
 
 

 

 

 

 

 

 

LUIZA MARIA PEREIRA PIERANGELI 

 

 

 

PREDICTION OF SOIL ATTRIBUTES VIA PXRF 

SPECTROMETRY, MAGNETIC SUSCEPTIBILITY, AND 

TERRAIN ATTRIBUTES IN A HIGHLY HETEROGENEOUS 

TROPICAL AREA 

 

 

 

 

 

 

 

 

LAVRAS – MG 

2020 
 



 
 

 

LUIZA MARIA PEREIRA PIERANGELI 

 

 

 

 

 

 

PREDICTION OF SOIL ATTRIBUTES VIA PXRF SPECTROMETRY, MAGNETIC 

SUSCEPTIBILITY, AND TERRAIN ATTRIBUTES IN A HIGHLY 

HETEROGENEOUS TROPICAL AREA 

 

 

 

Dissertação apresentada à Universidade Federal 

de Lavras, como parte das exigências do 

Programa de Pós-Graduação em Ciência do Solo, 

área de concentração em Recursos Ambientais e 

Uso da Terra, para a obtenção do título de Mestre. 

 

 

 

 

 

 

Prof. Dr. Sérgio Henrique Godinho Silva 

Orientador 

 

 

 

 

 

 

 

 

 

LAVRAS – MG 

2020 
 



 
 

         

 

Ficha catalográfica elaborada pelo Sistema de Geração de Ficha Catalográfica da Biblioteca 

Universitária da UFLA, com dados informados pelo(a) próprio(a) autor(a). 

 

         

         

   

Pierangeli, Luiza Maria Pereira. 
       Prediction of soil attributes via pxrf spectrometry, magnetic 

susceptibility, and terrain attributes in a highly heterogeneous 

tropical area / Luiza Maria Pereira Pierangeli. - 2020. 

       61 p. 
 

       Orientador(a): Sérgio Henrique Godinho Silva. 

       
       Dissertação (mestrado acadêmico) - Universidade Federal de 

Lavras, 2020. 

       Bibliografia. 
 

       1. Pedometric. 2. Digital soil maps. 3. Random Forest. I. 

Universidade Federal de Lavras. II. Título. 

   

       

         

 

O conteúdo desta obra é de responsabilidade do(a) autor(a) e de seu orientador(a). 
 

 

  



 
 

LUIZA MARIA PEREIRA PIERANGELI 

 

 

 

 

 

 

 

 

PREDICTION OF SOIL ATTRIBUTES VIA PXRF SPECTROMETRY, MAGNETIC 

SUSCEPTIBILITY, AND TERRAIN ATTRIBUTES IN A HIGHLY 

HETEROGENEOUS TROPICAL AREA 

 

 

 

 

 

Dissertação apresentada à Universidade Federal 

de Lavras, como parte das exigências do 

Programa de Pós-Graduação em Ciência do Solo, 

área de concentração em Recursos Ambientais e 

Uso da Terra, para a obtenção do título de Mestre. 

 

 

 

 

 

 

 

APROVADO em 31 de janeiro de 2020.  

Dr. Sérgio Henrique Godinho Silva   UFLA 

Dr. Nilton Curi     UFLA 

Dr. Julierme Zimmer Barbosa   Instituto Federal do Sudeste de MG 

 

 

 

 

 

Prof. Dr. Sérgio Henrique Godinho Silva 

Orientador 

 

 

 

 

 

 

 

LAVRAS – MG 

2020 

AGRADECIMENTOS 



 
 

 

A Universidade Federal de Lavras e ao Departamento de Ciência do Solo por todas 

oportunidades concedidas. 

O presente trabalho foi realizado com apoio do Conselho Nacional de 

Desenvolvimento Científico e Tecnológico (CNPq). 

Ao CNPq pela concessão da bolsa de Mestrado, e à CAPES e FAPEMIG por outros 

auxílios financeiros. 

Ao Prof. Sérgio Henrique pela orientação, atenção, paciência, confiança, ensinamentos 

e incentivos. 

Aos professores do DCS/UFLA, em especial Prof, João José Marques, Profa. Michele 

Duarte de Menezes e Prof. Nilton Curi, pelos ensinamentos. 

Aos colegas do departamento, especialmente Fernanda, Mari e Marcelo. 

A todos os funcionários do DCS, técnicos, secretarias, faxineiras, vocês também são 

uma parte fundamental desta jornada. 

À minha família, pelo amor incondicional, apoio, e incentivo a sempre continuar 

lutando. 

Aos meus amigos que sempre me ajudaram e me acompanharam. 

Obrigada a todos que contribuíram de alguma forma para que eu chegasse aqui! 

 

Muito Obrigado! 

  



 
 

ABSTRACT 

Digital elevation models (DEM) and their derived variables, terrain attributes (TA), are 

commonly used in soil mapping. The use of proximal sensors, such as portable X-ray 

fluorescence spectrometer (pXRF) and susceptibilimeter, which determines magnetic 

susceptibility (MS), provides additional information that has improved the results obtained 

using only TAs. This work is composed of two chapters, whose studies were conducted at the 

Palmital Experimental Farm, belonging to the Federal University of Lavras (UFLA). The 

chapters are related to the use of proximal sensors in conjunction with TA for the prediction 

of physical and chemical attributes of soils. The first chapter contemplates the use of two 

proximal sensors, pXRF and MS, together with TA for the prediction of clay, silt, and sand 

contents through the random forest algorithm. The second chapter discusses the use of pXRF 

and MS in conjunction with TA in predicting available contents of B, Cu, Fe, Mn, and Zn. 

The maps were generated for the Palmital farm and validated for each predicted attribute, 

comparing the efficiency of each model. For the prediction of clay, silt, and sand, all models 

used the information acquired by pXRF in the final models. On the other hand, for the 

prediction of B and Zn, only the TA information was sufficient to achieve satisfactory R2 

values. Clay and sand showed moderate accuracy, while silt showed low accuracy. For the 

prediction of chemical attributes, Cu, Fe, Mn, and Zn presented high to moderate accuracy. 

However, B reached low accuracy. This shows that pXRF is a powerful tool to assist in the 

accurate prediction of some soil attributes in a punctual and spatial way, contributing to the 

digital soil mapping. 

 

Keywords: Micronutrients. Granulometric Fractions. Random Forest. Proximal Sensing. 

Pedometric. 

 



 
 

RESUMO 

Modelos digitais de elevação (MDE) e seus derivativos, atributos de terreno (AT), são 

comumente utilizados no mapeamento de solos. O uso de sensores proximais, como 

espectrômetro de florescência de raios-X portátil (pXRF) e suscetibilímetro, que determina a 

susceptibilidade magnética (SM), fornece informações adicionais que têm melhorado os 

resultados obtidos utilizando apenas ATs. Esta dissertação é composta por dois capítulos, cujo 

estudo foi realizado na Fazenda experimental Palmital, pertencente a Universidade Federal de 

Lavras (UFLA). Os capítulos estão relacionados ao uso de sensores proximais em conjunto a 

AT na predição de atributos físicos e químicos do solo. O primeiro capítulo contempla o uso 

de dois sensores proximais, pXRF e SM, em conjunto com AT para a predição de argila, silte 

e areia através do algoritmo random forest. O segundo capítulo aborda o uso do pXRF e SM 

em conjunto com AT na predição dos teores disponíveis de B, Cu, Fe, Mn e Zn. Os mapas 

foram gerados para a fazenda Palmital e validados para cada atributo predito, comparando-se 

a eficiência de cada modelo. Para a predição de argila, silte e areia todos os modelos 

utilizaram as informações adquiridas pelo pXRF nos modelos finais. Porém, para a predição 

de B e Zn, apenas as informações de AT foram suficientes para alcançar valores de R2 

satisfatórios. Argila e areia apresentaram moderada acurácia enquanto silte apresentou baixa 

acurácia. Já para a predição dos atributos químicos, Cu, Fe, Mn e Zn apresentaram entre alta a 

moderada acurácia, entretanto B alcançou baixa acurácia. Isso mostra que o pXRF é uma 

ferramenta poderosa para auxiliar na predição acurada de alguns atributos do solo de forma 

pontual e espacial, contribuindo para o mapeamento digital de solos. 

 

Palavras-chave: Micronutrientes. Frações Granulométricas. Random Forest. Sensores 

Próximos. Pedometria. 
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1 INTRODUCTION 

Digital soil mapping (DSM) is a fundamental activity for detailed spatial information 

on soils, which is essential for urban, agricultural, and environmental planning (BONFATTI 

et al., 2018; DHARUMARAJAN; HEGDE; SINGH, 2017; KESKIN; GRUNWALD, 2018; 

MCBRATNEY; MENDONÇA SANTOS; MINASNY, 2003; PRASUHN et al., 2013). Most 

of the soil maps found in Brazil are at small scales (MENDONÇA-SANTOS; SANTOS, 

2007; MENEZES et al., 2016; SANTOS et al., 2014a; SILVA et al., 2016a), which makes it 

challenging to use them for specific purposes such as agricultural management (OBADE, 

2019), soil and water conservation (SANTOS et al., 2014a; SÖDERSTRÖM et al., 2016), 

among others. 

DSM is the union of three factors: the intake in the form of field and laboratory 

observational methods, the process used in terms of spatial and non-spatial soil inference 

systems, and the output in the form of spatial soil information systems (LAGACHERIE; 

MCBRATNEY, 2006; MINASNY; MCBRATNEY, 2016). Furthermore, DSM uses a range 

of proximal and remote sensing tools to gather and analyze data with the aid of powerful 

algorithms to model and predict soil data (CHAKRABORTY et al., 2019b; MENEZES et al., 

2016; PELEGRINO et al., 2019; SILVA et al., 2016b, 2017a). 

