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ABSTRACT 
  
  

The objectives of this study were to develop and validate decision support 
systems using systems based on artificial intelligence: fuzzy logic, artificial neural 
networks, neuro-fuzzy networks, and regression models for the prediction of rectal 
temperature and respiratory frequency of dairy cows in confinement. All systems 
were developed based on two input variables: dry bulb air temperature (tdb) and 
relative humidity (RH), with rectal temperature (trectal) and respiratory rate (RR) as 
output variables. The fuzzy inference system was carried out using the Mamdani 
method, which consisted of elaborating 192 rules and defuzzification through the 
center of gravity. Data obtained from the literature and data observed in the field 
were used to manufacture the artificial neural network and the neuro-fuzzy network, 
where membership functions of the neuro-fuzzy system were of the triangular type. 
The regression models were developed in computing environment R. Experimental 
results were used to validate the models, and showed that the average standard 
deviations between the simulated and measured values of trectal for the regression 
model, the fuzzy system, the artificial neural network and the neuro-fuzzy network 
were 0.2 °C, 0.1 °C, 0.1 °C and 0.2 °C, respectively. For the values of RR, the 
average standard deviations were 5.0, 4.3, 3.2, and 3.5 breaths min-1 for the 
regression model, fuzzy model, artificial neural network and neuro-fuzzy network, 
respectively. Of the models developed, the artificial neural network and the neuro-
fuzzy network showed the fewest prediction errors; therefore, these models are the 
most suitable for the prediction of rectal temperature and respiratory rate on the 
basis of the two climatic variables (tdb and RH), and can be used in decision support. 

 
 Keywords: Physiological performance. Computational models. Dairy cattle. 



 
 

 
 

RESUMO 

 
Os objetivos do presente estudo foram desenvolver e validar sistemas de 

suporte à decisão, utilizando os sistemas baseados na inteligência artificial: 
lógica fuzzy, as redes neurais artificiais, rede neuro-fuzzy, e, modelos de 
regressão, para a predição da temperatura retal e da frequência respiratória de 
bovinos leiteiros em confinamento. Todos os sistemas foram desenvolvidos com 
base em duas variáveis de entrada: temperatura de bulbo seco (tbs) e a umidade 
relativa do ar (UR), tendo como variáveis de saída a temperatura retal (tretal) e a 
frequência respiratória (FR). A inferência do sistema fuzzy foi realizada por meio 
do método tipo Mamdani, que consistiu na elaboração de 192 regras e a 
defuzzificação por meio do Centro de Gravidade. Para a confecção da rede 
neural artificial e da rede neuro-fuzzy, foram utilizados dados obtidos da 
literatura e dados observados em campo, sendo que as funções de pertinência 
para o sistema neuro-fuzzy foram do tipo triangular. Os modelos de regressão 
foram desenvolvidos no ambiente computacional R. Resultados experimentais 
usados para a validação dos modelos, mostraram que os desvios padrões médios 
entre os valores simulados e medidos da tretal para o modelo de regressão, para o 
sistema fuzzy, para a rede neural artificial e para a rede neuro-fuzzy foram de 
0·2°C, 0·1°C, 0·1°C e 0·2°C, respectivamente. Para os valores da FR os desvios 
padrões médios foram de 5·0, 4·3, 3·2 e 5·2 respirações min-1 para o modelo de 
regressão, sistema fuzzy, rede neural artificial e rede neuro-fuzzy, 
respectivamente. Dos modelos desenvolvidos, os que apresentaram menores 
erros de predição foram a rede neural artificial e a rede neuro-fuzzy, portanto, 
estes modelos são os mais indicados para a predição da temperatura retal e a 
frequência respiratória com base em duas variáveis climáticas (tbs e UR), 
podendo ser utilizados como suporte à decisão. 

 
Palavras Chave: Desempenho fisiológico. Modelos computacionais. 
Bovinocultura.
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FIRST PART 
  

1. INTRODUCTION 
  
This work is divided into two parts; in the first, the reader can obtain 

information on the issues related to ambient conditions and their effects on the 

welfare of confined animals (theoretical reference), along with specific 

information about welfare, thermal comfort, comfort and discomfort for cattle, 

the implications of thermal discomfort on cattle, the classification of existing 

thermal comfort indices and those that are specific to cattle, and information 

about the models developed in this work. In the second part, the reader will find 

the article submitted to the Journal of Biosystems Engineering, belonging to the 

Engineering IV area – Modeling of biological systems. This article includes a 

short introduction to the topic, a theoretical summary about the subject, the 

purpose of the research, the material and methods used for its development, and 

the results, discussion, and conclusions.  
The justification for the development of this research will be addressed 

in subsequent paragraphs at either a national or regional level. 
Cattle are homeothermic animals; in other words, they are animals that 

maintain their body core temperature at an approximately constant level via 

control processes of heat dissipation when subjected to fluctuations occurring in 

the external environment (BAÊTA; SOUZA, 2010; NAVARINI et al., 2009; 

PERISSINOTTO, 2007). 

Because of this, the production environment for the animal has a key 

role in ensuring appropriate climatic conditions for animal production, where the 

boundaries are characterized by the thermoneutral zone (CURTIS, 1983). In this 

zone, the animal reaches its maximum potential and the body temperature is 

maintained with minimal use of thermo-regulator mechanisms. 
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When environmental conditions are not within appropriate limits the 

environment becomes uncomfortable. In this situation, when the temperature 

exceeds the comfort range, cattle combat thermal stress having a lower feed 

intake, show sweating and panting (HOLTER; WEST; McGILLIARD, 1997), 

and lose too much sodium and potassium in the sweat and urine (PIRES; 

CAMPOS, 2008).  

In this context, the goal of this work was to develop and validate models 

of regression (one) based on artificial intelligence (three: fuzzy logic, artificial 

neural networks and neuro-fuzzy networks) for the prediction of rectal 

temperature and respiratory rate of Holstein dairy cows. 

 

2. THEORETICAL REFERENCE 
  
2.1 Animal welfare 
  

Among the various proposals for the definition of animal welfare, 

Broom (1991) defined welfare as the state of an individual in relation to its 

environment, being dependent on the body’s ability to respond or adapt to the 

environment. Hurnik (1992) characterized the term welfare as optimal 

physiological and physical conditions and high quality of life of the animal. For 

Phillips (2002), the welfare of an animal mainly refers to its ability to deal with 

both its external environment, including housing, climate, and the presence of 

other animals, and its internal environment, such as specific pains, fever, and 

nutritional status. 
The Farm Animal Welfare Council (FAWC, 2011) recognizes the term 

welfare through five freedoms inherent to animals: physiological freedom 

(absence of hunger and thirst), environmental freedom (adapted buildings), 

health freedom (absence of disease and fractures), behavioral freedom (ability to 
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express normal behavior), and psychological freedom (absence of fear and 

anxiety).  
Furthermore, several approaches have been used to determine levels of 

animal welfare, in which all of the criteria are based on some demonstrated 

evidence of a change in physical (growth and health), mental (pleasure or pain) 

or naturalness attributes that reflect the proximity or distance of the natural 

environment (APPLEY; WEARY, 2000). Another factor that influences the 

assessment of welfare is the environmental factor, which, according to Baldwin 

(1979), can be divided into social, physical, and management aspects. According 

to the Handbook of Fundamentals of American Society of Heating and 

Refrigeration and Air-conditioning Engineers – ASHRAE (2009) – the physical 

environment covers meteorological elements that affect the mechanisms of heat 

transfer, regulation and the balance between the animal and the environment, 

which exerts a strong influence on the performance and health of animals. 
According to Baêta and Souza (2010), the external environment of an 

animal comprises all physical (space, light, sound, and equipment), chemical 

(gases present in the atmosphere), biological (nature of feed material), social 

(number of animals per area, behavior and hierarchy), and climate (temperature, 

relative humidity, the movement of air, and radiation) factors that interact with 

the animal. 
Welfare is assessed through behavioral and physiological indicators. An 

animal that is not maintained under optimal welfare conditions will not develop 

its full reproductive potential, even if health and nutritional conditions are 

apparently satisfied. The goal of confinement systems is to reduce energy loss 

and animal work and to gain space and environmental control; however, 

according to Machado Filho (1998), such systems can generate inappropriate 

conditions such as, for example, limited space, a high stocking density, the 

presence of microorganisms, inadequate temperature and lighting conditions, 
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noise, and worsening behavioral problems, preventing an animal from behaving 

naturally. 
The assessment of animal welfare in agricultural production may 

involve aspects relating to the facilities, management and the environment, such 

as the distribution of water and food, the existence of beds, possibilities of 

movement, rest, contact between animals and reproduction, temperature, 

ventilation, light, and available space or pavement type, among others. 
  
2.1.1 Thermal comfort 
  
 Thermal comfort can be defined as being the state of the spirit that 

reflects satisfaction with the thermal environment that surrounds the animal 

(RODRIGUEZ, 2003). 
Heat stress is caused by a combination of environmental conditions that 

result in a larger effective temperature of the environment than an animal’s 

thermo-neutral zone (PIRES; CAMPOS, 2008). According to Nääs (2000), four 

factors influence increases in the effective temperature of the environment: dry 

bulb temperature, relative humidity, radiation, and wind speed. 
According to Navarini et al. (2009), factors such as the availability of 

water and shade, the animal’s body temperature, and behavior under different 

temperature conditions, which directly affect the sensitivity of thermal heat 

exchange (conduction, skin convection and radiation) and latent heat losses 

(cutaneous evaporation) to the environment, can cause thermal stress in animals, 

which can cause serious problems in both animal production and breeding. 
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2.1.2 Ranges of comfort and discomfort for cattle 
  

            According to Müller (1989) and Rodriguez (2003), defining the 

temperature limits of the comfort zone is a difficult task because they depend on 

several variables such as air temperature, relative humidity, wind, and solar 

radiation, which vary according to the location, time of year, and time of the 

day. In addition, they also depend on the animal’s age, the housing density, the 

breed, nutritional conditions, management, and the conditions of installations 

and equipment. 
Great variation exists in the literature regarding the temperatures that 

denote the thermo-neutral zone of dairy cattle (ARAÚJO, 2002). According to 

the results of an experiment by Baêta (1985), for European bovine animals under 

conditions of relative humidity of 50% and a wind speed of 0.5 m s-1, the 

thermal comfort zone ranges from 11 °C to 25 ºC. 
Youlsef, (1985), Roenfeldt, (1998), stated that the thermoneutral zone 

for dairy cattle varies from 5 and 25ºC. Silva (1998) stated that for dairy cattle 

the comfort zone varies from 18 to 21 °C, while heat and cold stress occur at 4 

°C and 28 °C, respectively. For beef cattle, the comfort zone varies from 22 ºC 

to 26 °C, while heat and cold stress occur at 4 °C and 30 °C, respectively. In 

turn, Fuquay (1981), considered that the upper critical temperature for dairy 

cattle is between 25 and 27ºC. For Baêta and Souza (2010), they stated that 

thermal comfort zone for dairy cattle (adult European) is -1 and 16ºC. 
 For the case of thermal comfort through physiological responses (trectal 

and RR), was founded the works of Perissinotto (2007, p. 66) and  Perissinotto et 

al. (2009), where they proposed a linguistic characterization (table 1) of the 
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thermal comfort sensation of Holstein dairy cows as a functionality of trectal and 

RR based on a wide literature review.  

