
©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 18 (3): gmr18176 

 

 

Predictive ability of AMMI and factorial 
analytical models in the study of unbalanced 
multi-environment data 

R.F. Romão1,2, J.J. Nuvunga1,3, C.P. Silva1, L.A. Oliveira4,               
C.T.E. Mendes1 and M. Balestre1 
 
1 Departamento de Agricultura, Universidade Federal de Lavras, Lavras, 
MG, Brasil 
2 Instituto Superior Politécnico de Gaza, Gaza, Mozambique 
3 Eduardo Mondlane University, Chibuto College of Business and 
Entrepreneurship, Maputo, Mozambique 
4 Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da 
Grande Dourados, Dourados, MS, Brasil 
 
Corresponding author: M. Balestre 
E-mail: marciobalestre@des.ufla.br 
 
Genet. Mol. Res. 18 (3): gmr18176 
Received October 11, 2018 
Accepted May 13, 2019 
Published July 04, 2019 
DOI http://dx.doi.org/10.4238/gmr18176 
 
ABSTRACT. Efficient analysis of datasets from multi-environment 
trials (MET) is of paramount importance in plant breeding programs. 
Several methods have been proposed for this purpose, each of them 
having advantages and disadvantages, depending on the objectives of 
the study. We examined the robustness in the predictive power of 
models that have been widely used in the study of genotype-by-
environment interaction such as AMMI (additive main-effects and 
multiplicative interaction) models via EM algorithm, Bayesian 
AMMI models with homogeneity (BAMMI), heterogeneity of 
variances (BAMMI-H) and the Analytical Factorial model (FA). To 
check the efficiency of these methods, genotype and genotype- by- 
environment interaction effects were simulated and further 
unbalances were included at levels of 10, 33 and 50% loss of 
genotypes in the environments. To evaluate the predictive power of 
the proposed models, the PRESS (prediction error sum square) 
statistics and the Cor (correlation between predicted and observed 
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value) were used. The genotype-environment interaction models had 
low sensitivity to missing data since all models showed correlations 
above 0.5 in all scenarios - even with high unbalance levels (50%). In 
general, there were differences in predictive accuracy among the 
models in different scenarios, with a slight advantage for the 
Bayesian models in the correlation among observed and predicted 
data ranging from 0.79 to 0.855 compared to 0.591 to 0.853 obtained 
from the competing models. Similar results were observed for the 
PRESS (4.988 to 8.027) in Bayesian models compared to competing 
models (5.411 to 23,361). Overall, there was slight advantage of the 
Bayesian models in unbalanced scenarios. 
 
Key words: Genotype-by-environment interaction; Bayesian models; Analytical 
factorial model; Bayesian AMMI models 

INTRODUCTION 
 
Analyzing multi-environment datasets (METs) has been a central issue in plant 

breeding programs (Yan and Kang, 2003; Studnicki et al., 2017). The importance of 
quantifying the genotype-by-environment interaction (GEI) and identifying stable 
genotypes with wide adaptability is a routine task for the plant breeder. Many methods have 
been developed for this purpose, providing breeders with information that will support 
decision making and guide the selection of superior genotypes and/or cultivars.  

In general, GEI quantification methods aim to reduce the complex relationships 
between genotypes and environments to a few parameters. Generally, it can be said that the 
presence of GEI makes the work of breeders difficult, impeding the recommendations of 
cultivars for a wide range of environments. However, if GEI patterns are established, this 
source of response variation can be applied to regionalized recommendations, leading to 
more efficient modeling (Heslot et al., 2013; van Eeuwijk et al., 2016; Studnicki et al., 
2017). 

Currently there is a great diversity of statistical methods for analyzing MET data, 
including parametric and non-parametric analysis, based on uni- and multivariate 
procedures (Crossa, 1990). Among the procedures that consider fixed effects, the linear-
bilinear models stand out, such as additive main effects and multiplicative interaction 
(AMMI) and the main effects of genotype plus interaction effects (SREG or GGE) 
(Cornelius et al., 1996; Crossa et al., 2002, Crossa, 2012). These are the most popular 
among multiplicative models and have wide applicability for data analysis in plant breeding 
programs and multi-environment trials in general. 

Despite the advantages of these procedures, they have limitations, such as the 
difficulty in modeling different variances between environments and dealing with 
unbalanced sets or missing data (Smith et al., 2001; So and Edwards, 2009; Hu and Spilke, 
2011; Studnicki et al., 2017;). Although there are proposals to treat heteroscedastic data in 
fixed AMMI, as presented by Rodrigues et al. (2014), little work has been done in the 
context of AMMI-Bayesian models. To circumvent the difficulty of analyzing datasets with 
missing observations, versions of the AMMI model via the EM algorithm (AMMI-EM) 
were proposed to impute or predict non-observed interactions (Gauch and Zobel, 1990). 
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These limitations motivated the accomplishment of MET analyses in the context of 
mixed models, which theoretically have greater flexibility to deal with missing data in 
which is commonly observed  in datasets obtained from MET experiments (Curti et al., 
2014; Orellana et al., 2014). In this sense, we can highlight the versions of the linear-
bilinear mixed AMMI and GGE models that were initially proposed by Piepho (1997, 
1998), Smith et al. (2001), and Piepho and Mohring (2006). These mixed models versions 
of AMMI and GGE rely on the establishment of a factor analytic structure of the variance-
covariance genetic matrix for environments and are referred to as factor analytic (FA) 
models. 

