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ABSTRACT: The theory of model prediction error is presented in details from the

point of view of geometric constructions. It is expected that this approach can be

a possible pedagogical tool in the treatment of the subject. Although the focus is

essentially conceptual, all algebraic passages is developed in order to facilitate a greater

understanding for the reader. Two elementary examples are presented.
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1 Introduction

A statistical model should, like almost every scientific procedure, have one eye
on the past and two eyes on the future. Once a model has been fitted to a data
set, this certainly describes well the past. However, it will also describe well the
future? For example, when modeling influenza data that occurred last winter, will
the model be able to predict well the number of cases in the next winter? This
is called by Statisticians model predictive capacity, this being perhaps the most
important characteristic of a model. In spite of this, in the textbooks we find several
techniques on how to adjust models to data and how to measure the quality of these
adjustments, but in general, little attention is given to measuring the capacity of
these models to predict future data. This fact is not justified since the formalization
of the predictive capacity of a model is not mathematically more complicated than
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the adjustment techniques. This paper intends to develop this approach in a trivial,
yet exhaustive way, explaining all the mathematical passages in order to facilitate
the reader’s understanding, having been motivated by the student’s difficulties in
understand the prediction error formula in Efron(2004).

2 Methods

Figure 1 - Geometry of the prediction error.

Let y = (y1, ...., yn) be a random vector with mean vector µ = (µ1, ..., µn) =
E[y]. When a data vector y is observed, some adjustment technique is adopted
and then a model is proposed and expressed in the form µ̂ = m(y), where m is a

function of Rn → Rn. How can we assess the predictive capacity of ˆµ = m(y)? The
question is, if a new vector y0 is observed, how close to µ̂ = m(y) will this vector
be? Such question does not cover the entire prediction problem because there is
still the problem that the data vector used in the adjustment was the realization of
a random vector. Then it is necessary that the whole process be randomized:

The data y are observed → the estimative µ̂ = m(y) is obtained → new data
vector y0 of the same random phenomenon is observed → the square of deviations∥∥y0 −m(y)

∥∥2 is then calculated.
So, if this process is repeated several times, what is the mean of the sum

of squares of deviations? It is necessary to formalize this procedure in terms of
mathematical expectations.

Since we have two random vectors y and y0, it is necessary for a proper
definition of prediction error to take expectation in relation to each of these random

vectors, that is, the double expectation E
[
E0

[∥∥y0 −m(y)
∥∥2]], where E[ ] is the

expectation with respect to the vector y and E0[ ] the expectation with respect to
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y0 (MOOD; GRAYBILL and BOES, 1974; CASELLA and BERGER, 2002). In
order to have an intuition in the calculation of this double expectation, a little of
geometry will be used.

The excess of algebraic expressions is due to the fact that all passages was
explicited, what is expected to facilitate the understanding.

We have three random vectors y, m(y), y0 and a parametric vector µ. Two
triangles are then defined by {y, µ, m(y)} and {y0, µ, m(y)}.

Applying the law of cosines to the dashed triangle {y0, µ, m(y)} in Figure 1,
we have:

∥∥y0 −m(y)
∥∥2 =

∥∥y0 − µ
∥∥2 + ‖m(y)− µ‖2 − 2

∥∥y0 − µ
∥∥ ‖m(y)− µ‖ cos(θ)

=
∥∥y0 − µ

∥∥2 + ‖m(y)− µ‖2 − 2
〈
y0 − µ,m(y)− µ

〉
.

Taking the expectation of the previous equation in relation to y0 follows

E0

[∥∥y0 −m(y)
∥∥2] = E0

[∥∥y0 − µ
∥∥2 + ‖m(y)− µ‖2 − 2

〈
y0 − µ,m(y)− µ

〉]
= E0

[∥∥y0 − µ
∥∥2]+ E0

[
‖m(y)− µ‖2

]
− 2E0

[〈
y0 − µ,m(y)− µ

〉]
.

(1)

Since m(y)− µ does not depend on y0 and the expectation is taken in relation
to y0, then:

−2E0

[〈
y0 − µ,m(y)− µ

〉]
= −2

〈
E0

[
y0 − µ

]
, [m(y)− µ]

〉
.

