ESTUDO DA VEGETAÇÃO REMANESCENTE COMO SUBSÍDIO À RECOMPOSIÇÃO DE ÁREAS CILIARES NAS CABECEIRAS DO RIO GRANDE, MINAS GERAIS

ISRAEL MARINHO PEREIRA

2006

ISRAEL MARINHO PEREIRA

ESTUDO DA VEGETAÇÃO REMANESCENTE COMO SUBSÍDIO À RECOMPOSIÇÃO DE ÁREAS CILIARES NAS CABECEIRAS DO RIO GRANDE, MINAS GERAIS

Tese apresentada à Universidade Federal de Lavras, como parte das exigências do programa de Pós-Graduação em Engenharia Florestal, área de concentração Manejo Ambiental, para a obtenção do título de "Doutor".

Prof^a. Dra. Soraya Alvarenga Botelho

Orientadora

Prof. Dr. Ary Teixeira de Oliveira Filho Co-Orientador

> LAVRAS MINAS GERAIS - BRASIL 2006

Ficha Catalográfica Preparada pela Divisão de Processos Técnicos da Biblioteca Central da UFLA

Pereira, Israel Marinho

Estudo da vegetação remanescente como subsídio à recomposição de áreas alteradas nas cabeceiras do rio Grande, Minas Gerais. -- Lavras : UFLA, 2006. 261 p. : il.

Orientador: Soraya Alvarenga Botelho. Tese (Doutorado) – UFLA. Bibliografia.

Mata ciliar. 2. Estágio sucessional. 3. Grupo de função ecológica. 4.
 Seleção de espécie. 5. Área perturbada. 6. Recomposição de mata ciliar. 7.
 Relação espécie-ambiente. I. Universidade Federal de Lavras. II. Título.

CDD-574.52642 -634.9

ISRAEL MARINHO PEREIRA

ESTUDO DA VEGETAÇÃO REMANESCENTE COMO SUBSÍDIO À RECOMPOSIÇÃO DE ÁREAS CILIARES NAS CABECEIRAS DO RIO GRANDE, MINAS GERAIS

Tese apresentada à Universidade Federal de Lavras, como parte das exigências do programa de Pósgraduação em Engenharia Florestal, área de concentração Manejo Ambiental, para a obtenção do título de "Doutor".

APROVADA em 6 de janeiro de 2006

Dra. Giselda Durigan - Instituto Florestal, SP

Dra. Maria Teresa Zugliani Toniato - Instituto Florestal, SP

Prof. Dr. Antonio Claudio Davide - UFLA

Prof. Dr. Ary Teixeira de Oliveira Filho - UFLA

Profa. Dra. Soraya Alvarenga Botelho - UFLA (Orientadora)

LAVRAS MINAS GERAIS – BRASIL A minha mãe, principal responsável pela realização de um grande sonho,

OFEREÇO.

A todos aqueles que batalham e fazem um sonho tornar-se realidade, mesmo quando este sonho parece impossível,

DEDICO.

AGRADECIMENTOS

A Deus, pela minha existência e proteção em todos os momentos da vida e oportunidades.

À professora Dra. Soraya Alvarenga Botelho, pelo apoio, amizade, orientação, tolerância, ensinamentos, investimentos e, principalmente, por ter acreditado em mim.

Ao professor Dr. Ary Teixeira de Oliveira Filho, pela orientação segura e objetiva e pela atenção e amizade dedicadas no período deste trabalho.

Aos professores Dra. Giselda Durigan, Dra. Maria Teresa Zugliani Toniato e Dr. Antonio Claudio Davide, membros da banca examinadora, pelas sugestões e críticas construtivas que enriqueceram a versão final deste trabalho.

Ao professor Douglas Antônio de Carvalho, por ceder parte do banco de dados.

Ao professor Eduardo van den Berg, pela ajuda na coleta de dados.

Aos professores Leonaldo Alves de Andrade (UFPB) e Everardo V. S. B. Sampaio (UFPE), pelo apoio, amizade e ensinamentos.

Ao Programa de Pós-Graduação em Engenharia Florestal da Universidade Federal de Lavras, pela oportunidade oferecida.

A CNPq/CT-Hidro, pela concessão da bolsa de estudos e a CEMIG/ANEEL, pelo financiamento do projeto "Estudo integrado da vegetação no entorno de nascentes, rios e reservatórios".

Á Auwdréia, pelo amor, carinho, companheirismo, apoio, ajuda, estímulos nos momentos dificeis e paciência por minha ausência em muitos momentos durante a realização deste trabalho.

Aos meus pais, José e Maria, ao meu irmão Felipy e ao meu filho Isaac, pelo incentivo e amor em todos os momentos da minha vida.

Aos amigos, Evandro, Rubens e Fábio, pelos bons momentos que compartilhamos ao longo dos últimos anos.

À minha sogra, Luzia Pereira e a minha cunhada, Auwdreísa, pela amizade e apoio em vários momentos durante os últimos anos.

Aos colegas do CEMAC, Marciel, Lílian, Gentil, Wendy e Regiane, pelas conversas e risadas em vários momentos.

Às secretárias do Departamento de Ciências Florestais, Rose, Gláucia, Chica, Sheila, Terezinha, Virgínia e Francis, pelo apoio.

A todos áqueles que contribuíram com a realização deste trabalho, meu muito obrigado.

SUMÁRIO

	Página
RESUMO	i
ABSTRACT	iii
APRESENTAÇÃO	v
ARTIGO 1:	
Composição florística do compartimento arbóreo de cinco rema	anescentes
florestais do maciço do Itatiaia, Minas Gerais e Rio de Janeiro	
Resumo	
Abstract	
Introdução	
Material e métodos	
Caracterização e localização das áreas	
Levantamento do compartimento arbóreo	
Análises florísticas.	
Resultados e discussão	
Composição e riqueza de espécies	
Análise florística	
Conclusões.	
Referências bibliográficas	
Figuras	
Tabelas	
ADTICO 2.	
ARTIGO 2: Heterogeneidade ambiental e distribuição de espécies arbóreas e	am motoc
ciliares das cabeceiras do rio Grande, Minas Gerais	111 111atas 16
Resumo	
Abstract	
Introdução	
Material e métodos	
Área de estudo.	
Inventário do compartimento arbóreo	
Inventário das variáveis ambientais.	
Estrutura fisionômica, diversidade e similaridade florística	
Análises estatísticas das variáveis fisionômicas e ambientais	
Resultados	
Estrutura fisionômica, diversidade e similaridade florística	
Distribuição das espécies	
Discussão	
Estrutura fisionômica, diversidade e similaridade florística	
Padrões de distribuição das espécies	
i adioos de distillouição das especies	07

Conclusões	69
Referências bibliográficas	71
Figuras	
Tabelas	
ARTIGO 3:	
	shiontos do
Caracterização ecológica de espécies arbóreas ocorrentes em am mata ciliar, como subsídio à recomposição de áreas alteradas nas	
do rio Grande, Minas Gerais	
Resumo	
Abstract	
Introdução.	
Material e métodos	
Caracterização e localização das áreas de estudo	
Composição florística da comunidade arbustivo-arbórea	
Caracterização ecológica das espécies	
Resultados	
Estrutura fisionômica e diversidade do compartimento arbóreo	
Composição das guildas	
Relação entre as guildas	
Discussão	
Padrões de distribuição das espécies nas guildas de re	
estratificação e dispersão	
Conclusões	
Referências bibliográficas	
Figuras	
Tabelas	
ARTIGO 4:	17.
Modelo de classificação de espécies florestais em grupos de função	
para a recuperação de áreas ciliares nas cabeceiras do rio Gran	
Gerais	
Resumo	
Abstract	
Introdução	
Material e métodos	
Localização das áreas de estudo.	
Estrutura fisionômica, diversidade e composição florística	
Análises estatísticas das variáveis fisionomias	
Classificação das espécies em grupos de funcionais	1/0
Caracterização silvicultural e ecológica das espécies	
Resultados e discussões.	1/4
Composição, estrutura e diversidade dos sítios	1/4

Distribuição das espécies	175
Classificação das espécies em grupos de função e seleção para plantio	
Definição do método de recomposição	180
Conclusões	
Referências bibliográficas	184
Figuras	
Tabelas	
Anexos	258

RESUMO

PEREIRA, Israel Marinho. Estudo da vegetação remanescente como subsídio à recomposição de áreas ciliares nas cabeceiras do rio Grande, Minas Gerais. Lavras: UFLA, 2006. 261 p. Tese (Doutorado em Engenharia Florestal). Universidade Federal de Lavras, Lavras, MG.

Os objetivos do presente estudo foram: (a) descrever a composição florística da vegetação arbórea de cinco remanescentes florestais na região do maciço do Itatiaia, no Sudeste do Brasil; (b) descrever a vegetação arbórea em dois ambientes de mata ciliar (encosta e aluvião) em diferentes estágios de sucessão procurando comparar sua estrutura, diversidade e composição de espécies e guildas (regeneração, dispersão e estratificação); e (c) gerar uma lista de espécies a serem utilizadas em programas de revegetação de áreas alteradas nas cabeceiras do rio Grande. A listagem de espécies resultou de levantamentos florísticos conduzidos em cinco remanescentes de floresta ombrófila montana situadas nos municípios de Bocaina de Minas, Aiuruoca e Resende, acompanhados de levantamentos fitossociológicos nas três áreas de Bocaina de Minas (22°10' a 22°14'S e 44°28 a 44°33'W) em ambientes de mata ciliar (Encosta e Aluvião) em diferentes estágios sucessionais e ao longo de gradientes de elevação. Foram alocadas dez parcelas de 400m², em um terraco aluvial ribeirinho e outras dez em uma encosta coberta por floresta em regeneração e 26 parcelas em uma encosta coberta por floresta conservada. Todos os indivíduos arbóreos com diâmetro à altura do peito (DAP) ≥ 5cm foram identificados quanto à espécie e medidos (DAP e altura). As espécies registradas foram classificadas em relação às guildas de regeneração, dispersão e estratificação. Variáveis das propriedades químicas e físicas de solo, feições topográficas das áreas e estágios sucessionais foram obtidos para cada parcela e utilizadas, juntamente com os dados de abundância das espécies em análises diretas e indiretas dos gradientes. Na análise direta, realizou-se a comparação dos dados fitossociológicos dos três remanescentes. Já na análise indireta, produziram-se um dendrograma de classificação das parcelas pelo método de agrupamento

¹ Comitê Orientador: Soraya Alvarenga Botelho – UFLA (Orientadora), Ary Teixeira de Oliveira Filho – UFLA (Co-orientador).

(UPGMA) e diagramas de ordenação das parcelas, espécies e variáveis ambientais, por meio de uma análise de correspondência retificada (DCA) e de uma análise de correspondência canônica (CCA). A amostra da flora arbórea dos cinco remanescentes do maciço do Itatiaia foi composta por 450 espécies, 191 gêneros e 69 famílias, muitas das quais são reconhecidas como características de floresta de altitude (acima de 1.000m). A flora arbórea das florestas do maciço do Itatiaia está, certamente, entre as mais ricas das áreas de floresta ombrófila montana inventariadas no sudeste do Brasil. Nas três áreas de mata ciliar de Bocaina de Minas, foram identificadas 286 espécies distribuídas em 144 gêneros e 61 famílias. Em relação às guildas de dispersão, constatou-se que de 68% a 75% das espécies amostradas têm suas fontes de propágulos disseminadas por animais (zoocoria), 15% a 19,5% pelo vento (anemocoria) e 6% a 7% por deiscência explosiva e pela gravidade (autocoria). O índice de diversidade de Shannon (H') e o índice de equabilidade de Pielou (J') obtidos foram de 3,18; 3,53 e 4,15 e 0,75; 0,76 e 0,82, respectivamente, para os ambientes aluvião, encosta em regeneração e encosta conservada. A DCA mostrou uma tendência de distribuição diferencial das espécies nos três ambientes. Os padrões emergentes da CCA indicaram que a abundância das espécies variou ao longo dos gradientes, principalmente em função do regime de água no solo e do estágio sucessional da floresta. Além disso, várias espécies produziram correlações significativas entre sua abundância nas parcelas e as variáveis referentes à umidade do solo e ao estágio sucessional das mesmas, sugerindo que o gradiente de umidade e à pontuação da série sucessional. Outras espécies apresentaram um padrão de distribuição ampla, ocorrendo desde sítios úmidos, sujeitos a alagamento até encostas fortemente drenadas.

Palavras-Chave: mata ciliar, estágio sucessional, grupo de função ecológica, seleção de espécie, área perturbada, recomposição de mata ciliar, relação espécie-ambiente.

ABSTRACT

PEREIRA, Israel Marinho. **Estudo da vegetação remanescente como subsídio à recomposição de áreas ciliares nas cabeceiras do rio Grande, Minas Gerais.** Lavras: UFLA, 2006. 261p. (Thesis Doutorate in Forestry Engineering). ¹ Universidade Federal de Lavras, Lavras, MG.

The objectives of the present study were (a) to describe the floristic composition of the arboreal vegetation of five forest remnants of the Itatiaia Mountain Range, SE Brazil; (b) to describe the arboreal vegetation of two two riparian forest environments (Slope and Alluvial) at different regeneration phases seeking to compare their structure, diversity, and species and guild composition (regeneration, dispersion and stratification); and to produce a species list to be used in projects aimed at the reclamation of altered areas in the Rio Grande Headwaters region. The species list resulted from floristic surveys carried out in five remnants of montane rain forest situated in the municipalities of Bocaina de Minas, Aiuruoca and Resende, followed by phytosociological surveys of three areas in Bocaina de Minas (between 22°10'-22°14'S and 44°28-44°33'W) in riparian forest environments (Slope and Alluvial) at different successional phases and along elevation gradients. Ten 400 m² sample plots were laid off on a riverside alluvial terrace, another ten on a slope covered with a regenerating forest and 26 plots on a slope covered by preserved forest. All individual trees with diameter at breast height (dbh) ≥ 5 cm were identified to species and measured (dbh and height). The surveyed species were classified into regeneration, dispersion and stratification guilds. Variables related to soil chemical and physical properties, topographical features and successional phase, obtained for each plot, together with the species abundance data were used in direct and indirect gradient analyses. The direct analysis consisted of the comparison of the phytosociological data of the three remnants. The indirect analysis consisted of a detrended correspondence analysis (DCA) and a canonical correspondence analysis (CCA). The sample of the arboreal flora of

¹ Supervising Committee: Soraya Alvarenga Botelho – UFLA (Supervisor), Ary Teixeira de Oliveira Filho – UFLA (Co-supervisor).

the six forest remnants of the Itatiaia Range was composed of 450 species, 191 genera and 69 families, many of which are known as characteristic on montane forests (> 1000 m a.s.l). The tree flora of the Itatiaia Range forests is certainly among the richest areas of montane rain forests surveyed in SE Brazil. The three riparian forest remnants surveyed in Bocaina de Minas contained 286 species distributed into 144 genera and 61 families. With respect to the regeneration guilds, 68% to 75% of the species have propagules dispersed by animals (zoochorous), 15% to 19.5% are wind-dispersed (anemochorous), and 6% to 7% are dispersed through explosive dehiscence (autochorous). The Shannon diversity index (H') and the Pielou evenness (J') were 3.18, 3.53, 4.15, and 0.75, 0.76, 0.82, respectively, for the Alluvial, Regenerating Slope and Preserved Slope environments. The DCA showed a pattern of species differential distribution in the three environments related chiefly to ground water regime and forest successional phase. In addition, many species produced significant correlations between their abundance in the plots and variables related to soil moisture and to the succession rank, suggesting. Other species showed a wide distribution pattern, occurring from damp sites liable to floods to strongly drained slopes.

Key-words: ciliary forest, succession stages, groups of ecological function, selection of species, disturbed areas, recovery of ciliary areas.

APRESENTAÇÃO

Apesar de sua inegável importância ambiental, as matas ciliares encontram-se próximas de uma erradicação total em várias regiões do Brasil. São ecossistemas frágeis em face dos impactos promovidos pelo homem, pois, além de conviverem com a dinâmica erosiva e de sedimentação dos cursos d'água, encontram-se situadas no fundo dos vales, onde naturalmente recebem os impactos da interferência humana sobre a bacia hidrográfica como um todo. Dentre as principais atividades responsáveis pela degradação das matas ciliares pode-se destacar sua utilização como áreas de produção agrícola e a exploração predatória de espécies vegetais nativas, realizadas de forma desordenada, sem planejamento e desrespeitando a legislação.

A situação crítica em que se encontram as matas ciliares do centro-sul do Brasil impulsionou, nos últimos anos, uma série de pesquisas voltadas para sua conservação ou recuperação, que mostraram a necessidade de estudos detalhados sobre a composição florística e a ecologia das comunidades arbóreas das matas ciliares remanescentes como ponto de partida para embasar iniciativas no sentido de se proteger, enriquecer, recuperar ou reconstituir este tipo de vegetação. Estes estudos incrementam o conhecimento do comportamento silvicultural das espécies florestais adaptadas às condições de mata ciliar que ainda é incipiente, principalmente em função da grande diversidade de espécies florestais e de ambientes nas regiões tropicais. Portanto, para que se possam desenvolver processos adequados para a implantação de matas ciliares, que possibilitem a formação de florestas com alta capacidade regenerativa, qualidade e menor custo possível, são extremamente importantes estudos de campo que permitam conhecer o comportamento ecológico e silvicultural das espécies nativas.

Em 1990, a Companhia Energética de Minas Gerais (CEMIG), responsável por grande parte da energia elétrica produzida no estado de Minas Gerais, a Universidade Federal de Lavras (UFLA) e a Fundação de apoio ao Ensino, Pesquisa e Extensão (FAEPE), firmaram convênio visando o desenvolvimento de tecnologia para a recuperação de áreas degradadas e a implantação de matas ciliares no entorno dos reservatórios. A partir daí deu-se iníicio a vários trabalhos de pesquisas, envolvendo diversos levantamentos florísticos em remanescentes de matas ciliares, implantação de matas ciliares e recuperação de áreas degradadas na região dos reservatórios da CEMIG, que resultaram em diversas dissertações, teses, boletins técnicos e artigos científicos.

A partir de 2001, com a aprovação de um projeto "Estudo integrado da vegetação ciliar no entorno de nascentes, rios e reservatórios", financiado pela CEMIG/ANEEL, coordenado por professores do Departamento de Ciências Florestais, juntamente com o Centro de Excelência em Mata Ciliar, uma série de estudos, visando subsidiar ações de recomposição de áreas ciliares no entorno de nascentes, reservatórios e ao longo dos cursos d'água foram desenvolvidos por uma equipe de professores e alunos envolvidos neste projeto. O presente trabalho é parte das pesquisas desenvolvidas neste projeto.

A presente tese foi estruturada em três artigos e um capítulo de livro, de acordo com a nova opção de formatação de dissertações e teses do Programa de Pós-Graduação em Engenharia Florestal. O primeiro artigo foi preparado para submissão à revista *Rodriguésia* e o segundo e o terceiro para a revista *Acta Botanica Brasilica*. E o quarto na forma de um capítulo de livro sobre mata ciliar. No primeiro, a hipótese básica é de que a composição de espécie do compartimento arbóreo da região do maciço do Itatiaia apresente uma grande heterogeneidade, em função da exposição dos fragmentos nas vertentes, do regime de drenagem dos solos e do estágio sucessional dos remanescentes. No segundo, com base nas informações obtidas na literatura e das observações em

campo, apresenta-se a seguinte hipótese: os diferentes ambientes de mata ciliar (encosta e aluvião) apresentam diferenças nas características fisionômicas, composição florística, estrutura e diversidade de espécies correlacionadas com os diferentes substratos, gradientes topográficos, umidade do solo e dos estágios sucessionais em que se encontram. Já no terceiro, a hipótese é de que a composição das guildas de regeneração, dispersão e estratificação das áreas estudadas mudam de acordo com o estágio de maturidade das mesmas. No capítulo do livro, propõe-se uma metodologia para caracterização das espécies registradas em grupos funcionais. Além de outras informações que auxiliam tanto no processo de definição do método de recuperação a ser adotado, quanto na seleção das espécies a serem utilizadas.

As hipóteses testas foram confirmadas, demonstrando que existe diferença na composição florística e diversidade nos diferentes remanescentes e que as três áreas de matas ciliares apresentam diferenças na composição de espécies e guildas, estrutura e diversidade em relação aos gradientes topográficos e estágios sucessionais.

Estas informações são relevantes, pois evidenciam a complexidade da composição florística dos remanescentes florestais do maciço do Itatiaia, em que regiões muito próximas apresentam composições muito distintas em função tanto do estágio de maturidade quanto dos gradientes altitudinais e umidade dos solos. Estas informações são de extrema importância no processo de seleção das espécies que serão utilizadas nos programas de recomposição de matas ciliares.

Espera-se, com o presente estudo, colaborar com informações a respeito da composição de espécies e do processo de regeneração nos diferentes ambientes de mata ciliar, visando subsidiar ações que visam à recomposição de áreas ciliares nas cabeceiras do rio Grande, em particular na região de Bocaina de Minas, Minas Gerais.

Lavras, 6 de janeiro de 2006.

ARTIGO 1

COMPOSIÇÃO FLORÍSTICA DO COMPARTIMENTO ARBÓREO DE CINCO REMANESCENTES FLORESTAIS DO MACIÇO DO ITATIAIA, MINAS GERAIS E RIO DE JANEIRO

(Preparado nas normas da revista Rodriguesia)

Israel Marinho Pereira 1

Ary Teixeira de Oliveira-Filho 1

Soraya Alvarenga Botelho 1

Warley Augusto Caldas Carvalho 2

Marco Aurélio Leite Fontes¹

Ivan Schiavini ³

Alexandre Francisco da Silva ⁴

TÍTULO RESUMIDO: Flora arbórea de florestas do maciço do Itatiaia

Autor para correspondência: Israel Marinho Pereira. e-mail: imarinhopereira@gmail.com

¹ Departamento de Ciências Florestais, Universidade Federal de Lavras, 37200-000 Lavras, MG.

² Departamento de Botânica, ICB, Universidade Federal de Minas Gerais, 30161-970, Belo Horizonte, MG.

³ Departamento de Biologia, Campus de Umuarama, Universidade Federal de Uberlândia, 38400-902, Uberlândia, MG.

⁴ Departamento de Botânica, Universidade Federal de Viçosa, 36571-000, Viçosa, MG.

RESUMO (Composição florística do compartimento arbóreo de cinco remanescentes florestais do maciço do Itatiaia, Minas Gerais e Rio de Janeiro). Para composição de uma lista florística de espécies arbóreas das florestas do maciço do Itatiaia, foram inventariadas cinco áreas de floresta ombrófila montana situadas nos municípios de Bocaina de Minas e Aiuruoca, sul de Minas Gerais, e Resende, no sudoeste do Rio de Janeiro. A listagem de espécies resultou de levantamentos florísticos conduzidos nas cinco áreas, acompanhados de levantamentos fitossociológicos em três delas. Para avaliar as variações da composição da flora arbórea da região, foi extraída da literatura uma listagem adicional de espécies arbóreas de uma área de floresta na vertente sul do maciço Itatiaia, no estado do Rio de Janeiro. A amostra da flora arbórea das cinco áreas estudadas no maciço do Itatiaia foi composta por 450 espécies, 191 gêneros e 69 famílias, muitas das quais são reconhecidas como características de floresta de altitude (acima de 1.000m). A flora arbórea das florestas do maciço do Itatiaia pode ser considerada como uma das de maior riqueza florística entre áreas de floresta ombrófila montana no sudeste do Brasil. Uma análise de agrupamento identificou padrões de similaridade florística entre as seis áreas de floresta do maciço do Itatiaia, os quais foram relacionados à ocorrência de inundações periódicas em uma área de floresta ombrófila aluvial, a diferenças em exposição de vertentes (continental ou oceânica) entre as cinco áreas de floresta ombrófila montana e ao estágio sucessional inicial de uma destas. A maior similaridade foi obtida entre duas áreas maduras de floresta ombrófila Montana da vertente continental, em Aiuruoca e Bocaina de Minas, apesar da distância geográfica entre as duas ser consideravelmente maior que as distâncias entre a última delas e as áreas de floresta aluvial e em estágio inicial de sucessão.

Palavras-Chave: flora arbórea, floresta montana, mata atlântica, maciço do Itatiaia.

ABSTRACT (Species composition of the tree flora of five forest fragments of the Itatiaia Mountain Range, south-east Brazil). Five rain forest areas situated in the Itatiaia Mountain Range, states of Minas Gerais and Rio de Janeiro, SE Brazil, were surveyed in order to produce a checklist of tree species of the regional forests. This checklist resulted from floristic surveys carried out in the five forest fragments, and phytosociological surveys in three of them. An additional checklist produced for a forest area situated on the Itatiaia southern slopes, state of Rio de Janeiro, was extracted from the literature to help assessing the variations in floristic composition. The tree flora sampled in the five studied areas was composed of 450 species, 191 genera and 69 families, many of which are known as characteristic of montane forests (situated above 1000 m of altitude). The tree flora of the Itatiaia Range forests may be considered as one of the richest in species among areas of montane rain forest in SE Brazil. A cluster analysis identified patterns of floristic similarity among the six forest areas of the Itatiaia Range which were related to the occurrence of periodic floods in an area of alluvial rain forest, to differences in slope aspect (oceanic or continental) among the five areas of montane rain forest, and to the early successional stage of one of these. The highest similarity was obtained between the areas of mature montane rain forest of the continental slope, in Aiuruoca and Bocaina de Minas, although the geographical distance between them was much greater than the distances between the latter and the areas of alluvial forest and early sucessional forest.

Key-words: tree flora, montane forest, atlantic forest, Itatiaia mountain range.

INTRODUÇÃO

O domínio atlântico da América do Sul, que envolve tipologias vegetacionais de floresta ombrófila e floresta estacional, além de outros ecossistemas associados, cobria, originalmente, uma extensão de cerca de 100 milhões de hectares, distribuídos por 17 estados brasileiros, correspondentes a cerca de 16% do território nacional e por grandes extensões do leste do Paraguai e nordeste da Argentina (Galindo-Leal & Câmara 2003). A floresta atlântica tem sido alvo de exploração desde o período colonial, acompanhando os ciclos agrícolas e a demanda pela expansão das áreas cultivadas. Conseqüentemente, restam hoje, menos de 8% desse total e as principais áreas preservadas estão localizadas nos estados de São Paulo, Rio de Janeiro, Minas Gerais e Espírito Santo (Câmara 2003).

Segundo Viana & Tabanez (1996), a Floresta Atlântica é o ecossistema tropical em estado mais crítico de degradação em todo o mundo. Atualmente, a maioria dos seus remanescentes está representada apenas por fragmentos de formações florestais secundárias. Os poucos núcleos que ainda podem ser caracterizados como florestas primárias estão concentrados em áreas de altitude elevada e acesso difícil (Câmara 2003). Além disso, esta reduzida porção da floresta original encontra-se ainda na forma de pequenos fragmentos, a grande maioria com menos de 10ha (Almeida 1996; Collinge 1996), somam-se ainda os impactos ambientais proporcionados pela degradação sob a forma de erosão do solo, perda de diversidade biológica, invasão de espécies exóticas e degradação de bacias hidrográficas, com a resultante diminuição da qualidade e disponibilidade de água potável (Galindo-Leal *et al.* 2003).

Além das pronunciadas variações fisionômicas causadas pela heterogeneidade da distribuição de chuvas, as florestas do Domínio Atlântico também apresentam marcantes variações fisionômicas e florísticas vinculadas à altitude (Oliveira-Filho & Fontes 2000). As florestas de altitude ou montanas do Domínio Atlântico ocorrem no alto dos planaltos ou serras e podem atingir até 2200 m s.n.m., com variações que respeitam as diferentes faixas de altitude (França & Stehmann 2004). A despeito da proteção conferida historicamente pela dificuldade de acesso, as ameaças às florestas montanas são particularmente sérias quando se considera que ocupavam uma área proporcionalmente menor que a as florestas de altitude mais baixa e que elas abrigam uma flora muito peculiar. O papel da altitude na composição florística e na estrutura das florestas tropicais tem sido demonstrado por vários autores (Proctor et al. 1988; Gentry 1995; Pendry & Proctor 1996; Lieberman et al. 1995, 1996; Moreno et al. 2003; Oliveira Filho et al. 2004; França & Stehmann 2004; Carvalho et al. 2005). Ao longo de um gradiente altitudinal variam, concomitantemente, muitos fatores do complexo ambiental, tais como temperatura, precipitação pluviométrica, umidade, velocidade dos ventos e outros. Em articulação com estas variações, fisionomias e estruturas florestais diversas se sucedem montanha acima, diferenciando-se comumente a curtas distâncias (Whitmore 1990), muito embora as causas desta zonação altitudinal ainda não sejam totalmente conhecidas (Webster 1995).

As florestas montanas da região Neotropical estão entre as mais desconhecidas e também encontram-se entre as mais ameaçadas de todas as vegetações florestais dos trópicos (Gentry 1995). Além disso, as florestas montanas que abrigam nascentes de cursos d'água são de fundamental importância para a manutenção da qualidade e quantidade da água e por proporcionarem abrigo e alimento para a fauna regional (Oliveira Filho *et al.* 2004). Na região Sudeste do Brasil, grande parte das florestas montanas encontra-se situada em altitudes elevadas do complexo montanhoso que inclui as serras da Mantiqueira e do Mar. Os estudos de descrições florísticas, estruturais e ecológicas de florestas situadas acima de 1.000m de altitude no Sudeste do

Brasil estão em fase inicial (Baitello & Aguiar 1982; Meira Neto *et al.* 1989; Robim *et al.* 1990; Baitello *et al.* 1992; Oliveira-Filho & Machado 1993; Lima & Guedes-Bruni 1994; Fontes 1997; Castro 2001; Fernandes 2003; Oliveira Filho *et al.* 2004; Dalanesi *et al.* 2004; França & Stehmann 2004; Carvalho *et al.* 2005).

Situado no eixo Rio-São Paulo, o maciço do Itatiaia, que é parte da serra da Mantiqueira, vem sofrendo grandes pressões antrópicas desde os tempos coloniais. Por exemplo, a paisagem da vertente interior que aloja as nascentes do rio Grande, em Minas Gerais, mostra, na atual pobreza da cobertura florestal, o resultado do desflorestamento indiscriminado ocorrido durante o século passado para atender às necessidades madeireiras do eixo Rio-São Paulo, sobretudo a demanda criada durante a instalação da Companhia Siderúrgica Nacional (CSN) em Volta Redonda, RJ (Carvalho *et al.* 2005). Uma considerável amostra das florestas da região foi, no entanto, conservada no Parque Nacional de Itatiaia, o primeiro a ser criado no Brasil, em 1937. No entanto, ainda hoje, este Parque sofre pressões antrópicas sérias, como a extração ilegal de palmito.

As florestas da vertente interior do maciço do Itatiaia são ainda muito pouco conhecidas, o que torna importante a realização de trabalhos que inventariem a flora dos remanescentes florestais da região, incluindo as variações associadas ao histórico de intervenção humana, que resultou nos diferentes estágios sucessionais. Neste contexto, análises comparativas entre remanescentes permitem uma avaliação da heterogeneidade da flora, do nível de similaridade entre áreas congêneres e os possíveis fatores associados aos padrões de variação (Meira-Neto *et al.* 1989; Oliveira-Filho & Machado 1993; Oliveira-Filho *et al.* 1994). Tais informações e análises são de fundamental importância para subsidiar iniciativas de conservação ou recuperação ambiental na região. Dessa forma, o presente trabalho tem como objetivo descrever e analisar a composição florística de cinco remanescentes de Floresta Ombrófila da região

do maciço do Itatiaia, com o propósito final de proporcionar subsídio para ações visando à proteção e recuperação de áreas nessa região.

MATERIAL E MÉTODOS

Caracterização e localização das áreas

As vertentes continentais do maciço do Itatiaia alojam as nascentes do rio Grande que, após se juntar ao rio Paranaíba, no Triângulo Mineiro, forma o rio Paraná, constituindo, assim, o eixo da segunda maior bacia hidrográfica da América do Sul. O maciço abriga, ainda, as nascentes de importantes afluentes do rio Grande, como o Aiuruoca e o Verde, além das nascentes do rio Preto, que serve de limite entre os estados de Minas Gerais e Rio de Janeiro naquela região. O clima da região é do tipo Cfa de Köppen (úmido subtropical). Dados de temperatura e precipitação são fornecidos na Tabela 1 para Bocaina de Minas, baseados em Carvalho *et al.* (2005), para Aiuruoca e Visconde de Mauá, baseados em Guedes-Bruni (1998).

Foram estudadas, na região do maciço do Itatiaia, cinco áreas remanescentes de floresta ombrófila situadas nos municípios de Aiuruoca e Bocaina de Minas, no estado de Minas Gerais e de Resende (distrito de Visconde de Mauá), no estado do Rio de Janeiro (Tabela 1). As áreas são identificadas como Bmi-1, Bmi-2 e Bmi-3 = Bocaina de Minas 1, 2 e 3; Aiu = Aiuruoca e Vma = Visconde de Mauá. Uma sexta área, Itt = Itatiaia, inventariada por Guedes-Bruni (1998) na vertente fluminense do Parque Nacional do Itatiaia, foi incluída com o propósito de incrementar as análises comparativas, mas sua listagem não é reproduzida aqui. A situação geográfica das seis áreas está indicada na Figura 1. De acordo com o sistema do IBGE (Veloso *et al.* 1991), a vegetação se classifica como floresta ombrófila mista

montana, no caso de Vma, floresta ombrófila densa aluvial, no caso de Bmi-1 e como floresta ombrófila densa montana nos demais casos, inclusive Itt. Na classificação de Oliveira-Filho & Fontes (2000), utilizada no presente estudo (Tabela 1), Bmi-1 se classifica como floresta ombrófila aluvial, Vma como floresta ombrófila mista alto-montana, Bmi-2 e Bmi-3 como floresta ombrófila alto-montana, e Itt e Aiu como floresta ombrófila baixo-montana. Descrições de cada remanescente florestal são fornecidas abaixo.

Bmi-1 (Bocaina de Minas 1) é um remanescente florestal de aproximadamente 3ha situado nas margens do rio Grande, a cerca de 15km de sua nascente principal, nas coordenadas 22°10' Sul e 44°28' Oeste e a uma altitude que varia pouco, em torno de 1.150m. O remanescente reveste ambas as margens do rio Grande e está totalmente inserido em um leito aluvial sujeito a períodos de alagamento. As bordas são abruptas nos limites com pastagens e estradas circunvizinhas e, segundo relatos de habitantes locais, encontra-se em regeneração desde corte raso sofrido há cerca de 50 anos.

Bmi-2 (Bocaina de Minas 2) é um remanescente florestal de cerca de 10 ha, conhecido localmente como Mata da Cachoeira do rio Grande, que está localizado a cerca de 10km a jusante da nascente principal do rio Grande, nas coordenadas 22°13' Sul e 44°32' Oeste. A floresta reveste uma encosta íngreme adjacente à margem esquerda do rio Grande e as altitudes em seu interior variam de 1.210 a 1.360m. A bordas do remanescente são abruptas nos limites com pastagens circunvizinhas. De acordo com informações dos habitantes locais, a Mata da Cachoeira é o único remanescente florestal às margens do rio Grande que não sofreu corte raso, pelo menos nos últimos 80 anos. No entanto, a floresta tem sofrido impactos de obras de canalização de água, construção de cercas limítrofes e uso pelo gado. Uma descrição detalhada desta área é fornecida por Carvalho *et al.* (2005).

Bmi-3 (Bocaina de Minas 3) é um remanescente florestal de aproximadamente 15ha, localizado às margens do rio Grande, a cerca de 5km a jusante de sua nascente principal, nas coordenadas 22°14' Sul e 44°34' Oeste. A floresta reveste uma encosta que flanqueia a margem esquerda do rio Grande, com altitudes variando entre 1.500 e 1.580m. A vegetação encontra-se em estágio inicial de sucessão ecológica, tendo sofrido corte raso há cerca de 40 anos e repetidos cortes nas duas décadas seguintes. As bordas são abruptas nos limites com pastagens circunvizinhas e uma estrada.

Vma (Visconde de Mauá) foi, na verdade, composta por três remanescentes florestais situados muito próximos uns dos outros (entre 100 e 170m de distância), nas coordenadas 22°20' Sul e 44°36' Oeste, estando dois deles (com áreas de 5 e 7ha) localizados no distrito de Visconde de Mauá, município de Resende, RJ e o outro (8ha) no distrito de Mirantão, município de Bocaina de Minas, MG. Os remanescentes estão situados no interior do Parque Nacional de Itatiaia, mas, próximos aos seus limites, com áreas privadas com intensa atividade turística. As altitudes variam entre 1.150 e 1.350m.

Aiu (Aiuruoca) é um remanescente florestal com cerca de 10ha localizado às margens do rio Aiuruoca, em áreas particulares a serem afetadas parcialmente pela construção da 'Pequena Central Hidrelétrica de Aiuruoca', nas coordenadas 22°01' Sul e 44°36' Oeste. O terreno é muito acidentado, com altitudes variando entre 1040 e 1150m. A floresta se caracteriza por um mosaico de diferentes estágios de sucessão, provavelmente como resultado de um variado histórico de intervenções humanas.

Levantamentos florísticos

As listagens de espécies arbóreas resultaram de levantamentos fitossociológicos e florísticos conduzidos em Bmi-1/2/3 e somente florísticos em Aiu e Vma. Levantamentos fitossociológicos foram conduzidos em 10 parcelas

de 10×40 m, nos casos de Bmi-1 e Bmi-3, e em 26 parcelas de 20×20 m em Bmi-2. Nestas três áreas os levantamentos florísticos das espécies arbóreas foram feitos a partir do material testemunho coletado nas unidades amostrais (parcelas), acrescido de coletas realizadas em caminhamentos pelas áreas. Nos casos de Vma e Aiu, os levantamentos florísticos foram realizados por meio de caminhamentos aleatórios no interior dos remanescentes. Em todos os levantamentos, foram registrados apenas indivíduos de hábito arbóreo (fuste lenhoso e altura igual ou superior a 3m). O material botânico testemunho foi herborizado e depositado no herbário da Universidade Federal de Lavras (Herbário ESAL). As identificações foram feitas com base na literatura especializada e consultas com especialistas e coleções dos Herbários ESAL, BHCB, da Universidade Federal de Minas Gerais; SP do Instituto de Botânica de São Paulo; RB do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro e UEC da Universidade Estadual de Campinas. As espécies foram classificadas nas famílias reconhecidas pelo sistema do Angiosperm Phylogeny Group II (APG 2003).

Análises florísticas

Para a realização das análises florísticas, foi preparado um banco de dados contendo a relação de espécies das cinco áreas do presente estudo mais a área Itt, inventariada por Guedes-Bruni (1998). Ao final, o banco de dados continha dados binários de presença ou ausência de 504 espécies arbóreas em seis áreas. Foi realizada uma análise de agrupamento das seis áreas, baseada na composição de sua flora arbórea com uso do o programa PC-ORD for Windows versão 4.14 (McCune & Mefford 1999). A medida de similaridade florística empregada na análise de agrupamento foi o índice de Jaccard, por ser uma medida de simples compreensão, definida pela proporção de espécies em comum (Brower & Zar 1984). O método de agrupamento foi o das médias não

ponderadas (UPGMA), por ser o mais difundido em análises de vegetação (Kent & Coker 1992).

RESULTADOS E DISCUSSÃO

Composição e riqueza de espécies

A relação das 444 espécies arbóreas, 192 gêneros e 68 famílias botânicas registradas nos cinco remanescentes florestais da região do maciço do Itatiaia encontra-se na Tabela 2. Todos os táxons estão identificados até o nível de espécie; sete espécimes de identificação duvidosa foram excluídos. Caso fosse incluída a área Itt, inventariada por Guedes-Bruni (1998), a amostra total da flora arbórea seria composta por 504 espécies, 210 gêneros e 71 famílias. Os estimadores *jackknife* (Heltsche & Forrester 1983; Palmer 1991) do número total de espécies para a flora arbórea foram calculados a partir da amostra de seis áreas foram de 715,8 (primeira ordem) e 813,6 espécies (segunda ordem). Estes estimadores não paramétricos fazem uma projeção do número total de espécies a partir da heterogeneidade entre amostras, dais quais o segundo promove uma inflação maior por se basear nas diferenças máximas. Os valores encontrados são mais elevados que o total de registros no conjunto das seis áreas, mas ainda mais elevados que os totais de espécies registrados em cada uma delas, que variaram entre 81 (Bmi-1) e 231 (Aiu) espécies.

Estes números sugerem uma elevada riqueza de espécies regional que resulta, em grande parte, de uma grande variação em composição de espécies entre os remanescentes. De fato, 47% das 444 espécies foram registrados em apenas uma das cinco áreas. Para confirmar a alta riqueza regional de espécies, vale mencionar que, na região do Alto rio Grande, que é dez vezes maior que a do maciço do Itatiaia, Pereira (2003) registrou um total de 730 espécies arbóreas

em 20 remanescentes florestais e estimadores *jackknife* de primeira e segunda ordem de 901,8 e 991,5, respectivamente.

A riqueza de espécies registrada nos remanescentes variou muito e a amplitude (81 a 231 espécies) registrada nos fragmentos pode ser considerada como indicativa de riqueza intermediária a elevada, no contexto de outros trabalhos realizados em florestas montanas do estado de Minas Gerais, como os realizados em Carrancas (Oliveira Filho *et al.* 2004), com 218 espécies; Poço Bonito (Dalanesi *et al.* 2004), com 213; Camanducaia (França & Stehmann 2004), com 70; Poços de Caldas (Fernandes 2003), com 105; serra do Ibitipoca (Fontes 1997), com 199; serra do Cipó (Meguro *et al.* 1996), com 229 e serra do Ambrósio (Pirani *et al.* 1994), com 71.

Diversos fatores de difícil controle podem ser relacionados à grande variação da riqueza entre os remanescentes florestais do presente estudo. Entre eles, podem ser citados o tamanho do fragmento ou da área florestal contínua (Itt), a fisionomia vegetacional e o ambiente a ela relacionado, o histórico de perturbações e as variáveis humanas relacionadas ao método e esforço amostral. As áreas que apresentaram as maiores riquezas de espécies, Aiu (228) e Bmi-2 (218), são, precisamente, as áreas mais maduras de Floresta Ombrófila Alto-Montana. Em seguida, Vma, com 190 espécies também é um remanescente de floresta madura, embora de outra fisionomia, Floresta Ombrófila Mista Alto-Montana. No outro extremo, os remanescentes de menor riqueza, Bmi-1 e Bmi-3, com 81 e 119 espécies, respectivamente, encontram-se, ambos, em estágios iniciais a intermediários de sucessão ecológica. Além disso, Bmi-1 acrescenta a particularidade de ser uma floresta aluvial sujeita a inundações e seu pequeno número de espécies está provavelmente relacionado com as restrições impostas pela saturação hídrica, que, normalmente, restringe o estabelecimento de muitas espécies da flora regional. Notabilizam-se aí, pela abundância, espécies comuns em ambientes ripários alagáveis, como Sebastiania commersoniana, S.

brasiliensis, Vitex megapotamica e Inga vulpina (Botrel et al. 2002; Guilherme et al. 2004).

Nas cinco áreas de floresta do presente estudo, as famílias que se destacaram em riqueza de espécies foram Myrtaceae (44), Melastomataceae (45), Fabaceae (34), Lauraceae (32), Euphorbiaceae (19), Asteraceae (18), Rubiaceae (15), Annonaceae (14), Salicaceae (13) e Solanaceae (12). Juntas, estas famílias representaram 57% das espécies amostradas (Tabela 2). Tais famílias, com exceção de Salicaceae (em Flacourtiaceae na maioria dos trabalhos), também surgem no elenco de maior riqueza de espécies nos levantamentos realizados em outras áreas de floresta montana (ombrófilas, mistas e estacionais) da região Sudeste, nos estados de São Paulo (Baitello *et al.* 1992; Grombone *et al.* 1990; Mantovani 1990; Robim *et al.* 1990; Rodrigues *et al.* 1989), Minas Gerais (Oliveira Filho *et al.* 2004; França & Stehmann 2004; Fontes 1997) e Rio de Janeiro (Lima & Guedes-Bruni 1994). De acordo com Fontes (1997), a maioria destas famílias é característica das florestas situadas acima de 1.000 m de altitude no Sudeste do Brasil.

A influência da altitude na diferenciação florística das florestas do estado de São Paulo foi demonstrada, para florestas semidecíduas, por Salis *et al.* (1995) e ombrófilas, por Scudeller *et al.* (2001) e Ivanauskas & Rodrigues (2000), padrões estes estendidos para o sudeste brasileiro por Oliveira-Filho & Fontes (2000). As áreas do maciço do Itatiaia, com exceção de Bmi-1, apresentaram características florísticas reconhecidas como indicadoras de florestas de maiores altitudes do Sudeste do Brasil ou, até mesmo, do Neotrópico. Um dos indícios deste comportamento é a riqueza relativa de espécies de Lauraceae, Asteraceae, Cyatheaceae, Solanaceae, Melastomataceae e Aquifoliaceae, que correspondem ao perfil florístico descrito por Oliveira-Filho & Fontes (2000) para as Florestas Atlânticas Alto-Montanas, tanto Ombrófilas como Semidecíduas.

Gentry (1995), analisando florestas Andinas e da América Central, constatou uma perda de importância de Fabaceae a partir dos 1.500m de altitude e um aumento no predomínio de Lauraceae, Melastomataceae e Rubiaceae. As duas famílias de maior importância em relação ao número de espécies nas cinco áreas do maciço do Itatiaia, Myrtaceae e Melastomataceae, também são consideradas por Webster (1995) como características de florestas nebulares do Neotrópico, além de outras famílias que também foram encontradas em abundância na região do Itatiaia como Aquifoliaceae, Clethraceae, Clusiaceae, Cunoniaceae, Elaeocarpaceae, Podocarpaceae, Rosaceae, Sabiaceae, Styracaceae, Symplocaceae e Winteraceae.

Os gêneros que contribuíram com maior número de espécies na região do maciço do Itatiaia foram *Miconia* com 46 espécies, seguida de *Ocotea*, com 27; *Eugenia*, com 21; *Casearia*, com 20; *Solanum*, com 19; *Tibouchina*, com 18; *Cyathea*, *Myrcia* e *Myrsine* com 17 espécies cada; *Nectandra* com 16; *Ilex* com 14 e *Croton* e *Machaerium*, com 13 espécies cada. Juntos, esses gêneros contribuíram com 57% das espécies registradas. Entre eles, *Miconia*, *Cyathea*, *Myrsine* e *Ilex* são considerados por Webster (1995) como característicos de florestas nebulares neotropicais, o que foi confirmado para o Sudeste do Brasil por Oliveira Filho & Fontes (2000). Além disso, foram registrados outros gêneros que não se destacaram pelo número de espécies, mas, são considerados como fortemente relacionados a altitudes elevadas no Brasil ou, mesmo, no Neotrópico, como *Clethra*, *Weinmannia*, *Drimys*, *Gordonia*, *Podocarpus*, *Myrceugenia*, *Meliosma*, *Prunus* e *Roupala* (Webster 1995; Fontes 1997; Oliveira Filho & Fontes 2000; França & Stehmann 2004)

O perfil florístico das espécies também mostra relação com florestas montanas. Das 65 espécies apontadas por Oliveira-Filho & Fontes (2000) como indicadoras de floresta atlântica alto-montana, 50 (77%) foram registradas nas áreas do maciço do Itatiaia: *Byrsonima laxiflora*, *Calyptranthes clusiifolia*,

Casearia obliqua, Cecropia glaziovii, Cinnamomum glaziovii, Clethra scabra, Clusia criuva, Daphnopsis fasciculata, Drimys brasiliensis, Eremanthus incanus, Euplassa incana, Ficus luschnathiana, F. mexiae, Geonoma schottiana, Gomidesia spectabilis, Gordonia fruticosa, Guatteria australis, Hedyosmum brasiliensis, Leucochloron incuriale, Maytenus glazioviana, M. salicifolia, Meliosma sellowii, Miconia brunnea, M. chartacea, M. cinnamomifolia, Miconia theaezans, Mollinedia argyrogyna, Myrcia laruotteana, Myrsine gardneriana, Nectandra grandiflora, N. lanceolata, N. nitidula, N. puberula, Ocotea brachybotra, Ocotea silvestris, Picramnia glazioviana, Pimenta pseudocaryophyllus, Protium widgrenii, Psychotria suterella, Quiina glaziovii, Schefflera angustissima, S. calva, Siphoneugena widgreniana, Solanum bullatum. Symplocos celastrinea, Tabebuia chrysotricha, stenocarpa, Trembleya parviflora, Trichilia emarginata, Vismia brasiliensis e Weinmannia paulliniifolia.

Por outro lado, apenas duas das 65 espécies relacionadas por Oliveira-Filho & Fontes (2000) foram registradas para a área Bmi-1, o que confirma a coerência da classificação do IBGE (Veloso *et al.* 1991; IBGE 1997), que destaca as formações florestais aluviais, independentemente da altitude em que se encontram, como distintas das formações florestais vinculadas aos pisos altitudinais. Das 81 espécies encontradas em Bmi-1, 15 (18,52%) foram exclusivas dessa área, o que demonstra que o fato de a área sofrer inundações periodicamente pode restringir a colonização dessas áreas por poucas espécies, adaptadas às condições de saturação hídrica temporária. Por outro lado, das 76 espécies citadas como de ampla ocorrência nas matas ciliares do Brasil extra-amazônico por Rodrigues & Nave (2001), 44 (58%) também foram registradas nas florestas do maciço do Itatiaia, particularmente em Bmi-1. Como todas elas têm, pelo menos, um setor ripário, pode-se inferir que, mesmo em áreas de

altitudes mais elevadas, há um grande número de espécies em comum entre as áreas de matas ciliares extra-amazônicas.

Análise florística

Segundo Gentry (1995), a composição e a riqueza de espécies lenhosas nas florestas tropicais está relacionada a cinco gradientes principais: o intercontinental, o latitudinal, o de precipitação, o edáfico e o altitudinal. Os dois últimos, provavelmente, explicam boa parte da diferenciação florística entre os seis remanescentes florestais do maciço do Itatiaia que emerge do dendrograma gerado pela análise de agrupamentos (Figura 2, Tabela 3). A área Bmi-1 mostrou-se como a mais distinta, separando-se no nível mais baixo de similaridade com as demais áreas ($I_J = 0.08$ a 0.16), o que sugere que o fator edáfico foi preponderante, pois este é o único remanescente de floresta ombrófila aluvial entre as fisionomias representadas.

Conforme discutido acima, este padrão reforça o critério do IBGE (1997) de classificação das florestas aluviais como uma fisionomia bem particular, independente do piso altitudinal. A segunda área a se destacar pela composição foi Itt, que também apresentou valores muito baixos de similaridade florística com as demais áreas (coincidentemente, I_J = 0,08 a 0,16). Segue-se a área de Vma, que é também a única área de floresta ombrófila mista. Nestes dois casos, é importante salientar que, ao contrário dos demais remanescentes, Itt e Vma encontram-se na vertente oceânica do maciço do Itatiaia e bacia do rio Paraíba, enquanto os demais remanescentes (Bmi-1/2/3 e Aiu) encontram-se na vertente continental e bacia do rio Grande.

A exposição de vertentes em cadeias de montanha pode ter um papel fundamental na definição de padrões de precipitação e temperatura e, por conseguinte, na distribuição de espécies de plantas (Hugget 1995). No complexo da Mantiqueira, em geral, as chuvas têm uma distribuição mais estacional nas

vertentes continentais que nas oceânicas (Oliveira-Filho & Fontes 2000). Contudo, esta explicação não pôde ser aplicada ao presente caso, pois, os dados climáticos não corroboram esta tendência: as estações secas com menos chuva se verificaram em Itt e Aiu, com exposição oceânica e continental, respectivamente e o mesmo ocorreu com as estações secas com mais chuva, em Vma e Bmi. É possível que fatores históricos e geográficos, como as flutuações climáticas e isolamento entre bacias pelas cadeias montanhosas, exerçam uma influência mais forte que o próprio clima atual das áreas.

As três áreas de maior similaridade florística entre si (I_J = 0,20 a 0,36) são, precisamente, as fisionomias de floresta ombrófila montana da vertente continental. A maior semelhança foi verificada entre Bmi-2 e Aiu (I_J = 0,36 e 119 espécies em comum), apesar da distância entre elas, cerca de 45km, ser bem superior à que separa Bmi-2 e Bmi-3, apenas 5km. A maior dissimilaridade entre estas duas áreas e Bmi-3 deve-se, provavelmente, ao fato de se tratar de uma floresta em estágio inicial de sucessão, ao contrário das outras duas, que são bem mais maduras. No entanto, isto só é claro na distinção entre Aiu e Bmi-3, pois, a similaridade florística entre Bmi-2 e Bmi-3 também pode ser considerada alta (I_j > 0,30). Isto se deve, provavelmente, ao fato de que estas áreas encontram-se geograficamente bem próximas e sob condições topográficas e edáficas bem parecidas, sendo o estágio sucessional o único fator diferenciador evidente entre elas.

CONCLUSÕES

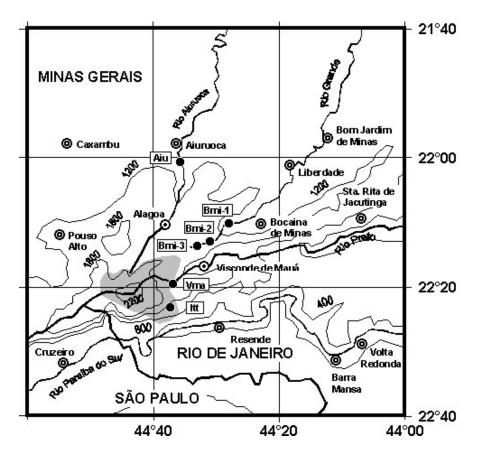
A flora arbórea das florestas do maciço do Itatiaia pode ser considerada como uma das mais ricas entre as florestas Atlânticas de montanha do Sudeste do Brasil. Muito desta diversidade deve-se à pronunciada heterogeneidade florística entre as florestas da região. Entre os fatores que, provavelmente,

influenciam mais fortemente esta diferenciação florística, estão a exposição de vertentes, o regime de drenagem dos solos e o estágio sucessional.

REFERÊNCIAS BIBLIOGRÁFICAS

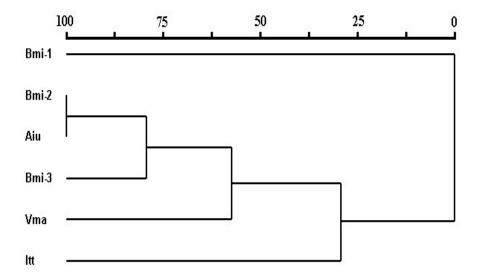
- Almeida, D. S. 1996. Florística e estrutura de um fragmento de Floresta Atlântica, no município de Juiz de Fora, Minas Gerais. Dissertação de Mestrado, Viçosa, Universidade Federal de Viçosa, 91p.
- APG. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. *Botanical Journal of the Linnean Society* 141: 399-436.
- Baitello, J. B. & Aguiar, O. T. 1982. Flora arbórea da Serra da Cantareira. *Anais do I Congresso Nacional sobre Essências Nativas. Silvicultura em São Paulo 16A*: 582-646.
- ; ____; Rocha, F. T.; Pastore, J. A. & Esteves, R. 1992. Florística e fitossociologia do estrato arbóreo de um trecho da Serra da Cantareira (Núcleo Pinheirinho), SP. *Anais do II Congresso Nacional sobre Essências Nativas. Revista do Instituto Florestal de São Paulo* 4: 291-297.
- Botrel, R. T.; Oliveira-Filho, A. T.; Rodrigues, L. A. & Curi, N. 2002. Composição florística e estrutura da comunidade arbórea de um fragmento de floresta estacional semidecidual em Ingaí, MG, e a influência de variáveis ambientais na distribuição das espécies. *Revista Brasileira de Botânica* 25: 195-213.
- Brower, J. E. & Zar, J. H. 1984. Field and laboratory methods for general ecology. Dubuque, W.M.C. Brow, 84 p.
- Câmara, I. G. 2003. Brief history of conservation in the Atlantic forest. In: Galindo-Leal, C. & Câmara, I. G. (eds.). *The Atlantic Forest of South America*. Washington, Center for Applied Biodiversity Science, p. 31-42.

- Carvalho, D. A.; Oliveira-Filho, A. T.; van den Berg, E.; Fontes, M. A. L.; Vilela, E. A.; Marques, J. J. S. G. S. M. & Carvalho, W. A. C. 2005. Variações florísticas e estruturais do componente arbóreo de uma floresta ombrófila alto-montana às margens do Rio Grande, Bocaina de Minas, MG, Brasil. *Acta Botanica Brasilica* 19: 91-109.
- Castro, A. G. 2001. Levantamento de espécies em um trecho de Floresta Atlântica na Estação Ecológica de Bananal, serra da Bocaina, Bananal, SP. Dissertação de Mestrado, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro.
- Collinge, S. K. 1996. Ecological consequences of habitat fragmentation: implications of landscape architecture and planning. *Landscape and Urban Planning*, v.36, p. 59-77.
- Dalanesi, P. E.; Oliveira-Filho, A. T. & Fontes, M. A. L. 2004. Flora e estrutura do componente arbóreo da floresta do Parque Ecológico Quedas do Rio Bonito, Lavras, MG, e correlações entre a distribuição das espécies e variáveis ambientais. *Acta Botanica Brasilica* 18:737-757.
- Fernandes, F. A. B. 2003. Estudo de gradientes vegetacionais em uma floresta semidecídua altimontana no planalto de Poços de Caldas, MG. Dissertação de Mestrado, Lavras, Universidade Federal de Lavras.157p.
- Fontes, M. A. L. 1997. *Análise da composição florística das florestas nebulares do Parque Estadual de Ibitipoca*. Dissertação de Mestrado, Lavras, Universidade Federal de Lavras, 50p.
- França, G. S. & Stehmann, J. R. 2004. Composição florística e estrutura do componente arbóreo de uma floresta altimontana no município de Camanducaia, Minas Gerais, Brasil. *Revista Brasileira de Botânica* 27: 19-30.
- Galindo-Leal, C. & Câmara, I. G. 2003. Atlantic Forest hotspot status: an overview. In: Galindo-Leal, C. & Câmara, I. G. (eds.). *The Atlantic Forest*


- of South America. Washington, Center for Applied Biodiversity Science, p. 3-11.
- ; Jacobsen, T. R.; Langhammer, P. F. & Olivieri, S. 2003. State of the hotspots: the dynamics of biodiversity loss. In: Galindo-Leal, C. & Câmara, I. G. (eds.). *The Atlantic Forest of South America*. Washington, Center for Applied Biodiversity Science, p. 12-23.
- Gentry, A. H. 1995. Patterns of diversity and floristic composition in neotropical montane forests. Pp.103-126. In: S.P. Churchill, H. Balslev, E. Forero & J.L. Luteyn (eds.). *Biodiversity and Conservation of Neotropical Montane Forests: Proceedings of Neotropical Montane Forest Biodiversity and Conservation Symposium.* The New York Botanical Garden, New York.
- Grombone, M. T.; Bernacci, L. C.; Meira-Neto, J. A.; Tamashiro, J. Y. E Leitão-Filho, H. F. 1990. Estrutura fitossociológica da floresta semidecídua de altitude do Parque Municipal da Grota Funda (Atibaia-Estado de São Paulo). *Acta Botanica Brasílica*. 4: 47-64.
- Guedes-Bruni, R. R. 1998. *Composição, estrutura e similaridade florística de dossel em seis unidades fisionômicas de mata atlântica no Rio de Janeiro*. Tese de Doutorado, São Paulo, Universidade de São Paulo, 347 p.
- Guilherme, F. A. G.; Oliveira-Filho, A. T.; Appolinário, V. & Bearzoti, E. 2004. Effects of flooding regimes and woody bamboos on tree community dynamics in a section of tropical semideciduous forest in South-Eastern Brazil. *Plant Ecology* 174: 19-36.
- Heltshe, J. F. & Forrester, N. E. 1983. Estimating species richness using the jackknife procedure. *Biometrics* 39: 1-12.
- Hugget, R. J. 1995. Geoecology, an evolutionary approach. Routledge, London.
- Ivanauskas, N. M. & Rodrigues, R. R. 2000. Similaridade florística entre áreas de Floresta Atlântica no estado de São Paulo. *Brazilian Journal of Ecology* 4: 71-81.

- Kent, M. & Coker, P. 1992. Vegetation description and analysis, a practical approach. Belhaven Press, London, 215 p.
- Lieberman, M.; Lieberman, D.; Peralta, R. & Hartshorn, G. S. 1995. Canopy closure and distribution of tropical forest tree species at La selva, Costa Rica. *Journal of Tropical Ecology* 11: 161-178.
- Lieberman, D.; Lieberman, M.; Peralta, R. & Hartshorn, G. S. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. *Journal of Ecology* 84: 137-152.
- Lima, M. P. M. & Guedes-Bruni, R. R. 1994. Reserva ecológica de Macaé de Cima Nova Friburgo RJ: aspectos florísticos das espécies vasculares. Jardim Botânico do Rio de Janeiro, Rio de Janeiro.
- Mantovani, W.; Rossi, L.; Romaniuc-Neto, S.; Catharino, E. L. M. & Cordeiro,
 I. 1990. A vegetação na Serra do Mar em Salesópolis, SP. In: Simpósio de Ecossistemas da Costa Sul e Sudeste Brasileira, 2, Anais... São Paulo: ACIESP, 1990. p.348-384.
- McCune, B. & Mefford, M. J. 1999. *PC-ORD version 4. 0., multivariate analysis of ecological data, Users guide*. Glaneden Beach, MjM Software Design, 148 p.
- Meguro, M.; Pirani, J. R.; Mello-Silva, R. & Giulietti, A. M. 1996. Caracterização florística e estrutural de matas ripárias e capões de altitude na Serra do Cipó, Minas Gerais. *Boletim de Botânica da Universidade de São Paulo*, São Paulo, 15: 13-29.
- Meira Neto, J. A.; Bernacci, L. C.; Grombone, M. T.; Tamashiro, J. Y. & Leitão-Filho, H. F. 1989. Composição florística da floresta semidecídua de altitude do Parque Municipal da Grota Funda (Atibaia, estado de São Paulo). *Acta Botanica Brasilica* 3: 51-74.

- Moreno, M. R.; Nascimento, M. T. & Kurtz, B. 2003. Estrutura e composição florística do estrato arbóreo em duas zonas altitudinais na mata atlântica de encosta da região do Imbé, RJ. *Acta Botanica Brasilica* 17: 325-486.
- Oliveira-Filho, A. T.; Carvalho, D. A.; Fontes, M. A. L.; van den Berg, E.; Curi, N. & Carvalho, W. A. C. 2004. Variações estruturais do compartimento arbóreo de uma floresta semidecídua alto-montana na chapada das Perdizes, Carrancas, MG. *Revista Brasileira de Botânica*. 27 (2): 291-309.
- Oliveira-Filho, A. T. & Fontes M.A.L. 2000. Patterns of floristic differentiation among Atlantic forests in south-eastern Brazil, and the influence of climate. *Biotropica* 32 (4b): 793-810.
- ; Vilela, E. A.; Gavilanes, M. L. & Carvalho, D. A. 1994. Comparison of the woody flora and soils of six areas of montane semideciduos forest in southern Minas Gerais, Brazil. *Edinburgh Journal of Botany* 5: 355-389.
- & Machado, J. N. M. 1993. Composição florística de uma floresta semidecídua montana, na Serra de São José, Tiradentes, Minas Gerais. *Acta Botanica Brasilica* 7: 71-88.
- Palmer M. W. 1991. Estimating species richness: The second-order jackknife reconsidered. *Ecology* 72: 1512-1513.
- Pendry, C. A. & Proctor, J. 1996. The causes of altitudinal zonation of rain forests on Bukit Belalong, Brunei. *Journal of Ecology* 84: 407-418.
- Pereira, J.A.A. 2003. Efeitos dos impactos ambientais e da heterogeneidade ambiental sobre a diversidade e estrutura da comunidade arbórea de 20 fragmentos de florestas semidecíduas da região do Alto Rio Grande, Minas Gerais. Tese de doutorado, Universidade Federal de Minas Gerais, Belo Horizonte.
- Pirani, J. R.; Giulietti, A.; Mello-Silva, R. & Meguro, M. 1994. Checklist and patterns of geographic distribution of the vegetation of Serra do


- Ambrósio, Minas Gerais, Brazil. Revista Brasileira de Botânica. 17 (2): 133-147.
- Proctor, J.; Lee, Y. F.; Langley, A. M.; Munro, W. R. C. & Nelson, T. 1988.
 Ecological studies on Gunung Silan, a small ultrabasic mountain in Sabah,
 Malaysia. I. Environment, Forest structure and floristics. *Journal of Ecology* 76: 320-340.
- Robim, M. J.; Pastore, J. A.; Aguiar, O. T. & Baitello, J. B. 1990. Flora arbóreo arbustiva e herbácea do Parque Estadual de Campos do Jordão (SP). *Revista do Instituto Florestal de São Paulo* 2: 31-53.
- Rodrigues, R. R. & Nave, A. G. 2001. Heterogeneidade florísticas das matas ciliares. In: Rodrigues, R. R.; Leitão Filho, H. F. de. *Matas ciliares*: conservação e restauração. São Paulo: EDUSP, 320 p. 45-71.
- _____; Morellato, L. P. C.; Joly, C. A. & Leitão-Filho, H. F. 1989. Estudo florístico e fitossociológico em um gradiente altitudinal de mata estacional mesófila semidecídua na Serra do Japi, Jundiaí, SP. *Revista Brasileira de Botânica*. 12 (1/2): 71-84.
- Salis, S. M.; Shepherd, G. J. & Joly, C. A. 1995. Floristic comparison of mesophytic semi-deciduous forests of the interior of the state of São Paulo, southeast Brazil. *Vegetatio* 119 (2): 155-164.
- Scudeller, V. V.; Martins, F. R & Shepherd, G. J. 2001. Distribution and abundance of arboreal species in the Atlantic Ombrophilous Dense Forest in Southeastern Brazil. *Plant Ecology* 152: 185-199.
- Viana, V. M.; Tabanez, A. J. A. 1996. Biology and conservation of forest fragments in Brazilian atlantic moist florest. In: Schellas, J.; Greenberg, R. (Ed.). Forest patches in tropical landscapes. Washington: Island Press, p. 151-167.

