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Abstract 

The Brazilian Savannas have been under increasing anthropic 

pressure for many years, and land-use/land-cover changes  
(LULCC) have been largely neglected. Remote sensing 

provides useful tools to detect changes, but previous studies 

have not attempted to separate the effects of phenology from 

deforestation, clearing or fires to improve the accuracy of 

change detection without a dense time series. The scientific 
questions addressed in this study were: how well can we 

differentiate seasonal changes from deforestation processes 

combining the spatial and spectral information of bi-temporal 

(normalized difference vegetation index) NDVI images? 

Which feature best contribute to increase the separability on 
classification assessment? The study area is inserted in the 

northern of Minas Gerais State (MG), Brazil. We used 

Landsat images from 2015 and 2016 to apply an object-based 

remote sensing method that is able to separate seasonal 
changes due to phenology effects from LULCC by combining 

spectral and the spatial context using traditional spectral 

features and semivariogram indices, exploring the full 

capability of NDVI image difference to train random forest 

(RF) algorithm. We found that the spatial variability of NDVI 
values is not affect by vegetation seasonality and, therefore, 

the combination of spectral features and semivariogram 

indices provided high global accuracy (97.73%) to separate 

seasonal changes and deforestation or fires. From the total of 

13 features, 6 provided the best combination to increase the 
separability on classification assessment (4 spatial and 2 

spectral features). How to accurately extract LULCC while 

disregarding the ones caused by phenological differences in 

Brazilian seasonal biomes undergoing rapid land-cover 

changes can be achieved by adding semivariogram indices in 
combination with spectral features as input data to train RF 

algorithm. 

Keywords: Geoestatistics, Semivariogram; Landsat; NDVI; 

Change Detection. 
 
Introduction  

The Brazilian Savanna biome is among the most 

endangered ecoregions on Earth due to high rates of 

deforestation and few formally protected areas (Hoekstra et 

al. 2005), consisting of a mosaic of land cover types, 
undergoing a strong seasonality in climate. In these regions, 

a significant challenge in remote-sensing change detection is 

accurately extracting land-use and land-cover changes  

(LULCC) while disregarding those associated with 

phenological differences (Acerbi Junior et al. 2015; Silveira 
et al. 2018a; Silveira et al. 2018b). The effects of vegetation 

phenology lead to seasonal spectral changes (Schwieder et al.  

2016) that are erroneously classified as having changed.  

In a recent study, Verbesselt et al. (2010) applied a 

generic approach to detect LULCC, using breaks for additive 
seasonal and trend (BFAST). The methodology separated 

different disturbances such as deforestation, urbanization, 

flooding and fires from seasonal changes, using a dense t ime 

series of NDVI. Hamunyela et al. (2016) used the spatial 

context to improve early detection of deforestation from 

NDVI Landsat time series. The spatial context approach 
reduced the seasonality effects on LULCC detection in highly  

seasonal areas. However, they found challenges in the 

implementation of the method, that is a pixel-based approach, 

that is sensitive to registration errors and computational 

expensive (Zhu 2017). 
The change detection using the object-based approach 

instead of the pixel one, allows the incorporation of spatial 

information, such as indices derived from semivariograms (a 

geostatistical tool) to both analyse spatial heterogeneity 

(Silveira et al. 2017a) and improve the LULCC without the 
need of using a dense time series (Silveira et al. 2018a). 

Balaguer et al. (2010) created a set of indices extracted from 

the semivariogram using high spatial resolution images. An 

advantage of the proposed set of features, as opposed to the 
raw semivariance values, is that they synthesize the most 

relevant information about the shape of the semivariogram in 

a few features. They identify the singular points and enhance 

the information contained on the first lags, where spatial 

correlation at short distances is higher. Although 
semivariograms have been applied to detect LULCC (Sertel 

et al .2007; Costantini et al. 2012; Acerbi Júnior et al. 2015), 

few studies have focused on change detection using an object-

based analysis, combining both the spectral and spatial 

information to improve deforestation detection in areas 
affected by vegetation seasonality.  

Thus, the main objective of this study was to explore both 

the semivariogram indices (spatial features) and traditional 

spectral features derived from bi-temporal NDVI images to 

accurately detect deforestation in areas with strong influence 
of vegetation phenology, such as Brazilian savannas. The 

scientific questions addressed in this study were: how well 

can we differentiate seasonal changes from deforestation 

processes combining the spatial and spectral information of 

bi-temporal NDVI images? Which feature best contribute to 
increase the separability on classification assessment? 