Naturally, these versions have the flexibility to model the heterogeneity of variances 
between environments. Other parameters of interest such as spatial correlation within the 
environment and imbalance can be easily treated with these models. In addition, when 
considering random effects for genotypes, the kinship coefficients can be incorporated into 
the factor analytic structure for GEI or G+GEI modeling of the AMMI and SREG, 
respectively, obtaining more accurate estimates of the genotypic values (Crossa et al., 2006; 
Oakey et al., 2006; Burgueño et al., 2007, Crossa et al., 2011). 

Another attractive, but still incipient, proposal is to treat multiplicative models 
within the Bayesian perspective. Viele and Srnivasan (2000) were the first to propose and 
implement the AMMI analysis using the Bayesian method, showing how to overcome the 
difficulties that arise in sampling the singular vectors, whose support of the complete 
conditional  posterior is not trivial. Bayesian versions of the AMMI and GGE can be found 
(Crossa et al., 2011; Perez-Elizalde et al., 2011; Josse et al., 2014, Oliveira et al., 2015; 
Silva et al., 2015, Oliveira et al., 2016), which demonstrated the flexibility of the method to 
incorporate inference to the parameters and information to the analyzes. AMMI-Bayesian is 
able to handle complex data offering broad prospects for research and applicability in plant 
breeding programs. 

Consequently, the analysis of MET data can be driven by several procedures with 
their advantages and disadvantages. However, when studying models with differences in 
variance-covariance structure, it is necessary to search for criteria for comparison between 
them, which vary according to the objective, including the investigation of predictive 
accuracy (Stefanova and Buirchell, 2010; Burgueno et al., 2011, Sa’diyah and Hadi , 2016). 
Evaluation of models with different variance-covariance structures (including FA) has been 
performed in several studies ( Piepho, 1998; Smith et al., 2001; Kelly et al., 2007; Hu and 
Spilke, 2011; Nuvunga et al., 2015). 

Given that unbalanced trials are commonly observed in plant breeding  experiments 
and the associated importance of quantifying the GEI to identify stable genotypes in these 
scenarios, we evaluated the predictive ability of GEI using AMMI (Frequentist and 
Bayesian versions) and analytical factorial models in simulated unbalanced framework. 

MATERIAL AND METHODS 

Simulated data 
 
A dataset with 20 genotypes (G1-G20) that were evaluated in seven environments 

(E1-E7) was simulated using a randomized complete block design with three replicates. 
Five genotypes had interactions simulated from the Gaussian distribution with large 
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variances (unstable genotypes) and positive marginal effects. Five more genotypes were 
marginally negative and simulated from Gaussianwith large variances (unstable). The 
variances of response in each environment related to stable genotypes were 4 times larger 
than stable genotypes.  The others 10 genotypes were sampling from a standard Gaussian 
distribution. Therefore, the stability and instability in this study were considered as a 
function of the size of the variability across the environments and the genotypes marginal 
effects as Gaussian realizations (Figure 1) (The simulation of the data was done in Software 
R). 

The vector of the residuals   was sampled by a multivariate normal ( , )N R 0� , 

in which 0 is a null vector and R is a diagonal matrix 2 2
1( ,..., )e ekR diag   , where i (i = 

1,...,k) denotes the environment. The genotype effects were sampled from a normal 
multivariate Gaussian distribution with zero mean and variance-covariance matrix 2

g gI . 
The environmental and repetition effects were fixed using a uniform distribution. The GEI 
response pattern is illustrated in Figure 1. 

 

 
Figure 1. Heatmap of the genotype x environment interaction pattern of simulated data. 
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The clusters observed in the heatmap were obtained by the Euclidean distance 
between environments and genotypes. The green, yellow and red colors, in this order, 
indicate the magnitude of the simulated GEI, the more red the more positive the interaction. 

MET analysis models 
 
The competing models used for MET analysis with unbalanced data used were the 

following: classical AMMI fixed model for genotypes, environments and interactions (EM-
AMMI-F), AMMI mixed model with fixed environments and random genotypes and GEI 
(EM-AMMI-M). In both AMMI models the missing cells in the two-way table were 
calculated via an expectation-maximization-EM algorithm as described by Gauch and Zobel 
(1990).  In addition, we evaluated the AMMI Bayesian model with homogeneity of variance 
(Oliveira et al., 2015), and with variance heterogeneity - BAMMIB-H. The AMMI models 
were compared with the factor analytic structured mixed models described by Smith et al. 
(2001). Below we briefly describe each of the methods. 