- Veloso, H. P.; Rangel Filho, A. L. R. & Lima, J. C. A. 1991. *Classificação da vegetação brasileira adaptada a um sistema universal*. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro.
- Webster, G. L. 1995. The panorama of Neotropical Cloud Forests. In: (S.P. Churchill, H. Balslev, E. Forero & J.L. Luteyn (eds.). *Biodiversity and Conservation of Neotropical Montane Forests: Proceedings of Neotropical Montane Forest Biodiversity and Conservation Symposium*. The New York Botanical Garden, New York. Pp. 53-77.
- Whitmore, T. C. 1990. An introduction to tropical rain forests. Oxford University Press, Oxford.

Figura 1 - Localização geográfica dos seis fragmentos de floresta ombrófila montana da região do maciço do Itatiaia utilizados nas análises florísticas (●). A área do Parque Nacional de Itatiaia é indicada em cinza. Curvas hipsométricas em metros de altitude. Bmi-1/2/3 = Bocaina de Minas 1/2/3, Aiu = Aiuruoca; Vma = Visconde de Mauá; Itt = Itatiaia.

Informação Remanescente (%)

Figura 2 - Dendrograma de similaridade produzido por análise de agrupamento da composição de espécies de seis áreas de floresta ombrófila montana no maciço do Itatiaia, nos estados de Minas Gerais e Rio de Janeiro. Bmi-1/2/3 = Bocaina de Minas 1/2/3, Aiu = Aiuruoca; Vma = Visconde de Mauá; Itt = Itatiaia.

Tabela 1 - Informações gerais sobre as seis áreas de floresta ombrófila montana do maciço do Itatiaia (MG e RJ) analisadas no presente estudo. As cinco primeiras áreas são objeto do presente estudo; Itt provém do estudo de Guedes-Bruni (1998). A tipologia florestal segue Oliveira-Filho & Fontes (2000). Latitudes (Lat.), longitudes (Long.) e altitudes (Alt.) são valores medianos. As áreas em hectare se referem aos fragmentos florestais estudados; Itt é área florestal contínua, i.e., não fragmentada. Tma = temperatura média anual, Tm7 = temperatura média em julho, Tm1 = temperatura média em janeiro, Pma = precipitação média anual, PJJA = médias mensais em junho/julho/agosto, PDJF = médias mensais em dezembro/janeiro/fevereiro.

Sigla	Localidade	Tipologia florestal	Lat.	Long.	Alt. (m)	Área (ha)	Tma (°C)	Tm7 (°C)	Tm1 (°C)	Pma (mm)	PJJA (mm)	PDJF (mm)
Aiu	Aiuruoca, MG	Floresta Ombrófila Baixo-montana	22°01'	44°36'	1084	10	18,6	13,2	21,6	1677	31	278
Bmi-1	Bocaina de Minas 1, MG	Floresta Ombrófila Aluvial	22°10'	44°28'	1150	3	16,7	13,0	19,7	2108	35	341
Bmi-2	Bocaina de Minas 2, MG	Floresta Ombrófila Alto-montana	22°13'	44°32'	1300	10	16,7	13,0	19,7	2108	35	341
Bmi-3	Bocaina de Minas 3, MG	Floresta Ombrófila Alto-montana	22°14'	44°34'	1440	15	16,7	13,0	19,7	2108	35	341
Vma	Visconde de Mauá, MG/RJ	Floresta Ombrófila Mista Alto-montana	22°20'	44°36'	1250	5, 7 e 8	16,6	12,8	19,7	2459	43	380
Itt	Itatiaia, RJ	Floresta Ombrófila Baixo-montana	22°26'	44°37'	1067	contínua	18,7	15,0	22,0	1703	34	266

Tabela 2 - Relação das 444 espécies arbóreas registradas nas cinco áreas de floresta ombrófila montana do maciço do Itatiaia (MG e RJ). As espécies estão organizadas em ordem alfabética das famílias reconhecidas pelo APG II (2003) e seguidas do registro de ocorrência (x) e ausência (-) nas áreas e do número de registro das amostras no Herbário ESAL.

Famílias/Espécies	Bmi-1	Bmi-2	Bmi-3	Aiu	Vma	Registro
ANACARDIACEAE						
Astronium graveolens Jacq.	-	-	-	-	X	17992
Lithraea molleoides (Vell.) Engler	-	-	-	X	-	16364
Schinus terebinthifolius Raddi	-	-	-	-	X	16722
Tapirira guianensis Aubl.	-	X	-	X	-	15135
Tapirira obtusa (Benth.) Mitchell	-	X	-	X	-	15141
ANNONACEAE						
Annona cacans Warm.	x	X	-	X	-	19943
Cymbopetalum brasiliense (Vell.)						
Benth.	-	X	-	X	-	17230
Duguetia salicifolia R.E.Fries	-	X	X	-	-	19944
Guatteria australis A.StHil.	-	X	X	X	X	15137
Guatteria latifolia (Mart.) R.E.Fries	-	X	x	X	-	17232
Guatteria pohliana Schltdl.	-	X	-	-	-	17233
Guatteria sellowiana Schltdl.	-	-	x	-	-	785
Rollinia dolabripetala (Raddi)						
R.E.Fries	-	X	-	X	X	16221
Rollinia emarginata Schltdl.	X	-	-	X	-	19945
Rollinia laurifolia Schltdl.	-	X	-	X	-	17062
Rollinia sylvatica (A.StHil.) Mart.	-	X	-	-	-	17234
Xylopia brasiliensis Sprengel	-	X	-	-	-	17234
APOCYNACEAE						
Aspidosperma australe Müll.Arg.	-	X	-	-	-	15821
Aspidosperma olivaceum Müll.Arg.	-	-	-	X	-	17044
Aspidosperma parvifolium A.DC.	X	X	X	-	X	17063
Aspidosperma spruceanum Benth.	-	X	-	X	-	17235
AQUIFOLIACEAE						
Ilex amara (Vell.) Loes.	x	-	-	-	X	19946
Ilex cerasifolia Reissek	-	X	-	X	-	17237
Ilex conocarpa Reissek	-	X	X	-	-	19947
Ilex paraguariensis A.StHil.	-	-	X	-	X	16226

Tabela 2 - Continuação

-	1		1 1		1	1
Famílias/Espécies	Bmi-1	Bmi-2	Bmi-3	Aiu	Vma	Registro
Ilex theezans Mart.	X	X	-	-	X	17239
ARALIACEAE Dendropanax cuneatus (DC.) Decne & Planch.	-	-	-	X	-	12311
Oreopanax capitatus (Jacq.) Decne & Planch.	-	X	-	-	-	17240
Oreopanax fulvus Marchal Schefflera angustissima (Marchal)	-	-	-	-	X	_
Frodin	-	-	-	-	X	16712
Schefflera calva (Cham.) Frodin & Fiaschi	-	X	X	X	-	17241
ARAUCARIACEAE						
Araucaria angustifolia (Bert.) Kuntze	-	X	X	X	X	17243
ARECACEAE						
Euterpe edulis Mart.	-	-	-	X	X	15153
Geonoma schottiana Mart.	-	X	-	X	-	15156
Syagrus romanzoffiana (Cham.)	**					15116
Glassman	X	-	-	X	-	17446
ASTERACEAE						
Austrocritonia velutina (Gardner) R.M.King & H.Robinson	X	-	-	-	-	19948
Austroeupatorium inulaefolium (Kunth) R.M.King & H.Robinson	-	-	-	X	-	_
Baccharis brachylaenoides DC.	X	-	X	-	-	2883
Baccharis serrulata Pers.	-	X	X	-	-	17244
Dasyphyllum brasiliense (Sprengel) Cabrera	-	-	х	X	-	19949
Eremanthus erythropappus (DC.) MacLeish	-	X	X	X	X	18213
Eremanthus incanus (Less.) Less.	-	-	-	-	X	15154
Gochnatia paniculata (Less.) Cabrera	-	X	x	X	-	15151
Gochnatia polymorpha (Less.) Cabrera	-	-	-	X	X	16420
Heterocondylus vauthierianus (DC.) R.M.King & H.Robinson	-	-	X	-	-	19950
Piptocarpha macropoda Baker	-	X	X	X		16744
Piptocarpha organensis Cabrera	-	-	-	-	X	_

Tabela 2 - Continuação

,		ı	1		1	
Famílias/Espécies	Bmi-1	Bmi-2	Bmi-3	Aiu	Vma	Registro
Piptocarpha regnellii (Sch.Bip.)						
Cabrera	-	X	X	-	X	19951
Stifftia chrysantha Mikan	-	X	-	-	-	17247
Verbesina claussenii Sch.Bip.	-	-	-	-	X	_
Vernonanthura diffusa (Less.)						
H.Robinson	X	X	X	X	X	17647
Vernonanthura discolor (Sprengel)						17250
H.Robinson Vernonanthura phosphorica (Vell.)	-	X	X	X	X	17250
H.Robinson	_	_	_	X	_	16746
BIGNONIACEAE				A		10710
Cybistax antisyphillitica Mart.	X	x				16747
Jacaranda macrantha Cham.	Λ	X	_	X	_	17074
Tabebuia alba (Cham.) Sandw.	-	X	-	Α	-	19952
Tabebuia chrysotricha (Mart.)	-	_	X	-	_	19932
Standley	_	x	_	x	_	17251
Tabebuia heptaphylla (Vell.) Toledo	X	_	_	-	_	19953
Tabebuia serratifolia (Vahl) Nichols	_	_	_	X	_	17075
Tabebuia vellosoi Toledo	_	X	_	X	_	17252
BORAGINACEAE		A		A		17232
Cordia ecalyculata Vell.	_	X	_	X	_	17253
Cordia sellowiana Cham.	_	_	_	X	_	12348
Cordia superba Cham.		X	_	-		15143
BURSERACEAE	_	Λ	_		-	13143
Protium spruceanum (Benth.) Engler				X		16759
Protium widgrenii Engler	_	_	_		- v	16400
CANELLACEAE	-		-	X	X	10400
						10054
Cinnamodendron dinisii Schwacke	X	-	-	-	X	19954
CANNABACEAE Celtis ehrenbergiana (Klotzsch)						
Liebm.	_	_	_	X	_	16940
Trema micrantha (L.) Blume	_	_		X	_	16619
CELASTRACEAE	_	_	_	Λ		10017
Maytenus evonymoides Reissek			X			18785
Maytenus glazioviana Loes.	_	v	Λ	v	_	17254
	_	X	_	X	- -	
Maytenus gonoclada Mart.	-	-	-	-	X	13233

Tabela 2 - Continuação

955 255 170 086 236 256
255 170 086 236
170 086 236
236
236
236
236
256
_
454
257
410
157
372
-
-
959
956
957
958
260
261
959
263
322

Tabela 2 - Continuação

D 41 B 41	D 11	D : 4	D . 2		**7	D
Famílias/Espécies	Bmi-1	Bmi-2	Bmi-3	Aiu	Vma	Registro
DICHAPETALACEAE						
Stephanopodium organense (Rizz.)						
Prance	-	-	-	-	X	-
DICKSONIACEAE						
Dicksonia sellowiana Hook.	-	X	-	X	X	17265
ELAEOCARPACEAE						
Sloanea guianensis (Aubl.) Benth.	-	X	-	-	-	17266
Sloanea monosperma Vell.	-	X	-	-	X	17091
ERICACEAE						
Agarista eucalyptoides (Cham. & Schltdl.) G.Don	_	_	_	_	x	_
Agarista glaberrima (Sleumer) Judd					X	
ERYTHROXYLACEAE	_	_	-		Λ	_
Erythroxylum cuneifolium (Mart.)						
O.E.Schulz	_	_	_	X	_	14476
Erythroxylum deciduum A.StHil.	_	_	_	X	_	14477
Erythroxylum pelleterianum A.StHil.	x	x	_	-	_	19966
ESCALLONIACEAE						
Escallonia bifida Link. & Otto	-	-	X	_	_	19960
EUPHORBIACEAE						
Alchornea glandulosa Poepp. & Endl.	x	x	_	_	x	17096
Alchornea sidifolia Müll.Arg.	_	x	x	x	X	17268
Alchornea triplinervia (Sprengel)				••	12	1,200
Müll.Arg.	-	X	X	X	X	17097
Aparisthmium cordatum (Juss.) Bail.	-	-	-	X	-	14881
Croton celtidifolius Bail.	-	-	X	-	X	19961
Croton floribundus Sprengel	X	X	-	X	x	17099
Croton hecatomandrum Müll.Arg.	-	-	-	-	x	_
Croton organensis Bail.	-	х	x	X	-	17269
Croton salutaris Casar.	-	X	-	_	-	17270
Croton verrucosus RadelSm. &						
Govaerts	-	-	X	X	-	12361
Gymnanthes concolor (Sprengel)						
Müll.Arg.	-	-	-	X	-	19962
Manihot pilosa Pohl	-	X	-	X	-	17271

Tabela 2 - Continuação

D 01 02 11	D 14	ъ	D 10			- ·
Famílias/Espécies	Bmi-1	Bmi-2	Bmi-3	Aiu	Vma	Registro
Pachystroma longifolium (Nees)						
Johnston	-	-	-	-	X	13031
Pera glabrata (Schott) Poepp.	-	X	-	X	-	17104
Sapium glandulosum (L.) Morong	X	X	X	X	X	15382
Sapium haematospermum Müll.Arg.	X	-	-	-	-	19963
Sebastiania brasiliensis Sprengel	X	-	-	X	-	19964
Sebastiania commersoniana (Bail.)						
Smith & Downs	X	-	-	X		19004
Tetrorchidium parvulum Müll.Arg.	-	X	X	-	-	19965
FABACEAE						
CAESALPINIOIDEAE						15105
Bauhinia forficata Link	-	-	-	X	-	17125
Cassia ferruginea (Schrad.) Schrad.	X	-	-	X	-	19967
Copaifera langsdorffii Desf.	-	-	-	X	-	16491
Poeppigia procera Presl.	-	X	-	-	-	17273
Sclerolobium rugosum Mart.	-	X	X	X	-	17274
Senna macranthera (Collad.) Irwin &						10107
Barneby	-	X	-	X	X	19197
Senna multijuga (L.C.Rich.) Irwin & Barneby	X	X		X		17275
FABACEAE FABOIDEAE	Λ	Λ	_	Α	_	17273
Dalbergia frutescens (Vell.) Britton						17016
	_	_	-	X	-	
Dalbergia villosa (Benth.) Benth.	-	X	-	X	-	18026
Erythrina falcata Benth.	X	X	-	X	-	17277
Machaerium brasiliense Vogel Machaerium condensatum Kuhlm. &	X	-	-	X	-	18029
Hoehne	X	_	_	_	_	19969
Machaerium hirtum (Vell.) Stellfeld	X	_	_	X	_	18030
Machaerium lanceolatum (Vell.)	A	_	_	Α	_	16030
Macbr.	-	-	_	X		17020
Machaerium minutiflorum Tul.	_	_	_	X	_	16519
Machaerium nictitans (Vell.) Benth.	_	X	_	X	X	18031
Machaerium reticulatum (Peyr.) Pers.	_	X	_	-	_	17278
Machaerium villosum Vogel	_	X	_	X	_	16520
Ormosia fastigiata Tul.	_	X		X	_	17279
Ormosia friburgensis Taub.	_			Λ.	x	
Ormosia friburgensis Taub.					A	_

Tabela 2 - Continuação

E 4: E 4:	D 11	D : 2	ъ . а	4.	*7	D
Famílias/Espécies	Bmi-1	Bmi-2	Bmi-3	Aiu	Vma	Registro
Platycyamus regnellii Benth.	-	-	-	X	X	16524
FABACEAE MIMOSOIDEAE						
Acacia polyphylla DC.	X	-	-	X		17627
Albizia edwallii (Hoehne) Barneby &						
Grimes	-	-	-	-	X	_
Albizia polycephala (Benth.) Killip	-	X	-	X	X	18037
Anadenanthera colubrina (Vell.)						10104
Brenan	X	-	X	X	X	19184
Calliandra tweediei Benth.	-	-	-	X	-	1510
Inga marginata Willd.	-	-	-	-	X	17136
Inga sessilis (Vell.) Mart.	-	X	X	-	X	17281
Inga striata Benth.	-	X	-	X	X	17282
Inga vulpina Mart.	X	X	X	X	-	17283
Leucochloron incuriale (Vell.)						
Barneby & Grimes	-	-	-	X	X	18042
Mimosa artemisiana Heringer &						10266
Paula	X	X	-	-	_	19266
Mimosa scabrela Benth. Piptadenia gonoacantha (Mart.)	-	-	X	-	X	19968
Macbr.	_	_	_	X	X	16507
GRISELINIACEAE				A	A	10307
Griselinia ruscifolia (Clos) Taub.		_	_	_	v	
HYPERICACEAE	_		_		X	
						15164
Vismia brasiliensis Choisy	-	X	-	X	-	15164
Vismia guianensis (Aubl.) Pers.	-	-	-	X	-	15792
LAMIACEAE						
Aegiphila fluminensis Vell.	-	X	X	X	-	17374
Aegiphila obducta Vell.	X	-	X	-	X	20017
Aegiphila sellowiana Cham.	-	-	-	X	X	12677
Clerodendron fragrans Willd.		-	X	-		-
Hyptidendron asperrimum (Epling)						45600
Harley	-	X	-	-	-	17290
Vitex cymosa Bert.	-	-	-	X	X	16623
Vitex megapotamica (Sprengel)						10070
Moldenke	X	-	-	-	-	19970
Vitex polygama Cham.	-	-	-	X	-	13009

Tabela 2 - Continuação

	1		1 1		1	
Famílias/Espécies	Bmi-1	Bmi-2	Bmi-3	Aiu	Vma	Registro
LAURACEAE						
Aiouea saligna Meisn.	-	-	-	-	X	-
Beilschmiedia rigida (Mez) Kosterm.	-	-	-	-	X	_
Cinnamomum glaziovii (Mez)						
Vattimo-Gil	-	X	-	-	X	19971
Cryptocarya aschersoniana Mez	-	-	-	X	-	16526
Cryptocarya saligna Mez	-	-	-	-	X	-
Endlicheria paniculata (Sprengel)						17201
Macbr.	-	X	-	X	X	17291
Licaria armeniaca (Nees) Kosterm.	-	-	-	-	X	17706
Nectandra grandiflora Nees	-	X	X	X	X	17115
Nectandra lanceolata Nees	X	X	-	X	-	17292
Nectandra membranacea (Swartz) Griseb.	_	_	_	_	X	17293
Nectandra nitidula Nees	_	_	_	X	_	16530
Nectandra oppositifolia Nees	_	X	_	X	X	15394
Nectandra puberula (Schott) Nees	_	X	_	-	X	17294
Nectandra reticulata (Ruiz & Pav.)		A			A	1/2/4
Mez	-	-	-	-	X	_
Ocotea aciphylla (Nees) Mez	-	X	X	-	X	19972
Ocotea brachybotra (Meisn.) Mez	-	х	-	_	х	15397
Ocotea corymbosa (Meisn.) Mez	-	X	X	X	X	18015
Ocotea diospyrifolia (Meisn.) Mez	X	-	-	X	-	17118
Ocotea dispersa (Nees) Mez	-	-	-	X	-	15050
Ocotea elegans Mez	-	X	x	X	-	19973
Ocotea indecora (Schott) Mez	X	-	-	-	х	19974
Ocotea laxa (Nees) Mez	-	-	-	-	X	15398
Ocotea longifolia Kunth	-	X	-	-	-	17295
Ocotea notata (Nees & Mart.) Mez	-	-	-	-	X	19616
Ocotea odorifera (Vell.) Rohwer	-	х	-	X	-	15402
Ocotea puberula (Rich.) Nees	x	X	-	X	X	16632
Ocotea pulchella Mart.	x	-	_	-	-	15403
Ocotea silvestris Vattimo-Gil	_	-	X	_	-	19975
Persea fulva Kopp	-	X	_	_	_	17296
Persea pyrifolia Nees	-	X	X	X	X	18425

Tabela 2 - Continuação

Persea venosa Nees	D 01 05 (1)	D 14	ъ	D 13			- ·
Rhodostemonodaphne macrocalyx (Meisn.) Rohwer	Famílias/Espécies	Bmi-1	Bmi-2	Bmi-3	Aiu	Vma	Registro
Meisn.) Rohwer	Persea venosa Nees	-	X	X	-	-	19976
LECYTHIDACEAE Couratari pyramidata (Vell.) R.Knuth.							
Couratari pyramidata (Vell.) R.Knuth.		-	-	-	-	X	18274
R.Knuth.							
LYTHRACEAE Lafoensia densiflora Pohl x							17200
Lafoensia densiflora Pohl x - - - 19977 Lafoensia pacari A.StHil. - - x - 16464 Lafoensia vandelliana Cham. & Schltdl. - - - x - - x - - - x - - x - - x - - x - - - x -		-	X	-	-	-	17299
Lafoensia pacari A.StHil. - - x - 16464 Lafoensia vandelliana Cham. & Schltdl. - - - x - MALPIGHIACEAE Byrsonima laxiflora Griseb. - x - - x 16541 Byrsonima myricifolia Griseb. - x - - - 17300 Byrsonima stipulacea A.Juss. - x - - - 17301 MALVACEAE - x - - - 17301 MALVACEAE - - - x - - 16393 Luehea divaricata Mart. & Zucc. - - - x - 16616 Pseudobombax grandiflorum (Cav.) - - - x - 16616 Pseudobombax grandiflorum (Cav.) - - x - - 17302 MELASTOMATACEAE - - x - - x 17303 Leandra aurea							
Lafoensia vandelliana Cham. & Schltdl. -	1 -	X	-	-	-		
Schltdl. - - - - x - MALPIGHIACEAE Byrsonima laxiflora Griseb. - - - - x 16541 Byrsonima myricifolia Griseb. - x - - - 17300 Byrsonima stipulacea A.Juss. - x - - - 17301 MALVACEAE Ceiba speciosa (A.StHil.) Ravenna - x - - x - - 16393 Luehea divaricata Mart. & Zucc. - - x - x - 16616 Pseudobombax grandiflorum (Cav.) - - x - 16616 Pseudobombax grandiflorum (Cav.) - x - - x - 16616 Pseudobombax grandiflorum (Cav.) - x - - x - 17302 MELASTOMATACEAE Huberia nettoana Brade - x - - x 17303 Leandra auterea (Cham.) Cogn. <td></td> <td>-</td> <td>-</td> <td>-</td> <td>X</td> <td>-</td> <td>16464</td>		-	-	-	X	-	16464
MALPIGHIACEAE Byrsonima laxiflora Griseb. - - - - x 16541 Byrsonima myricifolia Griseb. - x - - - 17300 Byrsonima stipulacea A.Juss. - x - - - - 17301 MALVACEAE Ceiba speciosa (A.StHil.) Ravenna - - x - 16393 Luehea divaricata Mart. & Zucc. - - x - x - 16393 Luehea divaricata Mart. & Zucc. - - - x - 16393 Luehea divaricata Mart. & Zucc. - - - x - 16616 Pseudobombax grandiflorum (Cav.) - - x - 16616 Pseudobombax grandiflorum (Cav.) - x - - x 17302 MELASTOMATACEAE - - x - - x 17303 Leandra nettoana Brade - x - -							
Byrsonima laxiflora Griseb. - - - -		-	-	-	-	X	_
Byrsonima myricifolia Griseb. -							
Byrsonima stipulacea A.Juss. - x - - 17301 MALVACEAE Ceiba speciosa (A.StHil.) Ravenna - - - x - 16393 Luehea divaricata Mart. & Zucc. - - - x - 16616 Pseudobombax grandiflorum (Cav.) - - - x - - 17302 MELASTOMATACEAE Huberia nettoana Brade - x - - x 17303 Leandra aurea (Cham.) Cogn. - - - x - 17303 Leandra barbinervis (Cham.) Cogn. - - - x 17140 Leandra lancifolia Cogn. - - - x 17140 Leandra melastomoides Raddi - - - x - 12887 Leandra scabra DC. - x x x - 17141 Leandra sublanata Cogn. - - x x - x	1 -	-	-	-	-	X	
MALVACEAE Ceiba speciosa (A.StHil.) Ravenna - - x - 16393 Luehea divaricata Mart. & Zucc. - - x - 16616 Pseudobombax grandiflorum (Cav.) - x - x - 17302 MELASTOMATACEAE Buberia nettoana Brade - x - x 17303 Leandra aurea (Cham.) Cogn. - - x - x 17140 Leandra barbinervis (Cham.) Cogn. - - x - x 17140 Leandra lancifolia Cogn. - - x - x 17140 Leandra melastomoides Raddi - - x - x 12887 Leandra scabra DC. - x x x 17141 Leandra sublanata Cogn. - - x x 17304 Meriania glabra Triana - - x - x 17304 Miconia calvescens DC. -	1 *	-	X	-	-	-	17300
Ceiba speciosa (A.StHil.) Ravenna - - x - 16393 Luehea divaricata Mart. & Zucc. - - x - 16616 Pseudobombax grandiflorum (Cav.) - x - - x - - 17302 MELASTOMATACEAE - x - - x 17303 Leandra nettoana Brade - x - - x 17303 Leandra aurea (Cham.) Cogn. - - - x - 17303 Leandra barbinervis (Cham.) Cogn. - - - x 17140 Leandra lancifolia Cogn. - - - x - 19978 Leandra melastomoides Raddi - - - x - 12887 Leandra scabra DC. - x x x - 17141 Leandra sublanata Cogn. - - x x - x 9905 Meriania glabra Triana	<u> </u>	-	X	-	-	-	17301
Luehea divaricata Mart. & Zucc. - - - x - 16616 Pseudobombax grandiflorum (Cav.) A.Robyns - x - - 17302 MELASTOMATACEAE Huberia nettoana Brade - x - - x 17303 Leandra aurea (Cham.) Cogn. - - - x - 17303 Leandra barbinervis (Cham.) Cogn. - - - x 17140 Leandra lancifolia Cogn. - - - x 19978 Leandra melastomoides Raddi - - - x - 12887 Leandra scabra DC. - x x - 17141 Leandra sublanata Cogn. - - - x 9905 Meriania claussenii Triana - - - x 9905 Meriania glabra Triana - - - x - 17305 Miconia calvescens DC. - - - x - 15101 Miconia chamissois Naud. - -	MALVACEAE						
Pseudobombax grandiflorum (Cav.)	Ceiba speciosa (A.StHil.) Ravenna	-	-	-	X	-	16393
A.Robyns - x - - 17302 MELASTOMATACEAE Huberia nettoana Brade - x - - x 17303 Leandra aurea (Cham.) Cogn. - - - x - 17303 Leandra barbinervis (Cham.) Cogn. - - - x 17140 Leandra lancifolia Cogn. - - - x - 19978 Leandra melastomoides Raddi - - - x - 12887 Leandra scabra DC. - x x - 17141 Leandra sublanata Cogn. - - - x 9905 Meriania claussenii Triana - - - x 17304 Meriania glabra Triana - - - x - 17305 Miconia calvescens DC. - - - x - 15101 Miconia chamissois Naud. - - - x - 11637	Luehea divaricata Mart. & Zucc.	-	-	-	X	-	16616
MELASTOMATACEAE x - x 17303 Leandra aurea (Cham.) Cogn. - - x - x 17303 Leandra barbinervis (Cham.) Cogn. - - - x 17140 Leandra lancifolia Cogn. - - x - 19978 Leandra melastomoides Raddi - - x x - 12887 Leandra scabra DC. - x x x - 17141 Leandra sublanata Cogn. - - x x - 17141 Leandra sublanata Cogn. - - x x - 17141 Leandra sublanata Cogn. - - x x - x 9905 Meriania claussenii Triana - x - x - x - x - - x - x - x - - x - - x - -							
Huberia nettoana Brade - x - - x 17303 Leandra aurea (Cham.) Cogn. - - - x - 17303 Leandra barbinervis (Cham.) Cogn. - - - x 17140 Leandra lancifolia Cogn. - - - x - 19978 Leandra melastomoides Raddi - - - x - 12887 Leandra scabra DC. - x x - 17141 Leandra sublanata Cogn. - - - x 9905 Meriania claussenii Triana - - - x 17304 Meriania glabra Triana - - - x - 17305 Miconia calvescens DC. - - - x - 15101 Miconia chamissois Naud. - - - x - 11637	-	-	X	-	-	-	17302
Leandra aurea (Cham.) Cogn. - - - x - 17303 Leandra barbinervis (Cham.) Cogn. - - - x 17140 Leandra lancifolia Cogn. - - x - 19978 Leandra melastomoides Raddi - - x - 12887 Leandra scabra DC. - x x - 17141 Leandra sublanata Cogn. - - - x 9905 Meriania claussenii Triana - - - x 17304 Meriania glabra Triana - - - x - Miconia brunnea Mart. - x - 17305 Miconia castaneifolia Naud. - - - x - Miconia chamissois Naud. - - - x - 11637							
Leandra barbinervis (Cham.) Cogn. - - - x 17140 Leandra lancifolia Cogn. - - x - 19978 Leandra melastomoides Raddi - - x - 12887 Leandra scabra DC. - x x - 17141 Leandra sublanata Cogn. - - - x 9905 Meriania claussenii Triana - x - x 17304 Meriania glabra Triana - - - x - 17305 Miconia brunnea Mart. - x - x - 15101 Miconia castaneifolia Naud. - - - x - - Miconia chamissois Naud. - - - x - 11637	Huberia nettoana Brade	-	X	-	-	X	17303
Leandra lancifolia Cogn. - - - 19978 Leandra melastomoides Raddi - - - x - 12887 Leandra scabra DC. - x x x - 17141 Leandra sublanata Cogn. - - - x 9905 Meriania claussenii Triana - x - x 17304 Meriania glabra Triana - - - x - 17305 Miconia brunnea Mart. - x - x - 17305 Miconia calvescens DC. - - x - 15101 Miconia castaneifolia Naud. - - - x - Miconia chamissois Naud. - - - x - 11637	Leandra aurea (Cham.) Cogn.	-	-	-	X	-	17303
Leandra melastomoides Raddi - - - x - 12887 Leandra scabra DC. - x x x - 17141 Leandra sublanata Cogn. - - - x 9905 Meriania claussenii Triana - x - x 17304 Meriania glabra Triana - - - x - - Miconia brunnea Mart. - x - x - 17305 Miconia calvescens DC. - - - x - 15101 Miconia castaneifolia Naud. - - - x - 11637	Leandra barbinervis (Cham.) Cogn.	-	-	-	-	X	17140
Leandra scabra DC. - x x - 17141 Leandra sublanata Cogn. - - - x 9905 Meriania claussenii Triana - x - x 17304 Meriania glabra Triana - - - x - Miconia brunnea Mart. - x - x - 17305 Miconia calvescens DC. - - x - 15101 Miconia castaneifolia Naud. - - - x - Miconia chamissois Naud. - - x - 11637	Leandra lancifolia Cogn.	-	-	X	-	-	19978
Leandra sublanata Cogn. - - - x 9905 Meriania claussenii Triana - x - - x 17304 Meriania glabra Triana - - - - x - Miconia brunnea Mart. - x - x - 17305 Miconia calvescens DC. - - - x - 15101 Miconia castaneifolia Naud. - - - x - - Miconia chamissois Naud. - - - x - 11637	Leandra melastomoides Raddi	-	-	-	X	-	12887
Meriania claussenii Triana - x - - x 17304 Meriania glabra Triana - - - - x - Miconia brunnea Mart. - x - x - 17305 Miconia calvescens DC. - - - x - 15101 Miconia castaneifolia Naud. - - - x - Miconia chamissois Naud. - - - x - 11637	Leandra scabra DC.	-	X	x	X	-	17141
Meriania claussenii Triana - x - - x 17304 Meriania glabra Triana - - - - x - Miconia brunnea Mart. - x - x - 17305 Miconia calvescens DC. - - - x - 15101 Miconia castaneifolia Naud. - - - x - Miconia chamissois Naud. - - x - 11637	Leandra sublanata Cogn.	-	-	-	-	x	9905
Miconia brunnea Mart. - x - x - 17305 Miconia calvescens DC. - - - x - 15101 Miconia castaneifolia Naud. - - - x - Miconia chamissois Naud. - - - x - 11637	=	-	X	-	-	X	17304
Miconia brunnea Mart. - x - x - 17305 Miconia calvescens DC. - - - x - 15101 Miconia castaneifolia Naud. - - - x - Miconia chamissois Naud. - - - x - 11637		_	_	_	-	X	_
Miconia calvescens DC. - - - x - 15101 Miconia castaneifolia Naud. - - - - x - Miconia chamissois Naud. - - - x - 11637		_	x	_	X	_	17305
Miconia castaneifolia Naud x - Miconia chamissois Naud x - 11637		_	_	_	Х	_	15101
Miconia chamissois Naud x - 11637		_	_	_	-	x	_
	1	_	_	_	x	_	11637
	Miconia chartacea Triana	_	x	x	X	_	15439

Tabela 2 - Continuação

		Ι	1 1		I	1
Famílias/Espécies	Bmi-1	Bmi-2	Bmi-3	Aiu	Vma	Registro
Miconia cinerascens Miq.	-	X	X	-	-	17306
Miconia cinnamomifolia (DC.) Naud.	-	X	X	X	-	17307
Miconia conferta DC.	-	-	-	-	X	_
Miconia corallina Spring	-	-	-	-	X	15436
Miconia cubatanensis Hoehne	X	X	-	X	-	19979
Miconia divaricata Gardner	-	-	X	-	-	19980
Miconia eichlerii Cogn.	-	X	X	X	-	17309
Miconia fasciculata Gardner	-	X	X	-	-	19981
Miconia inconspicua Miq.	-	-	-	-	X	PED-12
Miconia latecrenata (DC.) Naud.	-	X	X	X	-	17310
Miconia ligustroides (DC.) Naud.	-	-	-	X	-	16547
Miconia minutiflora (Bonpl.) DC.	-	X	-	X	X	15434
Miconia paulensis Naud.	-	-	-	-	X	4062
Miconia prasina (Swartz) DC.	X	X	X	-	-	19982
Miconia pusilliflora (DC.) Triana	X	X	X	-	-	19983
Miconia sellowiana Naud.	-	X	X	X	X	17312
Miconia theaezans (Bonpl.) Cogn	-	-	X	-	X	19984
Miconia trianae Cogn.	-	-	-	X	X	16549
Miconia tristis Spring	-	-	-	X	-	18288
Miconia urophylla DC.	-	X	-	X	-	17313
Tibouchina adenostemon (DC.) Cogn.	-	-	-	-	X	13293
Tibouchina arborea (Gardner) Cogn.	-	X	X	-	X	19985
Tibouchina estrellensis (Raddi) Cogn.	-	-	-	-	X	_
Tibouchina granulosa Cogn.	-	-	-	X	-	15099
Tibouchina moricandiana (DC.) Bail.	X	X	-	-	X	19986
Tibouchina mutabilis Cogn.	-	X	X	-	X	19987
Tibouchina pulchra Cogn.	-	X	X	-	-	17316
Tibouchina sellowiana (Cham.) Cogn.	-	X	X	-	X	16258
Tibouchina semidecandra (DC.)						
Cogn.	-	-	-	-	X	-
Tibouchina stenocarpa (DC.) Cogn.	-	-	-	-	X	14496
Trembleya parviflora (D.Don) Cogn.	-	-	X	-	X	15431
MELIACEAE						
Cabralea canjerana (Vell.) Mart.	-	X	X	X	X	15465

Tabela 2 - Continuação

Famílias/Espécies	Bmi-1	Bmi-2	Bmi-3	Aiu	Vma	Registro
Cedrela fissilis Vell.	-	X	X	X	X	16553
Guarea kunthiana A.Juss.	-	x	-	X	-	17149
Trichilia elegans A.Juss.	-	-	-	X	-	15770
Trichilia emarginata (Turcz.) C.DC.	X	-	-	X	-	15429
Trichilia hirta L.	-	X	-	X	-	14964
Trichilia pallida Swartz	-	-	-	X	-	16863
MONIMIACEAE						
Hennecartia omphalandra J.Poiss.	-	-	-	-	X	-
Mollinedia argyrogyna Perkins	-	-	-	X	-	16558
Mollinedia clavigera Tul.	-	-	X	-	-	15428
Mollinedia engleriana Perkins	-	x	-	-	-	17317
Mollinedia longifolia Tul.	-	x	-	-	-	17318
Mollinedia schottiana (Sprengel)						
Perkins	-	-	-	X	-	17613
Mollinedia triflora (Sprengel) Tul.	-	X	-	-	X	17319
Mollinedia widgrenii A.DC.	-	-	-	X	X	13102
MORACEAE						
Ficus gomelleira Kunth & Bouché	-	-	-	-	X	13335
Ficus luschnathiana (Miq.) Miq.	-	X	-	-	-	17320
Ficus mexiae Standley	-	X	X	X		15426
Ficus pertusa L.f.	-	-	-	X	-	18948
Maclura tinctoria (L.) Steud.	-	-	-	X	-	16562
Naucleopsis oblongifolia (Kuhlman)						
Carauta	-	-	-	-	X	17554
Sorocea bonplandii (Bail.) W.Burger	X	X	X	X	X	17321
MYRISTICACEAE						
Virola bicuhyba (Schott) Warb.	-	X	-	-	X	12457
MYRSINACEAE						
Cybianthus peruvianus (A.DC.) Miq.	-	-	-	X	-	16261
Myrsine coriacea (Swartz) Roem. & Schult.	_	X	x	Х	X	15422
Myrsine gardneriana A.DC.	X	X	X	X	X	17322
Myrsine lineata (Mez) Imkhan.	_	_	X	-	_	19989
Myrsine umbellata Mart.	_	X	X	X	X	17167
Myrsine villosissima Mart.	_	_	X	-	_	19988

Tabela 2 - Continuação

Tabela 2 Continuação									
Famílias/Espécies		Bmi-2	Bmi-3	Aiu	Vma	Registro			
MYRTACEAE									
Blepharocalyx salicifolius (Kunth)									
O.Berg	X	X	-	X	X	17325			
Calycorectes acutatus (Miq.) Toledo	-	-	-	X	-	16465			
Calyptranthes clusiifolia O.Berg	-	-	-	X	X	14467			
Calyptranthes concinna DC.	-	-	-	X	X	15417			
Calyptranthes grandifolia O.Berg	X	-	-	-	-	19991			
Calyptranthes widgreniana O.Berg	X	X	-	-	-	19992			
Campomanesia guaviroba (DC.)									
Kiaersk.	-	X	-	X	-	19993			
Campomanesia guazumifolia (Cambess.) O.Berg	X	-	-	-	x	17169			
Campomanesia laurifolia Gardner	X	X	-	-	-	16024			
Campomanesia xanthocarpa O.Berg	-	-	-	X	-	16472			
Eugenia brasiliensis Lam.	-	X	-	-	-	17331			
Eugenia cerasiflora Miq.	X	X	-	-	-	19994			
Eugenia dodonaeifolia Cambess.	-	-	x	-	-	14500			
Eugenia florida DC.	-	-	-	X	-	19995			
Eugenia hyemalis Cambess.	-	-	-	X	-	16883			
Eugenia involucrata DC.	-	X	-	X	x	17172			
Eugenia mansoi O.Berg	X	-	-	X	-	19995			
Eugenia pluriflora DC.	-	-	-	X	X	11040			
Eugenia prasina O.Berg	-	-	-	-	х	_			
Eugenia sonderiana O.Berg	-	-	-	_	х	_			
Gomidesia anacardiifolia (Gardner)									
O.Berg	-	-	x	-	X	15319			
Gomidesia sellowiana O.Berg	-	-	-	-	X	16046			
Marlierea excoriata Mart.	X	-	-	-	-	17175			
Marlierea racemosa (Vell.) Kiaersk.	X	X	-	X	-	19998			
Myrceugenia acutiflora (Kiaersk.)									
D.Legrand & Kausel	X	-	-	-	-	19996			
Myrceugenia bracteosa (DC.)						20001			
D.Legrand & Kausel	X	X	-	-	X	20001			
Myrceugenia miersiana (Gardner) D.Legrand & Kausel		v		v	v	17341			
D.Legianu & Kausei	_	X		X	X	1/341			

Tabela 2 - Continuação

Famílias/Espécies	Bmi-1	Bmi-2	Bmi-3	Aiu	Vma	Registro
Myrceugenia ovata (Hooker & Arnot)						
O.Berg	-	-	X	X	X	12930
Myrcia diaphana (O.Berg) N.Silveira	-	X	X	-	-	17635
Myrcia eriopus DC.	-	X	-	-	X	15350
Myrcia laruotteana Cambess.	X	X	-	X	X	17337
Myrcia multiflora (Lam.) DC.	X	-	-	X	-	16478
Myrcia obovata (O.Berg) Nied.	-	X	-	-	-	17338
Myrcia pulchra Kiaersk.	X	X	x	X	-	17334
Myrcia splendens (Swartz) DC.	-	X	x	X	X	17336
Myrcia tomentosa (Aubl.) DC.	-	-	-	X	-	16892
Myrciaria floribunda (West) O.Berg	-	X	-	-		16279
Myrciaria tenella (DC.) O.Berg	X	X	-	X	-	20000
Pimenta pseudocaryophyllus (Gomes)						
Landrum	-	-	-	X	-	16895
Plinia cauliflora (Mart.) Kausel	-	X	-	-	-	17339
Psidium rufum DC.	-	-	-	X	X	16484
Siphoneugena densiflora O.Berg	-	X	X	-	-	18964
Siphoneugena kuhlmannii Mattos	-	-	-	X	-	18965
Siphoneugena widgreniana O.Berg	-	-	-	X	X	17341
NYCTAGINACEAE						
Guapira graciliflora (Schmidt)						
Lundell	-	-	-	X		3105
Guapira hirsuta (Choisy) Lundell	-	-	-	X	-	15133
Guapira opposita (Vell.) Reitz	-	X	X	X	X	15375
OCHNACEAE						
Ouratea parviflora (DC.) Bail.	X	X	-	-	-	20002
PICRAMNIACEAE						
Picramnia glazioviana Engler	-	X	X	-	X	20003
Picramnia parvifolia Engler	-	-	-	X	X	15110
PIPERACEAE						
Piper aduncum L.	-	-	-	-	X	15371
Piper amalago L.	-	-	X	-	-	20004
Piper cernuum Vell.	-	X	-	X	-	17344
Piper crassinervium Kunth	-	X	-	-	-	17345
Piper dilatatum L.C.Rich	-	X	-	-	-	17346

Tabela 2 - Continuação

·									
Famílias/Espécies	Bmi-1	Bmi-2	Bmi-3	Aiu	Vma	Registro			
PODOCARPACEAE									
Podocarpus lambertii Klotzsch	-	X	x	-	X	17347			
Podocarpus sellowii Klotzsch	-	-	-	-	X	15369			
PROTEACEAE									
Euplassa incana (Klotzsch) Johnston	-	-	-	X	X	12584			
Euplassa itatiae Sleumer	-	-	-	-	X	16288			
Euplassa legalis (Vell.) Johnston	-	X	-	-	-	15127			
Euplassa organensis (Gardner)									
Johnston	-	X	-	-	X	17348			
Roupala brasiliensis Klotzsch	-	X	X	X	X	16571			
Roupala montana Aubl.	-	-	-	X	X	10899			
Roupala rhombifolia Mart.	-	-	-	X	X	15368			
QUIINACEAE									
Quiina glaziovii Engler	-	-	X	-	-	_			
ROSACEAE									
Prunus myrtifolia (L.) Urban	X	X	x	X	X	16574			
RUBIACEAE									
Alibertia myrciifolia K.Schum.	X	-	-	-	X	20005			
Amaioua guianensis Aubl.	-	X	x	X	-	15364			
Bathysa australis (A.StHil.) Benth.									
& Hook.f.	-	X	-	X	X	17352			
Chomelia brasiliana A.Rich.	X	-	-	-	-	_			
Chomelia sericea Müll.Arg.	-	-	-	X	-	12559			
Coutarea hexandra (Jacq.) K.Schum.	X	-	-	-	-	17045			
Faramea cyanea Müll.Arg.		-	-	X		16580			
Guettarda uruguensis Cham. &									
Schltdl.		-	-	X		13219			
Hillia parasitica Jacq.	-	X	-	-	-	16293			
Ixora warmingii Müll.Arg.	-	-	-	X	-	16583			
Psychotria hastisepala Müll.Arg.	-	-	-	X	-	16587			
Psychotria suterella Müll.Arg.	-	X	X	-	X	20006			
Psychotria vellosiana Benth.	-	X	X	X	X	10235			
Rudgea jasminoides (Cham.)						1.505.4			
Müll.Arg.	-	X	-	X	X	15354			
Rudgea recurva Müll.Arg.	-	X	-	-	X	15462			

Tabela 2 - Continuação

Famílias/Espécies		Bmi-2	Bmi-3	Aiu	Vma	Registro			
RUTACEAE									
Dictyoloma vandellianum A.Juss.	-	-	-	X	X	16297			
Esenbeckia grandiflora Mart.	-	X	X	-	-	20007			
Pilocarpus pauciflorus A.StHil.	-	X	-	-	-	17358			
Zanthoxylum caribaeum Lam.	-	-	-	X	-	15119			
Zanthoxylum rhoifolium Lam.	-	X	-	X	-	15472			
SABIACEAE									
Meliosma brasiliensis Urban	-	X	X	-	-	20008			
Meliosma itatiaiae Urban	-	-	-	-	X	_			
Meliosma sellowii Urban	-	X	-	-	X	15476			
Meliosma sinuata Urban	-	X	-	-	-	13542			
SALICACEAE									
Casearia arborea (L.C.Rich.) Urban	-	X	-	X	-	17286			
Casearia decandra Jacq.	-	X	-	X	X	17287			
Casearia grandiflora Cambess.	-	-	-	-	X	17698			
Casearia lasiophylla Eichler	-	-	-	X	X	16447			
Casearia mariquitensis Kunth	-	X	-	X	-	17107			
Casearia obliqua Sprengel	-	X	-	X	X	19517			
Casearia pauciflora Cambess.	-	X	-	-	-	17288			
Casearia rufescens Cambess.	-	-	-	-	X	-			
Casearia rupestris Eichler	-	-	X	-	-	20009			
Casearia sylvestris Swartz	X	-	-	X	X	17658			
Casearia ulmifolia Vahl	-	-	-	X	-	16040			
Xylosma prockia (Turcz.) Turcz.	X	-	X	-	-	17658			
Xylosma venosa N.E.Brown	-	X	-	X	-	17289			
SAPINDACEAE									
Allophylus edulis (A.StHil.) Radlk.	X	X	-	-	-	20010			
Allophylus guaraniticus (A.StHil.)									
Radlk.	X	-	-	-	-	_			
Allophylus semidentatus (Miq.) Radlk.	-	-	-	X	-	19148			
Cupania ludowigii Somner & Ferruci	X	X	-	X	-	20011			
Cupania racemosa (Vell.) Radlk.	-	-	-	-	X	15446			
Cupania vernalis Cambess.	-	X	-	X	-	17210			
Cupania zanthoxyloides Cambess.	X	X	X	-	-	15447			

Tabela 2 - Continuação

Tabela 2 Continuação								
Famílias/Espécies		Bmi-2	Bmi-3	Aiu	Vma	Registro		
Diatenopteryx sorbifolia Radlk.	-	-	-	X	-	17211		
Matayba guianensis Aubl.	X	X	-	X	X	17212		
Toulicia laevigata Radlk.	-	X	-	-	-	17361		
SAPOTACEAE								
Chrysophyllum gonocarpum (Mart. & Eichler) Engler	-	X	-	-	-	17213		
Chrysophyllum marginatum (Hooker & Arnot) Radlk.	-	-	-	X	X	16927		
Micropholis crassipedicelata (Mart. & Eichler) Pierre	_	_	_	_	x	_		
Micropholis gardneriana (A.DC.)					A			
Pierre	-	-	-	-	X	15111		
Pouteria caimito (Ruiz & Pav.) Radlk.	-	X	-	-	X	17362		
Pouteria guianensis Aubl.	-	X	-	-	-	17363		
SIPARUNACEAE								
Siparuna cujabana (Mart.) A.DC.	-	-	-	X	-	1316		
Siparuna guianensis Aubl.	-	-	-	X		19375		
SOLANACEAE								
Brugmansia suaveolens (Willd.)								
Bercht. & J.Presl.	-	X	-	-		17364		
Cestrum corymbosum Schltdl.	-	X	-	-	-	17365		
Cestrum schlechtendalii G.Don	-	X	X	X	X	17366		
Dyssochroma viridiflora Miers	-	X	-	-	-	17367		
Solanum bullatum Vell.	-	X	-	X		17393		
Solanum cinnamomeum Sendt.	-	X	X	-	-	20012		
Solanum granulosoleprosum Dunal	X	X	x	X	X	15478		
Solanum itatiaiae Glaziou	-	-	-	-	X	-		
Solanum lepidotum Dunal	X	X	X	-	-	20013		
Solanum leucodendron Sendt.	-	X	-	-	X	17218		
Solanum pseudoquina A.StHil.	-	X	x	X	X	17369		
Solanum swartzianum Roem. & Schult.	-	x	X	_	_	17370		
STYRACACEAE								
Pamphilia aurea Mart.	-	X	-	-	-	17371		
SYMPLOCACEAE								
Symplocos celastrinea Mart.	X	X	X	X	X	15486		

Tabela 2 - Continuação

Tuben 2 Communique								
Famílias/Espécies		Bmi-2	Bmi-3	Aiu	Vma	Registro		
Symplocos insignis Brand	-	X	X	X		17372		
THEACEAE								
Gordonia fruticosa (Schrader)								
H.Keng.	-	X	X	-	X	20014		
THEOPHRASTACEAE								
Clavija macrophylla (Link) Miq.	-	-	-	-	X	_		
THYMELAEACEAE								
Daphnopsis coriacea Taub.	X	-	-	-	-	15436		
Daphnopsis fasciculata (Meisn.)								
Nevling	X	X	-	X	X	20015		
Daphnopsis martii Meisn.	X	-	X	-	-	20016		
Daphnopsis sellowiana Taub.	X	-	-	-	-	20114		
URTICACEAE								
Cecropia glaziovii Snethl.	-	X	-	X	X	16403		
Cecropia hololeuca Miq.	-	X	-	X	X	10290		
Cecropia pachystachya Trécul	-	-	-	X	-	16404		
Coussapoa microcarpa (Schott) Rizz.	-	X	-	X	-	17082		
Urera caracasana (Jacq.) Griseb.	-	-	-	X	-	17769		
VERBENACEAE								
Duranta vestita Cham.	X	-	-	-	-	20018		
VOCHYSIACEAE								
Qualea cordata (Mart.) Sprengel	-	-	-	X	-	16303		
Qualea dichotoma (Mart.) Warm.	-	-	-	X	-	19552		
Vochysia bifalcata Warm.	-	-	-	-	X	17224		
Vochysia glazioviana Warm.	-	-	-	-	X	_		
Vochysia laurifolia Warm.	-	-	-	-	x	_		
Vochysia magnifica Warm.	_	X	-	X	-	17376		
Vochysia rectiflora Warm.	_	_	-	-	X	_		
Vochysia schwackeana Warm.	-	-	_	-	X	_		
Vochysia tucanorum Mart.	_	_	X	X	-	17227		
WINTERACEAE								
Drimys brasiliensis Miers	_	x	X	_	X	17377		

Tabela 3 - Matriz florística das seis áreas de floresta ombrófila montana da região do maciço do Itatiaia, mostrando o número de espécies em comum entre as áreas na metade superior direita e os índices de similaridade de Jaccard na metade inferior esquerda. Bmi-1/2/3 = Bocaina de Minas 1/2/3, Aiu = Aiuruoca; Vma = Visconde de Mauá; Itt = Itatiaia.

	Bmi1	Bmi2	Bmi3	Aiu	Itt	Vma	Totais
Bmi1	-	41	21	38	15	26	81
Bmi2	0,16	-	85	119	45	85	218
Bmi3	0,12	0,34	_	59	24	54	119
Aiu	0,14	0,36	0,20	-	44	79	228
Itt	0,08	0,15	0,11	0,14	_	44	127
Vma	0,11	0,26	0,21	0,23	0,16	_	190

ARTIGO 2

HETEROGENEIDADE AMBIENTAL E DISTRIBUIÇÃO DE ESPÉCIES ARBÓREAS EM MATAS CILIARES DAS CABECEIRAS DO RIO **GRANDE, MINAS GERAIS**

(Preparado de acordo com as normas da revista Acta Botanica Brasilica)

Israel Marinho Pereira 1 Ary Teixeira de Oliveira-Filho 1 Soraya Alvarenga Botelho 1 Douglas Antônio de Carvalho ² Eduardo van den Berg ²

TÍTULO RESUMIDO: Heterogeneidade ambiental e distribuição de espécies em matas

Autor para correspondência: Israel Marinho Pereira. e-mail: imarinhopereira@gmail.com

 $^{^1}$ Departamento de Ciências Florestais, Universidade Federal de Lavras, 37200-000 Lavras, MG. 2 Departamento de Biologia, Universidade Federal de Lavras, 37200-000 Lavras, MG.

RESUMO – (Heterogeneidade ambiental e distribuição de espécies arbóreas em matas ciliares das cabeceiras do rio Grande, Minas Gerais) Com o objetivo de contribuir para o conhecimento ecológico das formações florestais ciliares das cabeceiras do rio Grande, realizou-se um inventário da comunidade arbórea em diferentes hábitats e estágios sucessionais de três áreas de mata ciliar em Bocaina de Minas, MG (22°10' a 22°14'S e 44°28 a 44°33'W). As três áreas foram comparadas com o intuito de se detectarem diferenças em relação à diversidade, composição de espécies e estrutura das comunidades. Foram alocadas dez parcelas de 400m², em uma área de aluvião e outras dez em uma encosta em regeneração e 26 parcelas em uma encosta conservada. Todos os indivíduos arbustivo-arbóreos existentes no interior das parcelas com diâmetro à altura do peito (DAP) ≥ 5cm foram amostrados. Nas três áreas, foram amostrados 4.644 indivíduos pertencentes a 236 espécies, 125 gêneros e 56 famílias. O número de espécies variou em função da fisionomia e do estágio sucessional das áreas. A densidade e a área basal foram significativamente mais elevadas na área de aluvião (P=0,01) em relação às demais. O índice de diversidade de Shannon (H') e o índice de equabilidade de Pielou (J') obtidos foram 3,18; 3,53 e 4,15 e 0,75; 0,76 e 0,82, respectivamente, para as áreas aluvião, encosta em regeneração e encosta conservada. Uma análise de correspondência canônica (CCA) dos padrões emergentes das variáveis ambientais e a abundância das espécies indicou que estas se distribuíram ao longo dos fragmentos, principalmente em função do regime de água no solo e do estágio sucessional dos mesmos. Além disso, várias espécies produziram correlações significativas entre sua abundância nas parcelas e as variáveis referentes à umidade do solo (drenagem e distância vertical) e ao estágio sucessional das mesmas (estágio sucessional), sugerindo que o gradiente de umidade e o estágio de maturidade das áreas foram as variáveis que determinaram mais fortemente a distribuição das espécies nas florestas estudadas.

Palavras-chave: mata ciliar, estágios sucessionais, relações espécies-ambiente, floresta secundária, análise multivariada.

ABSTRACT - (Environmental heterogeneity and distribution of arboreal species in ciliary forests of the headboards of Rio Grande, Minas Gerais). To contribute with the ecological knowledge of the ciliary forest formations of the headboards of Rio Grande, an inventory of the arboreal community took place in different habitats and succession stages of three areas of ciliary forest in Bocaina de Minas county, MG (22°10' to 22°14'S and 44°28 to 44°33'W). The three areas were compared to detect differences in relation to the diversity, composition of species and structure of the communities. Ten parcels of 400m2 each were allocated in alluvial area, ten in a hillside regeneration areas and 26 parcels in a conserved hillside. All of the existent arbustive-arboreal individuals inside the parcels with diameter to at the breath height (DBP) (5cm were sampled. In the three areas, 4.633 individuals belonging to 239 species were sampled. The number of species varied in function of the physiognomy and of the succession stages of the areas. The density and the basal area were significantly higher in the alluvial area (P = 0.01) in relation to the others. The index of diversity of Shannon (H ') and the index of equability of Pielou (J ') obtained were 3,18, 3,53 and 4,15 and 0,75, 0,76 and 0,82, respectively, for the alluvial areas, hill side in regeneration and conserved hillside. An Analysis of Canonic Correspondence (CCA) of the emerging patterns of the environmental variables and the abundance of the species indicated that the species were distributed along the fragments mainly in function of the water regime in the soil and of the succession stages of the species. Besides, several species produced significant correlations among abundance in the parcels and the variables regarding soil humidity (drainage and vertical distance) and their own succession stages (secession stages), suggesting that the humidity gradient and the maturity stages of the areas were the variables that determined the species distribution more strongly in the studied forests.

Key-words: ciliary forest, succession stages, species-environment relationships, secondary forest, multivariate analysis.

Introdução

Historicamente, as paisagens florestais têm sido modificadas pela ação do homem, causando sua destruição e fragmentação ao explorar seus recursos. No entanto, as florestas têm papel fundamental de proteção ao meio ambiente, principalmente em encostas, topos de morros, lagos, nascentes e às margens de rios. As florestas ciliares em particular, dentre outras funções, são responsáveis pela qualidade da água, além de proporcionarem abrigo e alimento para a fauna terrestre e aquática. As matas ciliares destacam-se, ainda, pela fragilidade. Dados de vários trabalhos realizados em bacias e microbacias hidrográficas têm evidenciado que a presença da mata ciliar é garantia de estabilidade e de menor concentração de sedimentos no deflúvio (Lima & Zakia 2001). Apesar de sua inegável importância ambiental, mesmo estando protegidas por legislação federal e estadual, as matas ciliares do Brasil vêm sendo progressivamente alteradas, chegando, até mesmo, a uma destruição total em várias regiões do país, o que tem sido alvo de preocupação por parte de pesquisadores e alguns segmentos da sociedade. Atividades, como agricultura, pecuária, queimadas, formação de lagos para hidrelétricas entre outras, têm ocasionado, ao longo dos anos, uma redução drástica na área dessas florestas no Sudeste do Brasil. A maioria delas encontra-se reduzida a fragmentos esparsos de tamanhos bastante variáveis, sendo muito deles profundamente perturbados (Oliveira-Filho et al. 2004a).

As matas ciliares tratadas aqui, de forma genérica, como sendo todas as florestas associadas a cursos d'água, são áreas que apresentam grande heterogeneidade ambiental, proporcionada tanto por fatores abióticos quanto bióticos. Dentre os principais fatores físicos, destacam-se as variações topográficas e edáficas, além da influência do regime de cheias do rio, resultando na deposição de sedimentos e retirada da camada de serrapilheira (Oliveira-Filho *et al.* 1997). Esta complexidade de fatores resulta em um

mosaico vegetacional com alta heterogeneidade e diversidade florística (Rodrigues 2001; Rodrigues & Shepherd 2001).

A situação crítica em que se encontram as matas ciliares do centro-sul do Brasil motivou, nas últimas décadas, uma série de iniciativas voltadas para sua conservação ou recuperação. Tais iniciativas impulsionaram simpósios sobre matas ciliares; o primeiro foi realizado em São Paulo, em 1989 (Barbosa 1989); o segundo em Ribeirão Preto, em 1995 (SOCIEDADE BOTÂNICA DO BRASIL 1995) o terceiro em Brasília, em 1997 (Imaña-Encinas & Kleinn 1997) e o quarto em Belo Horizonte, em 1999 (Davide 1999). Nestes eventos, pesquisadores da área evidenciaram a importância de estudos detalhados sobre a composição florística e a ecologia das comunidades arbóreas das matas ciliares remanescentes como uma das alternativas para nortear ações visando à sua proteção e recuperação. Estas estratégias fazem parte de uma nova linha de pensamento que visa assegurar, principalmente, o suprimento de água, fonte primária de sobrevivência humana. De acordo com Rodrigues & Nave (2001), estes conhecimentos são fundamentais para embasar quaisquer iniciativas no sentido de proteger, enriquecer, recuperar ou reconstituir este tipo de vegetação.

Nos últimos dez anos, vários estudos foram realizados nos remanescentes de florestas ciliares na região do médio e alto rio Grande, em Minas Gerais, com o propósito de subsidiar iniciativas de recomposição de ciliares com espécies nativas. Vários estudos matas florísticos fitossociológicos foram realizados em áreas de florestas ciliares e protetoras de nascentes (Oliveira Filho et al. 1994a; Vilela et al. 1995; van den Berg & Oliveira-Filho 1999, 2000; Dalanesi et al. 2004) e outros em formações situadas ao longo do curso dos rios (Oliveira-Filho et al. 1994b, 1994c; Carvalho et al. 1995a, 1995b; Vilela et al. 2000; Botrel et al. 2002; Rodrigues et al. 2003; Souza et al. 2003; Oliveira-Filho et al. 2004a; Rocha et al. 2005). No entanto, estes estudos foram concentrados na região do médio e alto rio Grande, em áreas

com altitudes inferiores a 1.000m, deixando de fora florestas situadas em elevações mais altas, inclusive a região das nascentes do próprio rio Grande. Dessa forma, torna-se urgente avaliar a diversidade biológica contida nos atuais fragmentos de mata ciliar próximos à nascente principal do rio Grande, situadas nas vertentes continentais do maciço do Itatiaia. O presente trabalho integra o projeto "Estudo integrado da vegetação ciliar no entorno de nascentes, rios e reservatórios", financiado pela CEMIG/ANEEL.

Neste trabalho objetivou-se: i) descrever o compartimento arbustivo-arbóreo de dois ambientes de mata ciliar (aluvião e encosta) em diferentes estádios de regeneração, procurando verificar se existe diferença em relação à composição, estrutura e diversidade de espécies; ii) verificar as possíveis correlações entre as variações da estrutura fisionômica, da diversidade e composição de espécies da comunidade arbustivo-arbórea e as variações ambientais relacionadas com o substrato, aqui tratado como o conjunto de variáveis topográficas e edáficas determinantes do status nutricional e mineral do solo e de seu regime hídrico; iii) gerar informações ecológicas que possam subsidiar futuras ações que visam à conservação, à preservação e à recomposição de ambientes congêneres.

Com isso, propõe-se a seguinte hipótese: os diferentes ambientes de mata ciliar (encosta e aluvião), definidos pelos substratos, gradientes altitudinais, umidade dos solos e estágios sucessionais, resultam em diferenças nas características fisionômicas, composição florística, estrutura e diversidade de espécies.

Material e Métodos

Área de estudo – o presente estudo foi conduzido em três áreas de mata ciliar, caracterizadas como se segue. a) aluvião (aluvial): fragmento de mata ciliar sobre solo de aluvião de aproximadamente 3ha, em regeneração há 50 anos, adjacente às margens direita e esquerda do rio Grande, apresentando bordas abruptas nos seus limites com pastagens e estradas circunvizinhas. O fragmento encontra-se a cerca de 15km de sua nascente principal, nas vertentes continentais do maciço do Itatiaia, município de Bocaina de Minas, MG, nas coordenadas 22°10' de latitude Sul e 44°28' de longitude Oeste e a uma altitude de 1.150m; b) encosta em regeneração (encosta RN): fragmento de mata ciliar de encosta de aproximadamente 15ha, em estágio intermediário de sucessão ecológica, localizado às margens do rio Grande a cerca de 5km a jusante de sua nascente principal, nas vertentes continentais do maciço do Itatiaia, município de Bocaina de Minas, MG, nas coordenadas 22°14' de latitude Sul e 44°34' de longitude Oeste e a uma altitude que varia de 1.500 a 1.580m. O fragmento reveste uma encosta que flanqueia a margem esquerda do rio Grande e apresenta bordas abruptas nos seus limites com pastagens circunvizinhas e uma estrada e c) encosta conservada (encosta CS): fragmento de mata ciliar de encosta conservada de aproximadamente 10ha, às margens do rio Grande a cerca de 10km a jusante de sua nascente principal, nas vertentes interiores do maciço do Itatiaia, município de Bocaina de Minas, MG, nas coordenadas 22°13' de latitude sul e 44°32' de longitude oeste e a uma altitude que varia de 1.210 a 1.360m. O fragmento reveste uma encosta que flanqueia a margem esquerda do rio Grande e apresenta bordas abruptas nos seus limites com pastagens circunvizinhas.

De acordo com Carvalho *et al.* (2005), o clima da região é do tipo Cfa de Köppen (úmido subtropical); a temperatura média anual é de 16,7°C, com médias mensais variando de 13,0°C, em julho a 19,7°C, em janeiro; a

precipitação média anual é de 2.108mm, com médias mensais variando de 341mm, no trimestre mais chuvoso (dezembro a fevereiro) a 35mm, no trimestre mais seco (junho a agosto).

Entre os solos da região de estudo predominam os Latossolos Amarelos Distróficos típicos, nas áreas de baixa encosta, drenagem de moderada a bem drenado; Latossolos Vermelhos-Amarelos Distróficos típicos nas áreas de meia encosta, bem drenados a acentuadamente drenados e Latossolo Vermelhos típicos encontrados nas altas encostas, acentuadamente drenados (Carvalho *et al.* 2005).

Inventário do compartimento arbóreo – o levantamento da comunidade arbórea foi realizado em uma área amostral total de 1,84ha dividida em 46 parcelas de 400m². Na área de aluvião, foram plotadas dez parcelas de 10 × 40m, sendo sete na margem direita do rio e três na margem esquerda (Fig. 1A). Na área de encosta conservada foram plotadas 26 parcelas de 20 × 20m e, na área de encosta em regeneração, dez parcelas de 10 × 40m. Para as duas áreas de encosta, as parcelas foram plotadas obedecendo ao gradiente de altitude, sendo plotadas parcelas na encosta inferior próximo ao leito do rio, na meia encosta e alta encosta (topo), conforme verifica-se na Fig. 1B e 1C. O inventário da área de encosta conservada foi realizado por Carvalho *et al.* (2005) e o banco de dados foi cedido para complementar este trabalho.

As parcelas foram demarcadas com estacas de PVC e seus vértices unidos com fitilhos de náilon. Foram utilizadas uma bússola para a orientação do caminhamento e do alinhamento das parcelas e uma trena para medir as distâncias horizontais. Todos os indivíduos arbóreos vivos com circunferência à altura do peito (CAP) maior ou igual a 15,7cm encontrados no interior das parcelas foram registrados e identificados. Indivíduos com caules múltiplos foram incluídos quando a raiz da soma dos quadrados das CAPs era superior ao limite estabelecido. Foram registrados, para cada indivíduo, o nome da espécie,

o valor da CAP e a altura. Cada indivíduo foi marcado com etiqueta de alumínio numerada. Alguns indivíduos foram identificados no campo, enquanto outros tiveram material botânico dos espécimes para posterior identificação. A identificação do material botânico foi realizada mediante comparações com espécimes existentes no Herbário da ESAL e também por meio de consultas à literatura, especialistas e a coleções do herbário do jardim Botânico do Rio de Janeiro (RB).