We used the group of spatial and spectral features derived 

from a pair of NDVI Landsat images to train random forest 

(RF) algorithm. The method does not require a time series of 

satellite images because it exploits the spatial and spectral 
domains of NDVI, reducing processing time and avoiding 

cloud coverage problems.  

 

Material and Methods 

This study exploits the potential of semivariogram indices  
and traditional spectral features extracted from NDVI Landsat 

bi-temporal images to detect deforestation in the Brazilian 

savanna biome. The method is summarized in six steps 

(Figure 1), which we described in detail in the following 

sections. 
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Figure 1. Methodology flowchart. (1) Images acquisition and processing; (2) Image segmentation by a multiresolution algorithm 
(3) Class definition; (4) Feature extraction from objects; (5) Change detection using Random Forest algorithm; (6) Evaluation by 

the confusion matrix. 

 

Study area and remote sensing data 

The study area is inserted in the northern of Minas Gerais 
State (MG), Brazil, between the coordinates 14º 00' to 16º 

30'south latitude and 43º 00' to 46º 00' west longitude (Figure 

2a) and comprises the Rio Pandeiros Water Resources 

Planning and Management Unit (UPGRH-SF9). The 

predominant vegetation types are cerrado grassland (open 
grassland), cerrado sensu stricto (open grassland with sparse 

shrubs), deciduous forest (predominance of deciduous 

individuals whose loss of foliage reaches more than 50%), 

and palm swamp (veredas), a riparian type of vegetation 

(Silveira et al. 2017b). The climate is Aw, with distinct dry 
winter and wet summer. Approximately 90% of the rains are 

concentrated from October to April with annual precipitation 

ranging from 1,200 to 1,800 (Peel et al. 2006).  

In order to perform all the analysis, we selected 6 samples of 

10 km² distributed in the UPGRH-SF9 (Figure 2b) based on 
the presence of LULCC and natural phenological changes.  

Operational Land Imager (OLI)/Landsat-8 images from 

July 21, 2015 and July 23, 2016 – orbit 219, point 70 -  have 

been downloaded from the US government institute that 

supports research involving geological surveys and Earth 
observation, the United States Geological Survey for Earth 

Observation and Science (USGS\EROS). We selected the 

images not only avoiding presence of clouds, but also 

selecting images around dry and wet months to maximize the 

effects of vegetation seasonality. All scenes were pre-
processed to surface reflectance levels using the Landsat 

Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) atmospheric and topographic correction 

algorithm (Vermote et al. 1997). We used the NDVI  (NIR 
and red bands) of each period. Although NDVI is a simple 

remote sensing index, it minimizes the effect of shadows 

caused by the terrain’s topography (Vorovencii 2014). We 

then applied an image differencing technique (Lu et al. 2004). 

This technique has long been used to highlight areas of image 
change quickly with minimal supervision and is still in use 

today, typically applied to image-objects (Tewkesbury et al. 

2015). 

 

Image segmentation 
We applied the multiresolution segmentation algorithm 

(Baatz and Schäpe 2000) from the eCognition software, using 

the image differencing 2016-2015. Using object as unit 

analysis, pixels are not individually classified but are 

combined into homogenous groups (objects) and classified 
together (Chen et al. 2012). We used the following 

parameters: 0.3 for shape, 0.3 for compactness and 150 for 

scale parameter (SP). The most critical step is the selection of 

the SP, which controls the size of the image objects that 

directly influences the semivariogram-predefined criteria: lag 
distance (Silveira et al. 2018b). We adopted a trial and error 

approach (Duro et al. 2012) to find an appropriate scale 

parameter that was defined to 150 based on a visual 

assessment of segmentation suitability. The objects generated 

were overlapped with the NDVI image differencing to extract 
the spatial and spectral features for change detection using RF 

algorithm. 
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Figure 2.  (a) Location of UPGRH-SF9 in Brazil; (b) Sampling design. 
 

