

PAULO GUILHERME DE SOUZA CRUZ

INTERAÇÕES BIÓTICAS SÃO MAIS IMPORTANTES QUE O CLIMA NA PARAPATRIA DO GÊNERO *Callithrix* Erxleben, 1777

PAULO GUILHERME DE SOUZA CRUZ

INTERAÇÕES BIÓTICAS SÃO MAIS IMPORTANTES QUE O CLIMA NA PARAPATRIA DO GÊNERO *Callithrix* Erxleben, 1777

Dissertação apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós-Graduação em Ecologia Aplicada, área de concentração em Ecologia e Conservação de Recursos Naturais em Ecossistemas Fragmentados e Agrossistemas, para a obtenção do título de Mestre.

Prof. Dr. Marcelo Passamani Orientador

> Dra. Lilian Sales Coorientadora

LAVRAS-MG 2020 Ficha catalográfica elaborada pelo Sistema de Geração de Ficha Catalográfica da Biblioteca Universitária da UFLA, com dados informados pelo(a) próprio(a) autor(a).

Cruz, Paulo Guilherme de Souza.

Interações bióticas são mais importantes que o clima na parapatria do gênero *Callithrix* Erxleben, 1777 / Paulo Guilherme de Souza Cruz. - 2020.

53 p.: il.

Orientador(a): Marcelo Passamani.

Coorientador(a): Lilian Sales.

Dissertação (mestrado acadêmico) - Universidade Federal de Lavras, 2020.

Bibliografia.

1. Callithrix. 2. Zona de contato. 3. Modelos de distribuição potencial. I. Passamani, Marcelo. II. Sales, Lilian. III. Título.

PAULO GUILHERME DE SOUZA CRUZ

INTERAÇÕES BIÓTICAS SÃO MAIS IMPORTANTES QUE O CLIMA NA PARAPATRIA DO GÊNERO *Callithrix* Erxleben, 1777

BIOTIC INTERACTIONS ARE MORE IMPORTANT THAN THE CLIMATE IN THE PARAPATRY OF THE GENUS *Callithrix* Erxleben, 1777

Dissertação apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós-Graduação em Ecologia Aplicada, área de concentração em Ecologia e Conservação de Recursos Naturais em Ecossistemas Fragmentados e Agrossistemas, para a obtenção do título de Mestre.

APROVADA em 04 de junho de 2020.

Dr. Sérgio Lucena Mendes - UFES

Dr. Rogério Grassetto Teixeira da Cunha - UNIFAL

Prof. Dr. Marcelo Passamani Orientador

> Dra. Lilian Sales Coorientadora

LAVRAS-MG 2020

A meus pais e amigos,

Dedico.

AGRADECIMENTOS

À Universidade de Federal de Lavras e ao Programa de Pós-Graduação em Ecologia Aplicada pela oportunidade de concluir mais este passo no incrível mundo da Ciência.

Aos professores e professoras do programa pela partilha dos conhecimentos que fizeram parte deste importante processo de crescimento pessoal e profissional.

Ao professor e orientador Marcelo Passamani pela oportunidade de prosseguir meus estudos no Laboratório de Ecologia e Conservação de Mamíferos e ampliar meus conhecimentos sobre os primatas do gênero *Callithrix*. Seus conhecimentos e nossas várias discussões foram a base para o desenvolvimento deste trabalho.

À Lilian Sales pela grande contribuição como coorientadora e por dedicar seu tempo e conhecimento sobre modelagem de nicho durante uma semana em Campinas, fator importantíssimo para que eu pudesse finalizar minhas análises.

Ao Paolo Ramoni Perazzi, meu coorientador não oficial, que me fez entrar de cabeça no mundo do R e nas modelagens de nicho.

Aos meus amigos Mateus, Lao e Worms (Davi) por todas as cervejas que tomamos na República Manicômio onde também estavam juntos meu irmão Marcus, Matheus, Breathne, Renan, Tati, Pedrão e Brisa, além das queridas Biscate e Amarula.

À Ana Teresa e Laís, duas grandes amigas que fiz mais precisamente durante o curso de campo e que desde então foram inúmeras risadas, cervejas e boas conversas compartilhadas. Quero que isso continue pra vida toda!

Ao amigo Leony, o melhor pior parceiro de campo (se depender de você a gente se perde em um fragmento de 1 hectare), pela companhia nas idas a campo.

Aos demais amigos do LECOM, em especial Ana, Gustavo e Hugo pelas risadas e conversas fiadas durante as tardes no laboratório e também aos colegas do programa da pós pelos bons momentos, em especial durante o curso de campo.

A meus pais, Paulo e Sílvia, pelo apoio incondicional em mais esta etapa concluída e a minha irmã Janaína e meu sobrinho Álvaro pelos momentos de lazer nas cachoeiras da região.

Por fim, o presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

Todos vocês foram de alguma maneira muito importantes para a conclusão deste trabalho.

MUITO OBRIGADO!

RESUMO

A distribuição das espécies responde a inúmeros fatores históricos e ecológicos, sendo uma das questões mais essenciais em Biogeografia. O gênero Callithrix Erxleben 1777 compreende seis espécies de primatas de pequeno porte que habitam as regiões central e leste do Brasil, exibindo um padrão parapátrico de distribuição e sem zonas naturais de simpatria. Dentre as espécies, Callithrix penicillata apresenta a maior área de ocorrência, habitando especialmente o bioma Cerrado, partes da Caatinga e zonas de transição com a Mata Atlântica. A espécie é substituída por *Callithrix aurita* ao sul, uma espécie restrita à Mata Atlântica dos estados de Minas Gerais, Rio de Janeiro e São Paulo. Os fatores que definem a separação espacial e a substituição entre as espécies, porém, ainda não estão elucidados. Deste modo, o presente estudo teve como objetivo entender os padrões de distribuição dessas espécies, com foco nas zonas de contato entre os taxa. Para isso, usamos modelos de distribuição de espécies calibrados com dados de clima, paisagem e vegetação e analisamos as características das regiões de parapatria e simpatria potencial. Para testar a exclusão competitiva, verificamos a prevalência de uma ou outra espécie em zonas de simpatria potencial contabilizando os registros de ocorrência de cada primata sobrepostos a estas áreas. As variáveis climáticas tiveram maior importância relativa para os modelos de distribuição potencial e parecem refletir o clima da área de ocorrência de cada espécie, com C. aurita habitando áreas mais frias e úmidas e C. penicillata áreas mais quentes e secas, o que provavelmente está ligado ao bioma naturalmente ocupado por cada espécie. O predomínio de C. aurita na área de simpatria potencial sugere um processo de exclusão competitiva que limita C. penicillata ao sul de sua distribuição natural. Deste modo, conclui-se que cada espécie possui um fator limitante de sua distribuição na zona de contato, sendo o clima para C. aurita, provavelmente associado à vegetação e a presença de espécie competidora para C. penicillata. Essa interação é de suma importância para o planejamento de conservação de C. aurita e, consequentemente, o impedimento da expansão de C. penicillata para fora de suas áreas naturais. Os modelos não foram capazes, porém, de predizer o potencial invasivo de C. penicillata, haja visto que regiões invadidas pela espécie não foram consideradas adequadas, o que corrobora a hipótese de que a ocupação dessa espécie depende também de fatores não-climáticos.