Inventário das variáveis ambientais — foi realizado um levantamento topográfico de cada área estudada. Para a medição da inclinação do terreno utilizou-se um hipsômetro de Blume-Leiss para fazer a leitura do ângulo entre os pontos referenciais, extraindo-se as distâncias verticais equivalentes. De posse destes dados, foram confeccionados os mapas de cada área, com as curvas de nível equidistantes de 1m. Posteriormente, foram extraídas coordenadas altimétricas dos mapas, sendo estas utilizadas para gerar uma representação tridimensional das áreas (Fig. 1A a C), com auxílio do programa SURFER Versão 5.0, da Golden Software.

A partir das coordenadas dos vértices das parcelas foram extraídas três variáveis topográficas por parcela: 1- distância vertical até o rio, obtida da diferença entre a cota média dos quatro vértices da parcela e a cota da margem do rio Grande; 2 - desnível, obtido da diferença entre as cotas máxima e mínima das parcelas e 3 - declividade média, obtida da média da declividade dos quatro lados das parcelas. Estas variáveis foram empregadas como meio de avaliação indireta das condições hidrológicas dos solos, conforme adotado por Oliveira-Filho *et al.* (1990), van den Berg & Oliveira-Filho (1999) e Botrel *et al.* (2002).

Os solos predominantes em cada parcela foram classificados no campo de acordo com o novo Sistema Brasileiro de Classificação dos Solos (EMBRAPA 1999), chegando até o nível de subgrupo (ou 4º nível categórico) e incluindo os grupamentos texturais e classes de drenagem. No centro de cada

parcela, foram coletadas amostras simples do solo superficial (0 a 20cm de profundidade) de cerca de 500ml. As análises químicas e texturais das amostras foram feitas no Laboratório de Análise de Solos da UFLA seguindo o protocolo da EMBRAPA (1997). As variáveis de solo obtidas foram: pH, teores de P, K, Ca, Mg e Al, saturação por bases (valor V), matéria orgânica e teores de areia, silte e argila.

Estrutura fisionômica, diversidade e similaridade florística – para descrever a estrutura da comunidade arbórea, foram calculados, por espécie, os parâmetros fitossociológicos clássicos propostos por Mueller-Dombois & Ellemberg (1974): densidade absoluta, freqüência absoluta e dominância absoluta expressa pela área basal por hectare.

Após a verificação de normalidade pelo teste Bartlet, a densidade e a área basal por hectare nas parcelas foram comparadas entre as áreas por meio de análises de variância e aplicando-se testes de Tukey quando ocorreram diferenças significativas (Zar 1996).

Foram preparadas distribuições de densidade de árvores por classes de diâmetro e altura para as três áreas. Para os diâmetros, foram adotados intervalos de classe com amplitudes crescentes para compensar o forte decréscimo da densidade nas classes de tamanho maiores, típico da distribuição em J-invertido. Estes intervalos permitem uma melhor representação das classes diamétricas maiores e de baixa densidade, o que é desejável em comparações gráficas (Oliveira-Filho *et al.* 2001). Foram calculados, para cada área, o índice de diversidade de espécies de Shannon, H' e a equabilidade de Pielou, J' (Krebs 1989) em base logarítmica natural (Brower & Zar 1984). Os índices de diversidade de Shannon entre as três áreas foram comparados pelo teste de t de Hutcheson (Zar, 1996). As comparações foram feitas aos pares porque o teste de t de Hutcheson é o único disponível para comparações estatísticas entre valores de H'.

Análises estatísticas das variáveis fisionômicas e ambientais – para análise das correlações entre os gradientes ambientais e vegetacionais foi empregada uma análise de correspondência canônica (CCA) (ter Braak 1987), utilizando-se o programa PC-ORD for Windows versão 4.14 (McCune & Mefford 1999). A matriz de abundância das espécies foi constituída do número de indivíduos por parcela das espécies que apresentaram cinco ou mais indivíduos na amostra total de cada área. De acordo com as recomendações de ter Braak (1995), os valores de abundância foram transformados pela expressão log₁₀ (a + 1) para compensar os desvios causados por alguns poucos valores muito elevados.

A matriz de variáveis ambientais incluiu, a princípio, todas as variáveis químicas e texturais dos solos, a classe de drenagem dos solos e as três variáveis topográficas. As classes de drenagem dos solos foram expressas como variável ordinal ('nota') atribuída por meio de uma nota às categorias descritas pela EMBRAPA (1999): 4 - moderadamente drenado, 5 - bem drenado e 6 acentuadamente drenado (outras classes de drenagem não foram representadas). Uma outra variável avaliada foi o estágio sucessional "rank suc". Com o objetivo de verificar a correlação da distribuição das espécies com os diferentes estágios sucessionais das áreas, realizou-se uma avaliação de cada parcela em relação ao estádio sucessional das mesmas. A classificação dos estádios sucessionais foi baseada em Oldeman (1990) e Rocha (2003), tendo sido atribuída uma nota para cada estádio sucessional, em que o menor valor (1) refere-se aos estádios iniciais de sucessão e os maiores, aos estádios finais de maior complexidade. Os estádios sucessionais e suas respectivas notas atribuídas às parcelas foram: parcelas com presença de clareira e presença de *Pteridium* sp. e ou Gleichenia sp., em mais de 60% de sua área (1); parcelas em processo inicial de sucessão com presença de Pteridium sp. e ou Gleichenia sp., em menos 60% da área (2); parcelas em estágio intermediário de sucessão (3); parcelas em estágio avançado de sucessão (4) e parcelas características de floresta madura (5).

A matriz inicial foi composta por 18 variáveis ambientais. Após realizar uma CCA preliminar, com as 18 variáveis estabelecidas inicialmente, foram eliminadas aquelas variáveis ambientais fracamente correlacionadas ou altamente redundantes com outras variáveis. Para a área de aluvião, a CCA final foi processada com as cinco variáveis mais representativas e mais fortemente correlacionadas com os eixos de ordenação: distância vertical do rio, estádio sucessional, desnível do terreno, teor de alumínio (Al) e fósforo (P) e proporção de argila. Para a Encosta em Regeneração as variáveis mais representativas e mais fortemente correlacionadas com os eixos de ordenação foram: distância vertical do rio, estádio sucessional, teores de alumínio (Al), proporção de areia e teores de fósforo (P). Já para a encosta conservada, foram: drenagem, teor de matéria orgânica, teor de alumínio (Al) e distância vertical do rio e proporção de argila. Calculou-se, ainda, o coeficiente de correlação de Spearman (Zar 1996) entre a abundância das espécies utilizadas nas CCAs e o valor das variáveis ambientais distância do rio, drenagem e estádio sucessional para cada parcela.

Resultados

Estrutura fisionômica, diversidade e similaridade florística – para as três áreas em conjunto, foram amostrados 4.633 indivíduos, 236 espécies, 125 gêneros e 56 famílias. O número de indivíduos variou de 872, na encosta em regeneração, até 2.569 na encosta conservada. Os maiores números de espécies (155), gêneros (96) e famílias (51) também foram registrados para a encosta conservada, e os menores na área de aluvião (Tab. 1).

As três áreas diferiram bastante entre si quanto às espécies mais abundantes. Para a área de aluvião, as cinco espécies mais abundantes totalizaram 51,5% do número total de indivíduos registrados, destacando-se, em

primeiro lugar, *Sebastiania commersoniana*, com 174 indivíduos (14,5%). Esta espécie, além de apresentar a maior população, encontra-se bem distribuída na área, tendo sido encontrada em todas as parcelas. *Anadenanthera colubrina*, com 139 indivíduos (11,6%), apresentou a segunda maior população, sendo registrada também em todas as parcelas, seguida de *Symplocos celastrinea*, com 122 indivíduos (10,2%), registrada em oito das dez parcelas amostradas. *Matayba guianensis*, com uma população de 107 indivíduos (8,9%), foi encontrada em todas as parcelas. *Sebastiania brasiliensis*, com 77 indivíduos (6,4%), também foi verificada em todas as parcelas amostradas. Esta espécie é encontrada em solos úmidos, principalmente nas margens de córregos e rios.

Para a área de Encosta em Regeneração, as cinco espécies com maior número de indivíduos contabilizaram 43,2% da amostra total, com destaque para *Myrsine umbellata* (13,6%), *Croton organensis* (9,3%), *Tibouchina arborea* (8,1%), *Miconia sellowiana* (6,4%) e *Psychotria vellosiana* (5,8%). Já para a Encosta Conservada, as seis espécies que mais se destacaram, em número de indivíduos, foram: *Psychotria vellosiana* (8,3%), *Vochysia magnifica* (7,1%), *Alchornea triplinervia* (6,4%), *Tibouchina pulchra* (4,1%), *Casearia arborea* (3,3%) e *Lamanonia ternata* (3,3%). Juntas, essas espécies somaram 32,5% do número total de indivíduos amostrados nesta área. As espécies inventariadas nas três áreas e seus parâmetros quantitativos encontram-se na Tab. 2.

O gráfico da Fig. 2 mostra a progressão do número cumulativo de espécies com o aumento do número de parcelas amostradas para as três áreas de mata ciliar (curvas espécie x área). Verifica-se que a tendência à estabilização é mais forte para as áreas aluvião e encosta conservada e mais fraca para a área de encosta em regeneração.

As três comunidades arbustivo-arbóreas, representadas pelos 1.202, 872 e 2.569 indivíduos com DAP≥ 5cm inventariados, respectivamente, nas áreas de aluvião, encosta em regeneração e encosta conservada, apresentaram uma

densidade de 3.005, 2.180 e 2.470 árvores.ha⁻¹, respectivamente. O valor obtido para a área de aluvião diferiu significativamente das áreas encosta em regeneração (P = 0,01) e encosta conservada (P = 0,05) (Tab.3). No entanto, não houve diferença significativa entre as duas áreas de encosta para os valores de densidade. Já os valores de área basal para as três áreas estudadas foram na mesma seqüência de 43,99 m².ha⁻¹, 16,73 m².ha⁻¹ e 33,26 m².ha⁻¹, tendo sido constatado que as três áreas diferiram significativamente entre si (P = 0,001) (Tab. 3).

Os índices de diversidade de Shannon (H') e os índices de equabilidade de Pielou (J') para as três áreas foram de 3,18; 3,53 e 4,15 e 0,75; 0,76 e 0,82, respectivamente, para as áreas aluvião, encosta em regeneração e encosta conservada (Tab. 3). Foram significativas as diferenças entre os valores de H' das amostras correspondentes às áreas aluvião e encosta em regeneração (*t* de Hutcheson = -6,0; P<0,005); aluvião e encosta conservada (*t* de Hutcheson = -22,86; P<0,005) e encosta conservada e encosta em regeneração (*t* de Hutcheson = 12,32; P<0,005).

As distribuições das proporções de árvores em cada classe de diâmetro e altura foram comparadas graficamente entre as três áreas (Fig. 3). A maior proporção de árvores pequenas com altura igual ou inferior a 5m foi verificada para a área em estágio mais inicial de sucessão (encosta em regeneração). Por outro lado, as maiores proporções de árvores nas classes de altura superior a 10m foram verificadas para a encosta conservada (Fig. 3A). Com relação à distribuição das proporções de árvores por classes de diâmetro, as maiores proporções na menor classe (5 a 10cm) também foram obtidas para a encosta em regeneração. Para as classes de diâmetro > 20cm, as maiores proporções de árvores foram verificadas para as áreas encosta conservada e aluvião, respectivamente (Fig. 3B).

Distribuição das espécies - os resultados da análise de correspondência canônica (CCA) estão representados nos diagramas de ordenação das Fig. 4, 5 e 6 e nas Tab. 4 e 5. Os autovalores da CCA para os dois primeiros eixos de ordenação para a mata ciliar de aluvião foram 0,27 (eixo 1) e 0,10 (eixo 2), com o primeiro eixo explicando 36,0% (eixo 1) e o segundo 13,6% (eixo 2) da variância global dos dados (total acumulado: 49,6%) e indicando a presença de relativamente pouco 'ruído' ou variância remanescente não explicada (Tab. 4). Para a mata ciliar de encosta em regeneração, os autovalores para os dois primeiros eixos de ordenação da CCA, foram 0,45 (eixo 1) e 0,32 (eixo 2), e os dois primeiros eixos explicaram 29,5% (eixo 1) e 20,5% (eixo 2) da variância global dos dados, com um total acumulado de 50%, indicando a presença de relativamente pouco 'ruído' ou variância remanescente não explicada (Tab. 4). Já para a mata ciliar de encosta conservada, os autovalores obtidos para os dois primeiros eixos de ordenação canônica foram 0,27 (eixo 1) e 0,11 (eixo 2), com o primeiro eixo explicando 15,9% (eixo 1) e o segundo 6,4% (eixo 2) da variância global dos dados com um total acumulado de 22,3%, indicando a presença de muito mais 'ruído' ou variância remanescente não explicada (Tab.4).

Verificou-se, para as três áreas estudadas, que as CCAs produziram altas correlações espécie-ambiente nos dois primeiros eixos: 0,981 (eixo 1) e 0,915 (eixo 2) para a mata ciliar de aluvião; 0,982 (eixo 1) e 0,964 (eixo 2) para a mata ciliar de encosta em regeneração e 0,966 (eixo 1) e 0,905 (eixo 2) para a mata ciliar de encosta conservada. Além disso, o teste de permutação de Monte Carlo indicou que as abundâncias das espécies e variáveis ambientais foram significativamente correlacionadas com primeiro eixo de ordenação (P=0,01), para as áreas de aluvião e encosta conservada. Para a área de encosta em regeneração, a relação espécie-ambiente foi significativa apenas no primeiro eixo (P=0,05).

Nos diagramas das CCAs, as parcelas e as espécies são representadas por pontos que correspondem ao ótimo aproximado de distribuição no espaço bidimensional definido pela ordenação. As variáveis ambientais, por sua vez, são representadas por setas, indicando a direção e a proporção das mudanças dessas variáveis no espaço da ordenação (ter Braak, 1988). Para a mata ciliar de aluvião (Fig. 4A), as variáveis ambientais mais fortemente correlacionadas com o primeiro eixo de ordenação foram estágio sucessional, desnível e distância vertical. O gradiente catenário, da esquerda para a direita, envolve distância do rio, estágio sucessional, desnível do terreno, teor de alumínio (Al) e proporção de argila.

Na Figura 4B, constata-se que a ordenação das espécies pela CCA sugere que espécies como Cassia ferruginea, Prunus myrtifolia, Machaerium condensatum, Campomanesia guazumifolia, Symplocos celastrinea, Chomelia brasiliana, Miconia cubatanensis, Annona cacans e Myrsine gardneriana tendem a ser mais abundantes nas parcelas mais distantes do rio, sugerindo que sejam adaptadas a sítios úmidos, mas não são adaptadas a locais sujeito a inundações temporárias, como aqueles encontrados nas bordas do rio. Por outro lado, espécies como Machaerium hirtum, Inga vulpina, Erythroxylum pelleterianum, Tabebuia heptaphylla, Blepharocalyx salicifolius, Calyptranthes widgreniana, Myrcia multiflora e Eugenia mansoi foram mais abundantes nas parcelas mais próximas do rio. As cinco últimas são exclusivas ou estão presentes de forma mais abundante na parcela 2, classificada como a de estágio sucessional mais avançado, apresentando características da vegetação local antes da área ser alterada. Isto sugere que estas espécies são, provavelmente, características de formações mais complexas ou clímax e sítios com alta umidade. Na Tab. 6 encontram-se os resultados das análises de correlações de Spearman que também evidenciam tal comportamento para esse grupo de espécies.

Para a mata ciliar de encosta em regeneração, a ordenação das parcelas no primeiro eixo (Fig. 5A) sugere claramente uma forte separação entre as parcelas de Neossolos Flúvicos, aglomeradas na parte superior do eixo 2 da ordenação, das parcelas de Latossolos Amarelos, que formaram grupos em relação ao gradiente altitudinal e estágio sucessional. O gradiente catenário, da esquerda para a direita, envolve teor de fósforo (P), proporção de areia, distância do rio, teor de alumínio (Al) e estágio sucessional. Já na ordenação das espécies pela CCA (Fig. 5B), verifica-se claramente a formação de três grupos distintos. O primeiro é formado por espécies como Cyathea phalerata, Mimosa scabrela, Myrsine gardeneriana, Sapium glandulosum, Solanum lepidotum, Cyathea delgadii, Croton organensis e Miconia theaezans. Estas espécies foram exclusivas ou ocorreram de forma mais abundantes nas parcelas sobre Neossolos Flúvicos, mais próximas do rio e que apresentam os maiores teores de P e maiores proporções de areia. Este fato também foi verificado nas correlações de Spearman, em que várias espécies deste grupo apresentaram altas correlações com alguma dessas variáveis (Tab. 7).

O segundo grupo foi formado por espécies como *Clethra*, *scabra*, *Tibouchina pulchra*, *Miconia sellowiana*, *Myrsine coriacea*, *Piptocarpha regnellii*, *Eremanthus erythropappus* e *Miconia cinnamomifolia*, que aumentaram suas populações nas parcelas com as maiores cotas altitudinais mais distantes do rio e com maiores teores de alumínio, o que sugere que estas espécies são características de sítios mésicos, bem drenados.

O terceiro agrupamento foi formado por parcelas em estágio de sucessão mais avançado. Neste grupo, as espécies Alchornea triplinervia, Guapira opposita, Guatteria latifolia, Meliosma brasiliensis, Myrcia splendens, Nectandra grandiflora, Ocotea corymbosa, Psychotria vellosiana, Prunus myrtifolia, Tibouchina arborea, Trembleya parviflora, Vernonanthura diffusa e Vernonanthura discolor foram encontradas de forma mais abundante, sugerindo

que sejam características de sítios em estágios relativamente mais avançados de sucessão ecológica.

Para a mata ciliar de encosta conservada, a ordenação das parcelas no primeiro eixo (Fig. 6A) sugere claramente a existência de um forte gradiente catenário dos Latossolos Amarelos para os Latossolos Vermelho-Amarelos e destes para os Latossolos Vermelhos. Após uma análise das parcelas, constatouse, ainda, a existência de um gradiente de elevação. O primeiro grupo foi formado pelas parcelas dos alinhamentos A, B e C que se encontram na encosta inferior, com altitude variando de 1.200m a 1.260m. O segundo grupo é representado pelas parcelas dos alinhamentos D e E, situadas na meia encosta (altitude de 1.280 a 1.310m) e o terceiro grupo pelos alinhamentos F e G, na encosta superior (altitude de 1.320 a 1.350m). A variável ambiental distância do rio foi a que apresentou a maior correlação, o que confirma a existência de um gradiente topográfico elevacional.

A ordenação das espécies pela CCA (Fig. 6B) e as correlações de Spearman (Tab. 8) sugerem que as espécies Prunus myrtifolia, Sapium glandulosum, Tibouchina arborea, Vernonanthura diffusa, Rollinia sylvatica, Mollinedia longifólia, Alsophila setosa, Esenbeckia grandiflora, Guapira opposita, Bathysa australis, Endlicheria paniculata, Alchornea sidifolia, Casearia obliqua, Cordia ecalyculata, Eugenia cerasiflora, Myrceugenia miersiana, Zanthoxylum rhoifolium, Mollinedia longifólia, Clethra scabra, Vochysia magnifica, Solanum swartzianum, Tetrorchidium parvulum e Miconia latecrenata tendem a ser mais abundantes na encosta inferior sob Latossolos Amarelos. Já espécies como Gordonia fruticosa, Toulicia laevigata, Daphnopsis fasciculata, Casearia pauciflora, Miconia cinnamomifolia, Miconia urophylla, Miconia prasina, Vernonanthura discolor, Dalbergia villosa, Siphoneugena densiflora, Ormosia fastigiata, Sclerolobium rugosum, Poeppigia procera e

Tabebuia vellosoi tendem a apresentar populações mais abundantes na encosta superior, sob Latossolos Vermelhos.

Discussão

Diversidade e estrutura das comunidades arbustivo-arbóreas - o número de espécies encontrado para os três fragmentos de mata ciliar de Bocaina de Minas (68, 98 e 155) pode ser considerado intermediário quando comparado com outros levantamentos realizados em florestas protetoras de nascentes, tais como os realizados em Itutinga (Vilela *et al.* 1995; van den Berg & Oliveira-Filho 2000), Poço Bonito, em Lavras (Dalanesi *et al.* 2005), Chapadas das Perdizes, em Carrancas (Oliveira-Filho et al., 2004), Coqueiral (Rocha *et al.* 2005) e os demais fragmentos localizados ao longo de cursos de rios nesta mesma região, como o realizado nos municípios de Madre de Deus de Minas (Gavilanes *et al.* 1992), Bom Sucesso (Carvalho *et al.* 1995b), Ingaí (Botrel *et al.* 2002) e Lavras (Souza *et al.* 2003).

Entre os índices de diversidade de Shannon encontrados nas três matas ciliares de Bocaina de Minas, o valor encontrado para a área de encosta conservada (4,15) encontra-se próximo aos obtidos nos trabalhos citados para as áreas protetoras de nascentes, nos quais foram encontrados índices de Shannon de 3,90 e 3,90, para os levantamentos de Itutinga; 3,90, para Carrancas e 4,20, para Lavras. Porém, foi superior ao registrado para a área de mata ciliar de encosta em regeneração (3,53). Já quando se compara o índice de diversidade obtido na área de aluvião com os registrados em fragmentos de mata ciliar ao longo dos rios (3,76 em Madre de Deus, 4,33 em Bom Sucesso, 3,73 em Ingaí e 4,26 em Lavras), verifica-se que o valor obtido no presente trabalho (3,18) foi bem inferior aos demais.

Com relação aos índices de equabilidade de Pielou registrados, de 0,75, 0,76 e 0,86, respectivamente, para as áreas de aluvião, encosta em regeneração e encosta conservada, verifica-se que os valores obtidos neste trabalho encontram-

se próximos aos registrados para as áreas protetoras de nascentes supracitadas, (0,75 a 0,88) e cursos de rios (0,76 a 0,86). Valores mais baixos obtidos para equabilidade nas áreas de aluvião e encosta em regeneração indicam que há maior concentração de abundância em menor número de espécies, o que caracteriza a existência de dominância ecológica mais pronunciada, como é comum em florestas tropicais (Richards 1952). Destacam-se, no aluvião, Sebastiania commersoniana, Anadenanthera colubrina, Symplocos celastrinea, Matayba guianensis e Sebastiania brasiliensis e, na encosta em regeneração, Myrsine umbellata, Croton organensis, Tibouchina arborea, Miconia sellowiana e Psychotria vellosiana.

As diferenças entre os índices de diversidade e equabilidade das três áreas de Bocaina de Minas sugerem influência tanto do ambiente quanto do estágio de sucessão. Além disso, verificaram-se, na área de encosta conservada, os maiores valores de diversidade e equabilidade, o que pode indicar uma maior heterogeneidade ambiental espacial, confirmando uma tendência de acréscimo no número de espécies ao longo do processo de sucessão secundária, comum nas florestas tropicais (Tabarelli *et al.* 1994; Turner *et al.* 1997; Aidar *et al.* 2001; Oliveira-Filho *et al.* 2004b; Silva-Junior *et al.* 2004).

Metzger et al. (1997) e Oliveira-Filho et al. (2004a) ressaltam, ainda, a importância da umidade do sítio na determinação da riqueza e da diversidade de espécies em áreas ciliares, pois as áreas de amostragens que se encontram fora da influência de cursos d'água apresentam diferenças conspícuas em relação àquelas que são diretamente influenciadas. Geralmente, as faixas de vegetação ciliar apresentam grande heterogeneidade ambiental, em decorrência de fatores bióticos e abióticos, que resultam em manchas de hábitats com diferentes características florísticas e estruturais, o que pode resultar em uma maior diversidade local (Rodrigues & Gandolfi 2001).

Os valores de densidade de árvores (3.005 a 2.180 árvores.ha⁻¹) dos três fragmentos situam-se entre os mais elevados quando comparados aos registrados em vinte levantamentos realizados na região do Alto Rio Grande utilizando o mesmo critério de inclusão e que variam de 2.683 árvores.ha⁻¹, em Ingaí a 969 árvores.ha⁻¹, em Ibitiruna (Pereira 2003). É superior também ao valor obtido por Oliveira-Filho *et al.* (2004a) para a mata de Carrancas (2.138 árvores.ha⁻¹) Rocha et al. (2005) para as matas de Coqueiral (1.321 a 1.828 árvores.ha⁻¹). Os valores de área basal (43,99m².ha⁻¹, 33,26m².ha⁻¹ e 16,73m².ha⁻¹), com exceção da encosta em regeneração, também foram elevados em relação às outras áreas, que variaram de 19,79m².ha⁻¹, em Tiradentes a 34,16m².ha⁻¹, em Piedade do Rio Grande (Pereira 2003). Estes valores indicam densidade e biomassa relativamente elevadas em relação à maioria dos valores registrados para as matas da região do Alto Rio Grande. De acordo com Oliveira-Filho et al. (2004a), a diferença entre essas florestas, relacionadas ao histórico de perturbação, efeito de borda, estoque de nutrientes e regime de água no solo, pode ter influenciado na formação desses padrões, sendo necessários estudos comparativos mais detalhados para que se possam fazer inferências mais precisas. A densidade e a área basal em florestas tropicais variam muito em função de fatores como condições de solo, umidade e luz, além do estágio de sucessão em que a floresta se encontra. Geralmente, florestas em estágios mais iniciais de regeneração, como a da área de encosta em regeneração formam grandes adensamentos de árvores mais finas (UHL & Murphy 1981; Patrthasarathy 1991).

Neste estudo constatou-se que, no período de 40 a 50 anos de regeneração após o corte raso da floresta, a mata ciliar de encosta em regeneração, apresentou 65% das espécies, 83% da densidade, 51% da área basal e 85% da diversidade, em comparação com os valores encontrados na área de encosta conservada.

Padrões de distribuição das espécies - os autovalores obtidos nas áreas de aluvião e encosta conservada podem ser considerados baixos (< 0,5 sensu ter Braak 1995), indicando a existência de gradientes curtos, ou seja, há pouca variação na composição das espécies entre os gradientes, sendo a maioria das espécies encontradas por toda área, com algumas delas variando apenas na abundância. Mesmo assim, de acordo com ter Braak (1988), baixos valores da variância para a abundância das espécies são comuns em dados de vegetação e não prejudicam a significância das relações espécie-ambiente. Já os autovalores para a encosta em regeneração podem ser considerados altos, sugerindo uma substituição de espécies mais forte nos gradientes.

De modo geral, foram claras as correlações entre variáveis ambientais e espécies, principalmente para aquelas relacionadas à umidade e drenagem do solo e estágios sucessionais das parcelas. A influência da umidade do solo na distribuição das espécies arbóreas e na formação das fisionomias em florestas tropicais tem sido enfatizada por vários autores (Bastnet 1992; Oliveira-Filho et al., 1994b; Metzger et al. 1997; Clark et al. 1998; van den Berg & Oliveira-Filho 1999; Botrel et al. 2002). Nas duas áreas de encosta estudadas em Bocaina de Minas, é bem evidente que algumas espécies, como Cyathea phalerata, Myrsine umbelata, Sapium glandulosum, Solanum lepidotum, Cyathea delgadii, Croton organensis, Miconia theaezans, Myrsine gardneriana, Prunus myrtifolia, Tibouchina arborea, Vernonanthura diffusa, Rollinia sylvatica, Mollinedia longifolia, Alsophila setosa, Esenbeckia grandiflora, Guapira opposita, Bathysa australis, Endlicheria paniculata, Alchornea sidifolia, Casearia obliqua, Eugenia cerasiflora e Miconia latecrenata, tendem a ser mais abundantes na franja ripária.

De acordo com Oliveira-Filho & Fluminhan-Filho (1999), espécies de samambaias arborescentes, como as Cyateaceae, são típicas destes ambientes. Já outras espécies, como *Gordonia fruticosa, Toulicia laevigata, Daphnopsis*

fasciculata, Casearia pauciflora, Dalbergia villosa, Siphoneugena densiflora, Ormosia fastigiata, Sclerolobium rugosum, Poeppigia procera e Tabebuia vellosoi, tenderam a apresentar populações mais abundantes nas parcelas mais distantes do rio, o que sugere que seja mais adaptadas a sítios mésicos.

De acordo com Brison (1990), a distribuição espacial das espécies de plantas em ambientes ripários é fortemente afetada por aspectos geomorfológicos, uma vez que estes estão normalmente associados com diferenças no regime de água do solo ou de inundação. A topografia da margem representa um dos principais fatores que afetam a composição florística de áreas ripárias. Sua morfologia expõe a vegetação, em maior ou menor grau, à variação do nível do lençol freático e à inundação, determinando as espécies vegetais adaptadas a ocuparem essas áreas (Rodrigues 1989). No caso das três áreas estudadas, as parcelas de aluvião e encosta diferenciam-se fortemente em termos dos solos, regime de inundação e, conseqüentemente, na composição e estrutura da comunidade florestal.

No entanto, é preciso ter muita cautela ao se interpretarem os padrões de distribuição das espécies em função do ambiente, pois a floresta tropical é um dos ambientes naturais mais complexos da Terra, sendo sua composição e estrutura determinadas, principalmente, por fatores como clima, solo, estado sucessional da vegetação, condições lumínicas, umidade e agentes dispersores nem sempre perceptíveis ou mensuráveis (Huston 1980; Lamprecht 1986; Whitmore 1990; Magger *et al.* 1994). De acordo com Lima *et al.*(2003), a proporção da importância de cada fator, isoladamente, é muito difícil de se detectar, pois é praticamente impossível isolar os demais fatores que atuam nas interações planta e ambiente.

Conclusões

De acordo com os resultados obtidos neste estudo, pôde-se concluir que a composição, a estrutura e a diversidade do compartimento arbóreo das três matas ciliares das cabeceiras do rio Grande diferiram, tanto em função do ambiente quanto do estádio de maturidade das mesmas, sendo estas diferenças mais evidentes em relação à composição de espécies entre os ambientes (aluvião e encosta).

A distribuição das espécies nos diferentes hábitats de mata ciliar foi significativamente correlacionada com o regime hídrico dos solos (distância do rio e drenagem), evidenciando a existência de gradientes de elevações topográficas e de umidade e estádio seral dos mesmos.

Referências Bibliográficas

- Aidar, M. P. M.; Godoy, J. R. L.; Bergmann, J. & JOLY, C. A. 2001. Atlantic forest seccession over calcareous soil, Parque Estadual Turístico do Alto da Ribeira PETAR, SP. **Revista Brasileira de Botânica 24**, p.455-469.
- Barbosa, L. M. 1999. Implantação de mata ciliar. In: SIMPÓSIO MATA CILIAR CIÊNCIA E TECNOLOGIA. **Anais...** Belo Horizonte. p.111-135.
- Basnet, K. 1992. Effect of topography on the pattern of tree in Tabonuco (Dacryodes exelsa) dominanted rain forest of Puerto Rico. **Biotropica 24**, p.31-42.
- Botrel, R. T.; Oliveira-Filho, A. T.; Rodrigues, L. & Curi, N. 2002. Influência do solo e topografia sobre as variações da composição florística e estrutural da comunidade arbóreo-arbustiva de uma floresta estacional semidecidual em Ingaí, MG. Revista Brasileira de Botânica 25 (2): 195-213.
- Brinson, M. M. & Revebrinson, M. M. 1990. Reveine forests. In: Lugo, A. E.; Brinson, M. M. & Brown, S. (eds.) Ecossystems of the world 15: Forested wetlands. Amsterdam: **Elsevier**, p.128-145.

- Brower, J. E.& Zar, J. H. 1984. Field and laboratory methods for general ecology. Dubuque: W. M. C. Brow.
- Carvalho, D. A., Oliveira-Filho, A. T.; Berg, E. V. D.; Fontes, M. A. L.; Vilela,
 E. A.; Marques, J. J. G. S. M. & Carvalho, W. A. C. 2005. Variações florísticas e estruturais do compartimento arbóreo de uma floresta ombrófila alto-montana às margens do Rio Grande, Bocaina de Minas, MG, Brasil.
 Acta Botanica Brasilica 19 (1): 91-109.
- Carvalho, D. A.; Oliveira-Filho, A. T.; Vilela, E. A. & Gavilanes, M. L. 1995a. Estrutura fitossociológica de mata ripária do alto Rio Grande (Bom Sucesso/MG). **Revista Brasileira de Botânica 18**, p.39-49.
- Carvalho, D. A.; Oliveira-Filho, A. T.; Vilela, E. A. & Gavilanes, M. L. 1995b. Flora arbustivo-arbórea de uma floresta ripária no alto Rio Grande em Bom Sucesso, MG. **Acta Botanica Brasílica 9**, p.231-245.
- Clark, D. B.; Clark, D. A. & Read, J. M. 1998. Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. Journal of Ecology 86, p.101-112.
- Dalanesi, P. E; Oliveira-Filho, A. T. & Fontes, M. A. L. 2004. Flora e estrutura do componente arbóreo da floresta do Parque Ecológico Quedas do Rio Bonito, Lavras, MG, e correlações entre a distribuição das espécies e variáveis ambientais. **Acta Botânica Brasílica 18** (4): 737-757.
- Davide, A. C. 1999. SIMPÓSIO MATA CILIAR: ciência e tecnologia. 1999, Lavras. **Anais...** Lavras: Universidade Federal de Lavras, 235p.
- EMBRAPA 1997. **Manual de métodos de análise de solo**. Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Solos, Rio de Janeiro.
- EMBRAPA 2000. **Sistema brasileiro de classificação de solos**. 2.ed. Rio de Janeiro.

- Foster, R. B. 1982. The seasonal rhythm of fruitfall on Barro Colorado Island. In: Leigh-Junior, E. G.; Rand, A. S. & Windsor, D. M. **The ecology of a tropical forest**. Smithsonian Institution Press, Washington.
- Gavilanes, M. L.; Brandão, M.; Oliveira-Filho, A. T.; Almeida, R. J.; Mello, J.
 M. & Avezum, F. F. 1992. Flórula da Reserva Biológica Municipal do Poço Bonito, Lavras, MG. III formação florestal. Daphne 2, p. 14-26.
- Huston, M. 1980. Soil nutrients and tree species richness in Costa Rica forests.

 Journal of Biogeography 7, p.147-157.
- Kent, M.; Coker, P. 1992. **Vegetation description and analysis, a pratical approach**. London: Belhaven Press, 363p.
- Krebs, C. J. 1989. Ecological methodologiy. Harper and Row, New York.
- Lamprecht, H. 1986. **Silvicultura em los troópicos**. Gottingen: Instituto de Silvicultura de la Universidad de Gottingen, 335p.
- Lima, J. A. de. S.; Meneguelli, N. do. A.; Gazel-Filho, A. B. & Pérez, D. V. 2003. Agrupamento de espécies arbóreas de uma floresta tropical por características de solo. **Pesquisa Agropecuária Brasileira 38**, p.109-116.
- Lima, W. P. de. & Zakia, M. J. B . 2000. Hidrologia de matas ciliares. In: Rodrigues, R. R. & Leitão-Filho, H F. de. Matas ciliares: conservação e restauração. São Paulo: EDUSP. FAPESP. p.33-44.
- McCune, B. & Mefford, M. J. 1999. **Multivariate analysis of ecological data**. Gleneden Beach, MjM Software.
- Megger, B. J. 1994. Archeological evidence for the impact of mega-niño events on Amazonia during the past two millennia. **Climatic change 28** (4): 321-338.
- Metzger, J. P.; Bernacci, L. C. & Goldenberg, R. 1997. Pattern of tree species diversity in riparian forest fragments of different widths (SE Brazil). **Plant Ecology 133** (2):135-152.

- Mueller-Dombois, D, Ellenberg, H. 1974. Aims and methods of vegetation ecology. New York, John Wiley & Sons, 547p.
- Oldeman, Raa. 1990. Forest. Elements of silvology. Berlin: Springer-Verlag.
- Oliveira-Filho, A. T.; Mello, J. M & Scolforo, J. R. S. 1997. Effects of past disturbance and edges on tree community structure and dynamics within a fragment of tropical semideciduos forest in south-eastern Brazil over a five year period (1987-1992). **Plant Ecology 131** (1): 45-66.
- Oliveira-Filho, A. T. & Fontes, M. A. L. 2000. Patterns of floristic differentiation among Atlantic forests in south-eastern Brazil, and the influence of climate. **Biotropica 31** (4): 71-88.
- Oliveira-Filho, A. T.; Carvalho, D. A.; Fontes, M. A. L.; van den Berg, E.; Curi, N. & Carvalho, W. A. C. 2004a. Variações estruturais do compartimento arbóreo de uma floresta semidecídua alto-montana na chapada das Perdizes, Carrancas, MG. **Revista Brasileira de Botânica 27** (2): 291-309.
- Oliveira-Filho, A. T.; Carvalho, D. A.; Vilela, E. A. Curi, N. & Fontes, M. A. L. 2004b. Diversity and structure of the tree community of a fragment of tropical secondary Forest the Brazilian Atlantic Forest domain 15 and 40 yars after logging. **Revista Brasileira de Botânica 27** (4): 685-701.
- Oliveira-Filho, A. T.; Curi, N.; Vilela, E. A. & Carvalho, D. A. 2001. Variation in tree community composition and structure with changes in soil properties within a fragment of semideciduous forest in southeastern Brazil. **Edinburgh Journal of Botany 58** (1): 139-158.
- Oliveira-Filho, A. T. & Fluminhan-Filho, M. 1999. Ecologia da vegetação do parque florestal quedas do rio bonito. **Cerne 5** (2): 51-64.
- Oliveira-Filho, A. T., Ratter, J. A. & Shepherd, G. J. 1990. Floristic composition and community structure of a central Brazilian gallery forest. **Flora 184**, p.103-117.

- Oliveira-Filho, A. T.; Vilela, E. A.; Carvalho, D. A. & Gavilanes, M. L. 1994a. Differentiation of streamside and upland vegetation in an area of montane semideciduous forest in southeastern Brazil. **Flora 189**, p. 1-19.
- Oliveira-Filho, A. T., Vilela, E. A., Carvalho, D. A. & Gavilanes, M. L. 1994b. Effects of soils and topography on the distribution of tree species in a tropical riverine forest in south-eastern Brazil. **Journal of Tropical Ecology 10**, p.483-508.
- Oliveira-Filho, A. T.; Vilela, E. A.; Gavilanes, M. L. & Carvalho, D. A. 1994c. Effect of flooding regime and understorey bamboos on the physiognomy and tree species composition of a tropical semideciduous forest in Southeastern Brazil. **Vegetatio 113**, p. 99-124.
- Oliveira-Filho, A. T. 1994. Estudos ecológicos da vegetação como subsídios para programas de revegetação com espécies nativas: uma proposta metodológica. **Cerne 1** (1): 64-72.
- Parthasarathy, N. 1991. Tree diversity and distribution in undisturbed and human-impacted sites of tropical wet evergreen Forest in southern Western Ghats, Índia. **Biodiversity and Conservation 8** (4): 1365-1381.
- Pereira, J. A. A. 2003. Efeitos dos impactos ambientais e da heterogeneidade ambiental sobre a diversidade e estrutura da comunidade arbórea de 20 fragmentos de florestas semidecíduas da região do Alto Rio Grande, Minas Gerais. 156 p. Tese (Doutorado em Ecologia), Universidade Federal de Minas Gerais, Belo Horizonte.
- Richards, P. W. 1952. **The tropical rain Forest**. Cambridge: Cambridge University Press.
- Rocha, C. T. V.; Carvalho, D. A.; Fontes, M. A. L.; Oliveira-Filho, A. T.; Berg,
 E. V. D. & Marques, J. J. G. S. M. 2005. Comunidade arbórea de um continuum entre floresta paludosa e de encosta em Coqueiral, Minas Gerais,
 Brasil. Revista Brasileira de Botânica 28 (2): 203-218.

- Rocha, C. T. V. 2003. Comunidade arbórea-arbustiva de um continuum entre floresta paludosa e encosta em Coqueiral, MG. Dissertação (Mestrado em Engenharia Florestal), Universidade Federal de Lavras, Lavras.
- Rodrigues, L. A.; Carvalho, D. A.; Oliveira-Filho, A. T.; Botrel, R. T. & Silva,
 E. A. 2003. Florística e estrutura da comunidade arbórea de um fragmento florestal em Luminárias, MG. Acta Botanica Brasílica 17, p.71-97.
- Rodrigues, R. R. & Nave, A. G. 2001. Heterogeneidade florísticas das matas ciliares. In: Rodrigues, R. R.; Leitão Filho, H. F. de. **Matas ciliares**: conservação e restauração. São Paulo: EDUSP, p. 45-71.
- Rodrigues, R. R. 1989. Análise das formações ripárias. In: SIMPÓSIO SOBRE MATAS CILIAR. **Anais...** Fundação Cargil, Campinas, SP: p.171-191.
- Rodrigues, R. R. 2001. Uma discussão nomenclatural das formações ciliares. In: Rodrigues, R. R. & Leitão-Filho, H. F. (eds.). **Matas ciliares**: conservação e recuperação. EDUSP, São Paulo. p. 91-99.
- Rodrigues, R. R. & Gandolfi, S. 2001. Conceitos, tendências e ações para a recuperação de florestas ciliares. In: Rodrigues, R. R. & Leitão-Filho, H. F. de. **Matas ciliares**: conservação e restauração. São Paulo: EDUSP. FAPESP. p. 235-247.
- Rodrigues, R. R.; Shepherd, G. J. 2000. Fatores condicionantes da vegetação In: Rodrigues, R. R. & Leitão-Filho, H. F. de. **Matas ciliares**: conservação e restauração. São Paulo: EDUSP. FAPESP, p.101-108.
- Silva-Júnior, W. M. da.; Martins, S. V.; Silva, A. F. da. & Marco-Júnior, P. de. 2004. Regeneração natural de espécies arbustivo-arbóreas em dois trechos de uma floresta estacional semidecidual, Viçosa, MG. **Scientia Forestalis 66**, p.169-179.

- SOCIEDADE BRASILEIRA DE BOTÂNICA. CONGRESSO NACIONAL DE BOTÂNICA, 56. 1995. SIMPÓSIO SOBRE MATA CILIAR, 2., 1995, Ribeirão Preto. **Anais...** Ribeirão Preto: USP/SBB, 416 p.
- Souza, J. S.; Espírito-Santo, F. D. B.; Fontes, M. A. L.; Oliveira-Filho, A. T. & Botezelli, L. 2003. Análise das variações florísticas e estruturais da comunidade arbórea de um fragmento de floresta semidecídua às margens do rio Capivari, Lavras-MG. **Revista Árvore 27** (2): 185-206.
- Tabarelli, M.; Villani, J. P. & Mantovani, W. A. 1994. Estudo comparativo da vegetação de dois trechos de floresta secundária no Núcleo Santa Virginia, Parque Estadual da Serra do Mar, SP. Revista do Instituto Florestal 6, p.1-11.
- ter Braak, C. J. F. 1995. Ordination. Pp. 91-173. In: R. H. G. Jongman; C. J. F. ter Braak & O. F. R. van Tongeren (eds.). Data **analysis in community and landscape ecology**. Cambridge, Cambridge University Press.
- ter Braak, C. J. F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. **Vegetatio 69** (1): 69-77.
- ter Braak, C. J. F. 1988. CANOCO A FORTRAN program for canonical community ordination by (Partial) (Detrended) (Canonical) correspondence analysis and redundancy analysis, version 2.1 Technical report LWA-88-2, TNO, Wageningen, Institute of Applied Computer Science.
- Turner, I. M.; Tan, H. T. W. & Chua, K. S. 1996. Relationsships between herb layer and canopy composition in tropical rain forest successional mosaic in Singapore. Journal **Tropical Ecology 12**, p. 843-851.
- Uhl, C. & Murphy, P. G. 1981. Composition, structure, and regeneration of a tierra firme forest in the Amazon Basin of Venezuela. Tropical Ecology 22, p.219-237.

- van den Berg, E. & Oliveira-Filho, A. T. 1999. Spatial partitioning among tree species within an area of tropical montane gallery forest in south-eastern Brazil. **Flora 194** (2/3): 249-266.
- van den Berg, E.; Olivira-Filho, A. T. 2000. Composição florística e estrutura fitossociológica de uma floresta ripária em Itubutinga, MG, e comparação com outras áreas. **Revista Brasileira de Botânica 23** (3): 231-253.
- Vilela, E. A.; Oliveira-Filho, A. T.; Carvalho, D. A.; Guilherme, F. A. G. & Apolinário, V. 2000. Caracterização estrutural de floresta ripária do Alto Rio Grande, em Madre de Deus de Minas, MG. Cerne 6, p. 41-54.
- Vilela, E. A.; Oliveira-Filho, A. T.; Carvalho, D. A. & Gavilanes, M. L. 1995.
 Flora arbustivo-arbórea de um fragmento de mata ciliar no alto rio Grande,
 Itutinga, Minas Gerais. Acta Botanica Brasílica 9, p. 87-100.
- Whitmore, T. C. 1990. **An introduction to tropical rain forest.** Oxford: Oxford University Press.
- Zar, J. H. 1996. Biostatistical analysis, 3.ed. Prentice Hall, New Jersey.



Figura 1 - Grade de superfície mostrando detalhes da topografia das três áreas de mata ciliar em Bocaina de Minas, MG e a distribuição das parcelas utilizadas para amostrar a comunidade arbustivo-arbórea. Em que: A = mata ciliar de aluvião; B = mata ciliar de encosta em regeneração e C = mata ciliar de encosta conservada. O espaçamento entre as linhas da grade é de 5m.

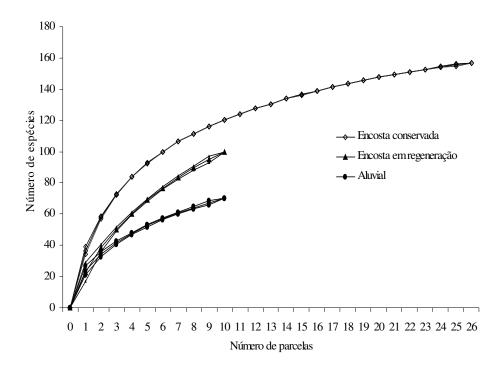
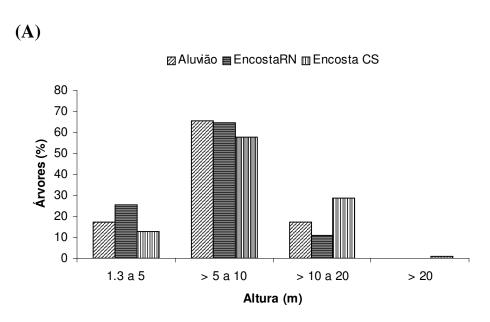



Figura 2 - Progressão do número cumulativo médio de espécies em relação ao aumento da área amostral para três áreas de mata ciliar em Bocaina de Minas, MG. As curvas médias para cada área são acompanhadas do intervalo de confiança (95%).

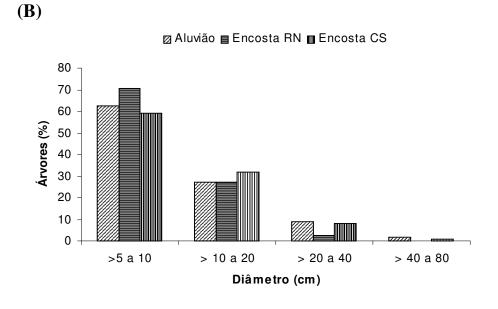


Figura 3 - Distribuição das proporções de árvores (%) em classes de diâmetro (A) e altura (B) em três áreas de mata ciliar em Bocaina de Minas, MG.

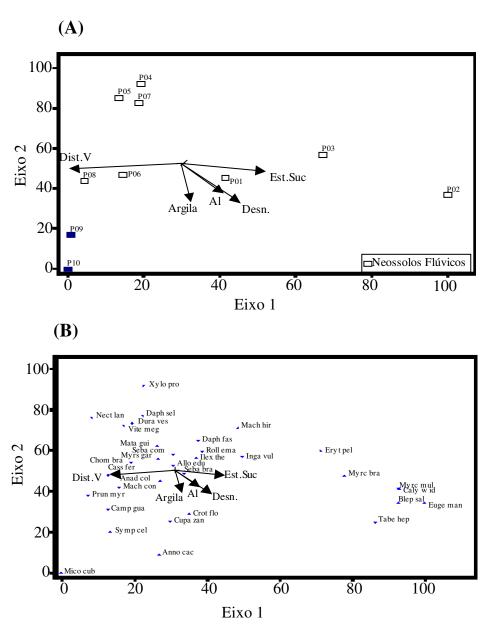


Figura 4 - Análise de correspondência canônica: diagrama de ordenação das parcelas (A) e espécies (B) baseada na distribuição do número de indivíduos de 33 espécies em dez parcelas de mata ciliar de aluvião nas cabeceirs do rio Grande em Bocaina de Minas, MG e suas correlações com as cinco variáveis ambientais utilizadas (retas). As parcelas são identificadas pelo número de ordem. As espécies são identificadas pelo seu nome abreviado.

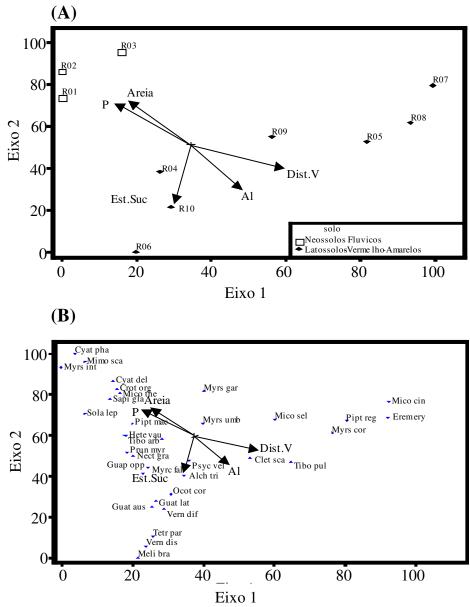


Figura 5 - Análise de correspondência canônica: diagrama de ordenação das parcelas (A) e espécies (B) baseada na distribuição do número de indivíduos de 33 espécies em dez parcelas de mata ciliar de encosta em regeneração nas cabeceirs do rio Grande em Bocaina de Minas, MG e suas correlações com as cinco variáveis ambientais utilizadas (retas). As parcelas são identificadas pelo número de ordem. As espécies são identificadas pelo seu nome abreviado.

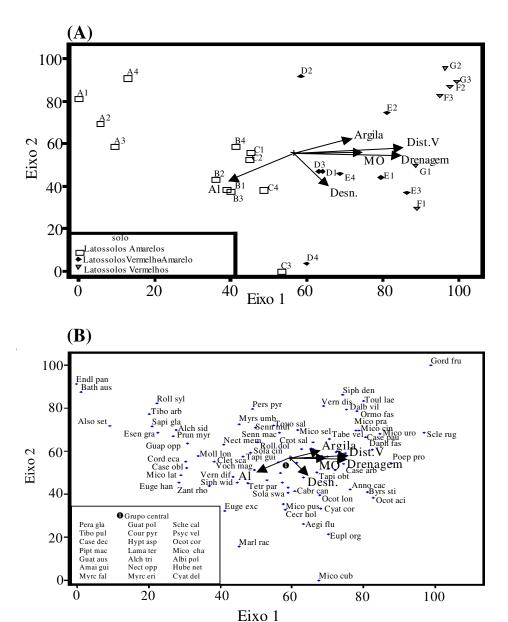


Figura 6 - Análise de correspondência canônica: diagrama de ordenação das parcelas (A) e espécies (B) baseada na distribuição do número de indivíduos de 83 espécies em 26 parcelas de mata ciliar conservada nas cabeceirs do rio Grande em Bocaina de Minas, MG e suas correlações com as seis variáveis ambientais utilizadas (retas). As parcelas são identificadas pelo número de ordem. As espécies são identificadas pelo seu nome abreviado.

Tabela 1 - Distribuição do número de indivíduos, espécies, gêneros e famílias para três áreas de mata ciliar nas cabeceiras do rio Grande em Bocaina de Minas, MG.

Áreas	Indivíduos	Espécies	Gêneros	Famílias
Aluvião	1202	68	51	29
Encosta RN	873	98	60	37
Encosta CS	2569	155	96	51
Totais	4644	236	125	56

Tabela 2 - Relação das espécies arbóreas inventariadas em três áreas de mata ciliar em Bocaina de Minas, MG, dispostas em ordem alfabética de espécie, seguida de seus valores quantitativos obtidos na amostra de 46 parcelas de 400m^2 . Em que: Ni = número de indivíduos; P = número de parcelas com ocorrência da espécies; $Ab = \text{área basal } (m^2)$ e VI = valor de importância (%).

Ecnácies		A	luvião		Ence	osta	Regene	ração	Encosta Conservada				
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI	
Acacia polyphylla DC.	2	2	0,1602	0,64	0	0	0	0	0	0	0	0	
Aegiphila fluminensis Vell.	0	0	0	0	2	1	0,0139	0,29	6	4	0,0444	0,26	
Aegiphila obducta Vell.	3	2	0,0126	0,38	2	1	0,0103	0,28	0	0	0	0	
Albizia polycephala (Benth.) Killip	0	0	0	0	0	0	0	0	8	6	0,0649	0,38	
Alchornea sidifolia Müll.Arg.	0	0	0	0	4	3	0,0228	0,71	27	10	0,6016	1,28	
Alchornea triplinervia (Sprengel) Müll.Arg.	0	0	0	0	22	7	0,1606	2,68	164	26	1,8599	4,84	
Alibertia myrciifolia K.Schum.	2	1	0,0087	0,21	0	0	0	0	0	0	0	0	
Allophylus edulis (A.StHil.) Radlk.	13	7	0,0524	1,43	0	0	0	0	3	2	0,0160	0,12	
Allophylus guaraniticus (A.St Hil.) Radlk.	1	1	0,0024	0,17	0	0	0	0	0	0	0	0	
Alsophila setosa Kaulf	0	0	0	0	1	1	0,0195	0,28	20	4	0,1322	0,53	
Alsophila sternbergii (Sternb.) Conant	0	0	0	0	1	1	0,0067	0,22	0	0	0	0	
Amaioua guianensis Aublet	0	0	0	0	2	2	0,0098	0,42	15	11	0,1669	0,74	
Anadenanthera colubrina (Vell.) Brenan	139	10	7,1099	18,69	1	1	0,0031	0,20	0	0	0	0	
Annona cacans Warm.	5	3	0,0279	0,61	0	0	0	0	10	6	0,1641	0,50	

Tabela 2 - Continuação

Emásica		A	luvião		Enc	osta	Regene	ração	Encosta Conservada				
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI	
Aspidosperma parvifolium A.DC.	1	1	0,0024	0,17	1	1	0,0046	0,21	2	2	0,0363	0,13	
Aspidosperma spruceanum Benth.	0	0	0	0	0	0	0	0	3	3	0,3266	0,46	
Austrocritonia velutina (Gardner) R.M.King & H.Robinson	1	1	0,0045	0,18	0	0	0	0	0	0	0	0	
Baccharis brachylaenoides DC.	1	1	0,0024	0,17	1	1	0,0032	0,20	0	0	0	0	
Baccharis serrulata Pers.	0	0	0	0	2	2	0,0342	0,54	1	1	0,0054	0,05	
Bathysa australis (A.StHil.) Benth. & Hook.f.	0	0	0	0	0	0	0	0	6	2	0,0204	0,17	
Blepharocalyx salicifolius (Kunth) O.Berg	13	3	0,2470	1,24	0	0	0	0	2	2	0,0082	0,10	
Byrsonima myricifolia Griseb.	0	0	0	0	0	0	0	0	4	4	0,3587	0,54	
Byrsonima stipulacea A.Juss.	0	0	0	0	0	0	0	0	7	5	0,1047	0,37	
Cabralea canjerana (Vell.) Mart.	0	0	0	0	1	1	0,0049	0,21	50	19	0,3175	1,62	
Calyptranthes grandifolia O.Berg	1	1	0,0029	0,17	0	0	0	0	0	0	0	0	
Calyptranthes widgreniana O.Berg	14	2	0,2006	1,05	0	0	0	0	0	0	0	0	
Campomanesia guazumifolia (Cambess.) O.Berg	7	4	0,0255	0,80	0	0	0	0	0	0	0	0	
Campomanesia laurifolia Gardner	3	1	0,0108	0,24	0	0	0	0	1	1	0,0030	0,05	
Casearia arborea (L.C.Rich.) Urban	0	0	0	0	0	0	0	0	86	21	0,8122	2,64	
Casearia decandra Jacquin	0	0	0	0	0	0	0	0	26	15	0,1555	1,02	
Casearia obliqua Sprengel	0	0	0	0	0	0	0	0	34	12	0,2065	1,06	

Tabela 2 - Continuação

Emérica		A	luvião		Ence	osta	Regene	ração	Encosta Conservada				
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI	
Casearia pauciflora Cambess.	0	0	0	0	0	0	0	0	21	9	0,3299	0,91	
Casearia rupestris Eichler	0	0	0	0	2	1	0,0056	0,25	0	0	0	0	
Casearia sylvestris Swartz	4	1	0,0362	0,32	0	0	0	0	0	0	0	0	
Cassia ferruginea (Schrad.) Schrad.	35	8	0,4085	2,85	0	0	0	0	0	0	0	0	
Cecropia glaziovii Snethl.	0	0	0	0	0	0	0	0	2	2	0,1034	0,20	
Cecropia hololeuca Miq.	0	0	0	0	0	0	0	0	12	6	0,2584	0,62	
Cedrela fissilis Vell.	0	0	0	0	1	1	0,0037	0,20	3	2	0,0443	0,15	
Cestrum schlechtendalii G.Don	0	0	0	0	1	1	0,0039	0,21	0	0	0	0	
Chomelia brasiliana A.Rich.	41	10	0,2235	2,95	0	0	0	0	0	0	0	0	
Chrysophyllum gonocarpum (Mart. & Eichler) Engler	0	0	0	0	0	0	0	0	1	1	0,0336	0,08	
Cinnamodendron dinisii Schwacke	2	2	0,0218	0,37	0	0	0	0	0	0	0	0	
Clethra scabra Pers.	0	0	0	0	40	7	0,2337	3,73	34	14	0,4571	1,37	
Clusia fragrans Gardner	0	0	0	0	0	0	0	0	2	2	0,0227	0,12	
Cordia ecalyculata Vell.	0	0	0	0	0	0	0	0	7	5	0,1723	0,43	
Couratari pyramidata (Vell.) R.Knuth.	0	0	0	0	0	0	0	0	7	7	0,0378	0,37	
Coutarea hexandra (Jacquin) K.Schum.	2	1	0,04471	0,28	0	0	0	0	0	0	0	0	
Croton celtidifolius Baillon	0	0	0	0	1	1	0,0058	0,22	0	0	0	0	
Croton floribundus Sprengel	24	5	0,4260	2,17	0	0	0	0	0	0	0	0	

Tabela 2 - Continuação

F (1		A	luvião		Ence	osta	Regene	ração	Encosta Conservada				
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI	
Croton organensis Baillon	0	0	0	0	81	6	0,7093	7,51	4	3	0,0664	0,22	
Croton salutaris Casar.	0	0	0	0	0	0	0	0	77	14	0,4548	1,93	
Croton verrucosus RadclSm. & Govaerts	0	0	0	0	4	3	0,0171	0,68	0	0	0	0	
Cupania ludowigii Somner & Ferruci	1	1	0,0073	0,18	0	0	0	0	0	0	0	0	
Cupania zanthoxyloides Cambess.	22	8	0,1346	1,98	1	1	0,0043	0,21	0	0	0	0	
Cyathea atrovirens (Langsd.& Fisch.) Domin	0	0	0	0	1	1	0,0074	0,22	0	0	0	0	
Cyathea corcovadensis (Raddi) Domin	0	0	0	0	4	3	0,0945	1,07	53	13	0,6126	1,74	
Cyathea delgadii Sternb.	0	0	0	0	5	3	0,0370	0,82	59	12	0,3660	1,54	
Cyathea dichromatolepis (Fée) Domin	0	0	0	0	1	1	0,0341	0,36	2	1	0,0200	0,08	
Cyathea phalerata Mart.	0	0	0	0	6	3	0,0715	1,03	3	2	0,0266	0,13	
Cymbopetalum brasiliense (Vell.) Benth.	0	0	0	0	0	0	0	0	4	3	0,0251	0,18	
Dalbergia villosa (Benth.) Benth.	0	0	0	0	0	0	0	0	21	11	0,1498	0,80	
Daphnopsis coriacea Taub.	4	2	0,0327	0,45	0	0	0	0	0	0	0	0	
Daphnopsis fasciculata (Meisner) Nevling	16	8	0,1633	1,86	0	0	0	0	12	7	0,1100	0,51	
Daphnopsis martii Meisner	0	0	0	0	3	3	0,0283	0,70	0	0	0	0	
Daphnopsis sellowiana Taub.	15	5	0,1232	1,34	0	0	0	0	0	0	0	0	

Tabela 2 - Continuação

F ()		A	luvião		Enc	osta	Regene	ração	Encosta Conservada				
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI	
Dasyphyllum brasiliense (Sprengel) Cabrera	0	0	0	0	1	1	0,0044	0,21	0	0	0	0	
Dicksonia sellowiana Hooker	0	0	0	0	0	0	0	0	2	1	0,0423	0,10	
Drimys brasiliensis Miers	0	0	0	0	1	1	0,0026	0,20	4	4	0,0786	0,27	
Duguetia salicifolia R.E.Fries	0	0	0	0	1	1	0,0020	0,20	4	4	0,0187	0,21	
Duranta vestita Cham.	30	8	0,1506	2,23	0	0	0	0	0	0	0	0	
Dyssochroma viridiflora Miers	0	0	0	0	0	0	0	0	1	1	0,0020	0,05	
Endlicheria paniculata (Sprengel) Macbr.	0	0	0	0	0	0	0	0	5	2	0,0329	0,17	
Eremanthus erythropappus (DC.) MacLeish	0	0	0	0	24	3	0,1375	2,05	0	0	0	0	
Erythroxylum pelleterianum A.StHil.	6	3	0,0569	0,69	0	0	0	0	2	2	0,0067	0,10	
Escallonia bifida Link. & Otto	0	0	0	0	1	1	0,0080	0,23	0	0	0	0	
Esenbeckia grandiflora Mart.	0	0	0	0	2	1	0,0043	0,25	9	4	0,0765	0,33	
Eugenia brasiliensis Lam.	0	0	0	0	0	0	0	0	1	1	0,0027	0,05	
Eugenia cerasiflora Miq.	1	1	0,0021	0,17	0	0	0	0	8	6	0,1801	0,49	
Eugenia dodonaeifolia Cambess.	0	0	0	0	4	3	0,0161	0,68	0	0	0	0	
Eugenia mansoi O.Berg	7	2	0,0244	0,52	0	0	0	0	0	0	0	0	
Euplassa legalis (Vell.) Johnston	0	0	0	0	0	0	0	0	2	1	0,0070	0,07	
Euplassa organensis (Gardner) Johnston	0	0	0	0	0	0	0	0	16	8	0,5650	1,03	

Tabela 2 - Continuação

Emásica		A	luvião		Enc	osta	Regene	ração	Encosta Conservada				
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI	
Ficus luschnathiana (Miq.) Miq.	0	0	0	0	0	0	0	0	1	1	0,0029	0,05	
Ficus mexiae Standley	0	0	0	0	1	1	0,0050	0,21	4	2	0,0527	0,17	
Geonoma schottiana Mart.	0	0	0	0	0	0	0	0	2	2	0,0042	0,10	
Gordonia fruticosa (Schrader) H.Keng.	0	0	0	0	3	2	0,0130	0,48	20	4	0,2179	0,61	
Guapira opposita (Vell.) Reitz	0	0	0	0	16	6	0,1055	2,03	30	12	0,2577	1,06	
Guarea kunthiana A.Juss.	0	0	0	0	0	0	0	0	1	1	0,0026	0,05	
Guatteria australis A.StHil.	0	0	0	0	20	3	0,1605	2,01	21	12	0,2254	0,91	
Guatteria latifolia (Mart.) R.E.Fries	0	0	0	0	5	2	0,0245	0,61	4	2	0,0175	0,14	
Guatteria pohliana Schtdl.	0	0	0	0	0	0	0	0	79	22	0,5411	2,32	
Guatteria sellowiana Schltdl.	0	0	0	0	1	1	0,0020	0,20	0	0	0	0	
Heterocondylus vauthierianus (DC.) R.M.King & H.Robinson	0	0	0	0	8	2	0,0413	0,81	0	0	0	0	
Huberia nettoana Brade	0	0	0	0	0	0	0	0	38	13	1,3707	2,27	
Hyptidendron asperrimum (Epling) Harley	0	0	0	0	0	0	0	0	28	16	1,2037	2,09	
Ilex amara (Vell.) Loes.	3	2	0,0133	0,39	0	0	0	0	0	0	0	0	
Ilex cerasifolia Reissek	0	0	0	0	0	0	0	0	1	1	0,0161	0,06	
Ilex conocarpa Reissek	0	0	0	0	1	1	0,0024	0,20	2	2	0,0151	0,11	
Ilex paraguariensis A.StHil.	0	0	0	0	1	1	0,0046	0,21	0	0	0	0	
Ilex theezans Mart.	21	6	0,1741	1,74	0	0	0	0	0	0	0	0	

Tabela 2 - Continuação

Emásica		A	luvião		Enc	osta	Regene	ração	Encosta Conservada				
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI	
Inga sessilis (Vell.) Mart.	0	0	0	0	1	1	0,0067	0,22	4	4	0,0432	0,23	
Inga striata Benth.	0	0	0	0	0	0	0	0	2	2	0,0143	0,11	
Inga vulpina Mart.	12	5	0,1310	1,27	0	0	0	0	0	0	0	0	
Jacaranda macrantha Cham.	0	0	0	0	0	0	0	0	1	1	0,0077	0,06	
Lafoensia densiflora Pohl	1	1	0,0034	0,17	0	0	0	0	0	0	0	0	
Lamanonia ternata Vell.	0	0	0	0	2	2	0,0051	0,40	84	23	3,0100	4,80	
Leandra lancifolia Cogn.	0	0	0	0	2	1	0,0094	0,27	0	0	0	0	
Leandra scabra DC.	0	0	0	0	3	1	0,0118	0,32	0	0	0	0	
Machaerium brasiliense Vogel	2	1	0,0113	0,22	0	0	0	0	0	0	0	0	
Machaerium condensatum Kuhlm. & Hoehne	8	6	0,0282	1,11	0	0	0	0	0	0	0	0	
<i>Machaerium hirtum</i> (Vell.) Stellfeld	13	6	0,1339	1,45	0	0	0	0	0	0	0	0	
Machaerium nictitans (Vell.) Benth.	0	0	0	0	0	0	0	0	1	1	0,0081	0,06	
Machaerium reticulatum (Peyr.) Pers.	0	0	0	0	0	0	0	0	1	1	0,0094	0,06	
Machaerium villosum Vogel	0	0	0	0	0	0	0	0	2	2	0,02483	0,12	
Manihot pilosa Pohl	0	0	0	0	0	0	0	0	2	1	0,0045	0,07	
Marlierea excoriata Mart.	1	1	0,0066	0,18	0	0	0	0	0	0	0	0	
Marlierea racemosa (Vell.) Kiaersk.	1	1	0,0098	0,19	0	0	0	0	6	5	0,0686	0,32	

