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ABSTRACT

The objectives of this study were to develop and validate decision support
systems using systems based on artificial intelligence: fuzzy logic, artificial neural
networks, neuro-fuzzy networks, and regression models for the prediction of rectal
temperature and respiratory frequency of dairy cows in confinement. All systems
were developed based on two input variables: dry bulb air temperature (#;) and
relative humidity (RH), with rectal temperature (#...,;/) and respiratory rate (RR) as
output variables. The fuzzy inference system was carried out using the Mamdani
method, which consisted of elaborating 192 rules and defuzzification through the
center of gravity. Data obtained from the literature and data observed in the field
were used to manufacture the artificial neural network and the neuro-fuzzy network,
where membership functions of the neuro-fuzzy system were of the triangular type.
The regression models were developed in computing environment R. Experimental
results were used to validate the models, and showed that the average standard
deviations between the simulated and measured values of .., for the regression
model, the fuzzy system, the artificial neural network and the neuro-fuzzy network
were 0.2 °C, 0.1 °C, 0.1 °C and 0.2 °C, respectively. For the values of RR, the
average standard deviations were 5.0, 4.3, 3.2, and 3.5 breaths min” for the
regression model, fuzzy model, artificial neural network and neuro-fuzzy network,
respectively. Of the models developed, the artificial neural network and the neuro-
fuzzy network showed the fewest prediction errors; therefore, these models are the
most suitable for the prediction of rectal temperature and respiratory rate on the
basis of the two climatic variables (¢4 and RH), and can be used in decision support.

Keywords: Physiological performance. Computational models. Dairy cattle.



RESUMO

Os objetivos do presente estudo foram desenvolver e validar sistemas de
suporte a decis@o, utilizando os sistemas baseados na inteligéncia artificial:
logica fuzzy, as redes neurais artificiais, rede neuro-fuzzy, e, modelos de
regressdo, para a predi¢do da temperatura retal e da frequéncia respiratoria de
bovinos leiteiros em confinamento. Todos os sistemas foram desenvolvidos com
base em duas variaveis de entrada: temperatura de bulbo seco (#) € a umidade
relativa do ar (UR), tendo como varidveis de saida a temperatura retal (#../) € a
frequéncia respiratoria (FR). A inferéncia do sistema fuzzy foi realizada por meio
do método tipo Mamdani, que consistiu na elaboragdo de 192 regras ¢ a
defuzzificagdo por meio do Centro de Gravidade. Para a confeccdo da rede
neural artificial e da rede neuro-fuzzy, foram utilizados dados obtidos da
literatura e dados observados em campo, sendo que as fungdes de pertinéncia
para o sistema neuro-fuzzy foram do tipo triangular. Os modelos de regressdo
foram desenvolvidos no ambiente computacional R. Resultados experimentais
usados para a validagdo dos modelos, mostraram que os desvios padrdes médios
entre os valores simulados e medidos da ¢, para o modelo de regressdo, para o
sistema fuzzy, para a rede neural artificial e para a rede neuro-fuzzy foram de
0-2°C, 0-1°C, 0-1°C e 0-2°C, respectivamente. Para os valores da FR os desvios
padrdes médios foram de 50, 4-3, 3-2 ¢ 5-2 respiragdes min™' para o modelo de
regressdo, sistema fuzzy, rede neural artificial e rede neuro-fuzzy,
respectivamente. Dos modelos desenvolvidos, os que apresentaram menores
erros de predicdo foram a rede neural artificial e a rede neuro-fuzzy, portanto,
estes modelos sdo os mais indicados para a predi¢do da temperatura retal ¢ a
frequéncia respiratoria com base em duas varidveis climdticas (¢, ¢ UR),
podendo ser utilizados como suporte a decisao.

Palavras Chave: Desempenho fisiolégico. Modelos computacionais.
Bovinocultura.
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FIRST PART
1. INTRODUCTION

This work is divided into two parts; in the first, the reader can obtain
information on the issues related to ambient conditions and their effects on the
welfare of confined animals (theoretical reference), along with specific
information about welfare, thermal comfort, comfort and discomfort for cattle,
the implications of thermal discomfort on cattle, the classification of existing
thermal comfort indices and those that are specific to cattle, and information
about the models developed in this work. In the second part, the reader will find
the article submitted to the Journal of Biosystems Engineering, belonging to the
Engineering IV area — Modeling of biological systems. This article includes a
short introduction to the topic, a theoretical summary about the subject, the
purpose of the research, the material and methods used for its development, and
the results, discussion, and conclusions.

The justification for the development of this research will be addressed
in subsequent paragraphs at either a national or regional level.

Cattle are homeothermic animals; in other words, they are animals that
maintain their body core temperature at an approximately constant level via
control processes of heat dissipation when subjected to fluctuations occurring in
the external environment (BAETA; SOUZA, 2010; NAVARINI et al., 2009;
PERISSINOTTO, 2007).

Because of this, the production environment for the animal has a key
role in ensuring appropriate climatic conditions for animal production, where the
boundaries are characterized by the thermoneutral zone (CURTIS, 1983). In this
zone, the animal reaches its maximum potential and the body temperature is

maintained with minimal use of thermo-regulator mechanisms.
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When environmental conditions are not within appropriate limits the
environment becomes uncomfortable. In this situation, when the temperature
exceeds the comfort range, cattle combat thermal stress having a lower feed
intake, show sweating and panting (HOLTER; WEST; McGILLIARD, 1997),
and lose too much sodium and potassium in the sweat and urine (PIRES;
CAMPOS, 2008).

In this context, the goal of this work was to develop and validate models
of regression (one) based on artificial intelligence (three: fuzzy logic, artificial
neural networks and neuro-fuzzy networks) for the prediction of rectal

temperature and respiratory rate of Holstein dairy cows.

2. THEORETICAL REFERENCE

2.1 Animal welfare

Among the various proposals for the definition of animal welfare,
Broom (1991) defined welfare as the state of an individual in relation to its
environment, being dependent on the body’s ability to respond or adapt to the
environment. Hurnik (1992) characterized the term welfare as optimal
physiological and physical conditions and high quality of life of the animal. For
Phillips (2002), the welfare of an animal mainly refers to its ability to deal with
both its external environment, including housing, climate, and the presence of
other animals, and its internal environment, such as specific pains, fever, and
nutritional status.

The Farm Animal Welfare Council (FAWC, 2011) recognizes the term
welfare through five freedoms inherent to animals: physiological freedom
(absence of hunger and thirst), environmental freedom (adapted buildings),

health freedom (absence of disease and fractures), behavioral freedom (ability to
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express normal behavior), and psychological freedom (absence of fear and
anxiety).

Furthermore, several approaches have been used to determine levels of
animal welfare, in which all of the criteria are based on some demonstrated
evidence of a change in physical (growth and health), mental (pleasure or pain)
or naturalness attributes that reflect the proximity or distance of the natural
environment (APPLEY; WEARY, 2000). Another factor that influences the
assessment of welfare is the environmental factor, which, according to Baldwin
(1979), can be divided into social, physical, and management aspects. According
to the Handbook of Fundamentals of American Society of Heating and
Refrigeration and Air-conditioning Engineers — ASHRAE (2009) — the physical
environment covers meteorological elements that affect the mechanisms of heat
transfer, regulation and the balance between the animal and the environment,
which exerts a strong influence on the performance and health of animals.

According to Baéta and Souza (2010), the external environment of an
animal comprises all physical (space, light, sound, and equipment), chemical
(gases present in the atmosphere), biological (nature of feed material), social
(number of animals per area, behavior and hierarchy), and climate (temperature,
relative humidity, the movement of air, and radiation) factors that interact with
the animal.

Welfare is assessed through behavioral and physiological indicators. An
animal that is not maintained under optimal welfare conditions will not develop
its full reproductive potential, even if health and nutritional conditions are
apparently satisfied. The goal of confinement systems is to reduce energy loss
and animal work and to gain space and environmental control; however,
according to Machado Filho (1998), such systems can generate inappropriate
conditions such as, for example, limited space, a high stocking density, the

presence of microorganisms, inadequate temperature and lighting conditions,
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noise, and worsening behavioral problems, preventing an animal from behaving
naturally.

The assessment of animal welfare in agricultural production may
involve aspects relating to the facilities, management and the environment, such
as the distribution of water and food, the existence of beds, possibilities of
movement, rest, contact between animals and reproduction, temperature,

ventilation, light, and available space or pavement type, among others.

2.1.1 Thermal comfort

Thermal comfort can be defined as being the state of the spirit that
reflects satisfaction with the thermal environment that surrounds the animal
(RODRIGUEZ, 2003).

Heat stress is caused by a combination of environmental conditions that
result in a larger effective temperature of the environment than an animal’s
thermo-neutral zone (PIRES; CAMPOS, 2008). According to Niis (2000), four
factors influence increases in the effective temperature of the environment: dry
bulb temperature, relative humidity, radiation, and wind speed.

