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In this paper we compute the high-temperature effective Lagrangian for the quantum electrodynamics
defined in the framework of very special relativity (VSR). The main aspect of the VSR setting is that it
modifies the gauge invariance, admitting now different types of interactions appearing in a nonlocal form.
In order to explore the richness of these new couplings, we employ the usual Matsubara imaginary-time
formalism to evaluate the effective Lagrangian at one- and two-loop order. We illustrate the leading VSR
Lorentz violation modifications by computing high-temperature internal energy density and establishing a
comparison with the expected contribution.
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I. INTRODUCTION

Despite the fact that many predictions of the Standard
Model (SM) of particles are in accordance with experimental
data obtained at particle colliders, there are many other
physical phenomena that are not adequately explained by
SM, consisting of the so-called physics beyond the Standard
Model, e.g., neutrino masses, matter-antimatter asymmetry,
quantum gravity, etc., [1]. Minimal modifications of SM or
alternative models have been proposed in order to attempt to
understand the fundamental origin of one or more of the
above problems. The most appealing approach for the
description of such phenomena involves the addition of
new degrees of freedom (d.o.f.), that are usually incorporated
by enforcing a symmetry principle.
In recent years, the number of precision tests scrutinizing

the validity of exact symmetries in field theories have been
increased significantly. Since Lorentz invariance is a key
symmetry in our description of nature, Lorentz violating
models have reached an important landmark due to many
systematic developments that were subject to precision
tests [2–5]. These studies are also motivated by our
expectation that any deviation from these symmetries
would signal manifestations of Planck-scale physics, once
it is believed that they would not hold exactly in this energy
regime [6].

Among the many Lorentz violating proposals applied to
field theories, certainly those preserving the basic elements
of special relativity are the most relevant ones, because
although all classical tests of special relativity are still valid,
these modified models allow the description of additional
phenomena. Within this context, a framework satisfying the
above criteria is the Cohen and Glashow very special
relativity (VSR) [7,8]. The main aspect in the VSR proposal
is that the laws of physics are not invariant under the whole
Poincaré group but rather under subgroups of the Poincaré
group preserving the basic elements of special relativity. This
approach is mainly motivated by the fact that a modified
gauge symmetry is present in the VSR framework, admitting
a variety of new gauge invariant interactions.
In the VSR framework, there are two subgroups fulfilling

the aforementioned requirements, namely, the HOM(2) (with
three parameters) and the SIM(2) (with four parameters).
The former is the so-called Homothety group, generated
by T1 ¼ Kx þ Jy; T2 ¼ Ky − Jx, and Kz (J⃗ and K⃗ are the
generators of rotations and boosts, respectively). The latter,
called the similitude group SIM(2), is the HOM(2) group
added by the Jz generator. Moreover, the symmetry groups
SIM(2) and HOM(2) preserve the direction of a lightlike
four-vector nμ by a simple scaling, in which it transforms as
n → eφn under boosts in the z-direction. This shows that
theories defined under invariance of these subgroups present
a preferred direction in Minkowski spacetime, where
Lorentz violating terms are constructed as ratios of con-
tractions of nμ with other kinematic vectors [7].
As an illustration of the above discussion, one can write

down a VSR-covariant Dirac equation in the form

ðiγμ∂̃μ −meÞψðxÞ ¼ 0; ð1Þ
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where the wiggle derivative operator is defined by ∂̃μ ¼
∂μ þ 1

2
m2

n:∂ nμ, carrying Lorentz violation in a nonlocal form,
wherem sets the scale for the VSR effects and the preferred
null direction is chosen as nμ ¼ ð1; 0; 0; 1Þ. Then, squaring
the VSR-covariant Dirac equation we find