Palavras-chave: Callithrix aurita. Callithrix penicillata. Zona de contato. Modelos de distribuição potencial.

ABSTRACT

The species range responds to numerous historical and ecological factors, being one of the most essential questions in Biogeography. The genus Callithrix Erxleben 1777 comprises six species of small primates that inhabit the central and eastern regions of Brazil, exhibiting a parapatric pattern of distribution and without natural sympatric zones. Among these species, Callithrix penicillata has the largest area of occurrence, mostly inhabiting the Cerrado biome, parts of the Caatinga, and transition zones with the Atlantic Forest. This species is replaced by Callithrix aurita to the south, a species that is restricted to the Atlantic Forest of the states of Minas Gerais, Rio de Janeiro, and São Paulo. The factors that define spatial separation and substitution between species, however, are not yet elucidated. Thus, the present study aimed to understand the distribution patterns of these species, focusing on the contact zones between taxa. For this, we used species distribution models calibrated with data of climate, landscape, and vegetation and analyzed the characteristics of the parapatric and potential sympatric regions. To test for competitive exclusion, we verified the prevalence of one or another species in potential sympatric areas by counting the occurrence records of each primate overlapping these areas. The climatic variables had a greater relative importance for the distribution models and seem to reflect the climate of the occurrence area of each species, with C. aurita inhabiting colder and humid areas, and C. penicillata in warmer and drier areas, which is probably linked to the biome naturally occupied by each primate. The predominance of C. aurita in the potential sympatric area suggests a process of competitive exclusion that limits C. penicillata to the south of its natural distribution. Thus, we concluded that each species has a limiting factor of its distribution in the contact zone. Climate probably associated with vegetation limits C. aurita, and the presence of a competing species limits C. penicillata. This interaction is of paramount importance for the conservation planning of C. aurita and, consequently, to prevent the expansion of C. penicillata outside its natural areas. The models were not able, however, to predict the invasive potential of C. penicillata, given that regions invaded by this species were not considered adequate, which corroborates the hypothesis that the occupation of this species also depends on non-climatic factors.

Keywords: Callithrix aurita. Callithrix penicillata. Contact zone. Potential distribution models.

LISTA DE ILUSTRAÇÕES

Figura 1 – Distribuição geográfica dos pontos de ocorrência utilizados no processo de modelagem, sendo <i>C. aurita</i> em azul e <i>C. penicillata</i> em vermelho
Figura 2 – Importância relativa das variáveis utilizadas na construção dos modelos de distribuição potencial para (A) <i>C. aurita</i> e (B) <i>C. penicillata</i> 23
Figura 3 – Mapas de distribuição potencial para (A) <i>C. aurita</i> e (B) <i>C. penicillata</i> 25
Figura 4 – Área com adequabilidade ambiental para as duas espécies e os pontos de ocorrência reais utilizados no processo de modelagem
Figura 5 – Sobreposição dos pontos de ocorrência das espécies sobre o mapa de clima do Brasil segundo os critérios de Köppen (1936) (adaptado de ALVARES et al. 2013). (A) visão geral das distribuições de ambas a espécies; (B) <i>C. aurita</i> ; e (C) <i>C. penicillata</i>
Figura 6 – Sobreposição dos pontos de ocorrência às regiões fitoecológicas do Brasil. (A) Visão geral da distribuição das espécies alvo; (B) <i>Callithrix aurita</i> ; e (C) <i>Callithrix penicillata</i>

LISTA DE TABELAS

Tabela	1	_	Variáveis	utilizadas	s na	construç	ção (dos	modelos	de	distribuição
potencia	1				•••••						20
Tabela	2	-	– Métrica	as de	deser	npenho	dos	m	odelos	de	distribuição
potencia	1										23

SUMÁRIO

	PRIMEIRA PARTE	12
1	INTRODUÇÃO	12
2	REFERENCIAL TEÓRICO	13
2.1	Biogeografia do gênero Callithrix Erxleben, 1777	. 13
2.2	Modelos de distribuição potencial	14
	REFERÊNCIAS	15
	SEGUNDA PARTE - ARTIGO	16
1	INTRODUÇÃO	16
2	MATERIAIS E MÉTODOS	18
2.1	Dados de ocorrência	18
2.2	Variáveis ambientais	19
2.3	Modelos de distribuição potencial	20
2.4	Mapas de sobreposição	21
3	RESULTADOS	. 22
4	DISCUSSÃO	31
5	CONCLUSÃO	34
	REFERÊNCIAS	34
	ANEXO	40

PRIMEIRA PARTE

1 INTRODUÇÃO

A distribuição das espécies no espaço responde a inúmeros fatores históricos e ecológicos do ambiente, os quais fazem da biogeografia uma ciência complexa. O gênero de primatas *Callithrix* Erxleben, 1777 é composto por seis espécies popularmente conhecidas como saguis, que habitam as porções central e oriental do Brasil, distribuindo-se desde o Maranhão ao estado de São Paulo em um padrão parapátrico e com marcante afinidade por determinadas regiões fitoecológicas (MENDES, 1997; RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009).

Dentre os *taxa* do gênero, *Callithrix penicillata* possui a mais ampla distribuição geográfica, habitando o Cerrado e partes da Caatinga, além de regiões de transição destes biomas com a Mata Atlântica. *C. penicillata* limita-se ao sul e sudeste de Minas Gerais, onde é substituído por *Callithrix aurita*, espécie restrita à Mata Atlântica presente nos estados de Minas Gerais, Rio de Janeiro e São Paulo (RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009).

Fatores ecológicos e físicos como limitantes da distribuição geográfica são observados entre algumas espécies de *Callithrix* (MENDES, 1997; RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009). No entanto, barreiras físicas como grandes rios e cadeias de montanhas não são observadas nas regiões de contato entre as distribuições de *C. aurita* e *C. penicillata*, mas sim a transição entre os biomas Mata Atlântica e Cerrado (IBGE, 2019). Tais aspectos, relacionados à vegetação nas zonas de contato podem atuar como um limite ecológico para estes primatas, haja vista a associação destes a determinadas fitosionomias (MENDES, 1997).

Neste trabalho, avaliamos quais os fatores são responsáveis pela delimitação das distribuições dos saguis *C. aurita* e *C. penicillata* e a manutenção do padrão parapátrico observado, usando a modelagem preditiva de distribuição. Modelos preditivos são importantes ferramentas para se testar a importância de determinados fatores (bióticos ou abióticos) na distribuição das espécies (DE MARCO JÚNIOR; SIQUEIRA, 2009; GRELLE; CERQUEIRA, 2006). Aqui, combinamos diferentes variáveis preditoras em modelos de distribuição de espécies, com o objetivo de elucidar os fatores que mais afetam a distribuição e a parapatria de *C. aurita* e *C. penicillata*.

2 REFERENCIAL TEÓRICO

2.1 Biogeografia do gênero *Callithrix* Erxleben, 1777

O gênero *Callithrix* Erxleben, 1777 compreende um grupo de primatas de pequeno porte que habitam as porções central e leste do Brasil, distribuindo-se desde o Maranhão ao estado de São Paulo. É composto por seis espécies, comumente chamadas de micos ou saguis, sendo *Callithrix aurita*, *C. flaviceps*, *C. geoffroyi*, *C. jacchus*, *C. kuhlii* e *C. penicillata*. As espécies apresentam distribuição parapátrica, se sucedendo ao longo da área de ocorrência do gênero, (RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009) e com pequenas zonas de simpatria existentes nos limites de suas distribuições, onde híbridos naturais são observados (MALUKIEWICZ, 2019).

