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Abstract

One of the main challenges in plant breeding programs is the efficient quantification of the

genotype-by-environment interaction (GEI). The presence of significant GEI may create dif-

ficulties for breeders in the selection and recommendation of superior genotypes for a wide

environmental network. Among the diverse statistical procedures developed for this pur-

pose, we highlight those based on mixed models and factor analysis that are called factor

analytic (FA) models. However, some inferential issues are related to the factor analytic

model, such as Heywood cases that make the model non-identifiable. Moreover, the repre-

sentation of the loads and factors in the conventional biplot does not involve any measure-

ment of uncertainty. In this work, we propose dealing with the FA model using the Bayesian

framework with direct sampling of factor loadings via spectral decomposition; this guaran-

tees identifiability in the estimation process and eliminates the need for the rotationality of

factor loadings or imposition of any ad hoc constraints. We used simulated and real data to

illustrate the method’s application in multi-environment trials (MET) and to compare it with

traditional FA mixed models on controlled unbalancing. In general, the Bayesian FA model

was robust under different simulated unbalanced levels, presenting the superior predictive

ability of missing data when compared to competing models, such as those based on FA

mixed models. In addition, for some scenarios, the classical FA mixed model failed in esti-

mating the full FA model, illustrating the parametric problems of convergence in these mod-

els. Our results suggest that Bayesian factorial models might be successfully used in plant

breeding for MET analysis.

Introduction

The recommendation of new genotypes for commercial use requires confident and accurate

estimations of genetic parameters such as marginal genotypic values, stability, adaptability, dis-

ease and environmental stress resistance. This information can be obtained by analyzing the
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Negócios e Emprededoriso de Chibuto, Chibuto,

Universidade Eduardo Mondlane, CAPES

(Coordenação de Aperfeiçoamento de Pessoal de

Ensino Superior) and CNPq (Conselho Nacional de

Desenvolvimento Cientı́fico e Tecnológico –Grant #

302674/2015-2).

http://orcid.org/0000-0002-4829-455X
https://doi.org/10.1371/journal.pone.0220290
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220290&domain=pdf&date_stamp=2019-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220290&domain=pdf&date_stamp=2019-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220290&domain=pdf&date_stamp=2019-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220290&domain=pdf&date_stamp=2019-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220290&domain=pdf&date_stamp=2019-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220290&domain=pdf&date_stamp=2019-08-22
https://doi.org/10.1371/journal.pone.0220290
http://creativecommons.org/licenses/by/4.0/


genotypes across different environments; such an analysis is called multi-environment trials

(MET). These trials are required to isolate the effect of the genotype-by-environment interac-

tion (GEI), which means the differential genotypic responses on different environments. In

general, the GEI hinders the breeder’s work on the selection and recommendation of the best

genotypes for a wide class of environments. Thus, it is used to investigate efficient methods

that identify stable genotypes (those that do not contribute to GEI) and positive effects of GEI

for specific groups of environments aimed at regionalized recommendations.

Several statistical methods have been proposed. One is the additive main effect and multi-

plicative interaction (AMMI), and another is the genotype plus genotype x environment inter-

action biplot (GGEbiplot) [1–3]. These methods have been widely applied in plant breeding

programs for the identification of mega-environments, which-won-where patterns, ideal geno-

types, and specific adaptability, among others. Limitations inherent to these fixed-based

parameters models (such as the lack of flexibility to treat unbalanced data and heterogeneity of

variances) have motivated the development of more flexible methods, such as those based on

mixed models. Piepho [4,5] and Smith et al. [6] proposed the MET analysis based on multivar-

iate mixed models; it uses factor analysis (AF) structures that consider environments/geno-

types and interaction as random effects.

In the literature, these models have been frequently referred to as factor analytic (FA) mod-

els [6–10]; they have shown great versatility for genotype selection since they combine the sta-

bility and adaptability studies into a single approach. The advantage of this approach is related

to its ability to address missing data and the heterogeneity of residual and genotypic (co)vari-

ances. These models are also notable for allowing the inclusion of heteroscedastic residues of

genetic values, which constitute an important aspect to be considered in the analyses [11,12].

It is known that the heterogeneity of variances among genotypes is affected by the heterogene-

ity of variances among environments and vice versa [13]. Furthermore, this model has been

useful for summarizing the covariance pattern in multivariate data [14].

Despite the recognized advantages offered by FA models, the method also has limitations,

such as the need to impose some constraints and, under some scenarios, the non-identifiability

in parameter estimation. It is worth highlighting the difficulty to construct exact confidence

intervals for the components of variance, since they are approximate and require assumptions

of asymptotic normality. In addition, there is a great demand for computational resources and

efficient algorithms to avoid the occurrence of solutions outside the parametric space (the so-

called Heywood cases), among other aspects [15,16].

An interesting alternative to the frequentist or likelihood approaches is the use of Bayesian

inference. Bayesian analysis allows greater flexibility for the construction of credible intervals

for unknown parameters, since all inference processes are based on the posterior distribution.

The flexibility of the Bayesian method for GEI analysis was partly illustrated by Crossa et al.

[17], Oliveira et al. [18], Perez-Elizalde et al. [19] and Silva et al. [20], which incorporated cred-

ibility regions for the bilinear parameters in the AMMI model. It is known that inferences

about genotypic and environmental scores in linear-bilinear models present great difficulties

for frequentist methods or non-parametric approaches [17,18,21,22].

Using Bayesian inference in AMMI models, Perez-Elizald et al. [19] have shown how his-

torical information can easily be incorporated into the model. Recently, Jarquin et al. [23]

showed how this information could be included in the sites regression (SREG) model using

the multilevel (hierarchical) Bayesian approach. Methodological innovations and applications

of factorial analysis have been rapidly designed in recent years, partly due to access to compu-

tational tools for numeric integration in the Bayesian framework. In particular, it is possible to

highlight the use of the Markov chain Monte Carlo (MCMC) in classical factor analysis [24].

Bayesian factor analytic model
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The Bayesian analysis for FA model was presented by de Los Campos and Gianola [25].

These authors proposed prior distributions based on the assumptions of the classical factors

analysis that avoids the imposition of constraints and reduces the computational requirements

that have restricted the use of these models. However, this approach it not founded on the ini-

tial FA structure described in Smith et al. [6]. Instead, de Los Campos’s and Gianola’s [25]

model accounts for the decomposition of the genetic variance, ignoring a more general struc-

ture for residual variances and performing a two-stage adjustment for the parameter of the

model. In addition, only the balanced scenario was considered, since it does not consider situa-

tions where missing data are present, which is the great appeal of the FA models for MET data

analysis.

Nevertheless, the advantages of the FA models in summarizing the MET network and find-

ing data patterns from breeding programs are remarkable. Several successful applications can

be found in Burgueño et al. [7,26], Kelly et al. [9], Meyer [16], Smith, Cullis and Thompson

[6,27], Smith et al. [28], Stefanova and Buirchell [29] and Tyrisevä et al. [30].

This study proposes the Bayesian approach for the FA model applied in MET data using

spectral decomposition to ensure the model identifiability. Additionally, we sought to evaluate

the Bayesian FA predictive ability on unbalanced data with respect to the classic FA models

through REML.

