

During the dry season 20 samples were collected from each of these nodes, whereas during the 

rainy season, 12 and 20 samples were retrieved from Nodes 1 and 2, respectively. Given that 

the Mortes River flows into the Funil reservoir, samples from Node 3 were taken from the 

bottom of the shallow river delta, before its confluence with the Grande River. At the node 3 

site, 26 and 12 composite samples were collected during the dry and rainy season, respectively. 

2.3.2 Laboratory analyses 

Sediment samples were oven dried at 60 ºC and dry-sieved with a 0.2 mm mesh. Subsequently, 

total concentration of the 21 following elements was determined by inductive coupled plasma 

optical emission spectrometry (ICP OES): Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Mg, 

Mn, Ni, Pb, Se, Ti, V, Zn, Zr.  

2.3.3 Element selection 

The first step of tracer selection is to investigate the composition of source and sink sediments. 

In this study, we started with an exploratory analysis by visually examining box-plots of 
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element concentrations. Next, a range test was performed to verify if sink element 

concentrations were well bounded by the source mixing polygon. That is, if element contents 

on sink sediments are enriched or depleted in relation to source samples, then there is evidence 

that elements might not be behaving conservatively during sediment transport or there is a 

missing source (Laceby et al., 2017; Smith and Blake, 2014). Moreover, a mismatch of element 

concentrations on source and sink sediments may compromise the numerical solutions of the 

un-mixing models (Collins et al., 2013). The range test therefore aims not only to eliminate 

elements plotting outside the mixing polygon from further analyses, but also to provide an 

initial insight into the quality of the geochemical data. 

Different approaches have been employed for analyzing conservative behavior and for 

performing range tests (Smith et al., 2018a; Wilkinson et al., 2015). Although earlier research 

might have focused on maximum and minimum tracer values, distribution-based un-mixing 

models (Bayesian or frequentitst) requires an examination of the distributions of tracer 

concentrations. Considering the structure of the bootstrapping approach we employed for 

solving our un-mixing model, we adopted a mean and standard deviation range test. That is, we 

assumed that means and standard deviations of log-transformed tracer concentrations on sink 

sediments should plot within the means and standard deviations of the source log-transformed 

tracer concentrations. This ensures that, during the Monte Carlo simulation, sampled sink 

element contents will always be within the source range. The means and standard deviation 

range test was performed locally for each node and sampling season. 

Given the heterogeneity of land uses and geological/pedological backgrounds of the sub-

catchments comprising sediment sources in the Mortes River basin, a process-based approach 

to element selection (Batista et al., 2019; Koiter et al., 2013; Laceby et al., 2015) was not 

appropriate to this research. Hence, we adopted a more common statistical procedure, in which 
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elements passing the range test were submitted to a step-wise forward Linear Discriminant 

Analysis (LDA) (niveau = 0.1). This approach aims to define a minimum set of tracers that 

maximize source discrimination, and elements selected by the LDA were used for modelling. 

Again, the procedure was repeated for all nodes and sampling seasons. 

2.3.5 Un-mixing modelling 

Relative sediment source contributions were calculated by minimizing the sum of squared 

residuals (SRR) of the un-mixing model: 

𝑆𝑆𝑅 =  ∑[(𝐶𝑖 − ∑ 𝑃𝑠𝑆𝑠𝑖)/𝐶𝑖

𝑚

𝑠=1

]2

𝑛

𝑖=1

 
(1) 

 

where n is the number of elements used for modeling, Ci is the concentration of element i in the 

target sediment, m is the number of sources, Ps is the optimized relative contribution of source 

s, and Ssi is the concentration of element i in source s. Optimization constraints were set to 

ensure that source contributions Ps were non-negative and that their sum equaled 1. 

In order to quantify the uncertainty in the un-mixing model source apportionments, we 

employed the bootstrapping methods described in Batista et al. (2019). The model was solved 

by a Monte Carlo simulation with 2500 iterations. For each iteration, log-transformed element 

concentrations were sampled from multivariate-normal distributions generated from the source 

and sink geochemical data. During the Monte Carlo simulation, values were back-transformed 

by an exponential function. Log-transformation was applied to avoid sampling negative 

element concentrations and to force a near-normal distribution on the typically skewed sediment 

geochemistry data. The optimization function was scripted with the R package Rsolnp 
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(Ghalanos and Theussl, 2015), whereas the Monte Carlo simulation (here and elsewhere in this 

study) with the package foreach (Calway et al., 2017). 

2.4 SEDD model description 

The SEDD model calculates a spatially distributed sediment delivery ratio SDRi that expresses 

the proportion of eroded sediments that are delivered to the stream network (Ferro and 

Minacapilli, 1995; Ferro and Porto, 2000). The model does not represent channel erosion or 

deposition processes, and sediments reaching the stream network are assumed to reach the 

catchment outlet. Following a grid based structure, the SDRi is calculated as: 

𝑆𝐷𝑅𝑖 = exp (−𝛽 
𝑙𝑖

𝑠𝑖
) 

(2) 

 

where: SDRi  is the soil delivery ratio of a grid cell i; 𝛽 is a catchment specific empirical 

parameter (m-1), li is the flow length from cell i to the nearest stream channel (m) along the flow 

path, and si is the slope of cell i (m m-1). 

Typically, the empirical parameter 𝛽 is calibrated to minimize the errors of sediment load 

predictions (Fernandez et al., 2003; Fu et al., 2006; Lin et al., 2016), whereas the flow length 

and slope parameters can be derived from DEM processing. 