ð∂μ∂μ þ μ2ÞψðxÞ ¼ 0; ð2Þ

where μ2 ¼ m2
e þm2. This shows a basic result of

VSR that conservation laws and the usual relativistic
dispersion relation are preserved. Actually, the main
motivation for the VSR proposal was to provide a suitable
framework where the neutrinos are massive that neither
violate lepton number nor require additional sterile
states [8]. Moreover, this idea can be extended to the
photon, where the Abelian gauge field now transforms as
δAμ ¼ ∂̃μΛ, the extended VSR gauge symmetry can be
used in such a way to describe massive modes without
changing the number of physical polarization states for the
photon [9]. It is worth noting that massive modes of
photons and their stability are a recurrent subject of
analysis in recent literature [10,11].
Many interesting theoretical and phenomenological

aspects of VSR effects have been extensively discussed
[12–19]. However, no attention has been paid to the
analysis of observable quantities of VSR field theories in
thermodynamical equilibrium. In order to fill this gap, we
will study the behavior of photon and fermion plasma under
VSR Lorentz violating effects in the presence of a heat
bath, exploring its properties, and in particular study
quantum effects at finite temperature. Hence, the main
purpose of the present work is the evaluation of higher-loop
corrections to the effective Lagrangian of VSR electro-
dynamics plasma; these effective functions are important
because they generate all thermal Green’s functions of the
system [20–23].
In this paper, we examine the behavior of the VSR-

modified electrodynamics in thermodynamical equilibrium
within the Matsubara imaginary-time formalism [24]. We
start Sec. II by reviewing the main aspects of the VSR
gauge invariance and establishing the dynamics for the
fermion and gauge fields in the VSR electrodynamics.
Moreover, we evaluate in detail the three contributions
arising from the one-particle irreducible diagrams at one-
loop order for the effective Lagrangian. This analysis will
also allow us to address the question of the massive modes’
stability of VSR photons in the high-temperature regime. In
order to examine the role played by the new gauge
couplings generated within the VSR framework at finite
temperature, we consider the two-loop contributions to the
effective Lagrangian in Sec. III. At this order there is the
contribution of two diagrams that are evaluated in the high-
temperature regime; this approximation permits us to
determine the leading VSR modifications. In Sec. IV, we
summarize the results and present our final remarks.

II. GAUGE FIELDS IN VSR

The gauge fixed Lagrangian density for the VSR
SIM(2) electrodynamics with the respective ghost fields
is written as

L ¼ −
1

4
F̃μνF̃μν −

1

2ξ
ð∂̃μAμÞ2 þ ∂̃μc̄∂̃μcþ ψ̄ðiγμ∇μÞψ ;

ð3Þ

where we have chosen the VSR Lorentz condition Ω½A� ¼
∂̃μAμ ¼ 0. It is well known that under this condition the
massive character of the VSR gauge field is manifest by
computing its equation of motion ð□þm2ÞAμ ¼ Jμ. The
most interesting part of this framework is that in the
presence of massive modes the photon still has two
physical polarization states [9].
The gauge invariant covariant derivative ∇μ present in

Eq. (3) can be determined by making use of the SIM(2)
gauge transformation δAμ ¼ ∂̃μΛ and imposing the trans-
formation law for a charged field δð∇μψÞ ¼ iΛð∇μψÞ.
Under these conditions we have that

∇μψ ¼ Dμψ þ 1

2

m2

ðn ·DÞ nμψ ; ð4Þ

where this definition reduces to the wiggle derivative ∂̃μ in
the noninteracting case. Also we have used the ordinary
covariant derivative Dμ ¼ ∂μ − ieAμ. Additionally, we can
determine the wiggle field strength from the usual defi-
nition i½∇μ;∇ν�ϕ ¼ F̃μνϕ, so that we find

F̃μν ¼ ∂̃μAν − ∂̃νAμ ð5Þ

or in terms of the usual derivative

F̃μν ¼ ∂μAν þ
m2

2
nμ

�
1

ðn · ∂Þ2 ∂νðn · AÞ
�
− μ ↔ ν: ð6Þ

Now that we have established the basic features of the VSR
electrodynamics needed for a thermal field theory, we
shall proceed to compute the partition function for the
model. Moreover, in order to give physical meaning to the
outcomes in perturbation theory we consider the high-
temperature limit of the Green’s functions; implying that
one needs to take into account the hard thermal loops [20].
Some comments about the expression (4) are in place.

