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Abstract: The enzymatic hydrolysis of lignocellulosic biomass incorporates many physico-chemical
phenomena, in a heterogeneous and complex media. In order to make the modeling task feasible,
many simplifications must be assumed. Hence, different simplified models, such as Michaelis-Menten
and Langmuir-based ones, have been used to describe batch processes. However, these simple
models have difficulties in predicting fed-batch operations with different feeding policies. To
overcome this problem and avoid an increase in the complexity of the model by incorporating other
phenomenological terms, a Takagi-Sugeno Fuzzy approach has been proposed, which manages a
consortium of different simple models for this process. Pretreated sugar cane bagasse was used
as biomass in this case study. The fuzzy rule combines two Michaelis-Menten-based models, each
responsible for describing the reaction path for a distinct range of solids concentrations in the reactor.
The fuzzy model improved fitting and increased prediction in a validation data set.
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1. Introduction

Bioethanol has been a reliable and extensive energy source used for several decades, with several
countries committing to further expanding the utilization of this fuel in their energetic matrix, in order
to comply to C footprint reduction targets. The technology for bioethanol production from sugar cane
juice or corn is well established, but the industrial production of second generation (2G) ethanol has
still not been consolidated, despite the fact that 2G ethanol is an interesting alternative which would
reduce land use [1].

Second generation biofuels are produced from non-food feedstocks, usually lignocellulosic
biomass and biowaste [2]. One well-studied feedstock is sugarcane bagasse. It is the byproduct of
sugarcane milling, which extracts sugarcane juice to produce first generation ethanol and edible sugar.
A part of the bagasse is currently used as fuel in boilers that cogenerate power for the plant and
frequently sell bioelectricity to the grid [3]. However, an excess of bagasse, which cannot be used in
the boilers, can be used to increase ethanol land area productivity and produce additional high value
products inside a biorefinery [4].

One of the key steps in the production of bioethanol from lignocellulosic biomass is the
saccharification process. Using an enzymatic complex to depolymerize pretreated lignocellulosic
biomass is the most common method. Enzymatic hydrolysis is conducted in mild conditions, and
generates higher yields and less inhibitors when compared to other technologies [5]. However, due to
the high cost of the biocatalyst, the operation has to be very well designed in order to find economically
feasible operation windows [6]. Moreover, a high concentration of the hydrolyzed product must be
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pursued, to reduce energy demands needed to concentrate the sugar-rich liquid phase before feeding
it to the fermenter [7].

In a standard stirred tank reactor, two strategies can be used to achieve a high final product
concentration; either by starting a batch process with a high concentration of solids, a situation where
the concentration of substrate is so high that there is little to none spontaneous separation of the
liquid phase [8], or by choosing a fed-batch process that scatters substrate addition and diminishes
instant solids concentration but still amounts to a high final concentration of hydrolyzed sugars. The
difficulties that arise from stirring a reactor with high concentrations of solids at the beginning of
hydrolysis make the fed-batch strategy more attractive at an industrial scale. However, in order to
evaluate yields and economics of different feeding policies of a fed-batch reactor, a mathematical model
is an imperative tool, since it helps to shorten costly and time-consuming trial-and error procedures.

Lignocellulose biomass enzymatic saccharification was carried out with cocktails formed by several
enzymes (endo-, exo-, beta-glucanases and xylanases, polysaccharide monooxygenases (LPMOs) and
so forth) acting synergistically, with the goal of producing fermentable monosaccharides, mostly
pentoses and hexoses [9]. The reaction system is a complex medium where different enzymes adsorb to
solid matrices, producing mostly glucose and cellobiose from cellulose, and xylose from hemicellulose.
Cellobiose molecules yielded by the hydrolytic enzymes were further hydrolyzed to glucose by
beta-glucosidase [10]. These enzymes have different adsorption characteristics with their substrates.
Non-productive adsorption can lead to innocuous biding or to inactivation of part of the enzymes in the
pool [11]. Furthermore, mass transfer hindrances, non-homogeneous mixing of a solid-liquid system
whose rheology is in continuous change, and thermal inactivation of enzymes all act simultaneously
during the reaction. The solid feedstock is non-uniform, and its characteristics depend on the conditions
of the pretreatment severity and on the origin of the biomass itself, along the time spanning the
crop [11–13]. A detailed phenomenological model accounting for all of these steps, if ever feasible,
would be exceedingly complex, with a large number of parameters. Thus, for all practical applications,
simplified models are used for engineering applications, where several complex phenomena are
lumped, and represented by a small set of parameters within a drastically simplified model.

Within this approach, several models have been proposed to describe lignocellulosic biomass
hydrolysis. Among the most popular models are the modified Michaelis-Menten (MM) model and
Langmuir-based models. The classic Michaelis-Menten models are derived based on an excess of
substrate to enzyme condition. Valid for most biochemical catalysis involving a soluble enzyme, this
condition is rarely met in lignocellulose hydrolysis, since the fraction of cellulose available to hydrolysis
is essentially not soluble. A modified form of the Michaelis-Menten model is derived assuming that
the soluble enzyme attacks the solid substrate, while the concentration of enzyme absorbed on the
substrate is much smaller than the free amount [12,14]. Classic Michaelis-Menten models and their
modified form were shown to be able to fit hydrolysis reaction data under strict substrate ranges [15].
A term for competitive product inhibition has been proposed to take into account the reduction of the
hydrolysis rates with time, which the decrease of the substrate concentrations could not explain. To
keep the model simple, other effects, such as nonproductive cellulase binding, enzyme jamming and
enzyme deactivation, are not considered [16].