Dentre as espécies alvo deste estudo, *Callithrix penicillata* (Geoffroyi Saint-Hilaire, 1812), vulgarmente denominado sagui-de-tufos-pretos, possui uma ampla distribuição geográfica, a maior do gênero, ocorrendo nos estados da Bahia, Goiás, Mato Grosso do Sul, Minas Gerais, São Paulo e Tocantins. Sua área de distribuição compreende o bioma Cerrado em quase sua totalidade e partes da Caatinga baiana, regiões fitogeográficas com marcante sazonalidade, além de áreas de transição destes com o bioma Mata Atlântica. *Callithrix aurita* (Geoffroyi Saint-Hilaire, 1812), conhecido como sagui-da-serra-escuro, é restrita às florestas tropicais nas montanhas do sudeste do Brasil, abrangendo o sul e o sudeste de Minas Gerais, a região serrana do Rio de Janeiro e o leste e nordeste de São Paulo. A localidade mais ao norte de sua área de ocorrência se encontra no Parque Estadual do Rio Doce e ao sul próxima à cidade de São Paulo (RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009).

As demais espécies do gênero se encontram em suma maioria na Mata Atlântica, como é o caso de *C. flaviceps*, *C. geoffroyi* e *C. kuhlii*. *C. flaviceps*, espécie mais próxima evolutivamente de *C. aurita* (BUCKNER et al. 2015), é encontrada nas florestas montanas do leste de Minas Gerais e do Espírito Santo, limitando-se à margem direta do rio Doce. *C. geoffroyi*, se distribui nas matas de baixada do Espírito Santo desde o limite com o estado do Rio de Janeiro, leste e nordeste de Minas Gerais até o rio Araçuaí e indo até o extremo sul da Bahia, onde é limitado pela presença do rio Jequitinhonha. Ao norte do rio Jequitinhonha outra espécie de sagui é encontrada, *C. kuhlii*, que ocorre ao longo das florestas costeiras da Bahia até a margem direita do rio de Contas e a oeste limitado pela transição de vegetação. Por fim, na Mata Atlântica ao norte, ocorre *C. jacchus*, espécie com maior proximidade evolutiva a *C. penicillata* (BUCKNER et al. 2015). No entanto, esta última espécie se

distribui predominantemente no bioma Caatinga, limitando-se ao sul pelo rio São Francisco e seu tributário rio Grande (RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009).

2.2 Modelos de distribuição potencial

Os modelos de distribuição potencial, também denominados modelos de nicho ecológico, modelos de envelope climático e modelos de adequação de habitat são ferramentas baseadas no conceito teórico de nicho ecológico, ou seja, no conjunto de condições que uma espécie necessita para manter populações viáveis (ARAÚJO; PETERSON, 2012; DE MARCO JÚNIOR; SIQUEIRA, 2009; WARREN, 2012). São modelos correlativos, ou seja, exploram as relações entre registros de ocorrência e variáveis ambientais para construir um espaço virtual que representa as condições para a ocorrência de determinada espécie e posteriormente reproduzir no espaço geográfico áreas onde estas condições estão presentes (ARAÚJO; PETERSON, 2012; DE MARCO JÚNIOR; SIQUEIRA, 2009).

Segundo Soberón e Peterson (2005), o nicho realizado de uma espécie é a interseção entre os fatores abióticos (sendo clima o exemplo mais comum), bióticos (interação com outras espécies) e a capacidade de dispersão (áreas acessíveis). No entanto, na maioria dos casos, os modelos de distribuição potencial são construídos apenas com variáveis abióticas (por exemplo: clima, solo, pH, etc.), devido à dificuldade de incluir interações bióticas no processo de modelagem. Tal fato faz com que os resultados dos modelos de distribuição sejam estimados através de um subconjunto do nicho ecológico das espécies, pois nem todas as suas dimensões são abordadas (WARREN, 2012). Assim, previsões de distribuição mais amplas são comuns, pois as interações bióticas ou mesmo outras barreiras de dispersão que podem limitar a distribuição das espécies estão excluídas do processo de construção dos modelos.

Com o crescente avanço das tecnologias computacionais, técnicas de modelagem e das bases de dados de inúmeras variáveis ambientais (clima, vegetação, solos, etc.), a modelagem de distribuição potencial tem sido amplamente utilizada para inúmeros fins, incluindo a previsão dos impactos das mudanças climáticas na distribuição da biodiversidade, descoberta de novas espécies e novas populações de espécies pouco conhecidas, medidas de conservação, avaliação do risco potencial de espécies invasoras, identificação de refúgios históricos da biodiversidade, diversidade filogenética, mapeamento do risco de transmissão de doenças e até mesmo a identificação de áreas potenciais para a produção (ARAÚJO; PETERSON, 2012; DE MARCO JÚNIRO; SIQUEIRA, 2009), consolidando-se como importantes ferramentas

para estudos preditivos da distribuição geográfica das espécies.

REFERÊNCIAS

ARAÚJO, M. B.; PETERSON, A. T. Uses and misuses of bioclimatic envelope modeling. **Ecology**, v. 93, n. 7, p. 1527-1539, 2012.

BUCKNER, J. C.; ALFARO, J. W. L.; RYLANDS, A. B.; ALFARO, M. E.. Biogeography of the marmosets and tamarins (Callitrichidae). **Molecular Phylogenetics and Evolution**, v. 82, p. 413-425, 2015.

DE MARCO JÚNIOR, P.; SIQUEIRA, M. F. Como determinar a distribuição potencial de espécies sob uma abordagem conservacionista. **Megadiversidade**, v. 5, n. 1-2, p. 65-76, 2009.

MALUKIEWICZ, J. A review of experimental, natural, and anthropogenic hybridization in *Callithrix* marmosets. **International Journal of Primatology**, v. 40, n. 1, p. 72-98, 2019.

MENDES, S. L. Padrões biogeográficos e vocais em *Callithrix* do grupo jacchus (Primates, Callithrichidae). Tese de Doutorado, Universidade Estadual de Campinas, 1997.

RYLANDS, A. B.; COIMBRA-FILHO, A. F.; MITTERMEIER, R. A. The systematics and distributions of the marmosets (*Callithrix*, *Callibella*, *Cebuella*, and *Mico*) and callimico (*Callimico*) (Callitrichidae, Primates). In: **The smallest anthropoids**. Springer, Boston, MA, 2009. p. 25-61.

SOBERÓN, J.; PETERSON, A. T. Interpretation of models of fundamental ecological niches and species' distributional areas. **Biodiversity Informatics**, v. 2, p. 1-10, 2005.

WARREN, D. L. In defense of 'niche modeling'. **Trends in Ecology & Evolution**, v. 27, n. 9, p. 497-500, 2012.

