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RESUMO 

  

O uso de técnicas de machine learning tem sido importante para enfrentar os 

desafios atuais na pecuária de precisão, pois apresenta novas ferramentas para análise 

com dados preditivos em larga escala em diversos campos, incluindo a de tecnologia de 

sensores. Nesse contexto, o objetivo do estudo foi avaliar abordagens de machine leaning 

e estratégias de validação para predição de tempo de pastejo com base em dados gerados 

por sensores do tipo acelerômetro e giroscópio em bovinos de corte. As abordagens de 

machine learning avaliadas foram generalizer linear regression (GLR), random forest 

(RF) e artificial neural network (ANN), e as estratégias de validação foram: remover 20% 

dos dados aleatoriamente para validação (holdout), remover todos os dados de um animal 

por vez para validação (LOAO) e remover os dados de cada um dos últimos 5 dias da 

avaliação comportamental para validação (LODO). Seis bovinos Nelore de 345 ± 21 kg 

peso corporal, foram mantidos em pastagem de B. brizantha cv. Marandu com sensores 

acelerômetro e giroscópio acoplados. O comportamento dos animais foi registrado 

visualmente em um período de 10 horas durante 15 dias. Os dados obtidos pelos 

giroscópios não foram utilizados, devido a intervalos muito longos de registro dos 

sensores resultando em um banco de dados incompleto. Os valores de acurácia dos 

modelos GLR, RF e ANN foram, respectivamente: 57,1%, 76,9% e 74,2% para validação 

holdout, 53,1% 58,7% e 72% para validação LOAO, e 47,4%, 58,5% e 59,7% para a 

validação LODO. O modelo de predição linear GLR não foi adequado para predição do 

comportamento animal a partir de dados de sensores. As ferramentas de machine learning 

RF e ANN são mais adequadas para processarem dados complexos como esses. 

Claramente, a estratégia de validação interfere na acurácia do modelo preditivo e isso 

deve ser levado em consideração na interpretação de dados da literatura. Os baixos 

valores de acurácia na validação LODO mostram que modelos preditivos não funcionam 

adequadamente em condições de pastejo diferentes das utilizadas no desenvolvimento do 

modelo. O modelo validado por LOAO e desenvolvido com ANN atingiu valor de 

acurácia promissor, o que sugere que, com a correta ferramenta de machine learning, é 

possível predizer comportamento de pastejo de novos animais, que não foram utilizados 

no desenvolvimento do modelo. A validação holdout, utilizada na maioria dos estudos 

com sensores, apresenta valores inflados em decorrência de condições de ambiente (e.g. 

animal ou condições de pastejo) que influenciam da mesma forma os dados do conjunto 

de treinamento e de validação do modelo. 
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ABSTRACT 

 

Machine learning approaches have been crucial for addressing current challenges 

in precision livestock, as it presents new tools for developing large scale predictive 

analytics in many fields including the area of sensor technology. In this context, the 

objectives of our study were to evaluate the following strategies of cross-validation used 

to predict grazing and not-grazing activities in grazing cattle. The machine learning 

approaches were generalizer linear regression (GLR), random forest (RF) and artificial 

neural network (ANN) as well as the cross-validation strategies evaluated were: 20% of 

the dataset randomly exclude to build the validation dataset (holdout), leave-one-animal-

out (LOAO), and leave-one-day-out (LODO). Six Nellore bulls, 345 ± 21 kg body weight, 

were kept on pasture of Marandu Palisadegrass and had accelerometer and gyroscope 

sensor attached on neck. Animal behavior was registered through visual observation 

within a period of 10 hours for 15 days. The gyroscope record data were not used because 

a larger gap in a datapoint was observed. The overall accuracy of GLR, RF, and ANN 

were respectively 57.1%, 76.9%, and 74.2% in holdout validation, 53.1%, 58.7% and 

72% in LOAO and 47.4%, 58.8% and 59.7% in LODO. GLR was not adequate model to 

predict animal behavior using our dataset. RF and ANN are more efficient to process 

complex dataset as these. Clearly, the validation strategy inferring in accuracy results and 

this is an important point in data analysis. Low values validation accuracy results in 

LODO shown us that predictive models are not adequate to use in different conditions of 

pasture. LOAO with ANN was the best validation strategy and it could predict animal 

behavior of different animals without used in predict model. Holdout validation, widely 

used in several similar studies, present an inflate accuracy values due to environmental 

conditions (e.g. animal or grazing conditions) that influence in dataset using in training 

and the validation dataset of the model. 
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INTERPRETIVE SUMMARY 

Elaborated by Leonardo and advised by Marina 

A adoção de tecnologias de automação e processamento de dados na agricultura e na 

pecuária possibilita a tomada de decisão ágil, com base em informações precisas e atualizadas em 

tempo real. No entanto, entre a geração de dados e as tomadas de decisão existe um caminho 

complexo que depende do conhecimento biológico e matemático para saber quais perguntas fazer 

para o banco de dados e com que ferramentas processá-lo. Neste estudo, testamos três técnicas de 

modelagem preditiva e três estratégias de validação de modelos para predizer tempo de pastejo 

de bovinos a partir de dados de acelerômetro. A técnica de machine-learning random-forest é a 

mais utilizada para processar dados de sensores em comportamento animal e apresentou 

desempenho adequado em nosso estudo. No entanto, nossa comparação de estratégias de 

validação mostrou que a estratégia mais utilizada nos trabalhos publicados (holdout) apresenta 

valores de acurácia inflados por interdependência biológica dos dados nos conjuntos de 

treinamento e validação. Quando os modelos são aplicados em novos animais ou novas condições 

de pastejo, a acurácia diminui. A técnica de machine-learning redes neurais artificiais foi capaz 

de produzir um modelo com acurácia promissora para utilização mesmo em animais novos, que 

não estavam no treinamento do modelo. No entanto, nenhum modelo foi capaz de predizer tempo 

de pastejo com confiabilidade quando usado em nova condição de pastejo, enfatizando a 

importância de incluir uma grande diversidade de condições de pastejo no treinamento do modelo. 

Resumo gráfico 
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1 INTRODUCTION 

 

The rapid advance in technology development experienced in agricultural systems 

has created a strong potential for growth of automation and adoption of digital 

technologies (DREWRY et al., 2019). Among the variety of digital technologies, the use 

of wearable sensors has been adopted as an alternative for real-time monitoring of animal 

performance, health and welfare. As such, those monitoring systems usually uses animal 

behavioral traits, characterized by activities as lying, eating and drinking as unique 

indicators of health issues, housing conditions, and productivity performance (PENG et 

al., 2019). To accomplish that, the raw information captured by the sensor technology is 

processed by predictive models in order to generate the phenotype or alert of interest 

(WANG, 2019). In this context, the use of machine learning algorithms has been widely 

employed as way to achieve greater predictive ability. 

The emerging field of machine learning is core to pattern recognition and 

information extraction. Machine learning has been crucial for addressing current 

challenges in precision agriculture, as it presents new tools for developing large scale 

predictive analytics in many fields including the area of sensor technology (MOROTA et 

al., 2018). However, although machine learning techniques can improve prediction 

quality when applied to sensor data (VALLETTA et al., 2017), very little attention is paid 

to confounding effects that may inflate prediction quality, more specifically when cross-

validation strategies are used. 

The k-fold cross-validation is the most commonly used strategy to validate models 

in animal behavior (HAMILTON et al., 2019 and RIABOFF et al., 2019). The form of 

using cross-validation are variable, can be use with or without replication data, as leave-

one-out and leave-pair-out cross-validation (SMITH et al., 2014). Regardless the type of 

cross validation adopted in predictive modelling problems, the independence of train and 

validation dataset are assumed but not always is ensured. Several authors have suggested 

that biological knowledge needs to be considered when choosing the strategy of cross-

validation as way to create the most independent train and validation datasets (LAHART 

et al., 2019; DÓREA et al., 2018; SHETTY et al., 2017). Those authors demonstrated that 

when cows from the same group were randomly assigned in training and validations sets, 

prediction accuracy was inflated when compared with validation set built from an 

exclusion of all cows of a specific group (herd, farm, or trial, for example). The reason 
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for such results was attributed the carryover effects of diet, management practices, season, 

remaining in both training and validation datasets. 