About the perturbative analysis, the presence of the term
1=ðn:DÞ in (4) shows that there are now an infinite number
of interactions (in the coupling e). The Feynman rules
for these interactions can be obtained within the Wilson
lines approach, which express the respective terms in a
convenient form with N ¼ 1; 2; 3;… legs of photon fields
[18], making perturbative analysis workable. Since we are
interested in determining the VSR modifications up to the

R. BUFALO and M. GHASEMKHANI PHYS. REV. D 100, 065024 (2019)

065024-2



two-loop internal energy density, it suffices to derive the
Feynman rules for the hψ̄ψAi and hψ̄ψAAi vertices.

A. One-loop contribution

We start by computing the lowest order contributions to
the effective Lagrangian, which will be performed by
use of the Matsubara imaginary-time formalism [24]. At
this order, we have three contributions that are presented
in Fig. 1. These diagrams correspond to the fermionic
loop (a), ghost loop (b), and photon loop (c). The lowest
order contributions to the effective Lagrangian are the ring
diagrams

Lð1Þ ¼ Lphoton
ð1Þ þLghosts

ð1Þ þLfermions
ð1Þ ; ð7Þ

with the following definitions:

Lphoton
ð1Þ ¼ −

1

2
ln detðMμνÞ; ð8Þ

Lghosts
ð1Þ ¼ ln det ð∂̃μ∂̃μÞ; ð9Þ

Lfermions
ð1Þ ¼ ln detDðiγμ∂̃μÞ; ð10Þ

where we have introduced the operator Mμν by simplicity,

Mμνðx; yÞ ¼
�
ημν∂̃λ∂̃λ −

�
1 −

1

ξ

�
∂̃μ∂̃ν

�
δð4Þðx − yÞ: ð11Þ

Notice that in Eq. (10) we denoted detD as being the
determinant over the Dirac matrices and the Hilbert space
(det). Moreover, in the photon contribution we also have a
determinant over the spacetime indices in addition to the
Hilbert space ones. Hence, with some algebra we find the
result detðMμνÞ ¼ 1

ξ ð∂̃λ∂̃λÞ4, so that

Lphoton
ð1Þ ¼ −

4

2
ln det ð∂̃λ∂̃λÞ; ð12Þ

Lghosts
ð1Þ ¼ ln det ð∂̃μ∂̃μÞ; ð13Þ

Lfermions
ð1Þ ¼ ln detDðiγμ∂̃μÞ: ð14Þ

We finally can add the above contribution into Eq. (7)
and use the imaginary-time formalism to express the
respective one-loop contribution as

Lð1Þ ¼ −
1

β

XZ
nB

ln ½−β2ðp2 −m2Þ�

þ 1

2β
2Eðd=2Þ

XZ
nF

ln ð−β2ðp2 −m2ÞÞ; ð15Þ

in which we have used the fact that p̃2 ¼ p2 þm2 and
defined the notation for the fermionic and bosonic
sum/integral

XZ
nF

≡X
nF

dω−1p
ð2πÞω−1 ;

XZ
nB

≡X
nB

dω−1p
ð2πÞω−1 ; ð16Þ

where we should note that the first sum is over p0 ¼ iωnF,

where ωnF ¼ ð2nþ1Þπ
β are the fermionic Matsubara frequen-

cies, and in the second sum p0 ¼ iωnB , where ωnB ¼ 2nπ
β is

the bosonic Matsubara frequency. Moreover, we are
employing the irreducible representation for the Dirac
matrices, so that the trace of the identity is given by
trðIÞ ¼ 2Eðω=2Þ, where Eðω=2Þ is the integer part of ω=2.
An important feature of the VSR Lorentz violating

effects is present in the first term of Eq. (15), corresponding
to the added contribution from the photon and ghost fields.
There, we can observe the presence of a 2=2 ¼ 1 factor,
signaling the presence of 2 physical d.o.f., rather than the
3=2 factor of a Proca massive gauge field (with 3 d.o.f.).
This novel description can be ascribed to the modified
gauge invariance in the VSR framework, which allows the
description of massive modes of a gauge field in terms of a
“massless” one; hence the number of physical polarization
states for these massive modes is 2 as the ordinary massless
Maxwell photon.
We start by evaluating first the fermionic sum and

integral from (15) by means of imaginary-time formalism

IF ¼
XZ
nF

ln ð−β2½ðq0Þ2 − jqj2 −m2�Þ

¼ 2

Z
dω−1q
ð2πÞω−1 ln ð1þ e−βωmÞ; ð17Þ

where ωm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
and the remaining integral can be

solved by using the standard rules of finite temperature
integration. We should emphasize that all temperature-
independent parts of (15) lead to a divergent result, i.e.,
the zero-point energy of the vacuum, which can be
subtracted off since it is an unobservable constant. It is
important to remark however that the subtraction of the