The use of proximal and remote sensors combined with DSM allows an fast evaluation 

of soil characteristics at low cost and without residues production (SILVA et al., 2017a). 

Some examples are the portable X-ray fluorescence (pXRF) scanners, used to identify and 

quantify chemical elements present in different materials, including soil (RIBEIRO et al., 

2017; SILVA et al., 2016a), and the susceptibilimeter, which quantify the magnetic 

susceptibility (MS) of different materials (CAMARGO et al., 2018; CERVI et al., 2014; 

SILVA et al., 2016a; SIQUEIRA et al., 2015). The pXRF sensors are able to detect many 

elements of the Periodic Table since each element has unique fluorescence energy. pXRF has 

the advantage of assessing total elemental contents in the soil in a non-destructive manner 

(CHAKRABORTY et al., 2019b; SILVA et al., 2016a; STOCKMANN et al., 2016b). MS is a 

useful technique for predicting magnetic soil oxides since different iron forms and dynamics 

reflect different soil-forming factors and processes (MAHER, 1986; SILVA et al., 2016a). 

Also, some elements can be affected by iron oxides (CAMARGO et al., 2018) such as As, P, 

and Zn. 
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The use of pXRF and MS information can improve the prediction and modeling of soil 

attributes. Thus, this dissertation was divided into two chapters, the study of which was 

carried out at Fazenda Experimental Palmital, belonging to the Federal University of Lavras 

(UFLA). The chapters are related to the use of proximal sensors in conjunction with TA in 

predicting the physical and chemical attributes of the soil. The first chapter contemplates the 

use of two proximal sensors, pXRF, and MS, together with TA for the prediction of clay, silt, 

and sand through the random forest algorithm. The second chapter discusses the use of pXRF 

and MS in combination with TA in predicting the available levels of B, Cu, Fe, Mn, and Zn. 

 

2 THEORETICAL REFERENCE 

2.1 Soil mapping 

Soil surveys are fundamental sources of information for land use determination, such 

as agricultural management, soil conservation, environmental protection, among others 

(AMADO et al., 2009; BESKOW et al., 2009; SAYÃO et al., 2018; WEINDORF; BAKR; 

ZHU, 2014). Nevertheless, in Brazil, most existing maps were made at small scales 

(GIASSON et al., 2011; LAGACHERIE; MCBRATNEY, 2006; MCBRATNEY; 

MENDONÇA SANTOS; MINASNY, 2003; MENDONÇA-SANTOS; SANTOS, 2007; 

MENEZES et al., 2013; MINASNY; MCBRATNEY, 2016; SILVA et al., 2016a, 2016b, 

2016c). Detailed and semi-detailed soil surveys are in general available in small areas to 

support local-specific agricultural and environmental projects (MENDONÇA-SANTOS; 

SANTOS, 2007), e.g., at the level of watersheds (MENEZES et al., 2016; SANTOS et al., 

2014b; SILVA et al., 2014, 2016b, 2016c). 

The lack of investment coupled with the vast area of the country with difficult access 

by road (SILVA et al., 2016a), combined with a shortage of materials and humans’ resources 

and insufficient institutional support compelled the country to opt for the execution of 

generalized small-scale surveys (MENDONÇA-SANTOS; SANTOS, 2007), although more 

recently, the National Soils Program (PRONASOLOS) has been created to enhance Brazilian 

soils information. Therefore, the introduction of digital technologies have provided new 

opportunities to predict soil properties and classes (CAMARGO et al., 2018; 

CHAKRABORTY et al., 2019b; MENEZES et al., 2013; PELEGRINO et al., 2019; SILVA 

et al., 2016b; STOCKMANN et al., 2016a; TERRA; DEMATTÊ; ROSSEL, 2018), by means 

of remote and proximal sensing, increasing of computer processing speed, management of 

spatial data, and quantitative methods to describe soil patterns and processes 
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(CHAKRABORTY et al., 2019a; GRUNWALD, 2009; MENEZES et al., 2016; 

PELEGRINO et al., 2019; SILVA et al., 2014, 2017a, 2018a; TEIXEIRA et al., 2018b). In 

short, digital soil mapping (DSM) may improve the overall process of soil mapping since 

DSM is based on the generation of information systems, which allows establishing 

mathematical relationships between environmental and soil variables and, as a result, to 

predict the spatial distribution of soil classes and properties (GIASSON et al., 2013; 

MENEZES et al., 2013; SILVA et al., 2014). 

HUDSON (1992) pointed out that soil survey is a science-based on the fact that soils 

are natural bodies distributed in a predictable way and in response to a systematic interaction 

of environmental factors. Soil classes and properties are ordinarily and spatially distributed in 

a foreseeable pattern due to the soil-landscape relationship. This relationship is the answer to 

the water’s movement throughout the landscape, which goes through the relief outlining it. 

Thus, DSM uses digital elevation model (DEM) and its derivatives, e.g., slope, terrain 

curvatures, topographical wetness index (WI), aspect, etc. to predict how soils are distributed 

in the landscape (MCBRATNEY; MENDONÇA SANTOS; MINASNY, 2003; MENEZES et 

al., 2016; PRASUHN et al., 2013; SANTOS et al., 2014b; SILVA et al., 2016a, 2014, 2016b; 

TESKE; GIASSON; BAGATINI, 2014). 

According to COELHO and GIASSON (2010), studying different soils classes in Rio 

Grande do Sul, Brazil, from the set of variables used based on DEM, the ones which best 

explained the relationship between the landscape and the spatial distribution of soil classes in 

the area were: slope, profile curvature, elevation, plan curvature, and wetness index. Although 

DEMs are widely used, the relationship between relief and soil occurrence may vary in 

different physiographical areas; thus, it is necessary to test the models by quantifying their 

ability to predict soil classes in an environmentally diverse situation (GIASSON et al., 2013). 

GRUNWALD (2009) reported that most studies on digital soil mapping and modeling 

focused on external drivers such as climate, vegetation, and land use that modulate soil 

organic carbon, total phosphorus, and other soil properties to be predicted. However, to 

incorporate intrinsic soil properties, i.e., mineralogy, structure, soil aggregation, etc., to 

further improve the prediction power of those models, chemical analyses are usually required, 

and those may be expensive, time-consuming, and generate chemical residues. 

Even though DTMs have been used worldwide as adequate predictors of soil classes 

and properties, recent studies are searching for new tools associated with soil attributes, 

especially those concerning chemical features (SILVA et al., 2016a). Nowadays a range of 
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sensors are being used in soil surveys to investigate a soil profile and varying soil attributes 

(HARTEMINK, 2015; HARTEMINK; MINASNY, 2014), e.g., magnetic susceptibility (MS), 

portable X-ray fluorescence (pXRF) spectrometer, ground penetrating radar (GPR), electrical 

resistivity (ER), the cone penetrometer or diffuse reflectance spectroscopy (DRS). 

Portable X-ray fluorescence (pXRF) spectrometry is a rapid, proximal scanning 

technology that allows for total elemental quantification for elements from Mg to U in the 

Periodic Table in a few seconds (RIBEIRO et al., 2017; WEINDORF et al., 2012). Besides, 

pXRF is a non-invasive, environmentally friendly, and low-cost alternative compared to 

laboratory methods. With the aid of pXRF, elements that are less commonly evaluated in soil 

science can be easily and rapidly detected (SILVA et al., 2018b, 2018a). According to 

STOCKMANN et al. (2016), pXRF results have been used to study a number of soil 

properties. In these studies, the total elemental concentrations are used to infer a range of soil 

properties using multiple linear regression and other types of models. In another research line, 

WEINDORF et al. (2012) concluded that pXRF could help to unveil the weathering degree of 

the soil materials and to assist in distinguishing between two different parent materials. 

Focusing on soil genesis, changes in elemental contents from A to Cr horizons, due to 

weathering, were analyzed with pXRF in the sand, silt, and clay fractions, supporting detailed 

X-ray diffractometry analyses of the mineralogy of an Inceptisol and enhancing soil 

characterization of chemical properties within the soil profile (SILVA et al., 2018a). 

pXRF was able to identify the presence or absence of Fe in light-colored subsoil 

mottles in situations in which it is hard to figure out if the Fe form comes from reduction, 

depletion, or remnant from parent material (WEINDORF et al., 2012). STOCKMANN et al. 

(2016), investigating the pedogenetic pathways of three different soil profiles, concluded that 

pXRF analyses might add considerable value to in-field soil description for the objective 

assessment of soil formation pathways. Although most of such studies were performed in 

temperate regions, in Brazil, a tropical country with different soils, the use of pXRF for in-

field or in-lab soil characterization is increasing, and more studies are needed to further 

evaluate the effects of different tropical soil conditions (RIBEIRO et al., 2017; SILVA et al., 

2016a).  

Regarding other sensors, the susceptibilimeter has also been widely used for being 

capable of determining the magnetic susceptibility (MS) of materials (CERVI et al., 2014). 

CAMARGO et al. (2018) observed that MS was an adequate predictor of the presence of 

potentially toxic elements, with predictions of Co, Ni, and Zn contents presenting R2 of 0.85, 



15 
 

0.66, and 0.87, respectively. MS was more efficient in the identification of areas with 

different patterns of pedogenetic variability than the hue determined by DRS for Oxisols 

under parent material transition in São Paulo (SIQUEIRA et al., 2015).  

Finally, SILVA et al. (2016b), working with proximal sensing and digital terrain 

models (DTM) to map soils, concluded that the use of pXRF and MS data helped create more 

detailed soil maps. Therefore, the use of DSM tools combined with different sensors can be a 

powerful ally in the process of soil mapping in Brazil, creating opportunities to improve the 

scales of the maps already existing at lower costs. 