In grazing systems, which sensor can be used to predict feeding behavior 

validation may not only be needed under different animal-level condition, but also under 

new grazing management conditions in order to generalize the predictive ability of trained 

machine learning algorithms.  

In this context, the objectives of our study was to evaluate the following strategies 

of cross-validation used to predict grazing and not-grazing activities in grazing cattle. The 

cross-validation strategies evaluated were: 20% of the dataset randomly exclude to build 

the validation dataset (holdout), leave-one-animal-out, and leave-one-day-out. 

Additionally, our study aimed to evaluate the predictive performance of machine learning 

methods within and across cross-validation strategies. 

 

2 LITERATURE REVIEW 

 

Data analytics, big data and precision technologies have potential to make a 

revolution in pasture based ruminant production system. The likely benefits include 

increased efficiency, improved product quality and animal health, reduced cost, reduced 

environmental impacts (STEENEVELD et al., 2015).  

The profitability in this system depends on the relationship between plant and 

animal. Variations in intensity and frequency of grazing affect the development of 

animals and plants. The sward structure effect the grazing process by ruminants. Time 

spent searching, energy spent walking and browsing forage are some variables affected 

by sward structure (e.g. low pasture offer, leaf stem proportion; CASAGRANDE et al., 

2011).  

 Enormous efforts have been done to develop sensor-based tools to register animal 

behavior. Several studies, using different types of sensors, were conducted with the most 

diverse objectives, such as detecting lameness (BARWICK et al., 2018a), estimating 

energy expenditure on grazing (BEKER et al., 2010; BROSH et al., 2006), and detecting 

and monitoring the spatial distribution of urine patches (BETTERIDGE et al., 2010). 

A review of the literature was performed using the keywords “sensor” and 

“behavior”, in conjunction with “grazing”, “animal”, “accelerometer”, “machine 
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learning”, “prediction”, “monitoring”, “analyzer” and “observer”. The criteria used for 

the article selection were: (i) written in English, (ii) type of sensor used mentioned (e.g. 

GPS, accelerometer), (iii) sensor attached to the animal (wearable sensor), (iv) the aim 

was monitoring animal behavior. Table A.1 in the appendix presents details about title, 

author, year of publication, location (country where the experiment occurred), major 

phenotype registered (e.g. location and behavior), type of sensor (e.g. accelerometer or 

GPS), sensor location in the animal (e.g. neck, ear, jaw, leg), animal species (e.g. dairy 

cows, beef cattle, goats, sheep), number of animals evaluated, and analytical procedure 

used (e.g. Decision Tree, Support Vector Machine, K-Nearest Neighbors, Artificial 

Neural Network). 

The data basis consulted were Web of Science, Elsevier and the journals Journal 

of Dairy Science, Journal of Animal Science and Computer and Electronic in Agriculture. 

All database consulted returned 4,026 documents, but only 94 articles met the selection 

criteria and were included in our analysis. 

Even though the first study was published in 1989, the topic really received heavy 

attention in the last decade (Figure 1), following improvements in the technology and 

mathematical tools. Global Position System (GPS) and accelerometer (ACC) are the most 

used devices to measure animal behavior based in three main parameters: the location, 

the body posture and the movements of animal. The earliest article used a medical device 

attached to the animal to measure jaw movement, head position, and walking posture 

(MATSUI, 1989). The dissemination of GPS technology made possible to track the 

location of animals in pasture (HUIRCÁN et al., 2010) which, associated with a reduction 

in manufacture costs of devices (ANDRIAMANDROSO et al., 2016), contributed to the 

increased number of studies with animals. 

Figure 1 – Evolution of articles published per year using sensors in literature review. 
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Initially, the studies were concentrated in America, Japan and Europe, with a later 

expansion to different regions in last five years. Nineteen publications are accumulated 

between 2010 to 2014, this number increase to 59 in November 2019. Figure 2 illustrates 

the location of experiments occurs using sensors (e.g. accelerometer, GPS) from 1989 to 

2019. Australia has the greatest number of publications, with studies predominantly in 

pasture system. On the other hand, in the United States, most of the experiments used 

dairy cows in tie-stall systems. Finally, the United Kingdom, another country with many 

publications, mainly used sensors on sheep.  

Figure 2 – Distribution of experiments across countries using sensor for 

monitoring grazing behavior. 

  

 
Legend: Argentina (3); Australia (15); Belgium (2); Brazil (5); Canada (4); China (1); Denmark 

(2); France (1); Germany (3); Ireland (2); Israel (5); Italy (4); Japan (7); Netherlands (2); 

New Zealand (6); Norway (2); Poland (1); Portugal (1); Scotland (1); Spain (1); Sweden 

(1); Switzerland (2); United Kingdom (10); United States (9). 

 

Most of the articles (66%) were focused in pasture system production, in which 

animals in paddocks were observed to predict grazing. Articles classified as other 

production systems (44%) included animals in free-stalls and tie-stalls, for example. 

Dairy cows were the most common animal utilized in the publications (45%), followed 

by beef cattle (26%), sheep (15%), goats (5%) and calves (2%). In 7% of the articles the 

authors used more than one species. 

The most used device was the ACC. However, there is more than one type of ACC. 

Some devices can record data in three axes (X, Y and Z), others record data in two axes 

or just in one axis. Moreover, some studies used ACC simultaneously with other types of 

sensors. The category “other sensors” includes studies that did not use neither ACC or 
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GPS, but rather sensors such as data loggers, magnetometers, gyroscopes and pedometers. 

In major of articles return in review the sensors used were primarily designed for the 

respective studies. Even thought some commercial sensors such as the RumiWatch® ACC 

(Itin + Hoch GmbH, Liestal, Switzerland) are already used for behavior classification in 

farms situations, some studies that used them did not described the sensors.  

Figure 3 – Number of articles by type of sensor utilized. 

 

 
 

 The position in which the sensor is attached to the animal can affect the accuracy 

of models developed using machine learning (BARWICK et al., 2018b). The results of 

our review indicate that the region where sensors are most attached is the neck, followed 

by the ear of the animals (Figure 4). 
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Figure 4 – Number of articles by the location of the sensor in the animal 

 
 

2.1 Sensors used 

 

An accelerometer sensor (ACC) operates basically in signal output transformed 

from physical acceleration, motion or gravity (ANDRIAMANDROSO et al., 2016).  They 

measure acceleration forces in G-forces. Having common using in cows, sheep and beef 

cattle to measure features behaviors, ruminations, grazing or feeding and other activities, 

for example (SHALLOO et al., 2018). Several other activities reported in the literature 

are walking (BARWICK et al., 2018b), drinking, grooming (SMITH et al., 2016) and 

resting (DUNNE et al., 2017). 

 It is the most common sensor. Although, this type of sensor differenced in how 

many axes worked. Exist ACC sensors that record on a single-axis (1-axis) to detected 

magnitude and direction of acceleration (YASHITOSHI et al., 2013). Others research 

used a 2-axis accelerometer (SPEDENER et al., 2019), but are more common used 3-axis 

accelerometer in researches (SAKAI et al., 2019). It appears also use ACC data from GPS 

device (GUO et al., 2018). 

A gyroscope sensor can be used to detect the tilt. Usually, tilt is measured in two 

axes of reference plane (pitch and roll). Differently of ACC, tilt doesn’t measure motion, 

but ACC can be used as a tilt sensor, but the inverse is possible. The initials tilt sensor 

used for animal behavior was a mercury tilt sensor (CHAMPION; RUTTER; PENNING, 

1997). Currently, tilt sensor are integrated with GPS device (UMSTATTER, 
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WATERHOUSE, HOLLAND, 2008). We used one independent tilt sensor in all steps 

that recorded a sample at 800 Hz rate (800 samples/second). 

In all experimental steps, we used a 3-axis (X, Y, Z) accelerometer sensor 

recorded a sample at 800 Hz rate (800 samples/second). This sensor was charged with a 

coin battery cell-attached in hardware. 