 

Table 1. Linguistic characterization of thermal comfort sensation as a  
function of trectal (ºC) and RR (breaths.min-1). Tabla 1 

 
Respiratory rate (RR – breaths.min-1) Rectal temperature  

(trectal - ºC) High comfort 
(≤ 56) 

Medium comfort 
(> 56 – ≤ 64) 

Low comfort 
(> 64) 

High comfort 
(≤ 38,8) Very good Good Regular 

Medium comfort 
(> 38,8 - ≤39,2) Good Regular Bad 

Low comfort 
(> 39,2) Regular Bad Bad 

Font: Perissinotto et al. (2009). 
 

2.1.3 Implications of thermal discomfort in dairy cattle 
  

When environmental conditions are not within appropriate limits, the 

animal becomes uncomfortable. According to Harner et al. (2009), in this 

situation, when the temperature exceeds the recommended range, dairy cattle 

combat thermal stress having a lower feed intake (HOLTER et al., 1997) and 

show sweating and panting. These mechanisms increase the energy costs of 

livestock, resulting in up to 35% more food being required for their maintenance 

(NRC, 1981). When the consumption of dry matter decreases during thermal 

stress, milk production also decreases. A dairy cow in an environment of 37.7 

°C shows milk production reduction of 50% or more when compared with 

thermoneutral conditions (COLLIER, 1985), which can result in a loss of 

production. In addition, animals under thermal stress conditions also suffer from 

changes in rectal temperature and respiratory rate (PERISSINOTTO; MOURA, 
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2007). According to Silva et al. (2002), the Holstein breed shows a decrease in 

milk production above 24 ºC, although Swiss and Jersey breeds have a 

somewhat greater tolerance because they show good performance in 

temperatures up to 27 ºC. 
  
2.2 Thermal comfort indices 
  

In view of these factors, some authors have developed so-called thermal 

comfort indices, which can be classified according to Nääs (1998) depending on 

the way that they were developed: biophysical indices (their development is 

based on the exchange of heat between the body and the environment, 

correlating elements of comfort with the heat exchange that originate); 

physiological indices (based on physiological relationships caused by known 

conditions of air temperature, average radiant temperature, air humidity, and 

wind speed), and subjective indices (based on subjective sensations of comfort 

obtained under experimental conditions where the elements of thermal comfort 

vary). In the case of dairy cattle, some of the indices used are temperature and 

humidity indices (THI), as proposed by Thom (1959); the effective temperature 

index, adjusted by Bianca (1963); the black globe temperature and humidity 

index (BGTHI) developed by Buffington et al. (1981); the enthalpy index, 

described by Villa Nova (1999, cited by FURLAN, 2001) and the equivalent 

temperature index (ETI), proposed by Baêta (1985). 
  
2.3 Mathematical modeling  
  

According to Bassanezzi (2006), mathematical modeling is a dynamic 

process used to create and validate mathematical models, as well as a form of 

abstraction and generalization with the purpose of predicting tendencies. For the 

author, a mathematical model is a set of symbols and mathematical relationships 
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that in some way represent the object being studied. For McLone (1976, cited by 

BASSANESSI, 2006) a mathematical model is a “simplified abstract 

mathematical construct that represents a portion of reality with some particular 

goal”. In turn, for Tedeschi (2005), “Models are mathematical representations of 

mechanisms that govern natural phenomena that are not fully recognized, 

controlled, or understood.” 

Models can be formulated in accordance with the nature of the 

phenomena or situations to be analyzed and they can be classified into linear or 

non-linear (depending on the basic equations) (BASSANEZZI, 2006), static 

(representing the shape of the object) or dynamic (simulates variations in the 

stages of the phenomenon) (BALDWIN, 1995; BASSANEZI, 2006), 

educational (based on small numbers or simple assumptions), applicable (based 

on realistic assumptions involving a large number of variables) (BASSANEZI, 

2006), stochastic (describes the dynamic system in probabilistic terms) or 

deterministic (assumes that if there is enough information about a system at a 

given instant of the process then the whole future of the system can be precisely 

predicted) (BALDWIN, 1995; BASSANEZI, 2006), empirical (based only on 

correlations or associations between two or more variables, without taking into 

account the mechanisms that control the phenomenon) or mechanistic (attempts 

to explain or describe the mechanisms involved, based on the laws of physics, 

chemistry, and biochemistry etc.) (BALDWIN, 1995). 

In addition to these are computational models. Among these models are 

fuzzy systems (linguistic - fuzzy rules) (GOMIDE; GUDWIN, 1994), artificial 

neural networks (YAMAKAWA, 1993), and hybrid systems, such as neuro-

fuzzy networks. 
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 2.3.1 Empirical models – simple and multiple linear regressions 
  
           The Greek Empeirikos means experience. These models use direct 

observations or the results of experiments on a particular phenomenon. In these 

types of models the correspondence between input and output variables is tested 

regardless of the phenomenon or process (BALDWIN, 1995). 
According to Rondon et al. (2002), the difficulty in defining the 

mechanisms involved in biological phenomena means that the majority of the 

proposed animal models are empirical. These models are created from data 

collected in experiments and are used for certain functions, such as predicting 

the growth of broilers (IVEY, 1999) or the thermal indices of productivity for 

broilers (MEDEIROS et al., 2005), or calculating the superficial area of broilers 

(SILVA et al., 2009), among other applications. 
  
2.3.2 Fuzzy models 

  
Aspects related to the difficulties encountered in analyzing large 

amounts of information and its complexity are found in the production of 

agricultural systems. Therefore there is a need to seek mathematical 

methodologies that incorporate specialist, subjective knowledge, enabling the 

simulation of situations for decision support (AMENDOLA; SOUZA; 

BARROS, 2005). 
Basically, these models are divided into two types: the Mandani 

(MANDANI; ASSILIAN, 1975) and Sugeno types (TAKAGI; SUGENO, 

1985). The Mandani type model is a kind of fuzzy relational model, where each 

rule is represented by the relationship IF-THEN. It is also called a linguistic 

model because both the antecedent and consequent are fuzzy propositions 

(BABUSKA, 1998). Its structure is developed manually. The output of the 
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Mandani type model is a fuzzy membership function based on the rules created 

during the modeling process. Mathematically and linguistically, it can behave as 

follows: 

 

If x is A and y is B then z is C 
 

where x and y are the system input variables, z is the system output variable, A 

and B are antecedent membership functions, and C is a consequent membership 

function. 
 Generally, software programs for the implementation of this type of 

models use the Centroid method for defuzzification, which can be considered a 

weighted average where the weights are represented by μA (xi), which indicates 

the degree of membership of the value xi with the concept modeled by the fuzzy 

output set A, and which, in its compound shape, is calculated by: 
  

µc(z)zδz  

µc(z)δz 

 

where Z is the consequent variable and µc(z) is the function of the composed 

shape. The result of the defuzzification process Z can be continuous or discrete 

(BARROS; BASSANEZI, 2006; TANAKA, 1997).  

 The Sugeno type model (TAKAGI; SUGENO, 1985): for a system with 

two input variables and one output variable, the system is as follows: 
 

 If x is A and y is B then z= f (x, y) 
 

(1)

(3)

(2) Z=
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where x and y are the input variables, z is the output variable, A and B are 

antecedent membership functions, and f (x, y) is a crisp function in the 

consequent. Usually, this function is a polynomial of the input variables x and y. 

As an example it can be cited the case of the first-order polynomial, which is 

expressed as follows: 

  

 Z = p1x + q1y + r1 

 

Defuzzification is expressed as a weighted average Z of the consequent 

functions:  

Z =  

 

Where W is the rule firing strength and z is a consequent function output. 
  
2.3.3 Artificial neural networks  
  

Neural networks are highly sophisticated pattern recognition systems 

capable of learning relationships in patterns of information (data) (BROWN-

BRANDL; JONES; WOLDT, 2005). These neural networks are sets of 

mathematical algorithms used in processing elements (PEs) arranged to imitate 

the complexity of non-linear and parallel mechanisms involved in the 

interpretation of information by biological neural networks (BATCHELOR et 

al., 1997). 
Generally, an artificial neural network is composed of multiple 

processing units called neurons, which have a fairly simple function. The 

neurons are connected by communications channels that are associated with a 

(4)

(5)
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particular weight (W); in turn, these only can make operations with local data: 

entries that are received by their connections. This type of model is adaptive and 

trainable; it can work with complex domains (non-linear problem cases), it does 

not need to have complete information to perform its process of generalization, 

and it is robust and has a great parallelism; thus, this type of model also has a 

fast processing speed (VON ZUBEN, 2003). 
In order to build models with this type of technology, sets of pairs of 

data (input (s) and output (s)) in the form of vectors or matrices should be used 

in order to train them to select the transfer function applied to each 

interconnection between two neurons and to define the rules of learning through 

training. The artificial neural network produces its own output vectors, which 

are compared with the training output vectors (supervised training). If the degree 

of accuracy between the neural network output and training output vectors is not 

satisfactory, the neural network applies learning rules to adjust the weights of 

interconnections and subsequently repeats the comparison until the accuracy 

criterion proposed by the user between two vectors is satisfied. 
 There is a variety of strategies for the training of neural networks, but 

the most frequently used is the back-propagation training algorithm. 