Kinetic models based on the Langmuir adsorption isotherm stem from a physical ground,
since the substrate is a solid matrix throughout a significant part of the process. Considering that
cellulose is in a solid state, the enzymes must adsorb to the substrate in order to accomplish catalysis.
Thus, incorporating an absorbed enzyme variable within the model can improve model robustness
and adaptability [12]. This type of model has been adapted to cellulose hydrolysis since the late
1970s [17]. Ever since, many derivatives of this model type have been proposed to contemplate different
lignocellulosic materials and experiment conditions. Perhaps one of the most popular and referenced
versions is the one presented by Kadam and collaborators [18]. This model considers three reactions.
The breakdown of cellulose into cellobiose and glucose, as two heterogeneous, separate reactions, and a
homogeneous reaction, the hydrolysis of cellobiose into glucose. The mechanism of both heterogeneous
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reactions was modeled using a Langmuir-type isotherm for the enzymes’ adsorption, followed by a first
order reaction with competitive inhibition by the hydrolysis products (glucose, cellobiose and xylose).
The homogeneous reaction was modeled using a Michaelis-Menten mechanism, with competitive
inhibition by glucose and xylose. The authors also introduced a “substrate reactivity” parameter,
related to the amount of substrate that can be hydrolyzed within the system. This is an empirical
parameter that correlates to the degree of polymerization of the lignocellulosic material, and to other
transport phenomena hindering interactions. Indeed, the degree of polymerization may be considered
an important parameter for modeling reaction rates, since different biomasses or pretreatment methods
may generate different crystallinity indexes. These directly correlate to the amount of cellulose that
is available to the enzymatic complex [19]. Thus, using a “reactivity” parameter, or alternatively,
evaluating the amount of available substrate, can improve model prediction.

In fact, all these lumping structures and simplifications generated a widely usable and adaptable
model. However, some of their underlying assumptions may not hold throughout the entire process,
since significant changes in the reaction media occur during the liquefaction of biomass. For instance,
the rheology of the reaction medium may change drastically throughout the process [20].

Thus, the previously-described models may not fully describe the system behavior change during
the whole long-term process (in fed-batch operations, for instance). Yet, adding complexity to the
model, by acknowledging other effects during its mathematical formulation, will demand more
parameters, which, experience shows, can be very correlated when estimated from the same previous
empirical data. As a result, the parameters frequently loose physical meaning.

An alternative approach is using a simpler structure, with few parameters fitted in different regions.
These regions can be a process where all the substrate is added prior to its initiation, generating a high
solids content at the beginning, or a more liquefied medium with scattered solids feeding. Interpolation
between these two models to fit the mid-range solids concentrations may be used. Another alternative
is using different models in the same process. Some authors proposed to separate the process into
liquefaction and saccharification reactors/reactions [21]. This methodology is fairly straightforward
for a batch reactor. However, during a fed-batch process liquefaction and saccharification occur
simultaneously, since new solid material is added throughout the process (eventually together with
new enzymes). This is probably the reason for the lack of fit when model predictions are extrapolated
to operational conditions of the reactor different to those used for parameter fitting.

This work proposes including a model layer that can smoothly drive the model switches. This
idea comes from the previously-described fact that the hydrolysis process goes through different stages
of liquefaction of the biomass. Besides, when fresh material is fed to the reactor, two mechanisms
may co-exist: one driven by the enzymatic attack of the solid by the enzymes, and the other reflecting
the fact that part of the substrate present in the reactor has already been at least partially hydrolyzed.
Therefore, only one simple class of model may not be sufficient to describe the reaction kinetics. Using
computational intelligence, different classes of models can be combined in certain regions where no
clear mechanism prevails. Instead of just an on-off shifting between kinetic models, their action will
be combined.

To guarantee a smooth transition between models, a Takagi-Sugeno (TS) fuzzy system was
implemented. The TS fuzzy model may be composed by several models, all connected via a set of
fuzzy membership rules. In other words, each model represents part of the system behavior and the
degree of membership varies within a set of established rules [22]. Fuzzy logic has been shown to
improve the estimation of lignocellulosic material in a hydrolysis process with different combinations
of substrates in a robust and reliable manner [13].

Moreover, using a fuzzy logic addendum to the kinetic model can improve the model extrapolation
capability. A consortium of models, coordinated by the fuzzy logic layer, can increase the overall
robustness of the predictions, spanning regions of the state variable regions that were not used to
fit each model of the consortium. This approach may be useful for a system that undergoes drastic
physical transformations along process time.
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In short, our purpose is to describe a methodology in which simple models are used to represent
the behavior of the enzymatic hydrolysis of sugarcane bagasse in reactors under batch and fed-batch
operations. Initially, semi-mechanistic Michaelis-Menten and Langmuir-based models were evaluated
as a basis to predict batch and fed-batch data. When the utilization of only one model is not accurate
enough, a novel modeling methodology can be applied; a consortium of simplified kinetic models
coupled to a fuzzy logic membership rule, which combine the responses of the simple standalone
models fitted to different conditions.

2. Materials and Methods

2.1. Enzyme and Substrates

Enzymatic complex CELIC CTEC 2 was donated by Novozymes Latin America (Araucária, Paraná,
Brazil). The activity of the enzyme complex was 203 FPU.mL−1 and its protein concentration was
75 mgprotein.mL−1.

The lignocellulosic substrate was steam-exploded sugarcane bagasse (1667 kPa and 205 ◦C
for 20 min) provided by the Centro de Tecnologia Canavieira (CTC, Piracicaba, São Paulo, Brazil).
Bagasse composition was determined according to Gouveia and collaborators [23]. The biomass main
components were 43.1 ± 0.1% cellulose; 12.4 ± 0.1% hemicellulose, 28.8 ± 1.9% lignin and 4.7 ± 0.1%
ash (gCompound.gDry Biomass

−1), the remaining are non-analyzed compounds, such as other degradation
products, not considered in the models. Moisture content of the bagasse was 59.9 ± 1.6%.