 

2.2 Use of sensors to predict grazing 

 

The main objective of use sensor in animals is to record behavior data. Location 

was a feature used in initial studies when the GPS device was developed. Many behavior 

variables are common among the studies (Figure 5); grazing being the most used one. In 

figure 5, other activities are the ones that did not fit into any of the other classifications 

such as social licking or licking salt. 

Figure 5 – Number of articles by behavior feature 
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2.3 Use of machine learning to predict animal behavior 

  

Machine learning (ML) is a technique for regression and/or classification of 

nonlinear systems. The main focus is the prediction without prior knowledge of the 

underlying data, different from statistical models that use observed data (LARY et al., 

2016). As mentioned before, the use of sensor to record animal behavior data increased 

in the last five years. The use of ML techniques increased as well, and the commonly used 

algorithms to predict animal behavior are Artificial Neural Networks (ANN), Support 

Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Linear Discriminant 

Analysis (LDA), K-Nearest Neighbors (KNN) and Generalized Linear Models (GLM). 

A total of 32% of articles found on this review used ML techniques and RF is the most 

used algorithm to classifier animal behavior (LUSH et al., 2018). However, other 68% of 

articles used statistic correlation or other statistic model, or the sensor default prediction 

without a preview data treatment and in some cases generated by the sensor software used 

without described if the software were used machine leaning techniques  

The algorithms of machine learning can be grouped in two forms: unsupervised 

learning and supervised learning (Figure 6). Valletta et al., 2017 describe unsupervised 

learning methods as able uncover structure un unlabeled data. Through reduced the 

dimensionality (Dimensionality Reduction), identify groups of observation sharing 

similar attributes (Clustering), and determining the distribution of the data (Density 

estimation). Already, supervised learning can identify the relationship between an 

outcome and a set of explanatory variables from a dataset as a starting point to training 

models.  
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Figure 6 – Diagram of machine learning process, supervised learning against 

unsupervised learning. 

 

 
 

Source: BUNKER; THABTAH, 2019 

  

In this currently study was used supervised machine learning techniques to 

classifier raw data. In general, classification techniques seek to categorize samples into 

groups based on the predictor characteristics. Some techniques take a mathematical path 

(e.g. Linear Discriminant Analysis), and others take an algorithmic path (e.g. K-Nearest 

Neighbors) (KUHM, 2013). 

  

2.3.1 Linear Classification Models 

 

2.3.1.1 Linear Discriminant Analysis  

   

Linear Discriminant Analysis (LDA) is a technique developed in the year 1936, 

originally called Fisher’s Discriminant Analysis (SCHOLKOPF, 1999). In the first time 

this technique was used to describe 2-class problem. The multi-class version was latter 

generalized by C. R. Rao as Multiple Discriminant Analysis. 

These method projects a dataset onto a lower-dimensional space with good class-

separability to avoid overfitting. The result combination a linear classifier, or in same 

cases, dimensionality reducer before subsequent classification (BISHOP, 2006). The 

basic idea of LDA is to find samples pairs in the same class get closer to each other and 

sample pair in different classes are far apart (Figure 7) (SUGIYAMA, 2015). 
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Figure 7 – Example of classifier data by Linear Discriminant Analysis (LDA) technique. 

 

 
Legend: The solid lines denote the found subspaces to which training samples are projected. 

 

Source: SUGIYAMA, 2015 

 

2.3.1.2 Generalized Linear Models 

 

Generalized linear models (GLM) is a generic approach to a broad range of 

response modeling problems. Normal, Poisson, and binomial responses are the most 

commonly used, but other distributions can be used as well (FARAWAY, 2010). The 

GLM can be fitted using a common procedure and mechanism for hypothesis testing 

available. Use of a GLM is by no means sufficient as there are aspects of analysis of all 

the different GLMs which are specific to that particular response type. For example, while 

a logistic regression is a GLM the user still needs to understand the particular 

interpretations of odds in this type of model (GALLAGHER, 2007). 

Logistic Regression (LR) was developed by David Cox in 1958, is the one of the 

larger class of techniques called Generalized Liner Models (GLMs) that encompass many 

different probability distributions (KUHN, 2013). Gudivada, (2016) consider LR an 

essentially classification algorithm. The word “regression” become from the linear 

regression, because the goal for the algorithms is to find the decision boundaries among 

the classes. The logistic function is a sigmoid function, which takes any real value 

between zero and one and allow us to estimate the probability (Figure 8).  
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 Figure 8 – Illustrate example of classifier data by Logistic Regression. 

  

 

Legend: Generic data generated in R for the propose illustrate example. 

 

Source: elaborated by the author 

 

2.3.2 Nonlinear Classification Models 

 

2.3.2.1 Support Vector Machine 

  

Support Vector Machine (SVM) was developed by Vladimir Vapnik in mid-

1960s, are considered a class of statistical models (KUHN, 2013). According Vapnik, 

(2010), SVM is the most flexible and effective machine learning tool by produces 

significant accuracies. The objective to use SVM algorithm is to find a hyperplane in an 

n numbers of features (n-dimensional space) that distinctly classifies the data points 

(Figure 9). 
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Figure 9 – Illustrate example of Support vector machine classifier data. 

 

 
Legend: In left are possible hyperplanes. In right are linear maximum margin classifier. The 

solid black point indicates the support vectors. 

 

Source: KUHN, (2013) 

To classifier data showed in figure 9 in two classes of data points, there are many 

possible hyperplanes that could be chosen (Figure 9 – left), but if choose one hyperplanes 

randomly, probability is not separate data points in equal distance of hyperplane. Using 

the support vectors, is possible to choose a hyperplane that represent the maximum 

distance between data points of both classes (Figure 9 – right) (SUGIYAMA, 2015).  

 

2.3.2.2 K-Nearest Neighbors  

  

K-Nearest Neighbors (KNN) is one of many supervised learning algorithms used 

in data mining and machine learning, it is a good algorithm classifier. The algorithm 

works how similar is a data from other (DUTTA, 2015). But it is not robust against 

outliers, see figure 10 (SUGIYAMA, 2015). 
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Figure 10 – Illustrate example of K-Nearest Neighbors classifier data. 

 

 
Source: SUGIYAMA, (2015) 

 Kuhn, (2013) describe the metric of algorithm classifier are based using datapoints 

geographic neighborhood to predict the classification. If the dataset contain outlier, for 

example, and this outlier is similar than one classes label probability the algorithm 

classifier and isolate the datapoint.  

 

2.3.2.3 Artificial Neural Network 

 

Artificial Neural Networks (ANN) works based on the human nervous system 

(DÓREA, 2018). Similar than biological neurons in which the neuron are responsible for 

receiving sensory input from an external stimulus via dendrites process the information a 

gives the output through axons, in artificial neural network the mechanism are not 

different. Independent variables or inputs are multiplied by a connection weight synapses, 

all inputs are analyzer and an activation function are apply. After this the results are be 

produce (Figure 11). The process of perceptron leaning is the adaptation of weight values 

until an acceptable relation between input and output obtain (SIQUEIRA-BATISTA et 

al., 2014). 
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Figure 11 – Illustrate example of structure of an ANN with four inputs nodes in the input 

layer, five hidden nodes in the hidden layer and one output in the output layer. 

 
 

Source: BUNKER; THABTAH, 2019. 

 

2.3.3 Classification Trees 

 

2.3.3.1 Decision Trees 

  

 Decision Tree (DT) are a model used for classification and regression (GARETH, 

2013). In this topic we are disserting about classifier form. There is a simple and intuitive 

predictive model similar then “if this than that” for choice decision (HUTCHINSON; 

GIGERENZER, 2005). DT are used to classifier animal behavior asking a series of simple 

yes or no questions (e.g. the animal grazing or not-grazing). Followed Valletta et al., 

(2017) a decision tree is constructed by three steps: 

(1) Find the yes or no rule that best splits the data with respect to one of the 

features. 

(2) The best split is the one that produces the most homogeneous groups. 