The SDRi grid is used to calculate area specific sediment yields (SSYi) (ton ha-1 yr-1), which 

quantifies the amount of sediments that are delivered from cell i to the stream network: 

𝑆𝑆𝑌𝑖 = 𝑆𝐷𝑅𝑖𝐴𝑖 (3) 



151 

 

where: SSYi is the specific sediment yield for a grid cell i; SDRi  is the soil delivery ratio for a 

grid cell i and Ai is the annual soil loss computed by Revised Universal Soil Loss Equation 

(RUSLE) for a grid cell i. 

RUSLE estimates average annual erosion rates by the following empirical equation (Renard et 

al., 1997): 

𝐴 = 𝑅 ∗ 𝐾 ∗ 𝐿𝑆 ∗ 𝐶 ∗ 𝑃 (4) 

where: A is soil loss per unit area (t ha-1 yr-1); R is the rainfall and runoff erosivity factor (MJ 

mm ha-1 h-1 yr-1); K is soil erodibility factor (t ha h ha-1 MJ-1 mm-1); LS is the topographic factor, 

representing slope length and steepness (dimensionless); C is cover management factor 

(dimensionless), and P is support practice factor (dimensionless). 

As the SEDD model neglects channel deposition, the total sediment yield at the catchment 

outlet can be calculated as the sum of SSYi values. Equivalently, the mean of SSYi values 

correspond to the area specific sediment yield in the catchment, and the same calculations can 

be employed at sub-catchment scale. With this approach, sub-catchment relative contributions 

can estimated based on SEDD model results. 

2.6 GLUE 

The basic structure of the GLUE methodology is summarized by Beven (2009) in five decision 

steps: 

1. Decide on a likelihood measure to evaluate model realizations. 

2. Decide on the rejection criteria for non-behavioral model realizations. 

3. Decide which parameters are uncertain. 

4. Decide on a prior distribution to characterize the uncertainty of the chosen parameters. 

5. Decide on a simulation method for generating model realizations. 
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Here we did not establish a formal likelihood measure to evaluate model realizations, as the 

rejection criteria for non-behavioral simulation was set according to an actual range of system 

responses. That is, all model realizations which produced sediment load responses within the 

95% prediction interval of the sediment load rating curve were considered behavioral. Since 

the SEDD temporal scale is inherited from the RUSLE, the model simulates long-term average 

annual sediment yields. Therefore, for comparison purposes the sediment rating curve estimates 

were aggregated into a 22 years average.  

Model realizations were generated by a Monte Carlo simulation with 1000 iterations. SEDD 

parameter 𝛽 was sampled from a log-uniform distribution, with minimum and maximum 

parameters retrieved from typical values reported in the literature (min = 0.000001 m-1, max = 

0.1 m-1) (e.g. Porto and Walling, 2015; Taguas et al., 2011). We used a log-uniform distribution 

to ensure that the extreme values of this broad range were sampled during the simulation. The 

threshold for stream definition, which affects drainage density and therefore distance to streams 

(li), was sampled from a uniform distribution (min = 50000 m², max = 5000000 m²). To 

represent the uncertainty in the DEM derived model variables, we created a pseudo-random 

error surface for each model iteration. Mean and standard deviation of DEM errors were 

retrieved the NASA SRTM report (Rodriguez et al., 2006)(µ = 1.7 m, σ = 4.1 m) and used to 

create a normally distributed error field, which was added to the original DEM. All terrain 

attributes used in the models were then calculated within the Monte Carlo simulation. All herein 

described spatial analyses were supported by SAGA GIS (Conrad et al., 2015) and the R 

package RSAGA (Brenning and Bangs, 2015). 

Since we understood that RUSLE factors were not parameters requiring calibration or 

conditioning, but instead uncertain model variables, we performed a forward uncertainty 

analysis, similarly to Biesemans et al. (2000) and Van Rompaey and Govers (2002). Although 
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this can be seen as a separate analysis, RUSLE error was propagated into SEDD simulations, 

as we explain in the following. 

The forward error analysis was performed with a Monte Carlo simulation with 1000 iterations. 

In order to represent the uncertainty in the RUSLE R factor, we first calculated a deterministic 

rainfall erosivity map. This was carried out with average monthly and annual rainfall grids from 

WorldClim (Fick, 2017) and the regression equation developed by Aquino et al. (2014). This 

regression equation estimates annual (or average annual, in this case) EI30 index values, and it 

was originally fitted using detailed rainfall data from the Municipality of Lavras. For each 

iteration of the Monte Carlo simulation, we added a normally distributed error surface to the 

deterministic rainfall erosivity map, with mean equal zero and a standard deviation equal to 10 

% of mean deterministic R factor for the catchment. 

For the K factor, we created truncated normal distributions for each soil class occurring in the 

catchment soil map (FEAM, 2010). The discrete soil map was rasterized and, for each 

simulation, a grid cell erodibility value was sampled according to its corresponding soil class. 

Distribution parameters were set according to published K factor values for Brazilian soils. 

Although in general there were not enough different estimations of K factor values for 

individual soil classes to create data-based probability distributions, we used the available 

published data and our own interpretation to infer distribution parameters (Table 2). 

Table 2. Parameters of the truncated normal distribution of each soil class in the Mortes River 

basin. 