Mathematically, it can be expressed as the answer O of each neuron i to input 

signals of I from the connecting neurons j using equation 6: 

Oi = f (∑IjWij + Bi) 

The transfer function f can be linear or non-linear. The most commonly 

used functions are sigmoidal and hyperbolic tangents. The learning process 

starts with randomly initialized weights. Errors associated with output neurons 

are transmitted from the output layer to the input layer through hidden layers 

using the back-propagation algorithm; therefore, in order to minimize errors, 

(6)
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weights are adjusted at the end of each back-propagation cycle (BRARATH; 

DROSEN, 1994). In order to prevent overfitting or overtraining, a strategy 

must be implemented that stops training at the time the network has the lowest 

global error, avoiding increasing the error rate again, which is included in order 

to enhance the ability of networks to generalize (good performance on new data 

or unknown) (ANDERSON et al., 1999). 
  
2.3.4 Neuro-fuzzy networks 

  
Neuro-fuzzy networks take advantage of the learning ability of neural 

networks and use fuzzy systems to process the knowledge clearly. The final 

solution of a neuro-fuzzy network can be interpreted as a Sugeno-type fuzzy 

inference system (Section 2.3.2). Basically, the operation of this type of system, 

is the same as that of neural networks, except that when a neural network 

“learns”, it modifies the sets and rules of the fuzzy inference system 

(membership functions); this way, the system reaches the slightest possible error 

taking advantage of the learning ability of networks through pattern recognition 

(JANG, 1993; JANG; SUN, 1995). 

A neuro-fuzzy network based on the LOLIMOT algorithm (local linear 

model tree) works with the decomposition of input space in subspaces. Each 

subspace corresponds to a local linear model. The network output is calculated 

by adding the results of each local linear model, with its validation function, 

which can be obtained through a weight function. Each linear model, with its 

validation function, corresponds to a fuzzy neuron (NELLES; ISERMANN, 

1996). 
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3. GENERAL CONSIDERATIONS 
  
The final considerations of this work are as follows: 

  
1. The prediction of trectal and RR of Holstein dairy cows provides 

primordial information for decision making related to the handling and 

care of animals because they are direct measures that help in the 

classification of thermal comfort conditions. 
  

2. A comparison between models based on regression and artificial 

intelligence enables the choice of which has the best performance, 

making predictions more realistic. 
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ABSTRACT 
 

The goal of the present study was to evaluate techniques for modeling 
the physiological responses, rectal temperature, and respiratory rate of black and 
white Holstein dairy cows. Data from the literature (792 data points) and 
obtained experimentally (5.884 data points) were used to fit and validate the 
models. Each datum included dry bulb air temperature, relative humidity, rectal 
temperature and respiratory rate. Three models based on artificial intelligence - 
fuzzy logic, artificial neural networks, and neuro-fuzzy networks - and one 
based on regression were evaluated for each response variable. The adjusted 
models predict rectal temperature and respiratory rate as a function of dry-bulb 
air temperature and relative humidity. The adjusted models were compared 
using statistical indices. The model based on artificial neural networks showed 
the best performance, followed by the models based on neuro-fuzzy networks, 
fuzzy logic, and regression; the last two performed similarly.   
 
Keywords: Physiological performance; Computational models; Dairy cattle.   
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RESUMO 
 

Objetivou-se, com o presente trabalho, avaliar técnicas de modelagem 
para predição de respostas fisiológicas, temperatura retal e frequência 
respiratória, de vacas leiteiras de raça holandesa branca e preta. Dados oriundos 
da literatura (792 dados) e obtidos experimentalmente (5.884 dados) foram 
usados no ajuste e validação dos modelos. Cada dado foi composto por valores 
de temperatura de bulbo seco do ar, umidade relativa, temperatura retal e 
frequência respiratória. Três modelos baseados em inteligência artificial (lógica 
fuzzy, redes neurais artificiais e redes neuro-fuzzy) e um de regressão foram 
avaliados para cada variável resposta. Os modelos ajustados predizem a 
temperatura retal e frequência respiratória em função da temperatura de bulbo 
seco do ar e da umidade relativa do ar. Os modelos ajustados foram comparados 
entre si por meio de índices estatísticos. O modelo baseado em redes neurais 
artificiais apresentou o melhor desempenho, seguido pelos modelos baseados em 
rede neuro-fuzzy, lógica fuzzy e o modelo de regressão; os dois últimos 
apresentaram desempenhos similares. 
 

Palavras Chave: Desempenho fisiológico. Modelos computacionais. 
Bovinocultura. 
 
 
1. Introduction 
 

In 2009, Brazil was considered the fifth leading producer of milk in the 
world, with an annual production of 30.4 billion liters of milk, and the state of 
Minas Gerais led production for the country (EMBRAPA, 2011). The previously 
mentioned growth was accompanied by an increase in internal consumption per 
capita of approximately 1.59% annually and by an increase in exports (Gama, 
2010). Brazil is located in an intertropical zone, with hot and humid climates, 
where the likelihood of animals suffering thermal stress is high, especially for 
bovines of European breeds (Souza, Nääs, Marcheto, Salgado, 2004).Therefore, 
there is great interest in the development of tools that can aid in decision making 
with regard to environmental conditions that directly or indirectly affect milk 
production, as is the case for thermal stress. 

New models being developed for the livestock industry are characterized by 
the adoption of technologies based on principles of sustainable production, with 
an emphasis on animal comfort and well-being, considering that these animals 
were chosen for their ability to adapt to the soil and climate conditions 
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(edaphoclimatic conditions) of each region (Pires & Campos, 2008). According 
to Silva, Pandorfi, Piedade, and Moura (2002), environmental conditions are 
directly related to the microclimate in facilities, thus influencing the thermal 
comfort of the animals that are housed there. The ideal temperature for milk 
production varies according to the breed of the cattle, its level of production, and 
its level of tolerance to heat or cold; Holsteins, in particular, reduce production 
beginning at 24ºC.  

The environment for dairy cattle plays a fundamental role in obtaining the 
proper climatic conditions for animal production, the limits of which bound the 
zone of thermoneutrality (Curtis, 1983). Within this zone, the animal reaches its 
maximum potential, and body temperature is maintained with minimal use of 
thermoregulatory mechanisms. When conditions are not within these proper 
limits, the environment becomes uncomfortable. Under conditions of heat stress, 
which are more frequent in Brazil and intertropical countries, dairy cows reduce 
their feed intake and consequently their milk production (Harner, Smith, 
Bradford, Overton, Dhuyvetter, 2009). Sweating and panting are some of the 
mechanisms these animals use to relieve thermal stress.   
In addition to these consequences, the animals lose considerable amounts of 
sodium and potassium through sweat and urine (Pires & Campos, 2008) and 
suffer changes in rectal temperature (trectal) and in respiratory rate (RR) 
(Perissinotto & Moura, 2007). Also, there is evidence that heat stress on cattle 
reduces future productivity, even if environment conditions are returned to 
acceptable levels (Curtis, 1983; Kazdere, Murphy, Silanikove, Maltz, 2002; 
West, 2003; Hansen, 2007). 

For these reasons, the development of models that assist dairy producers in 
making decisions to maintain the production environment within the zone of 
thermoneutrality for the animals, thus obtaining maximum production, is 
critical. The tools include empirical mathematical models, such as regression 
models (RMs), fuzzy models (FMs) (Perissinotto, 2007; Perissinotto et al. 
2009), artificial neural networks (ANNs) and neuro-fuzzy networks (NFNs), and 
can assist in the control of ventilation and evaporative cooling systems.   
 
1.1 Regression models 

RMs use direct observation or the results of experiments concerning a 
particular phenomenon to demonstrate a correlation between input and output 
variables, without explaining the phenomena or processes involved (Baldwin, 
1995). Thus, RMs consist of fitting statistical models to the data, with the goal 
of describing the behavior of dependent variables (output variables) as a 
function of a set of independent variables (input variables).  
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RMs have been applied in various studies, for example, to predict the 
growth of broilers (Ivey, 1999), thermal indices for the productivity of broilers 
(Medeiros et al., 2005), the surface area of broilers (Silva et al., 2009), trectal of 
broilers (Ponciano; Yanagi Junior, Schiassi, Lima, Texeira, 2012), and thermal 
comfort in cattle (Brown-Brandl, Jones, Woldt, 2005). 
 
1.2 Fuzzy models 

FMs are based on fuzzy logic (FL), which is founded in the theory of fuzzy 
sets (Gomide & Gudwin, 1994) introduced by Zadeh (1965). FL works with 
approximate rather than exact information (Ferreira, 2009), similar to human 
reasoning (imprecise reasoning), to achieve precision in various applications to 
reduce the time needed for modeling. Having defined the study to be performed, 
it is necessary to define the input and output variables that will constitute the FM 
(Perissinotto, 2007; Pereira, Bighi, Gabriel Filho, Gabriel, 2008). For each 
variable, fuzzy sets are developed to characterize it, so that a pertinence function 
is created for each fuzzy set. These functions indicate to what degree of 
pertinence a particular element belongs to a fuzzy set. Next, rules are defined 
(system of rules or inference), through which a relationship exists between the 
input and output variables with their respective fuzzy sets. Software can be used 
to perform all of the procedures required to develop and construct an FM, and 
the computational evaluation of any FM consists of fuzzification, inference, and 
defuzzification (Oliveira, Amendola, Nääs, 2005). 