EM-AMMI Model 
 
The AMMI-EM model proposed by Gauch and Zobel (1988) uses the average 

response of the genotype i in the environment j given by: 
 

1

t

ij i j k ik jk ij
k

Y g e    


      

 

where: 

ijY is the mean response of the i-th genotype in the j-th environment; 
 is the constant, overall mean of observations; 

ig and je  are the effects of the i-th genotype and j-th environment, respectively; 

k is k -th singular value; 

ik and jk  are the singular vectors related to the elements of the i-th genotype and j-th 
environment, respectively; 

ij is the experimental error and min ( 1, 1)t r c   , where r and c indicate the number 
of rows and columns, respectively, of the interaction matrix. 

 

The EM-AMMI adjustment was performed according to the algorithm proposed by 
Paderewski and Rodrigues (2014), which involves 5 steps: 

Provide the initial values for the missing cells; in this case the mean of the row 
referring to genotype i. 

The parameters of the AMMI models are estimated by singular value 
decomposition; 

The interactions with the AMMI model are adjusted; 
The missing cells are filled with the means adjusted with the AMMI model using 

the result of the reconstruction of the GEI matrix by the inner product ULV• where U is 
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the matrix of singular vectors for genotypes, L is the matrix of singular values and V is the 
matrix of singular vectors referring to environments; 

Based on the predicted values, steps ii to iv are repeated until the convergence. 

Factor Analytic Model 
 
 The mixed model with factor analytic structure (FA) was constructed according to 

Smith et al. (2001). In MET analysis, the observed phenotypic values ( y ), in different 
environments, from the perspective of unstructured mixed model, are modeled as: 

 

  y Xβ Zg ε  

In which X and Z  are design matrices, β  is the vector of fixed effects, g  is the vector 
with effects of genotypes considered random, with ( , )Ng 0 Σ� , and ε  is the vector of 
random errors, with ( , )Nε 0 R� where  Σ and R are the matrices related to the genetic 
and residual covariances, respectively. 

The mixed model, with factor analytic structure for Σ , proposed by Smith et al. 
(2001) is denoted by: 

 

( )g    y Xβ Z Γ I f Zg ε
 

f  is the vector of factorial scores for genotypes in the factors; 
δ  is the vector of specific errors representing the lack of adjustment of the factorial model; 
Γ  is the matrix of factor loadings in the variables represented by the environments; 

gΓ I  is the matrix of factor loads. 

Assuming that the genetic covariance matrix Σ  is modeled by the FA structure,  
 

( ) Σ ΓΓ Ψ•
 

where cov( )iΨ , solutions for fixed and random effects are obtained in a similar way to 
the known solutions of the conventional mixed models (Mayer, 2009). Further structural 
details on the FA approach can be found in Nuvunga et al. (2015). The models were 
adjusted using the ASReml-R package in R software (R Development Core Team, 2016). 
The variance and model parameters were estimated using restricted maximum likelihood 
(REML). 

Bayesian AMMI Model with Homogeneous Variances 
 
The Bayesian AMMI model with homogeneity of variance (BAMMI), as in 

Oliveira et al. (2015), is expressed by: 
 

1 2
1

( )
t

k k k
k

diag


   y X β Zg Zα X γ ε  

                                                

The vector y  has n lr  phenotypic responses, being r  the number of genotypes 
and l bc  the number of genotypic repetitions, where b  and c  are the numbers of blocks 
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and environments, respectively. The vectors β  and g  contain the main effects of blocks 
and environments, and main effects of genotypes, respectively. 

The terms k , kα  and kγ  are the k-th singular values and singular vectors related 
to genotypes and environments, respectively, subjected to the constraints of the singular 
value decomposition, being ( , )t min r c  the rank of interaction matrix between 

genotypes and environments r cGE  . The matrices 1X , 2X and Z  are the model design 

matrices. The vector 1nε  contains the effects of random errors, with 2~ (0, )n eN ε I . 
The prior distributions for the model parameters are the same as those used by 

Oliveira et al. (2015). The likelihood function is given by: 
 

 
 

   1 2
2 22

1 1| exp
22

n
e

e

L
I 

 

 
    

 
θ y y θ y θ•  

being 
1

( )
t

k k
k

X Z diag Z X


   kθ β g α γ  

Connecting the likelihood with the prior describes above via Bayes theorem gives 
the joint posterior distribution can be given by: 

 

   2 2 2 2 2

2 2 2

1

| | , ( | , ) ( | , ) ( | , )

( | , ) ( | , ) ( ) ( )
k k

e g g g g g

t

e e e k k k
k

p p p p p v S

p v S p p p

 

 

   

  


 

 

Φ y y θ g μ β μ

μ α γ

 

where 2 2( , , )g e Φ α,γ,λ,g,β , or: 

   2 22 2
2 2

2 2

1 1( | ) ( ) ( )
2 2

1 1

gnn

e g
e g

g e

p exp exp 
 

 

              
    