2.2. Hydrolysis Assays

Three feeding profiles were assessed. A high solids batch (HSB) process, Data Set 1, where 200 g·L−1

of substrate and 3.7 mgprotein.gsubstrate−1 (approximately 10 FPU.gsubstrate−1) of enzymatic complex
were added at the beginning of the process, and two fed-batches, where the feeding profiles amounted
to the same substrate mass as the batch process. However, the lignocellulosic material was distributed
at four discrete feeding times, with different addition times. These feeding strategies generated two
experiment conditions a low solids fed-batch (LSF) and a mixed profile fed-batch (MPF). Table 1
presents data sets for the three feeding profiles.

Table 1. Data sets feeding profiles.

Fitting Data Sets Validation Data Sets

Data Set 1—High Solids Batch Data Set 2—Low Solids
Fed-Batch

Data Set 3—Mixed Profile
Fed-Batch

Feeding
Time (h)

Solids
Feeding

(g)

Enzyme
Feeding
(gProtein)

Feeding
Time (h)

Solids
Feeding

(g)

Enzyme
Feeding
(gProtein)

Feeding
Time (h)

Solids
Feeding

(g)

Enzyme
Feeding

(g)

0.0 600.0 2.22 0.0 150.0 2.22 0.0 150.0 2.22
- - - 2.0 150.0 - 0.5 150.0 -
- - - 12.0 150.0 - 1.0 150.0 -
- - - 24.0 150.0 - 2.0 150.0 -

Full duplicates were performed by conducting the experiment in different days in a 3 L working
volume jacketed stirred reactor (diameter 0.16 m, height 0.37 m and liquid height 0.21 m) with four
baffles (height 0.19 m, thickness 15 mm) and two elephant ear impellers (diameter 0.08 m, New
Brunswick Scientific®, Edison, NJ, USA).

The elephant ear impellers were spaced as to be placed equidistant to one another, the reactor
bottom and the liquid surface. The system was set-up so the top impeller generates a liquid pumping
flow towards the reactor bottom, and the bottom towards the liquid surface, thus enhancing media
mixing. The volume of water at the end of the process was 3 L in all experiments.
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The reactor was kept at 50 ◦C by thermostatic recirculation water bath, and the agitation speed
was 470 RPM. Sampling was performed at 0.5, 1, 2, 4, 6, 8, 12, 24, 36, 48, 60, 72 and 96 h, the samples
were placed in boiling water bath for 10 min to stop the reaction, and then refrigerated.

2.3. Carbohydrates Determination

The samples were analyzed for glucose and xylose in accordance to previously published
recommendations [24]. Method validation, with matrix effects evaluation, has been performed by the
authors’ research group (data not published). Matrix effects were negligible.

High performance liquid chromatography was used to determine glucose and xylose
concentrations. Samples were filtered (0.2 µm) into autosampler vials. They were analyzed in
a Shimadzu SCL-10A chromatograph, with refraction index detector RID10-A, column Animex
HPX-87H Bio-rad, mobile phase sulfuric acid 5 mM at 0.6 mL·min−1. Sample values were compared to
previously established standards.

2.4. Mathematical Modeling

2.4.1. Process Modeling

To describe the lignocellulosic material hydrolysis, six reactions were considered.

Reaction 1: Cellulose→ γCl-Cb Cellobiose
Reaction 2: Cellulose→ γCl-Gl Glucose
Reaction 3: Cellobiose→ γCb-Gl Glucose
Reaction 4: Hemicellulose→ γHe-Xy Xylose
Reaction 5: Lignin→ Lignin
Reaction 6: Enzyme→ Inactive Enzyme

In the reaction scheme, γ are the pseudo-stoichiometric mass relations between
substrates and products for each reaction. The values used for these parameters
were: γCl-Cb = 1.056gCellobiose.gCellulose

−1 [18], γCl-Gl = 1.111gGlucose.gCellulose
−1 [18], γCb-Gl =

1.056gGlucose.gCellobiose
−1 [18], γHe-Xy = 0.841 gXylose.gHemicellulose

−1 [25].
Throughout the modeling stages, reactions 1, 2 and 4 were considered to be heterogeneous, since

they represent the breakdown of cellulose (reactions 1 and 2) and hemicellulose (Reaction 4). Both
substrates are solids that were hydrolyzed into soluble sugars.

The hydrolysis of cellobiose into glucose (Reaction 3) was considered to be homogeneous, since
cellobiose has a solubility far superior than the cellulose polymers.

Reaction 5 is included, despite lignin being inert. Thus, this “reaction” just reflects the accumulation
of lignin in the reactor when it operates in fed-batch mode.

Enzymatic inactivation or inhibition during hydrolysis can occur due to several effects, the most
responsible is usually thermal inactivation [26]. However, in recent research, several authors have been
emphasizing the non-productive binding with lignin as a major source of activity loss [27–29]. Here,
Reaction 6 represents a generic inactivation of the enzymatic complex. Using such a simple mechanism
may not fully elucidate how the several effects affect each enzyme during hydrolysis. However, the
underlying idea is to use as few parameters as possible, while retaining a robust model.