Soil class Mean Standard dev. Minimum Maximum 

Dystrudepts 0.035 0.01 0.01 1 

Acrudoxes 0.012 0.01 0.001 1 

Hapludoxes 0.015 0.01 0.001 1 

Rhodudults 0.017 0.01 0.005 1 

Paleudults 0.02 0.01 0.005 1 

Ustorthents 0.05 0.01 0.03 1 

Rocky outcrops 0.00001 0.00001 0.00001 1 

Uncertainty in the LS factor was represented following the DEM error propagation described 

above. Slope (rad) and catchment area (m²) grids were created for each model iteration. These 
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grids were subsequently used to calculate the LS factor with the equation of Desmet and Govers 

(1996). A maximum threshold of 10800 m² was enforced to the catchment area grid, which 

corresponds to maximum flow length of 360 m for a 30m resolution DEM. This was performed 

to avoid spuriously high LS factor values in flow concentration areas, as usually carried out in 

RUSLE applications (Panagos et al., 2015; Schmidt et al., 2019). 

Similarly to the K factor, errors in the C factor estimation were propagated by creating truncated 

normal distributions for individual land use classes (Table 3). The land use grid was produced 

using 30 m resolution Landsat 8 Surface Reflectance images from 2013 and the methods 

described in Batista et al. (2017). Since no widespread support management practices are found 

in the catchment agricultural areas, no specific procedure was applied to represent P factor 

uncertainty. However, the C factor distribution parameters for cropland and eucalypt were set 

to reflect occasional contour cropping and/or crop residue management. 

Table 3. Parameters of the truncated normal distribution of each land use class in the Mortes 

River basin. 

Land use Mean Standard dev. Minimum Maximum 

Bare 0.8 0.2 0.6 1 

Cropland 0.088 0.045 0.02 1 

Eucalypt 0.015 0.03 0.0005 1 

Forest 0.001 0.003 0.0001 1 

Pasture 0.01 0.02 0.001 1 

Rupestrian vegetation 0.001 0.005 0.0001 1 

 

The resulting RUSLE model realizations were used as input for the SEDD model simulations. 

Moreover, we performed a sensitivity analysis by fixing each model factor and sampling the 

remaining variables in new Monte Carlos simulations, each with 1000 iterations. This enabled 

us to evaluate the proportion of model variance explained by each factor. 

It should be highlighted that forward error propagation is essentially subjective, given its total 

dependence on the assumptions made by the modeler about potential sources of uncertainty 

(Beven, 2009). Our approach presents a rather conservative estimate of model uncertainty, 
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basically representing the errors involved in parameter estimation. This is because we could not 

describe all the sources of error in the model structure. Moreover, we wanted to constrain model 

realizations based on choices of factor values that modelers are expected to make. That is, we 

did not want to give the models full freedom: if all parameters and variables are allowed to vary 

beyond a range of physical meaning, models are capable of reproducing almost any answer – 

usually for the wrong reasons (see Batista et al., 2019a). 

2.6.1 Spatial representation of model uncertainty 

In order to represent the spatial uncertainty the final SEDD model predictions, we first filtered 

the behavioral model simulations according to the criterion previously described. Next, we 

calculated the 2.5 %, 50 %, and 97.5 % quantiles for each grid cell SSYi estimates. Absolute 

error grids were then calculated by subtracting the 97.5 % grid by the 2.5 % grid. Relative errors 

were determined as: 

𝑅𝐸𝑖 (%) = (
𝐴𝐸𝑖

𝑀𝑖
) ∗ 100 

(5) 

where: AEi is the absolute error for a grid cell i, Mi is the simulation median for grid cell i. 

The filtered behavioral model realizations were also used to calculate total sediment yields from 

the sub-catchments described in Table 1. These calculations were used to estimate the relative 

contribution of the sub-catchments to aggregated sediment yields at each sink sediment 

sampling location (i.e. Nodes 1, 2, and 3). The SEDD-estimated relative contributions were 

then evaluated against fingerprinting source apportionments. The same approach was employed 

for creating RUSLE error maps, except in this case all model simulations were considered when 

calculating grid-cell quantiles. 

3 RESULTS 

3.1 Discharge curve 
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The error propagation method used to represent the uncertainty in the sediment rating curve 

resulted in a broad estimate of average annual specific sediment yields, with a 95 % prediction 

interval of 0.47 – 11.95 ton ha-1 yr-1(mean = 3.45 ton ha-1 yr-1; median = 2.52 ton ha-1 yr-1) 

(Figure 2 a). As expected, annual estimates of sediment loads were more uncertain for the years 

with greater discharge and sediment transport (Figure 2 c). Monthly calculations revealed that 

over 85 % of the annual sediment load is transported from November to March. The monthly 

relative contributions to annual sediment yield showed less uncertainty than annual and average 

annual estimates (Figure 2 b). 

 

Figure 2. a) Sediment rating curve: dark line represents a deterministic mode fit and faded gray 

lines represent the 1000 simulations used to propagate the regression uncertainty; b) Monthly 

percentage of area specific sediment yields (SSY); c) Annual estimates of area specific 

sediment yields (SSY). Error bars represent 95 % prediction intervals. 

 

3.2 Sediment fingerprinting 

3.2.1 Element selection 
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Our exploratory analysis demonstrated that Cu and Zn displayed spurious within-source 

variability, as most sample concentrations were below detection limit. These elements were 

therefore omitted from further scrutiny. 

