
animals

Article

Digestibility of Insect Meals for Nile
Tilapia Fingerlings

Táfanie Valácio Fontes 1,*, Kátia Rodrigues Batista de Oliveira 1, Izabella Luiza Gomes Almeida 1,
Tamira Maria Orlando 1, Paulo Borges Rodrigues 1, Diego Vicente da Costa 2 and
Priscila Vieira e Rosa 1

1 Department of Animal Science, Universidade Federal de Lavras, 3037 Lavras, MG, Brazil;
katiarbo@gmail.com (K.R.B.d.O.); izabellaluizaga@outlook.com (I.L.G.A.);
tamira_maria@yahoo.com.br (T.M.O.); pborges@dzo.ufla.br (P.B.R.); priscila@dzo.ufla.br (P.V.R.)

2 Department Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, 135, Montes Claros,
MG, Brazil; diego2@ufmg.br

* Correspondence: tafaniefontes@hotmail.com; Tel.: +55-35-99137-6944

Received: 1 March 2019; Accepted: 17 April 2019; Published: 20 April 2019
����������
�������

Simple Summary: Insects can be a source of nutrients for aquatic organisms, replacing scarce
or unsustainable foods. The diversity of insect species contributes to their variable nutritional
composition, which fish may digest differently. Nile tilapia is a very important fish for aquaculture,
which requires great quantities of quality protein and other dietary nutrients on its initial rearing
phase. Therefore, it is important to better understand the technical feasibility of using insect meal as
a nutrient and energy source for Nile tilapia fingerlings. In this study, Tenebrio molitor larvae meal
showed the highest apparent digestibility coefficient, being attested as a potential alternative feed
for Nile tilapia fingerlings. Those findings may contribute to sustainable development of the tilapia
production around the world.

Abstract: Insects are a valuable source of nutrients for fish, but little is known about their nutritional
value for Nile tilapia fingerlings. To evaluate the nutritional value and energy apparent digestibility
coefficient (ADC) of five insects for Nile Tilapia male fingerlings, 900 fish were distributed
in 18 fiberglass conic tanks, in a completely randomized design, with six dietary treatments
(control, Nauphoeta cinerea meal (NCM) (Blattodea), Zophobas morio larvae meal (ZMM) (Coleptera),
Gromphadorhina portentosa meal (GPM) (Blattodea), Gryllus assimilis meal (GAM) (Orthoptera) and
Tenebrio molitor larvae meal (TMM) (Coleptera)) and three replicates (tanks), each containing 50 fish.
The control diet had no insect meal included and the other five treatments comprised 80% commercial
diet and 20% test ingredient with 0.1% chromic oxide as an inert marker. TMM presented a higher
ADC for dry matter, protein, corrected protein and chitin than to other treatments (p < 0.01). GPM
presented the highest ADC for lipids (p < 0.01). In general, the TMM presented better ADC of
nutrients and energy and all the insect meals evaluated are potential feed for Nile tilapia fingerlings.

Keywords: aquaculture; beetle; cockroach; cricket; Oreochromis niloticus; sustainability

1. Introduction

The use of alternative ingredients in aquaculture feeds is intended to minimize the dependence
on scarce, expensive or unsustainable feedstuff. The main ingredients traditionally used in fish feed
are commodities whose price is set by the inconstant global supply and demand. Soybean meal is one
of the most used vegetal protein sources in aquafeed formulation due to its high protein content, and
amino acid profile as well as its price [1]. However, soybean meal can cause loss of intestinal integrity in
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fish, leading to non-absorption of nutrients, and impairing fish growth [2]. Another valuable ingredient
used in aquaculture feed is fishmeal, but its high global demand has led to overfishing, natural fish
stock reduction and price fluctuations [3]. Competition with other sectors, such as pet food, for this
feedstuff is increasing and may result in a supply shortage and high prices [3]. Therefore, studies on
alternative feeds for aquatic organisms are very important.

Insect meal has stood out as an alternative ingredient to be included in animal feeds [4]. Insects
are a natural food source for marine and freshwater fish species, including Nile tilapia [5–7]. In general,
insects have high protein content, essential amino acids, lipids, minerals and vitamins [8,9] and their
nutritional composition may vary based on species, life stage and rearing conditions [8,9].