Furthermore, E0

[
y0 − µ

]
= 0. Thus, the previous equation is

−2E0

[〈
y0 − µ,m(y)− µ

〉]
= −2 〈0,m(y)− µ〉 = 0.

Then we can write:

E0

[∥∥y0 −m(y)
∥∥2] = E0

[∥∥y0 − µ
∥∥2]+ E0

[
‖m(y)− µ‖2

]
.

It is very interesting to note that in relation to mathematical expectation, the
Pythagorean theorem holds true, i. e., on average the dashed triangle is a right
triangle. Also, note that no distributional hypothesis for the random vector y0 has
been assumed, not even the hypothesis of symmetry. This fact goes beyond our
intuition and we will leave this question to the reader, how to explain this fact
better?

Finally, E0

[
‖m(y)− µ‖2

]
= ‖m(y)− µ‖2, because m(y)− µ does not

depend on y0. Thus,

E0

[∥∥y0 −m(y)
∥∥2] = E0

[∥∥y0 − µ
∥∥2]+ ‖m(y)− µ‖2.
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and therefore the prediction error is given by

E
[
E0

[∥∥y0 −m(y)
∥∥2]] = E

[
E0

[∥∥y0 − µ
∥∥2]]+ E

[
‖m(y)− µ‖2

]
. (2)

Noting that E0

[∥∥y0 − µ
∥∥2] is a population quantity which does not depend

on y, it follows that E
[
E0

[∥∥y0 − µ
∥∥2]] = E0

[∥∥y0 − µ
∥∥2], and the equation (2)

can be written as

E
[
E0

[∥∥y0 −m(y)
∥∥2]] = E0

[∥∥y0 − µ
∥∥2]+ E

[
‖m(y)− µ‖2

]
.

Since y0 and y can be considered the same random vector, E0

[∥∥y0 − µ
∥∥2] =

E
[
‖y − µ‖2

]
, and then

E
[
E0

[∥∥y0 − µ(y)
∥∥2]] = E

[
‖y − µ‖2

]
+ E

[
‖m(y)− µ‖2

]
. (3)

Now, by applying the law of cosines in the dashed triangle {y, µ, m(y)}
(Figure 1) we have:

‖y −m (y)‖2 = ‖y − µ‖2 + ‖m (y)− µ‖2 − 2 〈y − µ, m (y)− µ〉 (4)

Taking the expectation, we have as result:

E
[
‖y − µ‖2

]
+ E

[
‖m(y)− µ‖2

]
= E

[
‖y −m(y)‖2

]
+ 2E [〈y − µ,m(y)− µ〉] ,

Therefore, by substituting the last result in (3) it follows that:

E
[
E0

[∥∥y0 −m(y)
∥∥2]] = E

[
‖y −m(y)‖2

]
+ 2E [〈y − µ,m(y)− µ〉] .

It can be seen that
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E [〈y − µ,m(y)− µ〉] = E [〈y − µ,m(y)− E [m(y)] + E [m(y)]− µ〉]
= E [〈y − µ,m(y)− E [m(y)]〉] + E [〈y − µ, E [m(y)]− µ〉]
= E [〈y − µ,m(y)− E [m(y)]〉] + 〈E [y − µ] , E [m(y)]− µ〉
= E [〈y − µ,m(y)− E [m(y)]〉] + 〈0, E [m(y)]− µ〉
= E [〈y − µ,m(y)− E [m(y)]〉]

= E

[
n∑

i=1

(yi − µi) (m(y)i − E[m(y)]i)

]

=

n∑
i=1

E [(yi − µi) (m(y)i − E[m(y)]i)]

=

n∑
i=1

cov (yi,m(y)i)

= cov(y,m(y)).

Therefore:

E
[
E0

[∥∥y0 −m(y)
∥∥2]] = E

[
‖y −m(y)‖2

]
+ 2cov(y,m(y)). (5)

This formula was presented in Efron(2004) without many details. The
prediction error is then the error of the model adjustment added with a penalty
related to the covariance between the data and the estimator. Note that if the
covariance between the data vector y and the model m (y) is large, this means a
certain instability of the model in the sense that a larger variation in the data also
implies a large variation in the model, which is not a desirable feature of a model .
Therefore, the predictive capacity is a trade-off between the expectation of fit error
and the variability of the model with the data.