Φ y y θ y θ g g• •

 
The complete conditional distributions for all model parameters  are closed as 

shown below: 
 

1 1 2| ~ ( ) ( ), ( ) eN     β X X X y Zg Θ X X • • • , 
 

where
1

( ) .
t

k k k
k

diag Z X  


 
 

1 1
2 2

2
2 2| ~ ( ),e e

e
g g

N  


 

     
               

g Z Z I Z y Xβ Θ Z Z I • • •

 
   2 2| ~ [ , ].e inv escalada n     y θ y θ•

 
2 2| ~ [ , ].g ginv escalada n    g g•

 
   1 1 2| ~ ,k eN      

   
  

Δ • • •

 
Considering:  
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' '( )
t

k k k
k k

diag 


   Δ y Xβ Zg Zα Xγ and ( )k kdiag  Zα Xγ . 

 

where: 1 0t   . 
For the singular vectors, the complete conditional posterior are proportional to a 

von Mises-Fisher distribution (VMF): 
 

| ~ [ , ]
kk VMF k α μ , 

with concentration parameter 2
k ek    and directional mean 

( )
k
  μ Λ y Xβ Zg•  being   .kdiagΛ Xγ Z  

 
| ~ [ , ]

kk VMF k γ μ , with concentration parameter 2
k ek    and directional 

mean ( )
k
  μ Ω y Xβ Zg• being  kdiagΩ Zα X .  

Bayesian AMMI Model with Heterogeneous Variances (BAMMI-H) 
 
The Bayesian AMMI model with variance heterogeneity (BAMMI-H) is obtained 

from (1) but considering different variances 2
re between environments, where 

{1,2,..., }r E  indicates the environmental index. Thus, the matrix 2
n eI  in model (1) is 

replaced by V, which is a block diagonal matrix with dimension n n composed of the 
environmental variances and rn  corresponds to the number of observations in the 

environment r (here we introduce the notation 
1

E

r
r

n n


 ). In this way, the conditional 

distribution of y is a multivariate normal: 2| , , , , , ~ ( ,V)k k k er N y β g α γ θ , com 

1 2
1

( )
p

k k k
k

diag


  θ X β Zg Zα X γ . 

The priors for the parameters are the same of the BAMMI model, only emphasizing 
that in BAMMI-H, it is considered different variances for the environments requesting more 
than one prior for this parameters . The prior densities for the environmental variances are 
individually an inverse-scaled chi-square distribution. It was considered 2 0

r re ev S  , 
which are respectively the degree of freedom and scale parameter; therefore the prior 

distributions converge to 2 2
2

1, ~|
r r r

r

e e e
e

v S


 (Jeffrey’s prior). 

The complete conditional posterior distributions for the BAMMI-H model are 
obtained from the joint posterior distribution considering the matrix V , as defined above. 
The likelihood distribution is given by: 

 
1

2 2

1 1( | ) ( ) ( )
2

(2 ) | |
n nL exp



     
 

φ y y θ V y θ
V

•
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where 

1 2
1

( )
p

k k k
k

diag


  θ X β Zg λ Zα X γ  and  , , , ,φ β g λ α γ . 

 In turn, the joint posterior distribution is expressed by: 
 

2 2 2 2( | ) ( | ) ( | , ) ( | , ) ( | , )P L P P P v S     β β g g g g gΦ y φ y β g  
2 2 2

1 1

( | , ) ( ) ( ) ( | , )
k k r r r

p E

k k k e e e
k r

P P P P v S    
 

 
 
 
 α γ

 
in which  

2 2( , , , , , , )
rk k k g e  Φ β g α γ . 

 From algebraic manipulations, it is possible to demonstrate that the conditional 
posterior distributions for the model parameters as follows. 

 
1 1 1 1 1

1 1 1 1 1 1| ... ~ ( ) ; ( )N       β X V X X V A X V X• • •

; being 
 

1 2( )k k kdiag  A y Zg Zα X γ . 
 

1 1

1 1 1
22 2

1 1| ... ~ ;N I I
 

 

  
    
             

g g
g g

g Z V Z Z V A Z V Z• • •

 
 

where  

2 1 2( )k k kdiag  A y X β Zα X γ . 
 

2 2| ... ~ ,
I

Inv Esc n
n

 
 

   
  

g
g g

g

g g•
 

 

    1 11 1 1
4| ... ~ ;k k k k k k k kN      

       
V V A V• •

 
where  

4 1 2( )
p

k k k k
k k

diag   


   A y X β Zg Zα X γ , 2( )k k kdiag  Zα X γ . 

 

    1 11 1 1
1 1 1 4 1 1| ... ~ ;k k k k k k kN

    
  

α Δ V Δ Δ V A Δ V Δ• • •

 
in which  

1 2( )k k kdiagΔ X γ Z . 
 