(a) (b) (b)

FIG. 1. Diagrams contributing to the one-loop effective La-
grangian: (a) Fermionic loop, (b) ghost loop, and (c) photon loop.
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temperature-independent parts, at any loop order, is related
to the process of renormalization [24].
The renormalizability of nonlocal field theories, in

particular with nonlocality in time, is a difficult problem
and its general features are well summarized by Marnelius
[25]. Due to the renewed interest in nonlocal field theories,
some steps towards the renormalizability of some types of
nonlocal models at finite temperature have been considered
in the literature [26]. In addition, the issue of renormaliz-
ability of VSR invariant theories, at zero temperature, have
been addressed in Ref. [16], where it is argued that the
presence of VSR nonlocal terms 1=ðn:pÞ does not affect the
renormalizability of the model, because they vanish in
the large momentum limit, leaving the same ultraviolet
behavior as in the Lorentz invariant theories.
For instance, we shall use the well-known result for the

fermionic fields,
Z

∞

0

zx−1

1þ ez
dz ¼ ð1 − 21−xÞΓðxÞζðxÞ; ð18Þ

as well for the bosonic fields,
Z

∞

0

zx−1

ez − 1
dz ¼ ΓðxÞζðxÞ: ð19Þ

After some algebra, we can rewrite (17) into the expression

IF ¼ 2β

ð4πÞω−12
mω

Γðωþ1
2
Þ
X
k¼1

ð−1Þk
Z

∞

1

dwðw2 − 1Þω−12 e−kβmw;

ð20Þ
where one may use the representation of the modified
Bessel function of the second kind [27],

ffiffiffi
π

p
Γðωþ1

2
Þ
Z

∞

1

dxðx2 − 1Þω−12 e−kβMx ¼
�

2

kβM

�ω
2

Kω
2
ðkβMÞ;

ð21Þ
to solve the above integral, and we finally obtain

IF ¼ 4βmω

ð2πÞω2
X
k¼1

ð−1Þk
�

1

kβm

�ω
2

Kω
2
ðkβmÞ: ð22Þ

Next, the bosonic sum/integral can be computed by the
same procedure as the fermionic part; the only change is in
performing the Matsubara frequency sum, which reads

IB ¼
XZ
nB

ln ð−β2½ðq0Þ2 − jqj2 −m2�Þ

¼ 2

Z
dω−1q
ð2πÞω−1 ln ð1 − e−βωmÞ

¼ −
4βmω

ð2πÞω2
X
k¼1

�
1

kβm

�ω
2

Kω
2
ðkβmÞ: ð23Þ

Finally, it is easy to verify that the results (22) and (23)
are well behaved at the limit ω → 4þ. Hence, substituting
them into the one-loop expression (15), we find

Lð1Þ ¼ β−4

4π2
X
k¼1

½1þ 2ð−1Þk�
�
2mβ

k

�
2

K2ðkβmÞ: ð24Þ

Although we have obtained a closed-form expression for
the one-loop contribution to the effective Lagrangian (24),
it is worth considering some approximation in order to
elucidate the thermal behavior of the system. In this case,
we can explore the thermal properties of Eq. (24) assuming
the high-temperature case where βm ≪ 1, which means
that the parameter m should be much less than the thermal
energy. This can be achieved by taking the asymptotic
expansion for the modified Bessel function as jzj → 0 [27],

K2ðzÞ ∼
2

z2
−
1

2
þ 1

32

�
3 − 4γ − 2 ln

z2

4

�
z2 þOðz4Þ; ð25Þ

where γ is the Euler-Mascheroni constant. Therefore, under
this approximation, we can write Eq. (24) in the leading
order in βm as