 

2.2 Random forest 

The use of prediction models to help predict or simulate real events are essential in 

DSM (MCBRATNEY; MENDONÇA SANTOS; MINASNY, 2003). Several methods are 

currently available, and they can estimate soil classes and soil properties at unsampled 

locations. Hence the choice of the best algorithm is of utmost importance.  

Random Forest (RF) algorithm is one of the most commonly used machine learning 

techniques. It is an improvement of decision trees since it grows several trees to generate a 

final prediction (BREIMAN et al., 1984). RF can work for both regression and classification 

tasks with the use of multiple decision trees and a technique called Bootstrap Aggregation 

(bagging). Bagging involves training each decision tree on a different data sample where 

sampling is done with replacement (BREIMAN, 1996). The idea is to combine multiple 

decision trees in determining the final output rather than relying on an individual decision tree. 

As a regression algorithm, PELEGRINO et al. (2019) used RF to model and predict 

the available contents of micronutrients from pXRF in addition to terrain attributes and parent 

material information with high accuracy. The combination of the different information 

allowed an accurate prediction through the RF algorithm. In another work comparing stepwise 

multiple linear regression (SMLR) and RF, the RF algorithm was able to predict soil fertility 

properties with more accuracy than SMLR (SILVA et al., 2017a).  
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3 ARTICLE 1. PREDICTION OF SOIL FRACTIONS USING DIFFERENT 

PROXIMAL SENSORS AND RANDOM FOREST 

*Article prepared according to the rules of Pedosphere (preliminary version). 

Luiza Maria Pereira Pierangeli; Sérgio Henrique Godinho Silva; Michele Duarte de Menezes; 

João José Marques; Luiz Roberto Guimarães Guilherme; David C. Weindorf; Nilton Curi 

 

ABSTRACT 

Soil texture is related to many other physical, chemical, and biological properties. Knowing 

its spatial distribution is essential because it contributes to decisions on agricultural 

management and environmental sustainability. Digital Elevation Models (DEM) are used 

continuously to represent terrain topography, enabling the generation of terrain attributes 

(TA). Moreover, proximal sensors, such as portable X-ray fluorescence spectrometry (pXRF), 

have also been an ally in digital soil mapping. The objective of this work was to apply random 

forest algorithm to model and predict clay, silt, and sand contents via magnetic susceptibility 

(MS) and pXRF information in addition to TA information. A total of 39 soil samples were 

collected from A and B horizons, totaling 78 samples, and analyzed by a susceptibilimeter 

and pXRF in addition to laboratory analyses to determine clay, silt, and sand contents. 

Seventeen TAs were generated from DEM. These data were divided into six datasets: TA; 

TA+pXRF; TA+MS; TA+MS+pXRF; MS+pXRF; pXRF. The samples were divided into A 

and B horizons separately and A+B horizon combined. Models were validated through root 

mean square error (RMSE) and the coefficient of determination (R2) to determine the 

performance of the models. Finally, the best models were spatialized to the entire study area. 

The combination of pXRF information with MS and TA improved the prediction of silt in the 

A and B horizons. Sand content in A and B horizon and clay content in the B horizon were 

better predicted using only pXRF information. MS information, in combination with pXRF, 

allowed a better prediction of clay content in the A horizon. The use of pXRF allowed for 

better predictions of soil fractions contents than TA. 

 

Keywords: Digital soil mapping; pXRF; Magnetic Susceptibility; Random Forest; Tropical 

soils.  



23 
 

3.1 INTRODUCTION 

Particle size distribution (PSD) is a fundamental soil property. It is related to other 

physical, chemical, biological, and mineralogical properties, as well as water retention 

capacity, porosity, and others (Rosemary et al., 2017). Besides, soil texture is necessary for 

several hydrological, environmental, and climate risk assessment models (Ganasri and 

Ramesh, 2016; Scudiero et al., 2015). The methods currently used to quantify soil texture are 

costly, time-consuming, laborious, and non-environmentally friendly, as they make use of 

chemical reagents. The most used methods are the pipette (Robinson, 1922) and the 

hydrometer methods (Bouyoucos, 1936). 

Understanding the spatial variability of the PSD ensures more sustainable soil use and 

management and soil conservation. This variability is related to soil forming factors such as 

parent material, climate, and relief, and the weathering degree. Therefore, the use of digital 

soil mapping (DSM) is an alternative for predicting how the PSD varies across the landscape. 

The DSM relates the soil attributes to other continuous, easily accessible environmental 

variables, such as terrain attributes (TA) obtained from the digital elevation model (DEM) 

(Grunwald, 2009; McBratney et al., 2003; Minasny and Mcbratney, 2016). Furthermore, 

proximal sensors such as portable X-ray fluorescence (pXRF) spectrometer, 

susceptibilimeters, visible and near-infrared (Vis-NIR) spectroscopy combined with TA has 

been recently investigated and delivered accurate soil mapping results (Hartemink and 

Minasny, 2014; Silva et al., 2016d). 

PXRF is used to quantify the total elemental content in different types of materials, as 

each element produces specific fluorescence energy (Ribeiro et al., 2017; Weindorf et al., 

2014). Another equipment is the susceptibilimeter, which quantifies magnetic susceptibility 

(MS) of different materials (Dearing, 1994). Besides, both techniques are non-invasive, non-

destructive, and can be used in field and lab conditions. Also, such information is acquired in 

a fast, inexpensive, and environmentally friendly way.  

Several studies have been conducted on spatial variation of soil properties using DSM 

and proximal sensing. Pelegrino et al. (2018) predicted the available contents of Fe, Cu, Mn, 

and Zn from pXRF data along with TA derived from DEM with 5 and 10 m resolutions. 

Stockmann et al. (2016) studied pedogenesis pathways and parent materials of three different 

soil types in Australia utilizing pXRF. Zhang and Hartemink (2019) evaluated the use of Vis-

NIR and pXRF for delineating soil horizons and if moisture can affect the measurements in 

Wisconsin, USA. Marques et al. (2014) used MS and diffuse reflectance spectroscopy as 



24 
 

predictive variables in the characterization of physical and chemical properties of soil profiles 

in Brazil. Silva et al. (2016) used TA, MS and pXRF data to predict soil classes and PSD. 

Several studies have used machine learning to model and predict soil variability, 

correlating soil properties with environmental variables (Brungard et al., 2015; Hengl et al., 

2017; Silva et al., 2017b; Zeraatpisheh et al., 2019). Among the algorithms used,  Random 

Forest (RF) (Breiman, 2001) has proven to be a robust algorithm suitable for soil-related 

studies. RF can fit non-linear relationships, has low bias and variance, has high performance 

in predictions, and can determine the importance of variables (Chagas et al., 2016; 

Chakraborty et al., 2019b; Rawal et al., 2019a). Therefore, this study aims to evaluate the 

importance of TA, pXRF and MS to produce maps of clay, sand, and silt contents for soil A 

and B horizons in an experimental farm in Brazil, based on the RF.  

 

3.2 MATERIALS AND METHODS 

3.2.1 Study Area 

The study was conducted at the Palmital farm (Fig. 1), located in Ijaci county, Minas 

Gerais, Brazil, between UTM longitudes 506,793 and 508,882 m and latitudes 7,659,470 and 

7,660,685 m zone 23K, datum WGS84. This study area is ~117 ha, featuring native forest 

(Cerrado forest), eucalyptus, mahogany and pinus plantations, agricultural crops, e.g. 

soybeans, corn, and beans, and pasture. The climate is Cwa (C: Humid subtropical; w: dry 

winter; a: hot summer) according to Köppen classification, the average annual temperature is 

21 °C, and the average annual rainfall is 1500 mm (Dantas et al., 2007). 

The altitude in the study area ranges from 793 to 868 m. The geology information of 

the area was obtained from a 1:100,000 scale map (MAPA GEÓLOGICO – FOLHA 

LAVRAS, 2003), encompassing gneisses TTG, metamorphosed limestone and phyllite-

limestone, alluvial sediment from quaternary. 
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Fig. 1. Study area and sampling sites of Palmital farm, Minas Gerais state, Brazil. 

 

3.2.2 Soil Sampling and Laboratory Analyses 

A total of 39 sampling sites (small trenches) were excavated throughout the area, 

following a regular-grid design with 173 m between sampling places, reaching a sampling 

density of 1 sampling site per 3.5 ha. In total, 78 samples (39 – A horizon; 39 – B horizon) 

were collected. Soil samples were air-dried, ground and passed through a 2 mm sieve. Clay, 

silt, and sand were determined by the pipette method (Baver et al., 1972; Gee and Bauder, 

1986; Teixeira et al., 2017). 

A Vanta series pXRF (Olympus, Waltham, MA, USA) spectrometer was used to 

obtain the total contents of the diverse elements on the soil samples. The pXRF features a Rh 

X-ray tube operated at 8–50 kV as the excitation source. Scans were performed in Geochem 

Mode with scanning time set to 30 s per beam; the instrument scans via two beams in 

sequence such that one whole scan was completed in 60 s, according to Weindorf and 

Chakraborty (2016). Prior to scanning, the instrument was calibrated with a factory 

calibration alloy coin. The accuracy of the equipment was evaluated through scanning 

standard reference materials 2710a and 2711a certified by the National Institute of Standards 

and Technology (NIST). The recovery values (value obtained by pXRF /certified value of the 

reference material *100) for the elements identified in all samples and used in this work 

follow (2710a/2711a): Ag (0/0); Al (61/61); As (106/143); Ca (65/88); Cd (0/91); Cu 

(102/101); Fe (92/96); Hg (273/175); K (83/85); Mn (93/96); Mo (0/0); Ni (0/115); P (63/52); 
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Pb (102/108); Rb (0/0); S (0/0); Se (0/0); Si (57/61); Sr (96/96); Th (0/0); Ti (90/94); U 

(99/0); V (0/93); y (0/); Zn (100/106). 