Material and methods

Material

Simulated data. We simulated a dataset with 20 genotypes (G1-G20) that were evaluated

in five environments (E1-E5) using a randomized complete block design with two replicates.

Five genotypes had interactions simulated from the Gaussian distribution with large variances

(unstable genotypes) and positive marginal effects. Five more genotypes were marginally nega-

tive and contained large Gaussian variances (unstable). 10 genotypes were a standard Gaussian

distribution, and the unstable genotypes had variance of 2 (three times the standard Gaussian

distribution. Therefore, the stability and instability in this study were considered as a function

of the size of the variability across the environments and the genotypes’ marginal effects as

Gaussian realizations.

Experimental data. The experimental data were described by Melo et al. [31]. These data

are related to grain yield traits measured in 50 maize single-cross hybrids (G1-G50). The

experiment was conducted using incomplete block designs with 2 replicates, and each plot had

5-m rows with 70-cm spacing between rows. The grain yield was evaluated and adjusted for

13% moisture and converted into t�ha-1. Come from.

These hybrids are originated from crossing among lineages of different backgrounds (tropi-

cal–Flint, Lancaster and Stiff Stalk Synthetic sources–see Melo et al. [31]). The crossing design

was in a partial diallel system. These hybrids were evaluated during the agricultural years of

2013 and 2014 in 10 environments (E1-E10) representative of the Southeast and Southern

regions of Brazil. Details on the environmental characteristics are given in the S1 Table.

Method

Statistical model. The classical multivariate linear mixed model under the unstructured

covariance matrix can be described as:

y ¼ Xβþ Zuþ ε ð1Þ

where y(n×1) is the vector of observations for p environments, q blocks and m genotypes.

Bayesian factor analytic model
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Vectors β(pq×1), u(mp×1) and ε(n×1) are fixed, random and residual vector effects, respectively.

The matrices X(n×pq) and Z(n×mp) denote information regarding β and u, respectively. For sim-

plicity, it is assumed that u represents the additive genetic effects. Moreover, ε~N(0,R) and

u~N(0,S�Im). In the FA framework, we can approximate the vector related to additive genetic

effects by common and specific factors using u = (Γp×k�Im)f+δ, where the covariance matrix

S is represented by a factor analytic structure (S = ΓΓ>+Ψ). Therefore, model (1) can be

rewritten as:

y ¼ Xβþ ZðΓp�k � ImÞf þ Zδþ ε ð2Þ

This has been referred to in the literature as the mixed model factor-analytic structured model

or simply the factor analytic (FA) model. Γ(p×k),f(mk×1) and δ(mp×1) are the loading matrix

(k = 1, . . .,p), the factor vector related to additive genetic effects and the vector of specific

effects, respectively. Furthermore, ε is the vector of residuals, X is the fixed-effect matrix refer-

ring to β, and Z is the genetic matrix referring to f and δ, where k represents the number of

multiplicative terms. The Z(n×mp) is a block diagonal matrix matching the vector y(n×1); this is

equivalent to assume that Z = (Z1,� � �,Zp) with Zk the matrix matching ith genotype at factor k
with dimension (n×m), for k = 1,. . .,p, and f ¼ ðf>

1
; � � � ; f>p Þ with fk a m-dimensional vector,

then

ZðΓ� ImÞf ¼
Xp

k¼1

ZkΓfk;

Given that ΓΓ> is a symmetric matrix, we can rewrite the model (2) observing that the

matrix of factor loadings can be obtained by Γ ¼ VΛ
1
2. In this expression, V represents the

matrix of singular vectors and Λ a diagonal matrix formed by the eigenvalues obtained by the

spectral decomposition of the loading matrix. The spectral decomposition of the unstructured

covariance matrix can be approximated by

Σ ¼ ΓΓ> ¼ VpΛpV
>

p ¼
Xp

k¼1

l
2

kαkα
>

k ð3Þ

where λk is the i-th singular value and αk the i-th singular vector (or eigenvector) of the spec-

tral decomposition, respectively.

A model with k = p (p as the matrix rank) multiplicative terms is called full rank, and the

specific effects are assumed as null. However, the advantage of using factor analysis occurs

when k is significantly smaller than p. If so, the number of parameters in the factor analysis k(p
+1) becomes much smaller than those p(p+1)/2 parameters of S.

Using principal components to describe the factor loadings and considering the spectral

decomposition properties and appropriate linear transformations, we can rewrite the Eq (2)

that involves the loadings as follows:

ZL ¼ ZðΓm � IpÞ ¼
Xp

k¼1

lkdiagðX2αkÞZf ð4Þ

where Γm ¼ VpΛ
1=2

p ¼
Xp

k¼1

lkαk. Further details on these properties and the theorem’s demon-

stration can be found in Songgui and Suju [32] and in (S1 Text). Replacing the Kronecker

Bayesian factor analytic model
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product into (2) with the sum in (4), the FA model can be expressed by

y ¼ X1βþ
Xp

k¼1

lkdiagðX2αkÞZf fk þ Zδþ ε ð5Þ

The terms λk and αk, as already specified in (3), are the k-th singular values and eigenvectors

of the spectral decomposition of S, the matrices X1, X2, Z and Zf are design matrices destined to

distribute the FA effects for experimental unity (see S1 Text). By the summation, we can efficiently

distribute the effects by avoiding using the Kronecker product or other artifices in the conditional

distributions. This facilitates algebraic manipulations and computational implementations. Thus,

the model presented in (5) is more treatable from a Bayesian point of view with respect to its

equivalent (2). The conditional likelihood has a multivariate normal density as follows

yjβ; l;α; f;R � N X1βþ
Xp

k¼1

lkdiagðX2αkÞZf fk þ Zδ;R

" #

:

More details about the likelihood in factorial models can be obtained in supplemental material

(S2 Text):

Prior distributions. In this study, the prior distributions for the FA parameters were estab-

lished based on the assumptions of the factor analysis model through the maximum restricted

likelihood (REML) [6]. In this sense, equivalent Jeffrey’s prior (Gaussian with large variance) was

used for the fixed effects and Bayesian AMMI priors for the loading parameters approximated by

the eigenvalues and eigenvectors. The prior distributions for each parameter were given by

βjμb; s
2
b
� Nðμb; Ipqs2

b
Þ; Ipq is an identity matrix; μβ = 0 and s2

b
¼ 1012 ) β � constant:

fjμf ; s
2
f � Nð0; ImÞ, where: Im- is an identity matrix.

δjμδ; s2
δ � Nð0;ΨÞ, where: Ψ = diag(ψ11,. . .,ψkk), k = 1,. . .,p is a diagonal matrix in which

the elements ψii are the specific variances from each environment.

αk~Uniform spherical in the corrected subspace. The uniform spherical distribution is a

special case of von Mises-Fisher distribution [15].

lkjmlk ; s
2
lk
� Nþð0; s2

lk
Þ; s2

lk
¼ 1012 ) lkjmlk ; s

2
lk
� constant, where N+ indicates a posi-

tive Gaussian distribution truncated on λ1�. . .�λp�0.