SEGUNDA PARTE – ARTIGO

(Artigo redigido conforme normas do MANUAL DE NORMALIZAÇÃO E ESTRUTURA DE TRABALHOS ACADÊMICOS: TCCS, MONOGRAFIAS, DISSERTAÇÕES E TESES da Universidade Federal de Lavras - 2a edição revista, atualizada e ampliada)

INTERAÇÕES BIÓTICAS SÃO MAIS IMPORTANTES QUE O CLIMA NA PARAPATRIA DO GÊNERO *Callithrix* Erxleben, 1777

1 INTRODUÇÃO

A disposição dos organismos no espaço responde a inúmeros fatores históricos e ecológicos do ambiente, os quais fazem da biogeografia uma ciência complexa. Apesar de alguns estudos abordarem a distribuição dos primatas do gênero *Callithrix* (RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009), estudos relacionados às zonas de contato entre algumas de suas espécies e os fatores determinantes de suas distribuições ainda são escassos (CERQUEIRA; MARROIG; PINDER, 1998; GRELLE; CERQUEIRA, 2006).

O gênero de primatas *Callithrix* Erxleben, 1777 é composto por seis espécies popularmente conhecidas como micos ou saguis, que habitam as porções central e oriental do Brasil, sendo naturalmente encontrados desde o estado do Maranhão, na região norte, ao estado de São Paulo, no sudeste (RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009). As espécies apresentam uma distribuição parapátrica, se sucedendo ao longo de toda a ocorrência do gênero (RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009), com zonas de simpatria restritas às áreas de contato entre os *taxa*, onde híbridos naturais são observados (MALUKIEWICZ, 2019). Além disso, as espécies exibem uma marcante afinidade por determinadas regiões fitoecológicas do Brasil (MENDES, 1997; RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009).

Segundo algumas hipóteses (MENDES, 1997), a evolução dos *Callithrix* tem como fator central alterações na cobertura vegetal provocadas por seguidos períodos secos e úmidos e consequente aparição dos relictos pleistocênicos, ilhas de vegetação que isolaram populações de saguis primitivos e funcionaram como centros de especiação durante os períodos mais secos, por fim dando origem às espécies atuais. Hershkovitz (1977) sugere que os grandes rios

orientais do Brasil podem ter funcionado como uma barreira biogeográfica em tempos históricos recentes, quando a quantidade de chuvas era maior, explicando alguns dos padrões de distribuição observados atualmente.

Dentre os *taxa* do gênero, *C. penicillata* possui a mais ampla distribuição geográfica, habitando predominantemente o Cerrado, partes da Caatinga no estado da Bahia e áreas de transição destes com o bioma Mata Atlântica (RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009). Esta espécie possui um limite natural de sua distribuição nas regiões sul e sudeste de Minas Gerais, nas quais é substituído por *C. aurita*, vulgarmente denominado como sagui-da-serra-escuro. Este, por sua vez, habita a Mata Atlântica presente nas regiões montanhosas do sudeste, distribuindo-se pelos estados de Minas Gerais, Rio de Janeiro e São Paulo (RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009), sendo uma das espécies do gênero ameaçadas de extinção, na categoria "em perigo" (ICMBIO, 2018; MELO et al., 2020).

Os limites de distribuição entre algumas espécies de *Callithrix* são mais facilmente estabelecidos. Por exemplo, o limite entre *C. flaviceps* e *C. geoffroyi* no estado do Espírito Santo é definido pela faixa altitudinal da vegetação, sendo que *C. flaviceps* habita as florestas ombrófilas entre 500 m e 1800 m e *C. geoffroyi* habita as faixas inferiores a 500 m (MENDES, 1997). Limites físicos podem ser observados entre *C. geoffroyi* e *C. kuhlii*, separados pelo rio Jequitinhonha no sul do estado da Bahia e entre *C. kuhlii* e *C. jacchus*, separados pelo rio de Contas próximo ao recôncavo baiano (RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009).

Barreiras físicas como grandes rios e cadeias de montanhas não são observadas nas regiões de contato entre as distribuições de *C. aurita* e *C. penicillata*. No entanto, toda a zona de contato coincide com a transição entre os biomas Mata Atlântica e Cerrado (IBGE, 2019). Tendo em vista as afinidades que os saguis exibem para determinadas fitofisionomias, tais aspectos relacionados à vegetação das zonas de contato podem atuar como um limite ecológico para estes primatas, como sugerido por Mendes (1997). Porém, estas relações não foram empiricamente testadas.

Devido à sua plasticidade ecológica, *C. penicillata* é facilmente encontrado em áreas amplamente antropizadas e até mesmo em manchas de vegetação nas áreas urbanas (TEIXEIRA et al., 2015). Por este fato e por ser um animal comercializado ilegalmente como animal de estimação, populações deste primata se encontram estabelecidas em muitos ambientes alóctones em proximidade com outras espécies do gênero, podendo levar a processos que colaborem para a extinção das espécies ameaçadas, como é o caso de *C. aurita* (SILVA et al., 2018).

Apesar da intensa supressão da Mata Atlântica em tempos históricos, não se sabe ao certo se tal fato tem possibilitado a expansão natural de *C. penicillata* sobre as áreas onde historicamente é registrada a ocorrência de *C. aurita*. No entanto, em alguns locais, a introdução de *C. penicillata* pelo homem pode exercer pressões sobre as populações nativas de *C. aurita* (DETOGNE et al., 2017; SILVA et al., 2018). Portanto, compreender os mecanismos naturais que separam geograficamente estes dois primatas pode colaborar para a execução de planos para a conservação de *C. aurita* e direcionar medidas de mitigação de possíveis impactos da presença de saguis invasores.

Modelos preditivos são importantes ferramentas para se testar a importância de determinados fatores em diversos fenômenos, dentre eles, variáveis bióticas ou abióticas na distribuição geográfica das espécies (DE MARCO JÚNIOR; SIQUEIRA, 2009; GRELLE; CERQUEIRA, 2006). Deste modo, no presente estudo, utilizou-se a modelagem de distribuição de espécies com o objetivo de avaliar quais os fatores são responsáveis pela delimitação das faixas de ocorrência naturais dos saguis *C. aurita* e *C. penicillata* e a manutenção do padrão parapátrico observado.

2 MATERIAIS E MÉTODOS

2.1 Dados de ocorrência

Os registros de ocorrência das espécies foram obtidos através da colaboração *ATLANTIC-PRIMATES: A dataset of communities and occurrences of primates in the Atlantic Forests of South America* (CULOT et al., 2019), além de outros trabalhos (BRUNA et al., 2010; GEISE et al., 2017; LESSA et al., 2012; MOREIRA et al., 2008; NICOLAEVSKY, 2011; OLIVEIRA; PESSÔA, 2005; PENIDO; ZANZINI, 2012; TALAMONI et al., 2014; TROLLE; BISSARO; PRADO, 2007; VILELA; DEL-CLARO, 2011). Bases de dados online como o GBIF (*Global Biodiversity Information Facility*; https://www.gbif.org/) e *speciesLink* (http://splink.cria.org.br/) também foram utilizadas no processo de levantamento. Apenas dados coerentes com a distribuição nativa dos primatas, segundo Rylands, Coimbra-Filho e Mittermeier (2009), foram utilizados.