For the analyses of MS, a Bartington MS2B susceptibilimeter (Dearing, 1994) was 

used, and 10 g of air-dried 2-mm sieved soil were used. Data were measured at low frequency 

(0.47 kHz). 

 

3.2.3 Terrrain Variables 

A DEM of 12.5 m resolution was obtained through the ALOS PALSAR Global Radar 

Imagery (https://search.asf.alaska.edu/#/). The TA derivative from the DEM were created in 

SAGA GIS software (CONRAD et al., 2015), including: slope, aspect, cross-sectional and 

longitudinal curvatures (CsC and LC, respectively), convergence index (CI), flow 

accumulation (flow), topographic wetness index (TWI), LS factor (lsf), channel network base 

level (CNBL), vertical distance to channel network (VDCN), valley depth (VD), relative 

slope position (RSP), catchment area (CA), modified catchment area (MCA), closed 

depressions (CD), catchment slope (CS) and, SAGA wetness index (SWI). The TA and the 

land use of the area, in addition to MS and pXRF data, were used in random forest models 

and adjusted to predict clay, silt, and sand. 

 

3.2.4 Modeling and Accuracy 

RF models were adjusted for the samples per horizon (39 samples for A and 39 

samples for B) and also by combining A + B horizons (78 samples),  all considering the use 

information of the area, and divided in the following datasets: (i) TA, (ii) TA + pXRF, (iii) 

TA + MS, (iv) TA + pXRF + MS, (v) MS + pXRF, and (vi) pXRF. No transformations were 

made on the data sets, and 70% of the samples were randomly selected for the calibration set, 

while the remaining 30% were used as the validation set. The RF models were created in R 

software (version 3.6.1) (R Development Core Team, 2009) through “caret” package (Kuhn, 

2008) performed with the following parameters: number of trees of the model (ntrees)=1000, 

node size=5, and number of variables used in each tree (mtry)=3 adjusted using the 

calibration set, and the model performance was evaluated on the validation set. The 

performance of each model was calculated via coefficient of determination (R2) and root 

mean square error (RMSE) (Eq. 1).  

𝑅𝑀𝑆𝐸 =  √
∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)2𝑛

𝑖=1

𝑛
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(1) 

where n: number of observations, Xmodel: estimated value by the model, Xobs: measured value 

by chemical analysis. 

Also, the RF model determines the importance of each variable, the increase in 

percentage of the mean square error (MSE) of predictions as each variable is removed from 

the set of predictor variables (%IncMSE) was calculated using the caret package. For each 

tree, the prediction error on test is recorded (MSE). Then the same is done after permuting 

each predictor variable. The difference between the two is then averaged over all trees, and 

normalized by the standard deviation of the differences (Liaw and Wiener, 2002). The higher 

the difference is, the more important the variable. 

The best models for clay, silt, and sand were used in the creations of maps to the entire 

area. For the soil mapping procedure, TA information was continuously available for the 

entire study area, but variables obtained from pXRF and MS data at the 39 sampled sites had 

to be extrapolated to the entire area. The pXRF and MS data were modeled across the entire 

area through multilevel B-spline interpolation (Lee et al., 1997). These maps were validated 

through calculations of R2 and RMSE. 

 

3.3 RESULTS AND DISCUSSIONS 

3.3.1 Characterization of soils according to texture and pXRF data 

A textural triangle including the samples, according to the Brazilian Textural 

Classification Chart (EMBRAPA, 2017), is shown in Fig. 2. The triangle shows that the 

samples were distributed mostly in the clay category. The mean clay, sand, and silt contents 

(%) were 48, 34, 18, respectively (Table 1). Clay fractions ranged from 27 to 74%, sand 

ranged from 9 to 55%, while silt ranged from 1 to 36%. The maximum silt content found was 

36%, since most Brazilian soils tend to present low-level of this particle size fraction. Silva et 

al. (2020) analyzed samples across Brazil and found a wide range of soil textural classes; 

most of the soils analyzed were rich in sand or clay. 

The coefficient of variation (CV) in most cases was equal or greater than 20%, except 

for the clay fraction in B horizon, which indicates the heterogeneity of the sample sets. The 

silt fraction had the highest CV, indicating that the soil in the area has different levels of 

weathered. This variability in the results is likely because of the different parent material that 

these soils derived from. 
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The high clay contents in the soils are mostly related to weathering. Most minerals in 

the clay fraction of Brazilian soils are kaolinite or Fe- and Al-oxides such as hematite, 

goethite, and gibbsite (Kämpf et al., 2012). The latter is more commonly found in extremely 

weathered soils. In smaller proportions, maghemite, are also found in the clay fraction, this 

Fe-oxide is related to magnetic susceptibility in soils (Kämpf et al., 2012; Poggere et al., 

2018). 

 

Fig. 2. Soil texture of the collected samples plotted by soil order based on Embrapa textural 

classification chart. 

 

Despite the relatively small area and the similarity of parent material and land use for 

all soils, the soil orders found in the area presented somewhat similar pXRF information 

(Table 2 and Table 3). The highest contents of Al and Fe were found in the Oxisols since they 

are more weathered than the other soils in the area. Ultisols showed an apparent change 

between the sandier surface horizon and the more clayey subsurface horizon. This is evident 

in the high contents of Al, associated with kaolinite in the B horizon, and the high contents of 

SiO2, associated with quartz in the A horizon. 

The Ca contents are higher in the surface horizon when compared with the subsurface 

horizon. Liming, a common practice in the tropical soils, mostly for superficial acidity 



29 
 

correction (Lopes and Guilherme, 2016), may leave residues in the soil, causing these 

differences in Ca content among the horizons. Soils derived from different parent materials 

showed the same tendencies in Lavras, Brazil (Pelegrino et al., 2018). 

The highest contents of Al, Ca, K, Mn, P, S, and Si were found in the A horizon, while 

the higher contents of Fe were found in the B horizon. These findings were similar to the ones 

reported by Teixeira et al. (2020), although different from the results found by Andrade et al. 

(2020). Among the elements found in tropical soils (Mancini et al., 2019), the higher contents 

of Ni, Pb, Rb, Sr, V, and Y were found in the B horizon, while Sr was found in higher 

contents in the A horizon of Ultisols. Magnetic susceptibility (MS) content presented higher 

values in the Oxisols, and this is likely because of the residual concentration of Fe in these 

soils, especially in the form of magnetite and maghemite, generally found in the sand and clay 

fractions, respectively (Kämpf et al., 2012). 

 

Table 1. Summary statistics of particle soil distribution of the A and B horizons 

of soils from Fazenda Palmital in Brazil 

Soil 

Fraction 

(%) 

N 

Min Max Mean SD CV  

Range 
% 

Horizon  ----------------------------------Clay--------------------------------- 

A+B  78 27 74 48 10 20 47 

A 39 27 67 46 9 20 40 

B 39 30 74 50 9 19 44 

  ----------------------------------Silt---------------------------------- 

A+B  78 1 36 18 7 38 35 

A 39 1 36 19 8 41 36 

B 39 9 32 17 6 33 23 

  ----------------------------------Sand-------------------------------- 

A+B 78 9 55 34 10 29 46 

A 39 10 55 35 9 26 45 

B 39 9 55 33 10 32 46 

Min: Minimum; Max: Maximum; SD: standard deviation; CV: coefficient of variation. 
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Min: Minimum; Max: Maximum; SD: standard deviation; CV: coefficient of variation.  

Table 2.  Summary statistics of pXRF data (mg kg−1) and MS (×10−6 m3 kg−1) analyzing A horizons of soils from Palmital farm in Brazil. 

Parameter  Al As Ca Cr Cu Fe K Mn Ni P Pb Rb S Si Sr Ti V Y Zn MS 

 Inceptisol (6) 

Min  44781 8 0 56 26 34571 6571 137 30 0 18 51 122 76276 27 6052 57 12 48 3 

Max  78254 13 2293 123 40 48249 15245 1450 40 1045 37 112 562 101482 56 7203 91 18 284 15 

Mean  58347 10 1231 83 32 40056 11013 512 34 584 25 79 316 89768 42 6507 78 17 110 8 

SD  12098 2 769 25 5 5007 3489 539 4 394 7 23 143 9950 13 447 11 2 87 4 

CV (%)  21 20 63 30 16 13 32 105 10 67 27 29 45 11 32 7 15 14 79 49 

 Oxisol (30) 

Min  50815 7 0 59 16 26817 0 68 16 214 9 7 0 41149 10 7042 36 9 28 2 

Max  105232 38 3001 112 46 68014 12540 740 42 1602 27 80 635 111766 65 10970 98 22 212 57 

Mean  77454 14 1015 79 26 45104 2973 178 28 679 18 27 226 63066 26 8917 66 14 52 15 

SD  14592 6 806 12 6 9903 3498 143 6 300 6 22 114 15956 15 1061 14 3 33 12 

CV (%)  19 39 79 16 24 22 118 80 24 44 32 84 50 25 57 12 21 20 63 80 

 Ultisol (3) 

Min  45997 6 0 66 20 24863 6462 181 18 135 15 55 114 83710 18 6333 59 10 42 3 

Max  54944 9 3742 150 59 43687 13421 385 38 1475 18 99 332 144397 74 7418 74 12 85 10 

Mean  50497 8 1458 96 37 35224 10286 288 26 674 17 75 248 108045 41 6821 67 11 61 6 

SD  4474 2 2003 47 20 9554 3530 102 10 707 2 22 117 32079 29 551 8 1 22 3 

CV (%)  9 20 137 48 53 27 34 36 40 105 9 30 47 30 71 8 11 11 36 54 
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Min: Minimum; Max: Maximum; SD: standard deviation; CV: coefficient of variation. 