According to Navarini et al. (2009), factors such as the availability of
water and shade, the animal’s body temperature, and behavior under different
temperature conditions, which directly affect the sensitivity of thermal heat
exchange (conduction, skin convection and radiation) and latent heat losses
(cutaneous evaporation) to the environment, can cause thermal stress in animals,

which can cause serious problems in both animal production and breeding.
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2.1.2 Ranges of comfort and discomfort for cattle

According to Miiller (1989) and Rodriguez (2003), defining the
temperature limits of the comfort zone is a difficult task because they depend on
several variables such as air temperature, relative humidity, wind, and solar
radiation, which vary according to the location, time of year, and time of the
day. In addition, they also depend on the animal’s age, the housing density, the
breed, nutritional conditions, management, and the conditions of installations
and equipment.

Great variation exists in the literature regarding the temperatures that
denote the thermo-neutral zone of dairy cattle (ARAUJO, 2002). According to
the results of an experiment by Baéta (1985), for European bovine animals under
conditions of relative humidity of 50% and a wind speed of 0.5 m s™, the
thermal comfort zone ranges from 11 °C to 25 °C.

Youlsef, (1985), Roenfeldt, (1998), stated that the thermoneutral zone
for dairy cattle varies from 5 and 25°C. Silva (1998) stated that for dairy cattle
the comfort zone varies from 18 to 21 °C, while heat and cold stress occur at 4
°C and 28 °C, respectively. For beef cattle, the comfort zone varies from 22 °C
to 26 °C, while heat and cold stress occur at 4 °C and 30 °C, respectively. In
turn, Fuquay (1981), considered that the upper critical temperature for dairy
cattle is between 25 and 27°C. For Baéta and Souza (2010), they stated that
thermal comfort zone for dairy cattle (adult European) is -1 and 16°C.

For the case of thermal comfort through physiological responses (¢.ca
and RR), was founded the works of Perissinotto (2007, p. 66) and Perissinotto et
al. (2009), where they proposed a linguistic characterization (table 1) of the
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thermal comfort sensation of Holstein dairy cows as a functionality of #....; and

RR based on a wide literature review.

Table 1. Linguistic characterization of thermal comfort sensation as a
function of t,...; (°C) and RR (breaths.min'l).

Respiratory rate (RR — breaths.min™)

Rectal temperature

(treetat - °C) High comfort Medium comfort Low comfort
recta (<56) (> 56 —< 64) > 64)
High comfort
(< 38.8) Very good Good Regular
1\(/I>6(3118u§1_c2?r,1;f(2)§t Good Regular Bad
Low comfort Regular Bad Bad

> 39,2)

Font: Perissinotto et al. (2009).

2.1.3 Implications of thermal discomfort in dairy cattle

When environmental conditions are not within appropriate limits, the
animal becomes uncomfortable. According to Harner et al. (2009), in this
situation, when the temperature exceeds the recommended range, dairy cattle
combat thermal stress having a lower feed intake (HOLTER et al., 1997) and
show sweating and panting. These mechanisms increase the energy costs of
livestock, resulting in up to 35% more food being required for their maintenance
(NRC, 1981). When the consumption of dry matter decreases during thermal
stress, milk production also decreases. A dairy cow in an environment of 37.7
°C shows milk production reduction of 50% or more when compared with
thermoneutral conditions (COLLIER, 1985), which can result in a loss of
production. In addition, animals under thermal stress conditions also suffer from

changes in rectal temperature and respiratory rate (PERISSINOTTO; MOURA,
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2007). According to Silva et al. (2002), the Holstein breed shows a decrease in
milk production above 24 °C, although Swiss and Jersey breeds have a
somewhat greater tolerance because they show good performance in

temperatures up to 27 °C.

2.2 Thermal comfort indices

In view of these factors, some authors have developed so-called thermal
comfort indices, which can be classified according to Néés (1998) depending on
the way that they were developed: biophysical indices (their development is
based on the exchange of heat between the body and the environment,
correlating elements of comfort with the heat exchange that originate);
physiological indices (based on physiological relationships caused by known
conditions of air temperature, average radiant temperature, air humidity, and
wind speed), and subjective indices (based on subjective sensations of comfort
obtained under experimental conditions where the elements of thermal comfort
vary). In the case of dairy cattle, some of the indices used are temperature and
humidity indices (THI), as proposed by Thom (1959); the effective temperature
index, adjusted by Bianca (1963); the black globe temperature and humidity
index (BGTHI) developed by Buffington et al. (1981); the enthalpy index,
described by Villa Nova (1999, cited by FURLAN, 2001) and the equivalent
temperature index (ETI), proposed by Baéta (1985).

2.3 Mathematical modeling

According to Bassanezzi (2006), mathematical modeling is a dynamic
process used to create and validate mathematical models, as well as a form of
abstraction and generalization with the purpose of predicting tendencies. For the

author, a mathematical model is a set of symbols and mathematical relationships
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that in some way represent the object being studied. For McLone (1976, cited by
BASSANESSI, 2006) a mathematical model is a “simplified abstract
mathematical construct that represents a portion of reality with some particular
goal”. In turn, for Tedeschi (2005), “Models are mathematical representations of
mechanisms that govern natural phenomena that are not fully recognized,
controlled, or understood.”

Models can be formulated in accordance with the nature of the
phenomena or situations to be analyzed and they can be classified into linear or
non-linear (depending on the basic equations) (BASSANEZZI, 2006), static
(representing the shape of the object) or dynamic (simulates variations in the
stages of the phenomenon) (BALDWIN, 1995; BASSANEZI, 2006),
educational (based on small numbers or simple assumptions), applicable (based
on realistic assumptions involving a large number of variables) (BASSANEZI,
2006), stochastic (describes the dynamic system in probabilistic terms) or
deterministic (assumes that if there is enough information about a system at a
given instant of the process then the whole future of the system can be precisely
predicted) (BALDWIN, 1995; BASSANEZI, 2006), empirical (based only on
correlations or associations between two or more variables, without taking into
account the mechanisms that control the phenomenon) or mechanistic (attempts
to explain or describe the mechanisms involved, based on the laws of physics,
chemistry, and biochemistry etc.) (BALDWIN, 1995).

In addition to these are computational models. Among these models are
fuzzy systems (linguistic - fuzzy rules) (GOMIDE; GUDWIN, 1994), artificial
neural networks (YAMAKAWA, 1993), and hybrid systems, such as neuro-

fuzzy networks.
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2.3.1 Empirical models — simple and multiple linear regressions

The Greek Empeirikos means experience. These models use direct
observations or the results of experiments on a particular phenomenon. In these
types of models the correspondence between input and output variables is tested
regardless of the phenomenon or process (BALDWIN, 1995).

According to Rondon et al. (2002), the difficulty in defining the
mechanisms involved in biological phenomena means that the majority of the
proposed animal models are empirical. These models are created from data
collected in experiments and are used for certain functions, such as predicting
the growth of broilers (IVEY, 1999) or the thermal indices of productivity for
broilers (MEDEIROS et al., 2005), or calculating the superficial area of broilers
(SILVA et al., 2009), among other applications.

2.3.2 Fuzzy models

Aspects related to the difficulties encountered in analyzing large
amounts of information and its complexity are found in the production of
agricultural systems. Therefore there is a need to seek mathematical
methodologies that incorporate specialist, subjective knowledge, enabling the
simulation of situations for decision support (AMENDOLA; SOUZA;
BARROS, 2005).

Basically, these models are divided into two types: the Mandani
(MANDANTI; ASSILIAN, 1975) and Sugeno types (TAKAGI; SUGENO,
1985). The Mandani type model is a kind of fuzzy relational model, where each
rule is represented by the relationship IF-THEN. It is also called a linguistic
model because both the antecedent and consequent are fuzzy propositions

(BABUSKA, 1998). Its structure is developed manually. The output of the
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Mandani type model is a fuzzy membership function based on the rules created
during the modeling process. Mathematically and linguistically, it can behave as

follows:

IfxisAandyis Bthenzis C (1)

where x and y are the system input variables, z is the system output variable, 4
and B are antecedent membership functions, and C is a consequent membership
function.

Generally, software programs for the implementation of this type of
models use the Centroid method for defuzzification, which can be considered a
weighted average where the weights are represented by pa (xi), which indicates
the degree of membership of the value x; with the concept modeled by the fuzzy

output set 4, and which, in its compound shape, is calculated by:

7= Ue(z)z0z
Ue(z)0z

2

where Z is the consequent variable and u.(z) is the function of the composed
shape. The result of the defuzzification process Z can be continuous or discrete

(BARROS; BASSANEZI, 2006; TANAKA, 1997).
The Sugeno type model (TAKAGI; SUGENO, 1985): for a system with

two input variables and one output variable, the system is as follows:

Ifxis 4 and y is B then z= f (x, ») 3)
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where x and y are the input variables, z is the output variable, 4 and B are
antecedent membership functions, and f (x, y) is a crisp function in the
consequent. Usually, this function is a polynomial of the input variables x and y.
As an example it can be cited the case of the first-order polynomial, which is

expressed as follows:

Z=px+tqy+nr “4)

Defuzzification is expressed as a weighted average Z of the consequent

functions:

I )

Where W is the rule firing strength and z is a consequent function output.