Tabela 2 - Continuação

Ecnácies		A	luvião		Ence	osta	Regene	ração	Encosta Conservada				
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI	
Matayba guianensis Aublet	108	10	0,9624	6,20	0	0	0	0	0	0	0	0	
Maytenus glazioviana Loes.	0	0	0	0	0	0	0	0	1	1	0,0024	0,05	
Maytenus robusta Reissek	1	1	0,0046	0,18	2	2	0,0079	0,41	0	0	0	0	
Maytenus salicifolia Reissek	0	0	0	0	0	0	0	0	3	3	0,0215	0,17	
Meliosma brasiliensis Urban	0	0	0	0	6	1	0,0363	0,56	2	2	0,0539	0,15	
<i>Meliosma sellowii</i> Urban	0	0	0	0	0	0	0	0	3	3	0,0744	0,22	
Meriania claussenii Triana	0	0	0	0	0	0	0	0	1	1	0,0115	0,06	
Miconia chartacea Triana	0	0	0	0	1	1	0,0040	0,21	12	9	0,0614	0,53	
Miconia cinerascens Miq.	0	0	0	0	1	1	0,0020	0,20	0	0	0	0	
<i>Miconia cinnamomifolia</i> (DC.) Naudin	0	0	0	0	16	3	0,0750	1,43	18	5	0,4312	0,83	
Miconia cubatanensis Hoehne	19	3	0,2134	1,35	0	0	0	0	5	4	0,0268	0,23	
Miconia divaricata Gardner	0	0	0	0	1	1	0,0024	0,20	0	0	0	0	
Miconia fasciculata Gardner	0	0	0	0	3	2	0,0102	0,46	0	0	0	0	
Miconia latecrenata (DC.) Naudin	0	0	0	0	2	1	0,0052	0,25	10	6	0,0416	0,38	
Miconia prasina (Swartz) DC.	0	0	0	0	0	0	0	0	26	8	0,1532	0,77	
Miconia pusilliflora (DC.) Triana	0	0	0	0	1	1	0,0024	0,20	7	3	0,0416	0,24	
Miconia sellowiana Naudin	0	0	0	0	56	8	0,2824	4,73	5	5	0,0353	0,27	
Miconia theaezans (Bonpl.) Cogn	0	0	0	0	39	6	0,3138	3,94	0	0	0	0	
Miconia urophylla DC.	0	0	0	0	0	0	0	0	28	12	0,1278	0,91	
Mimosa scabrela Benth.	0	0	0	0	7	2	0,2270	1,69	0	0	0	0	

Tabela 1 - Continuação

E and de la m		A	luvião		Enco	sta	Regene	ração	Enc	osta	Conserv	ada
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI
Mollinedia engleriana Perkins	0	0	0	0	0	0	0	0	1	1	0,0035	0,05
Mollinedia longifolia Tul.	0	0	0	0	0	0	0	0	25	11	0,1805	0,89
Myrceugenia acutiflora (Kiaersk.) D.Legrand & Kausel	2	2	0,0203	0,37	0	0	0	0	0	0	0	0
Myrceugenia bracteosa (DC.) D.Legrand & Kausel	27	4	0,3897	2,04	0	0	0	0	1	1	0,0042	0,05
Myrceugenia miersiana (Gardner) D.Legrand & Kausel	0	0	0	0	0	0	0	0	7	6	0,0728	0,37
Myrcia diaphana (O.Berg) N.Silveira	0	0	0	0	0	0	0	0	8	5	0,1072	0,38
Myrcia eriopus DC.	0	0	0	0	0	0	0	0	25	10	0,1464	0,82
Myrcia multiflora (Lam.) DC.	5	2	0,0214	0,46	0	0	0	0	0	0	0	0
Myrcia pulchra Kiaersk.	2	1	0,0097	0,21	1	1	0,0057	0,21	1	1	0,0087	0,06
Myrcia splendens (Swartz) DC.	0	0	0	0	9	4	0,0279	1,08	60	18	0,5517	1,94
Myrciaria tenella (DC.) O.Berg	1	1	0,0159	0,20	0	0	0	0	0	0	0	0
Myrsine coriacea (Swartz) Roem. & Schult.	0	0	0	0	16	4	0,0571	1,49	1	1	0,0082	0,06
Myrsine gardneriana A.DC.	58	9	0,3528	3,53	22	6	0,1519	2,49	7	5	0,0507	0,32
Myrsine lineata (Mez) Pipoly	0	0	0	0	2	2	0,0075	0,41	0	0	0	0
Myrsine umbellata Mart.	0	0	0	0	126	9	0,8726	10,49	74	18	0,5888	2,16
Nectandra grandiflora Nees	0	0	0	0	6	4	0,0558	1,10	1	1	0,0020	0,05
Nectandra lanceolata Nees	7	3	0,0729	0,75	0	0	0	0	0	0	0	0

Tabela 2 - Continuação

Emásica		A	luvião		Enc	osta	Regene	ração	Enc	osta	Conserv	ada
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI
Nectandra oppositifolia Nees	0	0	0	0	0	0	0	0	15	10	0,2269	0,77
Nectandra puberula (Schott) Nees	0	0	0	0	0	0	0	0	1	1	0,0020	0,05
Ocotea aciphylla (Nees) Mez	0	0	0	0	1	1	0,0043	0,21	11	4	0,0792	0,36
Ocotea brachybotra (Meisner) Mez	0	0	0	0	0	0	0	0	7	6	0,0515	0,35
Ocotea corymbosa (Meisner) Mez	0	0	0	0	5	2	0,0405	0,69	39	16	1,1709	2,20
Ocotea diospyrifolia (Meisner) Mez	3	2	0,1346	0,62	0	0	0	0	0	0	0	0
Ocotea elegans Mez	0	0	0	0	1	1	0,0023	0,20	0	0	0	0
Ocotea indecora (Schott) Mez	1	1	0,0075	0,18	0	0	0	0	0	0	0	0
Ocotea longifolia Kunth	0	0	0	0	0	0	0	0	6	3	0,0248	0,21
Ocotea puberula (Rich.) Nees	1	1	0,0060	0,18	0	0	0	0	0	0	0	0
Ocotea pulchella Mart.	4	3	0,0389	0,60	0	0	0	0	0	0	0	0
Ocotea silvestris Vattimo-Gil	0	0	0	0	1	1	0,0079	0,23	0	0	0	0
Oreopanax capitatus (Jacquin) Decne & Planchon	0	0	0	0	0	0	0	0	1	1	0,0029	0,05
Ormosia fastigiata Tul.	0	0	0	0	0	0	0	0	7	5	0,0820	0,35
Ouratea parviflora (DC.) Baillon	2	1	0,0241	0,24	0	0	0	0	4	2	0,0210	0,14
Pamphilia aurea Mart.	0	0	0	0	0	0	0	0	4	2	0,0551	0,18
Pera glabrata (Schott) Poepp.	0	0	0	0	0	0	0	0	12	9	0,3364	0,80
Persea pyrifolia Nees	0	0	0	0	0	0	0	0	3	2	0,2423	0,34
Persea venosa Nees	0	0	0	0	1	1	0,0121	0,25	9	6	0,4487	0,76

Tabela 2 - Continuação

Emásico		A	luvião		Ence	osta	Regene	ração	Enc	osta	Conserv	ada
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI
Piper cernuum Vell.	0	0	0	0	0	0	0	0	1	1	0,0048	0,05
Piper dilatatum L.C.Rich	0	0	0	0	0	0	0	0	1	1	0,0022	0,05
Piptocarpha macropoda Baker	0	0	0	0	5	3	0,0387	0,83	10	8	0,1648	0,57
Piptocarpha regnellii (Sch.Bip.) Cabrera	0	0	0	0	41	6	0,2525	3,71	1	1	0,0254	0,07
Podocarpus lambertii Klotzsch	0	0	0	0	1	1	0,0034	0,20	0	0	0	0
Poeppigia procera Presl.	0	0	0	0	0	0	0	0	26	9	0,2300	0,88
Pouteria caimito (Ruiz & Pavón) Radlk.	0	0	0	0	0	0	0	0	3	2	0,1924	0,29
Prunus myrtifolia (L.) Urban	6	4	0,0684	0,85	18	5	0,2974	2,91	26	10	0,1589	0,84
Psychotria suterella Müll.Arg.	0	0	0	0	1	1	0,0067	0,22	2	1	0,0051	0,07
Psychotria vellosiana Benth.	0	0	0	0	51	9	0,2531	4,54	213	23	1,4079	4,93
Rollinia dolabripetala (Raddi) R.E.Fries	0	0	0	0	0	0	0	0	8	8	0,0550	0,44
Rollinia emarginata Schltdl.	40	9	0,2714	2,87	0	0	0	0	0	0	0	0
Rollinia sylvatica (A.StHil.) Mart.	0	0	0	0	0	0	0	0	8	4	0,0436	0,29
Roupala brasiliensis Klotzsch	0	0	0	0	1	1	0,0022	0,20	0	0	0	0
Rudgea jasminoides (Cham.) Müll.Arg.	0	0	0	0	0	0	0	0	2	1	0,0077	0,07
Rudgea recurva Müll.Arg.	0	0	0	0	0	0	0	0	1	1	0,0049	0,05
Sapium glandulosum (L.) Morong	1	1	0,0032	0,17	6	3	0,0798	1,07	8	7	0,0305	0,38

Tabela 2 - Continuação

E and de la m		A	luvião		Enc	osta	Regene	ração	Enc	osta	Conserv	ada
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI
Schefflera calva (Cham.) Frodin & Fiaschi	0	0	0	0	2	2	0,0282	0,51	22	17	0,2469	1,12
Sclerolobium rugosum Mart.	0	0	0	0	1	1	0,0023	0,20	26	6	0,2228	0,76
Sebastiania brasiliensis Sprengel	77	10	0,7792	5,00	0	0	0	0	0	0	0	0
Sebastiania commersoniana (Baillon) Smith & Downs	174	10	2,6138	11,16	0	0	0	0	0	0	0	0
Senna macranthera (Collad.) Irwin & Barneby	0	0	0	0	0	0	0	0	16	10	0,1797	0,73
Senna multijuga (L.C.Rich.) Irwin & Barneby	1	1	0,0111	0,19	0	0	0	0	10	7	0,0611	0,43
Siphoneugena densiflora O.Berg	0	0	0	0	1	1	0,0034	0,20	22	12	0,2035	0,90
Sloanea guianensis (Aublet) Benth.	0	0	0	0	0	0	0	0	2	2	0,0216	0,12
Sloanea monosperma Vell.	0	0	0	0	0	0	0	0	1	1	0,0084	0,06
Solanum bullatum Vell.	0	0	0	0	0	0	0	0	3	2	0,0599	0,17
Solanum cinnamomeum Sendt.	0	0	0	0	1	1	0,0158	0,26	21	9	0,3126	0,89
Solanum lepidotum Dunal	2	2	0,0308	0,39	5	2	0,0246	0,61	0	0	0	0
Solanum pseudoquina A.StHil.	0	0	0	0	4	2	0,1090	0,99	3	2	0,0230	0,13
Solanum swartzianum Roem. & Schult.	0	0	0	0	1	1	0,0078	0,23	12	10	0,0769	0,58
Sorocea bonplandii (Baillon) W.Burger	0	0	0	0	0	0	0	0	3	2	0,0199	0,13

Tabela 2 - Continuação

		A	luvião		Enc	osta	Regene	ração	Enc	osta	Conserv	ada
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI
Sphaeropteris gardneri (Hooker) Tryon	0	0	0	0	3	2	0,0475	0,65	0	0	0	0
Syagrus romanzoffiana (Cham.) Glassman	3	2	0,0717	0,50	0	0	0	0	0	0	0	0
Symplocos celastrinea Mart.	122	8	0,6816	5,78	1	1	0,0067	0,22	3	2	0,0542	0,16
Symplocos insignis Brand	0	0	0	0	0	0	0	0	1	1	0,0039	0,05
Tabebuia alba (Cham.) Sandw.	0	0	0	0	2	2	0,0166	0,46	0	0	0	0
Tabebuia chrysotricha (Mart.) Standley	0	0	0	0	0	0	0	0	3	3	0,0084	0,15
Tabebuia heptaphylla (Vell.) Toledo	6	2	0,0524	0,54	0	0	0	0	0	0	0	0
<i>Tabebuia vellosoi</i> Toledo	0	0	0	0	0	0	0	0	5	3	0,0325	0,20
Tapirira guianensis Aublet	0	0	0	0	0	0	0	0	6	6	0,0466	0,33
Tapirira obtusa (Benth.) Mitchell	0	0	0	0	0	0	0	0	25	15	0,9688	1,79
Tetrorchidium parvulum Müll.Arg.	0	0	0	0	6	2	0,0240	0,64	34	14	0,2627	1,19
Tibouchina arborea (Gardner) Cogn.	0	0	0	0	72	8	0,7885	7,86	8	5	0,0837	0,36
Tibouchina mutabilis Cogn.	0	0	0	0	1	1	0,0158	0,26	1	1	0,0072	0,06
Tibouchina pulchra Cogn.	0	0	0	0	5	3	0,0665	0,97	106	21	2,3772	4,41
Tibouchina sellowiana (Cham.) Cogn.	0	0	0	0	3	1	0,0137	0,33	0	0	0	0
Toulicia laevigata Radlk.	0	0	0	0	0	0	0	0	15	8	0,1495	0,62

Tabela 2 - Continuação

Fornácios		A	luvião		Ence	osta	Regene	ração	Enc	osta	Conserv	ada
Espécies	Ni	P	AB	VI	Ni	P	AB	VI	Ni	P	AB	VI
Tovomitopsis saldanhae Engler	0	0	0	0	0	0	0	0	12	9	0,0635	0,53
Trembleya parviflora (D.Don) Cogn.	0	0	0	0	2	1	0,0053	0,25	0	0	0	0
<i>Trichilia emarginata</i> (Turcz.) C.DC.	1	1	0,0024	0,17	0	0	0	0	0	0	0	0
Trichilia hirta L.	0	0	0	0	0	0	0	0	1	1	0,0045	0,05
<i>Vernonanthura diffusa</i> var. approximata Baker	1	1	0,0033	0,17	8	3	0,0806	1,15	29	11	0,6773	1,42
Vernonanthura diffusa var. macrocephala Hier	0	0	0	0	0	0	0	0	12	5	0,3444	0,66
Vernonanthura discolor (Sprengel) H.Robinson	0	0	0	0	13	2	0,1546	1,56	28	12	0,3987	1,17
Vismia brasiliensis Choisy	0	0	0	0	0	0	0	0	1	1	0,0029	0,05
Vitex megapotamica (Sprengel) Moldenke	39	6	0,4373	2,74	0	0	0	0	0	0	0	0
Vochysia magnifica Warm,	0	0	0	0	0	0	0	0	183	24	2,8784	5,99
Vochysia tucanorum Mart,	0	0	0	0	1	1	0,0115	0,24	0	0	0	0
Weinmannia paulliniifolia Pohl	0	0	0	0	2	2	0,0061	0,40	0	0	0	0
Xylosma prockia (Turcz,) Turcz,	10	5	0,0865	1,14	0	0	0	0	0	0	0	0
Xylosma venosa N,E,Brown	0	0	0	0	0	0	0	0	1	1	0,0023	0,05
Zanthoxylum rhoifolium Lam,	0	0	0	0	0	0	0	0	6	6	0,0806	0,37
Total	1202	10	17,624	100	873	10	6,693	100	2569	26	34,593	100

Tabela 3 - Valores dos parâmetros estruturais (área basal e densidade) e diversidade (índice de diversidade de Shannon e equabilidade de Pielou) para três áreas de mata ciliar em Bocaina de Minas, MG

Variáveis/áreas	Aluvião	Encosta Regeneração	Encosta Conservada
Número de árvores por hectare	3,005a	2,180b	2,470b
Número de árvores por parcela	120,2	87,2	99
Área basal total (m².ha ⁻¹)	43,99a	16,73c	33,26b
Área basal média por parcela (m²)	1,76	0,68	1,33
Número total de espécies	70	100	155
Número de espécies por parcela	23,7	22,7	36,6
Diversidade (H')	3,18	3,52	4,15
Equabilidade (J')	0,75	0,76	0,82
Estimador de Jackknife	108,4	170,1	202,7

Tabela 4 - Resumo dos resultados da análise de correspondência canônica (CCA) para as espécies arbustivo-arbóreas com cinco ou mais indivíduos por área, para dois ambientes de mata ciliar em Bocaina de Minas, MG.

		Aluvião)	Eı	icosta F	RN	E	ncosta (CS
Resumo CCA		Eixo			Eixo			Eixo	
	1	2	3	1	2	3	1	2	3
Autovalores	0,273	0,103	0,066	0,453	0,315	0,139	0,271	0,110	0,085
Variância dos dados das espécies (%)	36	13,6	8,7	29,5	20,5	9,1	15,9	6,4	5,0
Variância explicada cumulativa (%)	36	49,6	58,3	29,5	50	59	15,9	22,3	27,2
Correlações espécie- ambiente	0,981	0,915	0,947	0,982	0,964	0,967	0,966	0,905	0,906
Significância das correlações pelo teste de Monte Carlo	0,01	0,55	0,49	0,050	0,090	0,37	0,01	0,18	0,16

Tabela 5 - Análise de correspondência canônica (CCA): correlações internas ('intraset') nos dois primeiros eixos de ordenação e matriz de correlações ponderadas para as variáveis ambientais utilizadas na análise para três áreas de mata ciliar em Bocaina de Minas, MG. Correlações com valores absolutos > 0,5 estão indicadas em negrito.

Variáveis ambientais		lações eradas		Variáv	eis amb	oientais	
Aluvião	Eixo 1	Eixo 2	Al	Argila	Desn.	Dist. V	-
Al	0,346	-0,502	-				
Argila	0,084	-0,641	0,407	-			
Desn,	0,481	-0,65	0,564	0,343	-		
Dist. V	-0,921	-0,089	-0,295	-0,14	0,457	-	
Est. Suc.	0,693	-0,128	0,515	0,186	0,162	-0,485	
Encosta Regeneração	Eixo 1	Eixo 2	P	Al	Areia	Dist. V	•
P	-0,665	0,663		-	-	-	
Al	0,441	-0,719	-0,662	-	-	-	
Areia	-0,545	0,703	0,911	-0,579	-	-	
Dist.V	0,803	-0,375	-0,888	0,575	0,861	-	
Est. Suc.	-0,146	-0,932	-0,555	0,650	0,650	0,369	
Encosta conservada	Eixo 1	Eixo 2	Rank	Al	M.O	Argila	Desn.
Rank	0,955	-0,041	-	-	-		
Al	-0,566	-0,541	-0,594	-	-		
M.O.	0,609	0,016	0,694	-0,215	-		
Argila	0516	0,277	0,460	-0,105	0,534	-	
Desn.	0,299	-0,620	0,388	-0,228	0,134	-0,217	-
Dist.V	0,972	0,103	0,915	-0,606	0,693	0,493	0,203

Tabela 6 - Coeficientes de correlação de Spearman e sua significância (p) entre a abundância de 33 espécies arbóreas empregadas na CCA e as variáveis alumínio (Al), argila, desnível, distância vertical e estágio sucessional, em uma área de mata ciliar de aluvião em Bocaina de Minas, MG.* P < 0.05; ** P < 0.01; *** P < 0.001; ns = não significativo.

Espécies	Código	Al	P	Argila	P	Desn.	P	Dist. V	P	Est.Suc	P
Allophylus edulis	Allo edu	-0,107	ns	0,338	ns	-0,373	ns	-0,143	ns	0,232	ns
Anadenanthera colubrina	Anad col	0,333	ns	0,644	*	0,105	ns	0,002	ns	-0,246	ns
Annona cacans	Anno cac	0,272	ns	0,162	ns	0,072	ns	0,333	ns	0,361	ns
Calyptranthes widgreniana	Caly wid	0,1	ns	0,03	ns	0,465	ns	-0,741	**	0,403	ns
Campomanesia guazumifolia	Camp guz	-0,091	ns	-0,029	ns	0,156	ns	0,381	ns	-0,329	ns
Cassia ferruginea	Cass fer	-0,214	ns	-0,191	ns	-0,052	ns	0,595	*	-0,411	ns
Chomelia brasiliana	Chom bra	-0,162	ns	-0,772	**	-0,351	ns	0,478	ns	-0,204	ns
Croton floribundus	Crot flo	0,492	ns	0,246	ns	0,365	ns	-0,274	ns	-0,15	ns
Blepharocalyx salicifolius	Blep sal	0,434	ns	0,203	ns	0,398	ns	-0,716	*	0,88	***
Cupania paniculata	Cupa pan	0,489	ns	0,782	**	0,166	ns	0,094	ns	0,323	ns
Daphnopsis fasciculata	Daph fas	-0,125	ns	-0,068	ns	-0,477	ns	-0,131	ns	-0,062	ns
Daphnopsis sellowiana	Daph sell	0,009	ns	0,006	ns	-0,499	ns	0,018	ns	-0,083	ns
Duranta repens	Dura rep	-0,597	*	-0,595	*	-0,553	ns	0,189	ns	-0,357	ns
Erythroxylum pelleterianum	Eryt pel	-0,013	ns	-0,223	ns	0,386	ns	-0,586	*	0,146	ns
Eugenia mansoi	Euge man	0,352	ns	0,16	ns	0,414	ns	-0,743	**	0,851	**
Ilex theezans	Ilex the	-0,175	ns	-0,335	ns	-0,068	ns	0,08	ns	0,109	ns
Inga vulpina	Inga vul	-0,055	ns	-0,199	ns	0,326	ns	-0,49	ns	0,005	ns
Machaerium condensatum	Mach con	0,203	ns	0,301	ns	0,09	ns	0,204	ns	-0,402	ns
Machaerium hirtum	Mach hir	0,375	ns	0,083	ns	0,233	ns	-0,612	*	-0,006	ns
Matayba elaeagnoides	Mata ela	-0,708	*	-0,345	ns	-0,733	*	0,188	ns	-0,178	ns
Miconia cubatanensis	Mico cub	0,076	ns	0,54	ns	0,235	ns	0,406	ns	-0,314	ns
Myrceugenia bracteosa	Myrc bra	0,349	ns	0,156	ns	0,512	ns	-0,886	***	0,687	*

Tabela 6 - Continuação

Espécies	Código	Al	P	Argila	P	Desn.	P	Dist. V	P	Est.Suc.	P
Myrcia multiflora	Myrc mul	0,136	ns	0,048	ns	0,473	ns	-0,764	**	0,474	ns
Myrsine gardneriana	Myrs gar	-0,614	*	-0,664	*	-0,375	ns	0,18	ns	-0,173	ns
Nectandra lanceolata	Nect lan	0,242	ns	-0,191	ns	-0,482	ns	0,394	ns	0,199	ns
Prunus myrtifolia	Prun myr	-0,518	ns	-0,029	ns	-0,122	ns	0,448	ns	-0,449	ns
Rollinia emarginata	Roll ema	0,101	ns	-0,449	ns	0,235	ns	-0,617	*	0,226	ns
Sebastiania brasiliensis	Seba bra	0,293	ns	0,123	ns	0,2	ns	-0,564	*	0,573	*
Sebastiania commersoniana	Seba com	-0,244	ns	-0,39	ns	-0,6	*	-0,045	ns	0,091	ns
Symplocos celastrinea	Ilex bre	-0,04	ns	0,138	ns	0,374	ns	0,546	ns	-0,352	ns
Tabebuia heptaphylla	Tabe hep	0,389	ns	0,192	ns	0,278	ns	-0,539	ns	0,896	***
Vitex megapotamica	Vite meg	-0,539	ns	-0,147	ns	-0,419	ns	0,222	ns	-0,229	ns
Xylosma prockia	Xylo pro	-0,35	ns	-0,242	ns	-0,599	*	0,053	ns	-0,164	ns

Tabela 7 - Coeficientes de correlação de Spearman e sua significância (p) entre a abundância de 33 espécies arbóreas empregadas na CCA e as variáveis teores de fósforo (P), alumínio (Al), areia, distância vertical e estágio sucessional, em uma área de mata ciliar da encosta em regeneração em Bocaina de Minas, MG. * P < 0.05; ** P < 0.01; *** P < 0.001; ns = não significativo.

Espécies	Código	Al	P	Argila	P	Desn.	P	Dist. V	P	Est.Suc	P
Alchornea triplinervia	Alch tri	-0,29	ns	0,514	ns	-0,342	ns	0,023	ns	0,8252	**
Clethra scabra	Clet sca	-0,548	ns	0,204	ns	-0,635	*	0,56	ns	0,6274	*
Croton organensis	Crot org	0,973	***	-0,729	**	0,905	***	-0,876	***	-0,4582	ns
Cyathea delgadii	Cyat del	0,47	ns	-0,709	*	0,536	ns	-0,498	ns	-0,2694	ns
Cyathea phalerata	Cyat pha	0,6	*	-0,814	**	0,692	*	-0,671	*	-0,4674	ns
Eremanthus erythropappus	Erem ery	-0,302	ns	0,228	ns	-0,206	ns	0,313	ns	-0,2396	ns
Guapira opposita	Guap opp	-0,165	ns	0,359	ns	-0,12	ns	-0,143	ns	0,7079	*
Guatteria australis	Guat aus	-0,037	ns	0,099	ns	-0,181	ns	-0,114	ns	0,3603	ns
Guatteria latifolia	Guat lat	-0,092	ns	0,259	ns	-0,158	ns	-0,151	ns	0,4818	ns
Heterocondylus vauthierianus	Hete vau	0,188	ns	-0,122	ns	0,01	ns	-0,239	ns	0,1379	ns
Meliosma brasiliensis	Meli bra	-0,205	ns	0,511	ns	-0,073	ns	-0,103	ns	0,5661	ns
Miconia cinnamomifolia	Mico cin	-0,439	ns	0,384	ns	-0,243	ns	0,572	*	-0,2535	ns
Miconia sellowiana	Mico sel	-0,164	ns	0,068	ns	-0,307	ns	0,141	ns	-0,0853	ns
Miconia theaezans	Mico the	0,879	***	-0,435	ns	0,735	**	-0,711	*	-0,3559	ns
Mimosa scabrela	Mimo sca	0,709	*	-0,315	ns	0,616	*	-0,577	ns	-0,2264	ns
Myrcia splendens	Myrc spl	-0,06	ns	-0,014	ns	-0,274	ns	-0,111	ns	0,5542	ns
Myrsine coriacea	Myrs cor	-0,313	ns	0,032	ns	-0,359	ns	0,247	ns	-0,2038	ns
Myrsine gardneriana	Myrs gar	0,695	*	-0,198	ns	0,66	*	-0,455	ns	-0,3416	ns
Myrsine intermedia	Myrs int	0,609	*	-0,64	*	0,644	*	-0,647	*	-0,3037	ns
Myrsine umbellata	Myrs umb	0,021	ns	-0,492	ns	-0,12	ns	-0,046	ns	0,0189	ns
Nectandra grandiflora	Nect gra	0,096	ns	0,152	ns	-0,153	ns	-0,071	ns	0,5947	*
Ocotea corymbosa	Ocot cor	-0,197	ns	0,127	ns	-0,482	ns	0,222	ns	0,6068	*

Tabela 7 - Continuação

Espécies	Código	Al	P	Argila	P	Desn.	P	Dist. V	P	Est.Suc	P
Piptocarpha macropoda	Pipt mac	0,111	ns	-0,166	ns	-0,118	ns	-0,048	ns	0,3213	ns
Piptocarpha regnellii	Pipt reg	-0,479	ns	0,471	ns	-0,29	ns	0,663	*	-0,295	ns
Prunus myrtifolia	Prun myr	0,109	ns	-0,156	ns	-0,024	ns	-0,268	ns	0,2258	ns
Psychotria vellosiana	Psyc vel	-0,274	ns	0,223	ns	-0,517	ns	0,215	ns	0,7512	**
Sapium glandulosum	Sapi gla	0,628	*	-0,301	ns	0,454	ns	-0,562	*	-0,0852	ns
Solanum lepidotum	Sola lep	0,269	ns	-0,568	ns	0,432	ns	-0,48	ns	-0,2132	ns
Tetrorchidium parvulum	Tetr par	-0,288	ns	0,545	ns	-0,28	ns	0,02	ns	0,7957	**
Tibouchina arborea	Tibo arb	0,118	ns	-0,107	ns	-0,129	ns	-0,246	ns	0,4243	ns
Tibouchina pulchra	Tibo pul	-0,428	ns	0,106	ns	-0,422	ns	0,258	ns	0,0214	ns
Vernonanthura diffusa	Vern dif	-0,237	ns	0,22	ns	-0,491	ns	0,217	ns	0,6977	*
Vernonanthura discolor	Vern dis	-0,224	ns	0,526	ns	-0,111	ns	-0,083	ns	0,6169	*

Tabela 8 - Coeficientes de correlação de Spearman e sua significância (p) entre a abundância de 84 espécies arbóreas empregadas na CCA e as variáveis desnível, distância vertical, drenagem, alumínio, matéria orgânica e argila em uma área de mata ciliar de encosta conservada em Bocaina de Minas, MG. * P < 0.05; *** P < 0.01; *** P < 0.001; ns = não significativo.

Espécie	Codigo	Desn	P	Dist.V	P	Drenagem	P	Al	P	MO	P	Argila	P
Aegiphila fluminensis	Aegi flu	0,240	ns	-0,101	ns	0,053	ns	0,100	ns	-0,074	ns	-0,042	ns
Albizia polycephala	Albi pol	-0,064	ns	0,328	ns	0,288	ns	-0,088	ns	0,533	**	0,096	ns
Alchornea sidifolia	Alch sid	-0,415	*	-0,626	***	-0,589	***	0,223	ns	-0,518	**	-0,183	ns
Alchornea triplinervia	Alch tri	0,267	ns	0,540	**	0,546	***	-0,455	*	0,291	ns	0,191	ns
Alsophila setosa	Also set	-0,188	ns	-0,579	***	-0,641	***	0,205	ns	-0,282	ns	-0,363	*
Amaioua guianensis	Amai gui	0,193	ns	-0,145	ns	-0,029	ns	-0,021	ns	-0,094	ns	-0,213	ns
Annona cacans	Anno cac	0,147	ns	0,193	ns	0,258	ns	0,116	ns	0,291	ns	0,393	*
Bathysa australis	Bath aus	-0,171	ns	-0,450	*	-0,510	***	0,043	ns	-0,285	ns	-0,465	**
Byrsonima stipulacea	Byrs sti	0,063	ns	0,215	ns	0,117	ns	0,114	ns	-0,008	ns	0,052	ns
Cabralea canjerana	Cabr can	0,155	ns	-0,083	ns	-0,074	ns	0,425	*	-0,147	ns	-0,200	ns
Casearia arbórea	Case arb	0,225	ns	0,432	*	0,312	ns	-0,096	ns	0,171	ns	0,109	ns
Casearia decandra	Case dec	-0,130	ns	0,101	ns	0,050	ns	-0,018	ns	0,077	ns	0,337	ns
Casearia oblique	Case obl	-0,285	ns	-0,709	***	-0,773	***	0,399	*	-0,551	**	-0,446	*
Casearia pauciflora	Case pau	0,019	ns	0,412	*	0,209	ns	-0,257	ns	0,232	ns	0,318	ns
Cecropia hololeuca	Cecr hol	0,068	ns	-0,153	ns	0,073	ns	0,317	ns	0,108	ns	0,198	ns
Clethra scabra	Clet sca	-0,039	ns	-0,547	**	-0,501	**	0,317	ns	-0,342	ns	-0,368	*
Cordia ecalyculata	Cord eca	-0,318	ns	-0,367	*	-0,474	*	0,310	ns	-0,215	ns	-0,344	ns
Couratari pyramidata	Cour pyr	0,051	ns	0,297	ns	0,172	ns	-0,121	ns	0,101	ns	0,011	ns
Croton salutaris	Crot sal	-0,185	ns	0,339	*	0,223	ns	-0,131	ns	0,396	*	0,156	ns

"Continuação"...

Tabela 8 - Continuação

Espécie	Codigo	Desn	P	Dist.V	P	Drenagem	P	Al	P	MO	P	Argila	P
Cyathea corcovadensis	Cyat cor	0,532	**	0,156	ns	0,289	ns	-0,052	ns	0,191	ns	-0,254	ns
Cyathea delgadii	Cyat del	0,273	ns	-0,193	ns	0,021	ns	0,020	ns	0,011	ns	-0,321	ns
Dalbergia villosa	Dalb vil	-0,060	ns	0,423	*	0,354	*	-0,561	**	0,264	ns	0,108	ns
Daphnopsis fasciculata	Daph fas	0,410	*	0,353	*	0,388	*	-0,556	**	0,091	ns	-0,157	ns
Endlicheria paniculata	Endl pan	-0,235	ns	-0,386	*	-0,433	*	0,055	ns	-0,223	ns	-0,422	*
Esenbeckia grandiflora	Esen gra	-0,292	ns	-0,385	*	-0,447	*	0,256	ns	-0,093	ns	-0,276	ns
Eugenia cerasiflora	Euge cer	0,048	ns	-0,551	**	-0,533	***	0,352	*	-0,287	ns	-0,165	ns
Euplassa organensis	Eupl org	0,192	ns	0,128	ns	0,063	ns	0,355	*	0,056	ns	-0,175	ns
Gordonia fruticosa	Gord fru	-0,339	ns	0,433	*	0,368	*	-0,267	ns	0,296	ns	0,479	**
Guapira opposite	Guap opp	-0,217	ns	-0,656	***	-0,712	***	0,251	ns	-0,401	*	-0,366	*
Guatteria australis	Guat aus	-0,086	ns	-0,142	ns	-0,221	ns	0,181	ns	-0,141	ns	0,008	ns
Guatteria pohliana	Guat pol	0,175	ns	0,362	*	0,435	*	-0,199	ns	0,075	ns	-0,085	ns
Huberia nettoana	Hube net	0,222	ns	0,139	ns	0,192	ns	-0,337	ns	-0,161	ns	-0,306	ns
Hyptidendron asperrimum	Hypt asp	0,144	ns	0,354	*	0,345	ns	-0,383	*	0,070	ns	0,088	ns
Lamanonia ternata	Lama ter	0,208	ns	0,416	*	0,547	***	-0,478	**	-0,005	ns	0,224	ns
Marlierea racemosa	Marl rac	0,073	ns	-0,228	ns	-0,261	ns	0,458	**	-0,273	ns	-0,395	*
Miconia chartacea	Mico cha	0,237	ns	0,283	ns	0,337	*	-0,414	*	0,044	ns	-0,097	ns
Miconia cinnamomifolia	Mico cin	0,036	ns	0,108	ns	0,172	ns	-0,213	ns	-0,033	ns	0,345	ns
Miconia cubatanensis	Mico cub	0,317	ns	0,061	ns	0,097	ns	0,356	*	0,137	ns	0,103	ns
Miconia latecrenata	Mico lat	-0,204	ns	-0,532	**	-0,547	***	0,451	*	-0,413	*	-0,284	ns
Miconia prasina	Mico pra	-0,210	ns	0,389	*	0,280	ns	-0,209	*	0,352	ns	0,226	ns
Miconia pusilliflora	Mico pus	-0,082	ns	-0,087	ns	-0,091	ns	0,206	ns	-0,194	ns	-0,053	ns

Tabela 8 - Continuação

Espécie	Codigo	Desn	P	Dist.V	P	Drenagem	P	Al	P	MO	P	Argila	P
Miconia sellowiana	Mico sel	0,013	ns	-0,018	ns	0,119	ns	-0,240	ns	-0,037	ns	-0,093	ns
Miconia urophylla	Mico uro	0,157	ns	0,532	**	0,501	***	-0,660	***	0,023	ns	0,081	ns
Mollinedia longifolia	Moll lon	-0,145	ns	-0,531	**	-0,611	***	0,343	*	-0,192	ns	-0,253	ns
Myrcia diaphana	Myrc dia	0,080	ns	-0,279	ns	-0,218	ns	0,323	ns	-0,143	ns	-0,189	ns
Myrcia eriopus	Myrc eri	0,052	ns	0,016	ns	-0,149	ns	0,011	ns	-0,243	ns	-0,385	*
Myrcia splendens	Myrc spl	0,258	ns	0,028	ns	-0,020	ns	0,280	ns	0,180	ns	-0,036	ns
Myrceugenia miersiana	Siph wid	-0,117	ns	-0,220	ns	-0,276	ns	0,293	ns	-0,135	ns	-0,238	ns
Myrsine umbellata	Myrs umb	-0,403	ns	-0,559	**	-0,695	***	0,194	ns	-0,371	*	-0,189	ns
Nectandra membranacea	Nect mem	-0,037	ns	-0,237	ns	-0,276	ns	-0,009	ns	-0,211	ns	-0,265	ns
Nectandra oppositifolia	Nect opp	-0,056	ns	-0,196	ns	-0,241	ns	0,226	ns	-0,181	ns	-0,256	ns
Ocotea aciphylla	Ocot aci	0,378	*	0,251	ns	0,262	ns	-0,139	ns	0,121	ns	0,077	ns
Ocotea corymbosa	Ocot cor	0,061	ns	0,337	*	0,290	ns	-0,207	ns	0,346	ns	0,038	ns
Ocotea longifólia	Ocot lon	-0,122	ns	0,068	ns	0,049	ns	0,247	ns	0,184	ns	0,168	ns
Ormosia fastigiata	Ormo fas	-0,015	ns	0,273	ns	0,117	ns	-0,369	*	0,084	ns	-0,003	ns
Pera glabrata	Pera gla	-0,118	ns	0,053	ns	-0,131	ns	0,025	ns	-0,121	ns	-0,158	ns
Persea pyrifolia	Pers pyr	-0,424	*	-0,181	ns	-0,262	ns	-0,075	ns	-0,233	ns	-0,238	ns
Piptocarpha macropoda	Pipt mac	0,135	ns	0,052	ns	0,061	ns	-0,114	ns	0,010	ns	0,228	ns
Poeppigia procera	Poep pro	0,311	ns	0,497	**	0,520	***	-0,384	*	0,268	ns	0,199	ns
Prunus myrtifolia	Prun myr	-0,364	*	-0,575	***	-0,601	***	0,275	ns	-0,418	*	-0,051	ns
Psychotria vellosiana	Psyc vel	0,086	ns	0,076	ns	0,109	ns	-0,209	ns	-0,171	ns	-0,044	ns
Rollinia dolabripetala	Roll dol	-0,358	*	-0,226	ns	-0,221	ns	0,248	ns	-0,126	ns	0,126	ns
Rollinia sylvatica	Roll syl	-0,419	*	-0,439	*	-0,500	***	0,155	ns	-0,420	*	-0,174	ns

Tabela 7 - Continuação

Espécies	Codigo	Desn	P	Dist.V	P	Drenagem	P	Al	P	MO	P	Argila	P
Sapium glandulosum	Sapi gla	-0,417	*	-0,716	***	-0,702	***	0,322	ns	-0,537	**	-0,226	ns
Schefflera calva	Sche cal	-0,041	ns	0,158	ns	0,148	ns	-0,018	ns	0,184	ns	-0,055	ns
Sclerolobium rugosum	Scle rug	0,170	ns	0,418	*	0,466	*	-0,449	*	0,083	ns	0,152	ns
Senna macranthera	Senn mac	-0,058	ns	-0,129	ns	-0,106	ns	-0,076	ns	-0,092	ns	0,067	ns
Senna multijuga	Senn mul	-0,244	ns	-0,150	ns	-0,173	ns	0,171	ns	0,063	ns	0,145	ns
Siphoneugena densiflora	Siph den	-0,287	ns	0,477	**	0,339	*	-0,430	*	0,304	ns	0,526	**
Solanum cinnamomeum	Sola cin	0,061	ns	-0,225	ns	-0,108	ns	0,114	ns	-0,158	ns	-0,014	ns
Solanum swartzianum	Sola swa	0,290	ns	-0,074	ns	-0,067	ns	0,139	ns	-0,047	ns	-0,016	ns
Tabebuia vellosoi	Tabe vel	0,184	ns	0,118	ns	-0,015	ns	-0,295	ns	-0,161	ns	-0,104	ns
Tapirira guianensis	Tapi gui	-0,167	ns	-0,223	ns	-0,181	ns	0,151	ns	-0,077	ns	-0,234	ns
Tapirira obtusa	Tapi obt	-0,122	ns	0,068	ns	0,013	ns	0,271	ns	0,059	ns	-0,040	ns
Tetrorchidium parvulum	Tetr par	0,337	ns	-0,331	*	-0,199	ns	0,154	ns	-0,137	ns	-0,311	ns
Tibouchina arborea	Tibo arb	-0,292	ns	-0,564	**	-0,524	***	0,172	ns	-0,470	**	-0,139	ns
Tibouchina pulchra	Tibo pul	0,155	ns	0,053	ns	0,214	ns	-0,331	ns	-0,111	ns	0,252	ns
Toulicia laevigata	Toul lae	-0,028	ns	0,387	*	0,346	*	-0,518	**	0,117	ns	0,143	ns
Tovomitopsis saldanhae	Tovo sal	-0,318	ns	-0,073	ns	-0,205	ns	-0,014	ns	-0,228	ns	-0,139	ns
Vernonanthura diffusa	Vern dif	-0,033	ns	-0,429	*	-0,403	*	0,311	ns	-0,443	**	-0,309	ns
Vernonanthura discolor	Vern dis	-0,496	**	0,284	ns	0,127	ns	-0,274	ns	0,009	ns	0,251	ns
Vochysia magnifica	Voch mag	0,025	ns	-0,684	***	-0,527	***	0,376	*	-0,549	**	-0,338	ns
Zanthoxylum rhoifolium	Zant rho	-0,080	ns	-0,444	*	-0,444	*	0,409	*	-0,375	*	-0,131	ns

ARTIGO 3

CARACTERIZAÇÃO ECOLÓGICA DE ESPÉCIES ARBÓREAS OCORRENTES EM AMBIENTES DE MATA CILIAR, COMO SUBSÍDIO À RECOMPOSIÇÃO DE ÁREAS ALTERADAS NAS CABECEIRAS DO RIO GRANDE, MINAS GERAIS

(Preparado de acordo com as normas da revista Acta Botanica Brasilica)

Israel Marinho Pereira 1

Soraya Alvarenga Botelho ¹

Ary Teixeira de Oliveira-Filho ¹

Evandro Luiz Mendonça Machado ¹

TÍTULO RESUMIDO: Caracterização ecológica de espécies ocorrentes em matas ciliares

Autor para correspondência: Israel Marinho Pereira. e-mail: imarinhopereira@gmail.com

¹ Departamento de Ciências Florestais, Universidade Federal de Lavras, 37200-000 Lavras, MG.

RESUMO - (Caracterização ecológica das espécies ocorrentes em ambientes de mata ciliar, como subsídio à recomposição de áreas alteradas) O presente estudo teve como objetivo verificar as diferenças na composição da flora e das guildas das comunidades arbustivo-arbórea de diferentes hábitats de mata ciliar e em diferentes estágios de sucessão florestal. Para a realização deste trabalho foram estudadas três áreas de mata ciliar em Bocaina de Minas, MG (22°10' a 22°14'S e 44°28 a 44°33'W). Foram alocadas dez parcelas de 400m², nas áreas de aluvião e encosta em regeneração e 26 parcelas na área de encosta conservada. Todos os indivíduos arbóreos existentes no interior das parcelas com diâmetro à altura do peito (DAP) ≥ 5 cm foram amostrados. Também foram coletadas e identificadas as espécies inéditas ocorrentes fora das parcelas. Foram identificadas, no total, 286 espécies distribuídas em 144 gêneros e 61 famílias. Em relação às guildas de dispersão, constatou-se que de 68% a 75% das espécies amostradas têm suas fontes de propágulos disseminadas por animais (zoocoria), 15% a 19,5% pelo vento (anemocoria) e 6% a 7% por deiscência explosiva e pela gravidade (autocoria). De acordo com os resultados obtidos neste estudo, verificou-se que, durante o processo de regeneração, ocorreu um aumento significativo da importância das espécies zoocóricas e tolerantes à sombra com a maturidade das florestas, enquanto que o número de espécies que necessitam de luz com dispersão abiótica decresceu significativamente com o avanço da maturidade das florestas. As informações sobre o comportamento ecológico das espécies em relação aos diferentes sítios e estágios sucessionais servirão de base para nortear ações que visem à recomposição das matas ciliares ao longo do Rio Grande.

Palavras-chave: mata ciliar, guildas, floresta secundária, áreas perturbadas, recomposição da vegetação.

ABSTRACT - (Ecological Characterization of the species occurring in ciliary forest environment, as subsidy to the recovery of altered areas). This study verified the differences in the composition of the flora and of guilds of arbustivearboreal communities of different habitats of ciliary forest, in different forest succession stages. For accomplishing the objectives three areas of ciliary forest, in Bocaina de Minas, MG (22°10 ' to 22°14'S and 44°28 to 44° 33'W) were studied. Ten parcels of 400m2, were allocated in alluvial areas and hillside in regeneration and 26 parcels in the of conserved hillside areas. All of the existent arboreal individuals inside the portions with diameter to the height of the chest (DAP) (5 cm was sampled. It was also collected and identified the unpublished species occurring outside the parcels. A total of 286 species, distributed in 144 genera and 61 families was identified. In relationship the dispersion guilds, was verified that have their propagules sources of 68% to 75% of the species sampled disseminated by animals (zoochoria), 15% to 19,5% by the wind (anemocoria) and 6% to 7% by explosive dehiscent and by gravity (autocoria). In agreement with the results obtained in this study, it was verified that, during the regeneration process, it happened a significant increase of the importance of the species zoochoric and shadow tolerant to with the maturity of the forests, while the number of species that need light with abiotic dispersion decreased significantly with the progress of the maturity of the forests. The information about the ecological behavior of the species in relation to the different sites and succession stages will serve as base to orientate actions envisaging the recovery of ciliary forests along Rio Grande.

Key words: ciliary forest, gild, secondary forest, disturbed areas, recovery of vegetation.

Introdução

A utilização inadequada dos recursos naturais tem causados efeitos negativos aos ecossistemas no mundo inteiro. Dentre os ecossistemas mais perturbados e ou degradados pelo homem, destacam-se as florestas tropicais, que abrigam quase a metade da diversidade biológica do planeta (Myers 1997). Entre os diversos tipos de fisionomias florestais encontradas no Brasil, podem-se destacar as matas ciliares, servindo de hábitat para a fauna silvestre, ao proporcionar água, alimento e abrigo para várias espécies terrestres e aquáticas, funcionando como corredores de fauna entre fragmentos florestais, além de proporcionar o fluxo gênico entre as populações (Barbosa 1989; Lima 1989; Botelho & Davide 2002).

A drástica redução das matas ciliares e a fragmentação das florestas em geral, verificadas nos últimos anos no Brasil, têm causado aumento significativo dos processos de erosão dos solos, com prejuízo para a hidrologia regional, evidente redução das espécies animais locais e a degradação de imensas áreas (Barbosa 2001). A severa pressão exercida para o desmatamento nestas áreas está ligada à expansão agrícola, às pastagens e à implantação de hidroelétricas, entre outros (Barbosa *et al.* 1989; Resende 1998).

Infelizmente, devido ao crescimento demográfico intenso e à ocupação do ambiente pelo homem, de forma não planejada, percebe-se uma degradação atual generalizada nas áreas de mata ciliar (Silva 2002). No entanto, as matas ciliares estão relacionadas no artigo 2º da Lei nº 4.771/65, que estabelece o Código Florestal Brasileiro (Brasil 2002), no qual são contempladas como áreas de preservação permanente "as florestas e demais formas de vegetação existentes no entorno dos rios, lagos, nascentes, lagoas e reservatórios", especificando, na maioria das situações, a dimensão mínima da faixa marginal que deve ser preservada. Assim, ao longo dos rios ou de qualquer outro curso d'água, de acordo com a largura destes, a área de preservação irá variar de um

mínimo de 30 metros a até 500 metros. Considerando a abrangência da dimensão de proteção dessas áreas, visando à conservação da biodiversidade, à proteção física do solo, dos mananciais e, principalmente, à conservação do ambiente onde se inserem, a Lei 4771, no seu artigo 18, impôs a necessidade de florestamento e ou reflorestamento dessas áreas. A importância da preservação ou restauração das florestas ao longo dos rios e ao redor de lagos, reservatórios e nascentes fundamenta-se no amplo aspecto de benefícios que esta vegetação traz ao ecossistema, exercendo função protetora sobre os recursos naturais bióticos e abióticos (Durigan & Silveira 1999). Para Marques *et al.* (1961), a proteção eficaz que a mata ciliar exerce contra o assoreamento, que ocorre em função de diversos tipos de erosão, por si só constitui uma valiosa contribuição à preservação deste recurso natural.

A implantação ou a recomposição de matas ciliares requerem o emprego de técnicas adequadas, geralmente definidas em função de avaliações detalhadas das condições locais e da utilização dos conhecimentos científicos existentes. A obtenção de informações ecológicas e silviculturais, tais como exigência de luz, relações planta-animais, freqüência e densidade natural, pode levar ao conhecimento da combinação ideal de espécies dentro dos mosaicos de estádios sucessionais, semelhantes aos formados nas florestas tropicais naturais. A tentativa de separação de espécies em diferentes grupos quanto à sucessão secundária tem sido defendida por diversos autores (Denslow 1980a; Whitmore 1982). Tais conhecimentos têm, efetivamente, contribuído para a recomposição de áreas alteradas, onde se utiliza o modelo de plantio sucessional de forma que as espécies mais iniciais do processo de sucessão proporcionem sombreamento adequado às espécies de estágios mais finais (Kageyama & Gandara 1999), procurando reproduzir o que aconteceria naturalmente em um ecossistema no início do processo de sucessão. Estudos desta natureza têm apresentado contribuições significativas para o melhor conhecimento dos processos

envolvidos na recuperação dessas áreas, especialmente quanto à sua dinâmica sucessional e à estabilidade do ecossistema implantado (Barbosa *et al.* 1996).

A interação entre a fauna e a vegetação é fundamental no processo de recuperação de áreas degradadas e deve ser considerada durante o planejamento de projetos de reabilitação das áreas (Guedes *et al.* 1997). Segundo Angel-de-Oliveira (1998), a maioria das espécies arbustivo-arbóreas características das florestas tropicais tem seus diásporos disseminados por animais. Dentre os animais, as aves são responsáveis pela movimentação de propágulos de muitas espécies importantes dentro do processo de conservação e recuperação de ecossistemas degradados. As sementes têm papel fundamental na regeneração natural das florestas e a dispersão é um fator importante na determinação de padrões de deposição dessas sementes (Martinez-Ramos & Soto Castro 1993; Loiselle *et al.* 1996).

Dessa forma, estudos que buscam conhecer a composição florística e as características ecológicas das espécies ocorrentes em ambientes de mata ciliar em diferentes estágios sucessionais têm muito a contribuir com programas que visam à conservação, à preservação e à recuperação desses ecossistemas. Diante do exposto, na presente pesquisa objetivou-se: i) conhecer o compartimento arbustivo-arbóreo de dois ambientes de mata ciliar (aluvião e encosta) em diferentes estádios de regeneração na região das Cabeceiras do rio Grande; ii) conhecer os padrões ecológicos relacionados às guildas de regeneração, dispersão e estratificação e correlacioná-los com o estágio sucessional das áreas e os diferentes ambientes estudados e iii) gerar informações sobre as espécies ocorrentes nos diferentes hábitats em relação ao grupo ecológico e síndrome de dispersão, visando à seleção de espécies potenciais para serem utilizadas na recomposição da cobertura vegetal das porções degradadas das cabeceiras do rio Grande.

A hipótese básica do presente estudo é de que a composição florística e das guildas de regeneração, dispersão e estratificação das áreas estudadas muda de acordo com o estágio de maturidade das mesmas.

Material e métodos

Caracterização e localização das áreas de estudo - para a realização deste trabalho foram estudadas três áreas de mata ciliar, nas vertentes continentais do maciço do Itatiaia, município de Bocaina de Minas, MG, assim caracterizadas: aluvião = fragmento de mata ciliar sobre solo de aluvião com aproximadamente 3ha, em regeneração há 50 anos, situada às margens direita e esquerda do rio Grande e que apresenta bordas abruptas nos seus limites com pastagens e estradas circunvizinhas (Fig. 1). O fragmento encontra-se a cerca de 15km a jusante da nascente principal (22°10'S e 44°28'W) a 1.150m de altitude; encosta em regeneração = fragmento de mata ciliar de encosta com aproximadamente 15 ha, em estágio intermediário de sucessão ecológica, localizado às margens do rio Grande, a cerca de 5km a jusante de sua nascente principal (22°14'S e 44°34'W) e a uma altitude que varia de 1.500 a 1.580m (Fig. 1). O fragmento reveste uma encosta que flanqueia a margem esquerda do rio Grande e apresenta bordas abruptas nos seus limites com pastagens circunvizinhas e uma estrada; Encosta Conservada = fragmento de mata ciliar de encosta conservada de aproximadamente 10ha, localizado às margens do rio Grande, a cerca de 10km a jusante de sua nascente principal (22°13'S e 44°32'W) e a uma altitude em torno de 1.300m (Fig. 1). O fragmento reveste uma encosta que flanqueia a margem esquerda do rio Grande e apresenta bordas abruptas nos seus limites com pastagens circunvizinhas.

De acordo com Carvalho *et al.* (2005), o clima da região é do tipo Cfa de Köppen (úmido subtropical) e a temperatura média anual é de 16,7°C, com médias mensais variando de 13,0°C, em julho a 19,7°C, em janeiro. A

precipitação média anual é de 2.108mm, com médias mensais variando de 341mm, no trimestre mais chuvoso (dezembro a fevereiro) a 35mm, no trimestre mais seco (junho a agosto).

Entre os solos da região de estudo predominam os Latossolos Amarelos Distróficos típicos nas áreas de baixa encosta, de moderado a bem drenado, Latossolos Vermelhos-Amarelos Distróficos típicos nas áreas de meia encosta, bem drenados a acentuadamente drenados e Latossolo Vermelhos típicos encontrados nas altas encostas, acentuadamente drenados (Carvalho *et al.* 2005).

Composição da comunidade arbustivo-arbórea - o levantamento da comunidade arbórea foi realizado em uma área amostral total de 1,84ha, dividida em 46 parcelas de 400m². Na área de aluvião foram plotadas dez parcelas de 10 × 40m, sendo sete na margem direita do rio e três na margem esquerda. Na área da encosta conservada foram plotadas 26 parcelas de 20 × 20m e, na área da encosta em regeneração, dez parcelas de 10 × 40m. Para as duas áreas de encosta, as parcelas foram plotadas obedecendo ao gradiente de altitude, sendo plotadas parcelas na encosta inferior próxima ao leito do rio, na meia encosta e alta encosta (topo).

As parcelas foram demarcadas em seus vértices com estacas de PVC ligados por fitilhos de náilon. Foi utilizada uma bússola para a orientação do caminhamento e do alinhamento das parcelas e uma trena para medir as distâncias horizontais. Cada planta recebeu uma plaqueta de alumínio numerada. Alguns indivíduos foram identificados no campo, enquanto outros tiveram material botânico coletado para posterior identificação. Todos os indivíduos arbóreos vivos com circunferência à altura do peito (CAP) maior ou igual a 15,7 cm, encontrados no interior das parcelas, foram registrados e identificados. Foi realizado também caminhamento de varredura nas áreas em busca de novas espécies.

Caracterização ecológica das espécies - para comparar os diferentes hábitats quanto ao perfil de estratégias ecológicas de suas espécies arbóreas, estas foram classificadas guildas, de acordo com as estratégias de regeneração, estratificação e dispersão.

Guildas são grupos de espécies que exploram de maneira semelhante um mesmo recurso do ambiente (Giller 1984). Guildas de regeneração são grupos de espécies que se regeneram em ambiente com mesma luminosidade (Deslow 1980b). Na classificação das espécies em guildas de regeneração, adotou-se a definição proposta por Swaine & Whitmore (1988), agrupando-as em três grupos: (1) pioneiras, aquelas que necessitam de luz direta para germinar e se estabelecer; (2) clímax exigentes de luz, aquelas cujas sementes conseguem germinar nas condições de sombra do sub-bosque, embora os imaturos necessitem de luz abundante para crescer e atingir o dossel e (3) clímax tolerantes à sombra, aquelas que germinam e conseguem crescer nas condições de sombra do sub-bosque, atingindo a maturidade sob o próprio dossel ou após atingir o dossel da floresta, conforme a espécie.

Guildas de estratificação são grupos de espécies que, quando adultas, ocupam o mesmo estrato da vegetação (Wilson 1989). A classificação das espécies em relação às guildas de estratificação foi baseada na altura que cada espécie normalmente alcança na maturidade e utilizando as mesmas categorias e intervalos definidos por Oliveira-Filho *et al.* (1997) para florestas da região: (1) pequenas, espécies com altura inferior a 8m (2,0 a 7,9m); (2) médias, espécies que, na maturidade, alcançam alturas de 8,0 a 17,5m (≥ 8 e ≤ 17,5m) e (3) grandes, aquelas espécies que atingem alturas superiores a 17,5m (>17,5m).

Guildas de dispersão são grupos de espécies que utilizam os mesmos agentes dispersores (Wheelwright 1985). Quanto à guilda de dispersão, as espécies foram classificadas, de acordo com Van der Pijl (1982), nas categorias: (1) anemocóricas, aquelas cujas sementes são disseminadas pelo vento; (2)

zoocóricas, espécies que apresentam características que indicam que a dispersão de suas sementes ou propágulos é realizada por animais e (3) autocóricas, aquelas espécies que dispersam suas sementes pela gravidade ou por deiscência explosiva. Para a obtenção de informações ecológicas sobre as espécies, foram utilizadas informações encontradas na literatura (Reitz *et al.* 1983; Morelleto *et al.* 1989; Morellato & Leitão-Filho 1992; Carvalho 1994; Penhalber & Mantovani 1997; Barroso *et al.* 1999; Pedroni 2000; Carmo & Morellato 2001; Garcia & Pirani 2001; Lorenzi 2002a; Lorenzi 2002b; Nunes *et al.* 2003; Backes & Irgans 2004) acrescidas do conhecimento dos próprios autores. As espécies pertencentes ao grupo das Pteridofitas foram classificadas no grupo "outras".

Para verificar se a distribuição das freqüências de indivíduos arbóreos nas guildas de regeneração, estratificação e dispersão era independente das áreas, foi aplicado o teste de qui-quadrado para tabelas de contingência (Zar 1996). Foram feitas, ainda, tabelas de contingência, cruzando-se a freqüência de espécies nas guildas de regeneração × dispersão, regeneração × estratificação e estratificação × dispersão. Devido ao pequeno número de espécies, as guildas 'pequeno porte' e 'autocórica' foram fundidas às guildas 'médio porte' e 'anemocórica', resultando, respectivamente, nas guildas 'dispersão primária abiótica' e 'sub-bosque'.

Resultados

Composição do compartimento arbustivo-arbóreo - foram identificadas no total (dentro e fora das parcelas), 286 espécies, distribuídas em 144 gêneros e 62 famílias (Tab.1). Na área de aluvião, foram amostrados 1.202 indivíduos, distribuídos em 81 espécies, 58 gêneros e 31 famílias. Na área de encosta em regeneração foram registrados 873 indivíduos, pertencentes a 117 espécies, 71 gêneros e 42 famílias. Já na encosta conservada foram encontrados 2.569

indivíduos, 220 espécies, 123 gêneros e 57 famílias. A relação das espécies registradas nas três áreas e suas guildas encontram-se na Tab. 1.

O diagrama de Venn (Fig. 3) permite uma avaliação da composição da flora arbórea dos diferentes hábitats de mata ciliar do rio Grande na região de Bocaina de Minas, MG. O diagrama mostra claramente que uma pequena porcentagem, 5,59% ou 16 espécies, tem ocorrência comum nas três áreas. Verifica-se, ainda, que 27,38% (69) das espécies registradas ocorrem nas duas áreas de encosta. Por outro lado, as menores proporções de espécies compartilhadas foram registradas entre as áreas de aluvião e encosta em regeneração, 2,82% (5spp) e conservada, 10% (26 ssp).

Composição das guildas – as proporções de espécies clímax exigentes de luz variaram pouco entre as três áreas (47% a 51%), (Fig. 4A). As espécies tolerantes à sombra ocorreram em maiores proporções na encosta conservada (39,55%) e apareceram em menores proporções nas áreas de aluvião (32,10%) e encosta em regeneração (35,04%) (Fig. 4A). As espécies pioneiras ocorreram em maiores propoções nestas duas áreas (16,0% e 18,0%, respectivamente), estando menos representa na encosta conservada (10,91%) (Fig. 4A).

As proporções de indivíduos de espécies clímax exigente de luz variaram de 57,85% a 66,81% para as áreas encosta em regeneração e aluvião (Fig. 4B). As maiores proporções de indivíduos pertencentes a espécies clímax tolerante à sombra foram obtidas paras as áreas encosta conservada (27,64%) e aluvião (18,64%), enquanto que as menores foram verificadas para a área encosta em regeneração (14,89%) (Fig. 4B). Os indivíduos de espécies pioneiras foram encontrados em maiores proporções na encosta em regeneração (27,26%) e menores proporções nas áreas encosta conservada (9,89%) e aluvião (14,56%) (Fig. 4B).

As proporções de espécies zoocóricas variaram de 75,36% a 69,23%, para as áreas aluvião e encosta em regeneração, respectivamente (Fig. 5A). As

espécies anemocóricas ocorreram em maiores proporções na encosta em regeneração (20%) e apareceram em menores proporções nas áreas encosta conservada (17,73%) e aluvião (18,52%) (Fig. 5A). As proporções de espécies autocóricas variaram pouco entre as áreas, com ocorrência em torno de 6%.

As maiores proporções de indivíduos de espécies zoocóricas foram observadas nas áreas encosta conservada (63,41%) e aluvião (62,40%) e as menores na encosta em regeneração (58,88%) (Fig. 5B). Para a categoria anemocórica verifica-se que as maiores proporções foram encontradas nas áreas encosta em regeneração (27,49%) e encosta conservada (24,56%) (Fig. 6). Os indivíduos de espécies autocóricas predominaram na área de Aluvião (22,96%) e apareceram em menores proporções nas de encosta em regeneração (11,11%) e encosta conservada (6,62%) (Fig. 5B).

As três áreas de mata ciliar das cabeceiras do rio Grande apresentaram porte médio, com uma grande proporção de indivíduos (>60%) e espécies (>66%) com altura inferior a 17,5m. Considerando-se as espécies de pequeno e médio porte como sendo características do estrato inferior (sub-bosque) e as espécies de grande porte como representativas do estrato superior (dossel ou emergentes), verifica-se que, na mata ciliar de aluvião, aproximadamente 64% das espécies são típicas do estrato inferior, sendo que 53% dos indivíduos amostrados nesta área pertencem a estas espécies, enquanto 47% dos indivíduos e 36% das espécies pertencem ao estrato superior (Fig. 6A e B), mesmo que tenha uma proporção de imaturos no estrato inferior. Para a encosta em regeneração, aproximadamente 89% dos indivíduos e 81% das espécies pertencem ao estrato inferior e apenas 11% dos indivíduos e 19% das espécies pertenciam ao estrato superior (Fig. 6A e B). Já para a mata ciliar de encosta conservada, 55% dos indivíduos e 65% das espécies pertencem ao estrato inferior, enquanto que 45% dos indivíduos e 35% das espécies pertencem ao estrato superior da floresta (Fig. 6A e B).

A distribuição da abundância de indivíduos arbóreos nas diferentes guildas de regeneração variou entre os ambientes (Tab. 3), o que sugere que os diferentes gradientes de elevações topográficas e estágios sucessionais das áreas estudadas podem ter interferido nas proporções de indivíduos pertencentes às diferentes guildas de regeneração entre as matas ciliares das cabeceiras do rio Grande. O número de indivíduos de espécies tolerantes à sombra foi mais abundante do que o esperado na áreas de encosta conservada e menos abundante que o esperado nas áreas de encosta em regeneração e aluvião, onde constatouse diferença significativa entre as áreas. Por outro lado, as espécies pioneiras apresentaram abundância de indivíduos maior do que o esperado nas duas áreas secundárias (encosta em regeneração e aluvião) e menor do que o esperado na Encosta Conservada, sendo constatada também diferença significativa entre elas.

Para as guildas de estratificação, verifica-se que houve diferença significativa (P < 0,001) para as três áreas em relação à proporção de indivíduos entre os estratos (Tab. 2), o que sugere que a abundância de indivíduos nos diferentes estratos tenha sido influenciada pela diferença no estágio sucessional das áreas. Nas áreas de aluvião e encosta conservada, a proporção de árvores de espécies de grande porte foi maior que o esperado. Por outro lado, na encosta em regeneração, a freqüência esperada foi maior que a observada, evidenciando o aspecto mais jovem desta comunidade.

Foram encontradas diferenças significativas entre as três áreas para as proporções de árvores de espécies entre as guildas de dispersão, com exceção das zoocóricas (Tab. 2) que, embora tenham sido as mais abundantes nas três áreas estudadas, não apresentaram diferença significativa entre as áreas. As espécies anemocóricas foram mais abundantes do que o esperado nas duas áreas de encosta, embora tenham predominado indivíduos pertencentes a espécies zoocóricas nas situações.

Relação entre as guildas - as proporções de espécies nas guildas de dispersão variaram significativamente em relação às guildas de regeneração (Tab. 3, 4 e 5). O número de espécies pioneiras com dispersão primária abiótica (anemocórica e autocórica) foi maior do que o esperado para as três áreas estudadas, apresentando diferenças significativas entre as diferentes guildas de regeneração. Nas duas áreas de encosta, verifica-se que houve diferenças significativas para as espécies pioneiras e clímax tolerante à sombra entre as diferentes guildas de dispersão. Já para as espécies zoocóricas, houve uma predominância em todas as guildas de regeneração nas três áreas, tendo os valores para as espécies clímax tolerante à somba, sido maiores do que os esperados.

As proporções de espécies das guildas de regeneração variaram significativamente entre os estratos apenas nas duas áreas de encosta (Tab. 3, 4 e 5). Observa-se também que, com exceção da área de aluvião, houve diferença significativa em relação ao número de espécies anemocóricas entre os diferentes estratos, com uma tendência das espécies anemocóricas predominarem no estrato superior (dossel ou emergente), sendo maior do que o esperado nas três áreas. Já o número de espécies de pequeno e médio porte (estrato inferior ou sub-bosque) com síndrome de dispersão zoocórica foi maior do que o esperado para as três áreas. Porém, não diferiu estatisticamente das demais síndromes.