Os dados foram submetidos a um processo de limpeza através do conjunto de funções *coord_()* presentes no pacote *scrubr* (CHAMBERLAIN, 2016), visando eliminar dados duplicados, incorretos ou com ausência de coordenadas. A autocorrelação espacial dos dados

foi minimizada através da função *thin()* pertencente ao pacote *spThin* (AIELLO-LAMMENS et al., 2019) excluindo pontos de ocorrência com menos de 0,5 km de distância um do outro. Todas as etapas de processamento dos registros de ocorrência levantados foram realizadas no *software* RStudio versão 3.6.3. (R CORE TEAM, 2020).

Alguns dados foram coletados em campo utilizando-se a técnica de *playback*, que consiste em localizar as espécies alvo nos fragmentos reproduzindo suas vocalizações com auxílio de um aparelho sonoro. A amostragem de campo consistiu em uma única visita em 28 fragmentos de mata localizados na zona de contato entre as duas espécies no sul de Minas Gerais. Registros de encontros casuais cedidos por outros pesquisadores também foram utilizados.

2.2 Variáveis ambientais

Foram selecionadas arbitrariamente seis das 19 variáveis bioclimáticas fornecidas por CHELSA (Climatologies at High resolutions for the Earth's Land Surface Areas), versão 1.2 online (Tabela 1; KARGER et al., 2017; www.chelsa-climate.org). As variáveis utilizadas compreendiam dados anuais com valores médios e de sazonalidade para precipitação e temperatura, além de uma variável de condição extrema para cada fator. O CHELSA tem mostrado melhor desempenho na predição da distribuição de espécies, inclusive em estudos envolvendo espécies sem coocorrência na natureza (MARIA; UDO, 2017; WEIGAND et al. 2016a, b) quando comparado a outros modelos climáticos. Além das camadas climáticas, foram utilizadas outras duas camadas relacionadas à vegetação, sendo altura do dossel (SIMARD et al., 2011; https://landscape.jpl.nasa.gov/) e porcentagem de cobertura florestal, adaptado de Hewson et al. (2019). A camada de porcentagem de cobertura florestal foi construída agregando-se as células do raster binário de presença/ausência de cobertura arbórea com resolução de 1 km² em células de 10x10 km² (escala de paisagem) com o percentual de vegetação. Todas as variáveis utilizadas se encontravam na resolução de 1 km².

As variáveis ambientais foram submetidas a uma análise por meio da função *vifstep()* presente no pacote *usdm* (NAIMI, 2017) para excluir aquelas com altos valores de correlação e colinearidade que possuíam o fator de inflação variância (VIF) ≥10. Este processo foi executado independentemente para as duas espécies durante a construção dos modelos de distribuição potencial. Deste modo, uma única diferença foi observada entre as variáveis utilizadas na modelagem de cada espécie. Os modelos de *C. aurita* foram construídos utilizando um conjunto de seis variáveis ambientais selecionadas pela análise de correlação e

colinearidade, sendo: temperatura média anual (bio01), sazonalidade da temperatura (bio04), precipitação anual (bio12), sazonalidade da precipitação (bio15), altura do dossel e porcentagem de cobertura florestal. Para os modelos de *C. penicillata* foram selecionadas as mesmas variáveis de *C. aurita* e uma de condição extrema, a precipitação do mês mais seco (bio14). Os processos descritos acima foram realizados no software *RStudio* versão 3.6.3. (R CORE TEAM, 2020).

Tabela 1 – Variáveis utilizadas na construção dos modelos de distribuição potencial.

Variáveis bioclimáticas	Variáveis de habitat
Bio01 - Temperatura média anual	Altura do dossel
Bio04 - Sazonalidade da temperatura	Porcentagem de cobertura florestal (100 km²)
Bio06 - Temperatura mínima do mês mais frio	
Bio12 - Precipitação anual	
Bio14 - Precipitação do mês mais seco	
Bio15 - Sazonalidade da precipitação	

Fonte: Do autor (2020).

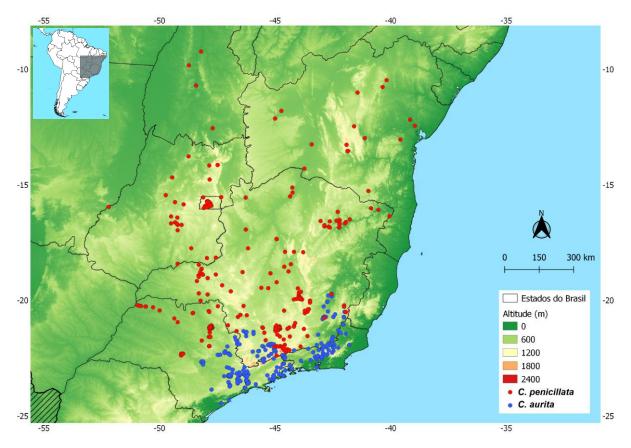
2.3 Modelos de distribuição potencial

Os modelos de distribuição potencial foram desenvolvidos através de três algoritmos: boosted regression trees (BRT; FRIEDMAN, 2001), maximum likelihood (MaxLike; ROYLE et al., 2012) e random forest (RF; BREIMAN, 2001). As áreas de estudo de cada espécie foram criadas acrescentando 10° em cada borda da extensão geográfica dos pontos de ocorrência. As variáveis ambientais foram cortadas na mesma extensão das áreas de estudo e delas foram amostrados 10 000 pontos de fundo/pseudo-ausências, um por célula de 1 km².

O ajuste dos modelos foi verificado através de um procedimento repetido de validações cruzadas (WAHBA; WENDELBERGER, 1980), no qual os registros de ocorrência foram divididos em dados de treino (75%), utilizados na construção dos modelos e teste (25%), para avaliação. Este processo foi realizado dez vezes para cada algoritmo em cada uma das espécies, aletorizando a escolha dos pontos amostrais usados na calibração/teste dos modelos. A acurácia dos modelos foi avaliada através dos valores de *area under the receiver operating characteristic curve* (AUC; FIELDING; BELL, 1997) e *true skill statistics* (TSS) (ALLOUCHE; TSOAR; KADMON, 2006). Ambas as métricas oferecem valores únicos de desempenho, variando de 0 a 1 para AUC e -1 a 1 para TSS. Valores de 0,5 para AUC e 0 para TSS indicam que a precisão dos modelos não difere de modelos aleatórios e o valor de 1 nos dois casos indica precisão total. Para transformar os mapas contínuos em binários

(presença e ausência) foi utilizado o valor máximo de TSS. Por fim, um consenso com as distribuições previstas foi construído através de uma função de média ponderada na qual os valores de TSS foram utilizados como peso (ARAUJO; NEW, 2007). Todos os procedimentos acima descritos foram realizados através do pacote *sdm* (NAIMI; ARAUJO, 2016).

2.4 Mapas de sobreposição

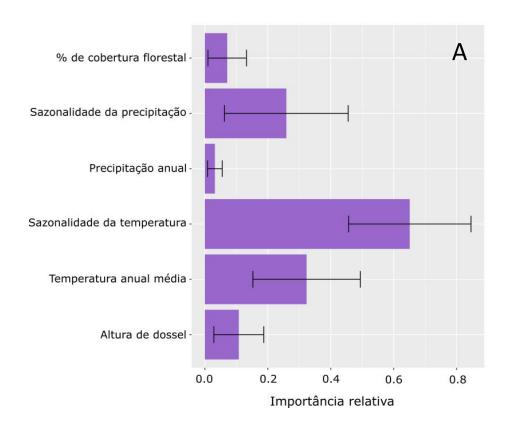

Os mapas de distribuição potencial previstos para ambas as espécies foram sobrepostos com o objetivo de extrair a interseção entre as áreas, na qual se encontram as condições para a coocorrência dos primatas. Posteriormente, foram inseridos e contabilizados os dados de ocorrência de cada espécie para verificar o predomínio, ou não, de uma ou outra espécie na área de simpatria potencial.