Table 3.  Summary statistics of pXRF data (mg kg−1) and MS (×10−6 m3 kg−1) analyzing A horizons of soils from Palmital farm in Brazil. 

Parameter  Al As Ca Cr Cu Fe K Mn Ni P Pb Rb S Si Sr Ti V Y Zn MS 

 Inceptisol (6) 

Min  50848 10 0 78 26 38211 5629 81 32 74 20 60 0 78155 21 5144 52 11 47 6 

Max  74688 17 0 143 44 62605 15194 739 55 463 32 122 74 116214 60 6983 92 24 81 19 

Mean  60105 12 0 102 30 47486 10738 320 45 270 24 84 38 91759 41 6400 80 18 66 9 

SD  8769 3 0 30 7 8764 3402 280 7 134 4 22 32 15347 18 675 14 5 12 5 

CV (%)  15 22 0 29 23 18 32 88 16 50 18 27 84 17 43 11 18 29 18 61 

 Oxisol (30) 

Min  49650 8 0 52 17 27261 0 64 14 145 6 5 0 39146 8 6076 41 10 22 2 

Max  98170 24 2018 150 40 75936 9596 947 44 777 31 80 233 85217 81 10829 94 24 65 75 

Mean  74079 15 152 79 26 48393 2457 149 26 386 17 26 101 57422 24 9002 66 15 38 17 

SD  11090 4 440 20 7 11651 2984 164 7 157 7 23 66 14903 19 1164 14 3 13 16 

CV (%)  15 24 290 25 25 24 121 110 28 41 37 88 66 26 77 13 22 18 33 93 

 Ultisol (3) 

Min  54997 8 0 81 25 37452 5426 101 28 104 18 45 0 87211 17 5443 73 7 38 5 

Max  65825 11 0 142 38 50015 11535 243 49 245 21 102 62 98199 38 6546 88 14 59 17 

Mean  59857 10 0 106 30 44879 8401 156 42 166 20 69 21 91561 28 5977 78 11 46 10 

SD  5498 2 0 32 7 6587 3058 76 12 72 2 29 36 5840 11 552 8 4 12 6 

CV (%)  9 16 0 30 22 15 36 49 29 43 9 42 173 6 37 9 11 33 25 65 
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3.3.2 Model performance to predicting clay, silt, and sand contents 

Table 4 shows the performance of the models using data from A and B horizons, 

separately and combined (A+B), considering the different inputs on random forest models. In 

general, the models for prediction of PSD in the B horizon performed better than the models 

for the A horizon. The models for A and B horizons combined always presented higher R2 

and smaller RMSE values compared to the A horizon, however for B horizon, this same 

pattern was not observed. 

 

Analyzing Fig. 3, which shows the R2 values from the RF models, it is noticed that the 

best values were found with the models using pXRF data. Overall, when using pXRF data, the 

predictive power of the models increased. The most noticeable observation in R2 and RMSE 

occurred in B horizon for clay content (TA: R² = 0.01 and RMSE = 9.18; pXRF: R² = 0.67 

Table 4.  Root mean square error (RMSE) and R2 of random forest models to clay, silt, and sand in 

soils from Palmital farm, Brazil. 

Model TA TA+pXRF TA+MS TA+MS+pXRF MS+pXRF pXRF 

Parameter1 RMSE RMSE RMSE RMSE RMSE RMSE 

Clay 

A 8.45 7,65 8,45 7.72 7,53 7,50 

B 9.18 5,91 8,99 5.77 5,18 4,98 

A+B 7.92 6,48 7,93 6.51 6,16 6,19 

Silt 

A 6.99 6,64 6,80 6.40 6,12 6,20 

B 5.67 5,51 5,68 5.53 5,61 5,59 

A+B 5.82 5,08 5,79 5.04 5,51 5,49 

Sand 

A 9.86 8,37 9,93 8.32 8,38 8,37 

B 11.08 8,36 10,90 8.51 7,50 7,09 

A+B 8.91 7,47 9,00 7.46 7,26 7,26 

1root mean square error 
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and RMSE = 4.98). These values indicate the potential of using pXRF to provide variables to 

increase the predictive power of models of soil texture in tropical regions. For clay in A and B 

horizons separately, the prediction models achieved maximum R2 of 0.30 and 0.67, 

respectively. For predicting silt in A and B horizon and for A+B horizons combined, the 

highest obtained R2 were 0.25, 0.31, respectively. However, for the combined horizons, the 

silt prediction model achieved a R2 of 0.36. For sand in A and B horizons and A+B horizons 

combined, the highest obtained R2 were 0.19, 0.68, and 0.55, respectively. 

For predicting clay in the A horizon, the MS+pXRF model with A+B data was 

selected, and for the B horizon, the pXRF model with B horizon data was chosen. For silt 

prediction in the A and B horizons, the TA+MS+pXRF model with A+B data was selected for 

both. For predicting sand in the A horizon, the pXRF model with A+B data was chosen, and 

for the B horizon, the pXRF model with B data was selected.  

Remarkably, all datasets provided optimal models by utilizing pXRF information 

alone or in combination with MS and TA information. The best sand prediction model used 

only pXRF information to predictions in A and B horizons. Only silt used TA information, 

maybe due to silty soils occurrence in steep areas, thus correlating with some TA. Silva et al. 

(2020) attempted to predict clay, silt, and sand from pXRF in Brazil using 1565 soils samples. 

The best predictions were delivered by support vector machine and RF, reaching, 

respectively, R2 of 0.83 and 0.83 for clay, 0.70 and 0.75 for silt, and 0.87 and 0.84 for sand. 

The difference in the models' performance between those results and those found in these 

work can be attributed to the larger dataset used to produce a more robust model than the 

dataset used in the current work (Silva et al., 2017; Zhu et al., 2011). 
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Fig. 3. Determination coefficient (R2) of clay, silt, and sand prediction models in A horizon, B 

horizon, and in A+B horizons combined in the Brazilian soils. 

 

 

3.3.3 Variables Importance 

  The variable importance calculated for the best models to predict PSD is shown in 

Fig. 4. The percentage of increment of Mean Square Error (%IncMSE) is an important and 

significant measure of the relative importance of one independent variable (Liaw and Wiener, 

2002). The higher the %IncMSE value, the more important the variable to the prediction 

model. 

The combination of the six datasets [i: TA; ii: TA+pXRF; iii: TA+MS; iv: 

TA+MS+pXRF; v: MS+pXRF; vi: pXRF] and the data for A, B, or A+B horizons resulted in 

a total of 54 models for the prediction of the soil particle size fractions. In general, Al, As, Ti, 

Pb, and Sr were the five most important variables in all soil horizons studied. These variables 
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may be related These variables can also be related to the weathering of tropical soils, and is 

related to the parent material of the studied soils (Mancini et al., 2019). 

 

Fig. 4. Plots of relative importance of variables in RF model clay, silt, and sand for the best 

prediction models in Brazilian soils. VD, valley depth; CNBL, channel network base level; 

RSP, relative slope position. 

 

3.3.4 Spatial predictions of clay, silt, and sand contents 

From the best models determined in the previous section, spatial predictions of clay, 

silt and sand contents were generated for the whole study area (Fig. 5) based on TA and 

spatialized MS and the elemental contents obtained by pXRF. The clay content varied from 

31 to 61 % in the A horizon, whereas the variation in the B horizon was from 36 to 65 %. The 

silt content had a variation from 8 to 30 % in the A horizon, while the B horizon content 

ranged from 12 to 29 %. Furthermore, the sand content ranged from 19 to 48 % in the A 

horizon and 18 to 48 % in the B horizon. 

The maps generated for both horizons showed great similarity between the content of 

the soil particle size fractions, since most of the area consists of Oxisols. Oxisols are in an 
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advanced weathering stage, evolved as a result of vigorous transformations of the parent 

material (Kämpf et al., 2012), and in consequence, they have little differentiation between the 

subsuperficial horizons. 

 

Fig. 5. Maps of clay, silt, and sand contents in A and B horizon obtained from the best models 

of random forest for the study area in Brazilian soils. 
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3 CONCLUSIONS 

The elemental contents reported by pXRF provided an adequate characterization of the 

soils in this study. In general, the combination of MS, pXRF, and TA information allowed for 

satisfactory predictions of clay, silt, and sand contents with the use of random forest algorithm 

in tropical soils. The use of pXRF information was able to predict soil fractions adequately, 

and when associated with MS and TA information optimized models’ performance. The work 

shows the potential to use pXRF as a source of variables to help spatial prediction of soil 

properties rapidly, at low cost and without generating residues. Thus, for the region of study, 

the use of proximal sensors and remote sensing is recommended for digital mapping and 

modeling. 
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4 ARTIGO 2. AVAILABLE MICRONUTRIENTS PREDICTION IN TROPICAL 

SOILS VIA PROXIMAL SENSING AND TERRAIN ANALYSIS 

*Article prepared according to the rules of Geoderma Regional (preliminary version). 