Here, to simplify the notation, it will be assumed that R is a diagonal block matrix com-

posed of s2
ek

, with k = 1, . . ., p. For this parameter, we assume an inverse scaled chi-squared

prior distribution denoted by

s2

ek
� Scale � w� 2ðne; S

2

kÞ; ne ¼ 0; S2

k ¼ 0 ) s2

ek
�

1

s2
ek

Since Ψ is also a diagonal matrix composed of diagonal elements ψkk with k = 1 . . ., p, we

also assumed the inverse scaled chi-squared prior distribution for ψkk as follows:

ckk � Scale � w� 2ðnk; S
2

kÞ; nk ¼ 0; S2

k ¼ 0 ) ckk �
1

ckk

All previous prior distributions satisfy the model constraints and are conditionally

conjugated.

The Jeffrey’s prior for the fixed effects is |I(β)|
1/2, where I(β) is the expected Fisher informa-

tion about β, used for environmental effects is proportional to a constant given that the infor-

mation about β in the likelihood does not depends on β. Some equivalence is obtained in the

posterior distribution by assuming a prior normal distribution with large variance, i.e 1012.

Bayesian factor analytic model
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For the singular values λk, the truncated normal distributions were used in order to ensure the

model identifiability for positive and sorted singular values, i.e., λk>0 and λ1>λ2>. . .>λk. For

the singular vectors αk, the orthonormality restriction request that the coordinate be distrib-

uted on the hypersphere space; here an uniform hypersphere was assumed, in which is equiva-

lent to a von Mises-Fisher with concentration parameter equal to zero[15].

For the factor model parameters (f, δ), the priors were assumed according to the classical

factor model assumptions about this effects [6]. The prior hyperparameters for the variance

components were chosen in order to impose large entropy and little weight of prior on the

posterior distribution.

The data likelihood given above may be simplified as

Lðyj�Þ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pnjRj

p exp �
1

2
ðy � θÞ>R� 1ðy � θÞ

� �

ð6Þ

where ϕ = (β,λ,δ,α,f,R) and θ ¼ X1βþ
Xm

k¼1

lkdiagðX2αkÞZf fk þ Zδ

Full conditional posterior distributions for the FA parameters. Applying Bayes’ theo-

rem on the likelihood and priors for φ= (β,λ,δ,α,f,R,Ψ), the joint posterior distribution is

given by

pðφjyÞ / Lðyj�ÞpðβÞpðλÞpðαÞpðδÞpðfÞpðRÞpðΨÞ ð7Þ

The full conditional posterior distributions for the Bayesian factorial analytic (BFA) param-

eters were derived from (7) as follows:

i) Complete conditional a posteriori distribution for β

βj . . . � N½ðX>
1
R� 1X1Þ

� 1X>
1
R� 1A0; ðX

>

1
R� 1X1Þ

� 1
� ð8Þ

where: A0 ¼ y �
Xm

k¼1

lkdiagðX2αkÞZf fk � Zδ.

ii) Complete conditional a posteriori distribution for λk
The full conditional posterior distribution for the singular value is denoted by:

lkj . . . / Nþ½ðA>
2kR

� 1A2kÞ
� 1A>

2kR
� 1A1k; ðA

>

2kR
� 1A2kÞ

� 1
� ð9Þ

where A1k ¼ y � X1βþ
Xp

k6¼k0
lk0diagðX2αk0 ÞZf fk0 þ Zδ

" #

and A2k = diag(X2αk)Zffk.

iii) Complete conditional a posteriori distribution for αk

αkj . . . � N½ðΔ>k R
� 1DkÞ

� 1Δ>k R
� 1A3k; ðΔ

>

k R
� 1ΔkÞ

� 1
� ð10Þ

where A3k ¼ y � X1β �
Xp

k6¼k0
lk0diagðX2ak0 ÞZf fk0 � Zδ and Δk = λkdiag(Zf,fk)X2.

Although the prior αk presented spherical isotropy, it is not possible to obtain a conjugate

von Mises-Fisher distribution similar to those obtained in Viele and Srivasan [33], Crossa et al.

[17], or Oliveira et al. [18] for the AMMI model or in Crossa et al. [23] and Oliveira et al. [34]

for the GGE model. This fact is because the previous-mentioned studies assumed the homoge-

neity of variances, which is different from the FA proposed here in which different variances

were assumed for the environmental network. Instead, the conditional posterior will be a mul-

tivariate normal, which can violate the spectral decomposition constraints such as orthonor-

mal eigenvectors.

Bayesian factor analytic model
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To overcome these difficulties, the sampling will be performed in the corrected space free

of the orthogonality constraint by using auxiliary variables (which will be defined in the further

section); the vectors will be returned in the correct subspace in <
m

through orthogonal linear

transformations.

iv) Conditional a posteriori distribution for factor scores f

The complete posterior conditional distribution for f is given by

fj . . . � N½ðIþ A4
>R� 1A4Þ

� 1A4
>R� 1A5; ðIþ A4

>R� 1A4Þ
� 1
� ð11Þ

where A4 ¼
Xp

k¼1

lkdiagðX2αkÞZf and A5 = y−X1β−Zδ.

v) Complete conditional distribution a posteriori for specific variances δ

δj . . . � N½ðZ>V� 1ZþM� 1Þ
� 1Z>R� 1A7; ðZ

>V� 1ZþM� 1Þ
� 1
� ð12Þ

where A6 ¼
Xp

k¼1

lkdiagðX2αkÞZf fk, A7 = y−X1β−A6 and M = Im�Ψ.

vi) Complete conditional a posteriori distribution of Ψ
Since Ψ is diagonal matrix with the independent elements Ψ = diag(ψ11,. . .,ψkk) with

k = 1,. . .,p, it was considered a scaled inverse chi-squared distribution for each diagonal ele-

ment. The complete conditional distribution posterior for each ψkk is

ckkj . . . � Scale � w� 2 mk þ nk;
mkðδ

>δ=mkÞ þ nkS2
k

mk þ nk

� �

ð13Þ

where mk is the number of genotypes in the environment and νk = 1.

vii) Complete conditional a posteriori distribution for s2
ek

Similar to Ψ, the R is also a diagonal matrix and the independent priors also have scaled

inverse chi-squared distributions. The conditional posterior distribution obtained for each s2
ek

is given by

s2

ek
j . . . � Scale � w� 2 nk;

ðyk � θkÞ
>
ðyk � θkÞ

nk

� �

ð14Þ

where nk is the number of observations in each environment.

Sampling parameters requesting orthonormal basis. As all conditional distributions

were obtained in a closed form, the distributions have known shapes that allow for direct sam-

pling using the Gibbs sampler. However, as was previously highlighted, the conditional distri-

bution for the vector αk is a multivariate Gaussian distribution instead of a von Mises-Fisher.

Nevertheless, this distribution and its parametric space do not ensure the model’s constraints

since the vectors must have unitary norms and be orthogonal to each other.

However, the sampling can still be performed from the normal multivariate in the corrected

subspace by adding two further steps: normalize the αk vector and return it into the orthogonal

basis using the correct subspace through a linear transformation. Viele and Srinivasan [33]

have shown how to perform the sampling of the spherical uniform distribution using the stan-

dardized Gaussian distribution and how the vectors can be placed in the correct subspace

using the Gram–Schmidt orthonormalization process.