The theory of fuzzy sets has been used as a viable and suitable option in 
various areas, such as in the study of thermal comfort or discomfort of birds and 
swine (Queiroz, Nääs, Sampaio, 2005; Oliveira, Amendola, Nääs, 2005; Alves, 
2006; Yanagi Junior, Xin, Gates, Ferreira, 2006; Owada, Nääs, Moura, Baracho, 
2007; Pereira et al. 2008; Ferreira, 2009), cattle (Perissinotto, 2007; Perissinotto 
et al. 2009), and humans (Altrock, Arend, Krause, Steffens, Behrens-Römmler, 
1994). Fuzzy sets have also been used in the prediction of estrus in dairy cows 
(Ferreira, Yanagi Junior, Nääs, Lopes, 2007), inspection systems for chickens 
(Yang, Chao, Chen, Kim, Chan, 2006), the prediction of cloacal temperature of 
broilers (Ferreira, Yanagi Junior, Lacerda, Rabelo, 2011), statistics (Khashei, 
Reza Hejazi, Bijari, 2008; Liang-Hsuan & Chan-Ching, 2009), forensic science 
(Liao, Tian, Wang, 2009), studies of pesticide pollution (Gil, Sinfort, Guillaume, 
Brunet, Palagos, 2008), industrial applications (Meier, Weber, Zimmermann, 
1994), and in data analysis, specialist systems, control, and optimization 
(Gomide & Gudwin, 1994; Ribacionka, 1999; Lopes, 1999; Cho, Chang, Kim, 
An, 2002; Weber and Klein, 2003, Castañeda-Miranda, Ventura-Ramos, Del 
RocíoPeniche-Vera, Herrera-Ruiz, 2006; Chao, Gates, Sigrimis, 2000), among 
many other applications.  
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1.3 Artificial neural networks 

According to Tsoukalas and Uhrig (1997), an ANN is a data processing 
system composed of a large number of highly interconnected simple processing 
elements (artificial neurons) in an architecture inspired by the structure of the 
cerebral cortex. Thus, ANNs are inspired by the functioning and structure of 
biological neurons and are trained by running patterns through the network, 
making it possible to identify the relationships between variables with no a 
priori knowledge (Roush, Cravener, Kochera Kirby, Wideman, 1997). 
Mathematically, ANNs are universal approximators that perform mapping 
between two variable spaces (Hornik, Stinchcombe, White, 1990).  
 ANNs are currently being applied in various fields of knowledge, and their 
use is generally linked to searching for patterns and techniques for temporal 
forecasts for decision making. This approach is being used in fields such as 
aviculture (Lopes, Ferreira, Yanagi Junior, Lacerda, 2008), applied geography 
(Spellman, 1999), thermal sciences and engineering (Yang, 2008), hydrology 
(Kurtulus & Razack, 2010), the study of thermal comfort in cattle (Brown-
Brandl, Jones, Woldt, 2005), growth performance in swine (Bridges, Gates, 
Chao, Turner, Minagawa, 1995) and in humans (Moustris, Tsiros, Ziomas, 
Paliatsos, 2010). ANNs have been used to analyze the sensitivity of a 
mechanical system for poultry catching (Jaiswal, Benson, Bernard, Van 
Wicklen, 2005), quantification of odours from piggery effluent ponds (Sohn, 
Smith, Yoong, Leis, Galvin, 2003), classify apples by their textural features 
(KavdIr & Guyer, 2004), discriminating varieties of tea plant (Li & He, 2008), 
daily stream flow prediction (Nayebi, Khalili, Amin, Zand-Parsa, 2006), 
simulate runoff and sediments yield (Agarwal, Mishra, Ram, Singh, 2006), 
residual soil nitrate prediction (Gautam, Panigrahi, Franzen, Sims, 2012), 
discrimination of apricot cultivars by gas multisensor array (Parpinello, Fabbri, 
Domenichelli, Mesisca, Cavicchi, Versari, 2007), estimate leaf chlorophyll 
concentration in rice under stress from heavy metals (Liu, Liu, Li, Fang, Chi, 
2010), modelling total volume of dominant pine trees in reforestations 
(Diamantopoulou & Milios, 2010), in ortho-phosphate and total phosphorus 
removal prediction in horizontal subsurface flow constructed wetlands (Akratos, 
Papaspyros, Tsihrintzis, 2009), predicting the draught requirement of tillage 
implements in sandy clay loam soil (Roul, Raheman, Pansare, Machavaram, 
2009), prediction of nitrate release from polymer-coated fertilizers (Du, Tang, 
Zhou, Wang, Shaviv, 2008), and in near infrared spectral analysis (Wang & 
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Paliwal, 2006). ANNs have also found to be useful in construction (Argiriou, 
Bellas-Velidis, Balaras, 2000) and in demand analysis in the form of forecasting 
(Efendigil, Önüt, Kahraman, 2009), among many other applications.  
  The MultiLayer perceptron (MLP) is the most commonly used 
architecture for developing an ANN (Fausset, 1994; Barreto, 2002; Von Zuben, 
2011) and contains input, hidden, and output layers.  
 

1.4 Neuro-fuzzy networks 

NFNs take advantage of the learning abilities of ANNs and use fuzzy 
systems to process knowledge in a clear way. The final solution of the NFN can 
be interpreted as a fuzzy inference system (FIS) of the Sugeno type. Various 
studies have been performed in different areas using these hybrids (ANNs and 
FL), including human thermal comfort (Chen, Jiao, Lee, 2006), control and 
automation systems (Cheng-Hung, Cheg-Jian, Ching-Teng, 2009), the decision 
support system for demand forecasting (Efendigil, Önüt, Kahraman, 2009), 
thermal comfort for birds (Ferreira, 2009), the prediction of trectal of broilers 
(Ferreira,Yanagi Junior, Lopes, Lacerda, 2010), in statistics (Khashei, Reza 
Hejazi, Bijari, 2008), in hydrology (Kurtulus & Razack, 2010), to analyze 
livestock farm odour (Pan & Yang, 2007), and in robotics (Zacharia, 2010). 
 
2. Objective 
 

The objective of this study was to develop and validate RMs and models 
based on artificial intelligence to predict the trectal and RR for black and white 
Holstein dairy cows kept in confinement as a function of the two meteorological 
variables dry bulb air temperature (tdb) and relative humidity (RH). 
 
3. Material and methods  
 
3.1. Datasets 

A database was generated containing the raw data for tdb, RH, trectal, and RR 
for black and white Holstein dairy cows. These data were chosen because the 
authors quoted in table 1, worked in common with these four variables. 
Although some of these authors also measure wind speed, black globe 
temperature, black and white coat temperature and milk production, the amount 
of data wasn’t enough to develop some of the proposal models. 

To this work, the total dataset called as combined dataset (6,676 pieces of 
information) was conformed for data obtained from literature also called as 
Literature dataset (792 pieces of information) and data obtained in experiments 
conducted by EMBRAPA Dairy cattle, located in the city of Coronel Pacheco, 



42 
 

 
 

state of Minas Gerais, Brazil, also called as Experimental dataset (5,884 pieces 
of information). In these experiments, 346 purebred Holstein cows, either 
primiparous or multiparous, in different stages of lactation, were used. The data 
from the literature were obtained from 128 Holstein dairy cows, for a total of 
474 animals measured. The dataset included all seasons of the year, and all of 
the locations where data were collected in the Southeastern region of Brazil and 
fit the Köppen climatic classification of Cwa, with dry and cold winters and hot 
and humid summers (table 1). The data used in this study covered a total period 
of six (6) years.  

To train, validate and test the models based on artificial neural networks 
(ANN and NFN) the total dataset (Combined dataset) was used. This dataset was 
randomly divided into three subsets through sub-routines created for this 
purpose. These subsets were used to model the ANNs and NFN (training, 
validation, and testing). The training set used 70% of the combined dataset 
(4,674 independent data points); the sets for validation and testing each used 
15% (1,001 data points each), for a total of 2,002 data points from the total set 
(combined dataset). 

For the models based on Regression and fuzzy logic, the dataset used were 
the means of the combined dataset. This dataset had a total of 427 means (216 
means of the Literature dataset and 211 means of the Experimental dataset). For 
RM these means of combined dataset were randomly divided into two subsets, 
one containing 70%  of the data for fit (299 pieces of information) and one 
containing 30% for validation (128 pieces of information). For fuzzy logic 
model, whole dataset of means (427 data points), was used to validate the model. 

These percentages of the subsets were chosen because they are the most 
common for mathematical modeling of systems (Brown-Brandl et al., 2005). 
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Table 1. Characteristics related to the data obtained from the literature and obtained through observations (Southeastern 
region of Brazil).Table 1 
Authors [1] [2] [3] [4] [5] [6] [7] [Observed] 

City. Juiz de 
fora, 

Nova 
Odessa Pirassununga São Pedro Pirassununga Pirassununga São Pedro Juiz de Fora 

State MG SP SP SP SP SP SP MG 
Altitude 
(mts). 790 550 630 580 630 630 580 790 

Latitude 
(S). 21º38’ 22º42’ 21º57’ 22º33’ 21º57’ 21º57’ 22º33’ 21º38’ 

Longitude 
(W). 43º19’ 47º 18’ 47º27’ 47º38’ 47º27’ 47º27’ 47º38’ 43º19’ 

Köppen 
Climate  Cwa Cwa Cwa Cwa Cwa Cwa Cwa Cwa 

Number of 
livestock  346 (1) 12 (2) 27 (3) 12 (4) 15 (4) 18 (5a) 18 (5b) 19 (5c) 27 (6) 20 (7) 346 (8) 

Season 
study. 

Sum. – 
Winter Sum. Sum. Sum. Spring Spring Sum. Winter Sum. Spring Sum. Winter 

tdb min. obs. 
(ºC) 12.3 N/A N/A. 17.5 16.0 16.0 16.0 5.0 21.0 21.2 17.0 9.0 

tdb Max. 
obs. (ºC) 30.7 N/A N/A 33.6 34.4 38.0 37.0 35.0 35.0 34.1 37.0 33.4 

RH min. 
obs. (%) N/A N/A N/A N/A N/A 24.0 28.0 24.0 40.0 26.2 57.0 58.0 

RH Max. 
obs. (%) N/A N/A N/A N/A N/A 95.0 99.0 95.0 93.0 74.8 97.0 98.0 

N/A, Not available. SP - São Paulo. MG - Minas Gerais. Sum, Summer. [1] (Pires, 1997, em Pires & Campos, 2003). [2]  Silva, Pandorfi, Júnior, Piedade and Moura, (2002). [3]  Martello, 

Savastano Júnior, Silva and Titto, (2004). [4]  Matarazzo, (2004). [5]  Matarazzo, (2004). [6]  Martello, (2002). [7]  Perissinotto, (2003). (1), 258 cows and 88 heifers. (2), N/A. (3) , 7 

multíparous (mult.) and 10 primiparous (prim.) between the 2nd and 8th month of  lactation. (4), mult. in lactation. (5a), 15 mult. and 3 prim. (5b),  14 mult. and 4 prim. (5c), 18 mult. and 1 

prim. (6),  stage of lactation between the 2nd and 7th month. (17 mult. and 10prim.). (7), mult. in lactation average of180 days. (8), 346 multiparous cows and primiparous in different  stage of 

lactation. 42 
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3.2 Mathematical modeling  
 

To develop the models based on artificial neural networks (ANN and NFN) 
were used the dataset previously mentioned (Combined dataset), while for RM 
and fuzzy logic were used the means of the combined dataset.  