Of the remaining 19 elements, 16 (84 %), 17 (87 %), and 9 (47 %) plotted within the source 

mixing polygons for Nodes 1, 2, and 3, respectively, for the dry season (Table 4). For the rainy 

season, 18 (95 %) elements passed the range test for Nodes 1 and 2, whereas only seven (37 %) 

elements were within source range for Node 3 sediments. 

Table 4. Selected elements by the range test and the forward LDA for each node and season, 

along with the LDA reclassification accuracy. 

Node Season Selection 

step 

Selected elements % of 

correctly 

classified 

samples 

1 

Dry 

Range 

test 

Al, As, Ba, Cd, Ce, Co, Cr, Fe, K, La, Mg, 

Mn, Pb, Se, Ti, V 
 

LDA 
Al, Ba, Cd, Ce, Co, Cr, Fe, K, Mg, Mn, Ti, 

V 
100 

Rainy 

Range 

test 

Al, As, Ba, Ca, Ce, Co, Cr, Fe, K, Ka, Mg, 

Mn, Ni, Pb, Se, Ti, V, Zr 
 

LDA Al, Ba, Ca, Co, Cr, K, Mg, Ni, Se, V, Zr 100 

2 

Dry 

Range 

test 

Al, As, Ba, Ca, Cd, Ce, Co, Cr, Fe, K, La, 

Mg, Ni, Se, Ti, V, Zr 
 

LDA As, Ca, Ce, K, La, Mg, Ni, Se, Ti, Zr 100 

Rainy 

Range 

test 

Al, As, Ba, Ca, Cd, Ce, Co, Cr, Fe, K, La, 

Mn, Ni, Pb, Se, Ti, V, Zr 
 

LDA As, Ca, Ce, Co, K, La, Mn, Pb, Se, Ti, Zr 100 

3 

Dry 

Range 

test 
Ba, Ca, Cd, Ce, Cr, Fe, K, La, Ni  

LDA Ca, Cd, Ce, Cr, K, La 91 

Rainy 

Range 

test 
Ba, Ce, Co, Fe, K, La, Mn  

LDA Ba, Ce, Co, Fe, K, La 82 

 

For Node 1, the forward step-wise LDA selected 12 elements for the dry season sediments, 

whereas 11 elements were selected for the rainy season (Table 4). The LDA for both seasons 

showed a reclassification accuracy of 100 %. For Node 2, the discriminant analysis selected 10 

elements for the dry season and 11 for the rainy season. Again, all samples were correctly 
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reclassified during the LDA cross-validation. As fewer elements passed the range test for Node 

3, only six elements were selected by the LDA for both seasons. Reclassification accuracy was 

lower in this case, with 91 % and 82 % for the dry and rainy seasons, respectively. The largest 

errors associated to the LDA reclassification for Node 3 source samples can be visualized in 

the bi-plots displayed in Figure 3. 

Figure 3. LDA bi-plots of source reclassification based on selected element concentrations. 

Ellipses represent 90 % confidence intervals. 

 

3.2.2 Un-mixing model results 
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Un-mixing model solutions for Node 1 were highly uncertain for both seasons, as demonstrated 

by the broad density curves displayed in Figure 4. According to model estimates, sources CRD 

and ELV seem to dominate sediment contributions in relation to MRT and STA – at least 

considering the median and interquartile (IQR) values of the simulated source apportionments 

(Table 5). 

 

Figure 4. Probability density functions of estimated relative source contributions. 
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Table 5. Results of the un-mixing models source apportionments based on the Monte Carlo 

simulations. 

Node Source Season 
2.5 % 

quantile 

25 % 

quantile 

50 % 

quantile 

75 % 

quantile 

97. 5 % 

quantile 

1 

CRD 
Dry 0.00 0.00 0.25 0.47 0.78 

Rainy 0.00 0.08 0.36 0.62 1.00 

ELV 
Dry 0.00 0.00 0.31 0.56 0.88 

Rainy 0.00 0.12 0.41 0.66 1.00 

MRT 
Dry 0.00 0.08 0.18 0.31 0.61 

Rainy 0.00 0.00 0.00 0.07 0.33 

STA 
Dry 0.00 0.08 0.15 0.26 0.53 

Rainy 0.00 0.02 0.11 0.22 0.55 

2 

MPQ 
Dry 0.00 0.04 0.11 0.18 0.38 

Rainy 0.00 0.04 0.11 0.20 0.47 

Node 1 
Dry 0.02 0.13 0.20 0.30 0.62 

Rainy 0.04 0.44 0.60 0.74 0.92 

PXE 
Dry 0.00 0.32 0.50 0.64 0.89 

Rainy 0.00 0.00 0.12 0.26 0.60 

T1 
Dry 0.00 0.00 0.08 0.28 0.72 

Rainy 0.00 0.00 0.04 0.21 0.58 

3 

Node 2 
Dry 0.00 0.05 0.23 0.41 0.81 

Rainy 0.00 0.34 0.61 0.80 1.00 

PIR 
Dry 0.00 0.00 0.13 0.36 0.75 

Rainy 0.00 0.00 0.00 0.07 0.51 

T2 
Dry 0.00 0.00 0.12 0.31 0.73 

Rainy 0.00 0.00 0.00 0.09 0.60 

TAB 
Dry 0.00 0.17 0.33 0.50 0.88 

Rainy 0.00 0.04 0.22 0.45 1.00 

 

Results for Node 2 were less uncertain and revealed a greater contrast between seasonal 

sediment transport dynamics. During the dry season, model estimates indicate that a significant 

part of sediments reaching Node 2 are derived from PXE (median = 50 %, IQR = 32 – 64 %). 