Comparando-se o número de espécies nas diferentes guildas de regeneração em relação aos estratos, percebe-se que houve diferença significativa nas duas áreas de encosta apenas para as espécies de pequeno e grande porte (Tab. 3, 4 e 5). No entanto, quando se compara o número de espécies registrado em cada guilda isoladamente, verifica-se que houve diferença significativa apenas para as espécies clímax exigente de luz na encosta em regeneração e clímax tolerante à sombra nas duas áreas (Tab. 4 e 5).

Discussão

Padrões de distribuição das espécies nas guildas de regeneração, estratificação e dispersão - as maiores proporções de espécies que necessitam de luz na fase inicial ou durante todo o ciclo de vida ocorreram, em ordem crescente, para as áreas encosta em regeneração, aluvião e encosta conservada, evidenciando a existência de gradientes entre as áreas em relação ao estágio de sucessão ecológica em que estas se encontram. Analisando-se as três áreas isoladamente, pode-se inferir que a encosta em regeneração encontra-se em uma fase seral de inicial a intermediária, enquanto que a área de aluvião encontra-se numa fase de intermediária a avançada e a encosta conservada apresentou características de uma floresta mais madura. Constatou-se, neste estudo, que as espécies clímax tolerantes à sombra aumentaram sua importância em direção à maior maturidade das florestas, padrão este comum ao citado na literatura (Klein 1980; Pessoa et al. 1997; Tabarelli & Mantovani 1999). Verificou-se, ainda, que o número de espécies pioneiras registradas foi decrescente da área de floresta em estágio mais inicial de sucessão (encosta em regeneração) para a mais madura (encosta conservada). Portanto, de acordo com Laska (1997), o processo responsável pela elevada diversidade encontrada em alguns trechos de florestas neotropicais em regeneração parece ser justamente a ocorrência simultânea de espécies pioneiras e tolerantes à sombra. Outra tendência observada refere-se à ocorrência de arbustos e pequenas árvores na área de encosta em regeneração, padrão este também verificado por Tabarelli & Mantovani (1999) para florestas Montanas em estádios iniciais de regeneração no estado de São Paulo.

Os resultados atenderam com sucesso ao propósito desta pesquisa, cuja intenção era realmente detectar estas possíveis diferenças na composição e no comportamento dos diferentes grupos de espécies em diferentes ambientes e estádios de regeneração, o que resulta em maior possibilidade de acertos no processo de seleção das espécies a serem utilizadas em programas de

recomposição das matas ciliares degradadas da região. De acordo com Kageyama *et al.* (1989), o processo de regeneração em uma floresta caminha, geralmente, em direção à maior complexidade. Já a velocidade de regeneração da floresta tropical após distúrbio depende do tipo e da intensidade da perturbação sofrida (Whitmore 1990; Guariguata & Dupuy 1997; Martin *et al.* 2004; Oliveira Filho *et al.* 2004). Saldarriaga & Uhl (1991) estimaram que o tempo necessário para que as florestas tropicais de terra firme, estabelecidas em áreas de cultivo abandonado, voltassem a apresentar valores de biomassa similares aos da floresta madura na Amazônia Venezuelana, seria de, aproximadamente, 140 a 200 anos.

Para Rodrigues & Gandolfi (1996), as espécies de cada grupo sucessional apresentam características biológicas distintas, tais como dependência de diferentes intensidades de luz, velocidade de crescimento e duração do ciclo de vida. Assim, exigem diferentes condições ambientais para crescer, sobreviver e se reproduzir. O que vai ao encontro dos resultados obtidos neste trabalho, no qual constatou-se a existência de um número pequeno de espécies pioneiras com baixa abundância de indivíduos na área de encosta conservada, sendo estas restritas às clareiras e bordas com o rio e pastagem. No entanto, estes resultados comprovam que o período de restabelecimento de uma floresta após distúrbio depende não apenas do tempo, mas também da intensidade do distúrbio e das condições do ambiente.

As altas proporções de espécies que têm suas fontes de propágulos disseminadas por animais (zoocoria) registrados para as matas ciliares de Bocaina de Minas (68% a 75%) podem ser explicadas em função de dois fatores. Primeiro, nas florestas tropicais, essa é a forma mais freqüente de dispersão das sementes, confirmando que, nelas, frutos são recursos importantes para muitas espécies de pássaros e outros animais (Karr *et al.* 1990). Na dispersão por animal, existem desde os pequenos roedores e aves que, ao se alimentarem de

frutos e sementes, fazem a dispersão através de suas sobras, assim como os mamíferos e pássaros maiores que ingerem e defecam as sementes intactas, também fazendo a sua dispersão (Reis 1995). Estima-se que de 60% a 90% das espécies arbóreas apresentem adaptações a esse tipo de transporte de propágulos (Gentry 1982; Howe & Smollwood 1982; Morellato & Leitão-Filho 1992; Reis et al. 1996), sendo essa forma de dispersão tanto mais importante quanto mais úmida for a floresta (Howe & Smallwood 1982). Segundo, tratam-se de formações ciliares inseridas em fisionomias de mata atlântica que apresentam alto número de espécies com dispersão zoocórica. De acordo com Carmo & Morellato (2001), a proporção de espécies zoocóricas em área de mata ciliar disseminadas por animais é de 75%. Já Martins et al. (1995) avaliaram a síndrome de dispersão de 520 espécies de Mata Atlântica e constataram que 75% delas tinham seus diásporos dispersos por animais. Estes valores encontram-se próximos dos obtidos para as matas ciliares das cabeceiras do rio Grande.

As proporções de espécies anemocóricas encontradas em Bocaina de Minas podem ser consideradas intermediárias (17% a 19,5%), sendo inferiores às obtidas por Morellato & Leitão-Filho (1992) para florestas estacionais semidecíduas (20% a 28%), iguais às obtidas por Martins *et al.* (1995) para mata atlântica (18%) e por Carmo & Morellato (2001) para áreas de mata ciliar no estado de São Paulo (17%) ou ligeiramente superiores (9%) às encontradas por Morellato *et al.* (2000) para a mata atlântica. As maiores proporções de espécies com dispersão anemocórica na encosta em regeneração podem estar relacionadas ao fato de se tratar de uma floresta jovem e ainda sofrer influência de ações antrópicas pretéritas, pois, de acordo com Van der Pijl (1982) e Howe & Smallwood (1982), a dispersão anemocórica ocorre, principalmente, entre as espécies em estágio inicial de sucessão.

A maioria das espécies anemocóricas registradas nas três áreas estudadas pertence ao estrato superior (dossel e emergentes), enquanto que a

maioria das espécies zoocóricas pertence ao estrato inferior (sub-bosque). Estes resultados vão ao encontro do padrão já citado na literatura (Morellato & Leitão-Filho 1992; Carmo & Morellato 2001). De acordo com Howe & Smallwood (1982) e Gentry (1983), a maior concentração de espécies anemocóricas nos estratos emergentes facilita a dispersão pelo vento. Já a concentração de espécies zoocóricas nos estratos inferiores da floresta parece estar relacionada à área de vida e atividades de animais dispersores (Foster 1982).

Conclusões

De acordo com os resultados obtidos neste estudo para as três áreas de mata ciliar da região das cabeceiras do rio Grande em Bocaina de Minas, MG, pode-se concluir que:

- i) a flora arbustivo-arbórea das áreas diferiu, tanto em função do ambiente (aluvião e encosta) quanto do estádio de maturidade das mesmas;
- ii) as espécies anemocóricas e autocóricas são mais comuns no dossel das florestas, enquanto que as zoocóricas foram mais comuns no sub-bosque;
- iii) verificou-se uma elevada proporção de espécies e indivíduos zoocóricos, independentemente do ambiente e do estágio sucessional entre as florestas estudadas, em todas as circunstâncias;
- iv) as maiores proporções de espécies pioneiras, anemocóricas e de pequeno porte, ocorreram em ordem decrescente, para as áreas encosta em regeneração, aluvião e encosta conservada, evidenciando a existência de gradientes entre as áreas em relação ao estágio de sucessão ecológica das mesmas.

Referências Bibliográficas

- Angel-de-Oliveira, M. M. 1998. Aves que plantam: frugivoria e dispersão de sementes por aves. **Boletim CEO.** São Paulo, n.13, p.9-12.
- Backes, P. & Irgang, B. Mata Atlântica: As árvores e a paisagem. Porto Alegre: Editora Paisagem do Sul. 2004, 393p.
- Barbosa, L. M.; Barbosa, J. M.; Batista, E. A.; Mantovani, W.; Veronese, S. A. & Andreani-Junior, R. 1989. Ensaios para estabelecimento de modelos para recuperação de áreas degradadas em matas ciliares, Mogi Guaçu (SP)- In: SIMPÓSIO SOBRE MATA CILIAR, 1, 1989. Campinas. Anais... Campinas: Fundação Cargill, p.268-283.
- Barbosa, L. M. 1989. Estudos interdisciplinares do Instituto de Botânica em Moji-Guaçu, SP. In: Simpósio sobre mata ciliar. Campinas, Fundação Cargill, p. 171-191.
- Barbosa, L. M.; Asperti, L. M. & Barbosa, J. M. 1996.Características Importantes de Componentes Arbóreos na Definição dos Estádios Sucessionais em Florestas Implantadas. 40 Simpósio Internacional de Ecossistemas Florestais, Anais, p. 242-245.
- Barbosa, L.M. 2001. Considerações gerais e modelos de recuperação de formações ciliares. In: Rodrigues, R. R. & Leitão-Filho, H.F. **Matas ciliares**: Conservação e Recuperação. 2. ed. São Paulo: Editora da Universidade de São Paulo/Fapesp, p.289 312.
- Barroso, G. M.; Morim, M. P.; Peixoto, A. L. & Ichaso, C. L. F. 1999. Frutos e sementes: morfologia aplicada à sistemática de dicotiledôneas. Editora UFV, Viçosa.
- Botelho, S.A. & Davide, A. C. 2002. Métodos silviculturais para recuperação de nascentes e recomposição de matas ciliares. In: Simpósio Nacional sobre Recuperação de Áreas Degradadas, 5, 2002.: Água e Biodiversidade. Belo Horizonte, p.123-145.
- Brasil, **Lei n. 4.771**, 15 set. 1965. Institui o novo Código Florestal. Disponível em: http://www. Planalto.gov.Br/CCIVIL/Leis/4771.htm. Acesso em: 20 nov. 2005.
- Carmo, M. R. B. & Morellato, L. C. 2001. **Fenologia de árvores e arbustos das matas ciliares da bacia do Rio Tibagi, estado do Paraná, Brasil.** In: Rodrigues, R. R. & Leitão-Filho, H.F. **Matas ciliares**: Conservação e Recuperação. 2. ed. São Paulo: Editora da Universidade de São Paulo/Fapesp, p. 125-141.

- Carvalho, P. E. R. 1994. **Espécies florestais brasileiras**. Recomendações Silviculturais, potencialidades e uso da madeira. EMBRAPA-CNPF. Brasília. 640p.
- Carvalho, D. A; Oliveira-Filho, A. T.; van den Berg, E.; Fontes, M. A. L.; Vilela, E. A.; Marques, J. J. S. G. S. M. & Carvalho, W. A. C. 2005. Variações florísticas e estruturais do componente arbóreo de uma floresta ombrófila alto-montana às margens do Rio Grande, Bocaina de Minas, MG, Brasil. **Acta Botanica Brasílica**, v.19, p. 91-109.
- Denslonv, J. S. 1980. Gap partioning among tropical rain forest trees. **Biotropica**. Washington, 12:47-55.
- Denslonv, J. S. 1980. Patterns of plant diversity during succession under different disturbances regimes. **Oecologia**. 46: 18-21.
- Durigan, G. & Silveira, E. R. 1999. Recomposição da nata ciliar em domínio de cerrado, Assis, SP. Piracicaba: **Revista Scientia Forestalis**, n.56, p.135-144.
- Foster, R. B. 1982. The seasonal rhythm of fruitfall on Barro Colorado Island. In: Leigh-Junior, E. G.; Rand, A. S. & Windsor, D. M. The ecology of a tropical forest. Smithsonian Institution Press, Washington.
- Garcia, R. J. F. & Pirani, J. R. 2001. Estudo florístico dos componentes arbóreo e arbustivo da mata do Parque Santo Dias, São Paulo, SP, Brasil. **Boletim de Botânica da Universidade de São Paulo**, v.19, p.15-42.
- Gentry, A. H. 1982. Patterns of neotropical plant species diversity. **Evol. Biol.**, v.15, p.1-84.
- Gentry, A. H. 1983. Dispersal ecology and diversity in neotropical forest communities. Sonderb. **Naturwiss Ver.** v.7, p.303-314.
- Giller, P. S. 1984. Community structure and the niche. Chapman and Hall, New York.
- Guariguata, M. R. & Dupuy, J. M. 1997. Forest regeneration in abandoned logging roads in lowland Costa Rica. **Biotropica**, v. 29, p.15-28.
- Guedes, M. C.; Campello, E. F.; Melo, V. A. & Griffith, J. J. 1997. Seleção de espécies para recuperação de áreas degradadas por meio de ilhas de vegetação. In: SIMPOSIO NACIONAL DE RECUPERAÇÃO DE ÁREAS DEGRADADAS, 3., 1997, Viçosa. **Anais...**Viçosa: SOBRADE/UFV, p.279-282.
- Howe, H.F. & Smallwood, J. 1982. Ecology of seed dispersal. **Annual Review of Ecology and Systematic**. v. 13, p. 201-228.

- Kageyama, P. Y. & Gandara, F. B. 1999. Restauração, conservação genética e produção de sementes In: SIMPÓSIO MATA CILIAR CIÊNCIA E TECNOLOGIA. **Anais...** Belo Horizonte. p.59-68.
- Kageyama, P. Y.; Castro, C.F.A. & Carpanezzi, A. A. 1989. Implantação de matas ciliares: estratégias para auxiliar a sucessão secundária. In: SIMPÓSIO SOBRE MATA CILIAR, São Paulo, 1989. Anais... Campinas, Fund. Cargill, p. 130-43.
- Klein, R. M. 1980. Ecologia da flora e vegetação do vale do Itajaí. **Sellowia**, v.32, p.165-389.
- Laska, M. S. 1997. Structure of undestrory shurb assembleges in a adjacent secondary and old growth tropical wet forests, Costa Rica. **Biotropica**, v.29, p.29-37.
- Lima, W. P. 1989. Função Hidrológica da Mata Ciliar. In: SIMPÓSIO SOBRE MATA CILIAR, **Anais...** Fundação Cargil, Campinas, SP: p.25-42.
- Loiselle, B. A.; Ribbens, E. & Vargas, O. 1996. Spatial and temporal variation of seed rain in a tropical lowland wet forest. **Biotropica**, St. Louis, v.28, n.1, p.82-95.
- Lorenzi, H. 2002. **Árvores brasileiras**: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Vol. 1. 2a ed. Plantarum, Nova Odesa.
- Lorenzi, H. 2002. **Arvores brasileiras**: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Vol. 2. 2a ed. Plantarum, Nova Odesa.
- Marques, J. Q. de A.; Bertoni, J. & Barreto, G. B. 1961. As perdas por erosão do Estado de São Paulo. **Bragantia**, Campinas, SP., **20** (47): 1143-1181.
- Martinez-Ramos, M. & Soto-Castro, A. 1993. Seed rain and advanced regeneration in a tropical rain forest. **Vegetatio**, Dordrecht, v.108, p.299-318.
- Martin, P. H.; Sherman, R. E. & Fahey, T. J. 2004. Forty years of tropical forest recovery from agriculture: structure and floristic of seconday and old-growth riparian forests in the Dominican Republic. **Biotropica**, v.36, n.3, p.297-317.
- Martins, S. E.; Pompéia, S. L. & Rossi, L. 1995. Síndromes de dispersão de espécies arbóreas da Mata Atlântica de encosta no estado de São Paulo. In: **Resumos...** 46° CONGRESSO NACIONAL DE BOTÂNICA (Sociedade de Botânica do Brasil. Ed), SBB, Ribeirão Preto, p.167.
- Morellato, L. P. C. & Leitão-Filho, H. L. F. 1992. **Padrões de frutificação e dispersão na Serra do Japi**. In: Morellato, L. P. C. História natural da Serra do Japi: ecologia e preservação de uma área florestal no Sudeste do Brasil. Editora da UNICAMP/FAPESP, p. 112-140.

- Morellato, L. P. C.; Rodríguez, R. R.; Leitão-Filho, H. F. & Joly, C. A. 1989. Estudo comparativo da fenologia de espécies arbóreas de floresta de altitude e floresta mesófila semidecídua na Serra do Japí, Jundiaí, São Paulo. **Revista Brasileira de Botânica**, São Paulo, v.12, p.85-98.
- Morellato, L. P. C.; Romera, E. C.; Talora, D. C.; Takahashi, A.; Benche, C. C. & Zipparro, V. B. 2000. Phenology of Atlantic rain forest trees: a comparative study. **Biotropica**, v.32, p.811-823.
- Myers, N. Florestas tropicais e suas espécies, sumindo, sumindo...? Wilson, E. O. (coord.). **Biodiversidade**. Rio de Janeiro, RJ: Nova Fronteiras, 1997. p.36-45.
- Nunes, Y. R. F.; Mendonça, A. V. R.; Botezelli, L.; Machado, E. L. M. & Oliveira-Filho, A. T. 2003. Variações da fisionomia, diversidade e composição de guildas da comunidade arbórea em um fragmento de floresta semidecidual em Lavras, MG. Acta Botânica Brasílica, v.17, n.2, p. 213-229.
- Oliveira-Filho, A. T.; Carvalho, D. A.; Vilela, E. A.; Curi, N. & Fontes, M. A. L. 2004. Diversity and structure of the tree community of a fragment of tropical secondary Forest fo the Brazilian Atlantic Forest domain 15 and 40 years after logging. **Revista Brasileira de Botânica**, São Paulo, v.27, n.4, p.685-701.
- Oliveira-Filho, A. T. & Fontes, M. A. L. 2000. Patterns of Floristic Differentiation among Atlantic Forests in Southeastern Brazil and the Influence of Climate. **Biotropica**, v. 32, p.793-810.
- Oliveira-Filho, A. T.; Mello, J. M.; Scolforo, J. R. S. 1997. Effects of past disturbance and edges on tree community struture and dynamics within a fragment of tropical semidecidous Forest in South-eastern Brazil over a five-year period (1987-1992). **Plant Ecology**, v.131, n.1, p. 45-66.
- Pedroni, F. **Aspecto da estrutura e dinâmica de espécies arbóreas da Mata Atlântica**. 2000. 191p. Tese (Doutorado em Ciências Biológicas) Universidade Estadual de Campinas, Campinas.
- Penhalber, E. de. F. & Mantovani, W. 1997. Floração e chuva de sementes em mata secundária em São Paulo, SP. **Revista Brasileira de Botânica**, São Paulo, v.20, n.2, p.205-220.
- Pessoa, S. V. A.; Guedes-Bruni, R. R. & Bruno, C. K. 1997. Composição florística e estrutura do componente arbustivo-arbóreo de um trecho secundário de floresta montana na Reserva Ecológica Macaé de Cima. In: Lima, H. C. & Guedes-Bruni, R. R (eds.), serra de Macaé de Cima:

- diversidade florística e conservação em Mata Atlântica, Jardim Botânico do Rio de Janeiro, Rio de Janeiro. p.147-168.
- Reis, A.; Nakazono, E. M.; Matos, J. Z. 1996. Utilização da sucessão e da interação planta-animal na recuperação de áreas florestais degradadas. In: CURSO DE ATUALIZAÇÃO: RECUPERAÇÃO DE ÁREAS DEGRADADAS, 3., 1996, Curitiba. **Terceiro...** Curitiba: UFPR, p.29-43.
- Rodrigues, R. R. & Gandolfi, S. Recomposição de florestas nativas: princípios gerais e subsídios para uma definição metodológica. **Revista Brasileira de Horticultura Ornamental**. Campinas, v.2, n.1, p.4-15.1996.
- Reitz, R.; Klein, R. M. & Reis, A. **Projeto madeira do Rio Grande do Sul**. 1983. 525p.
- Reis, M. S. 1995. **Dispersão de sementes Euterpe edulis (Palmae) em uma Floresta Ombrófila Densa Montana da Encosta Atlântica em Blumenau,SC**. 154p. Tese (Doutorado em Biologia Vegetal), Universidade de Campinas, Campinas.
- Rezende, A. V. 1998. Importância das matas de galeria: manutenção e recuperação. In: RIBEIRO, J. F. **Cerrado**: Matas de galeria. Planaltina: Embrapa-CPAC, p.1-16.
- Saldarriaga, J. G. & Uhl, C. 1991. **Recovery of forest vegetation following slash-and-burn agriculture in the upper rio Negro**. In: Gomez-Pompa, A.; Whitmore, T. C. & Hadley. M. (eds.), Tropical rain forest: regeneration and management, Blackwell, New York. p.303-312.
- Silva, P. P. V. da. **Sistemas agroflorestais para recuperação de matas ciliares em Piracicaba, SP**: 2002. 98p. Dissertação (Mestrado em Ciências Florestais) Universidade de São Paulo, Piracicaba.
- Swaine, M. D. & Whitmore, T. C. 1988. On the definition of ecological species groups in tropical rain forest. **Vegetatio**, The Hague, v.75, n.2, p.81-86.
- Tabarelli, M. & Mantovani, W. A. 1999. Regeneração de uma floresta tropical Montana após corte e queima (São Paulo-Brasil). **Revista Brasileira de Biologia**, v.59, n.2, p.239-250.
- Van Der Pijl, L. 1982. **Principles of dispersal in higher plants**. 3rd ed. Springer-Verlarg, Berlin.
- Zar, J. H. 1996. Biostatistical analysis, 3.ed. Prentice Hall, New Jersey.
- Wheelwrigth, N. T. 1985. Competition for disperses, and th timing of floweing and fruiting in a guild of tropical trees. **Oikos 44**: 465-477.

- Whitmore, T.C. 1982. On pattern and process in forest. In: Newman, E. T (ed.) **The plant community as a working mechanism**. Blackwell, Oxford, England. p.45-59.
- Whitmore, T. C. 1990. **An introduction to tropical rain forests**. Blackwell, London.
- Wilson, J. B. 1989. A null model of guild proportionality, applied to stratification of a new Zealand temperate rain forest. **Oecologia 80**: 263-267.

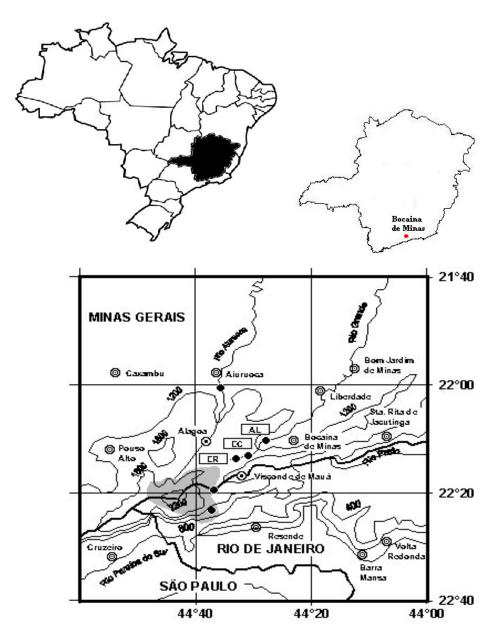


Figura 1 - Localização geográfica dos três remanescentes de mata ciliar em Bocaina de Minas, MG (●), em que: AL: aluvião; EC: encosta conservada e ER: encosta em regeneração

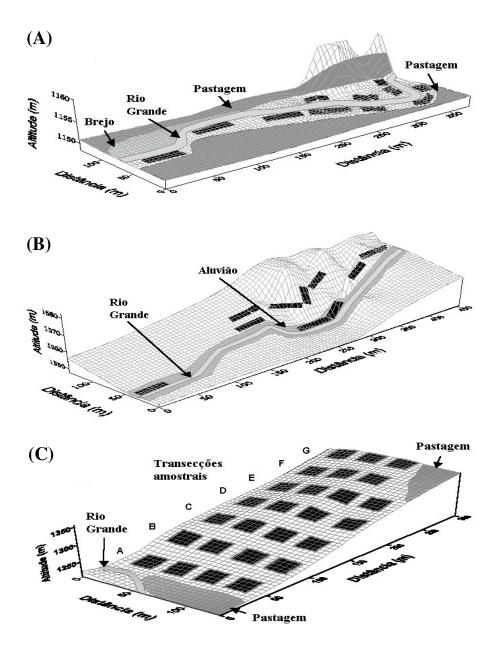


Figura 2 - Grade de superfície mostrando detalhes da topografia das três áreas de mata ciliar em Bocaina de Minas, MG e a distribuição das parcelas utilizadas para amostrar a comunidade arbustivo-arbórea. Em que: A = mata ciliar de aluvião; B = mata ciliar de encosta em regeneração e C = mata ciliar de encosta conservada. O espaçamento entre as linhas da grade é de 5m.

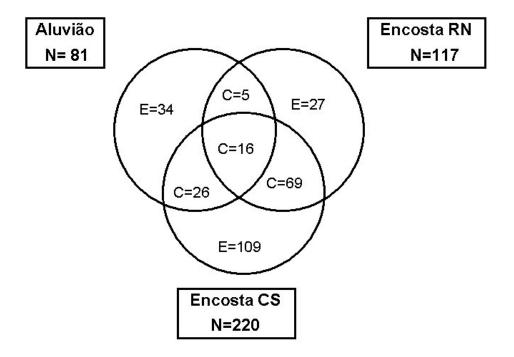
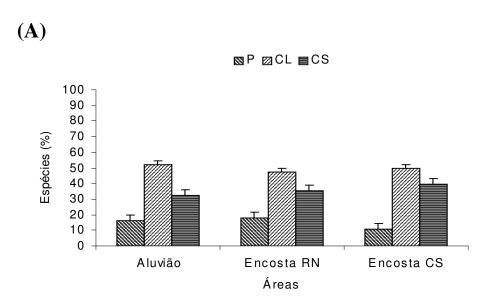



Figura 3 - Diagrama de Venn extraído da composição florística das três áreas de mata ciliar inventariadas em Bocaina de Minas, MG mostrando o número de espécies compartilhadas. Em que: E = espécies exclusivas; C = espécies comuns entre as áreas; N = número total de espécies registradas na área.

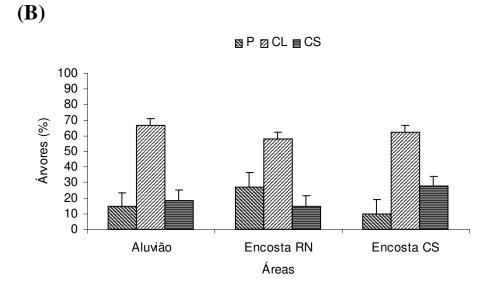
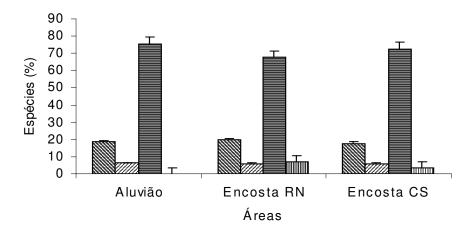



Figura 4 - Distribuição das porcentagem de espécies (A) e árvores (B), por guilda de regeneração em três áreas de mata ciliar em Bocaina de Minas, MG. Em que: P: pioneira, CL: clímax exigente de luz, e CS: clímax tolerante à sombra.

(B)

NAne NAut ■Zoo MOutras

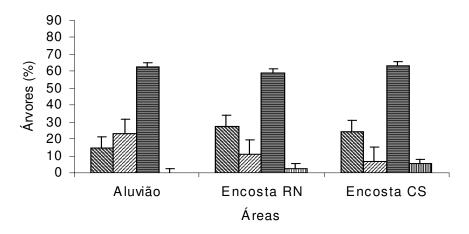
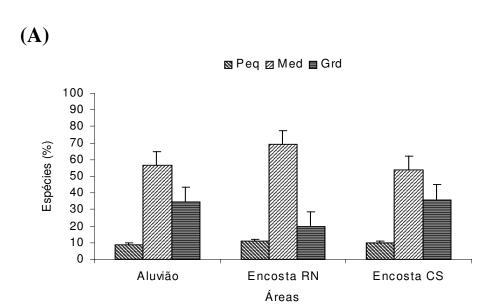



Figura 5 - Distribuição das porcentagem de espécies (A) e árvores (B), por guilda de dispersão em três áreas de mata ciliar em Bocaina de Minas, MG. Em que Ane: anemocoria, Aut: autocoria, Zoo: zoocoria e Outras: outro tipo de dispersão

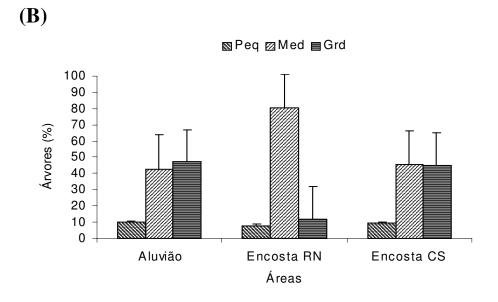


Figura 6 - Distribuição das porcentagem de espécies (A) e árvores (B), por guilda de estratificação em três áreas de mata ciliar em Bocaina de Minas, MG. Em que Peq: pequeno porte, Med: médio porte e grd: grande porte.

Tabela 1 - Relação das espécies arbóreas registradas em três remanescentes de mata ciliar, em Bocaina de Minas, MG, dispostas em ordem alfabética de família, seguidas de suas guildas. Em que: Reg = guildas de regeneração (P = pioneira, CL = clímax exigente de luz e CS = clímax tolerante à sombra); Estr = guildas de estratificação (Peq: pequena, Med: média e Grd: grande); Disp = guildas de dispersão (Ane: anecórica, Zoo: zoocórica e auto: autocórica); Tipo de fruto (c.i: carnoso indeiscente, s.d: seco deiscente, s.i: seco indeiscente); hábito (AR: arvore, AB: arbusto e AV: arvoreta); I: mata ciliar de aluvião; II: mata ciliar de encosta em regeneração e III: mata ciliar de encosta conservada

E4:-/E/-:	TT / 1.24		Área		(Guilda	S	F	ruto	Agente
Família/ Espécie	Hábito -	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Anacardiaceae										
Tapirira guianensis	AR	0	0	6	CL	Méd	Zoo	Drupa c.i.	preto	aves e mamíferos
Tapirira obtusa	AR	0	0	25	CL	Grd	Zoo	Drupa	preto	aves e mamíferos
Annonaceae										
Annona cacans	AR	5	0	10	CL	Méd	Zoo	Simcarpo c.i	verde-amarelado	mamíferos
Cymbopetalum brasiliense	AV	0	0	4	CS	Méd	Zoo		vermelho	aves
Duguetia salicifolia	AR	0	1	4	CS	Grd	Zoo	Subglobosa		mamíferos
Guatteria australis	AR	0	20	21	CS	Méd	Zoo		preto	aves e mamíferos
Guatteria latifolia	AR	0	5	4	CS	Méd	Zoo		preto	aves
Guatteria pohliana	AR	0	0	79	CS	Méd	Zoo			
Guatteria sellowiana	AR	0	1	0	CL	Méd	Zoo	Bacídio	vermelho	aves
Rollinia dolabripetala	AR	0	0	4	CL	Grd	Zoo	Baga globosa	amarelo	mamíferos
Rollinia emarginata	AR	40	0	0	CL	Méd	Zoo		preto	mamíferos
Rollinia laurifolia	AR	0	0	Flr	CL	Grd	Zoo	Subgloboso	preto	mamíferos
Rollinia sylvatica	AR	0	0	8	CL	Méd	Zoo	Simcarpo c.i	Amarelo	mamíferos
Xylopia brasiliensis	AR	0	0	Flr	CS	Grd	Zoo	Cápsula s.d	bicolor	aves

Tabela 1 - Continuação

ID 41: / ID 4:	TT / 1 · 4		Área		(Guilda	S	Fr	uto	Agente
Família/ Espécie	Hábito –	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Apocynaceae										
Aspidosperma australe	AR	0	0	Flr	CL	Méd	Ane	Folículo s.d		
Aspidosperma parvifolium	AR	1	1	2	CL	Méd	Ane	Folículo s.d	paleáceo	
Aspidosperma spruceanum	AR	0	0	3	CL	Grd	Ane	Folículo s.d		
Aquifoliaceae										
Ilex amara	AB	3	0	0	CL	Méd	Zoo	Drupa c.i.	preto	aves
Ilex cerasifolia	AR	0	0	1	CS	Méd	Zoo	Baga	vermelho	aves
Ilex conocarpa	AR	0	1	2	CL	Méd	Zoo	Drupa	preto	aves
Ilex paraguariensis	AR	0	1	0	CL	Méd	Zoo	Drupa c.i.	vermelho	aves
Ilex theezans	AR	21	0	Flr	CL	Grd	Zoo	Drupa c.i.	preto	aves
Araliaceae										
Oreopanax capitatus	AR	0	0	1	CS	Méd	Zoo	Baga c.i	Arroxeado	aves
Schefflera calva	AR	0	2	22	CS	Méd	Zoo			
Araucariaceae										
Araucaria angustifolia	AR	0	Flr	Flr	CL	Grd	Zoo	estróbilos	marrom	aves e mamíferos
Arecaceae										
Geonoma schottiana	AB	0	0	2	CS	Peq	Zoo	Drupa	preto	aves
Syagrus romanzoffiana	AR	3	0	0	CL	Grd	Zoo	Drupa	laranja	aves e mamíferos
Asteraceae										
Austrocritonia velutina	AR	1	0	0	CL	Méd	Ane			

Tabela 1 - Continuação

E 49 / E 4 9	TT / 1 · 4		Área		(Guilda	S	F	ruto	Agente
Família/ Espécie	Hábito –	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Baccharis brachylaenoides	AB	1	1	0	P	Méd	Ane			
Baccharis serrulata	AB	0	2	1	P	Méd	Ane			
Dasyphyllum brasiliense	AB	0	1	0	CL	Grd	Zoo	Aquênio		
Eremanthus erythropappus	AB	0	24	Flr	P	Méd	Ane	Aquênio		
Gochnatia paniculata	AB	0	Flr	Flr	P	Peq	Ane	Aquênio s.i		
Heterocondylus vauthierianus	AR	0	8	0	P	Méd	Ane	Aquênio s.i		
Piptocarpha macropoda	AR	0	5	10	P	Méd	Ane	Aquênio s.i		
Piptocarpha regnellii	AR	0	41	1	P	Méd	Ane	Aquênio s.i		
Stifftia chrysantha	AR	0	0	Flr	CS	Peq	Ane	Aquênio s.i	amarelo	
Vernonanthura diffusa	AR	1	8	41	P	Grd	Ane	Aquênio s.i	branco	
Vernonanthura discolor	AR	0	13	28	P	Grd	Ane	Aquênio s.i	branco	
Bignoniaceae										
Cybistax antisyphillitica	AR	Flr	0	Flr	CL	Peq	Ane	Cápsula s.d	castanho-escura	Sementes aladas
Jacaranda macrantha	AR	0	0	1	CL	Grd	Ane	Cápsulas s.d		Sementes aladas
Tabebuia alba	AR	0	2	0	CL	Grd	Ane	Síliqua s.d	amarelo	Sementes aladas
Tabebuia chrysotricha	AR	0	0	3	CL	Méd	Ane	Síliqua s.d		Sementes aladas
Tabebuia heptaphylla	AR	6	0	0	CL	Grd	Ane	Síliqua s.d	preto	Sementes aladas
Tabebuia vellosoi	AR	0	0	5	CL	Grd	Ane	Cápsula s.d		Sementes aladas
Boraginaceae								-		
Cordia ecalyculata	AR	0	0	7	CS	Grd	Zoo	Baga c.i	vermelho	aves

Tabela 1 - Continuação

E 41 /E / 1	TT /1 14		Área		(Guilda	S	I	Fruto	Agente
Família/ Espécie	Hábito -	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Cordia superba	AR	0	0	Flr	CL	Méd	Ane	Drupa c.i	amarelo	aves
Canellaceae										
Cinnamodendron dinisii	AR	2	0	0	CS	Grd	Zoo	Baga	vermelho	aves e mamíferos
Celastraceae										
Maytenus evonymoides	AR	0	Flr	0	CS	Peq	Zoo	Cápsula s.d	bicolor	aves
Maytenus glazioviana	AR	0	0	1	CS	Méd	Zoo	Cápsula s.d		
Maytenus robusta	AR	1	2	0	CS	Méd	Zoo	Cápsula s.d	marron	aves
Maytenus salicifolia	AR	0	0	3	CS	Méd	Zoo	Cápsula s.d		
Chloranthaceae										
Hedyosmum brasiliense	AR	Flr	Flr	Flr	CL	Peq	zoo		branco	aves
Clethraceae										
Clethra scabra	AR	0	40	34	CL	Méd	Ane	Cápsula s.d		
Clusiaceae										
Clusia criuva	AR	0	0	Flr	CS	Méd	Zoo	Cápsula c.d.	vermelho	aves
Clusia fragrans	AR	0	0	2	CS	Méd	Zoo	Cápsula c.d.		aves
Tovomitopsis saldanhae	AB	0	0	12	CS	Méd	Zoo	Cápsula	vermelho escuro	aves
Vismia brasiliensis	AR	0	0	1	CL	Méd	Zoo	Baga	verde-amarelado	aves e mamíferos
Weinmannia paulliniifolia	AR	0	2	0	CL	Méd	Aut	Cápsula		
Cunoniaceae										
Lamanonia ternata	AR	0	2	84	CL	Méd	Ane	Cápsula s.d.		

Tabela 1 - Continuação

ID 41: / ID 4:	TT /1 14		Área		(Guilda	ıs	Fr	uto	Agente
Família/ Espécie	Hábito -	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Cyatheaceae										
Alsophila setosa	AR	0	1	20	CS	Méd	umid	Soros		
Alsophila sternbergii	AV	0	1	Flr	CS	Peq	umid	Soros		
Cyathea atrovirens	AV	0	1	0	CS	Peq	umid	Soros		
Cyathea corcovadensis	AV	0	4	53	CS	Méd	umid	Soros		
Cyathea delgadii	AV	0	5	59	CS	Méd	umid	Soros		
Cyathea dichromatolepis	AV	0	1	2	CS	Méd	umid	Soros		
Cyathea phalerata	AV	0	6	3	CS	Méd	umid	Soros		
Sphaeropteris gardneri	AV	0	3	Flr	CS	Peq	umid	Soros		
Dicksoniaceae										
Dicksonia sellowiana	AV	0	0	2	CS	Peq	umid	Soros		
Elaeocarpaceae										
Sloanea guianensis	AV	0	0	2	CS	Grd	Zoo	Cápsula s.d.	Bicolor	mamíferos
Sloanea monosperma	AR	0	0	1	CS	Grd	Zoo	Cápsula s.d.	Bicolor	aves
Erythroxylaceae										
Erythroxylum pelleterianum	AR	6	0	2	CS	Peq	Zoo	Drupa c.i	Vermelho	aves
Escalloniaceae										
Escallonia bifida	AV	0	1	0	CL	Méd	Ane			
Euphorbiaceae										
Alchornea glandulosa	AR	Flr	0	Flr	P	Grd	Zoo	Cápsula c.i	Bicolor	aves

Tabela 1 - Continuação

E4'-/E4-4	TT / 1. 94		Área		(Guilda	s	J	Fruto	Agente
Família/ Espécie	Hábito -	Ι	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Alchornea sidifolia	AR	0	4	28	P	Méd	Zoo	Cápsula c.i	Bicolor	aves
Alchornea triplinervia	AR	0	22	164	CL	Grd	Zoo	Cápsula c.i	Bicolor	aves e mamíferos
Croton celtidifolius	AR	0	1	0	P	Méd	Aut	Cápsula s.d		
Croton floribundus	AR	24	0	Flr	P	Grd	Aut	Cápsula s.d	Marrom	
Croton organensis	AR	0	81	4	P	Méd	Aut	Cápsula s.d		
Croton salutaris	AR	0	0	77	P	Grd	Aut	Cápsula s.d		
Croton verrucosus	AR	0	4	0	P	Méd	Aut	Cápsula s.d		
Manihot pilosa	AB	0	0	2	CS	Méd	Aut	Cápsula s.d		
Pera glabrata	AR	0	0	12	CL	Grd	Zoo	Cápsula s.d	Preto e vermelho	aves
Sapium glandulosum	AR	1	6	8	CL	Grd	zoo	Cápsula s.d	Verde	aves
Sapium haematospermum	AR	Flr	0	0	P	Méd	Zoo	Cápsula s.d	Verde	aves
Sebastiania brasiliensis	AR	77	0	0	CS	Peq	Aut	Cápsula s.d	Castanho	
Sebastiania commersoniana	AR	174	0	0	CL	Méd	Aut	Cápsula s.d	Castanho	
Tetrorchidium parvulum	AR	0	6	34	CS	Méd	Aut	Cápsula s.d		
Fabaceae Caesalpinioideae										
Cassia ferruginea	AR	35	0	0	CL	Grd	Zoo	Legume s.i	marrom-escuro	
Poeppigia procera	AR	0	0	26	CL	Méd	Aut			
Sclerolobium rugosum	AB	0	1	26	CL	Grd	Ane	Sâmara	castanho-escuro	
Senna macranthera	AR	0	0	16	P	Méd	Zoo	Legume s.d	castanho-escuro	
Senna multijuga	AR	1	0	10	P	Méd	Aut	Legume s.d	castanho-escuro	

Tabela 1 - Continuação

E4:-/E/-:	TT 21.24		Área		(Guilda	s	F	ruto	Agente
Família/ Espécie	Hábito	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Fabaceae Faboideae										
Dalbergia villosa	AR	0	0	21	CL	Grd	Ane	Legume s.i.		
Erythrina falcata	AR	Flr	0	Flr	CL	Grd	Aut	Legume s.i.		
Machaerium brasiliense	AR	2	0	0	CL	Grd	Ane	Sâmara s.i		
Machaerium condensatum	AR	8	0	0	CS	Méd	Ane	Sâmara s.i		
Machaerium hirtum	AR	13	0	0	CL	Grd	Ane	Sâmara s.i		
Machaerium nictitans	AR	0	0	1	CL	Grd	Ane	Sâmara s.i	castanho-vinoso	
Machaerium reticulatum	AR	0	0	1	CL	Méd	Ane	Sâmara s.i	alvo-esverdeado	
Machaerium villosum	AR	0	0	2	CL	Grd	Ane	Sâmara s.i		
Ormosia fastigiata	AR	0	0	7	CL	Méd	Zoo	Legume s.d	bicolor	
Fabaceae Mimosoideae										
Acacia polyphylla	AR	2	0	0	P	Grd	Ane	Legume s.i		
Albizia polycephala	AR	0	0	8	CL	Grd	Ane	Legume s.i.	creme	
Anadenanthera colubrina	AR	139	1	0	P	Grd	Ane	Legume s.i	marrom-escuro	
Inga sessilis	AR	0	1	4	CL	Grd	Zoo	Legume c.i	marrom	mamíferos
Inga striata	AR	0	0	2	CL	Grd	Zoo	Legume c.i	marrom	mamíferos
Inga vulpina	AR	12	Flr	Flr	CS	Méd	Zoo	Legume c.i	amarelo	mamíferos
Mimosa artemisiana	AR	Flr	0	Flr	P	Grd	Ane	Legume s.d	ferrugíneo	
Mimosa scabrela	AR	Flr	7	Flr	P	Grd	Ane	Craspédio s.i		

Tabela 1 - Continuação

E4'-/E4-	TT (1.2)		Área		(Guilda	s	F	ruto	Agente
Família/ Espécie	Hábito -	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Lamiaceae										
Aegiphila fluminensis	AR	0	2	6	P	Méd	Zoo	c.i		
Aegiphila obducta	AB	3	2	0	P	Méd	Zoo	Drupa c.i	alaranjado	aves
Clerodendron fragrans	AR	0	Flr	0	CL	Méd	Zoo			
Hyptidendron asperrimum	AB	0	0	28	CL	Grd	Zoo	c.i		
Vitex megapotamica	AB	39	0	0	CL	Méd	Zoo	Drupa c.i	preto	aves
Lauraceae										
Cinnamomum glaziovii	AR	0	0	Flr	CS	Grd	Zoo	Baga c.i	bicolor	aves
Endlicheria paniculata	AR	0	0	5	CS	Méd	Zoo	Baga c.i	Roxo-vermelho	aves e mamíferos
Nectandra grandiflora	AR	0	6	1	CS	Grd	Zoo	Baga c.i	preta	aves
Nectandra lanceolata	AR	7	0	Flr	CS	Grd	Zoo	Drupa c.i	preto	mamíferos
Nectandra oppositifolia	AR	0	0	15	CS	Grd	Zoo	Baga c.i	roxo escuro	aves e mamíferos
Nectandra puberula	AR	0	0	1	CL	Grd	Zoo	Cápsula c.i	bicolor	aves
Ocotea aciphylla	AR	0	1	11	CS	Méd	Zoo	Baga c.i	preto	aves
Ocotea brachybotras	AR	0	0	7	CS	Grd	Zoo	Drupa c.i	roxo	aves
Ocotea corymbosa	AR	0	5	39	CL	Grd	Zoo	Baga c.i	bicolor	aves
Ocotea diospyrifolia	AR	3	0	0	CL	Grd	Zoo	Baga c.i	bicolor	mamíferos
Ocotea elegans	AR	0	1	Flr	CL	Méd	Zoo	Baga c.i.	multicolor	aves
Ocotea indecora	AR	2	0	0	CL	Grd	Zoo	Baga c.i	vermelho	
Ocotea longifolia	AR	0	0	6	CS	Méd	Zoo	Baga c.i	bicolor	aves

Tabela 1 - Continuação

E 49 /E 43	TT / 1.14		Área		(Guilda	s	Fr	uto	Agente
Família/ Espécie	Hábito –	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Ocotea odorifera	AR	0	0	Flr	CS	Grd	Zoo	Baga c.i	preto	aves e mamíferos
Ocotea puberula	AR	1	0	Flr	CL	Grd	Zoo	Drupa c.i	vermelho	aves
Ocotea pulchella	AR	4	0	0	CL	Grd	Zoo	Baga c.i	roxo	aves e mamíferos
Ocotea silvestris	AR	0	1	0	CL	Méd	Zoo	Baga c.i	amarelo	aves
Persea fulva	AR	0	0	Flr	CL	Grd	Zoo	Cápsula c.i	roxo	aves
Persea pyrifolia	AR	0	9	0	CL	Grd	Zoo	Drupa c.i	azul	aves
Persea venosa	AR	0	3	1	CL	Grd	Zoo	Drupa c.i	preto	aves
Lecythidaceae										
Couratari pyramidata	AR	0	0	7	CS	Méd	Aut			
Lythraceae										
Lafoensia densiflora	AR	1	0	0	CS	Grd	Zoo	Cápsula		
Malpighiaceae										
Byrsonima myricifolia	AR	0	0	4	CL	Grd	Zoo	Drupa	vermelho	aves
Byrsonima stipulacea	AR	0	0	7	CL	Grd	Zoo	Drupa	amarelo	mamíferos
Malvaceae										
Pseudobombax grandiflorum	AB	0	0	Flr	CL	Grd	Ane	Cápsula		
Melastomataceae										
Huberia nettoana	AR	0	0	38	CL	Grd	Ane			
Leandra lancifolia	AR	0	2	0	CS	Peq	Zoo	c.i		
Leandra scabra	AB	0	3	Flr	CS	Méd	Zoo	c.i	preto	aves

Tabela 1 - Continuação

E4:-/E	TT (1.94		Área		(Guilda	s	Fr	uto	Agente
Família/ Espécie	Hábito -	I	II	Ш	Reg	Estr	Disp	Tipo	Cor	dispersor
Meriania claussenii	AB	0	0	1	CL	Méd	Zoo	Baga c.i		
Miconia brunnea	AR	0	0	Flr	CS	Méd	Zoo	Baga c.i	preto	aves
Miconia chartacea	AR	0	1	12	CL	Méd	Zoo	Baga c.i	preto	aves
Miconia cinerascens	AV	0	1	Flr	CL	Méd	Zoo	Baga c.i	preto	aves
Miconia cinnamomifolia	AV	0	16	18	P	Grd	Zoo	Baga c.i	preto	aves e mamíferos
Miconia cubatanensis	AR	20	0	5	CL	Méd	Zoo	Baga c.i	preto	aves e mamíferos
Miconia divaricata	AV	0	1	0	CL	Méd	Zoo	Baga c.i		
Miconia eichlerii	AV	0	Flr	Flr	CL	Méd	Zoo	Baga c.i		
Miconia fasciculata	AR	0	3	Flr	CS	Méd	Zoo	Baga c.i	preto	
Miconia latecrenata	AB	0	2	10	CL	Méd	Zoo	Baga c.i	roxo	aves
Miconia minutiflora	AR	0	0	Flr	CL	Méd	Zoo	Baga c.i	roxo	aves
Miconia prasina	AR	Flr	Flr	26	CS	Méd	Zoo	Baga c.i	roxo	aves
Miconia pusilliflora	AV	Flr	1	7	CL	Méd	Zoo	Baga c.i	azul	aves
Miconia sellowiana	AB	0	56	5	CL	Méd	Zoo	Baga c.i	vermelho	aves
Miconia theaezans	AB	0	39	0	CL	Méd	Zoo	Baga c.i	preto	aves
Miconia urophylla	AV	0	0	28	CL	Méd	Zoo	Baga c.i		
Tibouchina arborea	AB	0	72	8	CL	Méd	Ane	Cápsula s.d		
Tibouchina moricandiana	AR	Flr	0	Flr	CL	Méd	Ane	Cápsula s.d		
Tibouchina mutabilis	AB	0	1	1	CL	Méd	Aut	Cápsula s.d		
Tibouchina pulchra	AR	0	5	106	CL	Grd	Ane	Cápsula s.d		

Tabela 1 - Continuação

E 41 /E / 1	TT /1 1/4		Área		(Guilda	s	F	ruto	Agente
Família/ Espécie	Hábito -	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Tibouchina sellowiana	AR	0	3	Flr	CL	Méd	Ane	Cápsula s.d		
Trembleya parviflora	AV	0	2	0	P	Méd	Zoo		vermelho	aves
Meliaceae										
Cabralea canjerana	AB	0	1	50	CS	Grd	Zoo	Cápsula	avermelhado	aves
Cedrela fissilis	AR	0	1	3	CL	Grd	Ane	Cápsula	Castanho-escuro	
Guarea kunthiana	AR	0	0	1	CS	Grd	Zoo	Cápsula	bicolor	aves e mamíferos
Trichilia emarginata	AR	1	0	0	CS	Méd	Zoo	Cápsula	bicolor	aves
Trichilia hirta	AR	0	0	1	CL	Grd	Zoo	Cápsula	bicolor	aves
Monimiaceae										
Mollinedia clavigera	AR	0	Flr	0	CS	Peq	Zoo	c.i	preto	aves
Mollinedia engleriana	AR	0	0	1	CS	Méd	Zoo	c.i		aves
Mollinedia longifolia	AR	0	0	25	CS	Méd	Zoo	c.i		aves
Mollinedia triflora	AR	0	0	Flr	CS	Méd	Zoo	Apocárpico ci.		
Moraceae										
Ficus luschnathiana	AB	0	0	1	CS	Grd	Zoo	Sicônio c.i	amarelado	aves e mamíferos
Ficus mexiae	AR	0	1	4	CS	Grd	Zoo	Sicônio c.i		aves
Sorocea bonplandii	AR	Flr	Flr	3	CS	Méd	Zoo	Drupa c.i	bicolor	aves e mamíferos
Myristicaceae										
Virola bicuhyba	AR	0	0	Flr	CL	Grd	Zoo	Cápsula s.d	Vermelho	aves e mamíferos
Myrsinaceae										

Tabela 1 - Continuação

E4:-/E4:-	TT / 1.24		Área		(Guilda	s	Fr	ruto	Agente
Família/ Espécie	Hábito -	I	II	Ш	Reg	Estr	Disp	Tipo	Cor	dispersor
Myrsine coriacea	AR	0	16	1	P	Méd	Zoo	Drupa c.i	preto	aves e mamíferos
Myrsine gardneriana	AR	58	22	7	CL	Méd	Zoo	Drupa c.i	roxo	aves
Myrsine lineata	AR	0	2	0	CL	Méd	Zoo	Drupa c.i		
Myrsine umbellata	AR	0	126	74	CL	Méd	Zoo	Drupa c.i	vermelho	aves e mamíferos
Myrsine villosissima	AR	0	Flr	0	CL	Méd	Zoo	Drupa c.i	preto	aves
Myrtaceae										
Blepharocalyx salicifolius	AR	13	0	2	CL	Grd	Zoo	Baga globosa	vermelho	aves
Calyptranthes grandifolia	AR	1	0	0	CS	Méd	Zoo	Baga c.i	roxo	aves
Calyptranthes widgreniana	AR	14	0	Flr	CS	Grd	Zoo	Baga c.i	roxo-escuro	aves
Campomanesia guaviroba	AR	0	0	1	CL	Peq	Zoo	Baga c.i	amarelo	aves
Campomanesia laurifolia	AR	3	0	0	CL	Méd	Zoo	Baga c.i.	alaranjado	mamíferos
Campomanesia guazumifolia	AR	7	0	0	CL	Méd	Zoo	Baga c.i	amarelo	mamíferos
Eugenia brasiliensis	AR	0	0	1	CS	Grd	Zoo	Baga c.i.	preto	aves
Eugenia cerasiflora	AR	1	0	8	CS	Méd	Zoo	Baga c.i.	vermelho	aves
Eugenia dodonaeifolia	AR	0	4	0	CS	Grd	Zoo		vermelho	mamíferos
Eugenia involucrata	AR	0	0	Flr	CL	Méd	Zoo	Drupa c.i	preto	mamíferos
Eugenia mansoi	AR	7	0	0	CL	Méd	Zoo	Baga c.i	laranja	aves
Gomidesia anacardiifolia	AR	0	Flr	0	CL	Méd	Zoo	Baga c.i	vermelho	mamíferos
Marlierea excoriata	AR	1	0	0	CS	Méd	Zoo	Baga c.i.	Preto	aves
Marlierea racemosa	AR	1	0	6	CL	Méd	Zoo	Baga c.i	Preto	aves

Tabela 1 - Continuação

Familia / Famiaia	HZL24		Área		(Guilda	S		Fruto	Agente
Família/ Espécie	Hábito -	I	П	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Myrceugenia acutiflora		2	0	0	CL	Méd	Zoo	Baga c.i	vermelho	aves
Myrceugenia bracteosa		27	0	1	CL	Méd	Zoo	Baga c.i		aves
Myrceugenia miersiana		0	0	7	CS	Méd	Zoo	Baga c.i	preto	aves
Myrcia diaphana		0	Flr	8	CS	Méd	Zoo	Baga c.i		aves
Myrcia eriopus	AV	0	0	25	CS	Méd	Zoo	Baga c.i	vermelho	aves
Myrcia laruotteana	AB	Flr	0	Flr	CL	Méd	Zoo	Baga c.i		
Myrcia multiflora	AV	5	0	0	CS	Grd	Zoo	Baga c.i.	roxo	aves
Myrcia obovata	AR	0	0	Flr	CL	Méd	Zoo	Baga c.i	vermelho	mamíferos
Myrcia pulchra	AR	2	1	1	CS	Méd	Zoo	Baga c.i	preto	aves
Myrcia splendens	AR	0	7	60	CL	Méd	Zoo	Baga c.i		
Myrciaria floribunda	AB	0	0	Flr	CS	Méd	Zoo	Baga c.i.	vermelho	mamíferos
Myrciaria tenella	AR	1	0	Flr	CS	Méd	Zoo	Baga c.i.	vermelho	aves
Plinia cauliflora	AR	0	0	Flr	CS	Grd	Z00	Baga c.i	preto	
Siphoneugena densiflora		0	1	22	CS	Méd	Zoo	Baga c.i	preto	aves
Nyctaginaceae										
Guapira opposita	AR	0	16	30	CS	Méd	Zoo	Drupa c.i	vermelho	aves
Ochnaceae										
Ouratea parviflora	AB	3	0	4	CS	Méd	Zoo	Drupa c.i	Preto e vermelho	aves
Picramniaceae										
Picramnia glazioviana	AR	0	Flr	Flr	CS	Méd	Zoo		vermelho	aves

Tabela 1 - Continuação

Família/Fanásia			Área		(Guilda	S	Fı	ruto	_Agente
Família/ Espécie	Hábito	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Piperaceae										
Piper amalago	AR	0	1	0	CS	Méd	Zoo	Drupa c.i	verde	mamíferos
Piper cernuum	AB	0	0	1	CS	Peq	Zoo	Drupa c.i	verde	mamíferos
Piper crassinervium	AB	0	0	Flr	CS	Peq	Zoo	Drupa c.i		
Piper dilatatum	AB	0	0	1	CS	Peq	Zoo	Drupa c.i		
Podocarpaceae										
Podocarpus lambertii	AB	0	1	Flr	P	Méd	Zoo	Baga	roxo-escuro	aves
Podocarpaceae										
Podocarpus lambertii	AB	0	1	Flr	CL	Méd	Zoo	Baga	roxo-escuro	aves
Proteaceae										
Euplassa legalis	AB	0	0	2	CL	Grd	Zoo	Noz s.d	amarelado	aves
Euplassa organensis	AR	0	0	16	CL	Grd	Zoo			
Roupala brasiliensis	AR	0	1	Flr	CL	Grd	Ane	Folículo s.d	castanho	
Quiinaceae										
Quiina glaziovii	AR	0	Flr	0	CS	Méd	Zoo	Baga	laranja	mamíferos
Rosaceae										
Prunus myrtifolia	AR	6	18	26	CS	Méd	Zoo	Drupa c.i	roxo-escuro	aves e mamíferos
Rubiaceae										
Alibertia myrciifolia	AR	2	0	0	CL	Peq	Zoo	c.i	vermelho	aves
Amaioua guianensis	AR	0	2	15	CS	Méd	Zoo	Baga c.i	roxo	aves

Tabela 1 - Continuação

II. 41. / II. / .	TT /1 14		Área		(Guilda	S	F	ruto	Agente
Família/ Espécie	Hábito –	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Bathysa australis	AV	0	0	6	CS	Méd	Ane	Cápsula s.d		
Chomelia brasiliana	AR	42	0	0	CS	Grd	Zoo	c.i		
Coutarea hexandra	AR	2	0	0	CS	Méd	Ane	Cápsula s.d	verde-escuro	
Hillia parasitica	AB	0	0	Flr	CS	Peq	Ane			
Psychotria suterella	AR	0	1	2	CS	Peq	Zoo	Drupa c.i	azul	aves e mamíferos
Psychotria vellosiana	AB	0	51	213	CL	Peq	Zoo	Drupa c.i	preto	
Rudgea jasminoides	AB	0	0	2	CS	Méd	Zoo	Drupa c.i	vermelho	aves
Rudgea recurva	AB	0	0	1	CS	Méd	Zoo	Drupa c.i	branco	aves
Rutaceae										
Esenbeckia grandiflora	AR	0	2	10	CS	Peq	Aut	s.d	bicolor	aves
Pilocarpus pauciflorus	AB	0	0	Flr	CS	Peq	Aut	s.d	amarelado	aves
Zanthoxylum rhoifolium	AR	0	0	6	CL	Grd	Zoo	s.d	vinaceo	aves
Sabiaceae										
Meliosma brasiliensis	AR	0	6	2	CS	Méd	Zoo	Drupa		
Meliosma sellowii	AR	0	0	Flr	CS	Méd	Zoo	Drupa	verde	aves
Meliosma sinuata	AR	0	0	3	CS	Méd	Zoo	Drupa		
Salicaceae										
Casearia arborea	AR	0	0	86	CL	Grd	Zoo	Cápsula	roxo	aves
Casearia decandra	AR	0	0	26	CS	Méd	Zoo	Cápsula s.d	laranja	aves e mamíferos
Casearia mariquitensis	AB	0	0	Flr	CS	Méd	Zoo	Cápsula	bicolor	aves

Tabela 1 - Continuação

	TT /1 14		Área		(Guilda	S	Fı	ruto	Agente
Família/ Espécie	Hábito -	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Casearia obliqua	AR	0	0	34	CL	Grd	Zoo	Cápsula s.d	bicolor	aves
Casearia pauciflora		0	0	22	CL	Grd	Zoo	Cápsula	verde	mamíferos
Casearia rupestris	AR	0	2	0	CL	Peq	Zoo	Cápsula	verde escuro	aves
Casearia sylvestris	AR	4	0	0	P	Méd	Zoo	Cápsula c.d	verde escuro	aves
Xylosma prockia	AR	10	Flr	0	CL	Méd	Zoo		preto	aves
Xylosma venosa	AR	0	0	1	CL	Méd	Zoo		preto	aves
Sapindaceae										
Allophylus edulis	AR	13	0	3	CS	Méd	Zoo	Drupa s.d	vermelho	aves e mamíferos
Allophylus guaraniticus	AR	1	0	0	CS	Méd	Zoo	Drupa s.d	multicolor	aves
Cupania ludowigii	AR	1	0	Flr	CS	Méd	Zoo	Cápsula s.d		
Cupania zanthoxyloides	AR	22	1	Flr	CL	Méd	Zoo	Cápsula s.d	multicolor	aves
Cupania vernalis	AB	0	0	Flr	CL	Grd	Zoo	Cápsula s.d	marrom	aves
Matayba guianensis	AR	108	0	Flr	CL	Grd	Zoo	Cápsula s.d.	avermelhado	aves
Toulicia laevigata		0	0	15	CL	Méd	Ane	Cápsula		
Sapotaceae										
Chrysophyllum gonocarpum	AR	0	0	1	CL	Grd	Zoo	Drupa c.i	amarelo	aves e mamíferos
Pouteria caimito	AR	0	0	3	CL	Grd	Zoo	Baga c.i	amarelo	mamíferos
Pouteria guianensis	AR	0	0	Flr	CL	Grd	Zoo	Baga c.i	laranja	mamíferos
Solanaceae										
Brugmansia suaveolens	AR	0	0	Flr	CL	Peq	Aut			

Tabela 1 - Continuação

E41-/E4-1-	TT 41.44.		Área		(Guilda	s	F	ruto	Agente	
Família/ Espécie	Hábito -	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor	
Cestrum corymbosum		0	0	Flr	P	Peq	Zoo	c.i			
Cestrum schlechtendalii	AB	0	1	Flr	CS	Méd	Zoo	c.i	preto	aves	
Dyssochroma viridiflora	AB	0	0	1	CS	Peq	Zoo			mamíferos	
Solanum bullatum	AB	0	0	3	CL	Méd	Zoo	Baga c.i	verde	aves	
Solanum cinnamomeum	AB	0	1	21	CL	Méd	Zoo	Baga c.i	branco	aves	
Solanum granuloso-leprosum	AB	Flr	Flr	Flr	P	Méd	Zoo	Baga c.i	verde	aves e mamíferos	
Solanum lepidotum	AR	2	5	Flr	CL	Méd	Zoo	Baga c.i			
Solanum leucodendron	AR	0	0	Flr	CL	Grd	Zoo	Baga c.i	preto	aves	
Solanum pseudoquina	AR	0	4	3	CL	Peq	Zoo	Baga c.i	amarelado	aves	
Solanum swartzianum	AR	0	1	12	CL	Méd	Zoo	Baga c.i	arroxeado	mamíferos	
Styracaceae											
Pamphilia aurea	AR	0	0	4	CL	Grd	Zoo	c.i		aves	
Symplocaceae											
Symplocos celastrinea		122	1	3					roxo	aves	
Symplocos insignis	AB	0	Flr	1	CL	Méd	Zoo	c.i			
Theaceae											
Gordonia fruticosa	AR	0	3	20	CL	Méd	Zoo				
Thymelaeaceae											
Daphnopsis coriacea	AR	4	0	0	CL	Méd	Zoo			aves	
Daphnopsis fasciculata	AR	16	0	12	CL	Méd	Zoo		laranja	aves	

Tabela 1 - Continuação

Família/ Espécie			Área		(Guilda	s	Fru	ito	Agente
	Hábito	I	II	III	Reg	Estr	Disp	Tipo	Cor	dispersor
Daphnopsis martii	AR	0	3	0	CS	Méd	Zoo		laranja	aves
Daphnopsis sellowiana	AR	15	0	0	CS	Méd	Zoo			aves
Urticaceae										
Cecropia glaziovii	AR	0	0	2	P	Méd	Zoo	Sincárrpico c.i	roxo	aves e mamíferos
Cecropia hololeuca	AR	0	0	12	P	Grd	Zoo	Sincárrpico c.i	preto	aves e mamíferos
Coussapoa microcarpa	AR	0	0	Flr	CL	Méd	Zoo	Sincárrpico c.i	amarelo	mamíferos
Verbenaceae										
Duranta vestita	AB	30	0	0	CL	Peq	Zoo			
Vochysiaceae										
Vochysia magnifica	AB	0	0	183	CL	Grd	Ane	Cápsula s.d		
Vochysia tucanorum	AB	0	1	0	CL	Méd	Ane	Cápsula s.d		
Winteraceae								_		
Drimys brasiliensis	AR	0	1	4	CL	Méd	Zoo	Baga	roxo	aves

Tabela 2 - Tabelas de contingência com as freqüências observadas e esperadas (entre parênteses) de indivíduos arbustivos e arbóreos por guilda de regeneração, estratificação e dispersão em três áreas de mata ciliar em Bocaina de Minas, MG. * P < 0.05; ** P < 0.01; *** P < 0.001; ns = não significativo.

Guildas		Áreas		Qui-quadı	rado
Regeneração	Aluvião	Encosta RN	Encosta CS	X2	p
Pio	175 (172,6)	238 (125,4)	254 (369)	137,003	***
CL	803 (754)	505 (547,6)	1605 (1611,4)	6,528	*
CS	224 (275,4)	130 (200)	710 (588,6)	59,143	***
X2	12,8120	128,9667	60,8962		
p	**	***	***	202,675	***
Dispersão					
Ane	176 (271)	240 (196,8)	631 (579,2)	366,126	***
Aut	276 (140,5)	97 (102,1)	170 (300,4)	690,273	***
Zoo	750 (748,8)	514 (543,8)	1629 (1600,4)	1367,869	ns
outras	0 (41,7)	22 (30,3)	139 (89,1)	83,769	***
X2	205,525	13,620	89,738		
p	***	**	***	2170,788	***
Estratificação					
Peq	118 (109,2)	67 (79,3)	237 (233,4)	2,675	ns
Med	515 (618,1)	701 (448,9)	1172 (1321)	175,568	***
Grd	569 (474,7)	105 (344,8)	1160 (1014,5)	206,332	***
X2	36,6333	310,2263	37,7165		
p	***	***	***	384,576	***

Tabela 3 - Tabelas de contingência cruzando-se a distribuição das freqüências observadas e esperadas (entre parênteses) das espécies arbustivas e arbóreas registradas em três áreas de mata ciliar nas cabeceiras do rio Grande em Bocaina de Minas, MG, entre as guildas de dispersão e regeneração. Os resultados dos testes de qui-quadrado são apresentados para cada tabela como um todo e para as suas linhas e colunas, em separado.