Once developed, the models were tested using the minimum, mean, median, 
and maximum values; standard deviations; patterns; and percentage errors. Also 
calculated were standard errors, coefficients of determination (R2), the root mean 
square error (RMSE), the coefficients of regression (slopes), and intercepts for 
each of the variables studied (trectal and RR) (table 5). In addition, histograms 
(figs. 9 and 10) and graphs of the functional relationships - FRs between (with 
line of linear trend) predicted and observed variables (means of the combined 
dataset) (figs. 3, 4, 5, 6, 7, and 8) were used to compare the performance of the 
proposed models.  
 
3.2.1. Regression models  
 

Eighteen multiple RMs (Appendix A) were fit using the regression 
procedure of the statistical software R (R Development Core Team, 2011). All 
of the models used the climatic variables (tdb and RH) as input data, and the 
output variables were the physiological parameters trectal and RR. The 
significance of the models and regression coefficients was tested using the F and 
t tests (P<0.05), respectively. The model that exhibited the best fit was selected 
(smallest sum of squared deviations).  
 
3.2.2. Fuzzy inference system 
 

This model consists of two input variables (tdb and RH) and two output 
variables (trectal and RR). The inference method was of the Mandani type 
(Mandani & Assilian, 1975). In this type of FM, a large amount of intervention 
is required on the part of the modeler because the FM can be generated with no 
experimental data; therefore, data were not used either for training, the total of 
means of the combined dataset were used for validation of the model. Because 
of the intervention of the modeler, a spreadsheet was used to organize the data 
(in this case, the means of the combined dataset – 427 independent data point) to 
attempt to establish the set of rules that might explain the behavior of the input 
and output variables studied.  
 
3.2.3. Artificial neural net model 
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The models based on ANNs were developed using the subsets of data 
previously mentioned. The ANN developed possessed two feed-forward layers 
that were trained using the back-propagation algorithm. The parameters of the 
model include the number of hidden layers (1, the standard value used in various 
applications), transference functions in each hidden layer (sigmoidal tangent 
“tansig” for hidden layers, the standard value in various applications), the 
number of neurons in the hidden layer(s) (a user-modifiable parameter), the rate 
of learning, the instantaneous rate, and the weights of the neurons (these 
parameters are taken as standard and automatically modified during training of 
the network). The model was developed such that the user can train and test the 
network independently. The two resulting ANNs predict the trectal and RR from 
the input variables (tdb and RH), and each neural net has one output.   

 
3.2.4. Neuro-fuzzy adaptive inference system  
 

The model was also developed using the subsets of data mentioned above. 
The application used to develop this model was the fuzzy logic toolbox of 
Matlab (MathWorks, Inc, 2009a). This toolbox uses input and output datasets 
(sets for training, validation, and testing, each with input and output data), and 
the main function of this toolbox is to construct a fuzzy inference system (FIS), 
the parameters of which are fit for the pertinence function using two types of 
methods (the back-propagation algorithm, either alone or in a hybrid form 
combined with the least squares method). This fit allows FMs to learn from the 
data being modeled. Similar to the model based on ANNs, the parameters for 
fitting the network can be modified according to the percentage of the dataset 
used for training, validation, and testing, as well as in other ways, such as the 
generation of the FIS, the training method (back-propagation or hybrid), error 
tolerance, or the number of stages. Finally, the possibility exists of testing the 
result of the model generated by training the network. The result of this model is 
an FIS of the Sugeno type, with only one output.  
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(1) 

(2) 

 

4.Results 
 

For this study, we work with two output physiological variables; these 
variables are rectal temperature (trectal) and respiratory rate (RR). The physical 
units of these variables are Celsius degree (ºC) and breaths per minute 
(breaths.min-1), respectively. The balance between gain and heat loss from the 
body can be inferred by the trectal. The measurement of rectal temperature is often 
used as an index of physiological adaptability to hot environments, because its 
increase shows that the heat loss mechanisms become insufficient (Martello, 
2002). In turn, in defense against heat stress, cattle resort to adaptive 
physiological mechanisms of heat loss to try to prevent hyperthermia. Thus, 
increase the respiratory rate (RR), with tachypnea, in addition to the increase of 
the sweat production rate (sweat rate) is an important means to lose heat by 
evaporation (respiratory and cutaneous evaporative heat loss). Tachypnea is the 
first visible sign in response to heat stress, although situated in third place in the 
sequence of the mechanisms of physiological adaptation, because the increase in 
peripheral vasodilatation and sweating occur previously (Baccari, 2001). 
 
4.1. Regression models  
 

Of the 18 RMs fit to predict the trectal and RR (Appendix A), the models 
represented by Eq. (1) and Eq. (2) had the highest coefficients of determination 
(R2), and all of the coefficients of the equations were significant (P<0.05). For 
the model estimating trectal (ºC), Eq. (1), 21.6% of the variation in trectal can be 
explained by the variation in tdb (ºC) and RH (%) when testing 70% of the data 
(4,673 observations) used for fitting; the values were 20.7% when testing 30% 
of the data (2,003 observations) used for validation and 44.4% when testing 
100% of the data (Appendix A, table 5). 
 

trectal = 37.08 (± 0.12) – 0.02 (± 0.008) tdb + 0.02146 (± 0.003) RH + 0.0014 (± 
0.00018) tdb

 2 – 0.000055 (± 0.0000021) RH2 
 

 In turn, 26.4% of the variation in the RR can be explained by the 
variation in tdb (ºC) and RH (%) when testing the 70% of the data used for 
fitting; the values were 25.8% when testing 30% of the data used for validation 
and 44.5% when testing 100% of the data (Appendix A, table 5).  
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RR = 7.8 (± 2.93) + 0.992287 (± 0.251) tdb + 0.142209 (± 0.02) RH + 0.013354 
(± 0.006) tdb

 2
 

 
The FRs between the values for trectal and RR predicted by the RMs and the 

means of the literature dataset, means of the experimental dataset, and the means 
of combined dataset (means of experimental and literature datasets) are 
illustrated in figures 3a, 4a, 5a and figures 6a, 7a, and 8a, respectively.  

 
4.2. Fuzzy inference system  
 

The result of this fuzzy inference system can be described as a set of 
membership functions constructed based on linguistic descriptors of the input 
variables (fig. 1). Initially, this model was based on the research developed by 
Perissinotto (2007, p.120; Perissinotto et al., 2009), which has 120 rules (tdb = 15 
MFs and RH = 8 MFs), but these values of MFs were fit to reduce deviations, 
because the model proposed by Perissinotto did not have values lower than 
22ºC, thus, the model with these configuration (set), had absolute deviations 
higher than 1.0 ºC. The linguistic expressions established in this model are an 
interpretation dependent on the previously organized data, the structural 
characteristics of which are listed in table 2. 

 
Table 2. Characteristics of the fuzzy inference system.Table 2 
 

System’s characteristics Inputs Outputs 

<Name> fuzzy dataset RT 
RR  
<Type>m 
<Number Rules>192 
<SNorm>max 
<SNormPar>0.0 
<TNorm>min 
<TNormPar>0.0 
<Comp>one 
<CompPar>0.0 
<ImpMétodo>min 
<AggMétodo>max 
<DefuzzMethod>Centroid 

[Input 1] 
<Name>tdb 
<Range>9 - 45 
<Number MFs>24 
 
[Input 2] 
<Name>RH 
<Range>0 - 100 
<Number MFs>8 

[Output 1] 
<Name>trectal 
<Range>37 - 42 
<Number MFs>11 
 
[Output 2] 
<Name>RR 
<Range>28 -108 
<Number MFs>12 

m, Mandani type. tdb, dry-bulb temperature. RH, relative humidity.MFs, membership functions.trectal, rectal temperature. RR, 

respiratory rate.max, maximum. min, minimum. 
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 The fuzzy sets of input and output variables are graphically represented 
by triangular membership curves (fig. 1) because these are the most common 
used and represent the profile of the data, as observed by several authors 
(Amendola, Souza, Barros, 2005; Yanagi Junior, Xin, Gates, Ferreira, 2006; 
Ferreira, Yanagi Junior, Nääs, Lopes, 2007; Schiassi, Yanagi Junior, Ferreira, 
Damasceno, Yanagi, 2008). 

 
 

 



49 
 

 
 

Fig. 1.The membership function structure developed for the fuzzy inference 
system.Figure 1 
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Dry-bulb temperature, ºC 

Relative Humidity, % 

<20                       30        40        50        60        70         80            >90 

<13       14 15161718 1920 212223 242526 272829 303132 333435           >36 
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0·0 

0         10         20        30         40        50         60        70        80         90      100 
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0·5 

0·0 

Rectal temperature, ºC 

1 

0·5 

0·0 
37      37.5      38        38.5       39       39.5       40        40.5      41        41.5     42 

37      37.5      38        38.5       39       39.5       40        40.5      41        41.5      42 

Respiratory rate, breaths.min-1
30            40            50           60            70            80           90           100  

< 36       36-42    42-48  48-54   54-60  60-66   66-72  72-78   78-84  84-90   90-96       >96 
1 

0·5 

0·0 
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 The fuzzy inference was composed of a set of 192 rules (table 3), 
stemming from the factorial combination of 24 MFs for tdb and 8 MFs for RH. 
Each rule was composed of logical connectors (if, and, or, then) and the 
antecedent and consequent parts. For example, IF x is A AND y is B, THEN z is 
C, in which A, B, and C are fuzzy sets; x and y are input variables; and z is the 
output variable. Thus, “IF x is A AND y is B” is the antecedent part, and “THEN 
z is C” is the consequent part. 
 The FRs between the values for trectal and RR predicted by the FMs and 
the means of the literature dataset, means of experimental dataset, and the means 
of the combined dataset (means of experimental and literature datasets) are 
shown in figures 3b, 4b, and5b and figures 6b, 7b, and 8b, respectively. 
 
4.3. Artificial neural network system  
 

The architectures of the best-performing final ANN models for 
predicting trectal and RR were multilayer networks (MultiLayer perceptron; MLP) 
with two feed-forward layers and supervised training (with awareness of the 
desired outcome) using the back-propagation training algorithm; the 
performance function was the mean square error (MSE), and the activation 
function for neuron output was the sigmoidal tangent “tansig.” 