Lð1Þ ¼ π2

45β4
−

7π2

180β4
þ 3m4

16π2
ln

�
βm
2

�
þOðβmÞ2: ð26Þ

We can see that the first term is due to the photon and ghost
fields contributions, the second one comes from the
fermionic loop, while the third term is due to the leading
contribution from VSR effects coming from all fields. In
order to conclude this section, we can compute the internal
energy density of the system from the effective Lagrangian

uðTÞ ¼ −
�
1þ β

d
dβ

�
L: ð27Þ

Hence, using the result (26) and disregarding the temper-
ature independent terms, we obtain

uð1ÞðTÞjβm≪1 ¼
π2

15
β−4 −

7π2

60
β−4 −

3m4

32π2
lnðβ2m2Þ: ð28Þ

One can interpret Eq. (28) as a generalization of the usual
Stefan-Boltzmann law, u ¼ σT4. In this case the new
constant can be seen as being composite,

σ ¼ σrad þ σferm þ σvsr; ð29Þ

with the radiation part σrad ¼ π2

15
and fermionic part σferm ¼

− 7π2

60
augmented by an additional contribution

δσvsr ¼ −
45m4β4

32π4
lnðβ2m2Þ; ð30Þ
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which encodes the leading Lorentz violating VSR effects
into the Stefan-Boltzmann law. It is important to stress that
the VSR effects give rise to a logarithm correction to the
leading β−4 behavior from the Quantum Electrodynamics
(QED) terms in the high-temperature regime.

III. TWO-LOOP EFFECTIVE LAGRANGIAN

In order to discuss the role played by the new interactions
engendered by VSR Lorentz violation, we shall consider
the two-loop diagrams of the SIM(2) electrodynamics. The
first contribution is depicted in panel (a) of Fig. 2. The one-
particle irreducible vertex function hψ̄ðp1Þψðp2ÞAðp3Þi
can be obtained from the Lagrangian density (3) by using
a Wilson line approach [18], which results in

Λμðp1; p2; p3Þ ¼ −ieδð4Þðp1 þ p2 þ p3Þ

×

�
γμ þm2

2

ðγ:nÞnμ
ðn:p1Þðn:p2Þ

�
: ð31Þ

Observe that the VSR contribution to this vertex has a
nonlocal form. Moreover, the basic propagators can be
computed; for the fermionic field it reads

SðpÞ ¼ i
γ:p̃
p̃2

; ð32Þ

while for the gauge field it is written as

DμνðpÞ ¼ −iημν

k̃2
; ð33Þ

in the Feynman gauge ξ ¼ 1. Hence, making use of the
above Feynman rules, we can write the two-loop contri-
bution from the graph in Fig. 2(a) to the effective
Lagrangian,

Lð2Þ ¼ e2

2β2
XZ
nF

XZ
mF

tr

��
γμ þm2

2

ðn:γÞnμ
ðn:pÞðn:qÞ

�
1

γ:p̃

×
�
ðγν þm2

2

ðn:γÞnν
ðn:pÞðn:qÞ

�
1

γ:q̃

��
ημν
k̃2

�
; ð34Þ

where k ¼ p − q is the photon momentum and both sum/

integral are over the fermionic Matsubara frequencies p0 ¼
iωnF ¼ ið2nFþ1Þπ

β and q0 ¼ iωmF
¼ ið2mFþ1Þπ

β . The computa-
tion of finite temperature effects of Eq. (34) follows the
same procedure illustrated before.
In comparison to the usual QED, we see the presence of

the additional graph for the two-loop contribution due to
the VSR modified gauge invariance, as shown in panel (b)
of Fig. 2. This diagram is proportional to the 4-point vertex
Γμν ¼ hψ̄ψAμAνi. However, since the tensor structure of
this vertex function has the form [18]

Γμνðp1; p2; p3; p4Þ ¼ −
ie2m2

2

ðγ:nÞnμnν
ðn:p3Þðn:p4Þ

�
1

ðn:p1Þ
þ 1

ðn:p2Þ
−

1

n:ðp1 þ p3Þ

−
1

n:ðp1 þ p4Þ
�
; ð35Þ

it is easy to see that this contribution vanishes identically
because the relevant tensor contraction present in the graph
is of the type

R
p;q SΓμνDμν ∼ nμnνημν ¼ 0.