However, such contributions decrease during the rainy season, for which the models suggest a 

large apportion of sediments from Node 1 (median = 60 %, IQR = 44 – 74 %). Modeled source 

contributions from MPQ and T1 were relatively low for both seasons (Table 5). 

Model solutions for Node 3 displayed a similar pattern to Node 2 regarding the seasonal 

variation of source contributions. During the dry season, a greater proportion of sediments were 
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estimated to derive from the sources proximally located to the catchment outlet, particularly 

TAB (median = 33 %, IQR = 15 – 50 %). However, rainy season source apportionments indicate 

that most of the sediments reaching the Funil reservoir are originated on the upstream areas of 

the catchment, which are represented by Node 2 (median = 61 %, IQR = 34 – 80 %). This 

illustrates how even in the relative short time-period represented by our study, sediments from 

the upper and mid catchment area are transported throughout the river network. Given that most 

of the Mortes River sediment load is transported during the rainy season, it is plausible to 

assume that upstream sediments are important contributors to reservoir sedimentation. 

3.3 RUSLE uncertainty 

The results of the forward error analysis revealed that RUSLE estimates were highly uncertain 

in spite of the moderately conservative assumptions made about sources of model error. The 

median of grid cell absolute errors was of 29.0 ton ha-1 yr-1, which translated to a median relative 

error of 588 %. The highest absolute errors in the RUSLE estimates were associated to the areas 

with higher erosion rate predictions, as expected (Figure 5 b, c). Contrarily, relative errors were 

higher on the areas with lower soil loss estimates. This is possibly a result of small variations 

on sampled parameter values leading to a large relative fluctuation on the low erosion 

predictions (Figure 5 a). Considering the median of the simulations as a point-based estimate 

of erosion rates, the influence of soil erodibility on soil loss predictions was evident on Figure 

5 c. Upper and mid catchment areas, where Dystrudepts are widespread, had overall higher 

erosion rates, according to the model simulations. Moreover, modeled erosion hot-spots are 

visibly associated to areas with high flow accumulation and more intensive land uses (e.g. 

cropland, eucalypt). 
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Figure 5. a) RUSLE relative error map; b) RUSLE absolute error map; c) RUSLE prediction 

map, based on the median simulation values; d) density curves of the proportion of variance of 

model error explained by individual RUSLE factors; e) density curve of grid cell erosion rate 

predictions, based on the median simulation values. Dashed vertical lines represent median 

values. 

 

The sensitivity analysis demonstrated that the C factor was the largest source uncertainty in the 

model predictions. The proportion of model variance explained by the C factor had a median 

value of 45 %. (IQR = 30 – 56 %). The LS (median = 21 %; IQR = 17 – 27 %) and K factors 

(median = 15 %; IQR = 10 – 20 %) also contributed significantly to the propagated model 
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errors. The R factor had a small influence on overall model uncertainty (median = 3 %, IQR = 

2 – 5 %). 

3.4 SEDD results 

From the 1000 SEDD model realizations generated by the Monte Carlo simulation, 234 were 

behavioral considering the established limits of acceptability. That is, 234 model realizations 

provided estimates of outlet-based SSY within the 95 % prediction interval of the sediment 

rating curve (0.47 – 11.95 ton ha-1 yr-1). Most of the non-behavioral model response surface 

was associated to an overestimation of the curve-calculated sediment yields (Figure 6 a). 

Figure 6. a) violin plots of catchment-lumped SSY values estimated by the discharge curve and 

the SEDD model; b) scatter plot of simulated mean grid cell SDRi and resulting catchment-
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lumped SSY values; c) dotty plot of sampled 𝛽 values; d) dotty plot of sampled threshold for 

stream definition values. 

 

By analyzing the dotty plots of sampled parameter values, it was clear that the empirical 

parameter 𝛽 had a preponderant influence on the model results (Figure 6 c). Behavioral model 

realizations are concentrated within a relatively narrow range of 𝛽 values, whereas acceptable 

system representations are spread throughout the sampled values of stream definition 

thresholds. The fluctuation of mean catchment SDRi values in the catchment led to a linear 

increment of estimated SSY (Figure 6 b), indicating a little influence of RUSLE simulation 

results in the outlet-aggregated SEDD model predictions. Behavioral model realizations had 

mean SDRi values between 5-50 %, which illustrates the uncertainty in the model predictions. 

Considering the median of the behavioral model realizations, grid-cell SSYi estimates had a 

median value of 0.06 ton ha-1 yr-1, whereas the median of analogous absolute error values was 

of 6.64 ton ha-1 yr-1. Although outlet-lumped model results seem to be little influenced by the 

uncertainty in the RUSLE or in the stream definition threshold, the errors derived from such 

input variables/parameters are explicit when the uncertainty of spatially distributed SSY 

estimates are presented in Figure 7 a. Areas with large absolute errors in the SSY map clearly 

match the RUSLE errors displayed in Figure 6 b. Moreover, the influence of stream definition 

threshold uncertainty is visible in the surroundings of lower order streams. 