The architectures with the best performance obtained through the 
training and validation process and had the fewest prediction error was as 
follows: training error = 0.13, validation error = 0.14, testing error = 0.145 for 
trectal, training error = 116.9, validation error =117.9 and testing error =118.9 for 
RR. The input layer had two variables, tdb and RH. The intermediate layer was 
composed of 90 neurons for trectal and 100 for RR. In each ANN, the output layer 
was composed of only one neuron, that is, trectal or RR. The initial parameters of 
the networks were configured as follows: number of epochs: 1.000; error 
tolerance: 0.0; learning rate: 0.7; and momentum rate: 0.5; these values were 
automatically optimized.   
 The FRs between the values of trectal and RR predicted by the ANNs and 
the means of the literature dataset, means of the experimental dataset, and the 
means of the combined dataset (means of experimental and literature datasets) 
are shown in figures 3c, 4c, and 5c and figures 6c, 7c, and 8c, respectively. 
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Table 3. Set of rules for the fuzzy inference system.Table 3 
1 1 1 1 1 1.0 
1 2 1 1 1 1.0 
1 3 2 1 1 1.0 
1 4 2 1 1 1.0 
1 5 3 1 1 1.0 
1 6 3 1 1 1.0 
1 7 4 1 1 1.0 
1 8 5 2 1 1.0 
2 8 4 2 1 1.0 
2 7 4 3 1 1.0 
2 6 3 2 1 1.0 
2 5 3 2 1 1.0 
2 4 2 2 1 1.0 
2 3 2 2 1 1.0 
2 2 1 2 1 1.0 
2 1 1 2 1 1.0 
3 8 4 1 1 1.0 
3 7 4 3 1 1.0 
3 6 4 1 1 1.0 
3 5 3 1 1 1.0 
3 4 3 1 1 1.0 
3 3 2 1 1 1.0 
3 2 2 1 1 1.0 
3 1 1 1 1 1.0 
4 8 5 2 1 1.0 
4 7 4 1 1 1.0 
4 6 3 1 1 1.0 
4 5 3 1 1 1.0 
4 4 2 1 1 1.0 
4 3 2 1 1 1.0 
4 2 2 1 1 1.0 
4 1 1 1 1 1.0 
5 8 4 2 1 1.0 
5 7 4 2 1 1.0 
5 6 4 2 1 1.0 
5 5 4 4 1 1.0 
5 4 3 2 1 1.0 
5 3 3 2 1 1.0 
5 2 2 1 1 1.0… 

5 1 2 1 1 1.0 
6 8 5 2 1 1.0 
6 7 4 2 1 1.0 
6 6 5 2 1 1.0 
6 5 4 4 1 1.0 
6 4 4 2 1 1.0 
6 3 3 2 1 1.0 
6 2 3 2 1 1.0 
6 1 2 2 1 1.0 
7 8 4 3 1 1.0 
7 7 4 2 1 1.0 
7 6 3 1 1 1.0 
7 5 3 1 1 1.0 
7 4 3 1 1 1.0 
7 3 3 1 1 1.0 
7 2 2 1 1 1.0 
7 1 2 1 1 1.0 
8 8 5 4 1 1.0 
8 7 4 3 1 1.0 
8 6 5 5 1 1.0 
8 5 4 4 1 1.0 
8 4 4 4 1 1.0 
8 3 3 3 1 1.0 
8 2 3 3 1 1.0 
8 1 3 2 1 1.0 
9 8 5 3 1 1.0 
9 7 4 3 1 1.0 
9 6 4 3 1 1.0 
9 5 4 3 1 1.0 
9 4 4 3 1 1.0 
9 3 3 3 1 1.0 
9 2 3 3 1 1.0 
9 1 3 3 1 1.0 
10 8 5 5 1 1.0 
10 7 5 4 1 1.0 
10 6 3 3 1 1.0 
10 5 5 3 1 1.0 
10 4 4 3 1 1.0 
10 3 4 3 1 1.0… 

10 2 3 3 1 1.0 
10 1 3 3 1 1.0 
11 8 5 5 1 1.0 
11 7 4 2 1 1.0 
11 6 4 2 1 1.0 
11 5 4 2 1 1.0 
11 4 4 2 1 1.0 
11 3 4 2 1 1.0 
11 2 3 2 1 1.0 
11 1 3 2 1 1.0 
12 8 6 5 1 1.0 
12 7 5 5 1 1.0 
12 6 5 4 1 1.0 
12 5 5 5 1 1.0 
12 4 5 5 1 1.0 
12 3 4 5 1 1.0 
12 2 4 5 1 1.0 
12 1 4 4 1 1.0 
13 8 5 5 1 1.0 
13 7 5 4 1 1.0 
13 6 4 3 1 1.0 
13 5 4 4 1 1.0 
13 4 4 4 1 1.0 
13 3 4 4 1 1.0 
13 2 4 3 1 1.0 
13 1 4 3 1 1.0 
14 8 5 5 1 1.0 
14 7 5 4 1 1.0 
14 6 5 4 1 1.0 
14 5 4 4 1 1.0 
14 4 4 3 1 1.0 
14 3 4 4 1 1.0 
14 2 4 3 1 1.0 
14 1 4 3 1 1.0 
15 8 5 6 1 1.0 
15 7 5 6 1 1.0 
15 6 5 5 1 1.0 
15 5 5 4 1 1.0 
15 4 5 1 1 1.0… 

15 3 4 4 1 1.0 
15 2 4 4 1 1.0 
15 1 4 4 1 1.0 
16 8 5 6 1 1.0 
16 7 5 6 1 1.0 
16 6 5 6 1 1.0 
16 5 4 4 1 1.0 
16 4 3 4 1 1.0 
16 3 4 5 1 1.0 
16 2 4 4 1 1.0 
16 1 4 4 1 1.0 
17 8 5 6 1 1.0 
17 7 5 6 1 1.0 
17 6 5 4 1 1.0 
17 5 4 5 1 1.0 
17 4 5 5 1 1.0 
17 3 4 6 1 1.0 
17 2 4 6 1 1.0 
17 1 4 5 1 1.0 
18 8 6 8 1 1.0 
18 7 6 8 1 1.0 
18 6 6 8 1 1.0 
18 5 6 6 1 1.0 
18 4 4 6 1 1.0 
18 3 4 4 1 1.0 
18 2 4 4 1 1.0 
18 1 4 4 1 1.0 
19 8 6 8 1 1.0 
19 7 5 5 1 1.0 
19 6 5 3 1 1.0 
19 5 5 7 1 1.0 
19 4 5 6 1 1.0 
19 3 4 5 1 1.0 
19 2 4 4 1 1.0 
19 1 4 4 1 1.0 
20 8 5 6 1 1.0 
20 7 5 6 1 1.0 
20 6 5 6 1 1.0 
20 5 5 6 1 1.0… 

20 4 5 7 1 1.0 
20 3 5 6 1 1.0 
20 2 4 4 1 1.0 
20 1 4 4 1 1.0 
21 8 6 7 1 1.0 
21 7 6 6 1 1.0 
21 6 5 4 1 1.0 
21 5 5 4 1 1.0 
21 4 5 7 1 1.0 
21 3 5 6 1 1.0 
21 2 5 5 1 1.0 
21 1 5 4 1 1.0 
22 8 6 7 1 1.0 
22 7 6 7 1 1.0 
22 6 6 6 1 1.0 
22 5 6 5 1 1.0 
22 4 6 11 1 1.0 
22 3 5 7 1 1.0 
22 2 4 5 1 1.0 
22 1 4 5 1 1.0 
23 8 7 7 1 1.0 
23 7 7 7 1 1.0 
23 6 7 6 1 1.0 
23 5 6 5 1 1.0 
23 4 5 5 1 1.0 
23 3 4 8 1 1.0 
23 2 5 6 1 1.0 
23 1 4 6 1 1.0 
24 8 7 4 1 1.0 
24 7 8 7 1 1.0 
24 6 7 7 1 1.0 
24 5 6 9 1 1.0 
24 4 6 9 1 1.0 
24 3 6 8 1 1.0 
24 2 6 8 1 1.0 
24 1 6 7 1 1.0. 

* The fisrt two numbers for each column represent the fuzzy input sets (tdb and RH), the next two represent the two fuzzy 

output sets (trectal andRR), the following number represents the weights of the rules and the final number represents the 

connector of the rule (0 signifies OR, 1.0 signifies AND). Example: (1 1 1 1 1 1.0) – signifies: If MF tdb1 (< 13ºC) and MFRH 

1 (< 20 breaths. min-1) then MF trectal 1 (37ºC) and MFRR 1 (< 36 breaths . min-1). MF, membership functions.
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4.4. Adaptive neuro-fuzzy inference system  
 

Various NFN models were developed and simulated using different 
configurations, such as the type of pertinence function (gaussian, triangular or 
trapezoidal), the number of stages, and the type of optimization method, 
resulting in 18 models. The architectures of the best-performing final NFN 
models for predicting trectal and RR are listed in table 4. The hybrid training 
(optimization) method chosen was selected based on a tolerance to error of 0.0 
and number of stages of 1.000. Training was interrupted when the training error 
stabilized. The pertinence function chosen for the input variables was the 
triangular function, and the constant function was chosen for the output 
variables. The model with the least training error and no internal errors in its 
fuzzy sets (amplitude outside of the normal range or sets with values of 0 for the 
variables studied; trectal and RR) was selected. 

 
Table 4.Characteristics of the Sugeno type or data-dependent fuzzy inference system – 
NFN - for rectal temperature (a) and respiratory rate (b).Table 4 

Fuzzy systems’ 
characteristics Inputs Outputs Rules 

tdb RH Out W Con. 

1 1 1 1 1* 

1 2 2 1 1 

2 1 3 1 1 

2 2 4 1 1 

3 1 5 1 1 

3 2 6 1 1 

(a) 
 

<Name> fuzzy 
sets trectal - FIS 
<type>TS 
<SNorm>max 
<SNormPar>0 
<TNorm>min 
<TNormPar>0 
<Comp>sugeno 
<CompPar>0 
<ImpMethod>prod 
<AggMethod>max 
<defuzzMethod>waver 

[Input 1] 
<Name>tdb 
<Range>9 - 37 
<Number MFs>3 
<Function>trimf 
<NameMF1><in1MF1> 
 -5.0 10.3 24.0 
<NameMF2><in1MF2> 
 7.9 25.6 36.9 
<NameMF3><in1MF3> 
22.3 7.8 51.0 

[Input 2] 
<Name>RH 
<Range>26·2 - 99 
<Number MFs>2 
<Function>trimf 
<NameMF1><in2MF1> 
-46.6 26.3 98.9 
<NameMF2><in2MF2> 
26.1 99.1 171.8 

[Output] 
<Name>trectal 
<Range>37·5 – 40·4 
<Number MFs>6 
<Function>constant 
<NameMF1><out1MF1> 
38.3 
<NameMF2><out1MF2> 
38.4 
<NameMF3><out1MF3> 
37.9 
<NameMF4><out1MF4> 
39.2 
<NameMF5><out1MF5> 
39.1 
<NameMF6><out1MF6> 
39.8  

 

*It means: If tdb MF1 and 
RH MF1 then trectal MF1. 
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Thus, the best models for the prediction of trectal and RR were composed of 

six rules that govern the behavior of the input variables (tdb and RH) and the 
respective outputs (trectal or RR) (table 4).  