2.3.3 Artificial neural networks

Neural networks are highly sophisticated pattern recognition systems
capable of learning relationships in patterns of information (data) (BROWN-
BRANDL; JONES; WOLDT, 2005). These neural networks are sets of
mathematical algorithms used in processing elements (PEs) arranged to imitate
the complexity of non-linear and parallel mechanisms involved in the
interpretation of information by biological neural networks (BATCHELOR et
al., 1997).

Generally, an artificial neural network is composed of multiple
processing units called neurons, which have a fairly simple function. The

neurons are connected by communications channels that are associated with a
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particular weight (W); in turn, these only can make operations with local data:
entries that are received by their connections. This type of model is adaptive and
trainable; it can work with complex domains (non-linear problem cases), it does
not need to have complete information to perform its process of generalization,
and it is robust and has a great parallelism; thus, this type of model also has a
fast processing speed (VON ZUBEN, 2003).

In order to build models with this type of technology, sets of pairs of
data (input (s) and output (s)) in the form of vectors or matrices should be used
in order to train them to select the transfer function applied to each
interconnection between two neurons and to define the rules of learning through
training. The artificial neural network produces its own output vectors, which
are compared with the training output vectors (supervised training). If the degree
of accuracy between the neural network output and training output vectors is not
satisfactory, the neural network applies learning rules to adjust the weights of
interconnections and subsequently repeats the comparison until the accuracy
criterion proposed by the user between two vectors is satisfied.

There is a variety of strategies for the training of neural networks, but
the most frequently used is the back-propagation training algorithm.
Mathematically, it can be expressed as the answer O of each neuron i to input

signals of / from the connecting neurons j using equation 6:
0= (3w, + ) ©

The transfer function f can be linear or non-linear. The most commonly
used functions are sigmoidal and hyperbolic tangents. The learning process
starts with randomly initialized weights. Errors associated with output neurons
are transmitted from the output layer to the input layer through hidden layers

using the back-propagation algorithm; therefore, in order to minimize errors,
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weights are adjusted at the end of each back-propagation cycle (BRARATH;
DROSEN, 1994). In order to prevent overfitting or overtraining, a strategy
must be implemented that stops training at the time the network has the lowest
global error, avoiding increasing the error rate again, which is included in order
to enhance the ability of networks to generalize (good performance on new data

or unknown) (ANDERSON et al., 1999).

2.3.4 Neuro-fuzzy networks

Neuro-fuzzy networks take advantage of the learning ability of neural
networks and use fuzzy systems to process the knowledge clearly. The final
solution of a neuro-fuzzy network can be interpreted as a Sugeno-type fuzzy
inference system (Section 2.3.2). Basically, the operation of this type of system,
is the same as that of neural networks, except that when a neural network
“learns”, it modifies the sets and rules of the fuzzy inference system
(membership functions); this way, the system reaches the slightest possible error
taking advantage of the learning ability of networks through pattern recognition
(JANG, 1993; JANG; SUN, 1995).

A neuro-fuzzy network based on the LOLIMOT algorithm (local linear
model tree) works with the decomposition of input space in subspaces. Each
subspace corresponds to a local linear model. The network output is calculated
by adding the results of each local linear model, with its validation function,
which can be obtained through a weight function. Each linear model, with its
validation function, corresponds to a fuzzy neuron (NELLES; ISERMANN,
1996).
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3. GENERAL CONSIDERATIONS

The final considerations of this work are as follows:

1.

The prediction of #..y and RR of Holstein dairy cows provides
primordial information for decision making related to the handling and
care of animals because they are direct measures that help in the

classification of thermal comfort conditions.

A comparison between models based on regression and artificial
intelligence enables the choice of which has the best performance,

making predictions more realistic.
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ABSTRACT

The goal of the present study was to evaluate techniques for modeling
the physiological responses, rectal temperature, and respiratory rate of black and
white Holstein dairy cows. Data from the literature (792 data points) and
obtained experimentally (5.884 data points) were used to fit and validate the
models. Each datum included dry bulb air temperature, relative humidity, rectal
temperature and respiratory rate. Three models based on artificial intelligence -
fuzzy logic, artificial neural networks, and neuro-fuzzy networks - and one
based on regression were evaluated for each response variable. The adjusted
models predict rectal temperature and respiratory rate as a function of dry-bulb
air temperature and relative humidity. The adjusted models were compared
using statistical indices. The model based on artificial neural networks showed
the best performance, followed by the models based on neuro-fuzzy networks,
fuzzy logic, and regression; the last two performed similarly.

Keywords: Physiological performance; Computational models; Dairy cattle.
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RESUMO

Objetivou-se, com o presente trabalho, avaliar técnicas de modelagem
para predigdo de respostas fisioldgicas, temperatura retal e frequéncia
respiratdria, de vacas leiteiras de raga holandesa branca e preta. Dados oriundos
da literatura (792 dados) e obtidos experimentalmente (5.884 dados) foram
usados no ajuste e validacdo dos modelos. Cada dado foi composto por valores
de temperatura de bulbo seco do ar, umidade relativa, temperatura retal e
frequéncia respiratoria. Trés modelos baseados em inteligéncia artificial (l6gica
fuzzy, redes neurais artificiais e redes neuro-fizzy) e um de regressao foram
avaliados para cada variavel resposta. Os modelos ajustados predizem a
temperatura retal e frequéncia respiratéria em fungdo da temperatura de bulbo
seco do ar e da umidade relativa do ar. Os modelos ajustados foram comparados
entre si por meio de indices estatisticos. O modelo baseado em redes neurais
artificiais apresentou o melhor desempenho, seguido pelos modelos baseados em
rede neuro-fuzzy, logica fuzzy e o modelo de regressdo; os dois ultimos
apresentaram desempenhos similares.

Palavras Chave: Desempenho fisioldgico. Modelos computacionais.
Bovinocultura.

1. Introduction

In 2009, Brazil was considered the fifth leading producer of milk in the
world, with an annual production of 30.4 billion liters of milk, and the state of
Minas Gerais led production for the country (EMBRAPA, 2011). The previously
mentioned growth was accompanied by an increase in internal consumption per
capita of approximately 1.59% annually and by an increase in exports (Gama,
2010). Brazil is located in an intertropical zone, with hot and humid climates,
where the likelihood of animals suffering thermal stress is high, especially for
bovines of European breeds (Souza, Ndis, Marcheto, Salgado, 2004).Therefore,
there is great interest in the development of tools that can aid in decision making
with regard to environmental conditions that directly or indirectly affect milk
production, as is the case for thermal stress.

New models being developed for the livestock industry are characterized by
the adoption of technologies based on principles of sustainable production, with
an emphasis on animal comfort and well-being, considering that these animals
were chosen for their ability to adapt to the soil and climate conditions
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(edaphoclimatic conditions) of each region (Pires & Campos, 2008). According
to Silva, Pandorfi, Piedade, and Moura (2002), environmental conditions are
directly related to the microclimate in facilities, thus influencing the thermal
comfort of the animals that are housed there. The ideal temperature for milk
production varies according to the breed of the cattle, its level of production, and
its level of tolerance to heat or cold; Holsteins, in particular, reduce production
beginning at 24°C.

The environment for dairy cattle plays a fundamental role in obtaining the
proper climatic conditions for animal production, the limits of which bound the
zone of thermoneutrality (Curtis, 1983). Within this zone, the animal reaches its
maximum potential, and body temperature is maintained with minimal use of
thermoregulatory mechanisms. When conditions are not within these proper
limits, the environment becomes uncomfortable. Under conditions of heat stress,
which are more frequent in Brazil and intertropical countries, dairy cows reduce
their feed intake and consequently their milk production (Harner, Smith,
Bradford, Overton, Dhuyvetter, 2009). Sweating and panting are some of the
mechanisms these animals use to relieve thermal stress.

In addition to these consequences, the animals lose considerable amounts of
sodium and potassium through sweat and urine (Pires & Campos, 2008) and
suffer changes in rectal temperature (t..) and in respiratory rate (RR)
(Perissinotto & Moura, 2007). Also, there is evidence that heat stress on cattle
reduces future productivity, even if environment conditions are returned to
acceptable levels (Curtis, 1983; Kazdere, Murphy, Silanikove, Maltz, 2002;
West, 2003; Hansen, 2007).

For these reasons, the development of models that assist dairy producers in
making decisions to maintain the production environment within the zone of
thermoneutrality for the animals, thus obtaining maximum production, is
critical. The tools include empirical mathematical models, such as regression
models (RMs), fuzzy models (FMs) (Perissinotto, 2007; Perissinotto et al.
2009), artificial neural networks (ANNs) and neuro-fuzzy networks (NFNs), and
can assist in the control of ventilation and evaporative cooling systems.