. 
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Figure 7. a) Absolute error of behavioral SEDD simulations of SSY b) Median of behavioral SEDD simulations of SSY; c) density curves of grid-

cell values of absolute model error and median SSY simulations. Dashed lines represent the median of the distributions. 
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3.4.1 Evaluation of SEDD results against fingerprinting source apportionments 

Distributions of relative source contributions estimated by the SEDD model overall displayed 

a similar pattern to the rainy season fingerprinting source apportionments, except for Node 1 

(Figure 8). Opposite to the fingerprinting results, SEDD simulations indicated that MRT was 

the main source of sediments (IQR = 52.9 – 53.4 %) reaching the main river channel. 

 

Figure 8. Relative source contributions estimated by SEDD and fingerprinting un-mixing 

models. 
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Node 2 results revealed a large agreement between rainy season fingerprinting and SEDD-

estimated relative source contributions, as all SEDD model realizations were bound by the IQR 

of the fingerprinting apportionments. However, SEDD simulations indicate an even larger 

contribution of Node 1 sediments (IQR = 72.6 – 73.0 %). Similarly, fingerprinting results for 

the rainy season for Node 3 showed a similar pattern to the SEDD simulations. Both models 

indicate that Node 2 sediments are the largest contributors to outlet sediment loads, although 

SEDD results again suggest a greater contribution of upstream sediments (Node 2 IQR = 84.3 

– 85.7 %). Moreover, SEDD-estimated TAB contributions (IQR = 3.2 – 3.4 %) were 

considerably lower than the ones estimated by the sediment fingerprinting un-mixing models. 

4 DISCUSSION 

The model testing framework presented here has demonstrated how uncertainty permeates all 

facets of soil erosion models and the things we call observational data. The error propagation 

method used to represent the uncertainty in the sediment rating curve resulted in such broad 

estimates of average annual sediment loads that many different SEDD realizations were able to 

encompass the forcing data. Similar results have been reported by other soil erosion modelers 

(Banis et al., 2004; Janes et al., 2018), and a logical conclusion is that we need better data in 

order to reject non-behavioral model realizations. 

However, even if more accurate and precise sediment load data were available, our approach 

has demonstrated how very different spatial model representations can produce similar outlet 

responses. Despite the fact that we only considered behavioral simulations while calculating 

the uncertainty of grid cell SSYi estimates, absolute model errors were almost hundred-fold the 

median of the predictions. This brings to question if the numerical spatial predictions are at all 

useful. Furthermore, it demonstrates how misleading it can be to neglect model and 

observational data uncertainty in soil erosion and sediment transport models. 
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The fact that the SEDD results were mostly driven by the empirical and somewhat abstract 

parameter 𝛽 raises some concerns about the quality of process representation in the model. The 

common deterministic parameter optimization method for calibrating 𝛽 should be therefore 

disputed. If SEDD model simulations are to provide meaningful system representations, 

alternative methods for deriving 𝛽 values should be encouraged (e.g. Ferro and Stefano, 2003; 

Porto and Walling, 2015). Nonetheless, given the sensitivity of the model to parameter 𝛽, 

representing the uncertainty associated to the parameter estimation is paramount. 

In spite of the large errors associated to grid cell SSYi estimates, aggregated sub-catchment 

relative contributions calculated from the SEDD simulations were precise, as shown by the 

narrow uncertainty bands in Figure 8. This indicates that spatially aggregated results were 

consistent, as the model repeatedly identified the same sub-catchments as the main sediment 

sources in the catchment. The accuracy of these estimates is difficult to assess, although some 

insight can be gained by an evaluation against fingerprinting source apportionments. 

The bootstrapping method for solving the un-mixing models resulted in uncertain sediment 

fingerprinting estimates of relative source contributions, particularly for Node 1. Bootstrapping 

methods are known to produce somewhat spurious uncertainty bands of un-mixing model 

results, as local optimization functions frequently yield numerical solutions where one source 

provides 100 % of source contributions (Cooper et al., 2014). This is illustrated by the bi-modal 

density curves in Figure 4. 

Nonetheless, the uncertainty of Node 1 un-mixing model solutions indicates there might be an 

issue with the data. Moreover, the negligible contributions from MRT (by far the largest sub-

catchment in the basin) during the rainy season bring to question the consistency of the model 

results as a narrative. It might be the case that there was an issue of particle size 

incommensurability between MRT and Node 1 sink sediments. MRT element concentrations 

were overall higher than in the remaining Node 1 sources and sink samples, which might 
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indicate MRT sediments were composed by smaller-sized particles. An alternative hypothesis 

is that sediment storage in the MRT sub-catchment is influenced by small hydroelectric plants 

in the Mortes River or by civil engineering works in the cities the river flows through before its 

confluence with the Elvas River. Regardless, fingerprinting and SEDD model outputs shown a 

contrasting pattern for Node 1, and we have no supporting evidence to corroborate either of the 

system representations. 

On the other hand, the overall correspondence of fingerprinting un-mixing model solutions and 

SEDD simulations of relative source contributions for Nodes 2 and 3, while considering the 

uncertainty in both system representations, provide some conditional corroboration of the 

methods. Although the SEDD model simulates long-term sediment transport dynamics and the 

fingerprinting approach was limited by the temporal scale of our sampling, both modelling 

exercises designated that most of the sediments reaching Nodes 2 and 3 are originated from 

farther upstream sources. That is, at least under the reasonable assumption that rainy season 

fingerprinting results represent the bulk of the sediment transport dynamics in the catchment. 