(3) Repeat steps one and two until all data are correctly classified or some 

stopping rule is reached.  
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2.3.3.2 Random Forest 

  

Random Forest (RF) was development to reduce overfitting problem in decision 

tree (VALLETTA et al., 2017). But, in RF instead of a single tree as DT, multiple tree is 

calculated. It is simply a collection of decision tree whose results are aggregated into one 

final result (BREIMAN, 2001).  

 

2.3.4 Cross-validation strategies 

  

To evaluate the performance of many machine learning models are needed to test 

it on some unsee data. Based the model performance on unsee data can shown if the model 

has fit, underfitting or overfitting. Cross-validation (CV) is one of the techniques used to 

test effectiveness of machine learning approach models. The k-fold cross-validation is the 

most commonly used strategy to validate models in animal behavior (HAMILTON et al., 

2019; RIABOFF et al., 2019). The form of using CV are variable, can be use with or 

without replication data, as leave-one-out and leave-pair-out cross-validation (SMITH et 

al., 2014). 

 

2.3.4.1 Holdout 

  

 In this strategy the sample are randomly split the complete data into training 

(performance) and test sets. A common split when using the holdout strategy is using 

80% of data for training and the remaining 20% of the data for testing. In some cases, 

using 70% of data for training and 30% of data for testing (BUNKER; THABTAH, 2019). 

 

2.3.4.2 Leave-one out cross-validation 

 

 Leave-one-out cross-validation (LOOCV) is one form of cross-validation. In these 

processes, the number of folds is equal the number of instances in the dataset. Therefore, 

the algorithm is applied once time for each instance (WEBB et al., 2011). In LOOCV a 
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single observation are isolated from the all data set. The algorithm are predicting model 

based in dataset without the part isolated. This part isolated are will used to validation 

process (SMITH et al., 2014).  

 

3  MATERIAL AND METHODS 

 

All experiments were conducted in the experimental farm of the Department of 

Animal Sciences at the Federal University of Lavras, located in Brazil (21°13'51.53" S, 

44°58'10.52" W; 918 m above sea level). Two experiments were conducted, a preliminary 

study and the main study. The procedures of this project were authorized by the Ethics 

and Animal Welfare Committee of the university (protocol number 016/2018). In both 

studies, two types of sensors were used, a 3-axis ACC and a gyroscope (MONNIT, Salt 

Lake City, Utah, United States), both recording at 800 Hz rate (800 datapoints/second) 

and charged with a coin battery within the hardware case (Figure 12). Sensors were 

manufactured by MONNIT®, as was the software (MONNIT, Salt Lake City, Utah, 

United States) used to receive and export the raw datasets. The cases were attached to a 

halter that was fitted in the animals every collection day (Figure 13). 

Figure 12 – Specifications of accelerometer and gyroscope sensors used in all 

experiments. 
 

 
Source: MONNIT® (2018). 
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Figure 13 – Animals used on experiments 
 

  
Legend: On left are Angus heifer used in preliminary study. On right are Nellore steer used in 

the main trial. Both with sensors attached on the halter. 

 

 

3.3 Preliminary Experiment 

  

The preliminary study was a pilot aimed at getting familiar with the sensors and 

data processing. We measured battery life with different sampling frequencies, the 

coverage area relative to the gateway, means to attach the sensors, the quality of the data 

base, and finally the processing of this amount of data.  

We used two Angus heifers (Figure 14), with 224 ± 88,2 kg of body weight, 

grazing a 0.8 ha paddock of Marandu Palisadegrass with free access to fresh water. 

Figure 14 – Angus heifers used in the pilot trial. 
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 During collection periods, a smaller area, of 0.25 ha, was delimitated using an 

electric wire to keep the animals within the gateway best coverage area (Figure 15). 

Moreover, we positioned two range extensors to improve signal coverage. 

  

Figure 15 – Preliminary experimental area map. 
 

 
Legend: The experimental area used in the pilot trial (image by Google Earth Pro v7.3.2.5491.  

Scale 1:90. Picture obtained in 9/22/2018) 

Source: elaborated by the author 

 

A total of 11 collection days were conducted during the pilot experiment. Each 

observation period lasted twelve hours (from approximately sunrise to sunset) on a day 

and only one animal received the sensors at a time. To register animal behavior, the 

Excel® macro VBA (Visual Basic Application) was set to record the exact time (minutes 

and seconds) that an activity changed. Prior to the beginning of the observations, the clock 

of both computer and sensor were synchronized. The behavior features observed were 

grazing, standing ruminating, lying ruminating, standing idleness, lying idleness, and 

drinking water. The animals were used to close human presence and did not change 

behavior when people were observing them in the paddock. 

The sensors were set to record data in 10 Hz (10 samples/second). Data was 

constantly sent to the gateway plugged in a computer and the software stored it in a cloud 

server for posterior analysis. To analyze the data collected, we created three sets of 

behavior variables. Set 1 had six classes of behaviors: grazing, standing ruminating, lying 

ruminating, standing idle, lying idle and drinking water. Set 2 had four classes of 

behaviors: grazing, ruminating (both standing and lying down), idle (both standing and 
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lying down) and drinking water. Set 3 had three classes behaviors: grazing, ruminating 

and idle (drinking water was compiled with idle). The sets of variables were analyzed 

with four machine leaning approaches. Bagged Trees (BT), Support Vector Machine 

(SVM), K-Nearest Neighbors (K-NN) and Linear Discriminant Analysis (LDA) were 

employed on the raw data extracted from the 3-axis accelerometers and 2-axis gyroscope. 

To assess prediction quality, a 5 k-fold cross-validation was performed and overall 

accuracy, true positives, false negatives and area under the curve (AUC) of the receiver 

operating characteristics were calculated for each machine learning approach and each 

set of behavior parameters. 

 

3.4 Main Experiment 

  

The study was conducted in the experimental farm at the Federal University of 

Lavras, Brazil (21°13'51.53" S, 44°58'10.52" W; 0,8ha; 918m above sea level). Before 

introducing the animals, the paddock was fertilized with 50 kg of urea/hectare. After 30 

days from the application of fertilizing all animals were placed in the paddock (Figure 

16) and canopy height means were measured daily using a sward stick (BARTHRAM, 

1985). Forage allowance was measured every day. In each evaluation, 5 representative 

points (with heights close to the average of the paddock) were selected, and in each point, 

the material within a 1.0 x 0.5 m frame was cut to ground level. Total forage mass was 

weighed, and a representative subsample of 0.5 kg was taken and separated into leaf 

blades, stems (including leaves sheaths), reproductive stem and dead material (as 

indicated by more than 50% of the tissue area being senescent) to determine the sward 

morphological composition. After separation, forage samples were oven-dried at 66°C 

for 72 hours to a constant weight. 
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Figure 16 – Experimental area map used in second step. 

 

 
Legend: Experimental area used in step two image by Google Earth Pro v7.3.2.5776.  

Scale 1:100. Picture obtained in 11/18/2019. 

Source: elaborated by author 

 

 Six Nellore bulls, (345.3 ± 21.4 kg body weight), previously adapted to human 

handling were used. All animals were kept on pasture of Marandu Palisadegrass with 

water and mineral salt ad libitum. Animal behavior was collected through visual 

observation within a period of 10 hours (0800 to 1800) during 15 days in total. Animals 

had access to the paddock on day 1, when the average sward height was 31.5 cm, forage 

allowance was 1,826 kg of DM.ha-1 and forage composition was 58.1% of leaves, 19.9% 

of stem, and 22.0% of dead material. On day 16, average sward height was 19.5 cm, the 

forage allowance was 1,230 kg DM.ha-1 and the composition was 29.7% of leaves, 34.2% 

of stem, 36.1% of dead material. Table 1. 

Animal behavior was classified into two classes: grazing and not-grazing. Grazing 

activity was considered when the animal was searching and grazing, and every other 

activity including ruminating, idleness, walking, and drinking were considered not-

grazing activity. To facilitate the visual observation of behavioral activities, each animal 

was painted with a nontoxic ink on thoracic region and using halters of different colors. 