Dispersão		Regeneração		Qui-qu	adrado
Aluvião	Pio	CL	CS	χ^2	P
Ane	6 (2,4)	7 (7,8)	2 (4,8)	7,085	*
Aut	2 (0,8)	2 (2,6)	1 (1,6)	2,151	ns
Zoo	5 (9,8)	33 (31,6)	23 (19,6)	3,000	ns
X2	9,492	0,273	2,471		
P	**	ns	ns	12,236	**
Encosta RN					
Ane	11 (4,1)	12 (10,8)	0 (8,1)	19,629	***
Aut	3 (1,3)	2 (3,3)	2 (2,5)	3,010	ns
Zoo	7 (14,2)	41 (37,1)	31 (27,7)	4,434	ns
Outras	0 (1,4)	0 (3,8)	8 (2,8)	14,829	***
χ^2	18,930	4,799	18,173		
P	***	ns	***	41,902	***
Encosta CS					
Ane	10 (4,3)	26 (19,3)	3 (15,4)	20,073	***
Aut	4 (1,4)	4 (6,4)	5 (5,1)	5,629	ns
Zoo	10 (17,5)	79 (79,3)	71 (63,3)	4,128	ns
Outras	0 (0,9)	0 (4)	8 (3,2)	12,230	**
χ^2	16,515	7,197	18,347		
P	***	*	***	42,060	***

Tabela 4 - Tabelas de contingência cruzando-se a distribuição das freqüências observadas e esperadas (entre parênteses) das espécies arbustivas e arbóreas registradas em três áreas de mata ciliar nas cabeceiras do rio Grande em Bocaina de Minas, MG, entre as guildas de dispersão e estratificação. Os resultados dos testes de qui-quadrado são apresentados para cada tabela como um todo e para as suas linhas e colunas, em separado.

Dispersão		Estratificação)	Qui-qu	adrado
Aluvião	Peq	Med	Grd	χ^2	P
Ane	1 (1,3)	6 (8,5)	8 (5,2)	2,340	ns
Aut	1 (0,4)	2 (2,8)	2 (1,7)	1,037	ns
Zoo	5 (5,3)	38 (34,6)	18 (21,1)	0,791	ns
χ^2	0,828	1,318	2,022		
P	ns	ns	ns	4,16	ns
Encosta RN					
Ane	1 (2,6)	13 (15,9)	9 (4,5)	5,92	ns
Aut	1 (0,8)	6 (4,8)	0 (1,4)	1,71	ns
Zoo	8 (8,8)	57 (54,7)	14 (15,5)	0,31	ns
Outras	3 (0,9)	5 (5,5)	0 (1,6)	6,64	*
χ^2	6,093	0,961	7,536		
P	0,107	0,811	0,057	14,58	***
Encosta CS					
Ane	4 (3,9)	16 (21,1)	19 (14)	3,015	ns
Aut	3 (1,3)	7 (7)	3 (4,7)	2,819	ns
Zoo	12 (16)	91 (86,5)	57 (57,5)	1,233	ns
Outras	3 (0,8)	5 (4,3)	0 (2,9)	9,027	*
χ^2	9,27564	1,56478	5,25434		
P	**	ns	ns	16,09	***

Tabela 5 - Tabelas de contingência cruzando-se a distribuição das freqüências observadas e esperadas (entre parênteses) das espécies arbustivas e arbórea registradas em três áreas de mata ciliar nas cabeceiras do rio Grande em Bocaina de Minas, MG, entre as guildas de regeneração e estratificação. Os resultados dos testes de qui-quadrado são apresentados para cada tabela como um todo e para as suas linhas e colunas, em separado.

Dispersão		Regeneração		Qui-qua	adrado
Aluvião	Peq	Med	Grd	χ^2	P
P	0 (1,1)	6 (7,4)	7 (4,5)	2,780	ns
CL	5 (3,6)	22 (23,9)	15 (14,5)	0,677	ns
CS	2 (2,2)	18 (14,8)	6 (9)	1,729	ns
χ^2	1,668	1,111	2,407		
P	ns	ns	ns	5,186	ns
Encosta RN					
P	1 (2,3)	15 (14,5)	5 (4,1)	0,961	ns
CL	4 (6,1)	38 (38,1)	13 (10,8)	1,172	ns
CS	8 (4,6)	28 (28,4)	5 (8,1)	3,771	ns
χ^2	4,096	0,020	1,789		
P	ns	ns	ns	5,90409	ns
Encosta CS					
P	2 (2,4)	12 (13)	10 (8,6)	0,362	ns
CL	6 (10,9)	52 (59)	51 (39,1)	6,617	*
CS	14 (8,7)	55 (47,1)	18 (31,2)	10,181	**
χ^2	5,498	2,236	9,427		
P	ns	ns	**	17,160	***

ARTIGO 4

MODELO DE CLASSIFICAÇÃO DE ESPÉCIES FLORESTAIS EM GRUPOS DE FUNÇÃO ECOLÓGICA PARA A RECUPERAÇÃO DE ÁREAS CILIARES NAS CABECEIRAS DO RIO GRANDE, MINAS GERAIS

(Preparado na forma de capítulo de livro: Mata ciliar)

Israel Marinho Pereira ¹ Soraya Alvarenga Botelho ¹ Ary Teixeira de Oliveira-Filho ¹

TÍTULO RESUMIDO: Modelo de classificação de espécies florestais

Autor para correspondência: Israel Marinho Pereira. e-mail: imarinhopereira@gmail.com

161

¹ Departamento de Ciências Florestais, Universidade Federal de Lavras, 37200-000 Lavras, MG.

RESUMO

A recuperação de ecossistemas alterados tem sido uma atividade cada vez mais necessária no contexto atual de redução das florestas brasileiras. A seleção das espécies que serão utilizadas na revegetação destas áreas é uma das grandes dificuldades. Os objetivos deste estudo foram: 1) conhecer a flora arbustivo-arbórea ocorrente em diferentes sítios de mata ciliar; 2) propor um modelo de classifição das espécies registradas em grupos de função ecológica; 3) gerar uma lista de espécies a serem utilizadas em programas de revegetação de áreas ciliares alteradas na região do estudo e 4) indicar as espécies, por grupo de função ecológica, para uso nas diferentes condições de sítio nas APPs de mata ciliar na região de estudo. O trabalho foi realizado no município de Bocaina de Minas (22°00'e 22°30'S e 44° 45'e 44° 15'W), na região do maciço do Itatiaia, na parte sul do estado de Minas Gerais. O levantamento das espécies foi realizado em 46 parcelas de 400m². Adotou-se como critério de inclusão o diâmetro à altura do peito (DAP) ≥ 5cm. Os sítios foram determinados com base nas análises de correspondência retificada (DCA) e de agrupamento de cluster fundamentado na média de grupo (UPGMA). As análises evidenciaram a formação de três sítios, em função dos gradientes de umidade do solo. Nos três sítios foram registradas, nos levantamentos florístico e fitossociológico, 286 espécies, sendo seis classificadas como pioneiras atrativas à fauna dispersora, duas pioneiras ativadoras da sucessão natural, 26 pioneiras ativadora da sucessão natural e atrativas à fauna dispersora, 86 clímax exigente de luz atrativa a fauna dispersora, 12 clímax exigente de luz ativadora da sucessão natural, 45 clímax exigente de luz ativadora da sucessão natural e atrativas à fauna dispersora e outras 109 classificadas como clímax tolerante à sombra. Também constatou-se que algumas espécies apresentaram distribuição ampla, ocorrendo desde sítios úmidos, sujeitos a alagamento até sítios mésicos. O levantamento fitossociológico detalhado em remanescentes e a caracterização das espécies registradas em grupos de função ecologia deve ser considerado como a base para a seleção das espécies que irão compor os plantios de recomposição das matas ciliares dentro de uma microbacia.

Palavras-Chave: mata ciliar, grupos de função ecologica, recomposição de áreas ciliares e seleção de espécies.

ABSTRACT

The recovery of altered ecosystems has became necessary for reducing the degradation of Brazilian forests. Due to the high diversity, the selection of species appropriated for the revegetação of these areas is not an easy task. The objectives of this study were: 1) to know the arbustive-arboreal flora occurring in different sites of ciliary forest; 2) to propose a classification model registering species in groups of ecological function; 3) to generate a list of species to be used in recovering programs of ciliary altered areas in the study area; 4) to indicate the species, by groups of ecological function, for being used in different site conditions in APPs of ciliary forest. The work was of Bocaina de Minas county (22°00'e 22°30 ' S and 44° 45'e accomplished in 44° 15 ' W), in the area of Itatiaia Mountain Range, in the south part of the State of Minas Gerais. The survey of the species was accomplished in 46 parcels of 400m2 each. It was adopted as inclusion criterion of the diameter at the breath height (DBH) (5cm. The sites were determined based on the analyses of rectified correspondence (DCA) and on cluster grouping based in the group average (UPGMA). The analyses evidenced the formation of three sites in function of soil gradients of humidity. In the three sites, in the floristic Phytossociological surveys, 286 species were registered. Six species were classified as attractive pioneers to the disperser fauna, two pioneers activators of the natural succession, 26 pioneers activator of the natural succession and attractive the disperser fauna, 86 demanding climax of attractive light to the disperser fauna, 11 climax light demanding activator of the natural succession, 46 climax light demanding activator of the natural succession and attractive to the disperser fauna and the remaining 109 were classified as climax tolerant. It was also verified that some species presented wide distribution, occurring from humid sites, subjects to flooding, to dry sites. The detailed Phytossociological survey in the remaining sites and the characterization of the species registered in groups of ecological function must be considered as the base for the selection of species that will compose the plantings for recovering the ciliary forests of micro watersheds.

Key words: ciliary forest, groups of ecological function, recovery of ciliary areas, selection of species.

.

1 INTRODUÇÃO

A recuperação de ecossistemas alterados tem se revelado cada vez mais necessária no contexto atual de redução das florestas brasileiras. A seleção das espécies que serão utilizadas na revegetação de áreas alteradas é considerada como uma das grandes dificuldades e a escolha das espécies que deverão ser usadas na recomposição de uma dada área é uma das principais garantias de sucesso da restauração (Maschio et al., 1992; Reis et al., 1996; Carvalho, et al., 2000; Rodrigues & Gandolfi, 2001; Botelho & Davide, 2002). No entanto, durante o surgimento e a evolução de uma floresta, as espécies demonstram exigências ambientais e biológicas muito específicas, e o simples plantio de espécies da flora regional não garante a sobrevivência destas mudas, nem a reconstrução da floresta.

Para Rodrigues & Gandolfi (1996), não basta somente dispor de uma lista de espécies selecionadas para o plantio, sendo necessário saber quantos indivíduos de cada espécie devem ser plantados. Em condições naturais, o número de indivíduos de cada espécie numa floresta resulta não apenas de uma complexa interação entre as próprias espécies vegetais e animais da comunidade, mas também de suas interações com as condições topográficas, edáficas e climáticas locais e do histórico de perturbações naturais e antrópicas locais.

Estudos detalhados sobre a composição florística e a ecologia das comunidades vegetais são fundamentais para embasar quaisquer iniciativas de preservação e conservação de remanescentes florestais, bem como para o desenvolvimento de modelos de recuperação de áreas degradadas, para a seleção de espécies para fins silviculturais e para a utilização racional dos recursos vegetais por meio do manejo adequado (Oliveira Filho, 1994). O conhecimento da composição florística e da estrutura fitossociológica de remanescentes ciliares torna-se um pré-requisito essencial nos projetos que visam a recomposição da vegetação de áreas as margens de rios, córregos e nascentes, com fins de

preservação e melhoria na qualidade da água. Os levantamentos fitossociológicos são úteis para diagnosticar tendências ou processos atuantes na cobertura vegetal, subsidiando, com isso, a intervenção nos ecossistemas e orientando o monitoramento dos impactos decorrentes da ação antrópica sobre o meio biofísico (Martins, 1993).

A base para a seleção das espécies é o conhecimento do ambiente de ocorrência natural e do comportamento silvicultural das espécies em diferentes condições de sítio. Assim, próximo às margens dos rios ou em áreas mais sujeitas a alagamento, devem-se utilizar espécies mais adaptadas às condições de umidade da área em que irá se desenvolver e a função que irá desempenhar no processo de reflorestamento (Botelho et al., 1995; Barbosa, 1999; Davide & Botelho, 1999; Lobo & Joly, 2000).

De acordo com Gómez-Pompa (1971), as espécies apresentam uma ampla variedade de respostas, havendo um gradiente de tolerância à luz nas diferentes fases do desenvolvimento. Em florestas tropicais, um indivíduo pode germinar sob determinadas condições ambientais e desenvolver-se em outras. Swaine & Whithmore (1988) categorizam as espécies arbóreas tropicais em pioneiras e clímax, sendo este último grupo subdividido em clímax exigente de luz e clímax tolerante à sombra. Para os referidos autores, as espécies pioneiras se estabelecem após perturbações que expõem o solo à luz. As espécies clímax exigente de luz também apresentam esse comportamento, porém, tem um ciclo de vida maior do que as pioneiras, tornando-se grandes árvores emergentes na floresta. Por outro lado, as espécies clímax tolerantes à sombra desenvolvem-se lentamente, à sombra das espécies pioneiras e clímax exigentes de luz, até atingirem o dossel, pois dependem da exposição ao sol para florescerem e frutificarem.

O conhecimento da classificação das espécies nos grupos ecológicos e o conhecimento do comportamento silvicultural da espécie em diferentes

condições de sítio, principalmente com relação ao ritmo de crescimento e à arquitetura de copa, também são importantes no processo de seleção (Botelho et al., 2001). Entretanto, é necessário observar que outros aspectos das espécies são importantes, como atração da fauna pelo fornecimento de abrigo e de alimento, o que pode indicar a importância da inclusão dessas espécies no plantio (Oliveira Filho, 1994).

A restauração não deve ter a pretensão de refazer uma floresta exatamente igual à que existia antes, mas, sim, colocar no campo uma composição de espécies, de forma tal que forneça condições para que essa nova comunidade tenha maior probabilidade de se desenvolver e se auto-renovar, ou que tenha maior probabilidade de ser sustentável. Sendo assim, a restauração busca a recuperação de parte da biodiversidade local e a facilitação dos processos biológicos relacionados à manutenção do ecossistema florestal, por meio do plantio, condução e manejo de espécies nativas (Kageyama et al., 2003).

No Brasil, importantes subsídios para a recuperação de áreas degradadas têm surgido de estudos de ecologia florestal nos diferentes ecossistemas impactados, onde tem se tratado de temas diversos, como a composição florística, a estrutura de comunidades, a dinâmica de clareiras, a regeneração natural e os parâmetros estruturais e genéticos de populações.

A metodologia recomendada para a recomposição das matas ciliares de Bocaina de Minas, no presente trabalho, teve como base as informações obtidas em campo sobre os diferentes tipos de áreas alteradas encontradas na região e do trabalho de Silveira et al. (2005), sobre uso conflitivo nas áreas de preservação permanente de Bocaina de Minas, MG, no qual contabilizou-se que 30,37% das áreas de preservação permanente situada ao longo dos cursos d'água e 22,73% do entorno das nascentes encontram-se ocupadas com pastagens, sendo a maioria degradada. Outros 3% das áreas de preservação permanente, ao longo

dos rios e no entorno das nascentes, encontram-se sobre solo exposto. Já 19% das áreas de preservação permanente ao longo dos rios e 24% no entorno das nascentes encontram-se em processo de regeneração. Porém, o processo de regeneração nestas áreas é dificultado pela infestação de *Gleichenia sp.* e *Pteridium sp.*, que dominam as fases iniciais de sucessão das áreas alteradas na região. Estas informações foram utilizadas para elaborar um fluxograma de decisão.

Mediante o exposto, pretende-se, com a realização deste trabalho, gerar informações que possam auxiliar no processo de seleção das espécies que irão compor os plantios, contemplando diversas características ecológicas e silviculturais das espécies ocorrentes em remanescentes da unidade fitogeográfica a ser recuperada. Os objetivos deste estudo foram: 1) conhecer a flora arbustivo-arbórea ocorrente em diferentes sítios de mata ciliar; 2) verificar se existe diferença na composição de espécies entre os diferentes sítios; 3) propor um modelo para classificar as espécies registradas em grupos de função ecológica; 4) gerar uma lista de espécies a serem utilizadas em programas de revegetação de áreas alteradas na região do estudo e 5) indicar as espécies, por grupo de função ecológica, para uso nas diferentes condições de sítio nas APPs de mata ciliar na região de estudo.

2 MATERIAL E MÉTODOS

2.1 Localização das áreas de estudo

As áreas de estudo ficam localizadas no município de Bocaina de Minas, na região do maciço do Itatiaia, na parte sul do estado de Minas Gerais e integram a bacias hidrográfica do rio Grande. O município se localiza entre as coordenadas geográficas 22°00'e 22°30'de latitude Sul e 44° 45'e 44° 15' de longitude Oeste, possuindo uma área de aproximadamente 498,26km². De

acordo com Carvalho et al. (2005), o clima da região é do tipo Cfa de Köppen (úmido subtropical); a temperatura média anual é de 16,7°C, com médias mensais variando de 13,0°C, em julho a 19,7°C, em janeiro; a precipitação média anual é de 2.108mm, com médias mensais variando de 341mm, no trimestre mais chuvoso (dezembro a fevereiro) a 35mm, no trimestre mais seco (junho a agosto). Os tipos de solos predominantes nas áreas estudadas são Latossolos e Argissolos, nas áreas de encosta e Neossolos Flúvicos nos leitos aluviais. No mapa da Figura 1 observa-se a localização do município no estado de Minas Gerais.

2.2 Estrutura fisionômica, diversidade e composição florística da comunidade arbórea

O levantamento da comunidade arbustivo-arbórea foi realizado em 46 parcelas de 400m², totalizando uma área amostral de 1,84ha distribuída em três remanescentes de mata ciliar conforme detalhado nos capítulos anteriores. No presente capítulo, as 46 parcelas foram analisadas separadamente, com o objetivo de identificar espécies típicas de cada microssítio.

As espécies foram amostradas por meio de um levantamento fitossociológico, em que todas as espécies ocorrentes no interior das parcelas foram amostradas. Também foram realizadas caminhadas fora das parcelas para registrar espécies que não tinham sido encontradas nas parcelas, e quando encontradas, foram incorporadas na composição florística.

Para descrever a estrutura da comunidade arbórea dos três sítios, foram calculados, por espécie, os parâmetros fitossociológicos clássicos propostos por Mueller-Dombois & Ellemberg (1974): densidade absoluta, frequência absoluta e valor de importância. Foram calculados, para cada sítio, o índice de diversidade de espécies de Shannon, H' e a equabilidade de Pielou, J' (Krebs 1989) em base logarítmica natural (Brower & Zar 1984).

2.3 Análises estatísticas das variáveis fissionomias

Para a interpretação das relações florísticas entre as parcelas foram empregadas duas técnicas de análise multivariada. A primeira constitui-se de uma análise de agrupamento de cluster fundamentada na média de grupo (UPGMA), utilizando o índice de similaridade de Jaccard (Sj) e a segunda de uma ordenação não paramétrica pela análise de correspondência retificada (DCA), que produz um diagrama de ordenação no qual as áreas se distribuem de acordo com a maior ou menor similaridade entre si (Hill & Gauch 1980). Ambas as análises foram realizadas no programa PC-ORD for Windows versão 4.14 (McCune & Mefford 1999), a partir de uma matriz de presença e ausência das 286 espécies amostradas no levantamento fitossociológico para a análise de agrupamento e uma matriz de espécies com abundância superior a 10 indivíduos na amostra total para a DCA. A comparação florística entre as 46 parcelas de mata ciliar inventariadas foi feita com o intuito de determinar o grau de similaridade florística existente entre elas e verificar se havia formação de grupos de parcelas distintos.

2.4 Classificação das espécies em grupos de funcionais

A sugestão de caracterizar as espécies em grupos de função ecológica é uma tentativa de contemplar as diversas metodologias utilizadas para a seleção das espécies que irão compor os plantios. Neste caso, pretende-se enfatizar a função que a espécie irá desempenhar no processo de recuperação, em que consideraram-se aspectos relacionados aos estágios sucessionais, interação das espécies com a fauna e com o ambiente, capacidade da espécie colonizar ambientes pobres, capacidade de associação destas espécies com fungos e ou bactérias. Foram contempladas tanto as espécies mais abundantes quanto as que ocorrem em menor abundância, que são consideradas por Kageyama et al., (2003) como as responsáveis pela alta diversidade das florestas tropicais.

As espécies amostradas nos diferentes sítios deram origem a uma matriz composta por uma série de informações de interações planta-fauna e planta-ambiente que indica quais as espécies que apresentam maior potencial de facilitar o processo de sucessão. De acordo com Carpanezzi (2005), a facilitação compreende todos os mecanismos pelos quais a sucessão é beneficiada, desde a melhoria do estado nutricional do solo, promovida por plantas fixadoras de N que colonizam uma área alterada até aquelas que atraem à fauna dispersora de sementes e polinizadora.

Foram consideradas como espécies atrativas à fauna aquelas espécies que na fase inicial da sucessão, terão a função de atrair a fauna dispersora para a área implantada, adicionando sementes oriundas de remanescentes não alterados, promovendo assim, a incorporação de novas espécies e a troca de fluxo gênico entre a área em recuperação e os remanescentes adjacentes.

Foram consideradas como facilitadoras atrativas à fauna dispersora (AFD), as espécies com síndrome de dispersão zoocórica, polinização zoófila e produtora de alimento para a fauna (fruto e ou sementes). Foram consideradas como espécies facilitadoras ativadoras da sucessão natural, aquelas espécies capazes de modificar o ambiente de forma mais eficiente, criando condições favoráveis aos mecanismos da regeneração natural da área. Pertencem a este grupo as espécies heliófitas capazes de colonizar e se estabelecerem em solos pobres, condições estas geralmente encontradas nos solos das áreas alteradas; espécies heliófitas com capacidade de associação com fungos micorrízicos que favorecem a absorção de nutrientes de baixa mobilidade no solo, notadamente fósforo, além de outros benefícios não nutricionais de grande importância em ambientes estressantes, como aqueles encontrados em áreas degradadas; espécies heliófitas com a capacidade de fixação biológica de nitrogênio; espécies heliófitas de crescimento rápido e heliófitas de copa ampla com capacidade de recobrimento do solo de forma mais rápida, promovendo sombreamento para as

espécies que necessitam de sombra. Para a classificação das espécies, as mesmas devem apresentar pelos menos uma característica relacionada às respectivas funções de atração à fauna e ou facilitação. Na Tabela 1 encontram-se as principais funções e características de cada uma das duas categorias de faciliatção abordadas no presente estudo.

Para a definição destas características, além das observações de campo, foram consultadas bibliografias especializadas (Reitz, 1965-1989; Mello-Silva, 1982; Vasconcelos, 1982; Faria at al., 1984; Inoue et al., 1984; Britez, 1991; Morellato, 1991; Guimarães et al., 1993; Carvalho, 1994; Eibl at al., 1994; Lima & Guedes-Bruni, 1994; Oliveira-Filho, 1994; Oliveira Filho et al., 1995; Lima & Guedes-Bruni, 1996; Meguro et al., 1996; Reis et al., 1996; Athayde, 1997; Lohmann & Pirani, 1998; Jung-Mendaçolli, 1999; Pedroni, 2000; Lorenzi, 2002a; 2002b; Quinet & Andreata, 2002; Zangaro et al., 2002; Andrade, 2003; Goldenberg, 2003; Pirani, 2003; Backes & Irgang, 2004; Guimarães et al., 2004; Lima et al., 2004; Lima & Guedes-Bruni, 2004; Mantovani et al., 2004), além de informações pessoais de Oliveira-Filho (2005).

Os grupos de espécies foram determinados com base na junção das informações obtidas na matriz de função ecológica das espécies heliófitas, adicionadas ao grupo ecológico que cada espécie pertence, dando origem a sete grupos distintos de espécies, em que: Grupo I: pioneira atrativa à fauna, Grupo II: pioneira ativadora da sucessão, Grupo III: pioneira atrativa a fauna e ativadora da sucessão, Grupo IV: clímax exigente de luz atrativa à fauna, Grupo V: clímax exigente de luz atrativa à fauna e ativadora da sucessão, Grupo VI: clímax exigente de luz atrativa à fauna e ativadora da sucessão e Grupo VII: clímax tolerante à sombra.

2.5 Caracterização silvicultural e ecológica das espécies

As espécies registradas foram caracterizadas em relação às suas características ecológicas e silviculturais, tais como: tipo de uso da espécie, distribuição geográfica da espécie, bioma e fitofisionomia de ocorrência da espécie, preferência quanto à umidade do solo, preferência quanto à fertilidade do solo, ritmo de crescimento, tolerância à geada, período de germinação, período de frutificação e coleta de sementes, número de sementes por fruto e por quilograma, método de beneficiamento de sementes; tratamento pré-germinativo adotado quando a espécie apresenta dormência, taxa de germinação, armazenamento, período de produção de mudas e associação micorrízica. Estas informações foram obtidas nos seguintes trabalhos: Corrêa (1931); Reitz et al. (1965-1989); Corrêa (1978); Vasconcelos (1982); Baumgratz (1984); Faria et al. (1984); Inoue et al. (1984); Chieia & Romaniuc-Neto (1992); Mello-Silva (1992); Guimarães et al. (1993); Carvalho (1994); Lima & Guedes-Bruni (1994); Davide et al. (1995); Oliveira-Filho et al. (1995); Bovini et al. (1996); Carvalho, et al. (1996); Lima & Guedes-Bruni (1996); Meguro et al. (1996); Nisizaki & Zangaro Filho (1996); Franco & Fontana (1997); Germano-Filho (1998); Lonhmann & Pirani (1998); Mendonça et al. (1998); Santos et al. (1998); Hipólito Neto & Oliveira (1999); Jung-Mendaçolli (1999); Barros (2000); Pedroni (2000); Salimena (2000); Davide et al. (2001); Rodrigues & Carvalho (2001); Souza & Bianchini (2001); Durigan et al. (2002); Lorenzi (2002a); Lorenzi (2002b); Quinet & Andreata (2002); Zangaro et al. (2002); Agostini & Sazima (2003); Barbosa & Martins (2003); Guimarães & Giordano (2003); Goldenberg (2003); Backes & Irgang (2004); Durigan et al. (2004); Goldenberg (2004); Lima et al. (2004); Lima & Guedes-Bruni (2004); Lorenzi et al. (2004) e Mantovani et al. (2004).

3 RESULTADOS E DISCUSSÃO

3.1 Composição, estrutura e diversidade dos sítios

A flora das matas ciliares das cabeceiras do rio Grande foi composta por 286 espécies, 144 gêneros e 62 famílias botânicas. A relação das espécies arbustivo-arbóreas amostradas nas 46 parcelas encontra-se na Tabela 2. Nos três sítios avaliados foram inventariados 4.644 indivíduos distribuídos em 236 espécies, 125 gêneros e 56 famílias botânicas. O maior número de espécies foi amostrado no sítio 3 (180) seguida do sítio 1 (68) e do sítio 2 (46).

Algumas espécies registradas nas matas ciliares de Bocaina de Minas, tais como: Coutarea hexandra, Cedrela fissilis, Chrysophyllum gonocarpum, Annona cacans, Guapira opposita, Cupania vernalis, Sloanea monosperma e Cordia superba, são consideradas por Leitão-Filho et al. (1996) e Durigan et al. (2001), como sendo de distribuição ampla nas matas ciliares do Brasil, mas ocorrem em baixa densidade. Estas características devem ser incorporadas nos modelos de recuperação, pois, segundo Kageyama & Lepsch-Cunha (2001), quando estas espécies são plantadas com densidade elevada, havendo grande probabilidade de fracasso, há vários registros de insucesso desses plantios. Por outro lado, espécies como Ocotea elegans, Alchornea glandulosa, Casearia sylvestris, Cordia ecalyculata, Syagrus romanzoffiana, Myrsine umbellata e Endlicheria paniculata são espécies de ampla distribuição e que ocorrem em densidades elevadas (Durigan et al., 2001).

Os valores de densidade obtidos foram 3.005, 2.405 e 2.225 indivíduos. ha⁻¹, para os sítios 1, 2 e 3, respectivamente. A densidade pode ser considerada como o principal parâmetro fitossociológico do ponto de vista silvicultural, pois, permite ao técnico responsável pela recomposição de uma determinada área definir o espaçamento a ser adotado, além de ser fundamental na determinação no número de mudas de cada espécie a ser plantada.

Destaca-se pela alta densidade e freqüência no sítio 1, *Sebastiania* commersoniana (435 indivíduos.ha⁻¹), *Anadenanthera colubrina* (345 indivíduos.ha⁻¹), *Matayba guianensis* (270 indivíduos.ha⁻¹), *Sebastiania* brasiliensis (193 indivíduos.ha⁻¹), e *Chomelia brasiliana* (103 indivíduos.ha⁻¹), todas com freqüência absoluta de 100% (Tabela 2). No sítio 2, verifica-se que as espécies *Croton organensis* (583 indivíduos.ha⁻¹), *Myrsine umbellata* (375 indivíduos.ha⁻¹) e *Tibouchina arborea* (142 indivíduos.ha⁻¹) apresentaram-se todas com freqüência absoluta de 100%. Para o sítio 3, as espécies com maior densidade foram *Vochysia magnifica* (139 indivíduos.ha⁻¹), *Myrsine umbellata* Mart. (117 indivíduos.ha⁻¹), *Psychotria vellosiana*, (197 indivíduos.ha⁻¹) e *Tibouchina pulcra* (139 indivíduos.ha⁻¹). Os valores de freqüência absoluta para estas espécies variaram de 73% a 83% (Tabela 2).

Os índices de diversidade de Shannon (H') e os índices de equabilidade de Pielou (J') para os três sítios foram de 3,18, 3,53 e 4,08 e 0,75, 0,76 e 0,82, respectivamente, para os sítios 1, 2 e 3, respectivamente.

3.2 Distribuição das espécies

Os resultados das análises de agrupamento e de correspondência retificada (DCA) para os padrões florísticos das 46 parcelas de mata ciliar de Bocaina de Minas, encontram-se representados nas Figuras 2 e 3, podendo-se constatar, tanto na análise de agrupamento (Figura 2), quanto na DCA (Figura 3), que houve a formação de três grupos de parcelas: o primeiro formado pelas dez parcelas da área de aluvião com inundação periódica; o segundo formado pelas três parcelas de aluvião sujeito à inundação rápida durante o peródo de maior vazão do rio e o terceiro, formado pelas demais 33 parcelas situadas nas encostas. Cada grupo pode ser considerado com um sítio. Os grupos 1 e 2, ambos sobre solos aluviais com diferente intensidade de inundação, apresentaram composição florística bastante distinta, o que pode ser justificado

pelo fato de que, no primeiro, o período de alagamento se estende durante todo o período das chuvas, enquanto que, no segundo, ocorrem apenas inundações rápidas, durante o período de maior vazão do rio. Já o terceiro grupo foi formado pelas 33 parcelas de encosta que encontram-se mais distantes do rio, ou seja, na faixa de solos mésicos. Os resultados obtidos, tanto na DCA, quanto no dendrograma (Figuras 2 e 3), permitem sugerir que cada grupo formado representa um sítio distinto e, quando o objetivo for selecionar espécies para compor plantios de recoposição de áreas ciliares, esta seleção deve ser feita com base nestes grupos (sítios).

As informações geradas a partir da utilização de técnicas de análises multivariadas, como a DCA, serão de grande importância para nortear os programas de recomposição de áreas ciliares, principalmente no que diz respeito à separação das parcelas amostradas em grupos caracterizando assim, os diferentes sítios.

Os autovalores produzidos pela DCA foram de 0,884 e 0,321 para os dois primeiros eixos. De acordo que Kent & Coker (1992), os autovalores de uma ordenação representam a contribuição relativa de cada eixo de ordenação na variação total dos dados e são expressos em uma escala de 0 a 1. O autovalor obtido para o eixo 1 da ordenação foi bastante alto (>0,5), o que sugere que a maioria das espécies apresente distribuição mais restrita a um determinado sítio (ter Braak 1995). Isso foi constatado quando comparou-se a composição florística dos três sítios, conforme o diagrama de Venn (Figura 4), observando-se que 43 das 68 (63%) espécies registradas foram exclusivas do sítio 1. O que permite sugerir que estas espécies sejam utilizadas apenas nas áreas sobre solos de aluviões sujeitos a inundações periódicas. Estas espécies são: *Allophylus guaraniticus, Calyptranthes grandifoli, Austrocritonia velutina Cupania ludowigii, Lafoensia densiflora, Marlierea excoriata, Myrciaria tenella, Ocotea indecora, Ocotea puberula, Trichilia emarginata, Acacia polyphylla, Alibertia*

myrciifolia, Cinnamodendron dinisii, Coutarea hexandra, Machaerium brasiliense, Myrceugenia acutiflora, Ilex amara, Ocotea diospyrifolia, Syagrus romanzoffiana, Casearia sylvestris, Daphnopsis coriacea, Ocotea pulchella Myrcia multiflora, Tabebuia heptaphylla, Campomanesia guazumifolia, Eugenia mansoi, Nectandra lanceolata, Machaerium condensatum, Xylosma prockia, Inga vulpina, Machaerium hirtum, Calyptranthes widgreniana, Daphnopsis sellowiana, Ilex theezans, Croton floribundus, Duranta vestita, Cassia ferruginea, Vitex megapotamica, Rollinia emarginata, Chomelia brasiliana, Sebastiania brasiliensis, Matayba guianensis e Sebastiania commersoniana. Outras 12 espécies (23,9%) tais como Alsophila sternbergii, Cestrum schlechtendalii, Cyathea atrovirens, Escallonia bifida, Ilex paraguariensis, Miconia cinerascens, Miconia divaricata, Myrsine lineata, Daphnopsis martii, Tibouchina sellowiana e Mimosa scabrela, foram exclusivas do sítio 2, o que sugere que elas sejam utilizadas nos plantios de recomposição apenas nas áreas de aluvião sujeitas a inundações rápidas. Já outro grupo formado por 130 espécies só ocorreu no sítio 3, que corresponde as áreas de encostas caracterizadas como sítio mésico.

As espécies *Anadenanthera colubrina* e *Aegiphila obducta* foram as únicas comuns entre os dois sítios de aluvião. Muito embora, haja na literatura indicações de que a primeira espécie seja típica de ambientes mésicos, nas matas ciliares de Bocaina de Minas, ela ocorreu apenas nas áreas de aluviões. Por outro lado, seis espécies (2,54%) ocorreram nos três sítios, o que sugere que, para a região do presente estudo, as espécies *Maytenus robusta*, *Solanum lepidotum*, *Symplocos celastrinea*, *Sapium glandulosum*, *Myrsine gardneriana* e *Prunus myrtifolia* poderão ser utilizadas nos plantios para fins de recomposição de áreas ciliares, desde ambientes sujeitos a inundações periódicas até ambientes mésicos, como aqueles encontrados nas encostas.

Na Tabela 3, encontra-se a relação das 286 espécies ocorrentes nas matas ciliares das cabeceiras do rio Grande e a sua indicação para plantio de acordo com o sítio.

3.3 Classificação das espécies em grupos de função e seleção para plantio

A caracterização das espécies em grupos funcionais, de acordo com o potencial de facilitação, como sugerido no presente trabalho, é uma forma de adicionar características importantes de algumas espécies no processo de seleção daquelas que irão compor os plantios, como o potencial em atrair a fauna de dispersores de sementes, bem as características de rusticidade de algumas espécies que atuam como ativadoras do processo de sucessão. Tais características são fundamentais, principalmente para as áreas degradadas que encontram-se com solos em condições físicas, químicas e ou biológicas alteradas.

A relação das 286 espécies registradas nos levantamentos florísticos e fitossociológicos em relação aos oito grupos de aptidões ecológicas definidos neste trabalho encontra-se na Tabela 3. Verifica-se que seis espécies foram classificadas como pioneiras atrativas à fauna (grupo I), duas como pioneiras ativadoras da sucessão (grupo II), 26 espécies foram classificadas como pioneiras atrativas à fauna e ativadoras da sucessão (grupo III), 86 espécies como clímax exigente de luz atrativas à fauna (grupo IV), 12 como clímax exigente de luz ativadoras da sucessão, 45 como clímax exigente de luz atrativas à fauna e ativadoras da sucessão (grupo VI) e outras 109 espécies como clímax tolerante à sombra (grupo VII).

Também na Tabela 3, encontra-se a indicação do sítio onde cada espécie pode ser utilizada, a qual foi determinada em função de sua ocorrência nos sítios, sem levar em consideração a sua abundância.

Cada área a ser revegetada deve ser avaliada minuciosamente no que se refere aos atributos do sítio. Além da caracterização do solo, aspectos da declividade devem ser considerados, pois são essenciais para a completa caracterização do ambiente em relação a umidade, freqüência de alagamento e profundidade do lençol freático (Oliveira-Filho & Ratter, 1995; Ribeiro & Schiavini, 1998; Martins 2001). Este conhecimento será essencial para definir a amplitude das faixas de influência da água (Felfili et al., 2000; Botelho & Davide, 2002).

De acordo com Kageyama & Gandara (2001), o sucesso da escolha das espécies depende não só dos conhecimentos básicos sobre ecologia, demografia, genética e biogeografia, mas também das informações das condições bióticas e abióticas do sítio, da disponibilidade de conhecimentos silviculturais destas espécies, envolvendo produção e beneficiamento de sementes e produção de mudas. Para Campello (1998), um dos grandes problemas apontados na literatura como sendo as causas do uso de um número pequeno de espécies nos programas de reabilitação de áreas alteradas é a falta de conhecimento das características silviculturais de grande parte das espécies nativas. Visando preencher parte desta lacuna, reuniu-se neste trabalho, uma série de informações obtidas em diversas publicações sobre informações silviculturais de parte das espécies registradas nos levantamentos florísticos e fitossociológicos das matas ciliares de Bocaina de Minas. Nas Tabelas 4 e 5 encontra-se uma relação das espécies registradas nas matas ciliares, seguida de suas informações ecológicas e silviculturais, tais como preferência em relação à umidade do solo, preferência em relação à fertilidade do solo, ritmo de crescimento, diferentes possibilidades, época de produção de sementes, método de beneficiamento de sementes, tratamento pré-germinativo, taxa de germinação, capacidade de armazenamento e período de produção de mudas.

Com relação aos tipos de usos, vale salientar que, apesar de constar na Tabela 4 uso relacionado à exploração madeireira, tais como: energia, madeira e cabos para ferramentas, etc., que demandam de abate de árvore, estes não serão permitidos em caso de reflorestamentos ambientais, visando o restabelecimento de áreas de preservação permanente, que é o objetivo maior do presente trabalho. Contudo, várias outras formas de usos estão presentes nesta mesma Tabela.

3.4 Definição do método de recomposição

Para definir o método de recuperação a ser adotado para as áreas ciliares de Bocaina de Minas, elaborou-se um fluxograma de decisão (Figura 5). Neste diagrama, encontram-se os principais passos para a tomada de decisão das ações a serem realizadas nos diferentes tipos de alterações encontrados nas APPs da região das cabeceiras do rio Grande.

Nas áreas onde a ação antrópica não foi muito severa e ainda existe resiliência no local, apenas o isolamento destas áreas e a eliminação dos fatores de degradação podem ser suficientes para que o processo de sucessão evolua com ingresso e desenvolvimento das novas espécies. No entanto, isso só será possível nos locais onde existam remanescentes nas proximidades. A regeneração natural é o procedimento mais econômico para recuperar áreas alteradas. No entanto, deve-se considerar que o processo de regeneração natural transcorrerá de forma mais lenta, quando comparado com a implantação pelo plantio de mudas. A velocidade da regeneração de uma determinada área após distúrbio não está condicionada apenas ao tipo de impacto inicial, mas também a outros fatores determinantes, como presença de plântulas e ou brotações, banco de sementes remanescente no solo e das sementes introduzidas na área, provenientes de áreas vizinhas (Harper 1977; UHL et al., 1982; Whitmore, 1984).

Segundo Botelho et al. (2001), quando se avalia a possibilidade de uso do processo de regeneração natural como método de regeneração de florestas de proteção, o ponto principal a ser considerado se refere ao conhecimento das condições básicas para que o processo ocorra. A regeneração pode ser favorecida por meio de operações silviculturais que propiciem melhores condições do sítio, favoreçam o ambiente para que as sementes existentes no banco de sementes e recém-chegadas por meio da chuva de sementes germinem, e as plântulas se estabeleçam. Vale salientar que práticas simples, como a construção de cercas nos locais onde haja presença de gado e a construção de aceiros nas regiões onde se constuma utilizar o fogo como prática agrícola e ou silvicultural, são muito importantes para o sucesso da recuperação de uma área por meio da regeneração natural.

Nas áreas de agricultura ou pastagem abandonadas sem alterações na estrutura do solo, onde há ausência de plantas colonizadoras, mas existem remanescentes nas proximidades, recomenda-se o plantio de espécies dos grupos I, II, III, V e VI (Figura 5). Neste caso, deve-se dar ênfase às espécies ativadoras do processo de sucessão, uma vez que existem remanescentes nas proximidades e, a partir do estabelecimento destas espécies, outras, mais exigentes em solo e que necessitam de sombra, podem se estabelecer por meio da dispersão de propágulos vindos dos remanescentes existentes nas proximidades. Caso não exista remanescente nas proximidades deve-se realizar o plantio de mudas de espécies de todos os grupos com máxima diversidade.

O plantio de mudas ainda é o método mais comum de reflorestamento no Brasil. Segundo Santarelli (2001), a grande dificuldade dos reflorestamentos com espécies nativas tem sido a obtenção de mudas com a qualidade e na quantidade desejadas, assim como na diversidade de espécies. Segundo Botelho & Davide (2002), o plantio de mudas pode ser realizado tanto para plantios em área total, nos locais onde não existe mais vegetação arbórea, como dentro do

sistema de enriquecimento de áreas que apresentam plantas colonizadoras de estágios iniciais de sucessão.

Para as áreas com presença de plantas colonizadoras onde for detectada a ocorrência de espécies com antibiose, como *Pteridium* sp. e *Gleichenia* sp., que chegam a formar verdadeiros maciços, dificultando o processo de regeneração, deve-se realizar o controle populacional destas espécies. O objetivo é minimizar a competição com a regeneração das espécies arbóreas, possibilitando o avanço sucessional e, em seguida, realizar o enriquecimento da área com espécies dos grupos IV e VI, quando existirem remanescentes nas proximidades, e dos grupos IV, VI e VII, quando não tiver outras fontes de propágulos nas proximidades. Por outro lado, se for detectada a presença de indivíduos regenerantes e não houver dominância de espécies com antibiose, recomenda-se o enriquecimento da área com espécies dos grupos III, VI, e VII (Figura 5). Neste caso, deve-se priorizar as espécies atrativas à fauna dispersora e aquelas de estágios mais avançado de sucessão ecológica, pois, já existem espécies colonizadoras no local, que melhoram o solo e proporcionam o sombreamento necessário para aquelas espécies dos estágios mais avançados.

Enriquecer uma área secundária (capoeiras) significa adicionar espécies arbóreas que não estão presentes na área e ou aumentar sua densidade, contribuindo para o incremento da biodiversidade e para a aceleração na regeneração da floresta. Portnto, o enriquecimento deve ser adotado para as áreas que já possuem uma cobertura vegetal composta por arbustos e ou árvores de estágios iniciais de sucessão já estabelecidas.

Nas áreas com alterações na estrutura física, química e biológica do solo, nos sítios onde o plantio é inevitável, pois a área perdeu parte e ou toda a resiliência, recomenda-se o uso de espécies adaptadas a solos pobres e que geralmente se estabelecerem em ambientes alterados e que proporcionem condições favoráveis para os mecanismos de regeneração natural. Nestes sítios,

quando existirem remanescentes nas proximidades, recomenda-se o uso de espécies dos grupos I, II, III, V e VI (Figura 5). Neste caso, procura-se adicionar ao plantio espécies ativadoras da sucessão, visando melhorar as condições de solo do local e, a partir destas melhorias, outras espécies mais exigentes em solo podem ser disseminadas e se desenvolverem nesta área. Quando não houver remanescente próximo, recomenda-se o plantio com espécies de todos os grupos, com o máximo de diversidade, sendo recomendado o uso de um maior número de mudas das espécies dos grupos II, III, IV e VI, que têm a função de ativar o processo de sucessão e atrair a fauna de dispersores que, vindos de outras áreas, podem incorporar outras espécies.

Para as áreas situadas ao longo dos cursos d'água sobre solos aluviais sujeitos a inundações periódicas, recomenda-se o uso de espécies que tolere encharcamento, principalmente aquelas que serão plantadas na faixa mais próxima do curso d'água. A relação destas espécies pode ser obtida nas Tabelas 2 e 3. de

4 CONCLUSÕES

Com base nos dados obtidos no presente estudo, pôde-se concluir que:

- a análise de correspondência retificada (DCA) mostrou uma tendência de separação dos sítios em grupos distintos, o que evidencia a necessidade de analisar as áreas a serem recuperadas em relação aos diferentes sítios, no caso das matas ciliares, principalmente em relação ao efeito da influência da umidade, em dependência da declividade e tipo de solo;
- houve diferença significativa na composição das espécies em relação aos diferentes tipos de sítio avaliados, com a formação de três grupos, representados pelos sítios aluvião com inundação periódica, aluvião com inundação rápida e encosta, representando o sítio mésico.

5 REFERÊNCIAS BIBLIOGRÁFICAS

AGOSTINI, K.; SAZIMA, M. plantas ornamentais e seus recursos para abelhas no campus da Universidade Estadual de Campinas, estado de São Paulo, Brasil. **Bragantia**, Campinas, v.62, n.3, p.335-343, 2003.

ANDRADE, M. A. de. Árvores zoocóricas como núcleo de atração de avifauna e dispersão de sementes. 2003. 91p. Dissertação (Mestrado em Engenharia Florestal)- Universidade Federal de Lavras, Lavras.

BACKES, P. & IRGANG, B. Mata Atlântica: As árvores e a paisagem. Porto Alegre: Editora Paisagem do Sul. 2004, 393p.

BARBOSA, L. M. & MARTINS, S. E. **Diversificando o reflorestamento no Estado de São Paulo: espécies disponíveis por região e ecossistema**. São Paulo: Instituto de Botânica, 2003. 64p (Manual, 10).

BARBOSA, L. M. Considerações gerais e modelos de recuperação de formações ciliares. In: RODRIGUES, R. R. & LEITÃO-FILHO, H.F. **Matas ciliares**: Conservação e Recuperação. 2. ed. São Paulo: Editora da Universidade de São Paulo/Fapesp, 2001. p.289 - 312.

BARBOSA, L. M. Implantação de mata ciliar. In: SIMPÓSIO MATA CILIAR CIÊNCIA E TECNOLOGIA. **Anais...** Belo Horizonte. 1999. p.111-135.

BARROS, F. de. **Flora fanerogâmica da Ilha do Cardoso (São Paulo, Brasil**): Canellaceae. v. 7, p.33-39, 2000.

BAUMGRATZ, J. F. A. Miconias do estado do Rio de Janeiro\; seção Chaenanthera Naudin (Melastomataceae). **Rodriguesia**, Rio de Janeiro, v.36, n.60, p.47-58, set., 1984.

BOTELHO, S. A.; DAVIDE, A. C. **Métodos silviculturais para recuperação** de nascentes e recomposição de matas ciliares. In: Simpósio Nacional sobre

Recuperação de Áreas Degradadas, 5, 2002.: Água e Biodiversidade. Belo Horizonte, 2002. p.123-145.

BOTELHO, S.A.; FARIA, J.M.R.; FURTINI NETO, A.E.; RESENDE, A.V. Implantação de floresta de proteção. Lavras: UFLA/FAEPE, 2001. 81p. (Curso de Pós-graduação. "Lato Sensu" (Especialização) a distânciaGestão e Manejo Ambiental em Sistemas Florestais).

BOTELHO, S. A.; DAVIDE, A. C.; PRADO, N. S. & FONSECA, E. M. B. Implantação de mata ciliar. Belo Horizonte: CEMIG/UFLA, 1995, 28p.

BOVINI, M. G.; CARVALHO, L. D. F. de. & BASISIO, B. M. Flora fanerogâmica da Ilha do Cardoso (São Paulo, Brasil): Solanaceae. v.4, p.19-41, 1996.

CAMPELLO, E. F. C. Sucessão vegetal na recuperação de áreas degradadas. In: DIAS, L. E.; MELLO, J. W. V. de: **Recuperação de áreas degradadas**. UFV, p.183-196, 1998.

CARPANEZZI, A. A. Fundamentos para a reabilitação de ecossistemas florestais. In: GALVÃO, A. P. M. & SILVA, V. P. **Restauração florestal**: fundamentos e estudos de caso. Colombo: Embrapa Florestas, 2005. 139p.

CARVALHO, D. A. de.; OLIVEIRA FILHO, A. T.; VILELA, E. de. A.; CURI, N. Florística e estrutura da vegetação arbórea de um fragmento de floresta semidecidual ás margens do reservatório da usina hidrelétrica Dona Rita (Itambé do Mato Dentro, MG). **Acta Botanica Brasilica**. Rio de janeiro. 14, 37-55. 2000.

CARVALHO, P. E. R. Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA-CNPF. Brasília. 1994. 640p.

CARVALHO, P. E. R. Influência da intensidade luminosa e do substrato no crescimento, no conteúdo de clorofila e na fotossíntese de Cabralea canjerana (Vell.) Mart. subsp. canjerana, Calophyllum brasiliense Camb. e Centrolobium robustum (Vell.) Mart. ex Benth., na fase juvenil. 1996. 157p. Tese (Doutorado em Engenharia Florestal) - Universidade Federal do Paraná, Curitiba.

CHIEIA, S. A. C. & ROMANIUC-NETO, S. Flora fanerogâmica da Ilha do Cardoso (São Paulo, Brasil): Aquifoliaceae. v.2, p.15-19, 1992.

CORREA, M. P. Dicionário das plantas úteis do Brasil e das exóticas cultivadas. Rio de Janeiro: Serviço de Informação Agrícola, 1978. v.xxx

CORREA, M. P. **Dicionário de plantas úteis do Brasil. Rio de Janeiro**: Ministério da Agricultura, 1931. v.1, p.431-433.

CRESTANA, M. S. M.; FERRETTI, A. R.; SCHMIDT, H. A. P. & GUARDIA, J. F. C. Florestas sistemas de recuperação com mudas de essências nativas, produção de mudas e legislação. 2ª ed. Campinas, CATI, 2004. 216p.

DAVIDE, A. C.; FARIA, J. M.; BOTELHO, S. A. **Propagação de espécies florestais**. Belo Horizonte:CEMIG/UFLA, 1995, 45p.

DAVIDE, A. C.; LEITE, J. A. C. & TONETTI, O. A. O. Influência do endocarpo e da lavagem de sementes na germinação de jerivá (Syagrus romanzoffiana (Cham.) Glassm). ABRATES. V. 11 – n. 2 – Set. 2001. p.283. 472.

DAVIDE, A. C.; BOTELHO, S. A. Análise crítica dos programas de reposição de Matas Ciliares em Minas Gerais. In: SIMPÓSIO MATA CILIAR: Ciência e Tecnologia, Belo Horizonte, MG, **Anais...** p.172-188. 1999.

DURIGAN, G. & VILAS BOAS, O. Pesquisas em conservação e Recuperação ambiental no Oeste Paulista: resultados da cooperação Brasil/Japão.Instituto Florestal. Secretaria do Meio Ambiente. São Paulo: páginas & letras Editora e Gráfica, 2004.484p.

DURIGAN, G.; FIGLIOLIA, M. B.; KAWABATA,M.; GARRIDO, M. A. de. O. & BAITELLO, J. B. **Sementes e mudas de árvores tropicais**. Instituto Florestal, 2^a. Ed., São Paulo, 2002.65p.

DURIGAN, G.; RODRIGUES, R. R. & SCHIAVINI, I. A heterogeneidade ambiental definindo a metodologia de amostragem da floresta ciliar. In: RODRIGUES, R. R. & LEITÃO-FILHO, H.F. **Matas ciliares**: Conservação e Recuperação. 2. ed. São Paulo: Editora da Universidade de São Paulo/Fapesp, 2001. p.159- 161.

EIBL, B. I.; SILVA, F.; CARVALHO, A.; CZEREPAK, R.; KEHL, J. Ensayos de germinación y análisis cuantitativo en semillas de especies forestales nativas de Misiones, R.A. Yvyraretá, Eldorado, v.5, n.5, p.33-48, 1994.

FARIA, S. M. de; FRANCO, A. A.; MENANDRO, M. S.; JESUS, R. M. de; BAITELLO, J. B.; AGUIAR, O. T. de.; DÖBEREINER, J. Levantamento da nodulação de leguminosas florestais nativas na região sudeste do Brasil.

Pesquisa Agropecuária Brasileira, Brasília, v.19, p.143-153, 1984.

FELFILI, J. M.; RIBEIRO, J. F.; FAGG, C. W.; MACHADO, J. W. B.

Recuperação de matas de galeria. Planaltina: Embrapa Cerrados, 2000. 45 p. (Embrapa Cerrado. Documentos, n. 21).

FRANCO, I. J.; FONTANA, V. L. **Ervas & plantas**: a medicina dos simples. Erechim: Imprimax, 1997. 177p.

FOWLER, J. A. P. & MARTINS, E. G. Manejo de sementes de espécies florestais. Colombo: EMBRAPA FLORESTAS, 2001. 71p. (EMBRAPA FLORESTAS – Documentos, 58).

GALETTI, M. E. & STOZT, D. "Miconia hypoleuca (Melastomataceae) como espécie-chave para aves frugivoras no sudeste do Brasil". **Revista Brasileira de Biologia**, 56 (2): 435-439. 1996.

GERMANO-FILHO, P. Estudo taxonômico do gênero Bathysa C. Presl (Rubiaceae, Rondeletieae), no Brasil. **Rodriguesia**, Rio de Janeiro, v.50, n.76/77, p.49-75, 1998.

GOLDENBERG, R. O gênero Miconia (Melastomataceae) no Estado do Paraná, Brasil. **Acta Botanica Brasílica**, v.54, n.84, p.21-46. 2003.

GÓMEZ-POMPA, A.; WIECHERS, B. L. **Regeneration de selvas.** Mexico: Continental, 1976. p.11-30.

GUIMARÃES, E. F. & GIORDANO, L. C. da. S. Piperaceae do nordeste brasileiro I: estado do Ceará. **Rodriguesia**, Rio de Janeiro, v.55, n.84, p.21-46, 2004.

GUIMARÃES, E. F.; MAUTONE, L.; RIZZINI, C. T.; MATTOS-FILHO, A. de. **Árvores do Jardim Botânico do Rio de Janeiro**. Rio de Janeiro: Jardim Botânico, 1993. 198p.

HARPER, J. L. **Population biology of plants**. New York: Academic Press, 1977. 892p.

HILL, M. O. & GAUCH, H. G. Detrended correspondence analysis, an improved ordination tecnique. **Vegetation**, Dordrecht, v. 42, n.1, p.47-58, feb. 1980.

HIPÓLITO NETO; OLIVEIRA, P. Fenologia e biologia reprodutiva de Annonaceae de matas do Brasil Central. In: CONGRESSO NACIONAL DE BOTÂNICA, 50., 1999, Blumenau. **Resumos...** Blumenau: Sociedade Botânica do Brasil / Universidade Regional de Blumenau, 1999. p.199.

INOUE, M. T.; RODERJAN, C. V.; KUNIYOSHI, S.Y. Projeto madeira do Paraná. Curitiba: FUPEF, 1984. 260p.

JUNG-MENDAÇOLLI, S.L. Flora fanerogâmica da Ilha do Cardoso (São Paulo, Brasil): Rubiaceae. v.6, p.45-142, 1999.

KAGEYAMA, P. Y.; GANDARA, F. B.; OLIVEIRA, R. E. Biodiversidade e restauração da floresta tropical. In: KAGEYAMA, P. Y.; OLIVEIRA, R. E.; MORAES, R. E.; ENGEL, V. L.; GANDARA, F. B. **Restauração ecológica de ecossistemas naturais**. Botucatu-SP: FEPAF, 2003. p.27-48.

KAGEYAMA, P. Y.; LEPSCH-CUNHA, N. M. Singularidade da biodiversidade nos trópicos. In: Garay, I.; DIAS, B. Conservação da biodiversidade em ecossistemas tropicais. Editora Vozes. Petrópolis,RJ. 2001. p.199-214.

KAGEYAMA, P. Y.; GANDARA, F. B. Recuperação de áreas ciliares. In: RODRIGUES, R. R. & LEITÃO-FILHO, H. F. 2. ed. São Paulo: Editora da Universidade de São Paulo/Fapesp, 2001. p.249-269.

KENT, M.; COKER, P. Vegetation description and analysis, a pratical approach. London: Belhaven Press, 363p. 1992.

KREBS, C. J. Ecological methodologiy. Harper and Row, New York. 1989.

LEITÃO FILHO, H.F.; RODRIGUES, R. R.; SANTIN, D. A.; JOLY, C. A. Vegetação florestal remanescente: Inventários, caracterização, manejo e recuperação nas bacias dos Rios Piracicaba e Capivari. UNICAMP. Projeto temático. 1996.

LIMA, L. R. de.; DIAS, P. & SAMPAIO, P. de. S. P. Flora da serra do Cipó, Minas Gerais: Flacoutiaceae. **Boletim de Botânica da Universidade de São Paulo**, v. 22, n.1, p.19-23, 2004.

LIMA, M. P. M; de. & GUEDES-BRUNI, R. R. Reserva ecológica de Macaé de Cima: Aspectos Florísticos das espécies vasculares. Jardim Botânico do Rio de Janeiro, Nova Friburgo, RJ, v.1, 1994. 404p.

LIMA, M. P. M; de. & GUEDES-BRUNI, R. R. Reserva ecológica de Macaé de Cima: Aspectos Florísticos das espécies vasculares. Jardim Botânico do Rio de Janeiro, Nova Friburgo, RJ, v.2, 1996. 465p

LIMA, W. G. & GUEDES-BRUNI, R. R. Myrceugenia (Myrtaceae) ocorrentes no Parque Nacional do Itatiaia. **Rodriguesia**. Rio de Janeiro, v. 55, n. 85, p.73-94, 2004.

LOBO, P. C. & JOLY, C. A. Aspectos ecofisiológicos da vegetação de mata ciliar do sudeste do Brasil. In: RODRIGUES, R. R. e LEITÃO-FILHO, H.F. (ed.) Mata Ciliares: **Conservação e Recuperação**. 2. ed. São Paulo: Editora da Universidade de São Paulo/Fapesp, 2001. p.143-157.

LOHMANN, L. G. & PIRANI, J. R. Flora da serra do cipó, Minas Gerais: Bignoniaceae. **Boletim de Botânica da Universidade de São Paulo**, v. 17, p.127-153, 1998.

LORENZI, H.; SOUZA, H. M. de.; COSTA, J. T. M.; CERQUEIRA, L.S.C. de.; FERREIRA, E. **Palmeiras no Brasil**: nativas e exóticas. Nova Odessa: Plantarum, 2004. 303p.

LORENZI, H. **Árvores Brasileiras**: Manual de Identificação e Cultivo de Plantas Arbóreas do Brasil. Volume I. 4a edição. Editora Nova Odessa, Instituto Plantarum de Estudos da Flora, São Paulo.2002a.

LORENZI, H. **Árvores Brasileiras**: Manual de Identificação e Cultivo de Plantas Arbóreas do Brasil. Volume II. 4a edição. Editora Nova Odessa, Instituto Plantarum de Estudos da Flora, São Paulo.2002b.

MANTOVANI, A. L.; MORELLATO, P. C. & REIS, M. S. dos. Fenologia reprodutiva e produção de sementes em Araucaria angustifolia (Bert.) O. Kuntze. **Revista Brasileira de Botânica**. São Paulo: V.27, n.4, p.787-796, out.-dez. 2004.

MARTINS, S. V. **Recuperação de matas ciliares**. Viçosa: Aprenda fácil, 2001. 146p.

MARTINS, F.R. Estrutura de uma floresta mesófíla. Ed. UNICAMP. 246p. 1993.

MCCUNE, B. & MEFFORD, M. J. **PC-ORD version 4.0, multivariate** analysis of ecological data, Users guide. MjM Software Design, Glaneden Beach. 1999.

MEGURO, M.; PIRANI, J. R.; MELLO-SILVA, R. de.; GIULIETTI, A. M. Estabelecimento de matas ripárias e capões nos ecossistemas campestres da Cadeia do Espinhaço, Minas Gerais. **Boletim de Botânica da Universidade de São Paulo**, v. 15, p.1-11, 1996.

MELLO-SILVA, R. de. Flora fanerogâmica da Ilha do Cardoso (São Paulo, Brasil): Annonaceae. v.3, p.43-51, 1992.

MENDONÇA, R. C. de.; FELFILI, J. M.; WALTER, B. M. T.; SILVA-JÚNIOR, M. C. da.; REZENDE, A. V.; FILGUEIRAS, T. S. & NOGUEIRA, P. E. Flora vascular do Cerrado. In: SANO, S. M. & ALMEIDA, S. P. de. Cerrado: ambiente e flora. EMBRAPA, Planaltina, DF. p. 289-556, 1998. MENEZES-SILVA, S. As formações vegetais da planície litorânea da Ilha do Mel, Paraná, Brasil: composição florística e principais características

estruturais. Campinas, 1998. 262p.Tese(Doutorado Biologia Vegetal) – Universidade Estadual de Campinas, Campinas.

NISIZAKI, S. M. A.; ZANGARO FILHO, W. Efeito da inoculação de fungos micorrízicos arbusculares indígenas, no desenvolvimento de 12 espécies arbóreas nativas da bacia do Rio Tibagi, PR. In: CONGRESSO NACIONAL DE BOTÂNICA, 47., 1996, Nova Friburgo. **Resumos...** Rio de Janeiro: Sociedade Botânica do Brasil, 1996. p.385.

OLIVEIRA FILHO, A. T. & RATTER, J. A. A study of the origin of Central Brazilian forests by the analysis of plants species distribution patterns.

Edinburgh journal of Botany, Cambridge, UK, v.52, p.141-194, 1995.

OLIVEIRA FILHO, A. T.; VILELA, E. A.; CARVALHO, D. A.;

GAVILANES, M. L. Estudos florísticos e fitossociológicos em remanescentes de matas ciliares do Alto e Médio Rio Grande. Belo Horizonte: CEMIG/UFLA, 1995. 27p.

OLIVEIRA FILHO, A. T. & FONTES, M. A. L. Patterns of Floristic Differentiation among Atlantic Forests in Southeastern Brazil and the Influence of Climate. **Biotropica**, v. 32, p.793-810, 2000.

OLIVEIRA FILHO, A. T. Estudos ecológicos da vegetação como subsídios para programas de revegetação com espécies nativas: uma proposta metodológica. Lavras-MG, Cerne. Lavras: v. 1, n. 1, p. 64 - 72. 1994.

PEDRONI, F. Aspectos da estrutura e dinâmica de espécies arbóreas da Mata Atlântica. 2000. 195p. Tese (Doutorado em Ciências Biológicas), Universidade Estadual de Campinas, Campinas, SP.

PEREIRA, J. A. A. Efeitos dos impactos ambientais e da heterogeneidade ambiental sobre a diversidade e estrutura da comunidade arbórea de 20 fragmentos de florestas semidecíduas da região do Alto Rio Grande, Minas Gerais. 2003. 156p. Tese de doutorado (Doutorado em Ecologia), Universidade Federal de Minas Gerais, Belo Horizonte.

PIRANI, J. R. Flora de Grão-Mogol, Minas Gerais: Anacardiaceae. **Boletim de Botânica da Universidade de São Paulo**, v. 21, n.1, p.61-65, 2003.

QUINET, A. & ANDREATA, R. H. P. Lauraceae Jussieu na Reserva Ecológica de Macaé de Cima, município de Nova Friburgo, Rio de Janeiro, Brsail. **Rodriguesia**. Rio de Janeiro: v.5., n.82, p.59-121, 2002.

REIS, A.; NAKAZONO, E. M.; MATOS, J. Z. Utilização da sucessão e da interação planta-animal na recuperação de áreas florestais degradadas. In: CURSO DE ATUALIZAÇÃO: RECUPERAÇÃO DE ÁREAS DEGRADADAS, 3., 1996, Curitiba. Terceiro... Curitiba: UFPR, 1996. p.29-43. REITZ, R.; KLEIN, R.M.; REIS, A. **Projeto madeira do Rio Grande do Sul**. Itajaí: Herbário Barbosa Rodrigues, 1965-1989. (Distribuição irregular). RESENDE, A. V. de. & KONDO, M, K. Leguminosas e recuperação de áreas degradadas. **Informe agropecuário**. Belo Horizonte: v.21 (210): p.46-56, 2001.

RIBEIRO, J. F.; SCHIAVINI, I. Recuperação de matas de galeria: integração entre a oferta ambiental e a biologia das espécies. In: RIBEIRO, J. F. **Cerrado:** matas de galeria. Planaltina, DF: EMBRAPA-CPAC, 1998. p.135-153.

RICKLEFS, R.E. A economia da natureza: um livro-texto em ecologia básica. 3. ed. Rio de Janeiro: Guanabara/Koogan, 1996. pp. 357-358.

RODRIGUES, R. R. & GANDOLFI, S. Recomposição de florestas nativas: princípios gerais e subsídios para uma definição metodológica. **Revista Brasileira de Horticultura Ornamental**. Campinas, v.2, n.1, p.4-15.1996.

RODRIGUES, R. R.; GANDOFI, S. Conceitos, tendência e ações para recuperação de matas ciliares. In: RODRIGUES, R. R. & LEITÃO-FILHO, H. F. **Matas Ciliares**: Conservação e Recuperação. 2. ed. São Paulo: Editora da Universidade de São Paulo/Fapesp, 2001. p.235-247.

RODRIGUES, V. E. G. & CARVALHO, D. A. de. Levantamento etnobotânico de plantas medicinais no domínio do cerrado na região do alto rio Grande – Minas Gerais. **Ciência agrotecnica**, Lavras, v.25, n.1, p.102-123, jan./fev., 2001.

RODRIGUES, R. R. & NAVE, A.G. Heterogeneidade florísticas das matas ciliares. In: Rodrigues, R. R.; Leitão Filho, H. F. de. **Matas ciliares**:

conservação e restauração. São Paulo: 2. ed. São Paulo: Editora da Universidade de São Paulo/Fapesp, 2001. p. 45-71.