Os pontos de ocorrência de ambas as espécies foram sobrepostos a um mapa de classificação climática para o Brasil segundo os critérios de Köppen (1936), proposto por Alvares et al. (2013) e outro das regiões fitoecológicas do Brasil (IBGE, 2019; VG_REG_FITO; www.ibge.gov.br/geociencias/informacoes-ambientais/pedologia/24252-macrocaracterizacao-dos-recursos-naturais-do-brasil.html?=&t=downloads), visando observar e compreender os padrões na distribuição real dos primatas e compará-los aos mapas de distribuição potencial construídos pelos modelos.

3 RESULTADOS

Após a triagem realizada nos dados de ocorrência, foram utilizados no processo de modelagem 256 registros para *C. aurita* e 283 para *C. penicillata* (Figura 1).

Figura 1 – Distribuição geográfica dos pontos de ocorrências utilizados no processo de modelagem, sendo *C. aurita* em azul e *C. penicillata* em vermelho.


Fonte: Do autor, 2020.

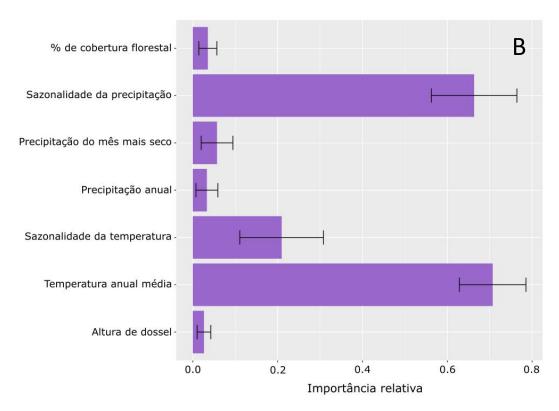

Os modelos de distribuição potencial de ambas as espécies apresentaram bom desempenho, com valores de AUC e TSS superiores a 0,9 e 0,7, respectivamente (Tabela 2). As variáveis preditoras com maior importância relativa na construção dos modelos de *C. aurita* foram sazonalidade de temperatura (bio04), temperatura média anual (bio01) e sazonalidade da precipitação (bio15), respectivamente (Figura 2A). No caso de *C. penicillata*, as variáveis com maior importância relativa foram, respectivamente, a temperatura média anual (bio01), sazonalidade da precipitação (bio15) e sazonalidade da temperatura (bio04) (Figura 2B).

Tabela 2 – Métricas de desempenho dos modelos de distribuição potencial.

Espécie	AUC	TSS
Callithrix aurita	0.92	0.81
Callitrhix penicillata	0.92	0.73

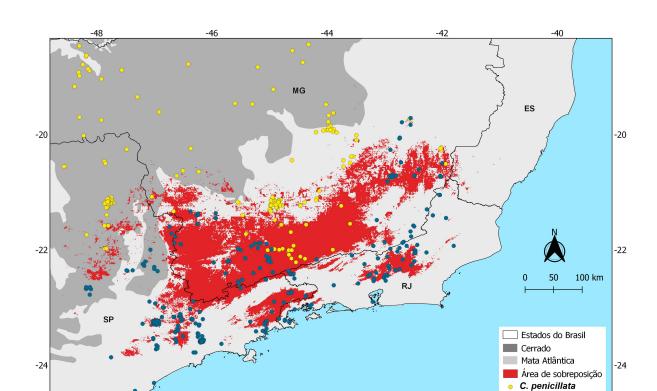
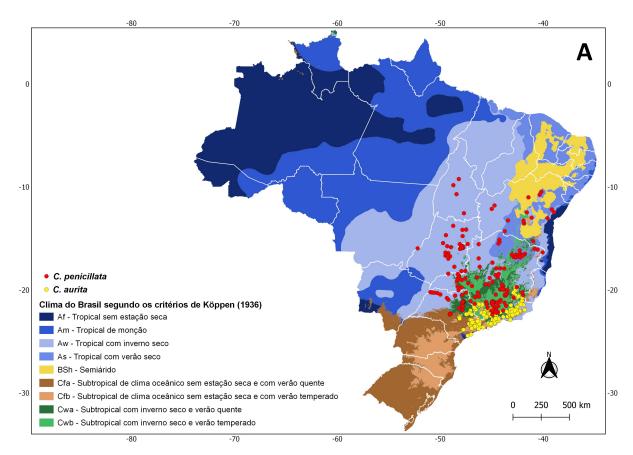
Figura 2 – Importância relativa das variáveis utilizadas na construção dos modelos de distribuição potencial para (A) *C. aurita* e (B) *C. penicillata*.

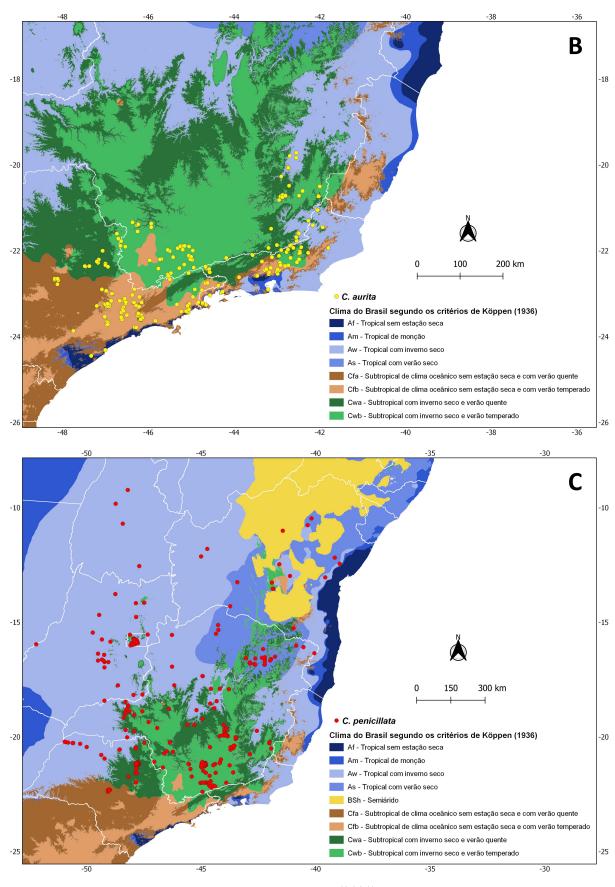
As áreas abrangidas pelos mapas de distribuição potencial foram 143 056 km² para *C. aurita* (Figura 3A) e 1 092 889 km² para *C. penicillata* (Figura 3B). Além disso, os mapas originados se aproximaram consideravelmente das distribuições naturais conhecidas de ambas as espécies (RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009). A área de simpatria potencial abrangeu um total de 94 338 km², se estabelecendo principalmente nas regiões sul e sudeste de Minas Gerais e pequenas porções dos estados de São Paulo e Rio de Janeiro, compreendendo 66% da área de distribuição potencial de *C. aurita* e aproximadamente 9% apenas da área de *C. penicillata* (Figura 4). Nesta área com adequabilidade ambiental para a ocorrência de ambas as espécies de sagui, o *C. aurita* se sobrepõe majoritariamente, possuindo 139 registros de ocorrência contra apenas 36 de *C. penicillata*.