Assuming that αk is an unit vector of m-s dimension in space<
m

, ðα>k αk ¼ 1Þ is orthogonal to

vector S (v1, v2, . . ., vs) in<
m

. Further suppose that the vectors α1,α2,. . .,αs are a set of orthonormal

vectors in the subspace generated by v1, v2, . . ., vs. In these terms, given the matrix Hs = α1,α2,. . .,

Bayesian factor analytic model
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αs, there is a matrix Hk with the dimensions m×(m−s) so that Hm = (Hs,Hk) is an orthonormal

matrix. This matrix can be obtained by the Gram-Schmidt orthonormalization process.

Thereby, we obtained the vector ~αk by the linear transformation ~αk ¼ H>k αk so that

~αk 2 <
m� s

. In other words, the sampling will be performed in the "corrected" subspace without

the constraints imposed by the spectral decomposition. We can easily show that αk ¼ Hk ~αk.

Therefore, we retrieve the vector in the correct subspace in <
m

and orthogonal to s vectors by

applying the inverse operation, satisfying the model’s constraints.

The posterior distribution for the sampling process can be obtained from the kernel of the

full conditional posterior distribution of αk as follows:

exp �
1

2

��

αk � ðΔ
>

k R
� 1ΔkÞ

� 1Δ>R� 1A3k�
>
ðΔ>k R

� 1ΔkÞ½αk � ðΔ
>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k

��� �

By solving within the brackets, we have

α>k ðΔ
>

k R
� 1ΔkÞαk � α>k ðΔ

>

k R
� 1ΔkÞðΔ

>R� 1ΔkÞ
� 1Δ>k R

� 1A3k�

� ½ðΔ>k R
� 1ΔÞ� 1Δ>k R

� 1A3k�
>
ðΔ>k R

� 1ΔkÞαkþ

þ½ðΔ>k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k�

>
ðΔ>k R

� 1ΔkÞðΔ
>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k

Using the identity HkH
>

k ¼ I and dividing each part of the kernel, we get

i. α>k HkH
>

k ðΔ
>

k R
� 1ΔkÞHkH

>

r αk ¼ ðH
>

k αkÞ
>H>r ðΔ

>

k R
� 1ΔkÞHkH

>

k αk ¼

¼ ð~αkÞ
>H>k ðΔ

>

k R
� 1ΔkÞHk ~αk

ii. � α>k ðΔ
>

k R
� 1ΔkÞðΔ

>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k ¼

¼ � α>k HkH
>

k ðΔ
>

k R
� 1ΔkÞHkH

>

k ðΔ
>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k ¼

¼ � ~α>k H
>

k ðΔ
>

k R
� 1ΔkÞHkH

>

k ðΔ
>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k

iii. � ½ðΔ>k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k�

>
ðΔ>k R

� 1ΔkÞHkH
>

k αk ¼

¼ � ½ðΔ>k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k�

>
ðΔ>k R

� 1ΔkÞHkH
>

k αk ¼

¼ � ½ðΔ>k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k�

>H>k ðΔ
>

k R
� 1ΔkÞHk ~αk

iv. ½ðΔ>k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k�

>
ðΔ>k R

� 1ΔkÞðΔ
>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k ¼

¼ ½ðΔ>k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k�

>HkH
>

k ðΔ
>

k R
� 1ΔkÞHkH

>

k ðΔ
>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k

In this way,

α>k ðΔ
>

k R
� 1DkÞαk � α>k ðΔ

>

k R
� 1ΔkÞðΔ

>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k�

� ½ðΔ>k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k�

>
ðΔ>k R

� 1ΔkÞαkþ

þ½ðΔ>k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k�

>
ðΔ>k R

� 1ΔkÞðΔ
>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k ¼

¼ ð~αkÞ
>H>k ðΔ

>

k R
� 1ΔkÞHk ~αk � ~α>k H

>

k ðΔ
>

k R
� 1ΔkÞHkH

>

k ðΔ
>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k�

� ½ðΔ>k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k�

>HkH
>

k ðΔ
>

k R
� 1ΔkÞH~αkþ

½ðΔ>k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k�

>HkH
>

k ðΔ
>

k R
� 1ΔkÞHkH

>

k ðΔ
>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k

Thus, the conditional posterior for the auxiliary variable ~αk given the other parameters in

the corrected subspace is given by

~αkj . . . � N½H>k ðΔ
>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k; ðH

>

k ðΔ
>

k R
� 1ΔkÞHkÞ

� 1
�:

Therefore, the sampling of ~αk is performed in the corrected subspace through the previ-

ously obtained conditional. As presented in Crossa et al. [17] and Oliveira et al. [18], we seek
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the sample vectors that have the norm 1. Thus, the orthogonal vectors must be normalized as

α�k ¼
~αkffiffiffiffiffiffiffiffi
~α>r ~αk

p . Assuming �~αk ¼ H>k ðΔ
>

k R
� 1ΔkÞ

� 1Δ>k R
� 1A3k and Ck ¼

ffiffiffiffiffiffiffiffiffiffiffi
~α>r ~αk

p
, through algebraic

manipulations, the conditional distribution for the orthonormal ~αk is given by

~αkj . . . � N½α�k; ðC
>

k H
>

k ðΔ
>

k R
� 1ΔkÞHkCkÞ

� 1
�

where α�k ¼
~αk
Ck

.

To place the singular vector in the correct subspace <
m

satisfying the orthonormal con-

straints, we apply the inverse transformation αk ¼ Hk ~αk. The sampled vector is now orthogo-

nal to the other s vectors and its transformation preserves the vector norm since

ð~αkÞ
>

~αk ¼ ðH
>

k αkÞ
>H>k αk ¼ α>k HRH

>

Rαk ¼ α>k Imα
>

k ¼ α>k αk ¼ 1:

Thus, the random m-s dimensional vector in <
m

isone-to-one transformation into the same

random vector in <
m� s

.

From the previously complete conditional distributions, the parameter sampling was per-

formed by the Markov chain Monte Carlo (MCMC) using the Gibbs sampler. The imple-

mented iterative sampling algorithm is illustrated in S3 Text.

After concluded the iterative process and checked the chains’ convergence, the samples

were considered to have resulted from the marginal densities. The convergence diagnostic was

performed using the Raftery and Lewis [35] Heidelberger and Welch [36] criterion. All infer-

ence processes were performed using the R statistical software [37].

Inference about the linear and multiplicative parameters of the model. The sampled

eigenvectors present orthonormal basis across MCMC process, however, their maximum pos-

terior estimator (MAP) may not be orthogonal. The MAP estimator for the multiplicative

terms were constructed according to the method proposed by Chen and Shao [38] imple-

mented in the Bayesian output analysis (BOA) package using the R statistical software (R

CORE TEAM, 2016).

Bivariate regions of credibility for factor loadings and scores. The biplot credibility

regions for factor loadings (λ1α1,λ2α2) and factor scores (f1,f2) were constructed using the

Euclidean distances of the sampling points with respect to the distribution center using 5% as

the cut off [39].

The FA biplot interpretation was performed similarly to the GGE-biplot, as suggested by

Burgueño et al. [7].

Model validation in the prediction of missing data. The cross-validation process was

performed considering different levels of missing data in the GEI matrix. The sample was ran-

domly divided into k-fold of equal size, with k = (10, 3, 2) corresponding respectively to the

10%, 33% and 50% levels of random genotype losses in the environments without replacement.