1.1 Regression models

RMs use direct observation or the results of experiments concerning a
particular phenomenon to demonstrate a correlation between input and output
variables, without explaining the phenomena or processes involved (Baldwin,
1995). Thus, RMs consist of fitting statistical models to the data, with the goal
of describing the behavior of dependent variables (output variables) as a
function of a set of independent variables (input variables).
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RMs have been applied in various studies, for example, to predict the
growth of broilers (Ivey, 1999), thermal indices for the productivity of broilers
(Medeiros et al., 2005), the surface area of broilers (Silva et al., 2009), t,¢c/0; OF
broilers (Ponciano; Yanagi Junior, Schiassi, Lima, Texeira, 2012), and thermal
comfort in cattle (Brown-Brandl, Jones, Woldt, 2005).

1.2 Fuzzy models

FMs are based on fuzzy logic (FL), which is founded in the theory of fuzzy
sets (Gomide & Gudwin, 1994) introduced by Zadeh (1965). FL works with
approximate rather than exact information (Ferreira, 2009), similar to human
reasoning (imprecise reasoning), to achieve precision in various applications to
reduce the time needed for modeling. Having defined the study to be performed,
it is necessary to define the input and output variables that will constitute the FM
(Perissinotto, 2007; Pereira, Bighi, Gabriel Filho, Gabriel, 2008). For each
variable, fuzzy sets are developed to characterize it, so that a pertinence function
is created for each fuzzy set. These functions indicate to what degree of
pertinence a particular element belongs to a fuzzy set. Next, rules are defined
(system of rules or inference), through which a relationship exists between the
input and output variables with their respective fuzzy sets. Software can be used
to perform all of the procedures required to develop and construct an FM, and
the computational evaluation of any FM consists of fuzzification, inference, and
defuzzification (Oliveira, Amendola, Néis, 2005).

The theory of fuzzy sets has been used as a viable and suitable option in
various areas, such as in the study of thermal comfort or discomfort of birds and
swine (Queiroz, Nads, Sampaio, 2005; Oliveira, Amendola, Niis, 2005; Alves,
2006; Yanagi Junior, Xin, Gates, Ferreira, 2006; Owada, Niis, Moura, Baracho,
2007; Pereira et al. 2008; Ferreira, 2009), cattle (Perissinotto, 2007; Perissinotto
et al. 2009), and humans (Altrock, Arend, Krause, Steffens, Behrens-Rémmler,
1994). Fuzzy sets have also been used in the prediction of estrus in dairy cows
(Ferreira, Yanagi Junior, Nais, Lopes, 2007), inspection systems for chickens
(Yang, Chao, Chen, Kim, Chan, 2006), the prediction of cloacal temperature of
broilers (Ferreira, Yanagi Junior, Lacerda, Rabelo, 2011), statistics (Khashei,
Reza Hejazi, Bijari, 2008; Liang-Hsuan & Chan-Ching, 2009), forensic science
(Liao, Tian, Wang, 2009), studies of pesticide pollution (Gil, Sinfort, Guillaume,
Brunet, Palagos, 2008), industrial applications (Meier, Weber, Zimmermann,
1994), and in data analysis, specialist systems, control, and optimization
(Gomide & Gudwin, 1994; Ribacionka, 1999; Lopes, 1999; Cho, Chang, Kim,
An, 2002; Weber and Klein, 2003, Castafieda-Miranda, Ventura-Ramos, Del
RocioPeniche-Vera, Herrera-Ruiz, 2006; Chao, Gates, Sigrimis, 2000), among
many other applications.
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1.3 Artificial neural networks

According to Tsoukalas and Uhrig (1997), an ANN is a data processing
system composed of a large number of highly interconnected simple processing
elements (artificial neurons) in an architecture inspired by the structure of the
cerebral cortex. Thus, ANNSs are inspired by the functioning and structure of
biological neurons and are trained by running patterns through the network,
making it possible to identify the relationships between variables with no a
priori knowledge (Roush, Cravener, Kochera Kirby, Wideman, 1997).
Mathematically, ANNSs are universal approximators that perform mapping
between two variable spaces (Hornik, Stinchcombe, White, 1990).

ANNs are currently being applied in various fields of knowledge, and their
use is generally linked to searching for patterns and techniques for temporal
forecasts for decision making. This approach is being used in fields such as
aviculture (Lopes, Ferreira, Yanagi Junior, Lacerda, 2008), applied geography
(Spellman, 1999), thermal sciences and engineering (Yang, 2008), hydrology
(Kurtulus & Razack, 2010), the study of thermal comfort in cattle (Brown-
Brandl, Jones, Woldt, 2005), growth performance in swine (Bridges, Gates,
Chao, Turner, Minagawa, 1995) and in humans (Moustris, Tsiros, Ziomas,
Paliatsos, 2010). ANNs have been used to analyze the sensitivity of a
mechanical system for poultry catching (Jaiswal, Benson, Bernard, Van
Wicklen, 2005), quantification of odours from piggery effluent ponds (Sohn,
Smith, Yoong, Leis, Galvin, 2003), classify apples by their textural features
(KavdIr & Guyer, 2004), discriminating varieties of tea plant (Li & He, 2008),
daily stream flow prediction (Nayebi, Khalili, Amin, Zand-Parsa, 2006),
simulate runoff and sediments yield (Agarwal, Mishra, Ram, Singh, 2006),
residual soil nitrate prediction (Gautam, Panigrahi, Franzen, Sims, 2012),
discrimination of apricot cultivars by gas multisensor array (Parpinello, Fabbri,
Domenichelli, Mesisca, Cavicchi, Versari, 2007), estimate leaf chlorophyll
concentration in rice under stress from heavy metals (Liu, Liu, Li, Fang, Chi,
2010), modelling total volume of dominant pine trees in reforestations
(Diamantopoulou & Milios, 2010), in ortho-phosphate and total phosphorus
removal prediction in horizontal subsurface flow constructed wetlands (Akratos,
Papaspyros, Tsihrintzis, 2009), predicting the draught requirement of tillage
implements in sandy clay loam soil (Roul, Raheman, Pansare, Machavaram,
2009), prediction of nitrate release from polymer-coated fertilizers (Du, Tang,
Zhou, Wang, Shaviv, 2008), and in near infrared spectral analysis (Wang &



41

Paliwal, 2006). ANNSs have also found to be useful in construction (Argiriou,
Bellas-Velidis, Balaras, 2000) and in demand analysis in the form of forecasting
(Efendigil, Oniit, Kahraman, 2009), among many other applications.

The MultiLayer perceptron (MLP) is the most commonly used
architecture for developing an ANN (Fausset, 1994; Barreto, 2002; Von Zuben,
2011) and contains input, hidden, and output layers.

1.4 Neuro-fuzzy networks

NFNs take advantage of the learning abilities of ANNs and use fuzzy
systems to process knowledge in a clear way. The final solution of the NFN can
be interpreted as a fuzzy inference system (FIS) of the Sugeno type. Various
studies have been performed in different areas using these hybrids (ANNs and
FL), including human thermal comfort (Chen, Jiao, Lee, 2006), control and
automation systems (Cheng-Hung, Cheg-Jian, Ching-Teng, 2009), the decision
support system for demand forecasting (Efendigil, Oniit, Kahraman, 2009),
thermal comfort for birds (Ferreira, 2009), the prediction of #,..,; of broilers
(Ferreira,Yanagi Junior, Lopes, Lacerda, 2010), in statistics (Khashei, Reza
Hejazi, Bijari, 2008), in hydrology (Kurtulus & Razack, 2010), to analyze
livestock farm odour (Pan & Yang, 2007), and in robotics (Zacharia, 2010).

2. Objective

The objective of this study was to develop and validate RMs and models
based on artificial intelligence to predict the #,...; and RR for black and white
Holstein dairy cows kept in confinement as a function of the two meteorological
variables dry bulb air temperature (z;) and relative humidity (RH).

3. Material and methods

3.1. Datasets

A database was generated containing the raw data for #;, RH, teca1, and RR
for black and white Holstein dairy cows. These data were chosen because the
authors quoted in table 1, worked in common with these four variables.
Although some of these authors also measure wind speed, black globe
temperature, black and white coat temperature and milk production, the amount
of data wasn’t enough to develop some of the proposal models.

To this work, the total dataset called as combined dataset (6,676 pieces of
information) was conformed for data obtained from literature also called as
Literature dataset (792 pieces of information) and data obtained in experiments
conducted by EMBRAPA Dairy cattle, located in the city of Coronel Pacheco,
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state of Minas Gerais, Brazil, also called as Experimental dataset (5,884 pieces
of information). In these experiments, 346 purebred Holstein cows, either
primiparous or multiparous, in different stages of lactation, were used. The data
from the literature were obtained from 128 Holstein dairy cows, for a total of
474 animals measured. The dataset included all seasons of the year, and all of
the locations where data were collected in the Southeastern region of Brazil and
fit the Koppen climatic classification of Cwa, with dry and cold winters and hot
and humid summers (fable ). The data used in this study covered a total period
of six (6) years.