Mass balances for the components in the reactor are in Equation (1), following the formalism
proposed by Bastin and Dochain [30]. Since feeding was accomplished discretely, the addition of
substrate was calculated outside the model integration. In other words, when substrate addition
was performed, the integration was re-initialized with proper initial conditions. Thus, the total mass
balance of the system became a sequence of batch processes.
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d
dt
·



Cl
Cb
Gl
He
Xy
Lg
En


7×1

=



−1 −1 0 0 0 0
γCl−Cb 0 −1 0 0 0

0 γCl−Gl γCb−Gl 0 0 0
0 0 0 −1 0 0
0 0 0 γHe−Xy 0 0
0 0 0 0 0 0
0 0 0 0 0 −1


7×6

·



α1

α2

α3

α4

α5

α6


6×1

(1)

The column vector on the left-hand side of the equations is the concentrations of reactive
cellulose ([Cl]), cellobiose ([Cb]), glucose ([Gl]), hemicellulose ([He]), xylose ([Xy]), lignin ([Lg]) and
enzymatic complex activity ([En]). The 7 by 6 matrix on the right-hand side of the equation is
the pseudo-stoichiometric matrix and the vector (αi) are the reaction rates of reaction 1 to 6, as
previously described.

2.4.2. Standalone Reaction Rate Models

The first approach was to evaluate which model type is more suitable to predict experimental
data. This was performed since there was no clear consensus, in the literature, on which is the
most appropriate. The first type of kinetic model used was based on Michaelis-Menten kinetics
(MMK), where the reactions involving solid substrates (Reactions 1, 2, 4) were represented by modified
Michaelis-Menten models with product inhibition (Equation (2)).

αi =
ki · [Ei] · [Si]

Kmi ·

(
1 + [Pi]

KP,i

)
+ [Ei]

(2)

Cellobiose hydrolysis (Reaction 3), where the substrate is soluble, was represented by a classical
Michaelis-Menten with product inhibition.

αi =
ki · [Ei] · [Si]

Kmi ·

(
1 + [Pi]

KP,i

)
+ [Si]

(3)

In these equations, αi (g·L−1
·min−1) are reaction rates, where the subscripted “i” denotes which

reaction is used, the same nomenclature is used in the subsequent variables, ki are kinetic constants
(min−1), [Ei] are enzyme concentrations (g·L−1), [Si] are substrate concentrations (g·L−1) and Kmi are
the Michaelis-Menten constant (g·L−1) for substrate (Equation (2)) or for enzyme (Equation (3)). KP,i is
the competitive inhibition constant of products (g·L−1), and [Pi] are product concentrations (g·L−1).

First order inactivation was assumed for the whole enzymatic complex (Equation (4),

v = ke · [E] (4)

where ke is a first order inactivation parameter (min−1)).
The other kinetic type was based on the Langmuir Kinetics (LK), as described by Kadam et al. [18],

where Reactions 1, 2 and 4 were represented by Equations (5)–(7) respectively. The cellobiose hydrolysis
(Reaction 3) was also represented by a classic Michaelis-Menten equation with product inhibition
(Equation (3)).

α1 =
k1 · [Eb1] ·Rs · [Cl]

1 + [Cl]
Ki1Cb

+
[Gl]

Ki1Gl
+

[Xy]
Ki1Xl

(5)

α2 =
k2 · ([Eb1] + [Eb2]) ·Rs · [Cl]

1 + [Cb]
Ki2Cb

+
[Gl]

Ki2Gl
+

[Xy]
Ki2Xy

(6)
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α4 =
k4 · [Eb4] ·Rs · [He]

1 + [Cb]
Ki4Cb

+
[Gl]

Ki4Gl
+

[Xy]
Ki4Xy

(7)

Rs = αR
[Cl]
[Cl0]

(8)

[Ebi] =
Emi·Kadi·[E fi]·[Si]

1+Kadi·[E fi]
EtiE fi + Ebi

(9)

Equations (5)–(9) are kinetic models based on the Langmuir adsorption isotherm, and extended
to hemicellulose hydrolysis [31]. The parameters in these equations follow the same units used
by Kadam et al. [18]. Thus, ki are kinetic constants (g·kg−1

·min−1), KiCb, KiGl and KiXl, are the
inhibition constants (g·kg−1) for cellobiose, glucose and xylose, respectively. In Equation (8), Rs is a
substrate reactivity parameter, αr is a reactivity dimensionless constant and [Cl0] is the initial cellulose
concentration (g·kg−1). In Equation (9), [Ebi] are bound enzyme concentrations (g·kg−1), Emi is the
maximum mass of enzyme that can adsorb onto a unit of mass substrate (gProtein.gSubstrate

−1), Kadi are
dissociation constants for enzyme adsorption/desorption reaction (gProtein.gSubstrate

−1), [Efi] are free
enzyme concentrations and [Eti] are total concentrations of a specific enzyme (g·kg−1).

It is important to note that the information regarding the amount of each enzyme within the
enzymatic complex was unavailable. In order to use the model described the enzymatic complex mass
was divided equally between the different types of enzymes. Since the real fraction of certain type of
enzyme is always constant, the activity of a specific enzyme will be lumped into their kinetic constants,
and the model can be used, but its parameters do not relay the correct value.

2.4.3. Fuzzy Kinetic Model

After the determination of the most suitable model to describe the data obtained in the
saccharification experiments, the fitting procedure for the fuzzy model (FM) was carried out. The FM
used was a TS Fuzzy system [32]. The fuzzy system is used to interpolate between different models.
Notice that different models here are actually the same set of model structures fitted in different
conditions. Therefore, with a different set of parameter values. The model structure was chosen based
on the standalone modeling results.

Fuzzy modeling was carried out in three steps. Firstly, a high solids model (HSM) was fitted
using the best reaction rate model type with only data from Data Set 1 (HSB). Second, a low solids
model (LSM) was fitted in the same manner, but only using data from Data Set 2 (LSB). Both models
generated independent reaction rates (αHSM and αLSM) for every equation in a same reaction instant.
Figure 1 illustrates how the FM weighs the two models.