A 3-axis (X, Y and Z) wireless accelerometer sensor (MONNIT, 2018) range ± 2 

g; was attached to the halters on back of the neck of each animal (Figure 17). The X, Y 

and Z axes indicate longitudinal (front-to-back), horizontal (side-to-side) and vertical (up-
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to-down) head movements, respectively (SHEPARD et al., 2010). Devices were setup to 

send simultaneously data from each animal at the frequency of 1 data point (G-force for 

X, Y, and Z) per second (Figure 22). Energy supply for the sensors was powered with a 

coin cell battery, model CR2032 of 3.0 voltage. To register visual animal behavior, the 

Excel® macro VBA (Visual Basic for Applications) was set to record the exact time 

(minutes and seconds) that an activity changed. Prior to the beginning of the observations, 

the clock of both computer and sensor were synchronized. 

Figure 17 – Sensors utilized in experiment on attached on halter Nellore bull. 

 

 
  

 

3.4.4 Predictive Approaches 

 

Three machine learning approaches (Generalized Linear Model, Random Forest, 

and Artificial Neural Network) were employed on the raw data extracted from the 3-axis 

accelerometers to predict two classes of animal behavior: grazing and not-grazing. 

Generalized linear model (GLM) is a method to provide a linear modeling 

predictor function of exploratory variables and dealing within non-normal error structures 

(BOURNE et al., 2007). To fit a generalize linear model two hyperparameters were 

required lambda and alpha (both defined between 0 and 1). The lambda parameter 

controls the amount of the regularization applied to the model, where larger lambda 

shrinkage the coefficients toward to zero, and alpha parameter controls the distribution 

between LASSO (ℓ1) and ridge regression (ℓ2) penalties. The best values were chosen 

by performing a random discrete grid search using a combination of maximum runtime 

per 360 seconds and/or max number of 100 models as early stopping criterion, and 

misclassification as stopping metric. 
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Random forest (RF), is one of the most used machine learning technique in sensor 

data for classification of animal behavior (LUSH et al., 2018; ALVARENGA et al., 

2016). This method was developed to solve problem of overfitting in regular decision tree 

(BREIMAN, 2001). A random discrete grid search was performed using the following 

hyperparameters: number of trees (10, 20, 40, 80, 100, 200, and 300), minimum number 

of observations per leaf (1, 2, 10, 20, and 30), number of variables in the subset (2, 3, 4, 

5, and 6), and maximum tree depth (1, 10, 20, 40, and 80). The combination of maximum 

runtime per 860 seconds and/or max number of 100 models were used as early stopping 

criterion and misclassification as stopping metric.  

Finally, artificial neural network (ANN) is based on the human nervous system 

(STAUDENMAYER et al., 2009), which can deal with complex relationship between 

input data and the response variable (BREWSTER et al., 2018). A random grid search to 

determine the best ANN architecture was carried out using six activation functions 

(Rectifier, RectifierWithDropout, Tanh, TanhWithDropout, Maxout, and 

MaxoutWithDropout), different number of hidden layers (1, 2, 3, and 4) and number of 

neurons (20, 30, 50, 80, and 100) by hidden layers, except 100 neurons that was not used 

for 3 and 4 hidden, dropout ration (0.10 and 0.20), and the regularization hyperparameters 

ℓ1 and ℓ2 (both in a range from 0 to 0.0001). The maximum number of 100 models was 

used as early stopping criterion and misclassification as stopping metric. 

The tuning of all hyperparameters (GLR, RF, and ANN) was perform using 5-fold 

cross-validation using the H2O package (ERIN LEDELL et al., 2020) implemented in R 

(R CORE TEAM, 2019). The parameter tuning was performed only using the training 

set. The validation set was previously excluded to compose the three “Cross-Validation 

Strategies” evaluated: 

1) Holdout: 20% of the training set was randomly excluded and used in validation 

set and 80% was used in the training set; 2) Leave-one-animal-out (LOAO): all sensor 

data from a specific animal was excluded per time and used as validation set; and 3) 

Leave-one-day-out (LODO): the last five days of observations were excluded and used 

in the validation, while the first 10 days were used in training process. For LOAO strategy, 

our goal was to evaluate the predictive performance of machine learning methods when 

information of new animals is utilized. The LODO strategy was implemented to evaluate 

the predictive performance of a machine learning methods when a new grazing 

management (or grazing condition) is imposed. Sward characteristics are greatly affected 

by the process of grazing, thus every consecutive day mimics a new grazing condition.  
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As mentioned before, the 5-fold cross-validation was used during the training process 

for all validation strategies and machine learning methods. To evaluate the performance 

of the prediction models, accuracy, error-rate (ERR), sensitivity, specificity, positive 

predicted value (PPV), and negative predicted value (NPV) were calculated using the 

following equations: Accuracy = (TP + TN) / (TP + TN + FP + FN), ERR = 1 – 

Accuracy, Sensitivity = TP / (TP + FN), Specificity = TN / (TN + FP), where TP, FP, 

FN and TN are true positive, false positive, false negative and true negative 

respectively. 

 

4  RESULTS AND DISCUSSIONS 

 

4.1 Preliminary Experiment 

  

The overall accuracy of all machine learning approaches was better for Set 3 

(Table 1). In Set 3, when BT was implemented, the true positives rates for grazing and 

ruminating behavior were 72% and 59%, respectively, (Figure 18). Idle behavior was 

poorly predicted (26%) by this method. The AUC curves were 0.77; 0.71; and 0.55 for 

BT, SVM, K-NN and LDA, respectively.  

Table 1 – Overall accuracies validation of all machine learning approaches used to 

classifier different sets of Angus behavior. 

Machine Learning 

Approaches 

Overall Accuracy (%) 

Set 1 

(6 classes) 

Set 2 

(4 classes) 

Set 3 

(3 classes) 

BT 51.3 57.9 58.8 

SVM 48.1 53.7 54.7 

K-NN 46.5 53.2 54.4 

LDA 41.4 46.9 45.9 

Legend: Each set behavior contain respectively behavior features. Set1: grazing, ruminating 

standing, ruminating lying down, idle standing, idle lying down and drinking. Set2: 

grazing, ruminating (both standing and lying down), idle (both standing and lying down) 

and drinking. Set3: grazing, ruminating and idle. 

The use of Set 3 obtained higher accuracy values to predict grazing time using 

BT, as well as SVM and K-NN. These results encourage us to group the behavior traits 

of the main trial in only two classes (grazing and not-grazing), as well as to use a type of 

BT approach (RF) as a reference algorithm in the main trial. 
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Figure 18 – Confusion matrix of classification accuracy of Angus heifer cattle behavior 

using decision-tree algorithm to Set3. 

 

 
Legend: (1) grazing, (2) idle and (4) ruminating behaviors, respectively. TP Rate, corresponding 

True Positive Rate. FN Rate, corresponding False Negative Rate. The classification 

accuracy for each behavior can be read on the diagonal. The deeper green color 

highlights results with higher precision. 

 

4.2 Main Experiment 

 

The description of the sward structure is presented in Figure 19. As the animals 

grazed down the pasture, forage availability, canopy height and proportion of leaves in 

the sward decreased, while the proportion of stem increased. Changes in sward structure, 

especially forage mass and the ratio leaf:stem directly affect variables of grazing 

behavior, such as grazing time and bite rate (DA SILVA; CARVALHO, 2005). 
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Figure 19 – (A) Evaluation of canopy height and forage offer during of experiment and 

(B) percentage of leaves and stem during of experiment. 

 

 
Legend: The vertical red line indicates the division data using for training model and 

validation model (last five days). 

 

Therefore, it is of outmost importance to evaluate whether predictions developed 

with one sward structure work well in a different structure. Raw ACC data plotted in 

graphic (Figure 20) showing a clear difference between grazing and not-grazing. The total 

number of observations for each activity (grazing and not-grazing), each dataset (training 

and validation) and each validation strategy are presented in Table 2.  
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Figure 20 – Raw data distribution sampled from one experimental point day. 

 

  
Legend: for grazing (top) or not-grazing (bottom) behavior categories visually observed. 

The X, Y, and Z accelerometer axis values (G-forces) are represented in blue, 

green and red colors respectively. 

 

Table 2 – Sample size throughout different validation strategies by individual 

behavior categories.  