Class definition 

The study focused on two classes: (a) vegetation covers 

with seasonal changes in NDVI caused by phenology;  

and (b) vegetation covers with changes caused by 
deforestation/clearing and fires (Figure 3). These classes were 

set up according to prior visual interpretation. We used a data 

set of 130 objects well distributed over the study area, with 

65 sampled of each class. 

 

 
 

 

 

Figure 3. The OLI/Landsat-8 false color composites (bands 5, 4 and 3 in RGB) show examples of the classes defined of 2015 (year 

1) and 2016 (year 2). Seasonal variations caused by vegetation phenology are shown in (a), while human-induced changes caused 
by fires are illustrated in (b).  

 

Feature extraction 

From the NDVI difference image, we extracted the 

spectral and spatial features inside the objects. We used as 
spectral features the MEAN and standard deviation (STDV) 

of the NDVI values. The spatial information was extracted 

from the experimental semivariograms (Equation 1), where 

the (h) is the estimator of the semivariance for each 

distance h, N (h) is the number of pairs of points separated by 
distance h, Z(x) is the value of the regionalized variable at 

point x, and Z(x+h) is the value at point (x+h):         

  γ (h)= (
1

2N(h)
)∑ (Z(x)-Z(x+h))

2N(h)
i=1                                        (1) 

Semivariance functions are characterized by three 

parameters: sill (σ²), range (φ) and nugget effect (τ²). The sill 

is the plateau reached by the semivariance values, measuring 

the variance explained by the spatial structure of the data. The 

range is the distance until the semivariogram reaches the sill,  
reflecting the distance at which the data become correlated. 

The nugget effect is the combination of sampling errors and 

variations in scale that occurs over scales of less than the 

distance between the sampled points (Curran 1988). We 
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attempted to find an optimal lag distance to ensure that sill 
values would provide a concise description of data variability. 

We fixed the number of lags as 30 pixels and the lag size 

equivalent to the image spatial resolution (30 m), resulting in 

a lag distance of 900 m. 

From the semivariogram we calculated six indices  

(Balaguer et al. 2010) extracted in the software FETEX 2.0 
(Ruiz et al. 2011) (Table 1). These indices describe the shape 

of the experimental semivariograms, and therefore the 

properties that characterize the spatial patterns of the image 

objects.  

 
 

Table 1. Semivariogram indices based on the points defining the experimental semivariogram. 

Indices Description Formula 

Near the Origin 

RVF Ratio between the 
values of the total 

variance and the 

semivariance at first lag 

RVF=
Variance

γ1
 

RSF Ratio between 

semivariance values at 
second and first lag 

RSF=
γ2

γ1
 

FDO First derivative near the 

origin 
FDO=

γ2- γ1

h
 

SDT Second Derivative at 

third lag 
SDT=

γ4- 2γ3+ γ2 

h
2  

Up to the First Maximum 

FML The lag value where the 

curve reaches the first 
local maximum 

FML=hmax_1 

MFM Mean of the 

semivariogram values 

up to the first maximum 

MFM=
1

Max_1
∑γi 

VFM Variance of the 
semivariogram values 

up to the first maximum 

VFM=
1

Max_1
∑(γi-γ)² 

DMF Difference between 

MFM and the 

semivariance at first lag 
DMF=MFM- γi 

RMM Ratio between the 

semivariance at first 

local maximum and 

MFM 

RMM=
γ

max_1

γ
max_1
mean  

SDF Second-order difference 
between first lag and 

first maximum. 

SDF=γ
max_1

-2γmax_1 

2

+γ2 

AFM Semivariance curvature 

AFM=
h

2
(γ1+2( ∑ γ1

max_1-1

i=2

) +γ
max_1

) - (γ1(hmax_1 -h1)) 

Change detection 

We chose random forest (RF) machine learning algorithm 
to classify the changes. The samples were divided into two 

parts, one for classifier training (70%) and the other for 

classification assessment (30%). The RF algorithm, initially 

proposed by Breiman (2001) is an ensemble method which 

generates a set of individually trained decision trees and 
combines their results. RF is a robust non-parametric 

classifier and has the ability to accommodate many predictor 

variables (DeVries et al. 2016).  