The third step was optimizing a membership function (MSF), which defines how the total reaction
rates of the FM should smoothly change between HSM and LSM. The MSF calculates the membership
degree (MD) of each model based on the total amount of reactive solids (RS). RS is the sum of cellulose
and hemicellulose concentrations. The MDHSM is calculated with the linear fuzzy rule, presented in
Equation (10).

The third step was optimizing a membership function (MSF), which defines how the total reaction
rates of the FM should smoothly change between HSM and LSM. The MSF calculates the membership
degree (MD) of each model based on the total amount of reactive solids (RS). RS is the sum of cellulose
and hemicellulose concentrations. The MDHSM is calculated with the linear fuzzy rule, presented in
Equation (10).

MDHSM =


0 RS ≤ HMSFLb

SR−HMSFLb
HMSFUb−HMSGLb

if HMSFLb ≤ RS ≤ HMSFUb

1 RS ≥ HMSFUb

 (10)
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where HMSFLb is the high model membership function lower bound, and HMSFUb is the high model
membership function upper bound.

Energies 2019, 12, x FOR PEER REVIEW 7 of 17 

 

reactivity parameter, αr is a reactivity dimensionless constant and [Cl0] is the initial cellulose 
concentration (g.kg−1). In Equation (9), [Ebi] are bound enzyme concentrations (g.kg−1), Emi is the 
maximum mass of enzyme that can adsorb onto a unit of mass substrate (gProtein.gSubstrate−1), Kadi are 
dissociation constants for enzyme adsorption/desorption reaction (gProtein.gSubstrate−1), [Efi] are free 
enzyme concentrations and [Eti] are total concentrations of a specific enzyme (g.kg−1). 

It is important to note that the information regarding the amount of each enzyme within the 
enzymatic complex was unavailable. In order to use the model described the enzymatic complex 
mass was divided equally between the different types of enzymes. Since the real fraction of certain 
type of enzyme is always constant, the activity of a specific enzyme will be lumped into their kinetic 
constants, and the model can be used, but its parameters do not relay the correct value. 

2.4.3. Fuzzy Kinetic Model 

After the determination of the most suitable model to describe the data obtained in the 
saccharification experiments, the fitting procedure for the fuzzy model (FM) was carried out. The FM 
used was a TS Fuzzy system [32]. The fuzzy system is used to interpolate between different models. 
Notice that different models here are actually the same set of model structures fitted in different 
conditions. Therefore, with a different set of parameter values. The model structure was chosen based 
on the standalone modeling results. 

Fuzzy modeling was carried out in three steps. Firstly, a high solids model (HSM) was fitted 
using the best reaction rate model type with only data from Data Set 1 (HSB). Second, a low solids 
model (LSM) was fitted in the same manner, but only using data from Data Set 2 (LSB). Both models 
generated independent reaction rates (αHSM and αLSM) for every equation in a same reaction instant. 
Figure 1 illustrates how the FM weighs the two models. 

 
Figure 1. Fuzzy model (FM) reaction rate calculation—(a) Example rates for independent high solids 
model (HSM) and low solids model (LSM); (b) Example of membership function (MSF) for high solids 
model (HSM) and low solids model (LSM); (c) Resulting hypothetical fuzzy model (FM) rate from 
high solids model (HSM) and low solids model (LSM) rates. 

The third step was optimizing a membership function (MSF), which defines how the total 
reaction rates of the FM should smoothly change between HSM and LSM. The MSF calculates the 
membership degree (MD) of each model based on the total amount of reactive solids (RS). RS is the 
sum of cellulose and hemicellulose concentrations. The MDHSM is calculated with the linear fuzzy 
rule, presented in Equation (10). 

The third step was optimizing a membership function (MSF), which defines how the total 
reaction rates of the FM should smoothly change between HSM and LSM. The MSF calculates the 
membership degree (MD) of each model based on the total amount of reactive solids (RS). RS is the 
sum of cellulose and hemicellulose concentrations. The MDHSM is calculated with the linear fuzzy 
rule, presented in Equation (10). 

Figure 1. Fuzzy model (FM) reaction rate calculation—(a) Example rates for independent high solids
model (HSM) and low solids model (LSM); (b) Example of membership function (MSF) for high solids
model (HSM) and low solids model (LSM); (c) Resulting hypothetical fuzzy model (FM) rate from high
solids model (HSM) and low solids model (LSM) rates.

With the HSM and LSM membership degrees, the reaction rate for the FM was calculated with
Equation (11) and it is the output of the Takagi-Sugeno system [33].

αFuzzy= MDHSM
· αHSM +

(
1−MDHSM

)
· αLSM (11)

αFUZZY are the reaction rates for each hydrolysis reaction. The MSF optimization stage was
performed to determine where lower and upper bounds of the MDHSM should be placed. These
parameters were optimized via Levenberg-Marquardt algorithm using the data from Data Sets 1 and 2.
The optimization procedure is described in Section 2.4.4.

To evaluate the model prediction capacity, the previously unused data of Data Set 3 were used as
the validation set.

2.4.4. Fitting Algorithm and Statistics

To estimate the different models’ kinetic parameters and MDHSM lower and upper bounds, a
Levenberg-Marquardt algorithm was used. The sum of weighted squares errors (F) was used as the
cost function; it was calculated via Equation (12).

F = eT
·Q · e (12)

where Q is an n× n diagonal weight matrix, e is the error column vector, n is the number of experimental
data. The elements Qii are the inverse of the carbohydrate replicate variance (σ−2

i). The variance
estimated for glucose was 0.392 g2/L2, and for xylose was 0.773 g2/L2. The analysis of errors that led to
these weight values is presented in the Supplementary Material.

To obtain the standard errors of the optimized parameters, Equation (13) was used [34]. The
equation is based on the linearization of the model in relation to the parameters at their optimum values.