 

Behavior Total 
Development Validation 

LOAO1 LODO1 Holdout LOAO LODO Holdout 

Grazing 51,095 43,023 28,608  40,972  8,072  22,487  10,123  

Not-grazing1 58,143 48,895 45,599 46,391 9,248 12,544 11,752 
1Leave-one-animal-out (LOAO), Leave-one-day-out (LODO), and testing model in a 

random 20 % of the data set (holdout). Not-grazing category included animal ruminating, 

idle, walking, and drinking water. 

 

The performance of each ML approach for model training and validation is 

presented in Table 3 and 4, respectively. The accuracy of all predictive approaches was 

greater for the training set than for the validation set. Such result is especially important 

when machine learning techniques are employed. Several machine learning methods, 

including the ones used in this current study (RF and ANN), have many parameters that 

are tuned during training process. During that process, the high accuracies commonly 

observed are due to overfitting and the main reason of having an independent dataset is 
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to avoid this type of issue. Machine learning algorithms are more susceptible to 

overfitting compared to GLR, for example. This fact can be noted by comparing the 

changes in accuracy for each predictive approach on training (Table 3) and validation 

datasets (Table 4). The accuracy for GLR averaged 56.0% for the training set and 52.5% 

for the validation set, while the RF and ANN dropped from 77.1% and 74.7% to 64.7% 

and 68.6%, respectively.  

Table 3 – Performance of machine learning approaches in model development to predict 

grazing or not-grazing behavior categories visually observed in Nellore cattle 

using different validations strategies. 

 

 Accuracy Error Rate Sensitivity Specificity PPV1 NPV1 

Leave-one-animal-out 

GLR1 55.9 44.1 9.6 96.9 73.4 54.7 

RF1 78.0 22.0 76.7 79.1 76.5 79.3 

ANN1 74.1 25.9 69.5 78.0 73.6 74.4 

Leave-one-day-out 

GLR 56.0 44.0 66.7 45.1 55.3 57.0 

RF 77.4 22.2 60.3 88.1 76.1 78.0 

ANN 75.8 24.2 63.5 83.6 70.8 78.5 

Holdout (20%) 

GLR 56.1 43.9 17.9 89.7 60.3 55.5 

RF 75.9 24.1 72.8 78.6 75.0 76.7 

ANN 74.2 25.8 71.5 76.6 73.0 75.3 

Generalized Linear Regression (GLR), Random Forest (RF), Artificial Neural Network 

(ANN), Positive Predicted Values (PPV) and Negative Predicted Values (NPV). 
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Table 4 – Validation of the machine learning approaches to predict grazing or not-grazing 

behavior categories visually observed in Nellore cattle using different 

validation strategies. 

 

 Accuracy Error Rate Sensitivity Specificity PPV1 NPV1 

Leave-one-animal-out 

GLR1 53.1 46.9 16.2 84.5 47.2 54.2 

RF1 58.7 41.3 56.0 61.0 55.0  61.9 

ANN1 72.0 28.0 65.3 77.8 72.0 72.0 

Leave-one-day-out 

GLR 47.4 52.6 27.0 67.7 45.4 48.2 

RF 58.5 41.5 51.1 71.8 76.5 45.0 

ANN 59.7 40.3 54.0 70.0 76.3 45.9 

Holdout (20%) 

GLR 57.1 42.8 24.7 85.9 60.7 56.3 

RF 76.9 23.1 74.0 79.4 76.1 77.5 

ANN 74.2 25.8 70.7 77.3 72.8 75.4 

Generalized Linear Regression (GLR), Random Forest (RF), Artificial Neural Network 

(ANN), Positive Predicted Values (PPV) and Negative Predicted Values (NPV). 

 

 

Regardless of the validation strategy, RF and ANN had a more accurate prediction 

of grazing activity than GLR and ANN. The linear approach (GLR) achieved an 

expressively worse accuracy (averaging 56.0%) compared to the machine learning 

techniques (averaging 64.7% and 68.6% for RF and ANN, respectively). The RF 

technique had showed superior accuracy in classifying data from sensors for animal 

behavior in similar studies (SMITH et al., 2016), being the most used tool to process this 

type of data. The overall accuracy found in our study for machine learning methods was 

similar to studies predicting grazing behavior through sensor technology (PENG et al., 

2019; BARWICK et al., 2018b; RAHMAN et al., 2018; ALVARENGA et al., 2016; 

GONZÁLEZ et al., 2015). Such results indicate the potential of coupling machine 

learning techniques and sensor technology to predict complex behaviors such as grazing 

activity. Predicting grazing behavior would greatly improve farm management decisions 

related to grazing management (HOMBURGER et al., 2014), animal health (BARKER 

et al., 2018), and welfare (KUŹNICKA; GBURZYŃSKI, 2017). 

The capacity of detecting grazing activity is expressed by the sensitivity of the 

model, while the capacity of detecting not-grazing activity is shown by the specificity. 

Even though GLR had the highest specificity value in the LOAO and holdout validation 

strategies, its sensitivity was very poor (Table 4). On the other hand, for the LODO 
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strategy, GLR had the highest sensitivity value but poor specificity. Additionally, GLR 

had the greatest error rate among the techniques for all validation strategy, confirming 

that it is not an adequate technique to predict grazing in these conditions (i.e. with a 

varying sward structure).  

The first thing worth noticing is that the accuracy values are smaller than the ones 

in Table 3. This is expected because during the process of modeling developing, the 

training uses data within the dataset (5k-fold), while the validation process creates 

independent sets to test the model. Since the final goal is to predict traits in new animals 

and conditions that were not included in the training set, it is important to achieve high 

accuracy in the validation analysis. 

The holdout validation strategy yielded the highest accuracy values for all three 

machine learning approaches. This strategy randomly selects 20% of the database to use 

as an independent set for validation. However, this independence might not be completely 

true. Even though the datapoints in the validation set were not used for training the model, 

the remaining 80% still contain other datapoints from the same animal and same pasture 

conditions. This can bring carryover effects that inflate prediction accuracy due to 

overfitting problems (WANG; BOVENHUIS, 2019; DÓREA et al., 2018) when 

compared with a truly independent validation set, in which all datapoints from the same 

animal or from the same pasture conditions are excluded. Indeed, the LOAO and LODO 

validation strategies yielded lower accuracy values, confirming the overfitting effect of 

holdout. 

Interestingly, the overall performance of the models was worse for LODO than 

for LOAO. With the LODO strategy, the training set (first 11 days of grazing period) had 

very different sward conditions from the validation set (last 5 days of grazing period), as 

shown in Table 1 and Figure 1. None of the algorithms was able to account for this change 

in pasture condition and yielded inadequate accuracy (all smaller than 60%) and 

sensitivity (all smaller than 54%) values. However, the more the sward condition 

changed, as days passed, the worse was the accuracy for GLR (Figure 21). This did not 

happen for RF and ANN, that kept their accuracy value throughout the validation period. 
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Figure 21 – Accuracy values of last five days as a validation to grazing for LODO. 

 

 
 

The poor performance of the models with LODO validation is an interesting 

finding since the goal of this kind of research is to develop a tool that can be used to 

accurately predict grazing behavior in order to assist with pasture management under 

different environmental conditions (e.g. different grass and animal types). Sward structure 

changes drastically depending on management strategy and climate conditions and the 

algorithm needs to be able to perform regardless. One possible explanation for the poorest 

performance of LODO compared to LOAO was that the signal created by the ACC as a 

result of a behavioral activity would be more similar among animals than grazing 

managements. Animals will tend to behave and move similarly during grazing as long as 

they are under the same management. Thus, although animal to animal variation might 

exist, it is probably smaller compared to how a new (unknown by the algorithm) grazing 

management (e.g. sward height) will affect the behavioral pattern within and across 

animals. In this context, the development predictive analytics to be coupled with sensor 

technology using datasets from limited grazing management scenarios may limit the 

efficacy of technology implementation because models will not perform as expected. 