Thus, the simulated missing was performing on GEI table cells where some genotypes (lines)

information were totally withdraw from specific environments (columns), but keeping all

environments in the dataset. In addition, the cross-validation was performed to allow that all

genotypes were evaluated in at least one environment. Therefore, the GEI cells were randomly

sampled, but observing the restrictions given above.

The BFA’s predictive ability was compared to the two-step FA models using the EM algo-

rithm (FA-EM—expectation maximization) (Nuvunga et al. [40] and the FA via AI algorithm

(Average information) (FA-AI) (Smith, Cullis and Thompson [6]) in sparse matrices imple-

mented in Asreml-R [41].

The evaluation of the model’s predictive ability was performed using the average PRESS

(predicted residual error sum of squares) and phenotypic correlation between the predicted

Bayesian factor analytic model
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ðŷijÞ and observed (yij) values. The PRESS expression is given by

PRESS ¼
1

n

Xn

j¼1

ðyij � ŷijÞ
2

ð15Þ

Model selection or choice of the number of factors k. The number of latent factors to be

retained in the model was selected using the PRESS criterion, which uses a cross-validation

approach [42].The statistical efficiency criterion is given by SE = (PRESfull)/(PRESSk), which is

the ratio between the PRESS of the full model and the PRESS of low-order models.

The model selection for real data was done using the Akaike Information Criterion Monte

Carlo (AICM). ΔAICM corresponds to the difference between the full model and the compet-

ing models, as suggested by Raftery et al. [43]. The AICM is calculated as a version based on a

posteriori simulation of the AIC [44].

AICM ¼ 2ð�l � s2

l Þ ð16Þ

where�l is the mean of the marginal log-likelihood and s2
l is the posterior variance of the mar-

ginal log-likelihood.

Thus, the AICM can be seen as the simplified version of the penalized posterior mean of

the log-likelihood. The selected model is the one with the highest AICM and lowest ΔAICM.

Results

Simulated data

For this scenario, MCMC chains with 65,560 iterations were simulated for the BFA model. As

already pointed out, the convergence of the generated chains was monitored by the criteria

Raftery and Lewis and Heidelberger and Welch. The first 8,400 observations were burned-in

and a thinning for each four observations was performed to ensure the convergence process.

The values of burning and thinning were based on a training sample according to the test of

Raftery and Lewis. It was also observed that all parameters had a dependence factor I<5. The

final chain length was 14,290 samples for each parameter.

In addition, all parameters passed the stationarity test, indicating that convergence was

achieved according to the criterion of Heidelberger and Welch and Geweke. That is, the tests

indicated good convergence properties for all model parameters. In S4 Text, the traces for the

residual variance chains are shown and its pattern corroborates the convergence test results.

Another interesting detail, in the Bayesian context, is the computational time of analysis,

which for the simulated data was 22.15 minutes.

The simulated parametric values for the residual variance and FA loadings τk (recovered by

λkαk) and the MAP estimates are presented in Table 1. We notice that the estimated values and

parametric values do not present large differences, which support the BFA’s ability in estimat-

ing the loadings of FA models. All values used in the simulations are within the 95% credibility

intervals.

Specific estimates and credibility confidence regions for the coordinates related to the first two

factor scores can be seen in (S2 Table). The posterior estimates presented values very close to

those from FA mixed models obtained by the restricted maximum likelihood (REML) estimates

using the average information (FA-AI) algorithm. However, the second axes for both methods

present large differences for G1, G2 and G5, but they are within the credibility intervals.

The bivariate credibility regions (highest posterior density—HPD) for the factor loadings

(λ1α1,λ2α2) and genotypic scores (f1,f2) that did not included the biplot origin (0,0) are shown

Bayesian factor analytic model
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in Fig 1. From these biplots, we see the clustering groups with respect to grain yields and/or

GEI patterns. In FA models where G is confounded with GE, the first loading tends to present

a positive signal (Fig 1B). According to Burgueño et al. [7], Smith, Cullis and Thompson [6]

and Stefanova and Buirchell [29], in these situations, the interpretation for the FA biplot is

similar to the GGE-biplot. However, it is necessary to be careful when interpreting the inter-

sections among the credibility regions, given that loadings and scores do not have inner-prod-

uct properties. If so, the biplots are better justified with separate presentations for loading and

factor scores to avoid confusion with the AMMI or GGE models.

However, just to illustrate the usefulness of the BFA model, we plotted both factor loadings

and scores in a single biplot (Fig 1A). In this Figure, it is possible to see two distinct groups of

genotypes with respect to yields, but they are similar with respect to the GEI pattern since all

regions cross the first axis.

Fig 1B shows the HPD’s credible regions for factor loadings at 95% confidence. This sub-

group of environments has similar effects with respect to the GEI pattern, as indicated by the

overlaps between the credibility regions and ellipses that did not encompassed the biplot

origin.

Given that the first axis captures much of the main effect of genotypes and the second axis

captures the complex part related to the GEI, it was observed that the scale and ranking of the

factor scores were equivalent to the marginal E-BLUPS obtained from the mixed model analy-

sis since the regression adjustment between the two estimates was approximately 1 (r2 =

0.979).

Performance evaluation of the unbalanced model. In addition to evaluating the BFA

model in terms of parameter estimations, the Bayesian FA model’s predictive ability was evalu-

ated and compared to the two step FA model [40], and FA-AI [41]. Although it is difficult to

adjust a full FA model in the mixed models framework due to computational costs and

Table 1. Bayesian maximum a posterior (MAP), simulated parametric value (PV), posterior standard deviation (PSD), credibility intervals (CI 95%, LL: Lower

limit, UL: Upper limit).

HPD 95%

Parameter PV MAP PSD LL UL

s2
e1

0.546 0.847 1.260 0.299 1.506

s2
e2

1.209 1.911 1.155 0.846 3.162

s2
e3

4.690 4.381 2.353 2.209 6.826

s2
e4

7.377 10.091 19.936 4.938 15.097

s2
e5

9.026 9.104 3.807 3.503 15.793

s2
e 2.900 2.848 - - -

λ1α11 1.468 1.548 0.845 0.500 3.448

λ1α21 1.314 1.344 0.761 0.291 3.062

λ1α31 2.404 2.353 1.267 0.799 4.916

λ1α31 1.771 1.475 1.008 -0.439 3.817

λ1α51 2.751 2.191 1.311 0.180 5.022

λ2α12 0.579 0.381 0.603 -0.845 1.521

λ2α22 0.385 0.436 0.374 0.000 1.154

λ2α32 0.257 0.234 0.678 -1.093 1.657

λ2α42 1.717 0.307 0.890 -1.466 2.113

λ2α52 -1.823 -0.764 1.154 -2.726 1.748

Residual variance mean ðs2
ek
Þ simulated factor loadings τk and recovered by the BAF model (τk = λkαk).

https://doi.org/10.1371/journal.pone.0220290.t001
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convergence problems, this problem was not observed for the simulated dataset, given that the

set of environments is relatively lower compared to the data set commonly utilized in MET.

The cross-validation results showed that it is possible to predict the performance of hybrids

using FA models with high accuracy, reaching up to 0.82 in some folds, as explained in S1–S6

Figs.