When the assumption of homogeneity of variances is assumed, we observe that the 
posterior conditional distributions for the singular vectors are proportional to a von Mises 
Fisher. However, assuming different variances in each environment, the von Mises Fisher 
distributions are changed for Gaussian distributions. Thus, the singular vectors are not 
sampled in hyperspheres but in hyperelipses in the corrected subspace and placed in the 
correct subspace by means of orthogonal linear transformation. 
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 The complete conditional posterior for the genotype singular vector in the correct 
subspace is given by: 

 2| ... ~ , I
k kk N  α m  

where kH is a matrix of linear transformation, being 
1
2

k k kk   

  
      m • ,   11 1

1 1 1 4k k k k k k

   H Δ V Δ Δ V A• • • , and  

 
1

1 1
2 12 2

1 1k k k k kk k k k m    


          

  
                

H Δ V Δ H
•

• • • •

 

    1 11 1 1
2 2 2 4 2 2| ... ~ ;k k k k k k kN

    
  

γ Δ V Δ Δ V A Δ V Δ• • •

 
where  

2 2( )k k kdiagΔ Zα X . 

The conditional posterior for the environment singular vector kγ  in the correct 
subspace is given by: 

 2| ... ~ , I
k kk N  γ m

 
where kW  is the orthogonal linear transformation matrix,  

1
2

k k k k   

  
      m • , 

  11 1
2 2 2 4k k k k k k

   W Δ V Δ Δ V A• • • , and
 

 
1

1 1
2 12 2

2 2k k k k kk k k k m    


          

  
                

W Δ V Δ W
•

• • • •

 
Further details on the a posteriori complete conditionals for the singular vectors as well 

as the sampling process can be found in Silva et al. (2018) and supplementary material. 
For the residual variances, the conditional posterior distributions are given as following: 

2 2 ( ) ( )
| ... ~ , r r r r

r r

r

e e e e
e Inv Esc n

n
 

  
   

  

y θ y θ•

 

In which the degree of freedom and scale parameter of the scaled chi-square are, 
respectively,  

r rev n and  

2 ( ) ( )
r r r r

r

r

e e e e
eS

n
 


y θ y θ•

. 

The common mean variance between the environments may be estimated by the 

geometric mean of the residual variances between environments 2 2

1

ˆ
r

E
Ee e

r

 


  , in which E is the 

number of environments considered in the simulation. 

Sampling and estimation process 
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All conditionals were obtained in a closed form allowing direct sampling using the 
Gibbs sampler during the MCMC (Monte Carlo via Markov Chains). The convergence of the 
chains produced was monitored by methods of Raftery and Lewis (1992) and by Heidelberger 
and Welch (1983) criterion, implemented in the Bayesian Output Analysis (BOA) package. 

MCMC chains with 88,000 iterations were simulated for the AMMI-Bayesian model 
parameters. In addition, the first 8000 sampling observations were burned (burn-in) and samples 
were taken at intervals of foue observations (thinning). 

 All inference process was performed using R statistical software (R Development Core 
Team, 2016). 

Comparison between models 
 
In order to check the efficiency of these methods, random imbalances were performed 

in the genotypes-by-environment interaction matrix, which corresponds to the total loss of the 
genotype in the specific environment. Further, the analyses on unbalanced data were performed 
and the GEI predictions were carried out. In the two-way table, simulated imbalances on the 
cells were performed using the levels of 10%, 33% and 50% of loss. 

The predictive ability of the models was measured using prediction error sum square 
(PRESS) and the correlation between the predicted and observed (Cor) GEI using cross-
validation procedures. The higher the correlation and lower the PRESS statistics the more robust 
are genotype to unbalance. Here robustness is inversely related to the sensibility to missing data. 
All analyses were done using the R software. 

RESULTS  
 
Table 1 presents the simulated values for the residual variances of each environment, as 

well as the values estimated by each candidate model. It is possible to verify that the EM-AMMI 
models (EM-AMMI-F or EM-AMMI-M) presented greater residual variance when considering 
the simulated mean value. The models FA2 and FA7, on the other hand, presented variations in 
the precision of the estimates of the residual variance by environments; however, the mean 
residual variance estimated by the FA2 model was very close to the simulated variance. Among 
the Bayesian models, BAMMI-H presented better results than the model that considers 
homogeneity of variance. In general, the Bayesian models had a higher mean residual variance 
when compared with the factor analytic structure models. 

  
 

Table 1. Simulated values for the residual variances and estimates obtained considering the different MET 
analysis models and geometric means of the residual variances. 
 