Such lack of model generalization was not observed when one animal was excluded at a 

time (LOAO), which means that although a one animal is not used for algorithm training, 

the data acquired by other animals may better represent the behavioral patterns of new 

animals (unknown by the algorithm).  
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When all data from a single animal were excluded from the training set and used 

for validation (LOAO), the accuracy was still poor for GLR (53.1%) and RF (58.7%) but 

increased with ANN (72%). This validation strategy aimed to test if the algorithm would 

still be able to predict grazing behavior when the sensor is placed in a new animal, that 

was not used in the training. This is of outmost importance for the application of the tool 

in commercial farms, where the visual observation of animal behavior is infeasible. We 

were able to develop a model, using ANN, that yielded adequate prediction capacity. With 

a larger dataset (i.e. more animals and grazing management scenarios), it is expected that 

this accuracy could be increased, considering an appropriate strategy of validation which 

is a key factor to create robust and accurate sensor technology and minimize frustration 

of users in real-life applications. 

Therefore, our data suggests that in order to build a robust prediction model, it is 

important to combine statistical knowledge with biological information to avoid 

misleading recommendations. Most of the studies that validate the use of sensors to 

predict animal behavior used the k-fold strategy, excluding random sets of data and 

ignoring the interdependence of training and validation sets. This overfitting inflates the 

accuracy and may incur in frustration when such tool is applied in a commercial setting, 

with new animals and varying pasture conditions. 

 

5  CONCLUSIONS 

 

 Our results demonstrated that the validation strategy does interfere with the 

accuracy of predicting models and that random choice of datapoints (such as in holdout 

validation) inflate accuracy values. Removing all data from one animal (LOAO) or one 

pasture condition (LODO) decreased accuracy, suggesting carry over effects not 

accounted for with the holdout validation strategy. Therefore, the performance of an 

algorithm developed within a specific scenario and validated with holdout strategies 

might perform poorly in a different scenario, limiting the practical application of the tool. 

Another conclusion was that the linear approach was not adequate to predict such 

as complex behaviors such as grazing activity, regardless of the validation strategy. The 

RF method had the best performance with the holdout validation but decreased to 

inadequate values when LOAO or LODO were used. Finally, when compared to the 
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holdout validation, ANN also lost accuracy with LODO but not with LOAO, achieving 

an adequate accuracy with this validation strategy. This is a promising result that 

strengthens the potential for such technologies to become decision-making tools in the 

farm. 
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APPENDIX 

 

Table A.1 – Summary of the reviewed articles. 

PUBLICATION COUNTRY SPECIES n 
SENSOR 

POSITION 

SENSOR 

UTILIZED 

MAJOR 

PHENOTYPE 

ANALYTICAL 

METHOD USED 

Adiamandroso et al., 2017 Belgium Dairy 

cows 

19 Neck 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Ahmed et al., 2018 Australia Dairy 

cows 

22 Around the 

vulva 

GPS Behavior Sensor default 

prediction 

Alsaaod et al., 2015 Switzerland Dairy 

cows 

20 Leg 3-axis 

accelerometer 

Behavior Not shown 

Alsaaod et al., 2017 Switzerland Dairy 

cows 

17 Ear 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Alvarenga et al., 2016 Brazil Sheep 10 Jaw 3-axis 

accelerometer 

Behavior Decision Tree 

Augustine et al., 2013 United 

States 

Beef 

Cattle 

9 Neck GPS Behavior Sensor default 

prediction 

Barker et al., 2018 United 

Kingdom 

Dairy 

cows 

19 Neck GPS Location Decision Tree 

Barwick et al., 2018 Australia Sheep 5 Ear / Neck / 

Leg 

3-axis 

accelerometer 

Behavior Quadratic 

Discriminant 

Analysis 

Barwick et al., 2018 Australia Sheep 1 Ear / Neck / 

Leg 

GPS Behavior Quadratic 

Discriminant 

Analysis 

Becciolini et al., 2018 Italy Beef 

Cattle 

12 Neck GPS Behavior Linear 

Discriminant 

Analysis 
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PUBLICATION COUNTRY SPECIES n 
SENSOR 

POSITION 

SENSOR 

UTILIZED 

MAJOR 

PHENOTYPE 

ANALYTICAL 

METHOD USED 

Betteridge et al., 2010 New 

Zealand 

Beef 

Cattle /  

Sheep 

20 / 20 Neck GPS Location Sensor default 

prediction 

Betteridge et al., 2010 New 

Zealand 

Beef 

Cattle / 

Sheep 

12 / 20 Around 

Vulva 

Other sensors Behavior Sensor default 

prediction 

Betteridge et al., 2010 New 

Zealand 

Sheep / 

Beef 

Cattle 

20 / 12 Around 

Vulva 

GPS Location Sensor default 

prediction 

Betteridge et al., 2013 New 

Zealand 

Dairy 

cows 

9 Around the 

vulva 

GPS Location Lying Threshold 

Model 

Bikker et al., 2016 Netherlands Dairy 

cows 

15 Ear 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Borchers et al., 2016 United 

Kingdom 

Dairy 

cows 

48 Leg 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Borchers et al., 2017 United 

States 

Dairy 

cows 

53 Leg / Neck 3-axis 

accelerometer 

Behavior / 

Calving 

Random Forest / 

Linear 

Discriminant 

Analysis / 

Artificial Neural 

Network 

Champion et al., 1997 United 

Kingdom 

Sheep / 

Beef 

Cattle 

8 / 12 Leg Mercury tilt Behavior Sensor default 

prediction 

Chelotti et al., 2016 Argentina Dairy 

cows 

1 Halter GPS Behavior Hidden Markov 

Models 

Chelotti et al., 2018 Argentina Dairy 

cows 

2 Forehead Sound record Machine 

learning 

Support Vector 

Machine / 
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PUBLICATION COUNTRY SPECIES n 
SENSOR 

POSITION 

SENSOR 

UTILIZED 

MAJOR 

PHENOTYPE 

ANALYTICAL 

METHOD USED 

Decision Tree / 

Random Forest  

de Campos et al., 2016 Brazil Goats 3 Masseter 

muscule 

Fiber Bragg 

Gratings 

Behavior Sensor default 

prediction 

de Passillé et al., 2010 Canada Dairy 

calves 

7 Leg 3-axis 

accelerometer 

Behavior Spearman 

correlations 

Debauche et al., 2013 Belgium Beef 

Cattle 

1 Halter GPS Behavior Sensor default 

prediction 

Decandia et al., 2016 Italy Sheep 1 Jaw 3-axis 

accelerometer 

Behavior Discriminant 

Analysis 

Decandia et al., 2018 Italy Sheep 8 Jaw 3-axis 

accelerometer 

Behavior Discriminant 

analysis 

di Virgilio et al., 2018 Argentina Sheep 3 Neck GPS Location Sensor default 

prediction 

Draganova et al., 2010 New 

Zealand 

Dairy 

cows 

17 Neck / Leg GPS Location Sensor default 

prediction 

Dunne et al., 2017 Australia Dairy 

cows 

24 Neck GPS Behavior Sensor default 

prediction 

Dutta et al., 2015 Australia Dairy 

cows 

24 Neck 3-axis 

accelerometer 

Behavior Discriminant 

Analysis / K-

Nearest Neighbors 

/ Naive Bayes / 

Linear 

Discriminant 

Analysis 

González et al., 2015 Australia Beef 

Cattle 

42 Neck GPS Behavior Decision Tree 

Greenwood et al., 2014 Australia Beef 

Cattle 

10 Ear / Jaw 3-axis 

accelerometer 

Location Sensor default 

prediction 
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PUBLICATION COUNTRY SPECIES n 
SENSOR 