Α PE -10 -10 -15 -15 500 km -20 ___ Estados do Brasil Cerrado Caatinga Mata Atlântica Área ambientalmente adequada -50 -45 -40 -35 -60 В ΑM -10 -10 -15 -20 500 km Estados do Brasil -25 Cerrado Caatinga ARGENTINA Mata Atlântica Área ambientalmente adequada -55 -35 -30

Figura 3 – Mapas de distribuição potencial para (A) C. aurita e (B) C. penicillata.

• C. aurita

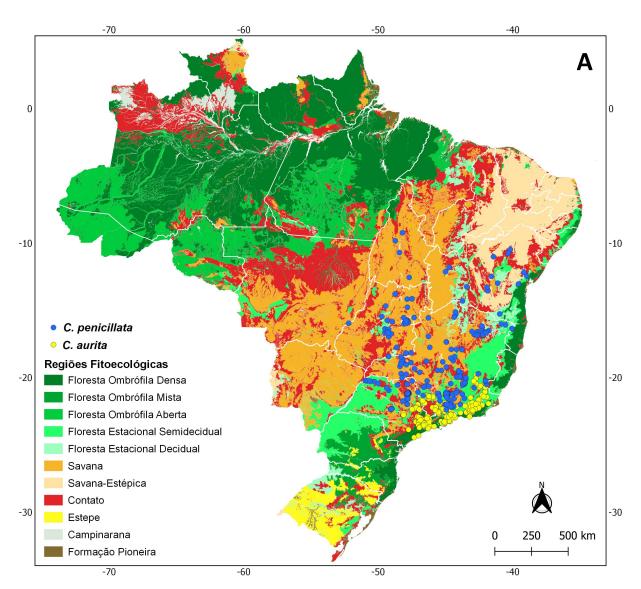



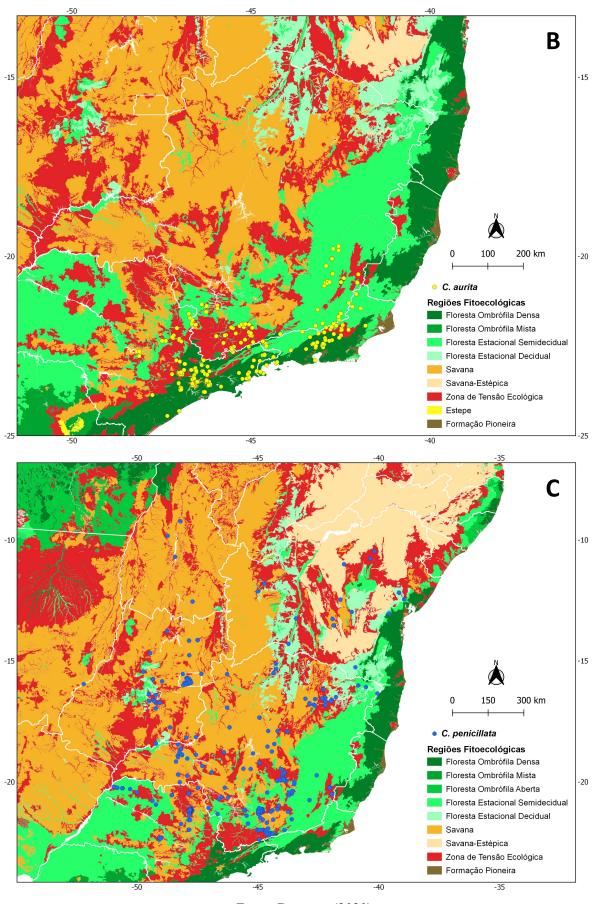

Figura 4 – Área com adequabilidade ambiental para as duas espécies e os pontos de ocorrência reais utilizados no processo de modelagem.

Legenda: Nota-se que *C. aurita* é a espécie predominante na zona potencial de coocorrência. Fonte: Do autor (2020).

As sobreposições dos pontos de ocorrência utilizados nos processos de modelagem evidenciaram algumas características das regiões habitadas por cada espécie. Tendo em vista o clima (Figura 5A), observa-se que as ocorrências de *C. aurita* estão distribuídas nas faixas subtropicais, em especial Cwb e Cfb e com alguns poucos registros em faixa tropicais litorâneas (Figura 5B). Já as ocorrências de *C. penicillata* evidenciam a ocorrência natural deste primata na faixa tropical Aw, predominante na parte cental do Brasil. Em Minas Gerais a espécie também ocorre nas faixas subtropicais Cwa e Cwb e alguns poucos registros mostram a ocorrência em menor grau na faixa As e no semiárido baiano (Figura 5C).

Figura 5 – Sobreposição dos pontos de ocorrência das espécies sobre o mapa de clima do Brasil segundo os critérios de Köppen (1936) (adapatado de ALVARES et al. 2013). (A) visão geral das distribuições de ambas a espécies; (B) *C. aurita*; e (C) *C. penicillata*.




Fonte: Do autor (2020).

No que se refere as regiões fitoecológicas do Brasil (Figura 6A), os registros de ocorrência de *C. aurita* se encontram predominantemente sobre duas categorias, Floresta Ombrófila Densa e Floresta Estacional Semidecidual, com alguns poucos registros em zonas de transição entre estas e outras fitosonomias, como Savana (Cerrado) (Figura 6B). Já *C. penicillata* está predominantemente na vegetação Savana, mas possui registros também em áreas de Florestas Estacional Semidecidual e Decidual e regiões de contato

entre todas estas regiões fitoecológicas (Figura 6C).

Figura 6 – Sobreposição dos pontos de ocorrências às regiões fitoecológicas do Brasil. (A) Visão geral da distribuição das espécies alvo; (B) *Callithrix aurita*; e (C) *Callithrix penicillata*.

4 DISCUSSÃO

As variáveis bioclimáticas com maior importância relativa para os modelos de ambas as espécies parecem refletir as características climáticas observadas em suas respectivas áreas de ocorrência. Nos modelos de C. aurita, a variável com maior importância foi sazonalidade da temperatura (bio04), o que condiz com a região de distribuição deste primata. O C. aurita habita regiões de climas subtropicais que são caracterizadas por apresentar períodos de baixas temperaturas nos meses de outono e inverno no hemisfério sul (ALVARES et al., 2013). Tal fato também pode estar relacionado à segunda variável com maior importância, temperatura média anual (bio01), que exibe menores valores para a região de ocorrência deste primata devido aos baixos valores nos meses mais frios. Além destas variáveis, a sazonalidade da precipitação (bio15) também apresentou relativa importância. Isso provavelmente deve-se ao fato de que C. aurita possui parte de sua área de ocorrência em faixas climáticas que apresentam sazonalidade no regime de chuvas (Cwa e Cwb) (ALVARES et al., 2013). No caso de C. penicillata, a variável com maior importância relativa nos modelos de distribuição foi temperatura média anual (bio01) que pode estar relacionada com a ocorrência deste primata majoritariamente no clima tropical Aw, que apresenta majores valores de temperatura ao longo do ano (ALVARES et al., 2013). Esse tipo de clima predomina na porção central do Brasil, onde se encontra o Cerrado (savana brasileira), bioma ao qual C. penicillata é associado. Tal fato também pode estar relacionado com a segunda variável mais importante, no caso a sazonalidade da precipitação (bio15). A porção central do Brasil apresenta uma sazonalidade marcante no regime de chuvas, com meses secos durante o inverno. Além disso, outros tipos climáticos que são abrangidos pela ocorrência de C. penicillata, como os subtropicais Cwa e Cwb, também exibem sazonalidade da precipitação com meses secos durante o inverno (ALVARES et al., 2013). Por fim, com importância relativa consideravelmente menor em relação as variáveis acima citadas, a sazonalidade da temperatura (bio04) pode estar ligada a uma menor variação da temperatura ao longo do ano, ou seja, não sendo observadas quedas acentuadas das temperaturas médias dos meses mais frios, caso típico de climas tropicais (ALVARES et al., 2013).