3 Examples

The simplest case occurs when we want to calculate the prediction error in the
situation where y = (y1, . . . , yn) is an i.i.d sample. We want to estimate µ = E [y].

In this case, we will use as estimator µ̂ = m(y) =ȳ = (ȳ, . . . , ȳ), where ȳ = 1
n

n∑
i=1

yi.

The prediction error of this estimator in relation to a new observation y0 is
given by
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E
[
E0

[∥∥y0 − ȳ
∥∥2]] = E

[
‖y − ȳ‖2

]
+ 2cov(y, ȳ)

=

n∑
i=1

E
[
(yi − ȳ)

2
]

+ 2

n∑
i=1

cov(yi, ȳ)

=

n∑
i=1

E
[
(yi − µ+ µ− ȳ)

2
]

+ 2

n∑
i=1

cov

yi,

n∑
j=1

1

n
yj


=

n∑
i=1

E
[
(yi − µ)

2
+ 2(yi − µ)(µ− ȳ) + (µ− ȳ)

2
]

+ 2

n∑
i=1

cov

(
yi,

1

n
yi

)

=

n∑
i=1

{
E
[
(yi − µ)

2
]

+ 2E [(yi − µ)(µ− ȳ)] + E
[
(µ− ȳ)

2
]}

+
2

n

n∑
i=1

var(yi)

=

n∑
i=1

{
σ2 + 2E [(yi − µ)(µ− ȳ)] +

1

n
σ2

}
+ 2σ2

=

n∑
i=1

σ2 + 2E

(yi − µ)(µ− 1

n

n∑
j=1

yj)

+
1

n
σ2

+ 2σ2
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Then,

E
[
E0

[∥∥y0 − ȳ
∥∥2]] =

n∑
i=1

σ2 + 2E

(yi − µ)(µ− 1

n

∑
j 6=i

yj −
1

n
yi)

+
1

n
σ2

+ 2σ2

=

n∑
i=1

σ2 + 2E

(yi − µ)(µ− 1

n

∑
j 6=i

yj)− (yi − µ)
1

n
yi

+
1

n
σ2

+ 2σ2

=

n∑
i=1

σ2 + 2E [yi − µ]E

µ− 1

n

∑
j 6=i

yj

− 2

n
E [(yi − µ)yi] +

1

n
σ2

+ 2σ2

=

n∑
i=1

{
σ2 + 0− 2

n

(
E
[
y2
i

]
− 1

n
E [(yiµ)]

)
+

1

n
σ2

}
+ 2σ2

=

n∑
i=1

{
σ2 − 2

n

(
σ2 + µ2

)
− 2

n
µ2 +

1

n
σ2

}
+ 2σ2

=

n∑
i=1

{
σ2 − 2

n
σ2 +

1

n
σ2

}
+ 2σ2

=

n∑
i=1

{
σ2(n− 1)

n

}
+ 2σ2

= σ2(n− 1) + 2σ2

= σ2(n+ 1).

Figure 2 describes such a situation.
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Figure 2 - Geometry when m(y) = ȳ.

The previous example is a particular case of the more general situation in
which we want to calculate the prediction error of the least squares estimator in
linear regression y = Xβ + ε, with rank(X) = p and µ = E[y] = Xβ. As
a predictor of a new observation y0 we will use m(y) = X(X ′X)−1X ′y = Hy
(RENCHER; SHAALJE, 2008). Observing that Hµ = µ then:

E
[
E0

[∥∥y0 −Hy
∥∥2]] = E

[
‖y −Hy‖2

]
+ 2cov (y, Hy)

= E [〈y −Hy,y −Hy〉] + 2

n∑
i=1

cov (yi, (Hy)i)

= E [〈(I −H)y, (I −H)y〉] + 2

n∑
i=1

cov

(
yi,

n∑
s=1

hisys

)

= E
[
y′(I −H)

′
(I −H)y

]
+ 2

n∑
i=1

hiicov (yi, yi)

= E
[
y′(I −H)

2
y
]

+ 2σ2
n∑

i=1

hii

= E [y′ (I −H)y] + 2σ2tr(H)

= σ2tr (I −H) + µ′ (I −H)µ+ 2σ2tr(H)

= nσ2 + σ2tr(H)