Cov(θ) =
(
XT
·Q ·X

)−1
·

F
n−m

(13)

where Cov(θ) is the parameters covariance matrix, X is the linear sensitivity matrix, with derivatives
approximated via finite differences, Q is the diagonal weight matrix. F is the objective function at the
optimum value, n is the number of data sets (data points minus the number of replicates) and m is the
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number of parameters in the model. The parameters standard error was estimated by the square root
of the parameters’ matrix main diagonal.

All fitting procedures were implemented in SCILAB 6.0.0. To integrate the state variables, with the
generated model parameters, SCILAB’s default ordinary differential equation solver was used, with
the option for stiff systems enabled in a computer with an AMD FXTM-8350 and 15,7 Gb of random
access memory running, as the operating system, 64-bit Linux Mint 18.3.

3. Results and Discussion

It is important to emphasize once again that any model here presented is a strong simplification
of the phenomenology behind the saccharification of lignocellulosic materials. Several other reactions
occur within the reactor. Particularly when using new enzymatic complexes, with improved activity
of β-glucosidases and the addition of new cellulose oxidizing enzymes such as lytic polysaccharide
monooxygenases [12]. Furthermore, different molecules not considered here are generated during the
hydrolysis, specially from hemicellulose [25].

However, modeling such complex interactions can be strenuous and the complexity of the
generated model can compromise future studies, such as applications in reactor monitoring and control.
The consortium of simple models here proposed is intended to have enough complexity to predict the
concentrations of the main compounds, while retaining enough simplicity and flexibility to be applied
to engineering problems.

The distinct feeding profiles generated different situations within the reactor, as expected. In Data
Set 1 (HSB), the amount of substrate added in the beginning of the process generated a very high
viscosity medium, where there was little visible free water within the reactor before the initial solids
liquefaction. As the hydrolysis occurred, the viscosity of the media decreased rapidly. In Data Set 2
(LSF), the feeding of substrate occurred sparsely enough as not to build a load of solids within the
reactor that could cause a significant visual change in the reactive medium, and the amount of visible
free water remained constant. In Data Set 3 (MPF), the initial substrate concentration was not enough
to change the medium pseudo-viscosity greatly; however, the subsequent small intervals between
feedings modified the medium towards a high-solids state. As the hydrolysis continued, the reactor
once again returned to a low solids state. Thus, Data Set 3 is a strong validation test, since the path of
the reaction system was very different from the two first data sets. Experimental data are presented in
the Supplementary Material.

3.1. Standalone Models Fitting

Data Sets 1 and 2 data were first used to test the prediction capacities of the LK and MMK models
structures. The optimized models’ fitting for these kinetics are presented in Figure 2.

Both models present the same fitting trend: overestimation of final glucose and xylose
concentrations in HSB (Data Set 1), and with similar predictions for product final concentrations in the
LSF (Data Set 2). However, a deviation from initial sugar concentration occurs. This behavior may
indicate that both model sets are being compromised when their parameters are forced to cope with
slower reaction rates in the LSF and higher rates in the HSB.

It is important to notice that the mean squared error (MSE) for the LK kinetics was 27.77 g·L−1,
using 23 parameters, while the MMK model set, containing 13 parameters, obtained an MSE of
8.90 g·L−1 after optimization. In this case, the model that contained almost 60% more parameters
showed no improvement over the simpler model.

The fitting behavior of both models demonstrated that they are not capable of representing such
a wide range of components’ concentrations. Hence, the whole concept of how the modeling is
conducted should be questioned. Finding a single simplified kinetic model that would fit results for
batch and fed-batch operations equally well is a tough task, if not unfeasible in the present situation.
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3.2. Fuzzy Kinetic Model Fitting

Using one model alone for a wide range of solids concentrations was not enough to take into
account the reactor medium change during liquefaction. Here, the FM was built using the MMK
models, since they have fewer parameters (13) than the LK (23), when all equations are considered.

Firstly, two different sets of MMK parameters were obtained: the HSM set was obtained using
data from Data Set 1 only, and the LSM set from Data Set 2. The parameters obtained from these models,
however, were highly correlated to the degree that most standard errors had the same magnitude
of the parameter values (results available in the Supplementary Material). These results reflect the
structure of the models, the number of parameters and the conditions used to fit the parameters, which
were based on the meaningful region for the industrial process. This doesn’t necessarily represent a
problem, since the aim here is to demonstrate the effect that Fuzzy modeling can achieve, regardless
of whether the parameter sets are the best one. Nevertheless, to diminish this issue, and improve
subsequent model comparisons, a new set of models was fitted, but at this time Reaction 2 was not
considered in the system, as this is considered a secondary reaction [35] and its suppression decouples
the production of glucose from two parallel routes with three reactions to a single route with two
sequential reactions. This alteration did not severely hinder the model fitting, and thus, a 5 reactions
system was used from here on. The modeling results are presented in Figure 3 and the parameters
resulting from the optimization of HSM and LSM are presented in Table 2. Figure 3a shows LSM
only, to enable a comparison between this model and the HSM. As described, the data in this figure
was not used to fit the LSM. The same occurs in Figure 3b, but this time for HSM presence. The very
narrow confidence interval obtained in the new fitting, less than 1% in most cases, was mostly due to
the F/(n-m) value, which was very small, around 1.0 (2.9 for LSM and 0.9 for the HSM), which was
expected since the model variance approaches the noise variance.

The comparison between models, with 6 and 5 reactions, as well as the parameters and standard
errors of the 6 reactions HSM and LSM fitting are presented in the Supplementary Material.