To train, validate and test the models based on artificial neural networks
(ANN and NFN) the total dataset (Combined dataset) was used. This dataset was
randomly divided into three subsets through sub-routines created for this
purpose. These subsets were used to model the ANNs and NFN (training,
validation, and testing). The training set used 70% of the combined dataset
(4,674 independent data points); the sets for validation and testing each used
15% (1,001 data points each), for a total of 2,002 data points from the total set
(combined dataset).

For the models based on Regression and fuzzy logic, the dataset used were
the means of the combined dataset. This dataset had a total of 427 means (216
means of the Literature dataset and 211 means of the Experimental dataset). For
RM these means of combined dataset were randomly divided into two subsets,
one containing 70% of the data for fit (299 pieces of information) and one
containing 30% for validation (128 pieces of information). For fuzzy logic
model, whole dataset of means (427 data points), was used to validate the model.

These percentages of the subsets were chosen because they are the most
common for mathematical modeling of systems (Brown-Brandl et al., 2005).



Table 1. Characteristics related to the data obtained from the literature and obtained through observations (Southeastern
region of Brazil).

Authors [1] [2] [3] [4] [5] [6] [7] [Observed]
. Juiz de Nova . ~ . . ~ .
City. fora, Odessa Pirassununga Sdo Pedro Pirassununga Pirassununga Séo Pedro Juiz de Fora
State MG SP SP Sp SP SP SP MG
Altitude 790 550 630 580 630 630 580 790
(mts).
La(tlst;lde 21°38° 22°42° 21°57° 22°33° 21°57° 21°57° 22°33° 21°38°
L"?\%};“de 43°19° 47018 4727 4738’ 4727 4727 4738’ 43°19°
qu pen Cwa Cwa Cwa Cwa Cwa Cwa Cwa Cwa
Climate
Number of 3¢ ) 2@ 27® P L R L A T 270 200 346 ®
livestock
Season Sum. — . . . . .
study. Winter Sum. Sum. Sum. Spring Spring Sum. Winter Sum. Spring Sum. Winter
s “Efé)"bs' 12.3 N/A N/A. 17.5 16.0 16.0 16.0 5.0 21.0 212 17.0 9.0
;‘ﬁ’slvioaé) 30.7 N/A N/A 33.6 344 38.0 37.0 35.0 35.0 34.1 37.0 334
fgr?;). N/A N/A N/A N/A N/A 24.0 28.0 24.0 40.0 26.2 57.0 58.0
. (1]
R l\g"z‘) N/A N/A N/A NA  NA 950 990 950 93.0 74.8 970 980

N/A, Not available. SP - Sdo Paulo. MG - Minas Gerais. Sum, Summer. [1] (Pires, 1997, em Pires & Campos, 2003). [2] Silva, Pandorfi, Janior, Piedade and Moura, (2002). [3] Martello,
Savastano Junior, Silva and Titto, (2004). [4] Matarazzo, (2004). [5] Matarazzo, (2004). [6] Martello, (2002). [7] Perissinotto, (2003). (1), 258 cows and 88 heifers. (2), N/A. (3) , 7

multiparous (mult.) and 10 primiparous (prim.) between the 2nd and 8th month of lactation. (4), mult. in lactation. (5a), 15 mult. and 3 prim. (5b), 14 mult. and 4 prim. (5c), 18 mult. and 1

prim. (6), stage of lactation between the 2nd and 7th month. (17 mult. and 10prim.). (7), mult. in lactation average of180 days. (8), 346 multiparous cows and primiparous in different stage of

lactation.

[47
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3.2 Mathematical modeling

To develop the models based on artificial neural networks (ANN and NFN)
were used the dataset previously mentioned (Combined dataset), while for RM
and fuzzy logic were used the means of the combined dataset.

Once developed, the models were tested using the minimum, mean, median,
and maximum values; standard deviations; patterns; and percentage errors. Also
calculated were standard errors, coefficients of determination (R?), the root mean
square error (RMSE), the coefficients of regression (slopes), and intercepts for
each of the variables studied (#,.c..; and RR) (table 5). In addition, histograms
(figs. 9 and 10) and graphs of the functional relationships - FRs between (with
line of linear trend) predicted and observed variables (means of the combined
dataset) (figs. 3, 4, 5, 6, 7, and 8) were used to compare the performance of the
proposed models.

3.2.1. Regression models

Eighteen multiple RMs (Appendix A) were fit using the regression
procedure of the statistical software R (R Development Core Team, 2011). All
of the models used the climatic variables (¢, and RH) as input data, and the
output variables were the physiological parameters #,...,,; and RR. The
significance of the models and regression coefficients was tested using the F and
t tests (P<0.05), respectively. The model that exhibited the best fit was selected
(smallest sum of squared deviations).

3.2.2. Fuzzy inference system

This model consists of two input variables (z,, and RH) and two output
variables (#....; and RR). The inference method was of the Mandani type
(Mandani & Assilian, 1975). In this type of FM, a large amount of intervention
is required on the part of the modeler because the FM can be generated with no
experimental data; therefore, data were not used either for training, the total of
means of the combined dataset were used for validation of the model. Because
of the intervention of the modeler, a spreadsheet was used to organize the data
(in this case, the means of the combined dataset — 427 independent data point) to
attempt to establish the set of rules that might explain the behavior of the input
and output variables studied.

3.2.3. Artificial neural net model
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The models based on ANNs were developed using the subsets of data
previously mentioned. The ANN developed possessed two feed-forward layers
that were trained using the back-propagation algorithm. The parameters of the
model include the number of hidden layers (1, the standard value used in various
applications), transference functions in each hidden layer (sigmoidal tangent
“tansig” for hidden layers, the standard value in various applications), the
number of neurons in the hidden layer(s) (a user-modifiable parameter), the rate
of learning, the instantaneous rate, and the weights of the neurons (these
parameters are taken as standard and automatically modified during training of
the network). The model was developed such that the user can train and test the
network independently. The two resulting ANNSs predict the #,...,; and RR from
the input variables (¢, and RH), and each neural net has one output.

3.2.4. Neuro-fuzzy adaptive inference system

The model was also developed using the subsets of data mentioned above.
The application used to develop this model was the fuzzy logic toolbox of
Matlab (MathWorks, Inc, 2009a). This toolbox uses input and output datasets
(sets for training, validation, and testing, each with input and output data), and
the main function of this toolbox is to construct a fuzzy inference system (FIS),
the parameters of which are fit for the pertinence function using two types of
methods (the back-propagation algorithm, either alone or in a hybrid form
combined with the least squares method). This fit allows FMs to learn from the
data being modeled. Similar to the model based on ANNSs, the parameters for
fitting the network can be modified according to the percentage of the dataset
used for training, validation, and testing, as well as in other ways, such as the
generation of the FIS, the training method (back-propagation or hybrid), error
tolerance, or the number of stages. Finally, the possibility exists of testing the
result of the model generated by training the network. The result of this model is
an FIS of the Sugeno type, with only one output.
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4 Results

For this study, we work with two output physiological variables; these
variables are rectal temperature (#,....,;) and respiratory rate (RR). The physical
units of these variables are Celsius degree (°C) and breaths per minute
(breaths.min™), respectively. The balance between gain and heat loss from the
body can be inferred by the #,...,. The measurement of rectal temperature is often
used as an index of physiological adaptability to hot environments, because its
increase shows that the heat loss mechanisms become insufficient (Martello,
2002). In turn, in defense against heat stress, cattle resort to adaptive
physiological mechanisms of heat loss to try to prevent hyperthermia. Thus,
increase the respiratory rate (RR), with tachypnea, in addition to the increase of
the sweat production rate (sweat rate) is an important means to lose heat by
evaporation (respiratory and cutaneous evaporative heat loss). Tachypnea is the
first visible sign in response to heat stress, although situated in third place in the
sequence of the mechanisms of physiological adaptation, because the increase in
peripheral vasodilatation and sweating occur previously (Baccari, 2001).

4.1. Regression models

Of the 18 RMs fit to predict the ¢,....; and RR (Appendix A), the models
represented by Eq. (1) and Eq. (2) had the highest coefficients of determination
(R?), and all of the coefficients of the equations were significant (P<0.05). For
the model estimating #,....; (°C), Eq. (1), 21.6% of the variation in ¢,.., can be
explained by the variation in ¢, (°C) and RH (%) when testing 70% of the data
(4,673 observations) used for fitting; the values were 20.7% when testing 30%
of the data (2,003 observations) used for validation and 44.4% when testing
100% of the data (Appendix A, table 5).

treerar=37.08 (£ 0.12) — 0.02 (£ 0.008) 7, + 0.02146 (+ 0.003) RH + 0.0014 (+
0.00018) 74,7 — 0.000055 (+ 0.0000021) RH’

In turn, 26.4% of the variation in the RR can be explained by the
variation in ¢4 (°C) and RH (%) when testing the 70% of the data used for
fitting; the values were 25.8% when testing 30% of the data used for validation
and 44.5% when testing 100% of the data (dppendix A, table 5).