Computing the trace over the Dirac γ matrices with the
help of the results fγα; γβg ¼ 2ηαβ and trðIÞ ¼ 2Eðω=2Þ, we
obtain

Lð2Þ ¼ −
4e2

β2
XZ
nF

XZ
mF

�ðp̃:q̃Þ−m2

p̃2q̃2k̃2

�

¼ −2e2ð½Ið1ÞF �2 − 2½Ið1ÞF �½Ið1ÞB �Þ þ 4e2m2

β2
XZ
nF

XZ
mF

1

p̃2q̃2k̃2
;

ð36Þ
where we have introduced by simplicity of notation the
following fermionic and bosonic quantities:

IðsÞF ¼
XZ
nF

1

ðp̃2Þs ; IðsÞB ¼
XZ
lB

1

ðk̃2Þs : ð37Þ

In particular, for s ¼ 1 we can evaluate these expressions
by using the finite temperature techniques discussed in the
previous section. This analysis yields the result for the
fermionic part,

Ið1ÞF ¼ 2mω−2

ð2πÞω2
X
k¼1

ð−1Þk
�

1

kβm

�ω−2
2

Kω−2
2
ðkβmÞ; ð38Þ

and for the bosonic part,

Ið1ÞB ¼ −
2mω−2

ð2πÞω2
X
n¼1

�
1

nβm

�ω−2
2

Kω−2
2
ðnβmÞ: ð39Þ

Let us now focus on computing the remaining term from
Eq. (36), in particular the frequency sum

(a) (b)

FIG. 2. Diagrams contributing to the two-loop effective
Lagrangian: (a) vertex hψ̄ψAi and (b) vertex hψ̄ψAAi.
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J ¼ 1

β2
X
nF

X
mF

1

p̃2q̃2k̃2
: ð40Þ

In order to compute the Matsubara frequency sum present
above, which has a complicated structure because of the
momentum k ¼ p − q, it is helpful to express the
Matsubara sum as a contour integral for fermion fields [24]

2

β

X
n

fðp0 → iωnÞ ¼
1

2πi

I
C
dp0fðp0Þ tanh

�
β

2
p0

�
; ð41Þ

where p0 is seen as the fourth component of a Minkowski

four-vector, the function tanhðp0Þ has poles at p0 ¼ ið2nþ1Þπ
β

and is everywhere else bounded and analytic. Hence, we
can rewrite (40) in the integral form

J ¼ 1

4

I
dq0
2πi

1

ðq20 − ω2
qÞ
tanh

�
β

2
q0

�

×
I

dp0

2πi

�
tanh ðβ

2
p0Þ

ðp2
0 − ω2

pÞððp0 − q0Þ2 − ω2
kÞ
�
; ð42Þ

where we have defined the massive dispersion relation
ωq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
. As illustration, we can compute first the

integral over p0; in this case we see that it has four poles:

p0 ¼ �ωp; p0 ¼ q0 � ωk: ð43Þ

The evaluation of this contour integral is straightforward,
and the integration over q0 of the resulting expression has
the following poles:

q0 ¼ �ωq; q0 ¼ �ωp � ωk: ð44Þ

After performing the contour integration for p0 and q0 in
the respective poles, we finally arrive at

J ¼ 1

8ωpωqωk

�
½nF:DðωpÞ−nB:EðωkÞ�

×

�
4ðωpþωkÞ

ω2
q−ðωpþωkÞ2

nF:DðωqÞ

þ 1

ðωpþωkÞ2−ω2
q
½nF:DðωpþωkÞ−nF:Dð−ωp−ωkÞ�

�

− ½nF:DðωpÞþnB:EðωkÞ�
�

4ðωp−ωkÞ
ω2
q−ðωp−ωkÞ2

nF:DðωqÞ

þ 1

ðωp−ωkÞ2−ω2
q
½nF:Dðωp−ωkÞ−nF:Dð−ωpþωkÞ�

��
;

ð45Þ

where nF:D=B:EðωÞ ¼ 1
eβω�1

is the Fermi-Dirac/Bose-Einstein
distribution. We have also used that exp ðβq0Þ ¼
exp ðið2nF þ 1ÞπÞ ¼ −1, valid for fermionic fields. It is

important to observe that in Eq. (45) we kept only terms that
are quadratic in the occupation numbers, while those terms
that are linear, and terms that are independent of the
occupation numbers are necessarily absorbed by renormal-
ization [24]. Hence, we are left to compute the momentum
integration over spacial components of p and q, that is,