For management purposes, the convergence of model results is an important outcome of this 

research. Different models and sources of data have indicated that the sediments reaching the 

Funil reservoir by the Mortes River come from the mid and upper catchment areas, even during 

a short temporal scale. Hence, reducing reservoir sedimentation rates requires widespread soil 

conservation efforts throughout the catchment, instead of local/proximal interventions. 

Another valuable outcome of this research was demonstrating how uncertain common large-

scale distributed RUSLE applications are. Although RUSLE is the most widely used soil 

erosion model in the world (Alewell et al., 2019), studies which have attempted to quantify 

model error are scarce (e.g. Tetzlaff et al., 2013). Our results indicate that numerical RUSLE 

predictions of spatially distributed erosion rates were practically meaningless, given the 

uncertainty in the model outputs (see Figure 5). Of course, these results are case specific and 
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entirely determined by the assumptions made about potential sources of model error, which we 

understand, were cautious. That is, the uncertainty in the rainfall erosivity regression equation 

was not properly assessed, let alone in the equations relating rainfall intensity to kinetic energy 

(Wilken et al., 2018). Moreover, errors in the soil and land use map classifications were not 

represented, nor were the potential errors in the plot-based experiments used to generate 

RUSLE factors (Nearing, 2000; Parsons, 2019). Hence, similar or larger errors should be 

expected in comparable spatially distributed RUSLE applications elsewhere, unless otherwise 

demonstrated. 

Overall, results from our forward error analysis indicate that RUSLE-modeled spatially 

distributed erosion rates should be viewed with extreme caution, particularly when actual 

numerical model outputs are used to project the influence of climate and land use changes on 

future erosion rates (e.g., Teng et al., 2018; Yang et al., 2003). Due to the difficulties involved 

in large-scale model parameterization, the costs of plot-based experiments for developing 

empirical model factors, and the multiplicative structure of the RUSLE (and USLE-family 

models), we suspect that model applications should remain largely uncertain. This might be 

particularly true for developing countries such as Brazil, where data scarcity further complicates 

model parameterization. Under such conditions, model testing should hereon focus on 

evaluating if the models are at least consistently capable of relatively ranking erosion-prone 

areas, as in Fischer et al. (2018).  

5 Conclusions 

Soil erosion models and the measurements of system responses we call observational data are 

necessarily uncertain. A failure to represent such uncertainty is at best naïve. Here we provided 

a framework for incorporating the uncertainty of sediment rating curves, sediment 

fingerprinting un-mixing models, and soil erosion/sediment delivery models into the GLUE 
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methodology. More specifically, the framework was applied to the RUSLE-based SEDD model 

at a large catchment in Southeast Brazil. 

Our results have shown how common large-scale spatially-distributed RUSLE applications are 

highly uncertain. This means model applications of such type cannot afford to disregard 

uncertainty analysis, and that modeled erosion rates should be interpreted with upmost caution. 

SEDD simulations of catchment sediment yields were also highly uncertain, mostly due to the 

errors in the rating curve forcing data and the sensitivity of the model to the empirical parameter 

𝛽. Spatially distributed simulations of area specific sediment yields were even more uncertain, 

which meant the grid-based numerical model outputs were of little utility. However, when the 

SEDD model outputs were lumped into sub-catchment relative contributions, results were 

consistent and far less uncertain. 

The comparison between SEDD model outputs the fingerprinting source apportionments 

presented here was facilitated by the hierarchical tributary sampling design we employed. 

Moreover, the uncertainty-based framework enabled us to compare distributions of model 

realizations of relative source contributions. The comparison revealed an overall similarity of 

fingerprinting and SEDD-modeled distributions of source apportionments, although large 

discrepancies were found in part of the catchment. 

Ultimately, we found that under the testing conditions, the SEDD model might be useful for 

identifying the sub-catchments that contribute to most of the sediment load in the Mortes River 

basin. On the other hand, the uncertainty in the simulations questions the model’s usefulness 

for calculating actual erosion and sediment delivery rates. From a falsifacationist perspective, 

the model could not be rejected, as multiple model realizations produced acceptable system 

representations. However, this was largely facilitated by the uncertainty in the forcing data. One 

of the most important conclusions from this research is that we need better data in order to reject 

models and therefore to improve our understanding of soil erosion and sediment transport in 
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large catchments. This will require honest representations of the uncertainty in models and 

observational data. Moreover, multiple sources of data are necessary to evaluate model 

usefulness and consistency, as we have shown. 
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CONCLUDING REMARKS 

So that science that was to teach me everything ends up in a hypothesis, that lucidity founders 

in metaphor, that uncertainty is resolved in a work of art. What need had I of so many efforts? 

[…] 

I realize that if through science I can seize phenomena and enumerate them, I cannot, for all 

that, apprehend the world. 

Albert Camus, The Myth of Sisyphus, 1942 

This thesis addressed the methodological issues regarding the evaluation of soil erosion models. 

I focused on investigating the methods and sources of data that should enable modelers to 

analyze the usefulness and consistency of their models according to the purpose and scale of 

their applications. Moreover, I tried to advance some of the approaches for representing the 

uncertainty in soil erosion models and observational testing data, as well as for establishing 

limits of acceptability of model error. These advancements are built upon the theoretical and 

methodological foundations established by Quinton (1997, 1994) and Beven (2019, 2018, 2009, 

2006). I particularly focused on sediment fingerprinting as a mean for acquiring sediment 

provenance data for evaluating spatially-distributed soil erosion models. 