Regardless of the unbalanced level applied to the hybrid panel, the magnitude of the corre-

lation values was higher than 0.30 (Fig 2) and the Bayesian model showed the highest predic-

tion ability for all scenarios.

The PRESS in the10-fold scenario (as expected) was lowest when compared to the other

folds for the three models (Fig 3). At all considered unbalanced levels, the BAF model had the

lowest PRESS. At 10%, the FA-AI and FA-EM models had the same PRESS and alternated pre-

cision at the 33% and 50% levels. In other words, the scenarios proposed to PRESS using these

two FA approaches were inconclusive.

FA model selection based on cross validation. The numbers of latent factors to be

retained in the model were selected using a 10-fold cross-validation. Therefore, the FA5, FA4,

FA3, FA2 and FA1 models were adjusted and the model selection was based on the PRESS cri-

terion and statistical efficiency (SE) (defined as the ratio between the full FA model versus the

low-dimension ones).

Fig 4B and 4A present the PRESS and the correlation between the simulated phenotypic

value and the predicted one using each model. Observing Fig 4B, one can verify that the FA4

model (with k = 4) presented the highest predictive accuracy compared to the others candidate

Fig 1. Credibility regions at 95% probability for genotypic factor scores (Fig 1A) and for the factor loadings of environments (Fig 1B) using the first two components.

Only the genotypes scores that did not include the biplot origin were represented.

https://doi.org/10.1371/journal.pone.0220290.g001
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models, indicating that this model is the best one. Additionally, using the PRESS criterion, the

best model again was FA4 (Fig 4A).

Fig 4C shows the graphic of the statistical efficiency of the competing models. In this

graphic, it is notable that the efficiency increases from FA1 to FA4 where we find the maxi-

mum efficiency. This demonstrates that the use of k = 4 would be the best choice for these data

representation.

The FA2 model is generally considered parsimonious and interpretable for plant breeders,

since the first axis can be seen as related to adaptability and the second related to stability, such

as in the SREG2/GGE model [7,29]. However, it was verified that the FA4 model showed better

results in the three used criteria.

Experimental data

For the real data scenario, 85,000 Markov chains were simulated and (similar to the previous

analysis), the first 9,800 observations were burned-in and thinned for every eight samples. A

final MCMC chain with 9,400 observations was obtained for each parameter. The chain con-

vergence was verified by Raftery and Lewis [35], Heidelberger and Welch [36] and and

Fig 2. Bar chart related to the correlation for 10-fold, 3-fold and 2-fold scenarios using the Bayesian FA (BAF) and FA models (FA-EM and FA-AI) for

simulated data.

https://doi.org/10.1371/journal.pone.0220290.g002
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Geweke criterion [45]. The trace pattern related to the posterior distributions also indicated

good convergence. The computational time spent in the MCMC sampling process was

13,938.34 minutes.

The point and interval estimates for the components of variance s2
k are presented in

Table 2. It is possible to notice that the environments E8 and E2 presented the highest and low-

est residual variances, respectively.

Fig 5A shows the HPD credibility regions at the 95% probability for the genotypic factor

scores. For simplicity, only genotypes that did not include the biplot origin (0,0) were repre-

sented. A correlation between the first factor scores and the marginal genotypic BLUPs was r2

= 0.897 in the Bayesian FA model and r2 = 0.929 for the FA mixed model, which would also

justify the GGE biplot interpretation.

Moreover, for the real data scenario, all factor loadings related to environments were posi-

tive and with high overlapping for the credibility intervals (Fig 5B). In this same Figure, it is

observed that environments with low residual variances (Table 2) show more concentrated

credible regions with respect to those with higher residual variances. Thus, the elliptical range

depends on each specific experimental variance. Estimates for factor loadings and factor scores

can be found in S3 and S4 Tables.

Fig 3. Bar chart related to the PRESS for 10-fold, 3-fold and 2-fold scenarios using the Bayesian FA (BAF) and FA models (FA-EM and FA-AI) for

simulated data.

https://doi.org/10.1371/journal.pone.0220290.g003
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Figs 6 and 7 show a brief comparison of the biplot results obtained from the mixed model

FA(2) method and our BFA model. Both methods produced similar patterns in the biplots sep-

arating the genotypes {G32, G35, G36, G37} from the genotypes {G1, G2, G3, G5, G6, G7, G8,

G10, G38}, where each group was clustered in opposite biplot quadrants.

In these same Figures, it was verified that the estimates of the two models were coincident

for factor scores and factor loadings. Similarities can be observed when comparing the

Fig 4. Ockham’s plot referring to the BAF model performance using the correlation between the observed and predicted phenotypic values (A) (higher,

better), the predicted sum square (PRESS) (B) (lower, better) and the statistical efficiency (SE) (C) (higher, better) for simulated data.

https://doi.org/10.1371/journal.pone.0220290.g004

Table 2. Posterior means (PM), credibility regions (CI 95%, LL: Lower limit, UL: Upper limit) for the residual var-

iance ðs2
ek
Þ obtained by the BFA model for real data.

HPD 95%

Parameter PM SD LL UL

s2
e1

3.4642 0.2869 2.9392 3.9960

s2
e2

1.4465 0.2187 1.2076 1.6734

s2
e3

1.9769 0.1655 1.6827 2.2918

s2
e4

1.6672 0.1634 1.3776 1.9581

s2
e5

3.2711 0.3030 2.7526 3.7986

s2
e6

1.8623 0.1538 1.5850 2.1727

s2
e7

2.1392 0.1968 1.8324 2.4674

s2
e8

4.0689 0.2984 3.4846 4.6402

s2
e9

1.6871 0.1472 1.4090 1.9773

s2
e10

3.3718 0.2624 2.8713 3.8595

https://doi.org/10.1371/journal.pone.0220290.t002
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distribution of environmental scores in standard biplot analyses (Fig 6) compared to those

obtained from the Bayesian model. It is possible to verify the change in the E8 position from

the FA-mixed model (fourth quadrant) to the Bayesian FA (second quadrant) that may result

in small differences in the mega-environments formation and the specific adaptability.

Model selection. In the Bayesian factors analysis, one of the most important issues to be

addressed is the choice of the appropriate number of factors to be retained in the model.

In Table 3, we present the log-likelihood AICM values of the ten competing models for the

real data set. It was verified that the AICM criterion was unable to select the best FA model

since the AICM were practically equal.

In this same table, it is possible to verify the ΔAICM for each model. Similarly, there is not a

fair criterion to select the number of factor loadings using this information. The results pre-

sented in Table 3 indicate the difficulty of selecting the best model since the criterion differen-

tiation occurs only in the third decimal place, making it necessary to add an additional

measure for model selection.

In FA models, the genetic covariance is estimated by [S = (ΓΓT)k−1+Ψ]. To ensure the

FA model’s identifiability, the loading matrix must be conditioned to the following equality

(ΓΓT = S−Ψ).

In Fig 8, we can verify that when the full model-FA k is adjusted, the proportion of marginal

genetic variance given by the geometric mean ½s2
g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdiagjΣjÞ10

p
� is fully recovered by the

loadings ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðΓΓTÞ10

p
� with a geometric mean of the residual variance given by ½s2

e ¼
ffiffiffiffiffiffi
jRj10

p
�.