Luiza Maria Pereira Pierangeli; Sérgio Henrique Godinho Silva; Michele Duarte de Menezes; 

João José Marques; David C. Weindorf; Nilton Curi 

 

ABSTRACT 

Soil mapping is a crucial activity for detailing spatial information about soils in areas of 

interest. For this reason, the use of digital elevation models (DEM) is essential in the 

representation of terrain topography, enabling the generation of terrain attributes (TA) that 

support the digital soil mapping. Besides, the use of proximal sensors such as portable X-ray 

fluorescence spectrometry (pXRF) and susceptibilimeter, that provides the magnetic 

susceptibility (MS) of materials has also been a great ally in digital soil mapping. This work 

aimed to model and predict the available contents of B, Cu, Fe, Mn, and Zn from pXRF and 

MS data in addition to terrain attributes (TAs) via random forest algorithm. A total of 78 soil 

samples were collected from A and B horizons, representing Inceptisols, Oxisols, and 

Ultisols. The samples were analyzed by MS and pXRF and subjected to laboratory analyses to 

determine the available contents of B, Cu, Fe, Mn, and Zn. Seventeen TAs were generated 

from a 12.5 m resolution DEM. These data were divided into six datasets: TA; TA+pXRF; 

TA+MS; TA+MS+pXRF; MS+pXRF; pXRF. The samples were divided into A and B 

horizons separately and combined (A+B). RF was used to predict the available contents of B, 

Cu, Fe, Mn, and Zn, and the models were validated. Root mean square error (RMSE) and 

coefficient of determination (R2) were used to determine the performance of the models. 

Finally, the best models were spatialized to cover the entire study area. The combination of 

pXRF information with TA improved the prediction of available Cu, Fe, and Mn in the A 

horizon. Available B and Zn were better predicted using only TA information for both 

horizons, whereas available Cu and Mn were better predicted using just pXRF information for 

B horizon. The MS information, in combination with pXRF, allowed a better prediction of 

available Fe in the B horizon. The combination of MS, pXRF, and TA information allowed 

satisfactory predictions of available micronutrients, especially for Cu, Fe, and Mn. 

Keywords: Digital soil mapping; pXRF; magnetic susceptibility; random forest; tropical 

soils. 
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4.1 INTRODUCTION 

Micronutrients (B, Cu, Fe, Mn, and Zn) are essential elements for plant growth. These 

elements (micronutrients) are needed in smaller quantities than macronutrients, but their 

limitations can affect plant growth. B participates in biological processes in the plant and also 

constitute the cell wall of plants, while Cu, Fe, Mn, and Zn are constituent and participate in 

the activation of enzymes; besides, Mn is linked to chlorophyll synthesis (Abreu et al., 2007). 

Micronutrient deficiencies are a limiting factor for annual crop production in the tropics; the 

main reason is that weathered soils in this region are acidic and have a low natural content of 

some micronutrients (Fageria and Stone, 2008). 

The method used to quantify micronutrient content in the soil is expensive, time-

consuming, and generate chemical waste. In this sense, it is advantageous to apply new 

instruments that provide elementary information for soil samples quickly, economically, and 

in a sustainable matter. Some examples are the portable X-ray fluorescence (pXRF) 

spectrometer, susceptibilimeter, visible, and near-infrared (Vis-NIR) spectroscopy. PXRF can 

quantify different elements in the soil, as each element produces specific fluorescence energy 

(Ribeiro et al., 2017; WeindorF et al., 2014). Another technique is the use of a 

susceptibilimeter to quantify the magnetic susceptibility (MS) of samples. Besides, both 

methods are non-invasive, non-destructive, and can be used in both field and lab conditions. 

Several soil studies have been conducted using pXRF and MS separately, but their 

combined use still requires investigations. Teixeira et al. (2018) predicted exchangeable Ca2+, 

V %, and pH in areas cultivated with coffee and eucalyptus through the use of pXRF data. 

Based only on pXRF information, soil fertility properties were predicted in Cerrado soils 

(Lima et al., 2019). Andrade et al. (2020), used pXRF information to study and predict 

chemical soil properties in Brazilian Coastal Plains region. MS information and diffuse 

reflectance spectra were used in combination to characterize the spatial variability of the 

properties of an Haplustalf in Brazil (Marques jr. et al., 2014). Naimi and Ayoubi (2013) used 

MS to estimate metals contents in an industrial site in Iran and proposed the use of MS as an 

indicator of metal contamination of soils from anthropogenic sources. Multiple linear 

regression showed that the combination of soil properties and MS could explain the 

variability of heavy metals in different land uses areas in Iran (Ayoubi et al., 2018). 
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Recently, the aforementioned sensors have been used to assess the spatial variability 

of soils in combination or independently with other variables (Duda et al., 2017; Silva et al., 

2016d), thus contributing to digital soil mapping (DSM). DSM estimates soil properties 

through soil-environment relationships, using variables related to the soil forming factors 

(climate, organisms, parent material, relief, time - Jenny, 1941), but mainly relief. Through 

the widely available digital elevation models (DEM), a continuous representation of terrain, it 

is possible to derive other relief-related variables, the so-called terrain attributes (TA), such as 

slope, curvature, distance to channel network, etc. (Grunwald, 2009; McBratney et al., 2003; 

Minasny and McBratney, 2016). Thus, the use of proximal and remote sensing combined with 

TAs has been little explored, but it can become a powerful tool for enhancing predictions of 

soil classes and attributes (Hartemink and Minasny, 2014; Hengl et al., 2017; Shahbazi et al., 

2019; Weindorf et al., 2014).  

Therefore, the objective of this study were to: (1) characterize soils with pXRF of an 

experimental farm in Brazil with diverse land uses, (2) predict plant available contents of B, 

Cu, Fe, Mn, and Zn and evaluate the importance of MS, pXRF and TA information separately 

and in association as predictor variables, (3) assess the importance of such variables in 

micronutrient prediction, and (4) produce spatial predictions of such micronutrients for the A 

and B horizons of the soils of the study area. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Study Area 

The study was conducted in Fazenda Palmital (Fig. 1.), located in Ijaci county, Minas 

Gerais, Brazil, between UTM longitudes 506,793 and 508,882 m and latitudes 7,659,470 and 

7,660,685 m zone 23K, datum WGS84. This study area is covers approximately 117 ha, 

featuring agricultural crops, pasture, native forest, and eucalyptus, mahogany and Pinus 

plantations. It is located in the Rio Grande watershed region, the altitude in the study area 

ranges from 793 to 868 m. The geologic and soil parent material information is derived from a 

1:100,000 map (MAPA GEÓLOGICO – FOLHA LAVRAS, 2003), and based on this, the 

parent material of the area are gneisses TTG, metamorphosed limestone and phyllite-

limestone, alluvial sediment from quaternary. The regional climate is humid subtropical with 

dry winters and hot summers (Köppen Cwa), with mean annual temperature of 21 ºC, and 

mean precipitation of 1500 mm (Dantas et al., 2007). 
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Fig. 1. Study area and sampling sites of Fazenda Palmital, MG, Brazil. 

 

4.2.3 Soil Sampling and Laboratory Analyses 

A total of 39 sites were sampled in A and B horizons following a regular-grid design 

with 173 m of distance between sampling places, totalizing 78 samples. The soil samples 

were collected in July 2018, in the winter season. Soil samples were air-dried, ground and 

passed through a 2 mm sieve. Samples were then subjected to laboratory analyses for the 

determination of available B, Cu, Fe, Mn, and Zn with Mehlich-1 solution (Mehlich, 1953). 

Quantification was made via atomic absorption spectrophotometry on an AAS 800 (Perkin 

Elmer, Waltham, MA, USA) (Jackson, 1958). And B was extracted with hot water and 

determined by Azomethine H colorimetric method. 

 The MS was determined in a low frequency (0.47 kHz) using 10 g of air-dried and 

sieved soil in a Bartington MS2B susceptibility meter (Dearing, 1994). 

Elemental analyses were performed using a Vanta series pXRF (Olympus, Waltham, 

MA, USA) spectrometer to characterize all the soil samples. The instrument scans via two 

beams in sequence such that one whole scan was completed in 60 s and is integrated with 
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GeoChem software (Weindorf and Chakraborty, 2016). This pXRF features a Rh X-ray tube 

operated at 8–50 kV as the excitation source, detecting elements ranging from Mg to U. 

Before scanning, the instrument was calibrated with a factory calibration alloy coin. 

The accuracy of the equipment was evaluated through scanning standard reference materials 

2710a and 2711a certified by the National Institute of Standards and Technology (NIST). The 

recovery values for the elements identified in all samples and used in this work follow 

(2710a/2711a): Ag (0/0); Al (0.61/0.61); As (1.06/1.43); Ca (0.65/0.88); Cd (0/0.91); Cu 

(1.02/1.01); Fe (0.92/ 0.96); Hg (2.73/1.75); K (0.83/0.85); Mn (0.93/0.96); Mo (0/0); Ni 

(0/1.15); P (0.63/0.52); Pb (1.02/ 1.08); Rb (0/0); S (0/0); Se (0/0); Si (0.57/0.61); Sr 

(0.96/0.96); Th (0/0); Ti (0.90/ 0.94); U (0.99/0); V (0/0.93); y (0/); Zn (1.00/1.06). 

 

4.2.3 Terrain variables 

Topography is one of the main forming factors, therefore a DEM with 12.5 m 

resolution from the ALOS PALSAR Global Radar Imagery was downloaded 

(https://search.asf.alaska.edu/#/). From this DEM, 17 TA were selected using and SAGA GIS, 

including: slope, aspect, cross-sectional and longitudinal (CsC and LC, respectively) 

curvature, convergence index (CI), flow accumulation (flow), topographic wetness index 

(TWI), LS factor (lsf), channel network base level (CNBL), vertical distance to channel 

network (VDCN), valley depth (VD), relative slope position (RSP), catchment area (CA), 

modified catchment area (MCA), closed depressions (CD), catchment slope (CS) and, SAGA 

wetness index (SWI). The extraction of the DEM values from each terrain attribute and 

altitude through geo-referenced sampling sites along with the elemental data from pXRF and 

TA data for each sampling site were adjusted to predict available B, Cu, Fe, Mn, and Zn 

through a random forest model. 