Reducing the number of reactions to fit the standalone (LK and MMK) models clearly would
not improve their fitting results (see Supplementary Material), since the simplest model is embedded
in the complex one. Nevertheless, LK and MMK models were refitted using only 5 reactions. The
procedure did not alter the results greatly, and thus the conclusions from the standalone model fittings
were maintained. The MSE for the LK kinetics was 27.98 g2

·L−2, while the MMK model set obtained a
MSE of 14.91 g2

·L−2.
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Table 2. High and low heterogeneous Michaelis-Menten model parameters—parameter ± standard error.

Reaction Solids Model
Parameters

k (min−1) Km (g·L−1) Kp (g·L−1) ke (min−1)

1
High (3.03 ± 0.00) × 10−3 (5.31 ± 0.01) × 10−2 (7.65± 0.01) × 10−4 -
Low (2.67 ± 0.38) × 10−3 (9.75 ± 0.25) × 10−3 (1.11 ± 0.03) × 10−3 -

3
High (9.13 ± 0.00) × 10−2 (3.82 ± 0.01) × 10−4 (1.83 ± 0.00) × 10−1 -
Low (6.41 ± 0.07) × 10−4 (4.49 ± 0.10) × 10−6 (2.50 ± 0.00) × 10−1 -

4
High (1.28 ± 0.00) × 10−3 (2.02 ± 0.00) × 10−2 (3.46 ± 0.00) × 10−1 -
Low (1.13 ± 0.02) × 10−1 (7.80 ± 0.15) × 10−4 (3.73 ± 0.35) × 10−3 -

6
High - - - (1.16 ± 0.00) × 10−3

Low - - - (1.15 ± 0.35) × 10−3

The models performed well within their fitting data, however, their prediction capacity with
validation data was subpar. The LSM greatly overestimated the concentration of products in the end of
Data Set 1, and the HSM could not describe the reaction rate of Data Set 2.

The models were then used in the fuzzy optimization, as reaction rates generators. The lower
and upper bounds of the FM (see Figure 1b) were then optimized. After optimization, the low and
high thresholds for the linear fuzzy rule were 75.35 g·L−1 and 61.52 g·L−1 respectively. This is an
interesting result, since the threshold of the upper bond agrees with the empirical observations during
the experiments: visually, around this load of solids, the reactor seems to change its behavior from an
almost semisolid process to one with high free water content. The resulting fitting of the FM, alongside
the HSM and LSM for comparison, are presented in Figure 4.

A summary of the fitting errors for all data sets and models are presented in Table 3.
Table 3 provides the MSE for the models used here. The use of MSE to compare models should be

done carefully, since the value may mask hidden behaviors in the data. Nevertheless, it can be used to
help visual comparison among models.

Analysis of Table 3 demonstrates several interesting aspects of the fuzzy modeling methodology,
especially its flexibility under different reactor operation policies. This is presented in Figure 4, where
a poor adherence from the HSM to the data in Data Set 2 and from the LSM to the data in Data Set 1 is
clear. The fuzzy model, through its model interpolation, generates a much better fit in both data sets
simultaneously using only one model.
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Table 3. Fitting error summary for proposed models.

Model High Solids
Batch

Low Solids
Fed-Batch

Mixed Profile
Fed-Batch

Total
Training

MSE

Total Validation
MSE

Langmuir-Type
Kinetics

Data Usage Training Training
No Prediction 27.77 g2

·L−2 No PredictionMSE 13.72 g2
·L−2 42.82 g2

·L−2

Michaelis-Menten
Kinetics

Data Usage Training Training
No Prediction 8.90 g2

·L−2 No PredictionMSE 7.12 g2
·L−2 10.69 g2

·L−2

High Solids Model Data Usage Training Validation Validation
0.64 g2

·L−2 37.86 g2
·L−2

MSE 0.64 g2
·L−2 50.26 g2

·L−2 25.45 g2
·L−2

Low Solids Model
Data Usage Validation Training Validation

2.15 g2
·L−2 28.12 g2

·L−2
MSE 42.40 g2

·L−2 2.15 g2.L−2 13.84 g2
·L−2

Fuzzy Model Data Usage Training Training Validation
1.29 g2

·L−2 14.48 g2
·L−2

MSE 0.45 g2
·L−2 2.14 g2

·L−2 14.48 g2
·L−2

When the FM is visually compared to standalone models trained with the same data, it is clear
that FM gives a much better fitting; this is supported by comparing the MSEs. FM fitted with data from
data sets 1 and 2 obtained a MSE (1.29 g2

·L−2) much smaller than a LK model (27.77 g2
·L−2) and MMK

model (8.90 g2
·L−2) trained with the same data. Of course, the FM is much more complex than LK

and MMK models alone. However, the FM helps to predict the behavior of the system for conditions
outside the training data, as presented in Figure 5.

The fuzzy model extrapolation ability is also superior in the validation data sets. MSEs for the
validation data sets, predicted by FM, HSM and LSM were respectively 14.48 g2

·L−2, 37.86 g2
·L−2 and

28.12 g2
·L−2.

These results indicate that the use of Fuzzy logic to coordinate a consortium of simple models
is a powerful methodology when applied to enzymatic saccharification of sugarcane bagasse, an
extremely complex reaction system. Figure 6 demonstrates the change in reaction rates for the training
and validation data sets for the FM and its parent models, HSM and LSM, as a function of the
solids concentration.
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the upper bound of the high model membership function until halfway through the process, thus, up 
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the FM is an interpolation of both HSM and LSM. 

For Data Set 2, the experiment begins with a small solids concentration, and thus, the FRR is 
equivalent to the LSM rate. The subsequent solids addition does not amount to a solids concentration 
that can cause the FRR to deviate from the LSM reaction rate. 