POSITION 

SENSOR 

UTILIZED 

MAJOR 

PHENOTYPE 

ANALYTICAL 

METHOD USED 

Grinter et al., 2019 United 

States 

Sheep 19 Collar 1-axis 

accelerometer 

Behavior Linear Regression 

Guo et al., 2009 Australia Dairy 

cows 

6 Neck GPS Location Hidden Markov 

Model 

Guo et al., 2018 Australia Sheep 3 Collar 3-axis 

accelerometer 

Behavior Linear 

Discriminant 

Analysis 

Hendriks et al., 2019 New 

Zealand 

Dairy 

cows 

309 Leg 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Henkin et al., 2007 Israel Beef 

Cattle 

300 Collar GPS Location Sensor default 

prediction 

Homburger et al., 2014 Switzerland Dairy 

cows 

120 Collar GPS Behavior Random Forest / 

Linear 

Discriminant 

Analysis / Support 

Vector Machine 

Karam et al., 2015 Brazil Beef 

Cattle 

1 Jaw Fiber Bragg 

Gratings 

Behavior Decision Tree 

Klefot et al, 2016 United 

States 

Dairy 

cows 

4 Neck 3-axis 

accelerometer 

Behavior Linear 

Discriminant 

Analysis 

Kuźnicka et al., 2017 Poland Sheep 1 Neck 3-axis 

accelerometer 

Behavior Support Vector 

Machine 

Lush et al., 2018 United 

Kingdom 

Sheep 30 Ear 3-axis 

accelerometer 

Behavior Random Forest 

Mansbridge et al., 2018 United 

Kingdom 

Sheep 6 Ear / Collar 3-axis 

accelerometer 

Behavior Random Forest / 

Support Vector 

Machine / K-

Nearest Neighbors 
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Maroto-Molina et al., 2019 Spain Sheep / 

Beef 

Cattle 

50 / 25 Neck / Ear GPS Location Sensor default 

prediction 

Mason et al., 2013 United 

Kingdom 

Sheep 4 Neck 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Matsui et al., 1989 Japan Beef 

Cattle 

5 Halter 3-axis 

accelerometer 

Behavior Not shown 

Misselbrook et al., 2016 United 

Kingdom 

Dairy 

cows 

12 Around the 

vulva 

GPS Location Sensor default 

prediction 

Moreau et al., 2009 Germany Goats 2 Neck 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Mulvenna et al., 2018 United 

Kingdom 

Dairy 

cows / 

Pygmy 

goats/ 

Sheep 

2 Halter Magnet 

sensor 

Behavior Generalized linear 

mixed model 

Nadimi et al., 2012 Denmark Sheep 11 Neck 2-axis 

accelerometer 

Behavior Artificial neural 

networks 

Nielsen et al., 2018 Sweden Dairy 

cows 

30 Leg 3-axis 

accelerometer 

Behavior Not shown 

Nielson et al., 2013 Sweden Dairy 

cows 

20 Halter / Leg 2-axis 

accelerometer 

Behavior Sensor default 

prediction 

Oudshoorn et al., 2012 Denmark Beef 

Cattle 

10 Neck 2-axis 

accelerometer 

Behavior Sensor default 

prediction 

Pegorini et al., 2015 Brazil Calf 1 Jaw Optical fiber 

bragg 

Intake Decision Tree 

Peng et al., 2019 Japan Beef 

Cattle 

6 Neck 3-axis 

accelerometer 

Behavior Convolutional 

Neural Network / 
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Recurrent Neural 

Network2019 

Poulopoulou et al., 2019 Italy Beef 

Cattle 

8 Neck 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Quellet et al., 2016 Canada Dairy 

cows 

12 Ear 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Rehman et al., 2018 Australia Beef 

Cattle 

1 Ear / Neck / 

Halter 

3-axis 

accelerometer 

Behavior Random Forest 

Reiter et al., 2018 Australia Dairy 

cows 

10 Ear 1-axis 

accelerometer 

Behavior Sensor default 

prediction 

Reynolds et al., 2019 United 

States 

Dairy 

cows 

49 Ear 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Riaboff et al., 2019 France Dairy 

cows 

10 Neck 3-axis 

accelerometer 

Behavior Decision Tree 

Robert et al., 2009 United 

States 

Beef 

Calves  

15 Leg 3-axis 

accelerometer 

Behavior Linear mixed 

models 

Roland et al., 2018 Germany Dairy 

cows 

15 Ear 3-axis 

accelerometer 

Behavior Hidden Markov 

Model 

Rombach et al., 2018 Switzerland Dairy 

cows 

18 Halter 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Rutten et al., 2017 Netherlands Dairy 

cows 

400 Ear 3-axis 

accelerometer 

Behavior Logistic 

Regression 

Sakai et al., 2019 Japan Goats 3 Withers 3-axis 

accelerometer 

Behavior K-Nearest 

Neighbors / 

Decision Trees 

Schoenbaum et al., 2017 Israel Beef 

Cattle 

94 Neck / Leg GPS Behavior Sensor default 

prediction 
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Serrano et al., 2018 Portugal Sheep 6 Harnesses GPS Location Regression model 

and correlation 

Shahriar et al., 2016 Australia Dairy 

cows 

32 Collar 3-axis 

accelerometer 

Heat events K-means 

clustering 

Sheibe et al., 2006 Germany Dairy 

cows 

4 Collar 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Smith et al., 2014 Australia Beef 

Cattle 

7 Halter 3-axis 

accelerometer 

Behavior Decision Tree 

Smith et al., 2016 Australia Dairy 

cows 

24 Neck GPS Behavior Support Vector 

Machine / K-

Nearest Neighbors 

/ Logistic 

Regression / 

Random Forest 

Spender et al., 2019 Norway Beef 

Cattle 

16 Neck 2-axis 

accelerometer 

Location Sensor default 

prediction 

Stephenson et al., 2017 United 

States 

Dairy 

cows 

11 Neck / Leg GPS Behavior Sensor default 

prediction 

Tamura et al., 2019 Japan Dairy 

cows 

38 Neck 3-axis 

accelerometer 

Behavior Decision Tree 

Tani et al., 2013 Japan Beef 

Cattle 

4 Jaw 1-axis 

accelerometer 

Behavior Sensor default 

prediction 

Thomas et al., 2011 Australia Beef 

Cattle 

6 Neck GPS Location Sensor default 

prediction 

Tofastrud et al., 2018 Norway Beef 

Cattle 

18 Neck GPS Behavior Sensor default 

prediction 

Turner et al., 2000 United 

States 

Beef 

Cattle 

8 Collar GPS Location Sensor default 

prediction 
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Umstatter et al., 2008 Scotland Behavior 1 Neck GPS Behavior Linear 

Discriminant 

Analysis 

Ungar et al., 2005 Israel Beef 

Cattle 

5 Neck GPS Behavior Multiple 

regression 

Ungar et al., 2011 Israel Beef 

Cattle 

9 Neck / Leg GPS Behavior Sensor default 

prediction 

Ungar et al., 2018 Israel Beef 

Cattle 

800 Leg 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Valente et al., 2013 Brazil Beef 

Cattle 

12 Neck GPS Behavior Sensor default 

prediction 

Vázques Diosdado et al., 2015 United 

Kingdom 

Dairy 

cows 

6 Neck 3-axis 

accelerometer 

Behavior Decision Trees 

Werner et al., 2018 Ireland Dairy 

cows 

15 Halter 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Werner et al., 2019 Ireland Dairy 

cows 

12 Neck 3-axis 

accelerometer 

Behavior Sensor default 

prediction 

Williams et al., 2016 United 

Kingdom 

Dairy 

cows 

40 Neck GPS Behavior Decision Tree / 

Naïve Bayes / 

Random Forest 

Wolfger et al., 2017 United 

States 

Dairy 

cows 

15 Ear Other sensor Location Not shown 

Yayota et al., 2017 Japan Goats 16 Halter Wearable 

camera 

Behavior Sensor default 

prediction 

Yoshitosh et al., 2013 Japan Beef 

Cattle 

4 Neck 1-axis 

accelerometer 

Behavior Linear 

Discriminant 

Analysis / 

Logistic 

Regression 
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Zambelis et al., 2019 Canada Dairy 

cows 

10 Ear 3-axis 

accelerometer 

Behavior Multivariate 

mixed models 

Zehner et al., 2017 Switzerland Dairy 

cows 

60 Halter Noseband 

pressure 

sensor 

Behavior Sensor default 

prediction 

Zhang et al., 2018 China Dairy 

cows 

15 Neck Sensor 

Network 

Transceiver 

Location Area coverage 

Zobel et al., 2015 Canada Goats 6 Leg 3-axis 

accelerometer 

Behavior Pearson 

correlation 

 

 

 

 