 

4.2.4 Modeling and validation of the predictions 

 Soil samples were randomly separated into modeling and validation data sets, 

respectively, consisting of 70% and 30% of the total data. Also, the samples were subdivided 

and modeled in two ways: i) specific models, according to the two horizon, with n = 39 for 

each depth, with 27 samples for modeling and 12 for validation; and ii) general model, 

including all samples (n = 78, 54 for modeling and 24 for validation). 



46 
 
 

In order to adjust the models for predicting available B, Cu, Fe, Mn, and Zn contents 

pXRF, MS, and TA information were divided in sex datasets: (i) TA, (ii) TA + pXRF, (iii) 

TA + MS, (iv) TA + pXRF + MS, (v) MS + pXRF, and (vi) pXRF. 

The RF analysis was performed in R software (3.6.1) (R Development Core Team, 

2009), using the caret package (Kuhn, 2008), with the following parameters established: 

number of trees of the model (ntrees) = 1000, number of variables in each node (nodesize) = 

5, and number of variables used in each tree (mtry) = 3. Also, the RF model determines the 

importance of each variable. This tool is a powerful and significant measure of the relative 

importance of one independent variable (Liaw and Wiener, 2002). The higher the %IncMSE 

value, the more critical the variable to the prediction model. 

The performance of each model was calculated from the validation samples using the 

indices: coefficient of determination (R2), RMSE (root mean square error) (Eq. 1). The RMSE 

was normalized (nRMSE) to compare variables at different scales (Eq. 2): 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)2𝑛

𝑖=1

𝑛
 

(1) 

𝑛𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝜎
 

(2) 

where n: number of observations, Xmodel: estimated value by the model, Xobs: measured value 

by chemical analysis, σ: standard deviation. 

The best models for B, Cu, Fe, Mn, and Zn were used in the creations of maps to the 

entire area. For the soil mapping procedure, TA information was continuously available for 

the entire study area, but variables obtained from pXRF and MS data at the 39 sampled sites 

had to be extrapolated to the entire area. The pXRF and MS data were modeled across the 

entire area through multilevel B-spline interpolation (Lee et al., 1997). These maps were 

validated through calculations of R2, RMSE. 

 

4.3 RESULTS AND DISCUSSIONS 

4.3.1 Characterization of soils properties 

The descriptive statistics of micronutrient available contents for A and B horizons 

shows the high variability of these elements in the area (Table 1), demonstrated by the ranges 
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of minimum, maximum, mean, and coefficient of variation (CV) values. This high variability 

of the data was caused by the diverse land uses, soil management, including areas with and 

without fertilizer application, soil classes and parent materials. Such variability can generate 

more robust models for different conditions, since the samples represent a wide range of 

values of the analyzed properties, such as Cu from 0.10 to 4.08 mg kg−1, Fe from 14.09 to 

343.02 mg kg−1, Mn from 1.08 to 180.55 mg kg−1, and the Zn from 0.10 to 86.63 mg kg−1. 

However, B had a small variation, ranging from 0.02 to 0.22 mg kg−1. 

Part of the studied area has been cultivated with agricultural crops and forest farming. 

Therefore, soil management that includes the addition of fertilizers explains the higher values 

of Cu, Mn, and Zn in the A horizon that has more OM helping in the complexation of these 

nutrients. Similar results were also found in soils of the Brazilian Coastal Plains region, where 

the micronutrient total contents were also higher in A horizon (Andrade et al., 2020).  
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4.3.2 Characterization of soils by pXRF 

 Characterization of soils between horizons by pXRF is showed in Table 2. The main 

elements present in these soils was Al, followed by Si and Fe. Similar to the results found by 

Lima et al. (2019) studying Cerrado soils. The Ca contents ranged from 0 to 3742 mg kg−1 

(mean 600 mg kg−1) and the highest values were found on the surface horizon. Liming and 

gypsum application are common practice in the tropical soils (Lopes and Guilherme, 2016). 

The higher content of Al, Mn, P, and Si were higher in the A horizon while Fe was higher in 

B horizon. Teixeira et al. (2020) observed similar tendencies working in tropical soils. 

Table 1: Summary statistics of available B, Cu, Fe, Mn, and Zn information (mg kg−1) 

analyses of A and B horizons, and A+B horizons of soils in Brazil. 

Micronutrient 
Soil 

horizon n 
Mina Maxb Mean SDc CVd 

mg kg-1 % 

B 

A 39 0.03 0.22 0.11 0.05 45.45 

B 39 0.02 0.22 0.08 0.05 62.50 

A+B 78 0.02 0.22 0.10 0.05 50.00 

Cu 

A 39 0.18 4.08 0.84 0.73 86.90 

B 39 0.10 2.57 0.71 0.52 73.24 

A+B 78 0.10 4.08 0.78 0.64 82.05 

Fe 

A 39 17.99 230.24 63.89 52.89 82.78 

B 39 14.09 343.02 49.47 57.91 117.06 

A+B 78 14.09 343.02 56.68 55.57 98.04 

Mn 

A 39 8.35 180.55 32.95 33.02 100.21 

B 39 1.08 72.46 10.01 12.71 126.97 

A+B 78 1.08 180.55 21.48 27.40 127.56 

Zn 

A 39 0.49 86.63 7.87 13.47 171.16 

B 39 0.10 4.79 1.05 1.09 103.81 

A+B 78 0.10 86.63 4.46 10.09 226.23 

aminimum, bmaximum, cstandard deviation, dcoefficient of variation. 
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Among the other elements found by the pXRF, the higher contents of As, Cr, Ni, V, 

and Y were found in the B horizon, while Cu, Ti, and Sr were found in higher contents in the 

A horizon. These results resemble those found by Silva et al. (2017) in Brazilian Cerrado 

soils, containing higher content of Ti and Sr in the A horizon and V in the B horizon. MS 

content presented higher values in B horizon, and this is likely because of the lower organic 

matter contents and higher content of Fe oxides in this horizon, especially in the form of 

maghemite, since it is the only clay mineral with powerful magnetism in tropical and 

subtropical soils (Poggere et al., 2018). In addition, the parent material is directly related with 

the MS in soils. 
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Table 2:   Summary statistics of pXRF data (mg kg−1) and MS (×10−6 m3 kg−1) analyzing A horizons of soils from Palmital farm in Brazil. 

Parameter Horizon Al As Ca Cr Cu Fe K Mn Ni P Pb Rb S Si Sr Ti V Y Zn MS 

Mina 

 

A 

 

44781 6 0 56 16 24863 0 68 16 0 9 7 0 41149 10 6052 36 9 28 2 

Maxb 105232 38 3742 150 59 68014 15245 1450 42 1602 37 112 635 144397 74 10970 98 22 284 57 

Mean 72441 13 1082 81 28 43567 4772 238 28 664 19 38 242 70634 30 8385 68 14 62 13 

SDc 16494 5 896 18 8 9604 4765 263 7 342 6 31 120 21794 17 1370 14 3 48 11 

CVd (%) 23 41 83 22 29 22 100 110 24 51 32 80 49 31 56 16 20 21 77 83 

Mina 

B 

49650 8 0 52 17 27261 0 64 14 74 6 5 0 39146 8 5144 41 7 22 2 

Maxb 98170 24 2018 150 44 75936 15194 947 55 777 32 122 233 116214 81 10829 94 24 81 75 

Mean 70835 14 117 85 27 47983 4189 176 30 351 19 38 85 65331 27 8369 69 15 43 15 

SDc 11898 4 390 24 7 10812 4399 187 11 162 6 32 67 20403 19 1578 15 3 16 14 

CVd (%) 17 26 334 28 25 23 105 106 36 46 34 85 78 31 69 19 22 23 37 95 

Mina 

A+B 

44781 6 0 52 16 24863 0 64 14 0 6 5 0 39146 8 5144 36 7 22 2 

Maxb 105232 38 3742 150 59 75936 15245 1450 55 1602 37 122 635 144397 81 10970 98 24 284 75 

Mean 71638 13 600 83 27 45775 4480 207 29 507 19 38 164 67982 29 8377 69 14 52 14 

SDc 14310 5 841 21 7 10400 4565 229 9 309 6 31 124 21142 18 1468 14 3 36 13 

CVd (%) 20 34 140 25 27 23 102 111 31 61 33 82 76 31 62 18 21 22 70 90 

aminimum, bmaximum, cstandard deviation, dcoefficient of variation. 
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4.3.3 Model performance to predicting available contents of B, Cu, Fe, Mn, and Zn 

The R² values obtained from the comparison between the observed and estimated 

values of available B, Cu, Fe, Mn, and Zn generated by RF are presented in Table 3.  In 

general, the prediction models for the combined horizons (A+B) presented higher R2 and 

smaller RMSE than the models using the separate horizon data. 

Table 3:  Root mean square error (RMSE) and R2 of random forest models for predicting B, Cu, Fe, Mn, and Zn in 

soils from Palmital farm, Brazil. 