Studies in recent years have evaluated the use of insects as feed for freshwater fish, such as
African catfish Clarias gariepinus [10,11], rainbow trout Oncorhynchus mykiss [12], Jian carp Cyprinus
carpio [13], yellow catfish Pelteobagrus fulvidraco [14], red tilapia Oreochromis sp. [15] and Nile tilapia
Oreochromis niloticus [16]. Freccia et al. (2016) [16] did not observed differences on growth performance
and hematological parameters of Nile Tilapia fingerlings fed 0, 5%, 10%, 15% or 20% cinerea cockroach
Nauphoeta cinerea meal (NCM). The authors concluded that cinerea cockroach meal may be used as
feed for Nile tilapia fingerlings. Jabir et al. (2012) [15] compared the apparent digestibility coefficient
(ADC) of Zophobas morio larvae meal (SMM) and fishmeal (FM), the main dietary protein sources for
juvenile red tilapia. Protein and lipid ADC in the SWM based diet was lower (50.53% ± 6.08% and
69.76% ± 3.72%, respectively) than in the FM diet (77.48% ± 0.53% and 91.51% ± 0.21%, respectively).
The authors concluded that the ADC of SWM would need to be improved for it to be a reasonable
alternative for a partial or complete replacement of FM in the red tilapia diet.

Nile tilapia is the fourth most farmed fish species around the world, representing 8% of total global
inland production [17] and 36% of the total Brazilian fish farming [18]. Nile tilapia is an omnivorous
fish with some advantages on chitin degradation, because polysaccharides are part of the composition
zooplanktons, a natural feed for tilapia [19]. The ability to degrade chitin from insect and shrimp
meal through the presence of chitinolytic enzymes from pancreatic and gastric mucosa has already
been clarified for some teleost fish species [20–22]. Considering tilapia´s possible advantages in chitin
degradation and its omnivorous feeding habits [23], insect meal are expected to become a feasible feed
for Nile tilapia fingerlings. As the ADC provides information about how much a fish has digested
and retained a feed, knowing the digestibility of novel dietary ingredients is the basis to assess their
bioavailability and hence their sustainability for inclusion in fish diets.

Therefore, the aim of this study was to assess the nutrient and energy apparent digestibility
coefficient from five insect meals; two cockroach species (Nauphoeta cinerea and Gromphadorhina
portentosa), one cricket species (Gryllus assimilis) and two species of tenebrio (Zophobas morio and
Tenebrio molitor) for Nile tilapia fingerlings.

2. Materials and Methods

2.1. Animals and Experimental Design

All procedures involving fish in this study were assessed and approved by the Animal Ethics
Committee from the Federal University of Minas Gerais (protocol number 107/2017). The committee
only assess studies involving animals from the phylum Chordata, subphylum Vertebrata, which is
why the procedures with involving insects are not involved in the mentioned protocol.

An in vivo digestibility trial was performed to assess the apparent digestibility coefficients
(ADC) of the dietary nutrients and energy. The feeding trial was carried out at the Experimental
Aquaculture Station of the Animal Science Department at the Federal University of Lavras in a
completely randomized design with six dietary treatments (one control with no insect meal and five
insect meals) and three replicates (fiberglass cylindro-conic tanks with 250 L capacity) each containing
50 reversed male Nile Tilapia fingerlings Oreochromis niloticus (3.0 ± 0.2 g of mean weight). The trial was
set up in arecirculating system adapted to the Guelph system, equipped with a fiber mesh pad filter,
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a submerged biological filter and an ultraviolet filter. The system was supplied with constant aeration,
and thermoregulation (26 ± 1 ◦C). Oxygen saturation in the water was 85% ± 2%; the ammonia and
nitrite concentration amounted to 0.2 ± 0.1 and 0.3 ± 0.1 mg/L, respectively. A 12-h light/dark cycle
was adopted.

2.2. Diets, and Feeding Trial

The insect meals were obtained from the Laboratory of Entomoculture of at the Institute of
Agricultural Sciences of the Federal University of Minas Gerais (Montes Claros, MG, Brazil). All the
insects were reared on a vegetal diet (soybean, corn and wheat), killed by immersion in boiling water,
dried in a forced air oven (50 ◦C for 48 h) and milled in an electric screw meat grinder (Botini 1/3cv,
Brazil). Nauphoeta cinerea, Gromphadorhina portentosa and Gryllus assimilis were harvested as adults
while Zophobas morio and Tenebrio molitor were harvested as larvae.