SALIMENA, F.R.G. Flora fanerogâmica da Ilha do Cardoso (São Paulo, Brasil): Verbenaceae. V.7, p.16-26, 2000.

SANTARELLI, G. Produção de mudas de espécies nativas para florestas ciliares. In: In: RODRIGUES, R. R. & LEITÃO-FILHO, H. F. **Matas Ciliares**: Conservação e Recuperação. 2. ed. São Paulo: Editora da Universidade de São Paulo/Fapesp, 2001. p.313-317

SANTOS, E. dos.; MARANGON, L. C. & RAMALHO, R. da. S. Levantamento dendrológico da bacia do rio São Bartolomeu, Viçosa-MG. **Ceres**, v.45, n.260, p.339-349, 1998.

SILVEIRA, E. M. O. de.; CARVALHO, L. M. T. de. & SILVA, A. M. de. Uso conflitivo do solo nas áreas de preservação permanente do município de Bocaina de Minas, MG. In: **Anais...** XII Simpósio Brasileiro de Sensoriamento Remoto, Goiânia, Brasil, 16-21 abril 2005, INPE, p. 1673-1680.

SOUZA, F. O. de. & BIANCHINI, R. S. Flora fanerogâmica da Ilha do Cardoso (São Paulo, Brasil): Quinaceae. v.8, p.25-28, 2001.

TER BRAAK, C. J. F. **Ordination**. In: JONGMAN, R. H.G.; TER BRAAK, C.J.F. & VAN TONGEREN, O. F. R. (eds.). Data analysis in community and landscape ecology. Cambrigde University Press, Cambridge. 1995, p. 91-173.

UHL, C.; CLARK, H.; CLARK, H. Successional patterns assocated with slash and burn agriculture in Rio Negro region of the Amazon Basin. **Biotropica**, St. Louis, v. 14, n.4, p.249-254, 1982.

VASCONCELOS, I. Associação simbiótica entre microorganismos e espécies florestais do Nordeste. In: SEMINÁRIO SOBRE ATUALIDADES E PERSPECTIVAS FLORESTAIS, 7., "Associações biológicas entre espécies florestais e microorganismos para aumento da produtividade econômica dos

reflorestamentos", 1982, Curitiba. **Anais...** Curitiba: EMBRAPA-URPFCS, 1982. p.53-66. (EMBRAPA-

URPFCS. Documentos, 12).

WHITMORE, T. C. **Tropical rain forests dynamics on the far east.** Oxford: Clarendon Press, 1984. 352p.

ZANGARO, W.; NISIZAKI, S. M. A.; DOMINGOS, J. C. B. & NAKANO, E. M. micorriza arbuscular em espécies arbóreas nativas da bacia do rio Tibagi, Paraná. **Cerne**. Lavras: v.8, n.1, p.077-087, 2002.

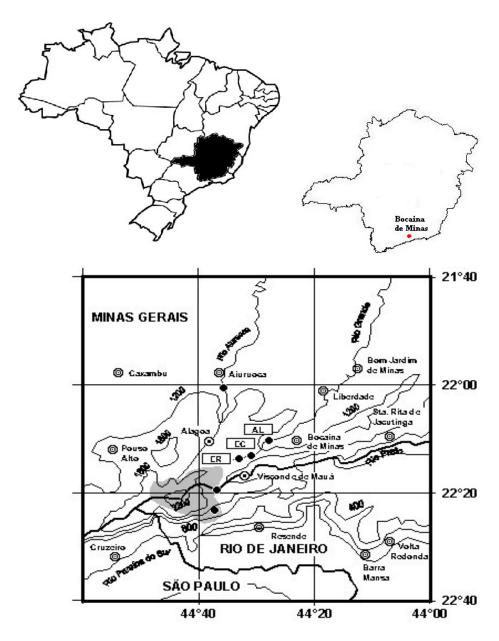


Figura 1 - Localização geográfica dos três remanescentes de mata ciliar em Bocaina de Minas, MG (●), em que: AL: aluvião; EC: encosta conservada e ER: encosta em regeneração.

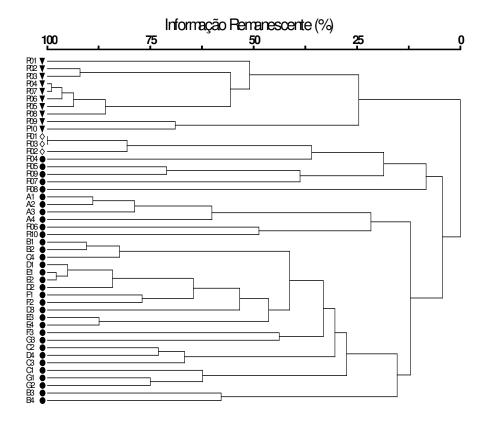


Figura 2 - Dendrograma de similaridade entre as 46 parcelas de mata ciliar inventariadas em Bocaina de Minas, MG, utilizando como coeficiente o índice de Jaccard e agrupando-se as parcelas pelo método de média de grupo (UPGA). Em que: ▼aluvião com inundação periódica, ◇aluvião com inundação rápida ● encosta .

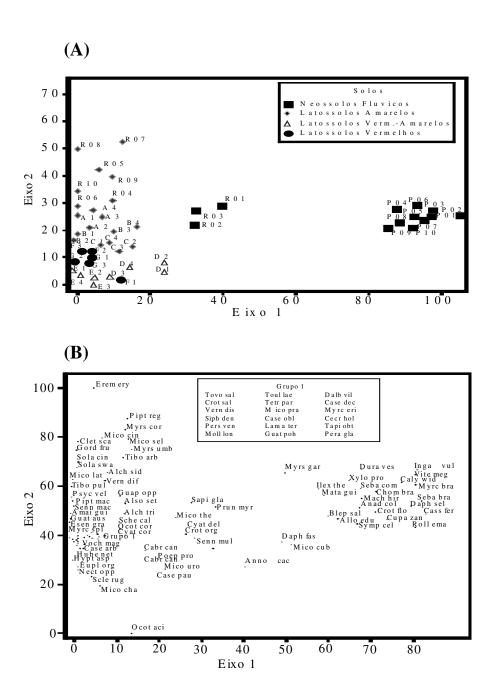


Figura 3 - Diagrama de ordenação das parcelas (A) e espécies (B) produzido pela análise de correspondência retificada (DCA) da distribuição do número de indivíduos de 90 espécies arbóreas em 46 parcelas de mata ciliar em Bocaina de Minas, MG. As parcelas são identificadas pelo número de ordem e as espécies pelo nome abreviado.

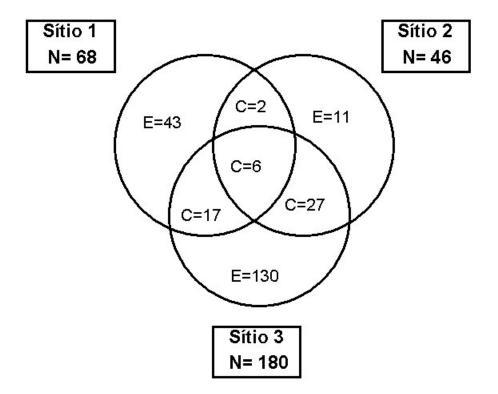


Figura 4 - Diagrama de Venn extraído da composição florística dos três sítios de mata ciliar em Bocaina de Minas, MG, mostrando o número de espécies compartilhadas. Em que: E = espécies exclusivas; C = espécies comuns entre as áreas; N = número total de espécies inventariadas nos sítios.

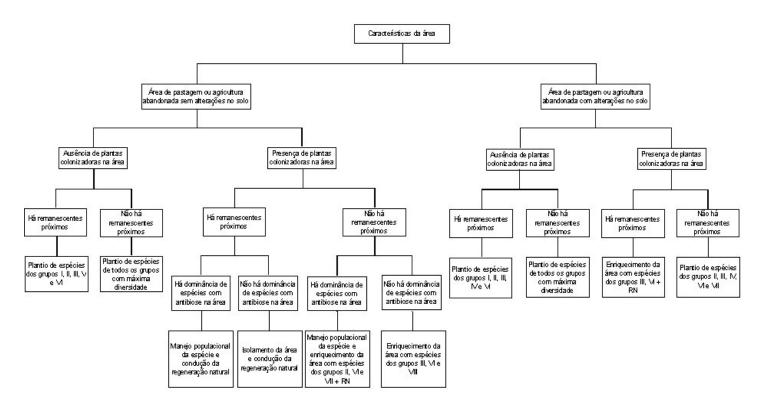


Figura 5 - Fluxograma para decisão do método de recuperação a ser utilizado, de acordo com os tipos de degradação encontrados na região das cabeceiras do Rio Grande, Minas Gerais. Em que: I= pioneira atrativa à fauna; II= pioneira ativadora da sucessão; IVI = pioneira atrativa à fauna; V= clímax exigente de luz ativadora da sucessão; VI= clímax exigente de luz atrativa à fauna; V= clímax exigente de luz ativadora da sucessão; VI= clímax exigente de luz atrativa à fauna; V= clímax exigente de luz atrat

Tabela 1 - Princiapais funções e características das categorias de facilitação da sucessão natural.

Categorias de Facilitação	Função	Características ecológicas das espécies
		•espécies com dispersão zoocórica - DZ
Atrativas à fauna	Atrair a fauna dispersora para a área em recuperação.	•espécies com polinização zoófila - PZ
		•espécies produtora de alimento para a fauna - PAF
		•espécis heliófitas com capacidade de colonizar solos alterados - HCSA
	Colonizar solos alterados e melhorar as condições física,	•espécies heliófitas de rápido crescimento - HRC
Ativadoras da sucessão	química e biológica do solo para que espécies mais	•espécies heliófitas de copa ampla - HCA
e	exigentes possam se estabelecerem na área.	•espécies heliófitas com fixação biológica de nitrogênio - FBN
		•espécies heliófitas que mantém associações com fungos micorrízicos - AFM

Tabela 2 - Relação das espécies arbóreas registradas em diferentes sítios de mata ciliar em Bocaina de Minas, MG. Em que: DA = densidade absoluta (ind.ha-1); FA = freqüência absoluta (%) e VI = valor de importância (%).

Б / !	A	luvião	ı I	A	luvião	II	Encosta			
Espécies	DA	FA	VI	DA	FA	VI	DA	FA	VI	
Acacia polyphylla DC.	5	20	0,64	0	0	0	0	0	0	
Aegiphila fluminensis Vell.	0	0	0	0	0	0	6,06	15,15	0,28	
Aegiphila obducta Vell.	7,5	20	0,38	16,67	33,33	0,84	0	0	0,01	
Albizia polycephala (Benth.) Killip	0	0	0	0	0	0	6,06	18,18	0,32	
Alchornea sidifolia Müll.Arg.	0	0	0	25	66,67	1,55	21,21	33,33	1,14	
Alchornea triplinervia (Sprengel) Müll.Arg.	0	0	0	16,67	66,67	1,24	139,3	93,94	4,57	
Alibertia myrciifolia K.Schum.	5	10	0,21	0	0	0	0	0	0	
Allophylus edulis (A.StHil.) Radlk.	32,5	70	1,43	0	0	0	2,27	6,06	0,11	
Allophylus guaraniticus (A.StHil.) Radlk.	2,5	10	0,17	0	0	0	0	0	0	
Alsophila setosa Kaulf	0	0	0	8,33	33,33	0,84	15,15	12,12	0,46	
Alsophila sternbergii (Sternb.) Conant	0	0	0	8,33	33,33	0,67	0	0	0	
Amaioua guianensis Aublet	0	0	0	0	0	0	12,88	39,39	0,72	
Anadenanthera colubrina (Vell.) Brenan	347,5	100	18,69	8,33	33,33	0,62	0	0	0	
Annona cacans Warm.	12,5	30	0,61	0	0	0	7,58	18,18	0,42	
Aspidosperma parvifolium A.DC.	2,5	10	0,17	0	0	0	2,27	9,09	0,16	
Aspidosperma spruceanum Benth.	0	0	0	0	0	0	2,27	9,09	0,4	
Austrocritonia velutina (Gardner) R.M.King & H.Robinson	2,5	10	0,18	0	0	0	0	0	0	
Baccharis brachylaenoides DC.	2,5	10	0,17	0	0	0	0,76	3,03	0,04	
Baccharis serrulata Pers.	0	0	0	8,33	33,33	0,7	1,52	6,06	0,11	
Bathysa australis (A.StHil.) Benth. & Hook.f.	0	0	0	0	0	0	4,55	6,06	0,14	

Tabela 2 - Continuação

T	A	luvião	ı I	A	luvião	II	Encosta			
Espécies	DA	FA	VI	DA	FA	VI	DA	FA	VI	
Blepharocalyx salicifolius (Kunth) O.Berg	32,5	30	1,24	0	0	0	1,52	6,06	0,09	
Byrsonima myricifolia Griseb.	0	0	0	0	0	0	3,03	12,12	0,46	
Byrsonima stipulacea A.Juss.	0	0	0	0	0	0	5,3	15,15	0,31	
Cabralea canjerana (Vell.) Mart.	0	0	0	0	0	0	38,64	60,61	1,41	
Calyptranthes grandifolia O.Berg	2,5	10	0,17	0	0	0	0	0	0	
Calyptranthes widgreniana O.Berg	35	20	1,05	0	0	0	0	0	0	
Campomanesia guazumifolia (Cambess.) O.Berg	17,5	40	0,8	0	0	0	0	0	0	
Campomanesia laurifolia Gardner	7,5	10	0,24	0	0	0	0,76	3,03	0,04	
Casearia arborea (L.C.Rich.) Urban	0	0	0	0	0	0	65,15	63,64	2,22	
Casearia decandra Jacquin	0	0	0	0	0	0	19,7	45,45	0,86	
Casearia obliqua Sprengel	0	0	0	0	0	0	25,76	36,36	0,89	
Casearia pauciflora Cambess.	0	0	0	0	0	0	15,91	27,27	0,77	
Casearia rupestris Eichler	0	0	0	0	0	0	1,52	3,03	0,06	
Casearia sylvestris Swartz	10	10	0,32	0	0	0	0	0	0	
Cassia ferruginea (Schrad.) Schrad.	87,5	80	2,85	0	0	0	0	0	0	
Cecropia glaziovii Snethl.	0	0	0	0	0	0	1,52	6,06	0,17	
Cecropia hololeuca Miq.	0	0	0	0	0	0	9,09	18,18	0,52	
Cedrela fissilis Vell.	0	0	0	0	0	0	3,03	9,09	0,17	
Cestrum schlechtendalii G.Don	0	0	0	8,33	33,33	0,63	0	0	0	
Chomelia brasiliana A.Rich.	102,5	100	2,95	0	0	0	0	0	0	
Chrysophyllum gonocarpum (Mart. & Eichler) Engler	0	0	0	0	0	0	0,76	3,03	0,07	
Cinnamodendron dinisii Schwacke	5	20	0,37	0	0	0	0	0	0	
Clethra scabra Pers.	0	0	0	8,33	33,33	0,88	55,3	60,61	1,93	
Clusia fragrans Gardner	0	0	0	0	0	0	1,52	6,06	0,1	

Tabela 2 - Continuação

E	A	luvião	Ι	A	luvião	II]	Encost	a
Espécies	DA	FA	VI	DA	FA	VI	DA	FA	VI
Cordia ecalyculata Vell.	0	0	0	0	0	0	5,3	15,15	0,37
Couratari pyramidata (Vell.) R.Knuth.	0	0	0	0	0	0	5,3	21,21	0,32
Coutarea hexandra (Jacquin) K.Schum.	5	10	0,28	0	0	0	0	0	0
Croton celtidifolius Baillon	0	0	0	0	0	0	0,76	3,03	0,05
Croton floribundus Sprengel	60	50	2,17	0	0	0	0	0	0
Croton organensis Baillon	0	0	0	583,3	100	18,6	11,36	18,18	0,73
Croton salutaris Casar.	0	0	0	0	0	0	58,33	42,42	1,61
Croton verrucosus Radcl Sm. & Govaerts	0	0	0	25	66,67	1,45	0,76	3,03	0,05
Cupania ludowigii Somner & Ferruci	2,5	10	0,18	0	0	0	0	0	0
Cupania zanthoxyloides Cambess.	55	80	1,98	0	0	0	0,76	3,03	0,04
Cyathea atrovirens (Langsd.& Fisch.) Domin	0	0	0	8,33	33,33	0,68	0	0	0,01
Cyathea corcovadensis (Raddi) Domin	0	0	0	8,33	33,33	0,82	42,42	45,45	1,62
Cyathea delgadii Sternb.	0	0	0	33,33	66,67	1,82	45,45	39,39	1,34
<i>Cyathea dichromatolepis</i> (Fée) Domin	0	0	0	8,33	33,33	1,03	1,52	3,03	0,07
Cyathea phalerata Mart.	0	0	0	50	100	3,06	2,27	6,06	0,13
Cymbopetalum brasiliense (Vell.) Benth.	0	0	0	0	0	0	3,03	9,09	0,15
Dalbergia villosa (Benth.) Benth.	0	0	0	0	0	0	15,91	33,33	0,68
Daphnopsis coriacea Taub.	10	20	0,45	0	0	0	0	0	0
Daphnopsis fasciculata (Meisner) Nevling	40	80	1,86	0	0	0	9,09	21,21	0,43
Daphnopsis martii Meisner	0	0	0	25	100	2,12	0	0	0
Daphnopsis sellowiana Taub.	37,5	50	1,34	0	0	0	0	0	0
Dasyphyllum brasiliense (Sprengel) Cabrera	0	0	0	0	0	0	0,76	3,03	0,04
Dicksonia sellowiana Hooker	0	0	0	0	0	0	1,52	3,03	0,09
Drimys brasiliensis Miers	0	0	0	0	0	0	3,79	15,15	0,27

Tabela 2 - Continuação

п. / .	A	luvião) I	A	luvião	II	Encosta			
Espécies	DA	FA	VI	DA	FA	VI	DA	FA	VI	
Duguetia salicifolia R.E.Fries	0	0	0	0	0	0	3,79	15,15	0,22	
Duranta vestita Cham.	75	80	2,23	0	0	0	0	0	0	
Dyssochroma viridiflora Miers	0	0	0	0	0	0	0,76	3,03	0,04	
Endlicheria paniculata (Sprengel) Macbr.	0	0	0	0	0	0	3,79	6,06	0,14	
Eremanthus erythropappus (DC.) MacLeish	0	0	0	0	0	0	18,18	9,09	0,46	
Erythroxylum pelleterianum A.StHil.	15	30	0,69	0	0	0	1,52	6,06	0,09	
<i>Escallonia bifida</i> Link. & Otto	0	0	0	8,33	33,33	0,69	0	0	0,01	
Esenbeckia grandiflora Mart.	0	0	0	0	0	0	8,33	15,15	0,33	
Eugenia brasiliensis Lam.	0	0	0	0	0	0	0,76	3,03	0,04	
Eugenia cerasiflora Miq.	2,5	10	0,17	0	0	0	6,06	18,18	0,42	
Eugenia dodonaeifolia Cambess.	0	0	0	8,33	33,33	0,62	2,27	6,06	0,1	
Eugenia mansoi O.Berg	17,5	20	0,52	0	0	0	0	0	0	
Euplassa legalis (Vell.) Johnston	0	0	0	0	0	0	1,52	3,03	0,06	
Euplassa organensis (Gardner) Johnston	0	0	0	0	0	0	12,12	24,24	0,88	
Ficus luschnathiana (Miq.) Miq.	0	0	0	0	0	0	0,76	3,03	0,04	
Ficus mexiae Standley	0	0	0	0	0	0	3,79	9,09	0,19	
Geonoma schottiana Mart.	0	0	0	0	0	0	1,52	6,06	0,09	
Gordonia fruticosa (Schrader) H.Keng.	0	0	0	0	0	0	17,42	18,18	0,62	
Guapira opposita (Vell.) Reitz	0	0	0	25	66,67	1,48	32,58	48,48	1,23	
Guarea kunthiana A.Juss.	0	0	0	0	0	0	0,76	3,03	0,04	
Guatteria australis A.StHil.	0	0	0	0	0	0	31,06	45,45	1,21	
Guatteria latifolia (Mart.) R.E.Fries	0	0	0	0	0	0	6,82	12,12	0,25	
Guatteria pohliana Schtdl.	0	0	0	0	0	0	59,85	66,67	1,95	
Guatteria sellowiana Schltdl.	0	0	0	0	0	0	0,76	3,03	0,04	

Tabela 2 - Continuação

D (1	A	luvião	I	A	luvião	II	Encosta			
Espécies	DA	FA	VI	DA	FA	VI	DA	FA	VI	
Heterocondylus vauthierianus (DC.) R.M.King & H.Robinson	0	0	0	16,67	33,33	1,01	4,55	3,03	0,11	
Huberia nettoana Brade	0	0	0	0	0	0	28,79	39,39	1,94	
Hyptidendron asperrimum (Epling) Harley	0	0	0	0	0	0	21,21	48,48	1,79	
<i>Ilex amara</i> (Vell.) Loes.	7,5	20	0,39	0	0	0	0	0	0	
Ilex cerasifolia Reissek	0	0	0	0	0	0	0,76	3,03	0,05	
Ilex conocarpa Reissek	0	0	0	0	0	0	2,27	9,09	0,14	
Ilex paraguariensis A.StHil.	0	0	0	8,33	33,33	0,64	0	0	0	
Ilex theezans Mart.	52,5	60	1,74	0	0	0	0	0	0	
Inga sessilis (Vell.) Mart.	0	0	0	8,33	33,33	0,67	3,03	12,12	0,2	
Inga striata Benth.	0	0	0	0	0	0	1,52	6,06	0,09	
Inga vulpina Mart.	30	50	1,27	0	0	0	0	0	0	
Jacaranda macrantha Cham.	0	0	0	0	0	0	0,76	3,03	0,05	
Lafoensia densiflora Pohl	2,5	10	0,17	0	0	0	0	0	0	
Lamanonia ternata Vell.	0	0	0	0	0	0	65,15	75,76	4,19	
Leandra lancifolia Cogn.	0	0	0	0	0	0	1,52	3,03	0,06	
Leandra scabra DC.	0	0	0	0	0	0	2,27	3,03	0,07	
Machaerium brasiliense Vogel	5	10	0,22	0	0	0	0	0	0	
Machaerium condensatum Kuhlm. & Hoehne	20	60	1,11	0	0	0	0	0	0	
Machaerium hirtum (Vell.) Stellfeld	32,5	60	1,45	0	0	0	0	0	0	
Machaerium nictitans (Vell.) Benth.	0	0	0	0	0	0	0,76	3,03	0,05	
Machaerium reticulatum (Peyr.) Pers.	0	0	0	0	0	0	0,76	3,03	0,05	
Machaerium villosum Vogel	0	0	0	0	0	0	1,52	6,06	0,1	
Manihot pilosa Pohl	0	0	0	0	0	0	1,52	3,03	0,06	
Marlierea excoriata Mart.	2,5	10	0,18	0	0	0	0	0	0	
Marlierea racemosa (Vell.) Kiaersk.	2,5	10	0,19	0	0	0	4,55	15,15	0,27	
Matayba guianensis Aublet	270	100	6,2	0	0	0	0	0	0	

Tabela 2 - Continuação

T. C.	A	luvião	Ι	A	luvião	II	Encosta			
Espécies	DA	FA	VI	DA	FA	VI	DA	FA	VI	
Maytenus glazioviana Loes.	0	0	0	0	0	0	0,76	3,03	0,04	
Maytenus robusta Reissek	2,5	10	0,18	8,33	33,33	0,63	0,76	3,03	0,04	
Maytenus salicifolia Reissek	0	0	0	0	0	0	2,27	9,09	0,14	
Meliosma brasiliensis Urban	0	0	0	0	0	0	6,06	9,09	0,25	
Meliosma sellowii Urban	0	0	0	0	0	0	2,27	9,09	0,18	
Meriania claussenii Triana	0	0	0	0	0	0	0,76	3,03	0,05	
Miconia chartacea Triana	0	0	0	8,33	33,33	0,63	9,09	27,27	0,45	
Miconia cinerascens Miq.	0	0	0	8,33	33,33	0,61	0	0	0	
Miconia cinnamomifolia (DC.) Naudin	0	0	0	0	0	0	25,76	24,24	1,02	
Miconia cubatanensis Hoehne	47,5	30	1,35	0	0	0	3,79	12,12	0,2	
Miconia divaricata Gardner	0	0	0	8,33	33,33	0,61	0	0	0	
Miconia fasciculata Gardner	0	0	0	0	0	0	2,27	6,06	0,1	
<i>Miconia latecrenata</i> (DC.) Naudin	0	0	0	0	0	0	9,09	21,21	0,38	
Miconia prasina (Swartz) DC.	0	0	0	0	0	0	19,7	24,24	0,64	
Miconia pusilliflora (DC.) Triana	0	0	0	0	0	0	6,06	12,12	0,24	
Miconia sellowiana Naudin	0	0	0	41,67	66,67	1,86	42,42	33,33	1,19	
Miconia theaezans (Bonpl.) Cogn	0	0	0	258,3	100	8,72	6,06	9,09	0,33	
Miconia urophylla DC.	0	0	0	0	0	0	21,21	36,36	0,77	
Mimosa scabrela Benth.	0	0	0	58,33	66,67	4,78	0	0	0,07	
Mollinedia engleriana Perkins	0	0	0	0	0	0	0,76	3,03	0,04	
Mollinedia longifolia Tul.	0	0	0	0	0	0	18,94	33,33	0,75	
Myrceugenia acutiflora (Kiaersk.) D.Legrand & Kausel	5	20	0,37	0	0	0	0	0	0	
Myrceugenia bracteosa (DC.) D.Legrand & Kausel	67,5	40	2,04	0	0	0	0,76	3,03	0,04	
Myrcia diaphana (O.Berg) N.Silveira	0	0	0	0	0	0	6,06	15,15	0,33	

Tabela 2 - Continuação

E	A	luvião	Ι	A	luvião	II	Encosta			
Espécies	DA	FA	VI	DA	FA	VI	DA	FA	VI	
Myrcia eriopus DC.	0	0	0	0	0	0	18,94	30,3	0,69	
Myrcia multiflora (Lam.) DC.	12,5	20	0,46	0	0	0	0	0	0	
Myrcia pulchra Kiaersk.	5	10	0,21	0	0	0	1,52	6,06	0,09	
Myrcia splendens (Swartz) DC.	0	0	0	16,67	33,33	0,82	50,76	63,64	1,82	
Myrciaria tenella (DC.) O.Berg	2,5	10	0,2	0	0	0	0	0	0	
Myrsine coriacea (Swartz) Roem. & Schult.	0	0	0	0	0	0	12,88	15,15	0,38	
Myrsine gardneriana A.DC.	145	90	3,53	125	66,67	4,01	10,61	27,27	0,55	
Myrsine lineata (Mez) Pipoly	0	0	0	16,67	66,67	1,26	0	0	0	
Myrsine umbellata Mart.	0	0	0	375	100	11,9	117,4	72,73	3,34	
Nectandra grandiflora Nees	0	0	0	16,67	66,67	1,35	3,79	9,09	0,19	
Nectandra lanceolata Nees	17,5	30	0,75	0	0	0	0	0	0	
Nectandra oppositifolia Nees	0	0	0	0	0	0	11,36	30,3	0,65	
Nectandra puberula (Schott) Nees	0	0	0	0	0	0	0,76	3,03	0,04	
Ocotea aciphylla (Nees) Mez	0	0	0	0	0	0	9,09	15,15	0,35	
Ocotea brachybotra (Meisner) Mez	0	0	0	0	0	0	5,3	18,18	0,3	
Ocotea corymbosa (Meisner) Mez	0	0	0	0	0	0	33,33	54,55	2,02	
Ocotea diospyrifolia (Meisner) Mez	7,5	20	0,62	0	0	0	0	0	0	
Ocotea elegans Mez	0	0	0	0	0	0	0,76	3,03	0,04	
Ocotea indecora (Schott) Mez	2,5	10	0,18	0	0	0	0	0	0	
Ocotea longifolia Kunth	0	0	0	0	0	0	4,55	9,09	0,17	
Ocotea puberula (Rich.) Nees	2,5	10	0,18	0	0	0	0	0	0	
Ocotea pulchella Mart.	10	30	0,6	0	0	0	0	0	0	
Ocotea silvestris Vattimo-Gil	0	0	0	0	0	0	0,76	3,03	0,05	
Oreopanax capitatus (Jacquin) Decne & Planchon	0	0	0	0	0	0	0,76	3,03	0,04	
Ormosia fastigiata Tul.	0	0	0	0	0	0	5,3	15,15	0,29	

Tabela 2 - Continuação

T. (1	A	luvião	ı	A	luvião	II	Encosta			
Espécies	DA	FA	VI	DA	FA	VI	DA	FA	VI	
Ouratea parviflora (DC.) Baillon	5	10	0,24	0	0	0	3,03	6,06	0,12	
Pamphilia aurea Mart.	0	0	0	0	0	0	3,03	6,06	0,15	
Pera glabrata (Schott) Poepp.	0	0	0	0	0	0	9,09	27,27	0,68	
Persea pyrifolia Nees	0	0	0	0	0	0	2,27	6,06	0,3	
Persea venosa Nees	0	0	0	0	0	0	7,58	21,21	0,7	
Piper cernuum Vell.	0	0	0	0	0	0	0,76	3,03	0,04	
Piper dilatatum L.C.Rich	0	0	0	0	0	0	0,76	3,03	0,04	
Piptocarpha macropoda Baker	0	0	0	16,67	66,67	1,26	9,85	27,27	0,58	
Piptocarpha regnellii (Sch.Bip.) Cabrera	0	0	0	0	0	0	31,82	21,21	0,89	
Podocarpus lambertii Klotzsch	0	0	0	0	0	0	0,76	3,03	0,04	
Poeppigia procera Presl.	0	0	0	0	0	0	19,7	27,27	0,74	
<i>Pouteria caimito</i> (Ruiz & Pavón) Radlk.	0	0	0	0	0	0	2,27	6,06	0,25	
Prunus myrtifolia (L.) Urban	15	40	0,85	33,33	66,67	1,91	30,3	39,39	1,17	
Psychotria suterella Müll.Arg.	0	0	0	0	0	0	2,27	6,06	0,1	
Psychotria vellosiana Benth.	0	0	0	33,33	100	2,1	196,9	87,88	4,99	
<i>Rollinia dolabripetala</i> (Raddi) R.E.Fries	0	0	0	0	0	0	6,06	24,24	0,37	
Rollinia emarginata Schltdl.	100	90	2,87	0	0	0	0	0	0	
Rollinia sylvatica (A.StHil.) Mart.	0	0	0	0	0	0	6,06	12,12	0,24	
Roupala brasiliensis Klotzsch	0	0	0	0	0	0	0,76	3,03	0,04	
Rudgea jasminoides (Cham.) Müll.Arg.	0	0	0	0	0	0	1,52	3,03	0,06	
Rudgea recurva Müll.Arg.	0	0	0	0	0	0	0,76	3,03	0,04	
Sapium glandulosum (L.) Morong	2,5	10	0,17	33,33	66,67	2,41	7,58	24,24	0,41	
<i>Schefflera calva</i> (Cham.) Frodin & Fiaschi	0	0	0	0	0	0	18,18	57,58	1,06	
Sclerolobium rugosum Mart.	0	0	0	8,33	33,33	0,61	19,7	18,18	0,64	

Tabela 2 - Continuação

- · ·	A	luvião	ı I	A	luvião	II	Encosta			
Espécies	DA	FA	VI	DA	FA	VI	DA	FA	VI	
Sebastiania brasiliensis Sprengel	192,5	100	5	0	0	0	0	0	0	
Sebastiania commersoniana (Baillon) Smith & Downs	435	100	11,16	0	0	0	0	0	0	
Senna macranthera (Collad.) Irwin & Barneby	0	0	0	0	0	0	12,12	30,3	0,62	
Senna multijuga (L.C.Rich.) Irwin & Barneby	2,5	10	0,19	0	0	0	7,58	21,21	0,37	
Siphoneugena densiflora O.Berg	0	0	0	0	0	0	17,42	39,39	0,81	
Sloanea guianensis (Aublet) Benth.	0	0	0	0	0	0	1,52	6,06	0,1	
Sloanea monosperma Vell.	0	0	0	0	0	0	0,76	3,03	0,05	
Solanum bullatum Vell.	0	0	0	0	0	0	2,27	6,06	0,14	
Solanum cinnamomeum Sendt.	0	0	0	0	0	0	16,67	30,3	0,81	
Solanum lepidotum Dunal	5	20	0,39	33,33	33,33	1,25	0,76	3,03	0,04	
Solanum pseudoquina A.St Hil.	0	0	0	0	0	0	5,3	12,12	0,31	
Solanum swartzianum Roem. & Schult.	0	0	0	0	0	0	9,85	33,33	0,54	
Sorocea bonplandii (Baillon) W.Burger	0	0	0	0	0	0	2,27	6,06	0,11	
Sphaeropteris gardneri (Hooker) Tryon	0	0	0	8,33	33,33	0,89	1,52	3,03	0,07	
Syagrus romanzoffiana (Cham.) Glassman	7,5	20	0,5	0	0	0	0	0	0	
Symplocos celastrinea Mart.	305	80	5,78	8,33	33,33	0,67	2,27	6,06	0,14	
Symplocos insignis Brand	0	0	0	0	0	0	0,76	3,03	0,04	
Tabebuia alba (Cham.) Sandw.	0	0	0	0	0	0	1,52	6,06	0,1	
Tabebuia chrysotricha (Mart.) Standley	0	0	0	0	0	0	2,27	9,09	0,13	
Tabebuia heptaphylla (Vell.) Toledo	15	20	0,54	0	0	0	0	0	0	
Tabebuia vellosoi Toledo	0	0	0	0	0	0	3,79	9,09	0,17	
Tapirira guianensis Aublet	0	0	0	0	0	0	4,55	18,18	0,28	

Tabela 2 - Continuação

D (1	A	luvião) I	A	luvião	II	Encosta			
Espécies	DA	FA	VI	DA	FA	VI	DA	FA	VI	
Tapirira obtusa (Benth.) Mitchell	0	0	0	0	0	0	18,94	45,45	1,53	
Tetrorchidium parvulum Müll.Arg.	0	0	0	0	0	0	30,3	48,48	1,15	
Tibouchina arborea (Gardner) Cogn.	0	0	0	150	100	7,15	46,97	30,3	1,52	
Tibouchina mutabilis Cogn.	0	0	0	8,33	33,33	0,79	0,76	3,03	0,06	
Tibouchina pulchra Cogn.	0	0	0	0	0	0	84,09	72,73	3,94	
Tibouchina sellowiana (Cham.) Cogn.	0	0	0	25	33,33	1,01	0	0	0	
Toulicia laevigata Radlk.	0	0	0	0	0	0	11,36	24,24	0,53	
Tovomitopsis saldanhae Engler	0	0	0	0	0	0	9,09	27,27	0,45	
Trembleya parviflora (D.Don) Cogn.	0	0	0	0	0	0	1,52	3,03	0,06	
<i>Trichilia emarginata</i> (Turcz.) C.DC.	2,5	10	0,17	0	0	0	0	0	0	
Trichilia hirta L.	0	0	0	0	0	0	0,76	3,03	0,04	
Vernonanthura diffusa var. approximata Baker	2,5	10	0,17	0	0	0	28,03	42,42	1,45	
Vernonanthura diffusa var. macrocephala Hier	0	0	0	0	0	0	9,09	15,15	0,57	
Vernonanthura discolor (Sprengel) H.Robinson	0	0	0	0	0	0	31,06	42,42	1,32	
Vismia brasiliensis Choisy	0	0	0	0	0	0	0,76	3,03	0,04	
Vitex megapotamica (Sprengel) Moldenke	97,5	60	2,74	0	0	0	0	0	0	
Vochysia magnifica Warm.	0	0	0	0	0	0	138,6	72,73	5,06	
Vochysia tucanorum Mart.	0	0	0	0	0	0	0,76	3,03	0,05	
Weinmannia paulliniifolia Pohl	0	0	0	0	0	0	1,52	6,06	0,09	
Xylosma prockia (Turcz.) Turcz.	25	50	1,14	0	0	0	0	0	0	
Xylosma venosa N.E.Brown	0	0	0	0	0	0	0,76	3,03	0,04	
Zanthoxylum rhoifolium Lam.	0	0	0	0	0	0	4,55	18,18	0,31	
Total	3005		100	2225		100	2405		100	

Tabela 3 – Matriz com as 286 espécies arbustivo-arbóreas, registradas nos levantamentos florístico e fitossociológico em diferentes ambientes de mata ciliar, em Bocaina de Minas, MG, distribuídas nas categorias de função ecológica das espécies. Em que: e presença (x) e ausência (-). Atrativa à fauna (DZ = espécie com dispersão zoocórica, PZ = polinização zoófila, ALF = espécies produtora de alimento para à fauna silvestre. Espécies ativadoras da sucessão ecológica (HCSA= espécies heliófita colonizadoras de solos alterados, HCR= espécie heliófita de crescimento rápido, HCA= espécie heliófita de copa ampla, AFM = espécies que mantém associações com fungos micorrízicos, FBN= espécies com fixação biológica de nitrogênio). Grupos (I= pioneira atrativa à fauna; II= pioneira ativadora da sucessão; III= pioneira atrativa à fauna e ativadora da sucessão; IV= clímax exigente de luz atrativa à fauna; V= clímax exigente de luz atrativa à fauna e VII= clímax tolerante à sombra atrativa a fauna e VII= clímax tolerante à sombra.

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Acacia polyphylla	-	-	X	х	Х	-	X	X	X	X	III	1
Aegiphila fluminensis	X	-	X	-	X	-	-	-	X	X	III	3
Aegiphila obducta	X	-	X	-	X	-	-	-	X	X	III	1; 2
Albizia polycephala	-	-	-	X	-	-	X	X	-	X	V	3
Alchornea glandulosa	X	X	-	x	X	X	-	-	X	x	III	1; 2; 3
Alchornea sidifolia	X	X	-	-	X	X	-	-	X	x	III	2; 3
Alchornea triplinervia	X	X	X	-	X	X	-	-	X	x	VI	2; 3
Alibertia myrciifolia	X	X	X	-	-	-	-	-	X	-	IV	1
Allophylus edulis	X	X	X	-	-	-	-	-	X	-	VII	1; 3
Allophylus guaraniticus	X	-	X	-	-	-	-	-	X	-	VII	1
Alsophila setosa	-	-	-	-	-	-	-	-	=	-	VII	2; 3
Alsophila sternbergii	-	-	-	-	-	-	-	-	=	-	VII	2
Amaioua guianensis	X	X	X	-	-	-	-	-	X	-	VII	3
Anadenanthera colubrina	-	X	-	x	X	X	X	X	X	X	III	1; 2
Annona cacans	X	X	X	-	-	X	-	-	X	x	VI	1; 3

Tabela 3 - Continuação

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Araucaria angustifolia	Х	X	Х	-	-	-	-	-	X	-	IV	3
Aspidosperma autrale	-	X	-	-	-	-	-	-	X	_	IV	3
Aspidosperma parvifolium	-	X	-	-	X	-	X	-	X	X	VI	1; 3
Aspidosperma spruceanum	-	X	-	-	-	X	-	-	X	X	VI	3
Austrocritonia velutina	-	-	-	X	-	-	-	-	-	X	V	1
Baccharis brachylaenoides	-	X	-	X	X	-	-	-	X	X	III	1; 3
Baccharis serrulata	-	X	-	-	X	-	-	-	X	X	III	2; 3
Bathysa australis	-	X	-	-	-	-	-	-	X	-	VII	3
Blepharocalyx salicifolius	X	X	X	-	-	X	-	-	X	X	VI	1; 3
Brugmansia suaveolens	-	-	X	-	X	-	-	-	X	X	VI	1; 2; 3
Byrsonima myricifolia	X	X	X	-	-	-	-	-	X	-	IV	3
Byrsonima stipulacea	X	X	X	-	-	-	-	-	X	-	IV	3
Cabralea canjerana	X	X	X	-	-	-	-	-	X	-	VII	3
Calyptranthes grandifolia	X	X	X	-	-	-	-	-	X	-	VII	1
Calyptranthes widgreniana	X	X	X	-	-	-	-	-	X	-	VII	1
Campomanesia guaviroba	X	X	X	-	-	-	-	-	X	-	IV	1
Campomanesia guazumifolia	X	X	X	-	-	X	-	-	X	X	VI	1
Campomanesia laurifolia	X	X	X	-	-	-	-	-	X	-	IV	1; 3
Casearia arborea	X	-	-	-	-	-	-	-	X	-	IV	3
Casearia decandra	X	-	X	-	-	-	-	-	X	-	VII	3
Casearia mariquitensis	X	-	-	-	-	-	-	-	X	-	VII	3
Casearia obliqua	X	-	-	-	-	X	-	-	X	X	VI	3
Casearia pauciflora	X	-	-	-	-	-	-	-	X	-	IV	3
Casearia rupestris	X	-	X	-	-	-	-	-	X	-	IV	3

Tabela 3 - Continuação

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Casearia sylvestris	X	X	X	х	X	X	X	-	X	X	III	1
Cassia ferruginea	X	X	-	X	-	-	-	-	X	X	VI	1
Cecropia glaziovii	X	X	X	X	X	-	X	-	X	X	III	3
Cecropia hololeuca	X	X	X	-	X	-	-	-	X	X	III	3
Cedrela fissilis	-	X	X	-	-	X	X	-	X	X	VI	3
Cestrum corymbosum	X	-	X	-	X	-	-	-	X	X	III	2; 3
Cestrum schlechtendalii	X	-	X	-	-	-	-	-	X	-	VII	2
Chomelia brasiliana	X	-	-	-	-	-	-	-	X	-	VII	1
Chrysophyllum gonocarpum	X	-	X	-	-	-	-	-	X	-	IV	3
Cinnamodendron dinisii	X	-	X	-	-	-	-	-	X	-	VII	1
Cinnamomum glaziovii	X	X	X	-	-	-	-	-	X	-	VII	3
Clerodendron fragrans	X	-	-	-	-	-	_	_	X	-	IV	1; 2; 3
Clethra scabra	-	X	-	X	-	-	-	-	X	X	VI	2; 3
Clusia criuva	X	X	X	-	-	-	-	-	X	-	VII	3
Clusia fragrans	X	X	X	-	-	-	_	_	X	-	VII	3
Cordia ecalyculata	X	X	X	-	-	-	-	-	X	-	VII	3
Cordia superba	-	X	X	-	X	-	-	-	X	X	VI	3
Couratari pyramidata	-	-	-	-	-	-	-	-	-	-	VII	3
Coussapoa microcarpa	X	-	X	-	X	-	-	-	X	X	VI	2; 3
Coutarea hexandra	-	-	X	-	-	-	-	-	X	-	VII	1
Croton celtidifolius	-	X	-	X	X	-	-	-	X	X	III	3
Croton floribundus	-	X	-	-	X	X	X	-	X	X	III	1
Croton organensis	-	X	-	-	X	-	-	-	X	X	III	2; 3
Croton salutaris	-	X	-	-	X	-	-	-	X	X	III	3

Tabela 3 - Continuação

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Croton verrucosus	-	X	-	-	X	-	-	-	X	X	III	2; 3
Cupania ludowigii	X	-	-	-	-	-	-	-	X	-	IV	1
Cupania vernalis	X	X	X	-	-	X	-	-	X	X	VI	2; 3
Cupania zanthoxyloides	X	-	-	-	-	-	-	-	X	-	IV	1; 3
Cyathea atrovirens	-	-	-	-	-	-	-	-	-	-	VII	2
Cyathea corcovadensis	-	-	-	-	-	-	-	-	-	-	VII	2; 3
Cyathea delgadii	-	-	-	-	-	-	-	-	-	-	VII	2; 3
Cyathea dichromatolepis	-	-	-	-	-	-	-	-	-	-	VII	2; 3
Cyathea phalerata	-	-	-	-	-	-	-	-	-	-	VII	2; 3
Cybistax antisyphillitica	-	X	-	-	-	-	-	-	X	-	IV	1; 2; 3
Cymbopetalum brasiliense	X	-	X	-	-	-	-	-	X	-	VII	3
Dalbergia villosa	-	-	-	X	-	-	-	X	-	X	V	3
Daphnopsis coriacea	X	-	X	-	-	-	-	-	X	-	VII	1
Daphnopsis fasciculata	X	-	X	-	-	-	-	-	X	-	IV	1; 3
Daphnopsis martii	X	-	X	-	-	-	-	-	X	-	VII	2
Daphnopsis sellowiana	X	-	X	-	-	-	-	-	X	-	VII	1
Dasyphyllum brasiliense	X	X	-	-	-	-	-	-	X	-	IV	3
Dicksonia sellowiana	-	-	-	-	-	-	-	-	-	-	VII	3
Drimys brasiliensis	X	X	X	-	-	X	-	-	X	X	VI	3
Duguetia salicifolia	X	X	X	-	-	-	-	-	X	-	VII	3
Duranta vestita	X	-	-	-	-	-	-	-	X	-	IV	1
Dyssochroma viridiflora	X	-	X	-	-	-	-	-	X	-	VII	3
Endlicheria paniculata	X	X	X	-	-	-	-	-	X	-	VII	3
Eremanthus erythropappus	-	-	-	-	X	-	-	-	-	X	II	3

Tabela 3 - Continuação

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Erythrina falcata	-	X	-	-	-	X	X	X	X	X	VI	1; 2; 3
Erythroxylum pelleterianum	X	-	X	-	-	-	-	-	X	-	VII	1; 3
Escallonia bifida	-	X	-	-	-	-	-	-	X	-	IV	2
Esenbeckia grandiflora	-	X	-	-	-	-	-	-	X	-	VII	3; 3
Eugenia brasiliensis	X	X	X	-	-	-	-	-	X	-	VII	3
Eugenia cerasiflora	X	X	X	-	-	-	-	-	X	-	VII	1; 3
Eugenia dodonaeifolia	X	X	X	-	-	-	-	-	X	-	VII	2; 3
Eugenia involucrata	X	X	X	-	-	-	-	-	X	-	IV	2; 3
Eugenia mansoi	X	X	X	-	-	-	-	-	X	-	IV	1
Euplassa legalis	X	-	-	-	-	-	-	-	X	-	IV	3
Euplassa organensis	X	-	-	-	-	-	-	-	X	-	IV	3
Ficus luschnathiana	X	X	X	-	-	-	-	-	X	-	VII	3
Ficus mexiae	X	X	X	-	-	-	-	-	X	-	VII	3
Geonoma schottiana	X	X	X	-	-	-	-	-	X	-	VII	3
Gochnatia paniculata	-	-	-	-	X	-	-	-	-	X	II	3
Gomidesia anacardiifolia	X	X	-	-	-	-	-	-	X	-	IV	2
Gordonia fruticosa	X	-	-	-	-	-	-	-	X	-	IV	3
Guapira opposita	X	X	X	-	-	-	-	-	X	-	VII	2; 3
Guarea kunthiana	X	X	X	-	-	-	-	-	X	-	VII	3
Guatteria australis	X	X	X	-	-	-	-	-	X	-	VII	3
Guatteria latifolia	X	X	X	-	-	-	-	-	X	-	VII	3
Guatteria pohliana	X	X	X	-	-	-	-	-	X	-	VII	3
Guatteria sellowiana	X	X	-	-	-	-	-	-	X	-	IV	3
Hedyosmum brasiliense	X	-	-	-	-	-	-	-	X	-	IV	1; 2; 3

Tabela 3 - Continuação

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Heterocondylus vauthierianus	-	X	-	-	X	-	-	-	X	X	III	2; 3
Hillia parasitica	-	X	-	-	-	-	-	-	X	-	VII	3
Huberia nettoana	-	X	-	-	-	-	-	-	X	-	IV	3
Hyptidendron asperrimum	X	-	-	-	-	-	-	-	X	-	IV	3
Ilex amara	X	-	X	-	-	-	-	-	X	-	IV	1
Ilex cerasifolia	X	-	X	-	-	-	-	-	X	-	VII	3
Ilex conocarpa	X	-	X	-	-	-	-	-	X	-	IV	3
Ilex paraguariensis	X	-	X	-	-	-	-	-	X	-	IV	2
Ilex theezans	X	X	X	-	X	X	-	-	X	X	VI	1
Inga sessilis	X	X	X	-	X	X	X	X	X	X	VI	2; 3
Inga striata	X	X	X	-	X	-	X	X	X	X	VI	3
Inga vulpina	X	X	X	-	-	-	-	-	X	-	VII	1
Jacaranda macrantha	-	X	-	-	-	-	-	-	X	-	IV	3
Lafoensia densiflora	X	-	-	-	-	-	-	-	X	-	VII	1
Lamanonia ternata	-	X	-	-	-	X	-	-	X	X	VI	3
Leandra lancifolia	X	X	X	-	-	-	-	-	X	-	VII	3
Leandra scabra	X	X	X	-	-	-	-	-	X	-	VII	3
Machaerium brasiliense	-	-	-	X	-	X	-	X	-	X	V	1
Machaerium condensatum	-	-	-	-	-	-	-	X	-	X	VII	1
Machaerium hirtum	-	-	-	-	X	-	-	X	-	X	V	1
Machaerium nictitans	-	-	-	X	-	X	X	X	-	X	V	3
Machaerium reticulatum	-	-	-	-	-	-	-	X	-	X	V	3
Machaerium villosum	-	-	-	X	-	-	X	X	-	X	V	3
Manihot pilosa	-	X	-	-	-	-	-	-	X	-	VII	3

Tabela 3 - Continuação

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Marlierea excoriata	X	X	X	-	-	-	-	-	X	-	VII	1
Marlierea racemosa	X	X	X	-	-	-	-	-	X	-	IV	1; 3
Matayba guianensis	X	X	-	-	-	-	-	-	X	-	IV	1
Matayba juglandifolia	X	-	-	-	-	-	-	-	X	-	VII	1
Maytenus evonymoides	X	-	-	-	-	-	-	-	X	-	VII	2; 3
Maytenus glazioviana	X	-	-	-	-	-	-	-	X	-	VII	3
Maytenus robusta	X	-	X	-	-	-	-	-	X	-	VII	1; 2; 3
Maytenus salicifolia	X	-	-	-	-	-	-	-	X	-	VII	3
Meliosma brasiliensis	X	-	-	-	-	-	-	-	X	-	VII	3
Meliosma sellowii	X	X	-	-	-	-	-	-	X	-	VII	3
Meliosma sinuata	X	X	X	-	-	-	-	-	X	-	IV	3
Meriania claussenii	X	X	-	-	-	-	-	-	X	-	VII	3
Miconia brunnea	X	X	X	-	-	-	-	-	X	-	IV	33
Miconia chartacea	X	X	X	-	-	-	-	-	X	-	IV	2; 3
Miconia cinerascens	X	X	X	-	-	-	-	-	X	-	I	2
Miconia cinnamomifolia	X	X	X	X	-	X	-	-	X	X	VI	3
Miconia cubatanensis	X	X	X	-	-	-	-	-	X	-	IV	1; 3
Miconia divaricata	X	X	X	-	-	-	-	-	X	-	IV	2
Miconia eichlerii	X	X	X	-	-	-	-	-	X	-	VII	3
Miconia fasciculata	X	X	X	-	-	-	-	-	X	-	IV	3
Miconia latecrenata	X	X	X	-	X	-	-	-	X	X	VI	3
Miconia minutiflora	X	X	X	-	-	-	-	-	X	-	VII	3
Miconia prasina	X	X	X	-	-	-	-	-	X	-	IV	3
Miconia pusilliflora	X	X	X	-	-	-	-		X	-	IV	3

Tabela 3 - Continuação

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Miconia sellowiana	X	X	X	-	-	-	-	-	X	-	IV	2; 3
Miconia theaezans	X	X	X	-	-	-	-	-	X	-	IV	2; 3
Miconia urophylla	X	X	X	-	-	-	-	-	X	-	I	3
Mimosa artemisiana	-	X	-	X	X	X	-	X	X	X	III	1; 2; 3
Mimosa scabrela	-	X	X	X	X	X	X	X	X	X	VII	2
Mollinedia clavigera	X	X	X	-	-	-	-	-	X	-	VII	2; 3
Mollinedia engleriana	X	X	X	-	-	-	-	-	X	-	VII	3
Mollinedia longifolia	X	X	X	-	-	-	-	-	X	-	VII	3
Mollinedia triflora	X	X	X	-	-	-	-	-	X	-	IV	3
Myrceugenia acutiflora	X	X	X	-	-	-	-	-	X	-	IV	1
Myrceugenia bracteosa	X	X	X	-	-	-	-	-	X	-	VII	1; 3
Myrceugenia miersiana	X	X	X	-	-	-	-	-	X	-	VII	3
Myrcia diaphana	X	X	X	-	-	-	-	-	X	-	VII	3
Myrcia eriopus	X	X	X	-	-	-	-	-	X	-	IV	3
Myrcia laruotteana	X	X	X	-	-	-	-	-	X	-	VII	1; 2; 3
Myrcia multiflora	X	X	X	-	-	-	-	-	X	-	IV	1
Myrcia obovata	X	X	X	-	-	-	-	-	X	-	VII	2; 3
Myrcia pulchra	X	X	X	-	-	-	-	-	X	-	IV	1; 3
Myrcia splendens	X	X	X	-	-	-	-	-	X	-	VII	2; 3
Myrciaria floribunda	X	X	X	-	-	-	-	-	X	-	VII	2; 3
Myrciaria tenella	X	X	X	-	-	-	-	-	X	-	I	1
Myrsine coriacea	X	-	X	X	X	-	-	-	X	X	VI	3
Myrsine gardneriana	X	-	X	-	-	-	-	-	X	-	IV	1; 2; 3
Myrsine lineata	X	-	X	-	-	-	-	-	X	-	IV	2

Tabela 3 - Continuação

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Myrsine umbellata	X	-	X	х	X	X	-	-	X	X	VI	2; 3
Myrsine vellosissima	X	-	-	-	X	-	-	-	X	X	VII	2; 3
Nectandra grandiflora	X	X	X	-	-	-	-	-	X	-	VII	2; 3
Nectandra lanceolata	X	X	X	-	-	-	-	-	X	-	VII	1
Nectandra oppositifolia	X	X	X	-	-	-	-	-	X	-	IV	3
Nectandra puberula	X	X	-	-	-	-	-	-	X	-	VII	3
Ocotea aciphylla	X	X	-	-	-	-	-	-	X	-	VII	3
Ocotea brachybotra	X	X	-	-	-	-	-	-	X	-	IV	3
Ocotea corymbosa	X	X	-	X	-	-	-	-	X	X	VI	3
Ocotea diospyrifolia	X	X	X	-	-	X	-	-	X	X	VI	1
Ocotea elegans	X	X	X	X	-	X	-	-	X	X	VI	3
Ocotea indecora	X	X	-	-	-	-	X	-	X	X	VII	1
Ocotea longifolia	X	X	-	-	-	-	-	-	X	-	VII	3
Ocotea odorifera	X	X	X	-	-	-	-	-	X	-	IV	3
Ocotea puberula	X	X	X	X	-	X	X	-	X	X	VI	1
Ocotea pulchella	X	X	X	X	-	X	-	-	X	X	VI	1
Ocotea silvestris	X	X	-	-	-	-	-	-	X	-	VII	3
Oreopanax capitatus	X	-	-	-	-	-	-	-	X	-	IV	3
Ormosia fastigiata	X	-	X	-	-	-	-	X	X	X	VII	3
Ouratea parviflora	X	X	-	-	-	-	-	-	X	-	IV	1; 3
Pamphilia aurea	X	-	-	-	X	-	-	-	X	X	VI	3
Pera glabrata	X	X	X	-	-	-	-	-	X	-	IV	3
Persea fulva	X	X	-	-	-	-	-	-	X	-	IV	3
Persea pyrifolia	X	X	X		-	-	-	-	X	-	IV	3

Tabela 3 - Continuação

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Persea venosa	X	X	X	-	-	-	-	-	X	-	VII	3
Picramnia glazioviana	X	-	-	-	-	-	-	-	X	_	VII	2; 3
Pilocarpus pauciflorus	-	X	-	-	-	-	-	-	X	-	VII	2; 3
Piper amalago	X	X	X	-	-	-	-	-	X	-	VII	2; 3
Piper cernuum	X	X	X	-	-	-	-	-	X	-	VII	3
Piper crassinervium	X	X	X	-	-	-	-	-	X	-	VII	2; 3
Piper dilatatum	X	X	X	-	-	-	-	-	X	-	I	3
Piptocarpha macropoda	-	X	-	-	X	-	-	-	X	X	III	2; 3
Piptocarpha regnellii	-	X	-	-	X	-	-	-	X	X	VII	3
Plinia cauliflora	X	X	X	-	-	-	-	-	X	-	IV	2; 3
Podocarpus lambertii	X	X	X	-	-	-	-	-	X	-	IV	3
Poeppigia procera	-	-	-	-	-	-	-	X	-	X	V	3
Pouteria caimito	X	-	X	-	-	X	-	-	X	X	VI	3
Pouteria guianensis	X	-	Х-	-	-	-	-	-	X	-	VII	2; 3
Prunus myrtifolia	X	X	X	-	-	-	-	-	X	-	IV	1; 2; 3
Pseudobombax grandiflorum	-	X	-	-	X	-	X	-	X	X	VII	3
Psychotria suterella	X	X	X	-	-	-	-	-	X	-	IV	3
Psychotria vellosiana	X	X	X	-	-	-	-	-	X	-	VII	2; 3
Quiina glaziovii	X	X	X	-	-	-	-	-	X	-	IV	2; 3
Rollinia dolabripetala	X	X	X	X	X	-	-	-	X	X	VI	3
Rollinia emarginata	X	X	X	-	-	-	-	-	X	-	IV	1
Rollinia laurifolia	X	X	X	-	-	-	-	-	X	-	IV	3
Rollinia sylvatica	X	X	X	-	-	X	-	-	X	X	VI	3
Roupala brasiliensis	-	X	-	-	-	X	-	-	X	X	VII	3

Tabela 3 - Continuação

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Rudgea jasminoides	X	X	X	-	-	-	-	-	X	-	VII	3
Rudgea recurva	X	X	X	-	-	-	-	-	X	-	IV	3
Sapium glandulosum	X	-	-	X	-	-	-	-	X	X	III	1; 2; 3
Sapium haematospermum	X	X	X	-	X	-	-	-	X	X	VII	1
Schefflera calva	X	X	-	-	-	-	-	-	X	-	IV	3
Sclerolobium rugosum	-	-	-	X	X	X	X	X	-	X	VII	2; 3
Sebastiania brasiliensis	-	X	-	-	-	-	-	-	X	-	IV	1
Sebastiania commersoniana	-	X	-	-	-	X	X	-	X	X	III	1
Senna macranthera	X	-	X	X	X	-	X	X	X	X	III	3
Senna multijuga	-	X	-	X	X	-	X	X	X	X	VII	1; 3
Siphoneugena densiflora	X	X	-	-	-	-	-	-	X	-	VII	3
Sloanea guianensis	X	X	-	-	-	-	-	-	X	-	VII	3
Sloanea monosperma	X	X	-	-	-	-	-	-	X	-	IV	3
Solanum bullatum	X	-	X	X	X	-	-	-	X	X	VI	3
Solanum cinnamomeum	X	-	X	-	X	-	-	-	X	X	III	3
Solanum granuloso-leprosum	X	-	X	X	X	X	-	-	X	X	VI	1; 2; 3
Solanum lepidotum	X	-	X	-	X	-	-	-	X	X	VI	1; 2; 3
Solanum leucodendron	X	-	X	-	X	-	-	-	X	X	VI	3
Solanum pseudoquina	X	X	X	X	X	-	-	-	X	X	VI	3
Solanum swartzianum	X	-	X	-	X	-	-	-	X	X	VII	3
Sorocea bonplandii	X	X	X	-	-	-	-	-	X	-	VII	3
Sphaeropteris gardneri	-	-	-	-	-	-	-	-	-	-	VII	2; 3
Stifftia chrysantha	-	X	-	-	-	-	-	-	X	-	IV	3
Syagrus romanzoffiana	X	X	X	-	-	-	X	ı	X	X	VI	1

Tabela 3 - Continuação

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Symplocos celastrinea	X	-	X	-	-	-	-	-	X	-	IV	1; 2; 3
Symplocos insignis	X	-	X	-	-	-	-	-	X	-	IV	3
Tabebuia alba	-	X	-	-	-	-	-	-	X	-	IV	3
Tabebuia chrysotricha	-	X	-	-	-	-	X	-	X	X	VI	3
Tabebuia heptaphylla	-	X	-	-	-	-	-	-	X	-	IV	1
Tabebuia vellosoi	-	X	-	-	-	-	-	-	X	-	IV	3
Tapirira guianensis	X	-	X	-	X	X	-	-	X	X	VI	3
Tapirira obtusa	X	X	X	-	X	-	-	-	X	X	VII	3
Tetrorchidium parvulum	-	X	-	-	-	-	-	-	X	-	IV	3
Tibouchina arborea	-	X	-	-	-	-	-	-	X	-	IV	2; 3
Tibouchina moricandiana	-	X	-	-	-	-	-	-	X	-	IV	3
Tibouchina mutabilis	-	X	-	-	-	-	-	-	X	-	IV	2; 3
Tibouchina pulchra	-	X	-	-	-	-	-	-	X	-	IV	3
Tibouchina sellowiana	-	X	-	X	-	X	-	-	X	X	VI	2
Toulicia laevigata	-	X	-	-	-	-	-	-	X	-	VII	3
Tovomitopsis saldanhae	X	-	X	-	-	-	-	-	X	-	I	3
Trembleya parviflora	X	X	-	-	X	-	-	-	X	X	VII	3
Trichilia emarginata	X	X	-	-	-	-	-	-	X	-	IV	1
Trichilia hirta	X	X	X	-	-	-	-	-	X	-	I	3
Vernonanthura diffusa	-	X	-	X	-	X	-	-	X	X	III	1; 3
Vernonanthura discolor	-	X	-	X	X	-	-	-	X	X	III	3
Virola bicuhyba	X	X	X	-	-	-	-	-	X	-	IV	3
Vismia brasiliensis	X	-	X	-	-	X	-	-	X	X	VI	3
Vitex megapotamica	X	-	X	-	X	X	-	-	X	X	VI	1

Tabela 3 - Continuação

Espécies	DZ	PZ	ALF	HCSA	HCR	HCA	AFM	FBN	Atrativa	Ativadora	Grupo	Sítios
Vochysia magnifica	-	-	-	X	-	-	-	-	-	X	V	3
Vochysia tucanorum	-	-	-	X	-	-	-	-	-	X	V	3
Weinmannia paulliniifolia	-	-	-	X	-	-	-	-	-	X	V	3
Xylopia brasiliensis	X	X	X	-	-	-	-	-	X	-	VII	2; 3
Xylosma prockia	X	-	X	-	-	-	-	-	X	-	IV	1
Xylosma venosa	X	-	X	-	-	-	-	-	X	-	IV	3
Zanthoxylum rhoifolium	X	X	-	-	-	X	-	-	X	х	VI	3

Tabela 4 - Relação das espécies arbustivo-arbóreas registradas em diferentes sítios de mata ciliar na região do maciço do Itatiaia em Bocaina de Minas, MG, e suas características ecológicas. Em que: NO = norte, NE = nordeste, CO = centro-oeste, S = sul e SE = sudeste; CA = caatinga, CE = cerrado, CR = campo rupestre, RES= restinga, FED = floresta estacional decídua, FES = floresta estacional semidecidual, FOD = floresta ombrófila densa, FOM = floresta ombrófila mista, PAM = pantanal matogrossensse; MC = mata ciliar, MB = mata de brejo, CA = capoeiras e ou capoeirões, CL = clareiras, BM = borda de mata, BR = beira de rio, AL = aluviões, VA = várzea, PD = pastagem degradada, AA = áreas antropizadas; TA = terrenos abertos. Preferência quanto à umidade do solo (US): X = xérico; M = sítio mésico, U = sítio úmido; A = sítio alagado. Preferência quanto à fertilidade do solo (FS): B = fertilidade baixa, M = fertilidade média, MB = fertilidade média baixa, A = fertilidade alta, I= indiferente. Ritmo de crescimento (RC): R = rápido, M = moderado, L = lento. Uso: af = alimento para a fauna, ah = alimentação humana, ml = melífera, co = comercial, ra = reflorestamento ambiental, me = medicinal, md= madeira, e= energia, a = artesanato e o = ornamental.