(1

2)
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RR =7.8 (£2.93) + 0.992287 (+ 0.251) 15+ 0.142209 (£ 0.02) RH + 0.013354
(£ 0.006) t4°

The FRs between the values for #,...,;and RR predicted by the RMs and the
means of the literature dataset, means of the experimental dataset, and the means
of combined dataset (means of experimental and literature datasets) are
illustrated in figures 3a, 4a, Sa and figures 6a, 7a, and 8a, respectively.

4.2. Fuzzy inference system

The result of this fuzzy inference system can be described as a set of
membership functions constructed based on linguistic descriptors of the input
variables (fig. 7). Initially, this model was based on the research developed by
Perissinotto (2007, p.120; Perissinotto et al., 2009), which has 120 rules (tg, = 15
MFs and RH = 8 MFs), but these values of MFs were fit to reduce deviations,
because the model proposed by Perissinotto did not have values lower than
22°C, thus, the model with these configuration (set), had absolute deviations
higher than 1.0 °C. The linguistic expressions established in this model are an
interpretation dependent on the previously organized data, the structural
characteristics of which are listed in table 2.

Table 2. Characteristics of the fuzzy inference system.

System’s characteristics Inputs Outputs

<Name> fuzzy dataset RT

RR

<Type>m [Input 1] [Output 1]
<Number Rules>192 <Name>ty, <Name>t,ccsal
<SNorm>max <Range>9 - 45 <Range>37 - 42
<SNormPar>0.0 <Number MFs>24 <Number MFs>11
<TNorm>min

<TNormPar>0.0 [Input 2] [Output 2]
<Comp>one <Name>RH <Name>RR
<CompPar>0.0 <Range>0 - 100 <Range>28 -108
<ImpMétodo>min <Number MFs>8 <Number MFs>12
<AggM¢étodo>max

<DefuzzMethod>Centroid

m, Mandani type. tdb, dry-bulb temperature. RH, relative humidity. MFs, membership functions.frectal, rectal temperature. RR,

respiratory rate.max, maximum. min, minimum.
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The fuzzy sets of input and output variables are graphically represented
by triangular membership curves (fig. /) because these are the most common
used and represent the profile of the data, as observed by several authors
(Amendola, Souza, Barros, 2005; Yanagi Junior, Xin, Gates, Ferreira, 2006;
Ferreira, Yanagi Junior, Néés, Lopes, 2007; Schiassi, Yanagi Junior, Ferreira,
Damasceno, Yanagi, 2008).



INPUT VARIABLES
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The fuzzy inference was composed of a set of 192 rules (table 3),
stemming from the factorial combination of 24 MFs for ¢, and 8 MFs for RH.
Each rule was composed of logical connectors (if, and, or, then) and the
antecedent and consequent parts. For example, IF x is 4 AND y is B, THEN z is
C, in which 4, B, and C are fuzzy sets; x and y are input variables; and z is the
output variable. Thus, “IF x is 4 AND y is B” is the antecedent part, and “THEN
z1is C” is the consequent part.

The FRs between the values for #,...; and RR predicted by the FMs and
the means of the literature dataset, means of experimental dataset, and the means
of the combined dataset (means of experimental and literature datasets) are
shown in figures 3b, 4b, and5b and figures 6b, 7b, and 8b, respectively.

4.3. Artificial neural network system

The architectures of the best-performing final ANN models for
predicting #,....; and RR were multilayer networks (MultiLayer perceptron; MLP)
with two feed-forward layers and supervised training (with awareness of the
desired outcome) using the back-propagation training algorithm; the
performance function was the mean square error (MSE), and the activation
function for neuron output was the sigmoidal tangent “tansig.”

The architectures with the best performance obtained through the
training and validation process and had the fewest prediction error was as
follows: training error = 0.13, validation error = 0.14, testing error = 0.145 for
trecral, training error = 116.9, validation error =117.9 and testing error =118.9 for
RR. The input layer had two variables, 7, and RH. The intermediate layer was
composed of 90 neurons for ..., and 100 for RR. In each ANN, the output layer
was composed of only one neuron, that is, #..,; or RR. The initial parameters of
the networks were configured as follows: number of epochs: 1.000; error
tolerance: 0.0; learning rate: 0.7; and momentum rate: 0.5; these values were
automatically optimized.

The FRs between the values of #,...; and RR predicted by the ANNs and
the means of the literature dataset, means of the experimental dataset, and the
means of the combined dataset (means of experimental and literature datasets)
are shown in figures 3c, 4c, and 5c and figures 6¢, 7c, and 8c, respectively.



Table 3. Set of rules for the fuzzy inference system.
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11111
12111
13211
14211
15311
16311
17411
18521
28421
27431
26321
25321
24221
23221
22121
21121
38411
37431
36411
35311
34311
33211
32211
31111
48521
47411
46311
45311
44211
43211
42211
41111
58421
57421
56421
55441
54321
53321
52211

1.0..

512111.0
685211.0
674211.0
665211.0
654411.0
644211.0
633211.0
623211.0
612211.0
784311.0
774211.0
763111.0
753111.0
743111.0
733111.0
722111.0
712111.0
885411.0
874311.0
865511.0
854411.0
844411.0
833311.0
823311.0
813211.0
985311.0
974311.0
964311.0
954311.0
944311.0
933311.0
923311.0
913311.0
1085511.0
1075411.0
1063311.0
1055311.0
1044311.0

1034311.0..

1023311.0
1013311.0
1185511.0
1174211.0
1164211.0
1154211.0
1144211.0
1134211.0
1123211.0
1113211.0
1286511.0
1275511.0
1265411.0
1255511.0
1245511.0
1234511.0
1224511.0
1214411.0
1385511.0
1375411.0
1364311.0
1354411.0
1344411.0
1334411.0
1324311.0
1314311.0
1485511.0
1475411.0
1465411.0
1454411.0
1444311.0
1434411.0
1424311.0
1414311.0
1585611.0
1575611.0
1565511.0
1555411.0

1545111.0.

1534411.0
1524411.0
1514411.0
1685611.0
1675611.0
1665611.0
1654411.0
1643411.0
1634511.0
1624411.0
1614411.0
1785611.0
1775611.0
1765411.0
1754511.0
1745511.0
1734611.0
1724611.0
1714511.0
1886811.0
1876811.0
1866811.0
1856611.0
1844611.0
1834411.0
1824411.0
1814411.0
1986811.0
1975511.0
1965311.0
1955711.0
1945611.0
1934511.0
1924411.0
1914411.0
2085611.0
2075611.0
2065611.0

2055611.0..

2045711.0
2035611.0
2024411.0
2014411.0
2186711.0
2176611.0
2165411.0
2155411.0
2145711.0
2135611.0
2125511.0
2115411.0
2286711.0
2276711.0
2266611.0
2256511.0
22461111.0
2235711.0
2224511.0
2214511.0
2387711.0
2377711.0
2367611.0
2356511.0
2345511.0
2334811.0
2325611.0
2314611.0
2487411.0
2478711.0
2467711.0
2456911.0
2446911.0
2436811.0
2426811.0
2416711.0.

* The fisrt two numbers for each column represent the fuzzy input sets (b and RH), the next two represent the two fuzzy

output sets (trectal andRR), the following number represents the weights of the rules and the final number represents the

connector of the rule (0 signifies OR, 1.0 signifies AND). Example: (1 1 11 1 1.0) —signifies: If MF #db1 (< 13°C) and MFRH

1 (<20 breaths. min-1) then MF trectal 1 (37°C) and MFRR 1 (< 36 breaths . min-1). MF, membership functions.
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Various NFN models were developed and simulated using different
configurations, such as the type of pertinence function (gaussian, triangular or
trapezoidal), the number of stages, and the type of optimization method,
resulting in 18 models. The architectures of the best-performing final NFN
models for predicting ¢,...; and RR are listed in table 4. The hybrid training
(optimization) method chosen was selected based on a tolerance to error of 0.0
and number of stages of 1.000. Training was interrupted when the training error
stabilized. The pertinence function chosen for the input variables was the
triangular function, and the constant function was chosen for the output
variables. The model with the least training error and no internal errors in its
fuzzy sets (amplitude outside of the normal range or sets with values of 0 for the
variables studied; #,....; and RR) was selected.

Table 4.Characteristics of the Sugeno type or data-dependent fuzzy inference system —
NFN - for rectal temperature (a) and respiratory rate (b).