The fish diets comprised 20% test ingredient (insect meals) and 80% control diet (commercial diet
with 32% crude protein, Linha aquos Tropical—-TOTAL) with 0.1% chromium oxide (Cr2O3) as an
inert marker. The control diet was used as the reference diet, and the data collected from this group
was used to calculate the test ingredient’s ADCs, as described below. After 10 days of adaptation to
laboratory conditions, the fish were fed three times daily to the point of apparent satiation for 15 days
with the experimental diets, with an average of 18 g of feed per feeding per tank. After the last daily
feeding, tanks were cleaned and plastic tubes connected at the bottom of each tank for feces collection
overnight, for 15 days. The next morning, the tubes were removed and feces dried in a forced-air
drying oven (60 ◦C) for 48 h and stored in a freezer (−20 ◦C) for laboratory analysis.

2.3. Chemical Composition and Digestibility Analysis

Chemical analyses of the test ingredients, diets and feces were conducted according to Association
of Official Agricultural Chemists (AOAC) [24] for dry matter (930.15), crude protein (968.06) and ash
(942.05). The chemical composition of the insect meals and diets are shown in Tables 1 and 2, respectively.
Corrected crude protein was determined by the Kjeldahl method; however, the nitrogen-to-protein
correction factor used was 4.76 (Kp = 4.76) instead of the usual 6.25, as described by Janssen et al. [25],
in which nitrogen from chitin are not considered. Crude lipid was quantified following Folch’s [26]
methodology and chitin according to Souto’s [27]. Gross energy was measured in a calorimetric bomb
(IKA C7000, Staufen, Germany) and chromium oxide following Bremer Neto et al. [28].

The ADC of nutrients and energy from the experimental diets was calculated following the
equations Bureau and Hua [29] proposed.

ADC (1) and ADCi (2) were calculated according to the following equations:

ADC (%) = 100− [100× (Id/I f ×N f /Nd)] (1), (1)

ADCi (%) = ADCdt + [ADCdt−ADCre f ) × (r×Nre f /i×Ni)] (2), (2)

in which

(1) ADC is the apparent digestibility coefficient; Id is chromic oxide’s concentration in the diet (%); If
is chromic oxide’s concentration in the feces (%); Nd is the nutrient’s concentration in the diet (%);
Nf is the nutrient’s concentration in the feces (%);

(2) ADCi is the nutrient’s apparent digestibility coefficient in the test ingredient; ADCdt is the
nutrient’s apparent digestibility coefficient in the test diet; ADCref is the nutrient’s apparent
digestibility coefficient in the reference diet; r is the reference diet’s proportion in the test diet
(0.6994); i is the test ingredient’s proportion in the test diet (0.3); Nref is the nutrient’s concentration
in the reference diet (% as fed); Ni is the nutrient’s concentration in the ingredient (% as fed).
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Table 1. Centesimal composition analysis of the insect meals (dry matter basis).

Nutrients N. cinerea Z. morio G. portentosa G. assimilis T. molitor

Dry matter (%) 93.69 94.56 94.60 92.41 95.95
Protein (%) 64.78 49.91 69.94 62.09 47.82

Corrected Protein * (%) 39.04 30.11 37.45 39.75 28.85
Energy (MJ Kg–1) 30.7 26.8 21.2 24.0 26.6

Lipids (%) 22.68 33.05 12.97 18.14 31.69
Ash (%) 3.83 2.77 4.03 4.48 2.61

Chitin (%) 24.36 22.48 28.94 22.34 12.01

* Corrected crude protein was calculated by applying a nitrogen-to-protein conversion factor of Kp = 4.76 [25].

Table 2. Centesimal composition of the experimental diets (dry matter basis).

Nutrients N. cinerea Z. morio G. portentosa G. assimilis T. molitor Control

Dry matter (%) 90.99 94.08 94.42 95.14 94.77 94.43
Protein (%) 36.29 34.95 32.02 33.55 31.30 34.29

Corrected Protein * (%) 27.50 29.91 24.99 27.32 24.60 34.29
Energy (MJ·Kg-1) 19.1 18.6 19.2 19.0 18.1 19.3

Lipids (%) 8.86 9.17 7.13 8.69 9.40 4.79
Ash (%) 11.02 10.79 10.23 10.95 10.27 11.87

Chitin (%) 5.37 4.47 7.69 5.02 3.87 -

* Corrected crude protein was calculated by applying a nitrogen-to-protein conversion factor of Kp = 4.76 [25].