Model TA TA+pXRF TA+MS TA+MS+pXRF MS+pXRF pXRF 

Parameter1 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 

B 

A 0.06 0.01 0.05 0.00 0.06 0.01 0.05 0.00 0.05 0.11 0.05 0.08 

B 0.05 0.11 0.05 0.14 0.05 0.09 0.04 0.02 0.04 0.00 0.04 0.02 

A+B 0.04 0.37 0.04 0.25 0.04 0.37 0.04 0.25 0.05 0.14 0.05 0.11 

Cu 

A 0.69 0.18 0.58 0.01 0.63 0.40 0.57 0.00 0.59 0.02 0.58 0.03 

B 0.50 0.02 0.27 0.74 0.51 0.00 0.27 0.73 0.27 0.75 0.24 0.80 

A+B 0.54 0.13 0.42 0.41 0.53 0.12 0.43 0.39 0.47 0.31 0.47 0.31 

Fe 

A 58.05 0.00 44.53 0.40 52.04 0.18 43.71 0.40 46.63 0.37 47.41 0.37 

B 51.33 0.14 39.26 0.61 50.57 0.07 40.92 0.50 33.69 0.68 34.68 0.63 

A+B 37.14 0.51 34.98 0.59 37.94 0.49 43.64 0.39 35.86 0.57 36.00 0.54 

Mn 

A 28.36 0.10 12.54 0.86 28.32 0.10 12.46 0.87 11.92 0.85 11.88 0.85 

B 8.94 0.13 6.70 0.49 8.99 0.13 6.80 0.47 6.35 0.55 6.15 0.59 

A+B 21.83 0.29 15.62 0.66 19.48 0.41 15.93 0.66 15.74 0.67 15.70 0.67 

Zn 

A 9.89 0.00 9.48 0.02 12.06 0.00 8.48 0.02 4.96 0.01 7.72 0.00 

B 0.79 0.02 0.89 0.23 0.72 0.27 0.86 0.25 0.90 0.24 0.88 0.22 

A+B 2.84 0.50 3.34 0.42 3.08 0.31 3.67 0.29 3.18 0.43 4.12 0.21 

1 RMSE: root mean square error. 
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For available B and Zn, only TA with A+B horizons data combined, the prediction 

models achieved maximum R2 of 0.37 and 0.50, respectively. For available Cu, TA+pXRF 

with A+B horizons data found the optimal predictions for A horizon (R2=0.41), and pXRF 

with B horizon data provided the highest R2 (0.80) for B horizon. Utilizing TA+pXRF with 

A+B horizons data, Fe prediction obtained a moderate R2 (0.59) for the models representing 

A horizon. For available Fe in B horizon, MS+pXRF with B horizon data performed better 

than the other models, achieving an R2 of 0.68. For Mn prediction, TA+pXRF+MS with A 

horizon data found the best R2 of 0.87 for A horizon, while pXRF with A+B horizons data 

provided maximum R2 of 0.67 for B horizon. The use of only TA information did not 

contribute satisfactorily in most predictions. In general, when pXRF information was added to 

TA information, a little improvement in the models’ performance for A and B horizons was 

achieved.  

In Table 3, the validation errors assessed by RMSE demonstrate that the addition of 

pXRF information decreased the values of RMSE. For Cu and Mn models, lower RMSE were 

obtained for all datasets, whereas for Zn, the error of predictions increased in the B horizon. 

For Fe predictions, A+B horizons data featured higher RMSE in one of the models using 

pXRF (TA+MS+pXRF). For available B prediction, RMSE values were similar between the 

datasets, and there was not a significant improvement with the addition of pXRF information. 

Fig. 2 presents the variation of normalized RMSE (nRMSE) of the models. Different 

combinations of dataset and soil information strongly influenced models accuracy. For Zn, the 

lowest values of nRMSE were found for A+B horizons. Whereas, the highest values were 

found for B in the A horizon. The best models were selected by observing the highest R2 and 

the lowest RMSE values (Table 3). Models containing the best predictions for each available 

micronutrient are shown in Table 4. 

In general, the models had a satisfactory predictive capacity for Fe, Mn, and Zn, 

although they were unsatisfactory for B and Cu prediction. The results were better for B 

horizon except for Mn for A horizon. For A horizon, the use of the combined data set 

presented better results than A data only. For this reason, the use of the combined data set 

may improve the prediction of attributes. These results also indicate the potential of using 

pXRF to aid in the prediction of micronutrients in Brazilian soils. Similar results were found 

in Brazil, where TA, pXRF, and parent material information were used to predicted Cu, Fe, 

Mn, and Zn (Pelegrino et al., 2019). In the study, the best models to predict Cu, Fe, Mn, and 
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Zn included pXRF information and reached R2
adj of 0.74, 0.86, 0.71, and 0.28, respectively. 

The small difference in the performance of predictive models among these Brazilian soils is 

probably due to the similarity in the properties of the soils studied. However, further studies 

are needed to develop the best methodology to deliver better results for each soil-

environmental condition. 

Comparatively, the works developed in Sub-Saharan region were able to predict 

available B, Cu, Fe, Mn, and Zn with moderate accuracy using GIS information (Hengl et al., 

2017). Hengl et al. (2017) found an R2 of 0.41 for B, 0.54 for Cu, 0.68 for Fe, 0.53 for Mn, 

and 0.47 for Zn. Shahbazi et al. (2019) predicted B contents (maximum R2=0.22) in different 

soil depth and other nutrients in North West Iran using GIS information, thus, presenting a 

low R² similar to the current work. In a different approach, Camargo et al. (2018) predicted 

potentially toxic elements in tropical soils utilizing magnetic susceptibility (MS) and diffuse 

reflectance spectra. The best predictive models for Cu, Mn, and Zn semi-total contents had an 

R2 of 0.89, 0.77, and 0.55, respectively using MS-calibrated models. Finally, in the present 

study the combination of pXRF with other information improved the predictions of available 

micronutrients content. Concerning the use of the datasets, some of the best performances 

were achieved using the A+B data, which can be assigned to the most extensive dataset used 

to produce an RF model (Rawal et al., 2019b; Shahbazi et al., 2019; Silva et al., 2017a). 
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Fig. 2. Normalized root mean square error (nRMSE) of predictions for available B, Cu, Fe, 

Mn, and Zn using different proximal sensor with random forest of Brazilian soils. 

 

4.3.4 Variables Importance 

  The best models to predict B, Cu, Fe, Mn, and Zn had their variable importance 

calculated by the percentage of increment of Mean Square Error (%IncMSE). In order to 

choose the best models per horizon, the criteria of the highest R2 and the smallest RMSE were 

adopted. The five most essential variables per model are shown in Fig 3. 
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Fig. 3. Plots of relative importance of variables in RF model for the B, Cu, Fe, Mn, 

and Zn best prediction models in Brazilian soils. * Terrain attributes; ** horizon; *** land 

use; VD, valley depth; CD, closed depressions; RSP, relative slope position; flow, flow 

accumulation; CS, catchment slope; MCA, modified catchment area; SWI, SAGA wetness 

index; VDCN, vertical distance to channel network; MS, magnetic susceptibility; Crops, 

cultivated area. 

 

In general, the best variables were provided by the pXRF information. These variables 

may be related to the parent material of tropical soils (Mancini et al., 2019). In the case of the 

Al, that appeared in some models, it is usually related to the weathering of tropical soils 

(Kämpf et al., 2012). For B, the most essential variable was closed depression (CD), followed 

by B horizon, as a covariate factor, and valley depth (VD). For available Cu and Mn, among 

the five most essential variables were Zn and Mn, both obtained by pXRF. For the available 
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Zn, the most important variables were B horizon, as a covariate factor, and Crops, meaning 

that the area was cultivated, followed by catchment slope (CS), a TA information. 

For Fe, the most important variables were Rb and K. Although for the B horizon 

model, MS was classified as the third most important variable. Bahia et al. (2017) found a 

high correlation between MS and iron extracted with dithionite-citrate-bicarbonate (0.95) and 

iron extracted with ammonium oxalate (0.87) in Brazilian soils. Fed is related to high-

crystallinity pedogenetic iron oxides (hematite, maghemite), and Feo is related to low-

crystallinity pedogenetic iron oxides (ferrihydrite) (Poggere et al., 2018). The use of MS 

information may have improved Fe prediction in the B horizon, distinguishing different Fe-

oxides. 

 

4.3.5 Spatial Predictions of B, Cu, Fe, Mn, and Zn 

RF was used in the spatial prediction of the studied properties (Fig. 4) using the best 

models determined in the previous section. The available B varied from 0.17 to 0.05 mg kg-1 

in the A horizon and from 0.16 to 0.05 mg kg-1 in the B horizon. Available Cu content had a 

variation of 2.37 to 0.40 mg kg-1 in the A horizon, while the B horizon content ranged from 

1.85 to 0.26 mg kg-1. The available Fe varied from 164.91 to 31.42 mg kg-1 in the A horizon 

and from 149.35 to 28.66 mg kg-1 in the B horizon. Available Mn content had a more 

extensive variation of 79.83 to 2.32 mg kg-1 in the A horizon, while the B horizon content 

ranged from 134.79 to 12.55 mg kg-1. Furthermore, the Zn content ranged from 58.90 to 1.27 

mg kg-1 in the A horizon and from 10.20 to 0.31 mg kg-1 in the B horizon. 

A horizon presented a higher content of available Cu and Zn in the area. This may be 

related to the association of these elements with soil organic matter, which retains them, in 

addition to fertilizers application. Conversely, Fe and Mn had a higher content in the B 

horizon. In highly weathered Brazilian soils rich in Fe- and Mn-oxides, these oxides associate 

with micronutrients through adsorption mechanisms. The maps generated for both horizons 

showed very similarity between the concentration for available B, although the accuracy of 

the model was not satisfactory as presented in a previous section. 
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Fig. 4. Maps of available B, Cu, Fe, Mn, and Zn contents in A and B horizon obtained from 

the best models of random forest for the study area in Brazilian soils. 
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4.4 CONCLUSIONS 

 

The combination of MS, pXRF, and TA information allowed for satisfactory 

predictions of available Cu, Fe, Mn, and Zn with the use of random forest algorithms in 

Brazilian soils. Available B and Zn contents were better predicted using only TA information. 

Available Fe and Mn contents were the only elements that reached a good prediction using 

MS information combined with the other information. The use of pXRF information 

improved models when such data was associated with TA information. Therefore, for the 

region of study, the combination of proximal and remote sensing data is recommended for 

digital mapping and modeling of available micronutrient contents, mainly Fe, Mn and Zn. 
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