We used the open-source software WEKA 3.8 to fit the 

RF. Two parameters need to be set in order to produce the 
forest trees: the number of decision trees to be generated 

(Ntree) and the number of variables to be selected and tested 

for the best split when growing the trees (Mtry) (Belgiu and 

Drăgu 2016). Five hundred trees were grown for each 

classification and Mtry parameter was left at its default value 
(log of the number of features + 1) (Millard and Richardson 

2015). Design of a decision tree required the choice of an 

attribute selection measure and a pruning method. Thus, we 

chose the Information Gain Ratio (GR) criterion as a quality 

measure of the attributes used to classify.  
 

Evaluation of Change Detection 

We evaluated the combination of spatial and spectral 
features as input data to train RF to classify seasonal changes 

and changes caused by deforestation or fires; using a 

confusion matrix (Congalton et al. 2014). From this, we 

measured the overall accuracy, producer’s and user’s 

accuracy and the kappa coefficient. 
 

Results and discussion 

We first analysed the semivariogram as a tool to quantify 

the spatial variability of NDVI pixels inside the objects. The 

semivariograms reached the sill within the calculated distance 
(900m), indicating that their spatial extents were sufficiently 

large to encompass the entire spatial variability of NDVI 

derived from OLI/Landsat-8 images. 

From the semivariograms, we found two distinct patterns: 

the shape and the overall variability (sill) of the data remained 
constant during the analysed period in areas with seasonal 

changes due to phenological effects between 2015 and 2016 

(Figure 4ab); and the shape and sill increased during the 

analysed period in areas undergoing deforestation or fires 

(Figure 4cd). These results indicate that the spatial variability 
of NDVI quantified by semivariograms is very sensitive to 
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changes in the vegetation cover caused by human-induced 
activities. On the other hand, we found that regardless of the 

strong seasonality characteristic of the TSBs studied here, 

natural vegetation phenology did not change the shape and 
overall variability of the semivariograms.  

Figure 4. Semivariogram examples of NDVI values extracted from objects undergoing: (a) Seasonal changes due to phenological 

effects; (b) Changes due to deforestation. OLI/Landsat-8 false color composites (bands 5, 4 and 3 in RGB). 

 
The low variability of NDVI values (sill=0.0010) of the 

landscape types covering the study area in 2015 (year 1) is 

explained by the high and homogeneous values of this index 

inside the objects.  In 2016 the land-cover did not change, 

however the NDVI values decreased due to the effect of 
vegetation seasonality. Nevertheless, the NDVI variability 

did not change because the phenology affected the whole 

object. The values decreased from 2015 to 2016, but its 

variability did not. In the presence of deforestation or fires, 

the high variability of the objects is explained by the mix of 
bare soil and remained vegetation. The increase in overall 

variability (sill=0.0030) after change is explained by the 

combination of high NDVI values for the remaining 

vegetation inside the objects and low NDVI values for bare 

soil.  
Here, after analyses the semivariogram behavior, we used 

the NDVI image difference to generate the semivariograms 

and extract the indices. As expected, the semivariograms 

obtained from the NDVI images presented distinct patterns, 

as presented in Figure 5, showing the ability of the 
semivariogram to depict landscape spatial heterogeneity. The 

image spatial variability, increased considerably from 

seasonal change class to fires and/or deforestation.  

Similar results were found by other studies. Acerbi Junior 

et al. (2015) working in Brazilian savannas, analysed 
semivariogram parameters obtained from NDVI images to 

detect changes. They concluded that sill and range parameters 

increased their values after deforestation and remain similar 

if the land cover had not been changed. Sertel et al. (2007) 

analyzed the use of semivariograms to identify earthquake 
damage in an urban area in Turkey, and concluded that the 

semivariogram shape was different for pre and post-

earthquake if the area was severely damaged, but similar if 

the area was not severely damaged. The areas of severe 

damage had even larger increases in range and sill whereas 

the areas of minor earthquake damage had similar ranges and 

sill before and after the earthquake. Garrigues et al. (2006) 

using SPOT-HRV images with spatial resolution of 20 

meters, found that the spatial variability provided by sill 

increased considerably from forest areas (homogeneous) to 
agricultural areas (heterogeneous), due to the mosaic of 

objects analysed with high NDVI values and the presence of 

bare soil areas with low values of this index, contrasting with 

vegetation areas. 

 
Figure 5. Semivariograms generated from NDVI difference 
image represented by classes analysed. 