    Models 
Environment Real values BAMMI BAMMI-H EM-AMMI* FA2 FA7 
1 0.2188 3.9643 0.4111 5.56 0.201 0.202 
2 0.985 3.9643 1.8807 5.56 1.721 1.722 
3 2.036 3.9643 1.7070 5.56 1.552 1.555 
4 5.012 3.9643 4.3815 5.56 4.416 4.212 
5 7.509 3.9643 6.7934 5.56 7.016 6.678 
6 9.641 3.9643 9.1451 5.56 9.405 9.289 
7 16.55 3.9643 13.0065 5.56 13.962 14.038 
Mean# 3.081   3.9643 3.3437 5.56 2.999 2.959 
logLik         -573.9 -607.9 

*The estimates of EM-AMMI-F and EM-AMMI-M were the same; #geometric mean as presented in methods. 
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Although the FA models were able to recover the residual variance through the 
environments, the GEI predictive ability related to models was not superior to simpler models 
such as AMMI-EM. Figure 2 illustrates the performance of each model at the 10% level of 
losses of genotypes at the environments (10-fold). In general, the models were equivalent in the 
prediction of data not observed. However, there was a small predictive disadvantage in FA7 
model followed by EM-AMMI-F. The BAMMI and FA2 models presented practically the same 
predictive power whereas the Bayesian AMMI model with heterogeneity (BAMMI-H) together 
with the EM-AMMI-M imputation model presented a relatively superior performance. 

 

 
Figure 2. Mean correlation bar chart from cross validation considering 10% imbalance of genotype loss in the 
environments using the model FA, EM-AMMI-F, EM-AMMI-M, BAMMI and BAMMI-H. 

 
Figure 3 shows the mean performances of the models with 33% loss in the genotypes 

(3-fold). It is possible to verify that in this scenario, the Bayesian models (BAMMI-H) and 
(BAMMI) presented superior performance to the FA models. Again, the complete FA model 
FA7 presented lower predictive power. It is important to emphasize that the EM methods were 
superior to the FA adjustments in the prediction of missing data, even violating the assumption 
of homogeneity. In addition, a slight superiority of BAMMI over BAMMI-H was found. In 
general, the predictions of the models can be considered good, since the correlation was superior 
to 0.7. 

 

 
Figure 3. Mean correlation bar chart from the cross validation considering 33% imbalance of genotype loss in the 
environments using the models FA, EM-AMMI-F, EM-AMMI-M, BAMMI and BAMMI-H. 
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Comparing the mean performance of the models (Figure 4), at 50% losses (2-fold), it is 
verified that the EM-AMMI models, unlike that observed in 3-fold, presented the worst 
performance among all the proposed approaches. On the other hand, as already observed in 
lower levels of missing data, the Bayesian models presented better predictive ability in relation 
to the competing models. The FA7 model showed no convergence for the scenario with 50% of 
hybrids lost in the environments. The FA2 model presented convergence overcoming the 
AMMI-EM models. In this scenario, the superiority of Bayesian AMMI models in predicting 
missing data became more evident. The BAMMI models were 6 points higher in accuracy than 
the FA2 models and 14 points in relation to the EM-AMMI-M model and 20 points in relation to 
the EM-AMMI-F model. It is also worth to highlight the similar performances of the BAMMI 
and BAMMI-H models, evidencing the robustness of the AMMI analysis even assuming 
homogeneity of variances. Moreover, under high levels of imbalance, the EM-AMMI-F model 
presents a low predictive power and the EM-AMMI-M presents higher robustness. 

 

 
Figure 4. Mean correlation bar chart from the cross validation considering 50% imbalance of genotype loss in the 
environments using the model FA, EM-AMMI-F, EM-AMMI-M, BAMMI and BAMMI-H. 

 
Figures 5 and 6 show the PRESS results, at 10% and 33% losses, respectively. Again, 

the results indicate that the Bayesian models present predictions closer to the real values 
observed in relation to the competing models. 

 

 
Figure 5. Mean PRESS bar chart from the cross validation considering 10% imbalance of genotype loss in the 
environments using the model FA, EM-AMMI-F, EM-AMMI-M, BAMMI and BAMMI-H. 
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It should be noted that although the AMMI models under Bayesian perspective have 
similar predictive power, the PRESS values between the two models were different in two 
imbalance scenarios (10 and 33%). Regardless of the levels of losses, the FA7 model again 
presented worse performance according to the PRESS criterion, in comparison with the other 
models. In addition, the fixed model EM-AMMI-F presented lower predictive power than its 
version using mixed models. 

 

 
Figure 6. Mean PRESS bar chart from the cross validation considering 33% imbalance of genotype loss in the 
environments using the model FA, EM-AMMI-F, EM-AMMI-M, BAMMI and BAMMI-H. 

 
At 50% loss level (Figure 7), the Bayesian models presented again better performance, 

in which the BAMMI-H was slightly superior in this level of imbalance, followed by FA2. The 
EM-AMMI-F model presented the worst performance among competing models. As already 
highlighted, in this scenario it was not possible to adjust the FA7 model, due to convergence 
problems. FA models presenting higher dimension than FA2 also did not converge and were not 
also explored for this parameter. 

 

 
Figure 7. Mean PRESS bar chart from the cross validation considering 50% imbalance of genotype loss in the 
environments using the model FA, EM-AMMI-F, EM-AMMI-M, BAMMI and BAMMI-H.  