= (n+ p)σ2

After get an estimator for β, we have the prediction function ŷ = β̃′x.
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Fixing a value x0, it is usual to predict the random variable y = β′x0 + ε by
the random variable ŷ = β̃′x0. To overcome the high variability of the least
square estimator in presence of almost multicollinearity several types of shrinkage
estimators was proposed in the literature like: Ridge (HOERL and KENNARD,
1970), LASSO (TIBSHIRANI, 1996) Elastic-Net (ZOU and HASTIE, 2005) and
OSCAR (BONDELL and REICH, 2008). Here we will suppose a simple shrinkage

of the least square estimator given by tβ̂ols, 0 < t < 1. To predict y0, the value of
the response variable y when the vector of co-variables are x0, we will use ŷ = tβ̂′olsx0

E
[
E0

[(
ŷ − y0

)2]]
= E

[
E0

[(
ŷ − E [ŷ] + E [ŷ]− y0

)2]]
= E

[
E0

[
(ŷ − E [ŷ])

2
]]

+ 2E
[
E0

[
(ŷ − E [ŷ])

(
E [ŷ]− y0

)]]
+ E

[
E0

[(
E [ŷ]− y0

)2]]
= E

[
(ŷ − E [ŷ])

2
]

+ 2E
[
(ŷ − E [ŷ])

(
E [ŷ]− E0

[
y0
])]

+ E0

[(
E [ŷ]− y0

)2]
= var [ŷ] + 2E

[
(ŷ − E [ŷ])

(
E
[
β̂′
]
x0 − β′x0

)]
+ E0

[(
E [ŷ]− β′x0 + β′x0 − y0

)2]
= var [ŷ] + 2E [(ŷ − E [ŷ]) (β′x0 − β′x0)] + E0

[
(E [ŷ]− β′x0)

2
]

+

+ 2E0

[
(E [ŷ]− β′x0)

(
β′x0 − y0

)]
+ E0

[(
β′x0 − y0

)2]
= var [ŷ] + (E [ŷ]− β′x0)

2
+ 0 + σ2

= var [ŷ] + (E [ŷ]− β′x0)
2

+ σ2.

Allen (1971) denoted this error of prediction as mean square error of prediction

(MSEP). Observe that var [ŷ] + (E [ŷ]− β′x0)
2

is the mean square error (MSE) of
ŷ when viewed as an estimator of β′x0.

We have

var [ŷ] = t2x′0(X ′X)−1x0σ
2

and

(E [ŷ]− β′x)
2

+ σ2 = (tβ̂ols − β)2 + σ2

and then the error of prediction is t2x′0(X ′X)−1x0σ
2 + (tβ′x0 − βx0)2 + σ2. It is

worth to get the value of t with the minimum prediction error. For this deriving we
get,

tmin =
(β′x0)

2

x′0(X ′X)
−1
x0σ2 + (β′x0)

2 . (6)

As an illustrative example consider (RENCHER; SHAALJE, p. 290, 2008):
The data contains body fat for a sample of 20 females aged 25-34. The response
variable was body fat (y) and two predictor variables were triceps skinfold thickness

(x1) and midarm circumference (x2). For these data, the matrix (X ′X)
−1

is given
by
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(X ′X)
−1

=

 3.233 −0.021 −0.096
−0.021 0.003 −0.002
−0.096 −0.002 0.006

 ,
and estimates

β̂′ols =
[

6.792 1.000 −0.431
]

x′0 =
[

1 14 19
]

σ̂2 = 6.231.
Using these estimate in the equation (6), the estimated value for tmin is 0.983.

4 Conclusion

It is possible, with difficulty similar to the definition of model adjustment, an
understandable mathematical treatment for the prediction error. The use of the
triangle in Figure 1 may be a useful tool in understanding the double expectation
that defines the prediction error.

The predictive error of a model is evidently a population quantity that needs
to be estimated. To obtain an unbiased estimator for the prediction error, we can
use for example, the famous Stein’s Lemma. But this is beyond the scope of this
article.

Acknowledgements

We would like to thank reviewers and editors for their comments and
suggestions.

PEREIRA, L. S.; CHAVES, L. M.; SOUZA, D. J. Sobre o erro de predição. Rev.
Bras. Biom., Lavras, v.37, n.4, p.435-445, 2019.

RESUMO: A teoria do erro de previsão do modelo é apresentada em detalhes sob
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