This situation corresponds to an unstructured model. When the one axis is removed from the

Fig 5. Credibility regions at the 95% probability for genotypic factor scores (a) and for factor loadings of environments (b) using the Bayesian approach for real

data. Only the intervals that did not include the biplot origin were represented.

https://doi.org/10.1371/journal.pone.0220290.g005
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full model, one can verify the decreasing residual variance and the fast increase of the specific

variance that merges the genetic and residual (noise) variances.

It can be verified that starting from FA (k-1) model to model FA1, the variance s2
e remains

constant, but the harmonic mean related to the specific variance ½c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagjΨj10

p
� increases as

the FA model becomes more parsimonious. In addition, (as expected) the genotypic variance

recovered by the loadings
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðΓΓTÞ10

p
decreases. It is possible to note that the use of complex

models (high k-dimensional FA) has no advantage or gain in the calculation of s2
g or s2

e . Thus,

under the identifiability imposed in this study, the performance of the model selection tests

using the likelihood can be complicated, since the specific variances (or noise) are estimated

separately from the experimental error and the missing variance unrecovered by the loading in

low-dimension FA structure recovered by the specific variances given in Ψ.

Discussion

The development of models able to describe the response of genotypes in environmental net-

works has become a great challenge to quantitative breeders, mainly in the genome selection

context [46] The use of factorial analytical structures in MET analyses has contributed greatly

to the analysis and meta-analysis of phenotypic data in trial networks, presenting unbalanced

Fig 6. Biplot analysis of genotype scores using the FA-AI model (Red) and the BAF (Blue), considering 50 genotypes evaluated in 10 environments for real data.

https://doi.org/10.1371/journal.pone.0220290.g006
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data and different experimental accuracies. The main difference between the BFA method and

the classical mixed model FA lies in the BFA model assumptions that are founded on factor

analysis via spectral decomposition of the genetic covariance matrix. This approach allows one

to incorporate inference in the biplot of the loadings and rotationally, which is not directly per-

formed in classical FA analysis.

Fig 7. Biplot analysis of environmental scores using the FA-AI model (Red) and the BAF (Blue), considering 50 genotypes evaluated in 10 environments for real data.

https://doi.org/10.1371/journal.pone.0220290.g007

Table 3. AICM values and ΔAICM (difference between the AICM of the complete model and the others) for the

selection of FAk models, (k = 1, . . ., 10) and the ranking of models for real data.

Model AICM Rank ΔAICM Rank

FA1 -4.351 1st-FA10 -0.007 1st -FA2

FA2 -4.347 2nd -FA2 -0.003 2nd FA4

FA3 -4.351 3rd- FA4 -0.007 3rd -FA1

FA4 -4.35 4th -FA1 -0.006 4˚ -FA3

FA5 -4.351 5th -FA3 -0.007 5th -FA5

FA6 -4.351 6th-FA5 -0.007 6th -FA6

FA7 -4.354 7th -FA6 -0.01 7th -FA9

FA8 -4.354 8th-FA9 -0.01 8th -FA7

FA9 -4.353 9th-FA7 -0.009 9th -FA8

FA10 -4.344 10th -FA8 - -

https://doi.org/10.1371/journal.pone.0220290.t003
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This particularity ensures the model’s identifiability and avoids the occurrence of estimates

outside of the parametric space (Heywood cases), as observed in Smith, Cullis and Thompson

[6]. In addition, it eliminates the need for loadings’ rotationality, providing robust estimates

for covariance parameters through loadings and factor scores. Thus, the BFA method guaran-

tees the ability to test all latent factors that cannot be ensured by classical FA model. For exam-

ple, it was observed that the FA analysis conducted in Asreml-R on real data did not converge

on more complex FA models (FA�3) and a fair scanning for the best model was not possible

using the real data. The selection of the number of k factors is still a non-trivial issue and inad-

equate choices can result in biased and unstable estimates of S and R [47,48].

In this study, we assumed independence among environments assigning the scaled-inverse

chi-squared distributions for each diagonal element of the residual variance. However, if this

assumption is relaxed, we can use an inverse Wishart prior for the residual covariance matrix

(as in de Los Campos and Gianola [25]) or the sparse prior matrix for the loading matrices (as

proposed by Runcie and Mukherjee [48]).

It is important to highlight that some problems related to improper posterior may emerge

in hierarchical models when non informative priors are used. This issue was discussed in

Fig 8. Residual variance (s2
e ), specific (ψ) variance, loading matrix (ΓΓ) and recovered genetic variance ½s2

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdiagjðΓΓTÞ
k� 1
þΨjÞ10

q

10� on different FA(k)

structures for real data.

https://doi.org/10.1371/journal.pone.0220290.g008
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Hobert and Casella [49] and Gelman [50]. While it is not ease checking all marginal posterior

in complex models some tips can be observed during MCMC sampling such as non conver-

gence or bimodal posterior presenting high mass on zero value.

In this study, we did not observed such problems as those verified in our previous work

using Bayesian hierarchical AMMI model [20]. On the scenario presented by these authors,

some ad hoc procedures were applied to obtain proper posteriors in family of inverted

Gamma-Gaussian hierarchical models when improper Jeffrey’s prior replaces the inverted

Gamma distribution. Silva et al. [20] proposed the correction of degree of freedom based on

Ter Braak [51] approach and suggested such correction when there is evidence of improper

posterior.

The rotationally issue is not discussed in the study of de Los Campos and Gianola [25].

Runcie and Mukherjee [48] argue that the rotationality may be guaranteed by imposing con-

straints on the loading matrixin the prior specification (hierarchical modeling). As it is known,

the rotationality of the loading matrix does not influence the estimation of model parameters.

However, it may blur some biological interpretations [6] and hamper the MCMC’s conver-

gence [52].

Moreover, the parametric advantages of the BFA model in its efficiency in representing the

FA pattern can be seen in Figs 6 and 7, where the BFA is compared with the FA-AI. The same

FA pattern was expected, given the BFA’spriors based on the FA model’s assumptions reported

in Smith et al. [6]. Furthermore, in the study involving the simulated data, the estimates

obtained for residual variances were close to the true values and the recovery of the first two

factor loadings by the eigenvalues and eigenvectors (Table 1).

Other proposals for multi-environment data analysis can be found in the literature; some

highlight the use of Bayesian AMMI or SREG models [17–19,23,34]. One limitation of these

approaches with respect to BAF is to assume homogeneity of variances and other model

assumptions based on ANOVA.

When the homogeneity of variances is assumed, the sampling of the eigenvectors is per-

formed in hyperspherical space through the von Mises-Fisher distributions, as proposed by

Liu [52] for the AMMI models. Here, given that different residual variances were assumed

across the environments, it was not possible to approximate a von Mises-Fisher distribution as

the posterior distribution; rather, the eigenvectors are sampled from a multivariate Gaussian

distribution that provides hyper-ellipses instead of hyper-sphere over multivariate spaces. The

eigenvectors were further placed in the correct subspace by orthogonal transformation, thus

meeting the restrictions imposed by spectral decomposition.