 
 A better comparison between the models can be obtained by looking at the efficiency 

gain of the candidates models in relation to FA7-based model, which presented the worst 
performance in all scenarios. For 50% losses, in which FA7 did not converged it was used the 
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EM-AMMI-F. In relation to the correlation (Figure 8), at 10% and 33%, we observed a greater 
efficiency gain of the BAMMI-H and BAMMI models, respectively. For the scenario with the 
greatest imbalance (55%), the Bayesian models presented a mean efficiency gain above all 
others (35%), followed by FA2 (24%). 

 

 
Figure 8. Gain of efficiency of the models in relation to the correlation between predicted and observed values. 

 
 In the PRESS criterion (Figure 9), there is a greater efficiency gain for the AMM-

Bayesian models in all scenarios. This superiority was evident at levels with greater losses. At 
33%, gains of 23% was observed for BAMMI and 19% for BAMMI-H, whereas EM-AMMI-M 
and FA2 obtained similar performances of about 20% and 17%, respectively. At 50%, the 
AMMI-Bayesian models obtained on average 35% efficiency gain, whereas FA2 presented a 
gain of 24%. Again, the efficiency was calculated based on the gain of the F7 model (at 10% and 
33%) and the EM-AMMI-F model, at the 50% level of imbalance. 

 

 
Figure 9. Gain of efficiency of the models in relation to PRESS. 
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DISCUSSION 
 
In recent years, several models have been employed in the analysis of experiments 

in multiples environments. Among these techniques, model with FA structure have been 
widely used given to user friendly programs such as ASReml (Smith et al., 2015, Studnicki 
et al., 2017). One of the main appeals to use simplified GEI structures is parsimony and 
parameter estimability since the complexity of unstructured matrices requires highly 
parameterized models. Another important issue in favor of models with simplified FA 
structure like is that the available data are not always sufficient to make a good estimates of 
the dispersion parameters; a very common scenario in MET data with a high level of 
imbalance. 

 The simplification of the FA structure is not only important (the parsimonious 
principle), but it is occasionally necessary when high dimensional models present low rates 
of convergence. In this study, the model with two factorial loadings- presented convergence 
in all the proposed unbalance scenarios (Figures 2 to 7).While the complete FA model - 
which recovers the UN matrix with a low specific variance - did not present problems in the 
balanced analysis or low level of losses of genotypes, it has presented not convergence for 
the parameters in any 2-fold scenarios (Figures 4 and 7). 

In the modeling of FA models, a single-stage approach is used where all the effects 
of the models (fixed and/or random) are combined in a single analysis (Smith et al., 2001; 
Mohring and Piepho, 2009). As observed during the cross validation process, high levels of 
imbalance can lead to computational problems when the model is adjusted for a large 
number of cultivars and environments or when the data set is highly unbalanced as observed 
at the level of 50% imbalance. 

As reported by Smith et al. (2015) and Beeck et al. (2010), FA models are sensitive 
to the initial guesses and may present great problems of convergence. The FA3 model, 
under 50% imbalance in the environments, also did not present convergence, therefore, it 
was not possible to proceed in the adjustment of higher order models. Computational 
difficulties may have been caused by problems with the model algorithm (Thompson et al., 
2003). Experience indicates that convergence is usually achieved through a sensitive 
sequential adjustment of models, i.e. starting from the smaller to higher model order. 

In relation to FA models presenting high dimension, it was not observed parameter 
convergence in FA models presenting structures above of three loadings when the 
unbalance level was 50%. If so, in this scenario only FA(2) was used and presented good 
predictive ability in all scenarios (Figures 2 to 7). In this study, we sought to compare 
simple alternatives for MET analysis under imbalance, such as classical EM-AMMI 
methods, with more complex models based in Bayesian and mixed model theory. Our 
results indicate that this method can handle scenarios of small GEI imbalance and does not 
require high computational demand and complex parameter estimation. This is because the 
EM iterative process occurs in the GEI matrix converging the GEI imputation in a few steps 
(Paderewski, Rodrigues, 2014). Another important issue observed in the AMMI-EM is that 
considering genotypes and GEI matrix as random effects may increase the predictions 
index. Similar results were obtained by Balestre et al. (2010) and Smith et al (2001). 

Thus, our results indicate that under low level of imbalance, it is possible to use the 
AMMI method without having to use sophisticated statistical methods. The AMMI also 
could be used in genomic selection (GS) context given its ability  to predict GEI interaction. 
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For instance, Heslot et al. (2013) observed that when environmental covariates are included 
in the GS models was possible to predict genotypes in untested environments. Also, 
Sa’diyah and Hadi (2016) using rice data observed the AMMI accuracy to predict genotypic 
values in GEI trials.. 

It is worth mentioning that, at the 10% level of imbalance, the EM-AMMI models 
were superior to the FA7 model (Figure 2) and with prediction similar to the FA2 model. At 
33%, again the EM-AMMI models exceeded the FA model, with respect to predictive 
accuracy, and had similar performances to BAMMI-H. However, under a more severe level 
of imbalance (50% losses), the AMMI-EM models were overcome by the others. The good 
performance of AMMI-EM models, at 10% and 33% of losses, may have been influenced 
by the efficiency of the algorithm. According to Paderewski (2014), this algorithm (EM) is 
very good at imputation of missing data, which may have contributed to the quality of the 
fit. 