2.4. Statistical Analyses

Data is expressed as mean and standard error of the means (SEM). Normality and homogeneity
of variances were tested using the Shapiro–Wilk and Levene tests, respectively. Data were analyzed
by one-way ANOVA followed by Tukey’s multiple range test at a 1% probability level. All statistical
analyses were performed using SPSS 22.0 software package (IBM, Chicago, IL, USA).

3. Results

The ADC of the insect meal’s dry matter, protein, corrected protein, energy, lipids and chitin are
presented in Table 3. Significant differences between treatments were observed for all the parameters
evaluated (p < 0.01). Tenebrio molitor meal presented a higher ADC for dry matter, protein, corrected
protein and chitin than the other tested ingredients (p < 0.01). The cricket Gryllus assimilis meal had the
lowest digestibility for protein and corrected protein (p < 0.01). For energy, Zophobas morio and T molitor
meals presented higher ADC’s than the other treatments (p < 0.01), and G. assimilis and the cockroaches,
Nauphoeta cinerea and Gromphadorhina portentosa, did not differ. The lipid ADC of G. portentosa meal
was the highest among the treatments (p < 0.01). The highest chitin ADC was found in T. molitor meal
and the lowest in N. cinerea meal (p < 0.01).

Table 3. Apparent digestibility coefficients (%) of the five insect meals evaluated for Nile
tilapia fingerlings.

Nutrients N. cinerea Z. morio G. portentosa G. assimilis T. molitor SEM p-Value

Dry matter 61.7 b 83.2 c 48.2 a 42.6 a 95.8 d 6.0 <0.0001
Protein 69.6 c 70.0 c 61.6 b 39.7 a 85.4 d 4.2 <0.0001

Corrected Protein * 67.7 c 74.3 c 58.3 b 38.9 a 92.4 d 5.2 <0.0001
Energy 58.4 a 80.1 b 47.4 a 47.0 a 82.1 b 4.7 <0.0001
Lipids 91.6 ab 93.5 b 98.8 c 87.9 a 90.6 ab 1.1 <0.0001
Chitin 59.8 a 73.6 bc 69.6 b 76.2 c 81.3 d 2.1 <0.0001

Values presented as means (n = 3) and pooled standard error of the mean (SEM). a–d means in the same row
with different superscripts are different at p < 0.01. * Corrected crude protein was calculated by applying a
nitrogen-to-protein conversion factor of Kp = 4.76 [25].
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4. Discussion

Insects have been widely studied as fish feed in the last few years, but only a few studies have
focused on the nutrient and energy digestibility. The variation in nutrient and energy digestibility is
based on the insect species, life stage, and the fish species [4], and may not be considered the only
aspect to make recommendations regarding their inclusion in fish diets, mainly when talking about
insect meal. Authors have reported that the inclusion of insect meals in fish diets is possible without
damaging growth performance [30,31]. However, it seems to depend on the inclusion level, fish
species, insect species and nutrient composition. In the present study, it was possible to observe that
different insect meals presented distinguished chemical compositions and nutrients and energy ADCs,
so their inclusion in practical aquafeeds formulations need to be suitable regarding those specific
characteristics, to maintain the quality and supply the nutritional requirements.

A reduction in nutrient digestibility due to the presence of chitin was expected [4,12], as Piccolo et
al. reported [30] for gilthead sea bream juveniles fed with increasing dietary levels of T. molitor meal.

Low values of dry matter ADC are found for N. cinerea, G. portentosa and G. assimilis, ranging
from 42.6% to 61.7%. This decrease in dry matter ADC can be explained by the feed’s bromatological
composition, in which higher chitin values were found. Shiau and Yu [32], using diets with chitin
levels of 0%, 2%, 5% and 10%, found that the highest level of supplementation was accompanied by a
lower level of dry matter ADC for Nile tilapia. We can observe that for T. molitor and Z. morio the dry
matter ADC was higher than the other diets’, which corroborates Shiau and Yu’s [32] research because
T. molitor and Z. morio had the lowest chitin percentage in their composition.