 

Evaluation of change detection 

Table 2 summarizes the results in terms of global 

accuracy, user accuracy and producer and Kappa precision 
related to the map generated for the study area (Figure 6). We 

obtained a global accuracy of 97.73% and Kappa index 0.95, 

indicating high accuracy. The most important point to note is 

that all changed objects due to deforestation or fires were 

correctly mapped (producer’s accuracy = 100%) with an 
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inclusion error of 10%. The seasonal change class also good 
producer’s accuracy, reaching 96.15%. 

Silveira et al., 2018b classifying seasonal changes and 

LULCC in Brazilian Savannas, found an overall accuracy of 

95% and 88.33% using the individual sill semivariogram 

parameter and AFM index derived from NDVI bi-temporal 
images, respectively. The change detection classes analysed 

were distinguished by the overall variability provided by the 

parameter of the semivariogram. The accuracies of the sill 

parameter and AFM semivariogram indices were higher than 

those of the other indices, as they  provide information that 
represented the overall variability of the NDVI, and the other 

indices provide information related to specific parts of the 

semivariogram. 

 
Table 2. Change detection results using the group of features 

and random forest algorithm. 

Confusion 
matrix  

Seasonal 
changes 

Deforestation/Fires 

Producer 

Accuracy (%) 
96,15 100 

User Accuracy 

(%) 
100 94,74 

Global 

Accuracy (%) 
97,73 

Kappa index 0.95 

 

Figure 6. The change maps for the 2015–2016 period. 

 
The most important indices computed by the Information 

Gain Ratio (GR) criteria are presented in Table 3. The most 

important feature was the VFM (0.925) semivariogram index 

and Mean (0.629) spectral feature, followed by MFM, 

DESVT, RVF and AFM. According to Balaguer et al. (2010), 
VFM parameter computes the variance of the semivariogram 

values between the first value and the first maximum. It is 

directly related to the homogeneity of the values in the image. 

It is complementary to the information provided by the MFM 

(mean of the semivariogram values up to the first maximum). 

RVF is the ratio between the values of the total variance and 

the semivariance at first lag Since the semivariogram tends to 

reach the sill near the variance (Fig. 1), this parameter is an 

indicator of the relationship between the spatial correlation at 
long and short distances. Its value increases when high 

variability at long distances and low variability at short 

distances occurs. This feature also presents high values for 

images with large primitives or periodic patterns. AFM is the 
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area between the semivariogram value in the first lag and the 
semivariogram function until the first maximum. This 

parameter provides information about the semivariogram 

curvature and is also related to the variability of the data  

 

Table 3. Order of importance of indices and detection 
statistics.   

Feature 
Information Gain 

Ratio (GR) 

VFM 0.925 

MEAN 0.629 

MFM 0.174 
DESVT 0.135 

RVF 0.129 

AMF 0.122 

 
Silveira et at. (2018a) demonstrated that NDVI spatial 

variability, captured by AFM semivariogram index, is not 

affected by vegetation seasonality and, therefore, can produce 

time series that accurately differentiate forest changes from 

seasonal changes, resulting in fewer classification errors. Wu 
et al. (2015) tested the use of semivariogram features for 

object-based high-resolution image classification. They 

showed that such features are of a more beneficial supplement 

to spectral features. In Balaguer et al. (2010) the classification 

accuracies obtained using the proposed semivariogram 
features were, in general, higher and more balanced than 

those obtained using the spectral sets and standard texture 

features. Thus, combining spatial and spectral remote sensing 

features increases the accuracy of LULLC detection. 
 

Conclusion 

 Here we combined spatial and spectral features 

derived from NDVI image difference to differentiate seasonal 

changes from deforestation/fires. Our study has demonstrated 
that the use of spatial information combined with spectral 

features provide good results, presenting 97.73% of global 

accuracy. The spatial variability of NDVI values were not 

affect by vegetation seasonality, favouring the addition of 

semivariogram indices to reduce the impact of seasonality for 
detecting deforestation or fires from NDVI image difference.  

From the total of 13 features, the ones that best contributed to 

increase the separability on classification assessment were 

VFM, MEAN, MFM, DESVT, RVF and AFM.  

How to accurately extract LULCC while disregarding the 
ones caused by phenological differences in Brazilian seasonal 

biomes undergoing rapid land-cover changes can be achieved 

by adding semivariogram indices in combination with 

spectral features as input data to train random forest 

algorithm. 
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