Figure 2 (fig.2) shows the interactive interface of the FIS, with each line in 
the figure representing a rule and each column representing an input. The 
pertinence functions are shown in the first two columns. The position of the 
vertical line represents the input value entered by the user. The value predicted 
by the NFN appears in the third column.  

 

Table 4. Continue. 

Fuzzy systems’ 
characteristics Inputs Outputs Rules 

tdb RH Out W Con. 

1 1 1 1 1* 

1 2 2 1 1 

2 1 3 1 1 

2 2 4 1 1 

3 1 5 1 1 

3 2 6 1 1 

(b) 
 
<Name> fuzzy sets 
RR-FIS 
<type>TS 
<SNorm>max 
<SNormPar>0 
<TNorm>min 
<TNormPar>0 
<Comp>sugeno 
<CompPar>0 
<ImpMethod>prod 
<AggMethod>max 
<defuzzMethod>waver 

[Input 1] 
<Name>tdb 
<Range>9 - 37 
<Number MFs>3 
<Function>trimf 
<NameMF1><in1MF1> 
-5.0 16.4 22.0 
<NameMF2><in1MF2> 
7.4 26.0 37.0 
<NameMF3><in1MF3> 
22.9 38.8 51.0 
 
[Input 2] 
<Name>RH 
<Range>26·2 - 99 
<Number MFs>2 
<Function>trimf 
<NameMF1><in2MF1> 
 -46.6 26.8 98.4 
<NameMF2><in2MF2> 
 25.6 99.6 171.8 

[Output] 
<Name>RR 
<Range>20 – 116 
<Number MFs>6 
<Function>constant 
<NameMF1><out1MF1> 
48.6 
<NameMF2><out1MF2> 
28.8 
<NameMF3><out1MF3> 
33.1 
<NameMF4><out1MF4> 
57.1 
<NameMF5><out1MF5> 
73.1 
<NameMF6><out1MF6>
70.7 * It means: If tdbMF1 and 

RHMF1 thenRRMF1. 

TS, Takagi-Sugeno. tdb, dry bulb temperature. Out, output. Con., connector. W, weight of the rule. trimf., triangular membership function. 

MF., membership function. waver, weighted average. max, maximum. min, minimum. 
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Fig. 2. Example of the interactive interface generated by the fuzzy logic 
toolbox.Figure 2 

Fig. 2. Example of the interactive interface generated by the fuzzy logic 
toolbox.Figure 3 

 

 b) Respiratory rate fuzzy sets (Sugeno type) - NFN 

a) Rectal temperature fuzzy sets (Sugeno type) - NFN 

Input1 = 28 Output = 39·1 Input2 = 80 

1 

2 

3 

4 

5 

6 

9 37 

26.2 99 

37·7 40·03 Dry-bulb temperature, 
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In the example presented, the tdb was 28ºC, and the RH was 80%. For each 
individual pertinence function, the amplitude of the input values is represented 
by the X-axis, and the pertinence value is represented by the Y-axis. The shaded 
region is a visual representation of the pertinence resulting from the input value. 
The final column represents the output for trectal (fig. 2a) and RR (fig. 2b). The 
black portion of the bar represents the weight factor for this rule in particular and 
is determined by the minimum pertinence value for each rule. The horizontal 
line with an arrow indicates which input function determines the weight factor. 
A simple output is the result of an average of the output weights for each one of 
the six rules and is shown on the upper right. The larger the black area, the 
greater is the contribution of the associated rule (rule four (4) in both figs.2a and 
2b in this example). 

This model was developed using the triangular type of pertinence function 
and uses the logical connector “AND” to combine spaces of data in fuzzy sets. 
The degree of pertinence of an input vector to a particular cluster determines the 
contribution of the associated rules. The final output is a weighted average of 
each contributed rule.   

Similar to the other models, the FRs between the values for trectal and RR 
predicted by the NFNs and the means of the literature dataset, means of the 
experimental dataset, and the means of the combined dataset (means of 
experimental and literature datasets) are shown in figures 3d, 4d, and 5d and 
figures 6d, 7d, and 8d, respectively.  

In addition to the graphs that illustrate the FRs previously described for the 
various fitted models, histograms for the frequency of occurrence of absolute 
deviations for trectal (fig. 9) and RR (fig. 10) are presented, in addition to the 
statistical results shown in table 5. For trectal, the frequency of occurrence of 
absolute deviations in the range from 0 ºC to 0.39 ºC varied from 83.6% to 
97.7%, and the model based on ANNs showed the highest frequency of 
occurrence of errors over this range. Likewise, values of 72.1% and 93.4% were 
observed for RR, and the ANNs again performed best. The RMs and FMs 
performed the worst.  
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Fig.3.Functional relationship between the values for rectal temperature (trectal) 
simulated by the models: regression models (a), fuzzy model (b), artificial 
neural network (c), neuro-fuzzy network (d) and the means of the literature 
dataset. Figure 4 

(a) (b) 

(d) 
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Fig.4.Functional relationship between the values for rectal temperature (trectal) simulated 
by the models: regression models (a), fuzzy model (b), artificial neural network (c), 
neuro-fuzzy network (d) and the means of the experimental dataset Figure 5 
 

(b) 

(d) 
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Fig.5. Functional relationship between the values for rectal temperatures (trectal) 
simulated by the models: regression models (a), fuzzy model (b), artificial 
neural network (c), neuro-fuzzy network (d) and the means of the combined 
dataset. Figure 6 

(a) (b) 

(c) (d) 
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Fig.6. Functional relationship between the values for respiratory rate (RR) 
simulated by the models: regression models (a), fuzzy model (b), artificial 
neural network (c), neuro-fuzzy network (d) and the means of the literature 
dataset. Figure 7 

(a) (b) 

(c) (d) 
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Fig.7.Functional relationship between the values for respiratory rate (RR) 
simulated by the models: regression models (a), fuzzy model (b), artificial 
neural network (c), neuro-fuzzy network (d) and the means of the 
experimental dataset. Figure 8 

(b) 

(d) 

(a) 

(c) 
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Fig. 8.Functional relationship between the values for respiratory rates 
(RR) simulated by the models: regression models (a), fuzzy model (b), 
artificial neural network (c), neuro-fuzzy network (d) and the means of 
combined dataset. Figure 9 

(b) 

(d) 

(a) 

(c) 
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(b) 

(d) 

(a) 

(c) 

Fig. 9. Frequency of occurrence of absolute deviations (ºC) between the 
data for rectal temperature simulated by the models: regression models (a), 
fuzzy model (b), artificial neural network (c), neuro-fuzzy network (d) and 
the means of the combined dataset. Figure 10 
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Fig. 10.Frequency  of occurrence of absolute deviations (breaths . min-1) 
between  the data for respiratory rate simulated by the models for the 
regression models (a), fuzzy model (b), artificial neural network (c), 
neuro-fuzzy network (d) and the means of the combined dataset. Figure 11 
 

(b) 

(d) 

(a) 

(c) 
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Table 5.Statistical results of the models.Table 5 

  Model type 
Output 

variables   
Regression 

model 
(RM) 

Fuzzy 
model 
(FM) 

Artificial 
Neural 

Network 
(ANN) 

Neuro-
Fuzzy 

Network 
(NFN) 

Minimum 0·0 0·0 0·0 0·0 
Mean 0·2 0·2 0·1 0·2 

Median 0·2 0·2 0·1 0·2 
Absolute 
deviations  

Maximum 0·9 0·9 1·1 0·9 
Minimum 0·0 0·0 0·0 0·0 

Mean 0·2 0·1 0·1 0·2 
Median 0·1 0·1 0·1 0·1 

Standard 
deviation 

Maximum 0·6 0·6 0·8 0·6 
Minimum 0·0 0·0 0·0 0·0 

Mean 0·6 0·5 0·4 0·6 
Median 0·5 0·5 0·3 0·5 

Percentage 
error 

Maximum 2·2 2·4 2·9 2·2 
R2 0·44 0·49 0·67 0·44 
Standard error  0·28 0·27 0·21 0·28 
RMSE 0·28 0·27 0·21 0·28 
Regression coefficients 
(Slopes) 

1·16* 

(± 0.06) 
0·92* 

(± 0.05) 
0·93* 

(± 0.03) 
1·19* 

(± 0.06) 

Rectal 
temperature 

(trectal) 

Intercepts  -6·36* 

(± 2.46) 
2·87 

(± 1.8) 
2·84* 

(± 1.21) 
-7·46* 

(± 2.52) 
Minimum 0·0 0·0 0·0 0·0 

Mean 7·1 6·0 4·6 7·3 
Median 5·9 4·8 3·0 6·3 

Absolute 
deviations  

Maximum 30·6 27·4 28·5 30·8 
Minimum 0·0 0·0 0·0 0·0 

Mean 5·0 4·3 3·2 5·2 
Median 4·2 3·4 2·1 4·5 

Standard 
deviation 

Maximum 21·7 19·4 20·2 21·8 
Minimum 0·0 0·0 0·0 0·1 

Mean 13·8 12·0 8·7 14·0 
Median 11·5 9·1 5·6 12·9 

Percentage 
error 

Maximum 62·3 67·9 62·0 53·5 
R2 0·44 0·58 0·71 0·44 
Standard error  8·96 7·73 6·49 8·99 
RMSE 8·98 7·73 6·67 9·12 
Regression coefficients 
(Slopes) 

1·05* 

(± 0.06) 
1·01* 

(± 0.04) 
7·20* 

(± 1.43) 
1·15* 

(± 0.06) 

Respiratory 
rate (RR) 

Intercepts  -1·65 
(± 2.95) 

-0·56 
(± 2.18) 

0·87* 

(± 0.027) 
-6·25 

(± 3.22) 
R2, determination coefficients.RMSE, root mean square error. *, Coefficients are significant (P<0.05).
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Table 6.Performance of models for predicting the physiological variables cited in literature.Table 6 
Model type Author(s) Physiologic 

response. RM FM ANN NFN 

Ferreira, Yanagi-
Junior, Lopes, Lacerda, 
(2010). 

trectal in  broilers 
chicken. 
(ºC) 

N/A N/A N/A 

Mean 
standard 

deviation: 
0.11 

Brown-Brandl, Jones, 
Woldt, (2005) 

RR in different 
breeds’ cattle. 
(breaths.min-1). 