We have shown in the results the corrected protein parameter because chitin is a
nitrogen-compound, so Kjeldahl’s method may overestimate the insect meal’s protein content [9].
Nevertheless, even fulfilling the protein correction, the values of chitin ADC found in this study are
still considered high [9]. According to Longvah et al. [33] the chitin may interfere with the dietary
utilization of protein, where a reduction on protein digestibility due to an increase in the chitin content
is expected [12]. N. cinerea, G. portentosa and G. assimilis meals, in the present study, presented lower
protein ADC, which can be connected to this feed’s protein quality, that is, their amino acid composition
or even because of their higher chitin content. However, tenebrios, T. molitor, and Z. morio meals
showed dry matter ADC close to the reported values for fishmeal and soybean meal [34] for Nile
tilapia. The protein ADC of Tenebrio molitor meal was also close to that of those feeds [34].

Moreover, the type of chitin matrix in insects may negatively influence chitinase activity and
thus protein digestibility [35]. Those enzymes are essential for the breakdown of chitin [36], the
main structural polysaccharide present in insect exoskeletons [9]. The efficacy of chitin utilization by
monogastric animals is frequently discussed in connection with the presence, or lack of, of chitinolytic
enzymes; however, some studies confirmed the presence and activity of chitinolytic enzymes in various
organs of fish species, such as the gastric mucosa, intestinal mucosa, pyloric caeca and pancreas [37–40].
As an omnivorous fish species with a great capacity to feed on plankton, Nile tilapia may have some
advantages in chitin degradation, once that polysaccharide is present in zooplankton composition [41].
The feeding nature and significant intake of chitin make it likely that chitinolytic enzymes play an
important role on tilapia digestive physiology. Köprücü and Özdemir [34] assessed the digestibility of
chitin from crustacean meals (Gammarus kischineffensis and Astacus leptodactylus) for Nile tilapia and
reported chitin ADC of 71.5% and 69.3%, respectively. For cobia Rachycentron canadum, chitin ADC
from brown shrimp (Penaeus aztecus) and crab meals (Brachyura) were 78.2% and 66.8% respectively [30].
The chitin ADCs those authors reported were close to those presented in this study, which ranged from
59.8% to 81.3%. Studies on chitinase and chitobiase activity as well as the absorption and utilization
capacity of chitin and its derivates, such as N-acetyl glucosamine by Nile tilapia are needed.

According to Tanaka et al. [42], chitin may inhibit the absorption of lipids in the gut, increasing
their excretion and, thereby affecting their digestibility coefficient. The insect meal chitin content in
this study ranged from 12.01% to 28.94%, however, chitin did not seem to influence lipid digestibility,
probably due to its high digestibility. The G. portentosa meal presented the highest chitin content
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(28.94%) and the highest lipid ADC (98.8%) among treatments. Additionally, N. cinerea and G. assimilis
showed 91.6% and 87.9%, respectively, and this reduction was not a reflex of chitin levels, as Shiau and
Yu [32] demonstrated, but can it be attributed to the insect’s fatty acid quality; therefore this should
be investigated.

Nandeesha et al. [43] reported that insect oil from silkworm pupa (Bombyx mori) have high
amounts of digestible fatty acids and were as effective as sardine oil in providing energy to induce
fast growth in common carp (Cyprinus carpio) fed 3%, 6% and 9% silkworm meal or sardine oil. Those
authors also reported that fat digestibility increased with an increasing inclusion level of non-defatted
insect meal. Lipid digestibility among fish is known to be quite variable and dependent on many
factors, such as the inclusion level and fat source [44]. In general, the lipid digestibility found in this
study, although it differs among treatments, was relatively high and may be equated with conventional
lipid sources such as full fat vegetable meals [44].

The G. portentosa meal presented the highest percentage of lipid digestibility (98.8%) and low
protein and corrected protein digestibility (61.6% and 58.3% respectively). Nandeesha et al. [43]
reported that the ADC of protein is low when the fat ADC is high for common carp fed silkworm
pupa meal.

5. Conclusions

In general, all the insect meals studied are potential alternative ingredients for aquafeed
formulation. Tenebrio molitor larvae meal is the most suitable feed for Nile tilapia fingerlings among
the insect meals evaluated. Further investigation is needed to understand the nutritional value and
optimal inclusion level of various insect meals for fish.
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