Fuzzy systems’

characteristics Inputs Outputs Rules
[Input 1] L RH  out W Con.
<Name>ty,
<Range>9 - 37 [Output]
<Number MFs>3 <Name>teia1 | 1 | I
@ <Function>trimf <Range>37-5 — 40-4
“Name> fuzz <NameMF1><inIMF1> <Number MFs>6
Sots 1. - FISy -5.010.324.0 <Function>constant 1 2 2 1 1
= ei’T“’S <NameMF2><inIMF2> <NameMF1><out]l MF1>
<g§0m>max 7.925.636.9 38.3
<NameMF3><inIMF3> <NameMF2><outlMF2> 2 1 3 1 1
E?EZEZKI? 2237.851.0 38.4
<TNormPar>0 finput 2] ;\IgmeMF3><out1MF3> ) 4 ! )
zggﬁg;flﬁfgno <Name>RH <NameMF4><out] MF4>
<ImpMethod>prod <Range>26-2 - 99 39.2 31 5 1 1
<AggMethod>max <Number MFs>2 <NameMF5><outl MF5>
<defuzzMethod>waver <Function>trimf{ 39.1
<NameMF1><in2MF1> <NameMF6><outlMF6> 3 2 6 1 1
-46.6 26.3 98.9 39.8
<NameMF2><in2MF2>

26.199.1171.8

"It means: If 7, MF1 and
RH MF1 then t,,.; MF1.
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Eﬁ;:g;éﬁi?; Inputs Outputs Rules
[Input 1]
<Name>ty,
<Range>9 - 37 [Output]
(b) <Number MFs>3 <Name>RR th R ouwt W Con
<Function>trimf <Range>20 - 116
<Name> fuzzy sets <NameMF1><inIMF1> <Number MFs>6 ! ! i ! .
RR-FIS -5.016.422.0 . <Function>constant
<NameMF2><inIMF2> <NameMF1><outlMF1>
<type>TS 7.426.0 37.0 48.6 22 1
<SNorm>max : ) . :
<NameMF3><inIMF3> <NameMF2><outlMF2>
<SNormPar>0 2 1 3 1 1
<TNorm>min 22.938.851.0 28.8
<TNormPar>0 (input 2 ;)\IellmeMF3><outhF3> 2 2 4 1 1
iﬁgﬁﬁ;ﬁ‘ﬁfﬁ“" <Name>RH <NameMF4><outIMF4> 3 | s 1
<ImpMethod>prod <Range>26-2 - 99 57.1
<AgeMethod>max <Number MFs>2 <NameMF5><out] MF5> 3 2 6 1 1
<defuzzMethod>waver <Function>trimf 73.1
<NameMF1><in2MF1> <NameMF6><outlMF6>
-46.6 26.8 98.4 70.7 * It means: If 7;,MF1 and
<NameMF2><in2MF2> RHMF1 thenRRMF1.

25.699.6 171.8

TS, Takagi-Sugeno. tdb, dry bulb temperature. Out, output. Con., connector. W, weight of the rule. trimf., triangular membership function.

MF., membership function. waver, weighted average. max, maximum. min, minimum.

Thus, the best models for the prediction of #,...; and RR were composed of
six rules that govern the behavior of the input variables (¢, and RH) and the
respective outputs (Ze...; Or RR) (table 4).

Figure 2 (fig.2) shows the interactive interface of the FIS, with each line in
the figure representing a rule and each column representing an input. The
pertinence functions are shown in the first two columns. The position of the
vertical line represents the input value entered by the user. The value predicted
by the NFN appears in the third column.



54

a) Rectal temperature fuzzy sets (Sugeno type) - NFN

Inputl =28 Input2 = 80 Output = 39-1
1
2
é \ .
: 1
; Al
6| At > u
= /
9 37 262 99
[ - l |
Dry-bulb temperature, Relative humidity, 377 40-03
°C % Rectal temperature,
b) Respiratory rate fuzzy sets (Sugeno type) - NFN C
Inputl = 28 Input2 = 80 Output = 56-7
1
2
§ 3 /é I.U
é I
4 d’
= =l il
; il
/ /’
9 37 26.2 99
[ - I [
Dry-bulb temperature, Relative humidity, 24-37 77-51
°C % Respiratory rate,

Breaths.min™!

Fig. 2. Example of the interactive interface generated by the fuzzy logic

toolbox.
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In the example presented, the 7, was 28°C, and the RH was 80%. For each
individual pertinence function, the amplitude of the input values is represented
by the X-axis, and the pertinence value is represented by the Y-axis. The shaded
region is a visual representation of the pertinence resulting from the input value.
The final column represents the output for ¢....; (fig. 2a) and RR (fig. 2b). The
black portion of the bar represents the weight factor for this rule in particular and
is determined by the minimum pertinence value for each rule. The horizontal
line with an arrow indicates which input function determines the weight factor.
A simple output is the result of an average of the output weights for each one of
the six rules and is shown on the upper right. The larger the black area, the
greater is the contribution of the associated rule (rule four (4) in both figs.2a and
2b in this example).

This model was developed using the triangular type of pertinence function
and uses the logical connector “AND” to combine spaces of data in fuzzy sets.
The degree of pertinence of an input vector to a particular cluster determines the
contribution of the associated rules. The final output is a weighted average of
each contributed rule.

Similar to the other models, the FRs between the values for #,...,; and RR
predicted by the NFNs and the means of the literature dataset, means of the
experimental dataset, and the means of the combined dataset (means of
experimental and literature datasets) are shown in figures 3d, 4d, and 5d and
figures 6d, 7d, and 8d, respectively.

In addition to the graphs that illustrate the FRs previously described for the
various fitted models, histograms for the frequency of occurrence of absolute
deviations for #...,; (fig. 9) and RR (fig. 10) are presented, in addition to the
statistical results shown in table 5. For t,...,, the frequency of occurrence of
absolute deviations in the range from 0 °C to 0.39 °C varied from 83.6% to
97.7%, and the model based on ANNs showed the highest frequency of
occurrence of errors over this range. Likewise, values of 72.1% and 93.4% were
observed for RR, and the ANNs again performed best. The RMs and FMs
performed the worst.
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Table 5.Statistical results of the models.

Model type
Output Regression Fuzzy AIfItlﬁClla . I;Jeuro—
variables model model eura uzzy
(RM) (FM) Network Network
(ANN)  (NEFN)
Minimum 0-0 0-0 0-0 0-0
Absolute Mean 02 02 0-1 0-2
deviations Median 02 02 01 0-2
Maximum 0-9 0-9 1-1 0-9
Minimum 0-0 0-0 0-0 0-0
Standard Mean 02 0-1 01 02
deviation Median 0-1 0-1 01 01
Maximum 0-6 06 0-8 0-6
Rectal Minimum 00 0-0 0-0 00
temperature Percentage Mean 0-6 0-5 0-4 0-6
(trecral) error Median 0-5 0-5 03 0-5
Maximum 22 24 2-9 22
R? 0-44 0-49 0-67 0-44
Standard error 0-28 0-27 0-21 0-28
RMSE 0-28 0-27 0-21 0-28
Regression coefficients 1-16” 0-92%* 0-93 119"
(Slopes) (£ 0.06) (£ 0.05) (£0.03) (£ 0.06)
Intercepts 6367 287 2847 746"
(£2.46) (*1.8) (*1.21) (+£2.52)
Minimum 0-0 0-0 0-0 0-0
Absolute Mean 71 60 4-6 73
deviations Median 59 4-8 3-0 63
Maximum 30-6 27-4 285 30-8
Minimum 0-0 0-0 0-0 0-0
Standard Mean 50 4-3 32 52
deviation Median 42 34 21 45
Maximum 21-7 19-4 20-2 21-8
: Minimum 0-0 0-0 0-0 01
Respiratory Percentage Mean 13-8 12-0 87 14-0
rate (RR)  opop Median 115 91 56 12:9
Maximum 62-3 67-9 62-0 53-5
R’ 0-44 0-58 0-71 0-44
Standard error 8:96 773 649 899
RMSE 898 7-73 6:67 9-12
Regression coefficients 105 1017 720" 1115
(Slopes) (+0.06) (£ 0.04) (+1.43) (= 0.06)
Intercepts -1-65 -0-56 0-87" -625
(£2.95)  (£2.18) (+0.027) (+3.22)

2, determination coefficients.RMSE, root mean square error. ¥, Coefficients are significant (P<0.05).

R



Table 6.Performance of models for predicting the physiological variables cited in literature.