T ¼ 1

β2
XZ
nF

XZ
mF

1

p̃2q̃2k̃2
¼

Z
dω−1p
ð2πÞω−1

dω−1q
ð2πÞω−1 J : ð46Þ

Although these two-loop integrations are well defined as
ω → 4þ, the evaluation of the integrals of (46) has no
analytical solution even with a suitable choice of coordi-
nates. Nonetheless, we can obtain the leading thermal
contribution of the two-loop effective Lagrangian by con-
sidering the high-temperature limit βm ≪ 1. In order to
highlight the temperature dependence of (46), let us perform
the following variable transformation ðp; qÞ → β−1ðp; qÞ
upon the integrals, which results in

T ðβmÞ ¼ β6−2ωAðβmÞ þ β7−2ωBðβmÞ; ð47Þ

where

AðβmÞ ¼ 1

2

Z
dω−1p
ð2πÞω−1

dω−1q
ð2πÞω−1

nF:DðωqÞ
ωpωqωk

×

� ðωp þ ωkÞ
ðωp þ ωkÞ2 − ω2

q
½−nF:DðωpÞ þ nB:EðωkÞ�

þ ðωp − ωkÞ
ðωp − ωkÞ2 − ω2

q
½nF:DðωpÞ þ nB:EðωkÞ�

�

ð48Þ
and

BðβmÞ ¼ 1

8

Z
dω−1p
ð2πÞω−1

dω−1q
ð2πÞω−1

1

ωpωqωk

×

�
1

ðωp þ ωkÞ2 − ω2
q
½nF:Dðωp þ ωkÞ

− nF:Dð−ωp − ωkÞ�½nF:DðωpÞ − nB:EðωkÞ�

−
1

ðωp − ωkÞ2 − ω2
q
½nF:Dðωp − ωkÞ

− nF:Dð−ωp þ ωkÞ�½nF:DðωpÞ þ nB:EðωkÞ�
�
:

ð49Þ
Besides, we have extracted some of the tempera-

ture dependence as in Eq. (47), the change of the
momenta variables has modified the thermal distributions
nF:D=B:E¼ 1

eωp�1

, leading to new energies

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ β2m2

q
: ð50Þ
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In this case, it easy to see that the high-temperature limit
can be achieved by using the parameter x ¼ β2m2 as the
coefficient in the Taylor expansion under the condition
βm ≪ 1. Hence, in the high-temperature limit and as
ω → 4þ we find that the leading thermal contributions
of Eq. (47) are given by

T ðβmÞ ≈ β−2Að0Þ þ β−1Bð0Þ þOðβmÞ; ð51Þ

where we have disregarded temperature-independent terms
and ðAð0Þ;Bð0ÞÞ are evaluated as the functions ðA;BÞ
under the limit βm → 0.
Additionally, we should evaluate the remaining contri-

bution of the two-loop effective Lagrangian (36) in the
high-temperature limit as well. Thus, under such consid-
eration we have

I ¼ ½Ið1ÞF �2 − 2½Ið1ÞF �½Ið1ÞB �

¼ −
β−4

192
−

β−2

48π2
m2 ln 2 −

m4

64π4

× ½6 ln π − 3 ln ðβmÞ − 6γ þ 3þ 4 ln 2� ln ðβmÞ; ð52Þ

where we have used the asymptotic expansion for jzj → 0,

K1ðzÞ ∼
1

z
þ z
4

�
2 ln

z
2
þ 2γ − 1

�
þOðz3Þ: ð53Þ

Hence, with the results Eqs. (51) and (52), we can finally
write the leading contributions in m2 of the two-loop
effective Lagrangian (36),

Lð2Þ ¼ 4e2m2ðβ−2Að0Þ þ β−1Bð0ÞÞ þ e2
β−4

96

þ e2
β−2

24π2
m2 ln 2þ e2

m4

32π4
ð6 ln π − 3 lnðβmÞ − 6γ

þ 3þ 4 ln 2Þ lnðβmÞ þOðβmÞ; ð54Þ

from which we can compute the respective internal energy
density

uð2ÞðTÞ ¼ −
�
1þ β

d
dβ

�
Lð2Þ:

The complete VSR modified energy density is given in
terms of the one- and two-loop contributions as

uðTÞ ¼ uð1ÞðTÞ þ uð2ÞðTÞ: ð55Þ

Thus, by evaluating the remaining derivatives and discard-
ing the temperature independent terms, we can express the
energy density in the high-temperature regime as follows:

uðTÞ ¼ π2

15

�
1−

7

4
þ 15e2

32π2

�
β−4 þ e2m2

24π2
½96π2Að0Þ − ln2�β−2

−
m4

32π2

�
3þ 2e2

π2
ð12 lnπ − 3 ln½β2m2�

− 12γþ 8 ln2Þ
�
ln½β2m2� þOðβmÞ: ð56Þ

We observe that in addition to the VSR logarithmic
correction which is already present in the one-loop order,
the VSR two-loop contributions give also a subleading β−2

correction. If we associate the VSR parameter to a feasible
value for the photon mass mγ ≤ 10−18 eV [28], we see that
in the high-temperature regime the two-loop term e2m2β−2

is actually greater than the one-loop contribution m4 ln β.
This is a surprising phenomenon since it breaks the
hierarchy of the loop expansion. Nonetheless, these VSR
contributions represent a small modification of the leading
β−4 behavior from the known QED terms.

IV. FINAL REMARKS

In this paper, we presented a study on the thermody-
namical properties of the quantum electrodynamics in the
VSR Lorentz violating framework by evaluating system-
atically the one-loop and two-loop expressions for the
effective Lagrangian. Our aim in this paper was to establish
the behavior of the VSR leading effects of some thermal
quantities. We started our analysis by discussing the
computation of the effective action at the one-loop order
for the case of VSR quantum electrodynamics. In this
approximation, we have only the ring diagram contribu-
tions coming from the free gauge, ghosts and fermion
fields. A first comment is based on the number of physical
polarization states for the photon: when we add the
contributions from the gauge and ghost fields, we see that
although the photon propagates massive modes, the num-
ber of physical d.o.f. of the photon is preserved in the VSR
framework, not presenting a third and longitudinal state as
in Proca’s massive electrodynamics. By adding the ring
diagram contributions, we obtained the exact expression for
the one-loop effective Lagrangian written in terms of a
series (24). To elucidate the leading m2 contributions
caused by VSR into the thermal content of the system,
we have considered the high-temperature regime where
βm ≪ 1, obtaining thus that the Lorentz violating effects
appear as a logarithm correction to the β−4 behavior for the
energy density.
The key mechanism behind the preservation of the num-

ber of physical d.o.f. is the VSRmodified gauge invariance,
in which the gauge field transforms as δAμ ¼ ∂̃μΛ.
Naturally, this new gauge invariance implies new types
of interactions when applied to the QED. An interesting
way to analyze the effects of this VSR coupling between
fermions and photons in thermodynamical equilibrium is
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obtained by evaluating the two-loop effective action.
Although the two-loop contribution from the ordinary
coupling can be computed exactly, the expression from
the additional contribution due to the VSR gauge coupling
is complicated and has no analytical solution even with a
suitable choice of coordinates. In this case, we have
evaluated the two-loop effective Lagrangian by considering
the high-temperature limit βm ≪ 1, so that we can deter-
mine the leading m2 contributions to this thermal quantity.
From the complete expression for the energy density

(56), in the high-temperature regime, we see that the VSR
contributions yield to interesting modifications from the
ordinary QED behavior, corresponding to m2β−2 and
m4 ln β correction terms to the ordinary β−4 behavior of
QED. Motivated by this result, a subsequent study of the
present model would consist of a systematic discussion on
nonperturbative phenomena in the VSR electrodynamics at

finite temperature. It is known that infrared divergences
are present in higher-order contributions generated by
massless modes; such a divergence may be traced back
to the dominant high-temperature contribution of the zero
mode. Hence, it would be a nice analysis to study how the
VSR effects can modify the infrared divergence profile
from QED.
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