Linear regression: 
R2: 0.59, mean 

error: 1.14 

Quadratic Regression: R2: 0.62, 
mean error: 0.91 

Mandani: 
R2: 0.27, 

Mean 
error: 8.0 

Sugeno: 
R2: 0.66, 

Mean 
error: 
0.92 

R2: 0.68 
Mean 
error: 
1.04 

N/A 

R2 RM1~RM4 = 0.73 

Ponciano, Yanagi 
Junior, Schiassi, Lima, 
Texeira, (2012). 

trectal in  broilers 
chicken. 

Mean 
standard 

deviation: 
RM1: 0.32ºC 
RM2: 0.35ºC 
RM3: 0.69ºC 
RM4: 0.38ºC 

Mean 
percentage 

error: 
RM1: 0.79% 
RM2: 0.86% 
RM3: 1.68% 
RM4: 0.94% 

Standard deviation: 
RM1: 0.22ºC 
RM 2: 0.25ºC 
RM 3: 0.49ºC 
RM 4: 0.27ºC 

N/A N/A N/A 

Ferreira, Yanagi-
Junior, Lacerda, 
Rabelo, (2011). 

Cloacal temperature 
in broilers chicken. N/A 

R2: 0.9318 
Mean error: 0.13ºC 

Percentage error: 0.31% 
N/A N/A 

Martello, (2006). RR in Holstein cattle. R2: 0.43 N/A N/A N/A 

Azevedo et al., (2005). RR,trectal and CT in 
Holstein cattle. 

R2
RR = 0.62 

R2
CT = 0.31 

R2trectal = 0.43 
N/A N/A N/A 

N/A, not available. RM, regression models. FM, fuzzy model. ANN, artificial neural networks. NFN, neuro-fuzzy network. CT, coat temperature. RR, respiratory rate. R2, determination 

coefficient. trectal,  rectal temperature. 

64 
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5. Discussion  
 

Four final models for predicting the trectal and RR in black and white 
Holstein dairy cows that are kept in confinement systems were compared side by 
side using different methods with the means of the combined dataset as 
validation of the models (graphs representing the histograms of frequency of 
occurrence of absolute deviations shown in figs. 9 and10; scatter plots with trend 
line/linear regression (LR) shown in figs. 3, 4, 5, 6, 7, and 8; and the statistical 
indices shown in table 5). The models based on ANNs and NFNs, listed in 
decreasing order of performance, generally exhibited the best statistical indices 
related to capacity for predicting the trectal (figs. 3, 4, 5,and 9) and RR (figs.6, 7, 
and 8) for dairy cows. Although the majority of statistical indices for RR were 
better for FM than for NFN (table 5), the predictions of the NFN concentrated 
errors over a smaller range of absolute deviation, from 0.0 to 9.9 respirations 
min-1 (figs.10b and 10d). This finding was probably attributable to the small 
difference between the values of the statistical indices used, which can be 
observed only through analysis of the frequency of occurrence of RR.  

All of the models fitted to predict the trectal performed better than those 
fitted to predict the RR (table 5 and figs.9 and 10). In addition, it is evident that 
all of the models developed had higher percentages of prediction accuracy 
(higher R2) when using the observed dataset compared to the literature dataset 
(figs. 3 and 4, respectively). This result is attributable to the features of the 
management used, the type of thermal isolation in the installation, and the 
adoption of ventilation and evaporative cooling systems intrinsic to each 
experiment (table 1). The inclusion of air velocity and radiative heat load as 
input variables may increase the performance of the models because tdb affects 
the loss of sensible heat through conduction and convection, RH affects the 
quantity of latent heat lost, and air velocity affects the rate of loss of sensible and 
latent heat (Dikmen and Hansen, 2009), thereby reducing the prediction errors.   

A more detailed analysis of the graphs of the frequency of occurrence of 
absolute deviations reveals that for the means of the combined dataset of trectal 
predicted by the model based on ANNs, 97.7% of the absolute deviations were 
between the values of 0.0 ºC and 0.39 ºC, and the remaining 2.3% of the 
deviations were between the values 0.4 ºC and 1.0 ºC (fig. 9c), thus indicating 
the good predictive capacity of the model. The second best model (lowest 
amplitude of deviations) was the NFN, for which 94.6% of the absolute 
deviations were between 0.0 ºC and 0.39 ºC, and the remaining 5.4% of the 
deviations were between the values of 0.4 ºC and1.0 ºC (fig. 9d). The RMs and 
FMs performed similarly, for which 84.6% and 83.6% of the absolute deviations 
were found in the interval from 0.0 ºC to 0.39 ºC, and the remaining 15.4% and 
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16.4% of the absolute deviations were between the values of 0.4 ºC and 1.0 ºC 
(figs. 9a and 9b), respectively.  

Similarly, the model predicting the means of the combined dataset of RR 
based on ANNs had 93.4% of absolute deviations between the values of 0.0 and 
9.9 respirations min-1; the remaining 6.6% of the deviations were between the 
values of 10.0 and 30.0 respirations min-1 (fig. 10c). For the NFN, the model that 
showed the second best performance, 90.2% of the absolute deviations were 
between the values of 0.0 and 9.9 respirations min-1, and the remaining 9.8% of 
the deviations were between the values of 10.0 and 30.0 respirations min-1 (fig. 
10d). For the FMs and RMs, 80.4% and 72.1% of the absolute deviations were 
observed between the values of 0.0 and 9.9 respirations min-1, and the remaining 
19.6% and 27.9% were between the values of 10.0 and 30.0 respirations min-1, 
respectively (figs. 10b and 10a). 

The capacity for the prediction of trectal by the ANN-based model 
developed in this study was similar to or greater than that in the literature (table 
6), emphasizing that the published studies used fewer statistical resources for the 
evaluation of the proposed models. For the RR, the fitted ANN presented an R2 
similar to or greater than the models reported in the literature (Brown-Brandl et 
al., 2005); however, the average absolute deviation was less than that of the best 
models obtained by the previously quoted authors (table 6). This finding was 
attributable to the greater quantity of variables used by these authors, such as air 
velocity and radiation, which directly affect the physiological responses of the 
animals, particularly the RR, which naturally has greater variability than trectal. 

 
6. Conclusions 

  
 Of the models developed, those based on ANNs and NFN showed, in 
that order, the fewest prediction errors, and the average standard deviations were 
0.1ºC and 0.2ºC for the trectal and 3.2 respirations min-1 and 5.2 respirations min-1 
for the RR, respectively. These values correspond, respectively, to average 
percentage errors of 0.4% and 0.6% for the trectal and 8.7% and 14% for the RR. 
The frequencies of occurrence of the standard deviations for the trectal for ANN 
and for NFN for the range from 0 ºC to 0.39 ºC were 97.7% and 94.6%, 
respectively. For the RR, we observed values of 93.4% and 90.2% for the range 
from 0 to 10 respirations min-1, respectively. Thus, the models based on ANNs 
and NFNs can be used to predict the trectal and RR for Holstein dairy cows and 
can thus aid in the decision-making process.  
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APPENDIX A 

Appendix A. Developed regression models. 

Coefficients of Determination (R2). 
70% 

Analysis 
data 

4·673 obs. 

30% 
validation 

data. 
2·003 obs. 

100% test 
data. 

427 means. 
Developed regression models. 

trectal RR trectal RR trectal RR 
1) y = a + b·tdb + c·RH 0·211 0·274 0·185 0·237 0·404* 0.443 

2) y = a + b· tdb · RH 0·200 0·158 0·182 0·127 0·330* 0·056* 
3) y = a + b·  tdb+ c· RH + d·(  tdb · RH) 0·211 0·276 0·188 0·237 0·403 0·430 
4) y = a + b· t2

db + c·R2
H 0·215 0·272 0·183 0·238 0·410* 0·437* 

5) y = a + b· tdb+ c· RH + d·( tdb ·RH) 2 0·214 0·283 0·194 0·245 0·389* 0·382* 

6) y = a + b·t2
db + c· RH 0·218 0·271 0·192 0·236 0·436* 0·438* 

7) y = a + b· tdb+ c·R2
H 0·209 0·275 0·178 0·239 0·389* 0·443* 

8) y = a + b· tdb · RH + c·( tdb· RH) 2 0·208 0·173 0·185 0·149 0·324 0·043* 
9) y = a + b· tdb+ c· t2

db 0·110 0·263 0·095 0·226 0·113 0·437 

10) y = a + b· tdb + c· t2
db + d· t3

db 0·110 0·263 0·095 0·226 0·113 0·437 

11) y = a + b· tdb+ c·RH + d·R2
H 0·211 0·275 0·187 0·242 0·403 0·442* 

12) y = a + b· tdb+ c·RH + d· R2
H + e· 

R3
H 0·217 0·276 0·193 0·242 0·386* 0·436* 

13) y = a + b· tdb 0·096 0·258 0·123 0·234 0·115* 0·437* 

14) y = a + b· tdb+ c· RH + d·t2
db 0·217 0·264 0·195 0·258 0·440 0·445* 

15) y = a + b·  tdb + c· RH + d· t2
db + e· 

R2
H 0·216 0·276 0·207 0·242 0·444* 0·443 

16) y = a + b· t2
db + c· RH  + d· R2

H 0·218 0·260 0·203 0·263 0·438 0·437 

17) y = a + b·  tdb+ c· RH + d· t2
db + R2

H 
+ f·(  tdb · RH) 0·224 0·284 0·211 0·291 0·420* 0·366* 

18) y = a + b· RH+ c· t2
db + d· R2

H  + 
 e·( tdb· RH) 0·220 0·276 0·191 0·274 0·433 0·420 

tdb,drybulb temperature. RH, relative humidity.trectal, rectal temperature. RR, respiratory rate. (a,b,c,d), variables coefficients. obs, 

observed. *, all coefficients are significant (P<0.05). 