Author(s) Physiologic Model type
response. RM FM ANN NFN
Ferreira, Yanagi- treera I broilers stl;/:liizri d
Junior, Lopes, Lacerda,  chicken. N/A N/A N/A o
(2010) ©C) deviation:
’ 0.11
. Sugeno: 2
L. . Lo Mandani: 2. R™: 0.68
Brown-Brandl, Jones, RR in (’ilfferent Lms ar regression: Quadratic Regression: R% 0.62, R%0.27, R': 0.66, Mean
breeds’ cattle. R*: 0.59, mean . Mean . N/A
Woldt, (2005) ) X mean error: 0.91 Mean error:
(breaths.min™). error: 1.14 ) error:
error: 8.0 0.92 1.04
R’ RMI~RM4 = 0.73
Mean Mean
Ponci v . standard percentage Standard deviation:
Jlj)rllli(z::ns()éhi;sr;?g;_ima trecas In broilers deviation: error: RM1: 0.22°C N/A N/A N/A
Texeir’a (2012)’ ’ chicken. RM1:0.32°C  RM1:0.79% RM 2: 0.25°C
? ' RM2:0.35°C  RM2: 0.86% RM 3:0.49°C
RM3:0.69°C  RM3: 1.68% RM 4:0.27°C
RM4: 0.38°C  RM4: 0.94%
Ferreira, Yanagi- al 1t - R%:0.9318
Junior, Lacerda, in (‘t’)?(c)?lerznclﬁfcrljenre N/A Mean error: 0.13°C N/A N/A
Rabelo, (2011). ’ Percentage error: 0.31%
Martello, (2006). RR in Holstein cattle. R* 0.43 N/A N/A N/A
. Rz = 0.62
Azevedo etal,, (2005). KRt and CTin Rir=031 N/A N/A N/A

Holstein cattle.

R%tyecrar = 0.43

N/A, not available. RM, regression models. FM, fuzzy model. ANN, artificial neural networks. NFN, neuro-fuzzy network. CT, coat temperature. RR, respiratory rate. R2, determination

coefficient. trectal, rectal temperature.

¥9
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5. Discussion

Four final models for predicting the #,...; and RR in black and white
Holstein dairy cows that are kept in confinement systems were compared side by
side using different methods with the means of the combined dataset as
validation of the models (graphs representing the histograms of frequency of
occurrence of absolute deviations shown in figs. 9 and/0; scatter plots with trend
line/linear regression (LR) shown in figs. 3, 4, 5, 6, 7, and &, and the statistical
indices shown in table 5). The models based on ANNs and NFNs, listed in
decreasing order of performance, generally exhibited the best statistical indices
related to capacity for predicting the 7....; (figs. 3, 4, 5,and 9) and RR (figs.6, 7,
and &) for dairy cows. Although the majority of statistical indices for RR were
better for FM than for NFN (fable 5), the predictions of the NFN concentrated
errors over a smaller range of absolute deviation, from 0.0 to 9.9 respirations
min™ (figs.10b and 10d). This finding was probably attributable to the small
difference between the values of the statistical indices used, which can be
observed only through analysis of the frequency of occurrence of RR.

All of the models fitted to predict the 7., performed better than those
fitted to predict the RR (table 5 and figs.9 and 10). In addition, it is evident that
all of the models developed had higher percentages of prediction accuracy
(higher R*) when using the observed dataset compared to the literature dataset
(figs. 3 and 4, respectively). This result is attributable to the features of the
management used, the type of thermal isolation in the installation, and the
adoption of ventilation and evaporative cooling systems intrinsic to each
experiment (table ). The inclusion of air velocity and radiative heat load as
input variables may increase the performance of the models because ¢, affects
the loss of sensible heat through conduction and convection, RH affects the
quantity of latent heat lost, and air velocity affects the rate of loss of sensible and
latent heat (Dikmen and Hansen, 2009), thereby reducing the prediction errors.

A more detailed analysis of the graphs of the frequency of occurrence of
absolute deviations reveals that for the means of the combined dataset of ...y
predicted by the model based on ANNs, 97.7% of the absolute deviations were
between the values of 0.0 °C and 0.39 °C, and the remaining 2.3% of the
deviations were between the values 0.4 °C and 1.0 °C (fig. 9¢), thus indicating
the good predictive capacity of the model. The second best model (lowest
amplitude of deviations) was the NFN, for which 94.6% of the absolute
deviations were between 0.0 °C and 0.39 °C, and the remaining 5.4% of the
deviations were between the values of 0.4 °C and1.0 °C (fig. 9d). The RMs and
FMs performed similarly, for which 84.6% and 83.6% of the absolute deviations
were found in the interval from 0.0 °C to 0.39 °C, and the remaining 15.4% and
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16.4% of the absolute deviations were between the values of 0.4 °C and 1.0 °C
(figs. 9a and 9b), respectively.

Similarly, the model predicting the means of the combined dataset of RR
based on ANNSs had 93.4% of absolute deviations between the values of 0.0 and
9.9 respirations min™'; the remaining 6.6% of the deviations were between the
values of 10.0 and 30.0 respirations min™ (fig. /0c). For the NFN, the model that
showed the second best performance, 90.2% of the absolute deviations were
between the values of 0.0 and 9.9 respirations min™', and the remaining 9.8% of
the deviations were between the values of 10.0 and 30.0 respirations min™ (fig.
10d). For the FMs and RMs, 80.4% and 72.1% of the absolute deviations were
observed between the values of 0.0 and 9.9 respirations min™', and the remaining
19.6% and 27.9% were between the values of 10.0 and 30.0 respirations min™',
respectively (figs. 10b and 10a).

The capacity for the prediction of #,....; by the ANN-based model
developed in this study was similar to or greater than that in the literature (table
6), emphasizing that the published studies used fewer statistical resources for the
evaluation of the proposed models. For the RR, the fitted ANN presented an R*
similar to or greater than the models reported in the literature (Brown-Brandl et
al., 2005); however, the average absolute deviation was less than that of the best
models obtained by the previously quoted authors (table 6). This finding was
attributable to the greater quantity of variables used by these authors, such as air
velocity and radiation, which directly affect the physiological responses of the
animals, particularly the RR, which naturally has greater variability than #,....

6. Conclusions

Of the models developed, those based on ANNs and NFN showed, in
that order, the fewest prediction errors, and the average standard deviations were
0.1°C and 0.2°C for the .. and 3.2 respirations min” and 5.2 respirations min’!
for the RR, respectively. These values correspond, respectively, to average
percentage errors of 0.4% and 0.6% for the t,...,; and 8.7% and 14% for the RR.
The frequencies of occurrence of the standard deviations for the #,...,; for ANN
and for NFN for the range from 0 °C to 0.39 °C were 97.7% and 94.6%,
respectively. For the RR, we observed values of 93.4% and 90.2% for the range
from 0 to 10 respirations min™', respectively. Thus, the models based on ANNs
and NFNs can be used to predict the ,...,; and RR for Holstein dairy cows and
can thus aid in the decision-making process.
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Appendix A. Developed regression models.
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Coefficients of Determination (R?).

70% 30%
. ° 0 100% test
Developed regression models. Analysis validation data
data data. 427 me;ms
4-673 obs. 2-003 obs. ’
lrectal RR | Lrectal RR | Lrectal RR
1)y=a+bty+cRy 0211 0274 0-185 0237 0-404* 0.443
2)y=a+b ty Ry 0200 0-158 0182 0-127 0-330% 0-056*
3)y=a+b ty+c Ry+d( tsp-Ry) 0211 0276 0188 0237 0403 0430
4)y=a+b Fy+cRy 0215 0272 0-183 0238 0-410% 0-437*
5 y=a+b tyt+c Ry+d(ts Ry’ 0-214 0283 0-194 0245 0-389* 0-382%*
6)y=a+brly+c Ry 0218 0271 0-192 0236 0436* 0-438*
N y=a+b tyt+cRy 0209 0275 0-178 0239 0-389* (0-443*
8)y=a+b 1ty Ry+c(ty Ry’ 0208 0-173 0-185 0149 0324  0-043*
9 y=a+b tytc y 0-110 0263 0095 0226 0113 0437
10)y=a+b ty+c yt+d 0110 0263 0095 0226 0113 0437
1) y=a+b iyt cRy+dRy 0211 0275 0-187 0242 0403  0-442%*
frd . . . 2 .
113%) y=atbiptcRytd Ryte 0217 0276 0193 0242 0-386* 0-436*
H
13)y=a+b 1y 0-096 0258 0-123 0234 0-115% 0-437*
14)y=a+b tytc Ry+dty 0217 0264 0195 0258 0440 0-445*
}gg) y=atb tpteRy+rdipte 0216 0276 0207 0242 0-444%  0-443
H
16)y=a+b Fy+c Ry +d Ry 0218 0260 0203 0263 0438  0-437
_ . . L2 2
INy=atb toteRytdta TRy 004 0284 0211 0291 0420+ 0366
+£( ta Rp)
18)y=a+b Ryt c 'g+d Ry +
0220 0276 0-191 0274 0433 0420

e(ta Ry)

tdb,drybulb temperature. RH, relative humidity.frectal, rectal temperature. RR, respiratory rate. (a,b,c,d), variables coefficients. obs,

observed. *, all coefficients are significant (P<0.05).