Figure 6. Fuzzy model, high solids model and low solids model reaction rates as a function of solids
concentration—(a) Solids concentration and rates for reactions 1, 3 and 4 for the models in Data Set
1; (b) Solids concentration and rates for reactions 1, 3 and 4 for the models in Data Set 2; (c) Solids
concentration and rates for reactions 1, 3 and 4 for the models in Data Set 3; horizontal lines in the first
row are the optimized thresholds for the membership degree of the high solids model during the fuzzy
optimization (Section 2.4.3) and vertical lines are biomass feedings.
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The first row in Figure 6 displays the reactive solids concentration for each data set. It was
calculated as the sum of the concentrations of cellulose and hemicellulose, which were evaluated using
the values of the hydrolysis products. Reactive solids concentration was the variable used to calculate
the membership degree for each parent model used in Equation (10) to generate the fuzzy reaction
rate. This relationship explains the correlation between the solids concentration and the most pertinent
reaction rate. For instance, for Data Set 1 the reactive solids concentration remains above the upper
bound of the high model membership function until halfway through the process, thus, up until this
point, the fuzzy reaction rate (FRR) is equal to the HSM reaction rate. After this point, the solids
concentration remains between the thresholds in the second half of the experiment, and thus the FM is
an interpolation of both HSM and LSM.

For Data Set 2, the experiment begins with a small solids concentration, and thus, the FRR is
equivalent to the LSM rate. The subsequent solids addition does not amount to a solids concentration
that can cause the FRR to deviate from the LSM reaction rate.

In Data Set 3, the FM starts in the LSM rate and quickly changes to the HSM rate with the close
feeding time periods. As the solids are liquefied, the model becomes a halfway interpolation of the two
precursor models, and continues to approach the LSM rate at the end of the process. This improves
validation data prediction greatly, as presented in Figure 5. This is a very interesting capability, as the
model can be adapted quickly to situations not present in the training data using only knowledge of
apparent reactive solids concentrations.

Thus, the FM methodology can be used to predict the trajectory of the reactor for operational
conditions different from those used to train the algorithm. Furthermore, this methodology requires
little alterations in software development and can be applied to small datasets.

4. Conclusions

In this work a fuzzy model (FM) for reaction rates was proposed to describe the enzymatic
saccharification of sugarcane bagasse. Simple models, such as those based on Michaelis-Menten
kinetics (MMK) fit well to the data for a particular feeding policy. However, the same model could not
be used to accurately predict the process behavior when the feeding policy was changed. The use of a
fuzzy rule to weight between two simple models, each one fitted for different solids concentrations,
has greatly improved the bioreactor trajectory prediction for different operation modes. This approach
seems to be a good trade-off between the phenomenological and empirical-driver models, and was able
to describe a very complex system. Of course, the methodology can be applied to different systems, for
example, the enzymatic liquefaction of other lignocellulosic materials.
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Nomenclature

Variables
Cl0 Initial cellulose concentration (g·kg−1)
Cov(θ) Parameters Covariance Matrix
Emi Maximum adsorbed enzyme constant (gProtein/gSubstrate)
F Objective Function Optimum Value
HMSFLb High Model Membership Function Lower Bound
HMSFUb High Model Membership Function Upper Bound
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ki Kinetic constants (min−1)
Kadi Dissociation constants for enzyme (gProtein/gSubstrate)
kei First order inactivation constant (min−1)
KiCb Cellobiose Inhibition constant (g·kg−1)
KiGl Glucose Inhibition constant (g·kg−1)
KiXl Xylose Inhibition constant (g·kg−1)
Kmi Michaelis-Menten constant (g·L−1)
Kpi Products competitive inhibition constant (g·L−1)
m Number of Parameters
MDHSM Membership Degree of the High Solids Model
MDLSM Membership Degree of the Low Solids Model
n Number of Data Points
Q Cost Function Weights Matrix
Rs Substrate reactivity parameter
X Regressors Matrix
[Cb] Cellobiose Concentration (g·L−1)
[Cl] Cellulose Concentration (g·L−1)
[Ef ] Free enzyme concentration (g·kg−1)
[En] Enzyme Concentration (g·L−1)
[Et] Total Enzyme concentration (g·kg−1)
[Gl] Glucose Concentration (g·L−1)
[He] Hemicellulose Concentration (g·L−1)
[Lg] Lignin Concentration (g·L−1)
[Pi] Product concentration (g·L−1)
[Si] Substrate Concentration (g·L−1)
[Xy] Xylose Concentration (g·L−1)
Greek Letters
αFUZZY Fuzzy Model reaction rate (g·L−1

·min−1)
αHSM High Solids Model reaction rate (g·L−1

·min−1)
αi Reaction rate for “i” reaction, where “i” are reactions 1 through 6 (g·L−1

·min−1)
αLSM Low Solids Model reaction rate (g·L−1

·min−1)
αr Reactivity Constant

γCl-Cb
Pseudo-stoichiometric mass relation between cellulose and cellobiose
(gCellobiose.gCellulose

−1)
γCl-Gl Pseudo-stoichiometric mass relation between cellulose and glucose (gGlucose.gCellulose

−1)
γCb-Gl Pseudo-stoichiometric mass relation between cellobiose and glucose (gGlucose.gCellobiose

−1)

γHe-Xy
Pseudo-stoichiometric mass relation between Hemicellulose and Xylose
gXylose.gHemicellulose

−1

Abbreviations
FM Fuzzy Model
FRR Fuzzy Reaction Rate
HSB High Solids Batch
HSM High Solids Model
LK Langmuir Kinetics
LSF Low Solids Fed-batch
LSM Low Solids Model
MD Membership Degree
MSE Mean Squared Error
MMK Michaelis-Menten kinetics
MPF Mixed Profile Fed-batch
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