I have shown how model evaluation is currently a neglected topic in soil erosion modelling 

research (Paper 01). Based on a meta-analysis of model performance, I demonstrated how 

different erosion models do not systematically exceed each other regarding their predictive 

accuracy. In fact, calibration appears to be the main mechanism of improvement of model 

performance for estimating soil losses. I argued that erosion models should not be calibrated 

based on a deterministic optimization of model parameters. Instead, I demonstrated how a 

criteria for establishing limits of acceptability of model error based on the variability of erosion 

measurements (Nearing, 2000) could be used to filter behavioral parameter sets and model 

realizations within the GLUE methodology (Beven and Binley, 1992). 
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Based on a literature review, I concluded that spatially-distributed soil erosion models 

frequently compare poorly to independent spatial estimates of soil redistribution rates, even 

while making accurate predictions of outlet sediment transport rates. Therefore, evaluating 

spatial models requires spatial testing data, and outlet measurements of sediment loads are 

insufficient to characterize model performance. Moreover, the epistemic uncertainties 

associated to model structures and measurements of system responses impose that any model 

evaluation methodology should be established upon an explicit representation of the uncertainty 

in models and observational data (Beven, 2019) 

Focusing on sediment fingerprinting as a potential source of testing data for soil erosion models, 

I investigated how pedological knowledge could be incorporated into source stratification and 

geochemical tracer selection for analyzing sediment provenance in tropical catchments (Paper 

02). Moreover, I studied how pedogenetic processes can lead to the development of 

geochemical source signals on soils developed from similar parent materials, and how the 

expression of these signals is controlled by sediment particle size. I concluded that the proposed 

knowledge-based element selection method facilitated the interpretation of fingerprinting un-

mixing model results, and that different sampling strategies and source stratification methods 

might be necessary to model sediment dynamics in large river catchments. On a management 

level, the fingerprinting results indicated that the fine sediments reaching the outlet of the Ingaí 

River basin (~1200 km²) are predominantly derived from Ustorthents located on lower 

catchment. This highlights how this Entisol region is environmentally sensitive and erosion-

prone. 

Furthermore, I have shown how sediment fingerprinting source apportionments can be 

incorporated into spatially-distributed soil erosion model testing within the GLUE framework 

(Paper 03). This was performed by applying the RUSLE-based Sediment Delivery Distributed 
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model (Ferro and Minacapilli, 1995) in the Mortes River basin (~6600 km²). I demonstrated 

that when the uncertainty of sediment load estimates is considered, multiple parameter sets and 

model realizations provide acceptable simulations of catchment sediment yields. Hence, I 

concluded that the SEDD model could not be falsified under the testing conditions, and that 

better data are necessary in order to reject non-behavioral model realizations. This approach led 

me to further conclude that the uncertainty in the model outputs was so large that actual 

numerical predictions of erosion and sediment delivery rates were of little use for quantifying 

sediment dynamics. On the other hand, a comparison between the tributary-based fingerprinting 

source apportionments and spatially-aggregated SEDD results indicated that the model might 

be useful for identifying the sub-catchments that contributed to most of the sediment loads from 

the Mortes River. For management purposes, the outcomes of this research indicate that the 

sediments reaching the Mortes River delta in the Funil reservoir are mainly derived from the 

mid and upper catchment areas. Hence, reducing reservoir sedimentation requires widespread 

soil conservation efforts, instead of local/proximal interventions. 

Ultimately, this thesis has shown how uncertainty permeates all facets of soil erosion modelling 

and the measurements with which such models are tested – from small plots to large river 

basins. Although I can’t say this is a novel finding (e.g., Brazier et al., 2000; Quinton, 1997; 

Van Rompaey and Govers, 2002), I hope the methods developed here can help other modelers 

to deal with uncertainty – which will always be there, as “hypotheses always remain hypotheses, 

that is, presuppositions whose complete certainty we can never attain” (Kant, 1988). 

Accordingly, I have made an effort to only use free software and open source programming 

languages for my analyses, and shared all my raw data and codes on the publications presented 

here (with the exception of Paper 03, which has not yet been submitted to a journal). This is 

because I believe that we, soil erosion modelers, should hold ourselves to the highest standards 
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of documentation, and that models should be fully reproducible and open to criticism (Sterman, 

2002). This is necessary to advance knowledge, to make meaningful and useful predictions, and 

to provide honest descriptions of the shortcomings of our models. 

The deleterious effects of soil erosion, as well as methods to reduce them, have been known for 

a long time (see Montgomery, 2007). Still, while collecting samples for this research, I saw 

large gullies eating away the scarce pastures that some impoverished farmers had left. I saw 

crystalline streams becoming muddy brown rivers. And I wondered: what good are my models 

for? Would my government-funded research grants not be better spent in public policies and 

agricultural extension services? Honestly, I do not have an answer to these questions. But I 

know that if we expect that soil erosion models are to have any real-world impact, we should 

first let go of tests and sources of data that are ultimately designed promote model acceptance 

and the status/authority of the modeler (Sterman, 2002). Instead, we should focus on purpose-

oriented critical model evaluation approaches, which scrutinize model deficiencies, encompass 

multiple sources of data, and fully acknowledge uncertainty and equifinality. This might lead 

to model improvements and more responsible decision-making. 
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