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Acacia polyphylla	manjoleiro; espinho-de-maricá		RES; FOD; FES; FED; CE	MC; CA	MU	MB	R	af; c; md; ra; o	12; 26; 31
Aegiphila fluminensis		SE	FOD; FED	MC	MU	MB	R		
Aegiphila obducta		S; SE	FOD	MC	MU	MB	R		35
Albizia polycephala	farinha-seca; angico-branco	CO; S; SE	FOD; FES	MC; CA	MU	MB	M	md; ra; o	26; 31
Alchornea glandulosa	tapiá; tanheiro	SE; S	RES; FOD; FES	MC; MB: CA; CL; BM; BR	MUA	MB	R	ml; md; rd; e; o; a	2; 3; 11; 26
Alchornea sidifolia	tapiá-guaçu; urucurana	S; SE	FOD; CE	MC: CA; BR; AL	MUA	MB	R	md; o	3
Alchornea triplinervia	tapiá-vermelho; tapiá	NO; NE; CO; S; SE	RES; FOD; FOM; FES; CE	MC; MB: CA	MUA	MB	R	md; af; ml; ra; me; c	2; 7; 11; 12; 26
Alibertia myrciifolia	marmelada-de- cachorro	Neot(Br: NO; NE; SE)	FES; FOD; RES		MU	MB	M		19
Allophylus edulis	fruta-de-pomba; baga-de-mocego	todo Brasil	FOD; FOM; FES; CE	MC; MB; CA	MU	MB	L	me; ml; o; md; ra; af	2; 3; 11; 26; 33

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Allophylus guaraniticus	vacumzeiro; fruta- de-pombo	SE	FOD		MU	MB	ML	md	
Alsophila setosa	xaxim de espinho	S; SE	FOD; FOM		U	MB	L	О	2
Alsophila sternbergii		SE	FOD; FOM		U	MB	L		
Amaioua guianensis	marmelada; canela-de-veado	todo Brasil	RES; FOD; FES; CE	MC	M	MB	L	md; e; af; ra; o	3; 27
Anadenanthera colubrina	angico-branco; angico	NE; SE; CO; S	FOD; FED; CE; FEM; CA	MC	MUA	I	R	ra; me; md; e; ml; o	7; 26; 31
Annona cacans	araticum-cagão; cortiça	S; SE	FOD; FES; CE	MC; MB	MU	MB	M	md; ra; o; af	3; 7; 11; 26; 31
Araucaria angustifolia	pinheiro-do- paraná; araucaria	SE; S	FOD; FOM		MU	MB	L	ah; me; md; a; o; c; ra; af	7; 13; 26; 33
Aspidosperma autrale	guatambu; peroba- branca	S; SE	PAM; FOD	TA	UM	A	M	me; md; o	27
Aspidosperma parvifolium	guatambu; guatambu-branco	NO; NE; SE; S	FOD; FES; RES		MU	MB	R	md; o	3; 26; 31; 33
Aspidosperma spruceanum	perobão; cabo-de- machado	NO; NE; SE	FES; FOD		MU	MB	M	md; af; ah	27
Austrocritonia velutina		SE	FOD		M	MB	M		
Baccharis brachylaenoides	vassoura	SE; S	FOD; FOM; RES	CL; BM; CA; PD	M	MB	R	ra	33
Baccharis serrulata	vasoura	NE; SE; S	CR; CE; FOD; CA		XM	MB	R	me	33
Bathysa australis	macuqueiro; fumo-do-diabo	CO; SE; S	FOD	MC	MU	MB	L	me; ra	14; 19

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Blepharocalyx salicifolius	murta; cambuí	NE; CO; S; SE	FOD; CE; RES; FOM; FED	MC; MB	U	MB	L	md; o; af; ra	11; 27; 33
Brugmansia suaveolens	tronbeta; lirío	SE; S	FOD	PD; AA; BM	UA	MB	R	О	33
Byrsonima myricifolia		SE; S	FOD		M	MB	M		21
Byrsonima stipulacea	murici-do-litoral; murici	NE; SE	FOD; CE		M	MB	M	md; af	27
Cabralea canjerana	cangerana; pindaiborana	Neot (Br: S; SE; CO)	RES; FOD; FOM; FES; FED; CE	MC; MB; CA	MU	MB	M	md; ra; af; me; c; ml; o	11; 17; 26; 31
Calyptranthes grandifolia	guamirim-chorão	SE; S	FOD; CE	MC	MU	MB	L	e; af; ra	33
Calyptranthes widgreniana	braza-viva	SE; S	FOD		MUA	MB	L	af; ah; me; o	33
Campomanesia guaviroba	guabiroba	SE; S	FOD	MC; CA	MU	MB	L	ah; af; ra	2; 11
Campomanesia guazumifolia	sete-capotes; sete- capas	SE; S; CO	FOD; FOM; FES; CE	MC; CA; BM	MU	MB	L	af; ah; ra; e; o	3; 11; 26; 33
Campomanesia laurifolia		SE	FOD			MB	M		
Casearia arborea	cascaria; cafezeiro-do-mato	NO; NE; SE	CE; FOD; FES	MC; CA	M	MB	M		3; 20
Casearia decandra	espeto; canela- espeto	Neot(BR:todo Brasil)	RES; FOD; FOM; FES; CE	MC; MB; PD; AA; CA	M	MB	M	md; o; af; ml; c	2; 3; 11; 27
Casearia mariquitensis		SE	FOD		M	MB	ML		
Casearia obliqua	estrelado; cambroé	NE; SE; S	RES; FOD; FOM; FES	MC	M	MB	M	ra; a; ml; me	3; 11; 20
Casearia pauciflora		SE	FOD		M	MB	M		
Casearia rupestris	guaçatunga- grande; pururuca	CO; SE	FES; CE	MC: VA; CA	XM	MB	M	md; o; af	27

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Casearia sylvestris	erva-de-lagarto; cafezeiro-do-mato	Neot(BR:todo Brasil)	RES; FOD; FES; CE	MC; MB; CA	MU	MB	R	me; o; ra; af; ml	1; 11; 20; 26; 33; 34
Cassia ferruginea	canafístula	NE; CO; S; SE	FOD; FES; CE; CA; RES	MC: CA	MU	MB	L	o; ra; c; me	3; 17; 26; 31
Cecropia glaziovii	embaúva- vermelha	NE; SE; S	RES; FOD; FES	MC	MU	MB	R	af; c; me; md; ra; a; o	2; 3; 11; 27
Cecropia hololeuca	embaúva-prateada embaúva-branca	NE; SE	FOD; FES	CA	MU	MB	R	af; ra; o; me	2; 3; 26
Cedrela fissilis	cedro-rosa; cedro	Neot(BR:todo Brasil)	FOD; FOM; FES; FED; CE	MC; MB	M	MB	M	ml; af; ra; me; md; a; o	3; 11; 26; 31
Cestrum corymbosum	coerama-amarela	SE; S	FOD; CE	CA; BM	MU	MB	R		
Cestrum schlechtendalii		SE	FOD; CE		MU	MB	ML		
Chomelia brasiliana	bálsamo-de- espinho; esporão- de-galo	NE; SE	FOD; CE		M	MB	L		22
Chrysophyllum gonocarpum	chumbinho; caxeta-amarela	SE; S	FOD; FES; CE	MC	M	MB	L	af; ra; md; o	3; 11
Cinnamodendron dinisii	pimenteira; pau- para-tudo	S; SE	FOD; FOM		MU	MB	L	c; me; e; af; o; ra	4
Cinnamomum glaziovii	canela-de- papagaio	SE; S	FOD	MC	MU	MB	R	md; af; ra	27
Clerodendron fragrans		SE	FOD		UA	MB	M		
Clethra scabra	vermelhão; carne- de-vaca	S; SE	RES; FOD; FES; FED; CE	MC; MB; CA	М	MB	M	ra; o; e; me	2; 11; 27
Clusia criuva	clusia; manguerema	NE; S; SE	RES; FOD; CE	MC; MB	XM	MB	M	af; ra; e; o	2; 11; 28

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Clusia fragrans		NE; SE	FOD; CR		XM	MB	L	af	21
Cordia ecalyculata	café-de-bugre; claraíba	NE; SE; S	RES; FOD; FOM; FES; CE	MC; CA; PD	MU	MB	M	md; af; ra; o	11; 26
Cordia superba	grão-de-galo; chá- de-bugre	NE; SE	FOD; FES; CE	MC; CA	XM	MB	R	md; ml; o; af; ra	1; 26
Couratari pyramidata		SE	FOD		MU	MB	ML		
Coussapoa microcarpa	figueira; mata-pau	SE; S	RES; FOD; FES	MC: BM	MU	MB	R	af; ra; o	3; 27
Coutarea hexandra	quina; quina-quina	NO; NE; SE; S	FOD; FES; FED; CE; CA	MC: VA; BR	XMU	MB	M	me; md; e; o	2; 3; 11; 27
Croton celtidifolius	tapicingui; sangue-de-drago	NE; CO; S; SE	FOM; FOD	MC; CA; CL; VA	MU	В	R	me; md; ra; c	33
Croton floribundus	capixingui; capichingui	NE; S; SE	FOD; FES; CE	MC; MB	MU	I	R	ml; c; ra; me; md	11; 12; 26; 31
Croton organensis		SE	FOD	MC	MUA	MB	R		
Croton salutaris	caixeta	SE	FOD; FED	MC	MU	MB	R		3
Croton verrucosus		SE	FOD	MC	MU	MB	R		
Cupania ludowigii		SE	FOD			MB	M		
Cupania vernalis	pau-de-cantill; camboatã- vermelho	SE; CO; S	FOD; FOM; FES; CE	MC; CA	MU	M	M	md; o; ml; c; e; ra; af	2; 3; 11; 26; 33
Cupania zanthoxyloides		SE	FOD	MC: AL	XM	MB	M		
Cyathea atrovirens		SE	FOD; FOM		U	MB	M		
Cyathea corcovadensis	xaxim	SE	FOD; FOM		U	MB	M		
Cyathea delgadii	samambaiaçu	NO; NE; S; SE	FOD; CR	MC; MB	UA	MB	M	a; md; o	21

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Cyathea dichromatolepis		Neot(Br:S;SE)	FOD; FOM		U	MB	M	a; o	21
Cyathea phalerata	xaxim-brilhante	S; SE	FOD; FOM	MC	U	MB	M		
Cybistax antisyphillitica	caroba-de-flor- verde; ipê-verde	S; SE	RES; FOD; CE		M	В	L	ra; me; md; o	11; 24; 26
Cymbopetalum brasiliense		SE	FOD	CA	MU	MB	L		
Dalbergia villosa	caviúna; canafístula-brava	SE	FOD; FES	CA	M	В	M	ra; o	9; 26
Daphnopsis coriacea		SE	FOD	MC		MB	ML		
Daphnopsis fasciculata	imbira-vermelha	SE	FOD; CE	MC	M	MB	L		11
Daphnopsis martii		SE	FOD	MC	MA	MB	L		
Daphnopsis sellowiana		SE	FOD	MC		MB	L		
Dasyphyllum brasiliense	espinho-de-agulha	SE; CO; S	FOD; CE; CR	MC	M	MB	M		33
Dicksonia sellowiana	samambaiaçu; xaxim	S; SE	FOD; FOM		U	MB	ML	a; me; o	
Drimys brasiliensis	casca-d'anta; casca-para-tudo	todo Brasil	FOD; FOM; FES	MC	MUA	MB	L	me; af; ra; e; o	3; 26
Duguetia salicifolia		SE	FOD		M	MB	L		
Duranta vestita	branquilho; baga- de-pomba	SE	FOD		UM	MB	M		
Dyssochroma viridiflora		SE	FOD		XM	MB	ML		
Endlicheria paniculata	canela-peluda; canela-do-brejo	Neot(BR:todo Brasil)	RES; FOD; FOM; FES; FED; CE	MC: BR	MUA	I	M	me; md; af; ra; e	2; 3; 11; 27

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Eremanthus erythropappus	candeia	SE; NE; CO; S	CR		XM	MB	R	c; me; md	10
Erythrina falcata	eritrina; bico-de- papagaio	Neot. (BR: NE; S; SE)	FOD; FOM; FES; CE	MC; MB; CA	UA	В	L	c; me; md; ra; o	7; 26; 31; 33; 34
Erythroxylum pelleterianum	fruta-de-pombo; mercurio	SE	FOD; FES; CE; FED	MC	MU	MB	L		3; 11
Escallonia bifida	canudo-de-pito	SE	FOM		MA	MB	M		
Esenbeckia grandiflora	guaxupita; canela- de-cutia	SE; S	RES; FOD; FES	MC; MB	MU	A	L	md; o	3; 11; 26
Eugenia brasiliensis	gruximama; grumixaba	NE; CO; S; SE	FOD; RES; FES	MC: AL	MU	MB	L	ah; af; ra	2; 26
Eugenia cerasiflora	mamona; guamirim	NE; SE; S	FOD; FES; CE		MU	MB	L		3
Eugenia dodonaeifolia		SE	FOD			MB	L		
Eugenia involucrata	cerejeira; cerejeira-do-mato	SE; S	FOD; FOM; FES	MC	MU	A	L	af; ah; md; o; me; o	3; 26; 31; 33; 34
Eugenia mansoi		SE	FOD		MU	MB	M		
Euplassa legalis	cuticêm; cotucanchê	SE	FOD		M	MB	M	O	2
Euplassa organensis		SE	FOD		M	MB	M		
Ficus luschnathiana	figueira; mata-pau	SE; S	FOD	MC	MUA	MB	ML	af; ra; o	2
Ficus mexiae	figueira-preta; gameleira	NE; SE	FOD	MC	MU	В	ML	af; ra; o	2
Geonoma schottiana	guaricamga; gamiova	SE; CO; S	RES; FOD	MC	MU	В	L	a; o	2; 28; 31

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Gochnatia paniculata	cambarazinho; cambará	SE	FOD; CE	MC	XM	MB	R		
Gomidesia anacardiifolia	rapa-guela; guamirim- vermelho	SE; S	FOD	MC	U	МВ	M	e	33
Gordonia fruticosa	santa-rita; juruvoca	SE	FOD; CE		M	MB	L	md; ra; o	
Guapira opposita	maria-mole; flor- de-pérola	NE; SE; S	RES; FOD; FES; FED; CE	MC; MB	MUA	В	ML	md; af; ra	2; 3; 11; 27; 28
Guarea kunthiana	guaré; ataúba	todo Brasil	FES; FOD; FOM	MC; MB	MUA	I	M	af; ml; ra	3; 11; 27
Guatteria australis	pindaúva-preta; cortiça	S; SE	RES; FOD; FOM		MU	MB	L	af	
Guatteria latifolia		SE	FOD		MU	MB	L		
Guatteria pohliana		SE	FED; FOD		MU	MB	L	af	
Guatteria sellowiana		NE; SE; CO	FOD	MC	MU	MB	M	af	27
Hedyosmum brasiliense	espiradeira-da- mata; erva- cidreira	S; SE	FOD; CE	MC; MB	UA	MB	M	me	11
Heterocondylus vauthierianus		SE; S	FOD	VA	M	MB	R		22
Hillia parasitica	erva-de- passarinho	NE; SE; S	FOD; CR	MC	XM	MB	L		22
Huberia nettoana		SE	FOD		MU	MB	M		
Hyptidendron asperrimum	catinga-de-bode; roxinho	SE	FOD; FED	MC	XM	MB	M	О	

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Ilex amara	caúna-lisa; congonha-miúda	S; SE	RES; FOD; FES; FED	MC: BM	MU	MB	M	ra; e; o	3; 27
Ilex cerasifolia	congonha-peluda	SE; CO	FES; CE	MC; MB	MU	MB	L	md; e; ml; af; ra; o	3; 27
Ilex conocarpa	catuaba-do-mato	SE	FOD	MC	MU	MB	M	af; med	
Ilex paraguariensis	erva-mate; erveira	NE; SE; S	FOD; FOM; FES; CE	MC	MU	MB	L	ah;ml; c; o; md; me; ra	3; 11; 26; 33
Ilex theezans	congonha; orelha- de-mico	NE; SE; CO; S	RES; FOD; FOM; CE	MC: BM	MU	I	R	md; o	2; 3; 8; 27
Inga sessilis	ingá-macaco; ingá-ferradura	NE; S; SE	RES; FOD; FOM; FES; CE	MC: AL; VA; CA	MUA	M	R	af; ah; ml; ra; me; md; a;o	3; 21; 27
Inga striata	ingá; ingá-banana	S; SE	FOD	MC	MUA	M	R	af; ah; ml; ra	
Inga vulpina	ingá-bugio	S; SE	FOD	MC; CA	MUA	MB	M	af; ra	33
Jacaranda macrantha	caroba; carobão	SE	RES; FOD; FES	MC	MU	M	M	ra; md; o	2; 11; 26
Lafoensia densiflora	dendaleiro	SE	FOD	MC	M	MB	ML	О	
Lamanonia ternata	cedrilho; cangalheiro	NE; SE; S	RES; FOD; FES; CE	CL	M	В	M	md; ml; c; me; ra; o	2; 11; 26; 31
Leandra lancifolia		SE	FOD; CE	MC	M	MB	ML	ml	
Leandra scabra	pixirica	NO; SE; S	FOD		M	MB	M	ml	
Machaerium brasiliense	jacarandá; pau- sangue	NO; NE; S; SE	RES; FOD; FES; CE	MC; MB: CL; BM	MU	MB	M	md; e; ra; o	3; 11; 27
Machaerium condensatum		SE	FOD	MC	MU	MB	ML		
Machaerium hirtum	jacarandá-de- espinho; barreiro	SE; CO	FOD; FES; FED; CE; PAM	MC; VA	MU	В	R	me; e; ra; o	3; 27

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Machaerium nictitans	bico-de-pato; jacarandá-ferro		RES; FOD; FES; FED	MC; MB	MU	M	M	ml; md; ra; o	3; 11; 26; 31
Machaerium reticulatum		SE	FOD		MU	MB	M		21
Machaerium villosum	jacarandá- mineiro; jacarandá-paulista	S; SE	FOD; FES; FED; CE	MC	MU	M	M	md; ra; o	3; 11; 26; 31
Manihot pilosa		SE	FOD		XM	MB	ML		
Marlierea excoriata		SE	FOD		MU	MB	ML		
Marlierea racemosa		NE; SE	FOD; RES; FES		MU	MB	M		
Matayba guianensis	caboatâ-branco; mataíba	SE	FOD	MC: AL	UM	MB	M	md; e; o	2; 33
Matayba juglandifolia	jambo; caqui-do- mato	SE	FOD; CE		MU	В	ML		3
Maytenus evonymoides		todo Brasil	FOD; FOM; CE	MC	MU	MB	L		
Maytenus glazioviana	cafezinho-do- mato; cafezinho	SE	RES; FOD; FOM; FES; CE	MC; MB	MU	MB	L		
Maytenus robusta	coração-de-bugre; cafezinho	NE; NO; S; SE	CE; FES; RES; FOD	MC	MU	MB	M	md; af; ra; o	2; 11; 27
Maytenus salicifolia	língua-de-teiú; cafezinho	SE	FOD	MC	MU	MB	L	me	34
Meliosma brasiliensis		SE	FOD		MU	MB	ML		
Meliosma sellowii	pau-macuco; pau- fernandes	SE; S	FOD; FOM		MU	A	ML	ra; md; af; e	2; 3; 19; 27
Meliosma sinuata		SE	FOD		UM	MB	ML		
Meriania claussenii		SE	FOD		MU	MB	M		

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Miconia brunnea	pixirica-da-serra	SE	FOD		MU	MB	ML		3
Miconia chartacea	mexeriquinha	NE; CO; S; SE	CE; FOD	MC	MU	MB	M		15
Miconia cinerascens	pixirica; mexerico	Neot (Br: S;SE;NO)	FOM; FOD; CE	MC; MB	MU	MB	M	md	3; 11; 15
Miconia cinnamomifolia	jacatirão; casca- de-arroz	NE; SE; S	RES; FOD; FES; FED; CE	MC; MB; CA	MU	В	M	md; ml; o; c; af; ra	3; 7; 15; 26; 31
Miconia cubatanensis	pixirica; jacatirão	NO; SE; S	FOD		MU	MB	M		15
Miconia divaricata		SE	FOD		MU	MB	M		
Miconia eichlerii	pixirica	SE	FOD		MU	MB	M		
Miconia fasciculata	pixirica	NO; SE; S	FOD; RES		MU	MB	ML		15
Miconia latecrenata	pichericuçu; jacatirão-mirim	NO; NE; SE; S	FOD; FOM		MU	I	R		11; 15
Miconia minutiflora	jacatirão	SE	FOD; CE	MC	MU	MB	M		
Miconia prasina		Neot (Br: todo Brasil)	FOD	MC: BR	MU	MB	ML		15
Miconia pusilliflora	murici-branco; guamirim	Neot (Br: S;SE)	FOD; FOM; FES; RES	CA	MU	В	M		5; 15
Miconia sellowiana	quaresmeira	NO; CO; S; SE	FOD; FOM; CE	MC	MU	В	M	af; o	15
Miconia theaezans	pixirica	Neot	FOD; CE	MC; CA	UA	MB	M		11; 15
Miconia urophylla		SE	FOD		MU	MB	M		
Mimosa artemisiana	jurema-branca	NE; S; SE	FOD	MC: VA; AL	UA	В	R	md; e; ra	27
Mimosa scabrela	bracatinga; bracaatinga	S; SE	FOD; FOM	CA	MU	В	R	af; md; o; ml; me; ra	7; 26; 31; 33

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Mollinedia clavigera	pimenteira; capixim	SE	FOD		MU	MB	ML		
Mollinedia engleriana		SE	FOD		MU	MB	ML		22
Mollinedia longifolia		SE	FOD; CE	MC	MU	MB	ML		
Mollinedia triflora	pimenteira-braba	SE; S	FOD	MC	MU	MB	ML		
Myrceugenia acutiflora		SE	FOD		MU	MB	M		
Myrceugenia bracteosa	guamirim; cambuí	SE; S	FOD; FOM		MU	MB	M		23
Myrceugenia miersiana	guamirim	SE; SE	FOD; FOM	MC: VA; AL	MU	MB	ML		23
Myrcia diaphana		SE	FOD		MU	MB	ML		
Myrcia eriopus	guamirim	SE	FOD	MC	MU	MB	ML		
Myrcia laruotteana	cambuí	SE; CO; S	FOD; FED; CE	MC: VA; BM	U	MB	L		11
Myrcia multiflora	cambuí; pedra- ume	todo Brasil	RES; FOD; FES; CE	MC; MB	U	В	L	me; md	3; 11
Myrcia obovata		SE	FOD; CE		MU	MB	M		
Myrcia pulchra		SE	FOD; CE		M	MB	L		
Myrcia splendens		SE	FOD; CE		MU	MB	L		30
Myrciaria floribunda	cambuí	Neot	FOD; CE		MUA	MB	L		
Myrciaria tenella	cambuí; murta-do- campo	NE; SE; S	FOD; FES; CE; RES	MC	MUA	M	L	af; ra; md; e; o	3
Myrsine coriacea	pororoca-branca	NE; SE; S	FOD; CE		MU	I	R	ah; me; ml; ra; md; af;e	2
Myrsine gardneriana	caparosa-do- campo	NE; SE; S	FES; FOM; CE	MC; CA	MU	MB	M	me; af; ra	9; 26

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Myrsine lineata	capororoca- mineira	CO; SE	FOD		M	MB	M		9
Myrsine umbellata	pororoca-branca; capororoca	NE; SE; S	FED;FES	MC; CA	MU	I	R	md; o; af; me; e; ra	2; 27; 31; 34
Myrsine vellosissima		SE	FOD			MB	RM		
Nectandra grandiflora	canela-fedida; canela-sebo	SE; S	RES; FOD; FOM; FES; CE	MC: VA; CA	MU	I	M	md; af; o	3; 11; 27
Nectandra lanceolata	canela-cedro; canela-sassafráz	NE; CO; S; SE	FOD; FOM; FES; CE; FED	MC; MB	MU	M	M	ra; af; md; e; o	2; 3; 11; 26; 33
Nectandra oppositifolia	canela-ferrugem; canela-branca	Neot(BR:todo Brasil)	RES; FOD; FOM; FES; FED	MC; MB	MU	В	M	md; o; ra; af; o	2; 3; 11; 31
Nectandra puberula	louro-amarelo; canela-amarela	SE; S	FOD; CE		MU	MB	M	md; me	32
Ocotea aciphylla	canela-poca; canela-amarela- de-cheiro	Neot(BR:NO; NE; SE; S)	RES; FOD; FED; CE	MC: CA	MU	В	М	md; c	3; 32
Ocotea brachybotra		SE	FOD			MB	ML		
Ocotea corymbosa	canela-bosta; canela-louro	NE; SE	FOD; FES; CE	MC; MB; CA	MU	I	М	md; o; ra	3; 11; 12; 26
Ocotea diospyrifolia	canela-louro; canela-amarela	Neot (BR= SE; S)	RES; FOD; FOM; FES; FED; CE	MC; MB; CA	MU	М	М	c; md; af;	3; 11; 27
Ocotea elegans	sassafraz-do- campo	SE	FOD; FES	MC; CA; BM; PD	MU	В	L	ra; md; o; af;	3; 27; 31
Ocotea indecora	canela-preta	SE; S	FOD	MC	MU	MB	M	c; me; md	3; 11
Ocotea longifolia		SE	FOD		MU	MB	ML		

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Ocotea odorifera	canela-sassafrás; sassafrás	NE; SE; S	RES; FOD; FES; FOM; FED; CR	MC: AL	MU	В	L	md; me; a; o; ra; c; af	2; 7; 26; 31
Ocotea puberula	canela-babosa; canela-pimenta	Neot (BR= SE; S)	RES; FOD; FES; FED; FOM	MC; MB; CA	MU	В	M	me; md; a; o; c; ra; af	2; 3; 11; 26
Ocotea pulchella	canelinha; canela- prego	CO; S; SE	RES; FOD; FOM; FES; CE	MC; CA	MU	В	M	af; md; ra; o	2; 11; 26; 33
Ocotea silvestris	canela-copaiba; canela-preta	SE; S	FOD		MU	MB	M		3; 11
Oreopanax capitatus	abacate-do-mato	S; SE	FOD		MU	MB	L		33
Ormosia fastigiata	angelim-boi	NE; S; SE	FOD	MC	MUA	MB	ML	af	21
Ouratea parviflora	batiputá	NE; SE; S	FOD	MC	MU	MB	ML	me; o	2
Pamphilia aurea		SE	FOD		MU	MB	R		
Pera glabrata	pau-de-sapateiro; tamanqueira	NE; S; SE	RES; FOD; FES; CE	MC; MB	MU	I	M	me; md; a; o; ra; af	3; 11; 26; 31
Persea fulva		SE	FOD		MU	MB	M		32
Persea pyrifolia	massaranduba; abacateiro-do- mato	SE	RES; FOD; FOM; FES; FED; CE	MC; MB	MU	В	M	md; o; ra; af	11; 26; 31; 32
Persea venosa	pau-andrade	SE	FOD; CE		U	MB	M		11
Picramnia glazioviana		SE	FOD		MU	MB	ML		
Pilocarpus pauciflorus	jaborandi; cutia- branca	SE	FOD	MC	MU	MB	L	me	11
Piper amalago	falso-jaborandi	NE; SE; CO; S	FOD	MC; CA	MUA	MB	R	me	11; 16
Piper cernuum	pimenta de mocego	NO; NE; SE; S	FED; FOD	MC; BM	В	A	R	me; o	16

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Piper crassinervium		NO; NO; SE; S	FOD	MC	MU	MB	ML		16
Piper dilatatum		NO; NE; SE; S	FOD	MC	MU	MB	ML		16
Piptocarpha macropoda	vassoura-preta; piptocarpa	SE	FOD; FOM; FES; FED	MC; MB	XM	MB	R	md	22
Piptocarpha regnellii	toucinho; vassoraozinho	S; SE	FOD	CA; BM	MU	MB	R		33
Plinia cauliflora	jabuticabeira	SE; CO; S	FOD	MC: BR; AL	MU	MB	L	md; e; af; ah; ra	11
Podocarpus lambertii	pinheiro; pinho- bravo	NE; SE; S	FOM; FES; CR	MC; CA	MU	В	M	md; o; af; ah; ra; me	7; 17; 33
Poeppigia procera		SE	FOD; CE	MC	MU	MB	M		
Pouteria caimito	abiu; abiu-amarelo	todo Brasil	RES; FOD		MUA	A	L	af; ah; md; ra	3; 27
Pouteria guianensis		SE	FOD		MUA	MB	M		
Prunus myrtifolia	pessegueiro- bravo; marmelo	todo Brasil	RES; FOD; FOM; FES; CE	MC; MB; CL; CA	MU	I	L	af; ml; e; ra	2; 3; 11
Pseudobombax grandiflorum	embiruçu; embiruçu-da-mata	SE; S	RES; FOD; FES; FED	MC; MB; CA	MU	MB	R	me; md; ml; o; ra	2; 3; 11; 26
Psychotria suterella	pasto-de-anta; pixirica	SE; S	FOD; CR		MU	MB	L		21
Psychotria vellosiana	moela-de-pinto; fruto-de-pombo	NE; S; SE	FOD; FED; RES; CR	MC	M	MB	M	С	22
Quiina glaziovii	juruvarana	NE; SE; S	FOD; RES	MC	MU	A	L	o; md	36
Rollinia dolabripetala	cortiça; pinha-da- mata	S; SE	RES; FOD		MU	MB	R	c; o; ra; af	27; 28
Rollinia emarginata	araticum miúdo	SE	FOD	MC; MB	MU	MB	M	ah; c	

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Rollinia laurifolia	araticum-bravo	NE; SE; S	FOD; CE; FES		MU	В	M	ah	33
Rollinia sylvatica	araticum-do-mato; embira	NE; SE; CO; S	FOD; FES; CE	MC; MB; CA	MU	В	M	md; o; ra; me; ml; af	2; 3; 11; 26
Roupala brasiliensis	carne-de-vaca	NE; SE; CO; S	RES; FOD; FES; CE; FOM; CR	MC; MB; CA	MU	В	L	me; md; o; c; ml; ra	2; 11; 17
Rudgea jasminoides	café-do-mato	SE	RES; FOD; FES	MC	MU	MB	M	О	3; 11
Rudgea recurva	pimenteira- selvagem	SE; S	FOD		MU	MB	L		19
Sapium glandulosum	pau-de-leite; leiteiro	S; SE	RES; FOD; FOM; FES; CE	MC; MB	MUA	I	M	me; md; ra; o	2; 3; 26; 28
Sapium haematospermum	leiteiro-chorão; leiteira	SE; S; CO	CE; FES; PAM	MC; MB: BR; VA; CA	MU	M	R	ml; c; af; o	27
Schefflera calva	mandiocão	SE	FOD		MU	MB	L		
Sclerolobium rugosum	angá; cangalheiro	NO; NE; CO; S; SE	CE; FOD	MC: CA	MU	В	R	ra	21; 27; 31
Sebastiania brasiliensis	branquilho; leiteira	SE; CO; S	RES; FOD; FOM; FES; FED	MC: CA; BR	MUA	M	M	ra; me; md; o	2; 3; 11; 27
Sebastiania commersoniana	branquinho; branquilho	S; SE	FOM; FOD; FES	MC: AL	MUA	MB	M	md; ml; o; me; ra; e	3; 11; 26; 33
Senna macranthera	fedegoso; aleluia	NE; S; SE	FOD; FES; CE	MC: CA	M	I	R	md;ra; c; o; e	21; 26; 31
Senna multijuga	canafístula; pau- cigarra	NO; NE; CO; S; SE	RES; FOD; FES; FED	MC: CA	M	В	R	me; ml; ra	1; 3; 21; 26; 31
Siphoneugena densiflora	guaramirim; cravinho	SE	FOD	MC	MU	В	L		
Sloanea guianensis	laranjeira-do- mato; ouriço	Neot	FOD	MC	MU	MB	L	md	19

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Sloanea monosperma	ouriço; sapopema	NE; CO; S; SE	RES; FOD; FOD; FES; CE	AM	MU	MB	L	md; o; ra	2; 3; 11; 26
Solanum bullatum	juá-açu	SE	FOD	CA	M	MB	R	af; ml; ra	33
Solanum cinnamomeum	coerama-maçu	SE	FOD	MC	M	MB	R		
Solanum granuloso- leprosum	gravitinga; fumo- bravo	SE	FOD; FES; CE	MC	MU	MB	R	af; ra	3; 11
Solanum lepidotum		SE	FOD	MC	M	MB	R		
Solanum leucodendron	fumeiro; veu-de- noiva	SE; S	FOD		M	MB	R		
Solanum pseudoquina	quina-de-são- paulo; joá	S; SE	RES; FOD; FOM; FES; CE	MC; CA; PD	M	M	R	me; ml; md; ra; af	2; 3; 6; 11; 27
Solanum swartzianum	folha-de-prata	SE;S	FOD; RES	MC	M	MB	R	me	6
Sorocea bonplandii	canxim; araçari	NE; SE; S	RES; FOD; FOM; FES	MC; MB	MU	I	L	af; me; ra; md	2; 3; 11; 27; 33
Sphaeropteris gardneri		SE	FOD; FOM		U	MB	L		
Stifftia chrysantha	rabo-de-cutia; diadema	NE; SE; S	FES;CE	CA	M	A	L	ra;md; o	2; 26
Syagrus romanzoffiana	jerivá; palmeira- jerivá	SE; CO; S	RES; FOD; FOM; FES; FED; CE	MC; MB	MUA	M	L	ah; md; ra; af;a; o	2; 11; 25; 31
Symplocos celastrinea	orelha-de-onça; pau-de-cangalha	SE	FOD; CE		UM	MB	L		11
Symplocos insignis		SE	FOD		M	MB	M		
Tabebuia alba	ipê-da-serra; ipê- amarelo-da-serra	NE; SE; CO; S	FOD; FES; CE; FOM		M	M	L	md; o; ah; e; ra	7; 26; 33

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Tabebuia chrysotricha	ipê-amarelo- cascudo; ipê-do- morro	NE; SE; S	FOD; FES	MC; CA	М	MB	L	md; ml; me;	1; 2; 11; 26
Tabebuia heptaphylla	ipê-roxo; ipê-rosa	NO; NE; SE; CO; S	FES; FOD; CE; FED; FOM; PAM;		M	M	M	ra; md; me; o	2; 11; 26
Tabebuia vellosoi	ipê-tabaco; ipê- amarelo	SE; CO; S	FOD; FES; FED; CE	MB; MC	M	MB	L	md; o	24; 26
Tapirira guianensis	pombeiro; fruta- de-pombo	Neot. (BR:todo Brasil)	RES; FOD; FES; CE	MC; MB: VA; BR	MUA	I	R	me; md; ra; af; o	2; 3; 11; 26; 34
Tapirira obtusa	peito-de-pombo; pau-pombo	SE; NO	FOD; FES; CE	MC; MB; CA	MU	I	R	ml; o; af; ra	3; 26; 32
Tetrorchidium parvulum		SE	FOD		MU	MB	ML		
Tibouchina arborea		SE	FOD		M	MB	M		
Tibouchina moricandiana	quaresmeira	SE	CR		M	MB	M	ml	
Tibouchina mutabilis	manacá-da-sera	SE; S	RES; FOD	CA	MU	В	M	md; ra; o	2; 3; 26
Tibouchina pulchra	manacá-da-sera	SE	RES; FOD	CA	MU	MB	M	me; md; ra; a; o	3
Tibouchina sellowiana	manacá-de-minas; quaresmeira	SE; S	FOD; FOM		M	В	M	md; ra; o	33
Toulicia laevigata	cheiro-de-barata	NE; SE	FOD; FOM		MU	MB	M	ra; e; o	27
Tovomitopsis saldanhae	azedinho	SE	FOD		MU	В	L	af	21
Trembleya parviflora		SE	FOD; CE	MC	MU	MB	R		
Trichilia emarginata	catiguá, caá-tigoá	NE; SE	FOD		MU	В	ML		22

Tabela 4 - Continuação

Espécies	Nomes comum	Distribuição geográfica	Domínio	Fisionomia	US	FS	RC	Uso	Fontes*
Trichilia hirta	carrapeta, catinguá-vermelho	CO; SE	FOD; FES		MUA	В	M	md; af; md; a; o	26; 31
Vernonanthura diffusa	vassourão-preto	NE; SE	FOD	CL; CA	UM	I	M	md; ra; o	
Vernonanthura discolor	vassourão-preto; cambará	SE; S	FOD; FOM; FES; RES		M	I	R	md; ra; o	3; 11; 26
Virola bicuhyba	bocuva, bicuíba	SE; S	RES; FOD	CA	MU	A	L	ah; me; md; c; a; o; e; af	2; 3; 26
Vismia brasiliensis	pau-de-lacre, lacre	NE; SE	FOD; FED	MC; CA	M	A	M	af; ra; e	2; 27
Vitex megapotamica	tarumã, tarumã- azeitona	CO; S; SE	FOD; FES; FED	MC; CA	MUA	I	R	af; md; o; ml; ra; me	2; 26; 33
Vochysia magnifica	pau-novo	SE; S	FOD; FES		M	В	M	e; ra; o	3; 27
Vochysia tucanorum	pau-de-tucano, cinzeiro	NE; CO; S; SE	FOD; FOM; FES; CE	MC; CA	M	В	L	md; ra; o	3; 11; 26; 28
Weinmannia paulliniifolia	gramimunia; gramuinha	SE; S	FOD; RES	MC: AA	MU	В	M	c; e; o	2; 21
Xylopia brasiliensis	pindaíba; pau-de- mastro	NE; S; SE	RES; FOD; FES; CE	MC: BM	MU	В	R	af; o; ra; md	2; 11; 26; 33
Xylosma prockia	espinheiro-de- judeu, tajuvinha	NE; SE; S	FOD	MC; CA; BM	M	MB	M		33
Xylosma venosa	espinho-de-judeu	SE	FOD		M	MB	L		11
Zanthoxylum rhoifolium	mamica-de-porca, mamica-de-cadela	todo Brasil	FOD; FOM; FES; FED; CE	MC; MB	MU	I	M	me; md; ml; ra; o	3; 11; 26

^{*1 -} Agostini & Sazima, 2003; 2 - Backes & Irgang, 2004; 3 - Barbosa & Martins, 2003; 4 - Barros, 2000; 5 - Baumgratz, 1984; 6 - Bovini et al., 1996; 7 - Carvalho, et al., 1996; 8 - Chieia & Romaniuc-Neto, 1992; 9 - Corrêa, 1931; 10 - Corrêa, 1978; 11 - Durigan et al., 2004; 12 - Durigan et al., 2002; 13 - Franco & Fontana, 1997; 14 Germano-Filho, 1998; 15 - Goldenberg, 2004; 16 - Guimarães & Giordano, 2003; 17 - Guimarães et al., 1993; 18 - Inoque et al., 1984; 19 - Jung-Mendaçolli, 1999; 20 Lima et al., 2004; 21 - Lima & Guedes-Bruni, 1994; 22 - Lima & Guedes-Bruni, 1996; 23 - Lima & Guedes-Bruni, 2004; 24 - Lonhmann & Pirani.,1998; 25 - Lorenzi et al. 2004; 26 - Lorenzi, 2002a; 27 - Lorenzi, 2002b; 28 - Meguro et al., 1996; 29 - Mello-Silva, 1992; 30 - Mendonça et al., 1998; 31 - Oliveira-Filho et al., 1995; 32 Quinet & Andreata, 2002; 33 - Reitz et al., 1965-1989; 34 - Rodrigues & Carvalho, 2001; 35 - Salimena, 2000; 36 - Souza & Bianchini, 2001.

TABELA 5 – Relação das espécies arbustivo-arbóreas registradas em diferentes ambientes de mata ciliar em Bocaina de Minas, MG, e suas características silviculturais. Em que: E. F= época de frutificação; S/F= número de sementes por fruto; S/kg= número médio de sementes por quilograma; MBS= método de beneficiamento de sementes (anexo 1); TPG= tratamento pré-germinativo (anexo 2); TGE= taxa de germinação (alta= > 70%, média = >30 a 70%, baixa= >30%); ARM= armazenamento (anexo 3); TG= tolerância à geada (T= tolerante, S= susceptível e I= indiferente); PPM= período de produção de mudas (meses); MA= micorrização; PGE= período de germinação (dias).

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Acacia polyphylla	ago-set		13.500	3	15	alta	2		4	MA	após 15	10; 13; 28; 42
Aegiphila fluminensis												
Aegiphila obducta												38
Albizia polycephala	mai-jun		25.000	14	3	média	2		6	MA	10 a 30	11; 15; 30
Alchornea glandulosa	out-nov		19.500	3	13	média			4 a 5		20 a 50	1; 9; 12; 28
Alchornea sidifolia	nov-fev		18.500	10	9							10
Alchornea triplinervia	jan-fev	2 a 3	18.500	10	13	média	3	I	4 a 5	MA	20 a 40	1; 5; 12; 13; 28; 34
Alibertia myrciifolia	dez-fev		86.000	1	15	média						10; 21
Allophylus edulis	nov-dez	1	29.850	1	15	alta	4		6		20 a 30	1; 9; 12; 28; 37
Allophylus guaraniticus				1								
Alsophila setosa												1
Alsophila sternbergii	jun-ago											
Amaioua guianensis	abr-jun		125.000	1	15	média					40 a 60	9; 29
Anadenanthera colubrina	ago-out	10 a 15	10.360	3	15	alta	2		5	MA	2 a 33	10; 14; 28; 41
Annona cacans	jan-mac		5.370	1	8	alta	3	S	6		40 a 80	12; 19; 28
Araucaria angustifolia	abr-mai	60 a 80	123		3	alta	2		6	MA	20 a 110	7; 28; 30; 37
Aspidosperma autrale	jul-set	8 a 10	5.000	3	15	média					15 a 25	29

Tabela 5 - Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Aspidosperma parvifolium	ago-nov		5.980	3	15	alta	2		6	NM	15 a 35	10; 28; 31; 37
Aspidosperma spruceanum	dez-jan	8 a 10	4.600	3	15	alta	2		8		15 a 20	10; 29
Austrocritonia velutina												
Baccharis brachylaenoides												37
Baccharis serrulata												37
Bathysa australis	mar-mai		6.000.000		15						120 a 150	9; 21
Blepharocalyx salicifolius	mai-jun	1 a 4	65.000	2	15	média		T			40 a 50	9; 12; 29; 37
Brugmansia suaveolens	ano todo											37
Byrsonima myricifolia												23
Byrsonima stipulacea	ago-out	1	1.500	1		baixa					35 a 49	9; 29
Cabralea canjerana	ago-nov	1 a 10	1.060	17	15	baixa	3	T	10	MA	30 a 32	10; 12; 18; 28
Calyptranthes grandifolia	set							T				37
Calyptranthes widgreniana		1 a 2										37
Campomanesia guaviroba	jun-jul							T				1; 12
Campomanesia guazumifolia	fev-maio		22.000	1	15	média		T			15 a 30	9; 12; 28; 37
Campomanesia laurifolia				1								
Casearia arborea	mai-jul		13.500		15							9; 22
Casearia decandra	out-nov		47.000		15			T			21 a 28	1; 9; 12; 29
Casearia mariquitensis												
Casearia obliqua	set-out		130.000		15			T				9; 12; 22
Casearia pauciflora					•	-						

Tabela 5 – Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Casearia rupestris	set-out	3	1.800	4	15	baixa			6 a 8		21 a 42	9; 29
Casearia sylvestris	ago-set	1 a 7	84.000	3	15	baixa		S	4	MA	20 a 30	1; 9; 12; 22; 28; 37; 42
Cassia ferruginea	ago-nov		11.500	11	8	média	1		6	MA	12 a 20	10; 18; 28
Cecropia glaziovii	jan-dez		2.000.000	7	15	média			3 a 4	MA	20 a 28	1; 9; 12; 29; 42
Cecropia hololeuca	jul-nov		900.000	7	15	baixa			6	MA	20 a 60	1; 9; 28
Cedrela fissilis	jul-ago	25	27.900	3	15	alta	2	T	5	MA	12 a 18	10; 12; 28; 42
Cestrum corymbosum												
Cestrum schlechtendalii												
Chomelia brasiliana	mai											24
Chrysophyllum gonocarpum	ago-out	1a 5	4.070	1	15	média	3	T			20 a 30	1; 9; 12
Cinnamodendron dinisii	dez-fev	2 a 4	2.800	2		baixa			6 a 7		30 a 70	2
Cinnamomum glaziovii	ago-set	1	6.200	1	15	baixa			7		28 a 42	9; 29
Clerodendron fragrans												
Clethra scabra	maio-jul		4.000.000	3	15	baixa		T	5 a 6		15 a 20	1; 12; 29
Clusia criuva	jan-fev		52.000	3	15							1; 9; 12; 31
Clusia fragrans	ago											23
Cordia ecalyculata	mac-set		5.400		15	baixa	3			MA	20 a 40	9; 12; 28
Cordia superba	jan-mac		3.300		15	baixa	3		4 a 5		20 a 60	9; 28
Couratari pyramidata				3								
Coussapoa microcarpa	nov-dez		1.500.000	7	15	média			4 a 5		20 a 30	9; 29
Coutarea hexandra	set-out		3.000.000	3	15	baixa					20 a 30	1; 9; 12; 29

Tabela 5 - Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Croton celtidifolius				3								37
Croton floribundus	fev-mac	3	24.300	3	15	média	3	S	4	MA	10 a 20	10; 12; 13; 42
Croton organensis				3								
Croton salutaris				3								
Croton verrucosus				3								
Cupania ludowigii				3								
Cupania vernalis	ago-nov		2.580	3	15	alta	4	Т	10		20 a 30	1; 10; 12; 28; 37
Cupania zanthoxyloides				3								
Cyathea atrovirens												
Cyathea corcovadensis												
Cyathea delgadii												23
Cyathea dichromatolepis												23
Cyathea phalerata	jun-ago											
Cybistax antisyphillitica	mai-out		20.770	3	15	média	3	T	6		15 a 25	12; 26; 28
Cymbopetalum brasiliense												
Dalbergia villosa	ago-set		28.000	5	15	alta	3				15 a 25	7; 9; 28
Daphnopsis coriacea												
Daphnopsis fasciculata	mar-mai		7.000		15							9
Daphnopsis martii												
Daphnopsis sellowiana												
Dasyphyllum brasiliense	out-nov		2.000.000		15							9; 37

Tabela 5 - Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Dicksonia sellowiana												
Drimys brasiliensis	out-nov	2 a 5	218.000	12	15	baixa						9; 28
Duguetia salicifolia	ago-out			7								
Duranta vestita												
Dyssochroma viridiflora												
Endlicheria paniculata	abr-nov	1	770	1	15	baixa					30 a 50	1; 9; 12; 29
Eremanthus erythropappus	nov	1	2.000.000	5	15	média	-		8			8
Erythrina falcata	set-out	3 a 15	3.500	3	3;7	alta	1		5	MA	7 a 135	5; 10; 28
Erythroxylum pelleterianum	set-dez		16.000		15			T				9; 12
Escallonia bifida												
Esenbeckia grandiflora	jun-ago		6.300	3	15	alta	3					9; 12; 28
Eugenia brasiliensis	out-nov		3.500	1	15	baixa					30 a 60	1; 9; 28
Eugenia cerasiflora	ago-dez			1								
Eugenia dodonaeifolia				1								
Eugenia involucrata	set-out	1 a 3	7.500	1	15	baixa	3		8		30 a 40	10; 28; 37
Eugenia mansoi				1								
Euplassa legalis	abr-ago											1
Euplassa organensis												
Ficus luschnathiana	dez-jan										21 a 28	1
Ficus mexiae												1
Geonoma schottiana	ago-nov		5.000	7	15	baixa						1; 9;10; 31
Gochnatia paniculata				5								

Tabela 5 - Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Gomidesia anacardiifolia	ago-nov											37
Gordonia fruticosa	mar-jul		290.000		15							9
Guapira opposita	nov-fev	1	7.000	1	15	alta		T			10 a 20	1; 9; 12; 29
Guarea kunthiana	ago-set	2 a 4	755	4	15	baixa			5 a 7	MA	21 a 35	9; 12; 29; 42
Guatteria australis	jun-set		1.650									10;32
Guatteria latifolia												
Guatteria pohliana												
Guatteria sellowiana												31
Hedyosmum brasiliense	out-abr		10.000		15							9; 12
Heterocondylus vauthierianus				5								24
Hillia parasitica	mai-set											24
Huberia nettoana				1								
Hyptidendron asperrimum												
Ilex amara	dez-mai	2 a 5	480.000	2	6	média					30 a 50	1; 9; 29
Ilex cerasifolia	jun	2 a 4	115.000	1	6	baixa					60 a 90	9; 29
Ilex conocarpa				1								
Ilex paraguariensis	jan-mac	1 a 4	90.000	1	6	baixa			11			9; 13; 15; 28; 37
Ilex theezans	dez-jun	2 a 6	140.000	1	6	baixa	2				30 a 50	1; 6; 9; 29
Inga sessilis	jul-jan		450	6	15	média			5 a 6	MA		23; 29; 42
Inga striata	fev-mac			6						MA		23; 42
Inga vulpina		·		6						MA		37

Tabela 5 - Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Jacaranda macrantha	set-out		145.000	3	15	alta		T	6		10 a 30	1; 12; 28
Lafoensia densiflora				3								
Lamanonia ternata	jun-ago		15.000.000	3		baixa			9		20 a 30	1; 12; 28
Leandra lancifolia				1								
Leandra scabra				1								
Machaerium brasiliense	abr-maio	1	7.300	5	15	alta		T	5 a 6		14 a 28	9; 12; 29
Machaerium condensatum				5								
Machaerium hirtum	jan-mac	1	4.000	5		alta					14 a 28	29
Machaerium nictitans	ago-out	1 a 2	10.700	5	15	média	2		8	MA	10 a 20	10; 12; 22; 28
Machaerium reticulatum	fev-set	1 a 2		5								23
Machaerium villosum	ago-out		2.300	5	15	média	2		7	MA	20 a 40	10; 12; 28
Manihot pilosa				3								
Marlierea excoriata	jul-ago											
Marlierea racemosa												
Matayba guianensis	nov-jan											1; 37
Matayba juglandifolia	dez-jan		3.500		15							9
Maytenus evonymoides				4								
Maytenus glazioviana				4								
Maytenus robusta	maio	1 a 2	13.500	4	15	baixa			5 a 7		14 a 21	1; 9; 12; 29
Maytenus salicifolia	dez-fev		3.500	4	15							9
Meliosma brasiliensis				1								
Meliosma sellowii	jul-ago	1	500	1	15	baixa					60 a 90	1; 9; 21; 29

Tabela 5 - Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Meliosma sinuata				1								
Meriania claussenii												
Miconia brunnea	dez-mac	2 a 3	2.000.000	1	15							9
Miconia chartacea		2 a 6		1								16
Miconia cinerascens	nov-mai	4 a 7		1				S				12; 16
Miconia cinnamomifolia	jun-ago	30 a 40	1.600.000	1	15	média	1		8	MA	22 a 90	5; 10; 16; 28
Miconia cubatanensis	abr-out	2 a 6		1								16
Miconia divaricata				1								
Miconia eichlerii				1								
Miconia fasciculata		6 a 12		1								16
Miconia latecrenata	abr-ago	10 a 20		1				S				12; 16
Miconia minutiflora				1								
Miconia prasina	dez-jan	50 a 80		1								16
Miconia pusilliflora	mai-ago	2 a 6		1								3; 16
Miconia sellowiana	jan-mai	6 a 9		1								16
Miconia theaezans	ano todo	40		1				S				12; 16
Miconia urophylla				1								
Mimosa artemisiana	ago-set	7 a 8	52.000	3	9	alta			6	MA	7 a 14	15; 29
Mimosa scabrela	nov-jan		38.400	14	7	alta	1	I	4	MA	5 a 30	5; 10; 28; 37; 42
Mollinedia clavigera												
Mollinedia engleriana	fev											24

Tabela 5 - Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Mollinedia longifolia												
Mollinedia triflora												
Myrceugenia acutiflora												
Myrceugenia bracteosa	jun-ago	1 a 2										25
Myrceugenia miersiana	jun	2 a 3										25
Myrcia diaphana												
Myrcia eriopus												
Myrcia laruotteana	jan-mac		51.800		15			T				9; 12
Myrcia multiflora	nov-dez		18.000		15			T				9; 12; 35
Myrcia obovata												
Myrcia pulchra												
Myrcia splendens												33
Myrciaria floribunda												
Myrciaria tenella	jan-mac				15	alta					30 a 60	
Myrsine coriacea	set-jan								5 a 6		30 a 60	
Myrsine gardneriana	out-dez	1	50.000	4	9; 13; 14	baixa		Т			50 a 100	7; 9; 28
Myrsine lineata	out-jan		30.000		9; 13							7; 9
Myrsine umbellata	jan-mac	1	59.300	15	9; 13; 16	baixa		Т	12		40 a 60	1; 9; 10; 29
Myrsine vellosissima												
Nectandra grandiflora	ago-out	1	1.300	16	15	baixa		T			50 a 60	9; 12; 29

Tabela 5 - Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Nectandra lanceolata	out-mac	1 a 4	1.400	16	12		3	T	9		30 a 120	1; 12; 28; 37
Nectandra oppositifolia	jun-set		1.180	16	15	média	4	S	8		25 a 30	1; 10; 12
Nectandra puberula	jun			16						MA		37
Ocotea aciphylla	jan-jul		2.600	16	15							9; 36
Ocotea brachybotra				16								
Ocotea corymbosa	set-out		3.500	7	3	alta		S	12		20 a 30	12; 13; 28
Ocotea diospyrifolia	abr-jun	1	1.800	16	15	baixa					40 a 50	9; 12; 29
Ocotea elegans	jan-mac	1	1.800	16	15	baixa					70 a 80	9; 29
Ocotea indecora	ago			16						MA		12; 42
Ocotea longifolia				16								
Ocotea odorifera	dez-jan		4.500	16	5	média	4		6		20 a 50	1; 5; 10; 28
Ocotea puberula	mai-set		3.000	16	14	alta	3		5 a 7	MA	20 a 50	1; 12; 15; 42
Ocotea pulchella	mai-jan		3.000	16	10	baixa	3				30 a 60	1; 12; 28; 37
Ocotea silvestris	fev-abr			16								12
Oreopanax capitatus									10 a 12			37
Ormosia fastigiata	abr-nov	1 a 3		3								23
Ouratea parviflora	abr-out					baixa						1
Pamphilia aurea												
Pera glabrata	abr-jun		51.000	3	15	baixa		T			15 a 25	9; 12; 28
Persea fulva	ago			16								36
Persea pyrifolia	jan-fev		3.850	16	15	média	3	T	10			9; 10; 12; 36

Tabela 5 - Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Persea venosa				16				T				12
Picramnia glazioviana												
Pilocarpus pauciflorus	jan-out		25.000		15							9; 12
Piper amalago												12; 17
Piper cernuum	ano todo											17
Piper crassinervium												17
Piper dilatatum												17
Piptocarpha macropoda	jul-out		1.500.00	5	15							9; 24
Piptocarpha regnellii				5								37
Plinia cauliflora	ago-jan	1	3.900	1		baixa		T			30 a 50	1; 12
Podocarpus lambertii	fev-mac		30.000		2	média	3		8	MA	19 a 80	5; 18; 37
Poeppigia procera										MA		
Pouteria caimito	mac-abr	1 a 4	240	17		média					28 a 42	29
Pouteria guianensis												
Prunus myrtifolia	jan-fev		5.000	18	2	alta	3	T	4		15 a 75	1; 12
Pseudobombax grandiflorum	set-out		10.000	3	15	média	3		6	MA	10 a 15	1; 12; 28; 42
Psychotria suterella	mar-mai		35.000		15							9; 23
Psychotria vellosiana	out-dez											24
Quiina glaziovii	dez-mac	1									25	41
Rollinia dolabripetala	jan-mar	130	20.000	2	8	baixa	3				30 a 50	10; 29; 31
Rollinia emarginata	dez-jan		10.000		8; 14							9
Rollinia laurifolia												37

Tabela 5 - Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Rollinia sylvatica	jan-abr	10 a 20	2.800	1	8	alta	3	T	6		30 a 60	1; 12; 28
Roupala brasiliensis	abr-jun	1 a 3	53.000	4	2; 3	média	3	T	9		10 a 60	1; 12; 18
Rudgea jasminoides	jul-set		8.000		15							9; 12
Rudgea recurva	set											21
Sapium glandulosum	jan-mac		18.200	3	15	baixa			5 a 6		10 a 35	1; 9; 28; 31
Sapium haematospermum	dez-fev	2 a 4	22.000	3		média					20 a 28	29
Schefflera calva												
Sclerolobium rugosum	mar-mai	1 a 3	4.000	12	1; 8	média	1		6	MA	28 a 35	10; 23; 29
Sebastiania brasiliensis	dez-mar	3 a 4	58.000	3	15	média		T			28 a 35	1; 9; 12; 28
Sebastiania commersoniana	jan-abr		71.000	3	15	alta	3	T		MA	15 a 25	9; 12; 37; 42
Senna macranthera	jul-ago		18.000	13	1	alta	1		4	MA	10 a 30	10; 23; 28; 42
Senna multijuga	jul-set		48.200	14	1	alta	1		4	MA	10 a 30	10; 23; 28
Siphoneugena densiflora												
Sloanea guianensis	out-nov	10		4								21
Sloanea monosperma	nov-dez	1	2.700	4		baixa			8 a 9		14 a 35	1;12; 28
Solanum bullatum	dez-abr		14.000		15							9; 37
Solanum cinnamomeum	ago-out	10 a 12										
Solanum granuloso-leprosum	jul-set		873.000	7	15	média	-		4			10
Solanum lepidotum												
Solanum leucodendron		30 a 40									-	
Solanum pseudoquina	fev-mac	80	13.000	17	15	alta					4 a 8	1; 4;9; 12; 29
Solanum swartzianum	fev-abr	70	15.000		15				_			4; 9

Tabela 5 - Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Sorocea bonplandii	nov-dez	1	2.400	1	15	média			5 a 7	MA	30 a 40	1; 9; 12; 29; 42
Sphaeropteris gardneri												
Stifftia chrysantha	set-nov		50.000	5	15	alta			4 a 5		20 a 30	1; 9; 28
Syagrus romanzoffiana	jan-dez	1	280	9	4	baixa	-	Т	12	MA	90 a 180	1; 10; 11; 12; 27; 42
Symplocos celastrinea								T				12
Symplocos insignis												
Tabebuia alba	out-nov		85.400	3	15	alta	3		9	MA	10 a 15	5; 28; 37
Tabebuia chrysotricha	set-out		80.000	3	15	alta	3	T	6	MA	8 a 14	1; 10; 12; 42
Tabebuia heptaphylla	set-out		29.000	3	15	alta	3	T	4	MA	6 a 12	1; 12; 28
Tabebuia vellosoi	out-nov		15.200	3	15	média	3		4 a 6	MA	6 a 12	26; 28
Tapirira guianensis	jan-mac		18.300	7	15	média	3	S	4 a 5		15 a 30	1; 10; 12; 28
Tapirira obtusa	jan-fev	1	5.100	1	15	alta					15 a 30	28; 36
Tetrorchidium parvulum												
Tibouchina arborea				3								
Tibouchina moricandiana				3								
Tibouchina mutabilis	fev-mac		3.300.000	3		baixa					15 a 25	1; 28
Tibouchina pulchra	fev-mac		3.000.000	3	15							9; 35
Tibouchina sellowiana				3		alta						37
Toulicia laevigata	ago-set	1	15.000	12		baixa			6 a 7		40 a 70	29
Tovomitopsis saldanhae	maio- nov											23

Tabela 5 - Continuação

Espécies	E. F	S/F	S/kg	MBS	TPG	TGE	ARM	TG	PPM	MA	PGE	Fonte
Trembleya parviflora												
Trichilia emarginata	jun											24
Trichilia hirta	maio-jul		20.700	3	15	baixa					30 a 40	9; 28
Vernonanthura diffusa												39
Vernonanthura discolor	set-nov		1.600.000	5	15	baixa			5		15 a 25	9;12; 28
Virola bicuhyba	ago-nov	1	230 a 447	10	15	média	4	S	4		10 a 50	1; 28
Vismia brasiliensis	fev-maio		270.000	1		baixa					30 a 50	1; 29
Vitex megapotamica	jan-mac	1	4.000	15		baixa	3		7		40 a 60	1; 28; 37
Vochysia magnifica	ago-set	5 a 10	8.500	3	15	baixa				MA	28 a 42	9; 29
Vochysia tucanorum	mac-jun		39.800	3	15	baixa		S	10		20 a 60	11; 29
Weinmannia paulliniifolia	dez											1; 23
Xylopia brasiliensis	out-nov		12.450	8	8	baixa	3		12		30 a 50	1; 10; 12; 28; 37
Xylosma prockia	abr-nov	3 a 5										37
Xylosma venosa								T				12
Zanthoxylum rhoifolium	mac-jun		118.000	3	15	baixa		T			30 a 60	9; 10; 12; 28

^{*1 -} Backes & Irgang, 2004; 2 - Barros, 2000; 3 - Baumgratz, 1984; 4 - Bovini et al., 1996; 5 - Carvalho, 1994; 6 - Chieia & Romaniuc-Neto, 1992; 7 - Corrêa, 1978; 8 Corrêa, 1931; 9 - Crestana et al., 2004; 10 - Davide et al., 1995; 11 - Davide et al., 2001; 12 - Durigan et al., 2004; 13 - Durigan et al., 2002; 14 - Faria et al., 1984; 15 Fowler & Martins, 2001; 16 - Goldenberg, 2003; 17 - Guimarães & Giordano, 2003; 18 - Guimarães et al., 1993; 19 - Hipólito Neto & Oliveira, 1999; 20 - Inoque et al., 1984; 21 - Jung-Mendaçolli, 1999; 22 - Lima et al., 2004; 23 - Lima & Guedes-Bruni, 1994; 24 - Lima & Guedes-Bruni, 1996; 25 - Lima & Guedes-Bruni, 2004; 26 Lonhmann & Pirani, 1998; 27 - Lorenzi et al. 2004; 28 - Lorenzi, 2002a; 29 - Lorenzi, 2002b; 30 - Mantovani et al., 2004; 31- Meguro et al., 1996; 32 - Mello-Silva, 1992; 33 - Mendonça et al., 1998; 34 - Nisizaki & Zangaro Filho, 1996; 35 - Pedroni, 2000; 36 - Quinet & Andreata, 2002; 37 - Reitz et al., 1965-1989; 38 - Salimena, 2000; 38 - Santos et al., 1998; 40 - Souza & Bianchini, 2001; 41 - Vasconcelos, 1982; 42 - Zangaro et al. 2002.

ANEXOS

ANEXO 1 – Relação dos diversos tipos de uso e abreviações entre parêntese para as espécies registradas nas matas ciliares das cabeceiras do rio Grande, MG.

- 1 Alimento para a fauna (af): espécie cuja utlização está ligada à alimentação da fauna silvestre, seja por meio de frutos, folhas sementes, etc.
- 2 Alimentação humana (ah): quando alguma parte da planta é utilizada para alimentação, sejam as folhas, frutos, casca, raízes ou sementes, consumidos crus ou após algum tratamento.
- 3 Melífera (ml): quando a planta secreta algum tipo de substância atrativa (néctar ou pólen) para abelhas produtoras de mel.
- 4 Comercial (c): se algum produto, excetuando-se a madeira, é obtido a partir da espécie, como óleos, tanino, resinas, etc.
- 5 Reflorestamento ambiental (ra): quando a planta reúne qualidades que a habilitem para utilização em processos de recuperação de áreas perturbadas e ou degradadas.
- 6 Medicinal (me): se a planta possui algum princípio ativo em suas folhas, flores, frutos, sementes, casca, madeira ou raiz, comprovada ou não cientificamente e utilizada por humanos.
- 7 Madeira (md): quando as espécies possuem características físicas ou mecânicas para utilização de sua madeira, seja com fins energéticos (lenha, carvão), construção civil, construção de móveis e ferramentas, tabuados, etc.
- 8 Energia (e): quando a espécie utilizada pra fins energéticos, seja carvão ou lenha.
- 9 Artesanato (a): artesanato (ar): se alguma parte da planta é utilizada para elaboração de objetos artísticos (esculturas, artefatos de pesca, entalhes, etc.).

10 - Ornamental (or): se a espécie oferece atrativos paisagísticos notáveis, podendo ser utilizada para arborização urbana, cercas-vivas, quebra-ventos, decoração em jardins e quintais ou sombreamento para gado, por exemplo.

ANEXO 2 - Relação dos métodos de beneficiamento de sementes, capacidade de armazenamento e tratamento pré-germinativo, identificados em ordem numérica conforme disposto nas Tabelas 4 e 5 para as espécies registradas nas matas ciliares das cabeceiras do rio Grande, MG.

2.1 Métodos de beneficiamento das sementes

- 1 Macerar os frutos em peneira, sob água corrente e, em seguida, colocar as sementes para secar à sombra, em local ventilado.
- 2 Deixar os frutos amontoados em saco de plástico durante alguns dias para iniciar a decomposição da polpa a facilitar a limpeza das sementes em água corrente.
- 3 Secar os frutos ao sol até a deiscência e remover as sementes.
- 4 Secar os frutos à sombra para liberar as sementes.
- 5 Semear os frutos como se fossem sementes.
- 6 Abrir os frutos manualmente para retirar as sementes, deixá-las imersas em água por 24 horas e remover a mucilagem.
- 7 Deixar os frutos imersos em água por 24 horas e, em seguida, macerar os frutos em peneira, sob água corrente, de modo a separar as sementes dos resíduos. Secar as sementes à sombra, em local ventilado.
- 8 Deixar os frutos em um saco plástico fechado por dois dias. Retirá-los, bater com um martelo de borracha para soltar as sementes e secá-las à sombra em local ventilado.
- 9 Deixar os frutos imersos em água por 3 dias, em seguida colocá-los em um saco de aniagem e bater com um martelo de borracha. Secar as sementes ao sol.

- 10 Secar os frutos ao sol para completar a abertura e liberação das sementes. Deixar as sementes imersas em água por 12 horas e, em seguida, macerar em peneira em água corrente, para a retirada do arilo.
- 11 Secar os frutos ao sol, quebrá-los e retirar as sementes.
- 12 Secar os frutos ao sol, abri-los manualmente e retirar as sementes.
- 13 Secar os frutos ao sol, quebrá-los com um martelo de borracha e lavar as sementes em peneira.
- 14 Secar os frutos ao sol, colocá-los em um saco de aniagem e bater com um martelo borracha e, em seguida, remover os resíduos.
- 15 Deixar os frutos imersos em água por 48 horas e, em seguida, macerar em peneira sob água corrente, para separar as sementes dos resíduos. Secar as sementes à sombra, em local ventilado.
- 16 Despolpar os frutos e lavar as sementes em peneira. Secá-los à sombra, em local ventilado.
- 17 Abrir os frutos manualmente, após a colheita e retirar as sementes;
- 18 Deixar os frutos imersos em água por 12 horas e macerar em peneira sob água corrente para a retirada da polpa. Secar as sementes à sombra, em local ventilado.

2.2 Armazenamento

- 1 Sem dificuldade: as sementes podem permanecer viáveis por vários anos.
- 2 Dificuldade média: as sementes podem permanecer viáveis por um período de 1 a 2 anos.
- 3 Alta dificuldade: as sementes perdem a viabilidade em poucos meses.
- 4 Não armazenáveis: as sementes devem ser semeadas logo após o beneficiamento.

2.3 Tratamento pré-germinativo

- 1 Ferver a água, desligar o fogo, colocar as sementes e deixar por 24 horas.
- 2 Imersão das sementes em água à temperatura ambiente por 24 horas.
- 3 Imersão das sementes em água à temperatura ambiente por 48 horas;
- 4 Escarificação química com ácido sulfuríco concentrado por 20 minutos, seguida por lavagem em água corrente por 1 hora e imersão em água à temperatura ambiente por 24 horas.
- 5 Estratificação em areia úmida por 60 dias em ambiente sombreado.
- 6 Estratificação em areia úmida por 150 dias em ambiente sombreado.
- 7 Aquecer a água até atingir 80°C, desligar o fogo, colocar as sementes e deixar por 24 horas.
- 8 Escarificação com lixa.
- 9 Imersão das sementes em água fervida (98°C) e, em seguida, colocar em água fria por mais 15 minutos.
- 10 Escarificação química (imersão das sementes em ácido sulfuríco concentrado por cinco minutos, seguida de lavagem em água corrente e estratificação em areia úmida por 150 dias em ambiente natural).
- 11 Escarificação mecanica, ou imersão das sementes em água a 96°C e deixar fora de aquecimento por 24 horas.
- 12 Imersão das sementes em ácido sulfuríco por cinco minutos, seguida de estratificação em areia por 30 dias.
- 13 Imersão das sementes em água fervida a 80°C e deixar até atingir temperatura ambiente.
- 14 Imersão das sementes em ácido sulfuríco por cinco minutos.
- 15 Não necessita de tratamento pré-germinativo.