Although the aim of our study is not to provide an intensive comparison of the predictive

ability between the BAF and FA-based mixed models, the results showed that even using dif-

ferent likelihood approaches for FA mixed models (AI and EM), the BFA outperformed these

models in most of the missing data scenarios (S1–S6 Figs). Given the intra-class correlation

(or the average heritability) obtained for the simulated data, one could expect a maximum cor-

relation between the observed and predicted values of 0.82; however, this threshold was

exceeded in some folds (folds 3 and 5 in S1 Fig), showing that the model’s accuracy may be

higher than expected in some scenarios, especially when the group to be predicted is composed

of stable genotypes.

The BFA was not superior in all k-fold scenarios. For instance, in some k-folds, we can ver-

ify a marginal loss of BFA with respect to FA-EM. This result was observed under low levels of

missing data (10%). Additionally, the predictive ability of the model was similar for some

folds, which were 33%, and 50% of data were missing. This result suggests that BFA might be

inferior to FA-based mixed models under some data scenarios. As emphasized by Wolpert
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and Macready [53], the high performance of some algorithms in a class of problems is com-

pensated by the low performance in another class (No Free Lunch Theorem).

The main drawback of the Bayesian approach is the high demand for computational studies

of for the MCMC’s convergence. However, this disadvantage can be offset by the greater

model flexibility and guaranteed convergence in the parameter space. However, high-technol-

ogy computers associated with optimized codes and parallel processing can alleviate this disad-

vantage of MCMCs.

The FA model proposed by Smith et al. [6] and improved by Thompson et al. [54] uses

one-stage analysis. Meyer [16] describes this same model using a factor analysis approach that

was implemented using a two-stage FA analysis (FA-EM) by Nuvunga et al. [40]. In this study,

it was observed that the FA-EM was slightly superior to the classic FA. The relative gain of the

FA-EM with respect to the FA-AI can be explained by the structure of the simulated data.

According to Nuvunga et al. [40], the FA-EM is estimated in two stages. In the first stage, an

unstructured covariance matrix (UN) is estimated by EM. In the second stage, the factor analy-

sis is used to estimate the loading and FA scores using the varimax rotationally. In turn, the

FA-AI estimates the covariance matrix approximating the FA loadings and scores using a sin-

gle-stage analysis. Since few environments were simulated and given that the FA-EM is based

on previous UN analysis (which tends to be the best choice for low-dimensional data), under

this scenario, the FA based on two-stage analysis may have advantages for low-dimensional

FA.

Crossa [55] note that the FA model can be interpreted in a similar way to the SREG model

when the G effect is confounded with GEI or as in the AMMI model if the G effects are mar-

ginalized from GEI. Burgueño et al. [56] notes that there is no clear difference in the predic-

tions between these two approaches. However, it should be noted that the FA models using the

confounding of G+GE (as presented here) are more parsimonious than those FA models that

marginalize the genotype effect from the GEI.

The bivariate credibility regions (at 95% probability) were incorporated into the FA biplots

(Figs 1A, 1B, 5A and 5B), identifying homogeneous subgroups of genotypes and environments

for adaptability and stability. Through the credibility regions, it is possible to identify which

environments show greater variability or contribute to GEI. The interpretation of the BFA

biplot is similar to that in classical factor analysis, although the uncertainty is considered in the

BFA biplot. The joint decomposition of G+GE becomes the model’s interpretation, similar to

the GGE-biplot. However, it is noteworthy to highlight that this view must be assumed with

caution, since the graphical representation must be performed separately for genotypes and

environments, since their responses do not have the same scale or inner-product proprieties.

The selection of models for simulated data was performed by three complementary criteria:

the PRESS criterion, the correlation between the observed and the predicted phenotypic value,

and the statistical efficiency (SE). It was observed that the model chosen from the simulated

data was FA(4). For the real data, we adopted a parametric criterion to select the best model,

including the AICM and the ΔAICM information criteria [43]. As observed, the AICM was

not informative enough to select the number of factors to be retained in the model, although it

presented a tendency using the full model, which in theory recovers the UN matrix. The widely

used FA(2) model did not present the best information criterion, even with it being very parsi-

monious, presenting graphical justifications and genetic interpretations [26,29,40]. The use of

information criteria as a selection method for the number of factors has several ambiguities

and is always subject to criticism since different criteria tend to select different models, as

shown in Table 3 and in Smith et al. [28]. In addition, it can also be observed that the differen-

tiation of models was small, which could be interpreted as a non-selection of models (Table 3).
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In addition to information criteria, Smith et al. [28] emphasized the need to use additional

measures in the model selection, such as the proportion of variance explained by the compo-

nents. It was observed that as FA(k-1) model is adjusted, the residual variance decreases and

the genetic variance increases, which is now explained by the loadings and specific variance

(Fig 8). From the FA(k-2), (k-3), . . ., FA(1) model, it was verified that the specific and residual

variances remain constant, showing that the application of information criteria as a model

selection method is not easy t under the restrictions imposed in the BFA analysis.

Some other information criterion based on expectation of likelihood could be applied such

us the averaged BIC, DIC, AEBIC and so on [57]. While these methods may present divergent

behavior of AICM and the ΔAICM information criteria, we understand that, on the present

scenario, the best Bayesian FA model selected by these information criterions could differ

qualitatively from AICM (i.e. selecting the FA(1) model) but presenting low quantitative dif-

ferences since the average marginal likelihood will be the same and the penalty criterion could

not be large enough to efficiently separate the FA models within each information criterion. It

worth to highlight that this occurrence is not a problem related to the information criterions,

but a characteristic of our model since the restriction (ΓΓT = S−Ψ) ensure equivalence among

the marginal likelihoods across the FA models.

In general, the choice of the FA2 model has become consensual among researchers. It is

argued that increasing the number of components (such as FA3, FA4 and FA5) does not guar-

antee better prediction ability, but it will certainly increase the model’s complexity; therefore,

it is doubtful that a better adjustment will be produced, as observed in our study with real and

simulated data. The results obtained by Burgueño et al. [26] Burgueño et al. [7], Kelly et al. [9]

and Nuvunga et al. [40] show that FA models with more than two components improved vari-

ance-covariance estimates, but this was not reflected in the genotypic predicted values

(EBLUPs).

In this study, it was not our intention to give a fine perspective of model selection in FA

bayesian framework; instead, our aim was to provide a bayesian perspective of FA models in

MET analysis. While the model selection is an open issue in FA models, the cross-validation

approaches used here, in general, were more informative to select FA scores than AIC crite-

rion. Others methods based on transdimentional models such as reversible jump could be pro-

posed in order to select FA scores [58]; but, until now, results in this area are scarce in

Bayesian context.

Although both data sets used in this study may be relatively small when compared to the

data available from experimental trials in breeding programs, it is sufficient to show the

strength of the BFA method in MET analysis, presenting a better predictive ability than the

classical FA based on mixed models. Given that in the MET analysis some environments are

not present in the trial network and further years are unpredictable, some functional informa-

tion may be included in the FA analysis to predict the genotypic values for coming years; for

example, we can take the covariance matrix as a functional response surface related to some

distance measures in the Hilbert space.

Our results demonstrate that the Bayesian FA model can be effectively implemented to

study GEI patterns in MET networks and predict missing data with high levels of imbalance.
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