According to the PRESS criterion, which indicates the error of prediction (Dias and 
Krazanoski, 2003; Kelly et al., 2007,), the BAMMI-H model generally obtained the lowest 
values, except for 33% of missing where it was overcome by BAMMI. In general, the 
Bayesian AMMI presented lower predictive error when compared with the others candidate 
models. It was also observed that the models assuming random effects were always better 
than those with fixed effect as observed by Burgueno et al., (2008). 

The question of whether or not to consider variance heterogeneity in the Bayesian 
AMMI model may be very relevant to model parameter estimation and to find  GEI pattern. 
However, in this study, it was not observed prediction superiority in ranking genotypes 
using BAMMI-H and BAMMI. It is important to note that the difference between the 
variance of environment 1 and environment 7 was approximately 79 times suggesting that 
even under high level of heterogeneity of variances between environments, the BAMMI 
method is very robust in prediction missing GEI values. Similar results were found by So 
and Edwards (2011) that using different variance structures and cross-validation and 
simulation analyses in maize MET showed no significant improvement by including 
heterogeneous (co)variance structures. 

In general, the FA model was overcome by Bayesian models even with low levels 
of imbalance. A possible justification would be the existence of a weak genetic covariance 
between the environments that may have been caused by the nature of the data used in the 
simulation. In addition, the relatively small number of environments and genotypes used in 
this work may not reflect the complexity of the MET data described in Kelly et al. (2007) 
and Smith et al. (2015). 

Regarding parameter estimation, the models that assumed heterogeneity of 
variances, such as FA and BAMMI-H, presented better performance and captured the 
fluctuations of the residual variances throughout the environments (Table 1). These results 
support the idea that assuming homogeneity of variance may not be reasonable when the 
objective is parameter estimation (Crossa et al., 1990; Edwards and Jannnik, 2006; 
Orellana, 2012 and Orellana et al., 2014). 

The model ability to capture environmental nuances converge to a better selection 
precision altering the ranking of genotypes as highlighted by Smith et al. (2001). In this 
study, we did not estimate the changes in the ranking of genotypes under the different 
techniques as in Burgueno et al. (2012); instead the model ability to ranking the GEI effects. 
As reported by Kelly et al. (2007), the most important, from the point of view of the 
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breeding program, is the model predictive precision, since it directly affects the gains 
obtained in the selection process. Furthermore, the cross- validation process is the most 
drastic way of verifying the model ability to learn from data or to be robust under certain 
violations of assumptions. 

Generally, although the observed differences between the methods compared, it was 
found that even fixed models are robust to data losses in the MET analyses. Nevertheless, 
although still little used in breeding, Bayesian AMMI methods were generally superior as 
can be seen in the efficiency gain in relation to prediction analyses (Figures 8 and 9) 
demonstrating the potential of the techniques in the study of genotype-by-environment 
interaction and prediction of missing genotypes. 

Some authors such as Kelly et al. (2007), Burgueno et al. (2008, 2012) and 
Nuvunga et al. (2015) argue that the FA2 model is the best predictor of missing genotypes 
or analysis of MET assays with unbalanced data, however, to date the Bayesian methods 
suggested by Crossa et al. (2011), Oliveira et al. (2015) and Silva et al. (2015) were not 
compared with AF models. Silva et al. (2015) shows, for example, that BAMMI models 
exhibit shrinkage characteristics at single values. This feature  suggests that low-
dimensional BAMMI models with random singular values may present higher predictive 
power for missing data. This configuration was not adopted in this study, although it may be 
incorporated in later studies. 

The magnitude of simulated heritability in this study was 0.87. The magnitudes of 
heritabilities estimated on the basis of the competing models were, in general, moderate 
(between 0.69 and 0.89). The relationship between the estimated heritability and the 
observed prediction accuracy reflects the predictive power of the methods achieving the 
maximum accuracy allowed. This result reinforces what has been discussed in (Crossa et 
al., 2010; Oakey et al., 2016; Kelly et al., 2009;Heslot et al., 2013) on the importance of 
incorporating GEI in genomic selection studies. Since current methods are able to predict 
the behavior of genotypes in untested environments, the inclusion of molecular marker 
information in FA or BAMMI models can greatly contribute to the prediction of non-
evaluated genotypes. 

The results of the analyses indicate that all models are generally robust under 
imbalance. Even the classical versions of the AMMI model, using the EM method, 
presented good performances in the prediction analyses. In relation to the AMMI-Bayesian 
approach, it was verified the robustness of the BAMMI model, which presented similar 
performance to its version that models different variances between the environments, 
although the comparison of models should also be based on inference criteria and in this 
sense is of consensus that the assumption of homogeneity of variance, as already 
emphasized in the course of this text, may not be reasonable. 
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