Todas essas características climáticas das regiões que abrangem a distribuição de ambos os primatas estão diretamente relacionadas aos tipos de vegetação aos quais as espécies estão associadas. O *C. aurita* está restrito às áreas no sudeste do Brasil nas quais se distribuem as fitofisionomias do bioma Mata Atlântica (Florestas Ombrófila e Estacional Semidecidual), provavelmente devido ao maior regime de chuvas. Por outro lado, *C. penicillata* possui a

maior parte de sua distribuição no bioma Cerrado, na porção central do Brasil, onde o regime de chuvas apresenta uma marcante sazonalidade, com o período seco mais acentuado e maiores temperaturas médias. WARREN et al. (2012) sugerem que as variáveis climáticas comumente utilizadas na modelagem de distribuição potencial não são consideradas, na maioria dos casos, como limitadoras diretas da distribuição das espécies, sendo os modelos produzidos estimativas indiretas do nicho. Também segundo os autores, as variáveis climáticas são apenas correlacionadas espacialmente com algum fator de maior relevância para as espécies, o que, no caso dos primatas do estudo, provavelmente se trata do tipo de vegetação ao qual cada espécie está associada.

Apesar do bom desempenho dos modelos de *C. penicillata* e da possível relação das variáveis climáticas com maior importância relativa às regiões de ocorrência e aos tipos de vegetação que compreendem a distribuição nativa deste primata, nossas predições do potencial invasivo são subestimadas em relação às áreas de invasão conhecidas dessa espécie. Áreas com registros de *C. penicillata* como espécie invasora não foram previstas como adequadas ambientalmente (CULOT et al., 2018), resultando em uma distribuição potencial reduzida em relação à que a espécie realmente apresenta. Isso sugere uma sub-amostragem do nicho fundamental da espécie (PETERSON; SOBERÓN, 2012), que pode não ser majoritariamente definido pelo clima, além de reforçar a plasticidade ecológica característica deste primata.

O fato de *C. aurita* ser a espécie dominante na área de sobreposição entre as distribuições potenciais sugere a ocorrência de exclusão competitiva, no qual esta espécie pode estar impedindo que *C. penicillata* ocupe áreas com adequabilidade ambiental em praticamente todo a região sul e sudeste de Minas Gerais. A vantagem competitiva de *C. aurita* pode ocorrer devido a este estar mais bem adaptado a vegetação florestal presente na área de simpatria potencial (Florestas Ombrófila Densa e Estacional Semidecidual), além de ser uma espécie de maior tamanho corporal em relação à sua congênere (MELO et al., 2015). Dentro do gênero *Callithrix*, a linhagem formada por *C. aurita* e *C. flaviceps* é a mais antiga, tendo se separado da linhagem que daria origem às demais espécies (*C. geoffroyi*, *C. kuhlii*, *C. jacchus* e *C. penicillata*) por volta de 3 milhões de anos atrás e ocupado desde então as florestas atlânticas meridionais. Por outro lado, *C. penicillata* é, junto com *C. jacchus*, a espécie mais recente do gênero, tendo seu ancestral se isolado no Cerrado por volta de 700 mil anos atrás e, assim, prosseguido o processo de especiação (BUCKNER et al., 2015). A porção da área de simpatria potencial onde se concentram os registros de *C. penicillata* coincide com um enclave de Cerrado não detectado pelos modelos de distribuição potencial de *C. aurita*, que

pode ser observado nos mapas das regiões fitoecológicas. Esse enclave de Cerrado e a zona de tensão caracterizam uma mudança na vegetação que aparentemente impossibilita a ocorrência de *C. aurita*, que é dependente de florestas, apesar da adequabilidade climática segundo os modelos. Aliado a isso, as zonas de contato entre as duas espécies não possuem barreiras físicas evidentes (grandes rios e cadeias de montanhas, por exemplo), o que reforça que a ocupação nestas regiões é determinada pela força de interação entre as duas espécies, no caso, a competição.

Apesar de sugerirmos a exclusão competitiva como fator que estabelece o limite da distribuição de C. penicillata no sul e leste de Minas Gerais, inúmeros são os registros de saguis invasores em regiões de ocorrência natural de C. aurita (SILVA et al., 2018). Na RPPN Fazenda Lagoa (Monte Belo, sul de Minas Gerais), onde historicamente diversos estudos com C. aurita foram realizados (MARTINS, 2000; MARTINS; SETZ, 2000; MUSKIN, 1984; SANTOS; MARTINS, 2000), a presença de C. penicillata foi recentemente observada (LAURINDO et al., 2017). Tendo em vista que a simpatria em larga escala não ocorre entre as espécies do gênero Callithrix (RYLANDS; COIMBRA-FILHO; MITTERMEIER, 2009), fatores em escala local podem estar possibilitando a ocorrência de saguis invasores nas áreas naturais de C. aurita. Na região de contato entre as espécies no sul de Minas, uma zona de transição entre a Mata Atlântica e o Cerrado, a presença de uma ou outra é determinada pelo tipo de vegetação. Fragmentos que apresentam características típicas de fitofisionomias do Cerrado são habitadas por C. penicillata, por outro lado, nas áreas de Mata Atlântica são observados grupos de C. aurita (observação pessoal). No entanto, longe destas zonas de transição, a presença massiva de C. penicillata como espécie invasora na faixa geográfica de C. aurita pode estar ligada à degradação ambiental, como mudanças de uso de solo, alteração de microclimas e estrutura da vegetação. Em um estudo recente sobre a ocupação de C. aurita e saguis invasores (C. penicillata e C. jacchus) no Parque Nacional da Serra dos Órgãos, Detogne et al. (2017) observaram que a presença das espécies exóticas era mais frequente nas bordas do parque e áreas com maior interferência humana, enquanto a espécie nativa foi observada com maior frequência em áreas afastadas das estradas de acesso e menos antropizadas. A região na qual está inserida toda a faixa de ocorrência de C. aurita passou por um intenso processo de transformação em tempos recentes, no qual as florestas tropicais que cobriam toda a sua extensão foram suprimidas para dar espaço às atividades agropecuárias e a ocupação urbana.

Segundo Sóberon e Arroyo-Peña (2017), o espaço potencialmente adequado não ocupado de uma espécie sugere seu potencial de invasão, como é o caso de *C. penicillata*.

Desta maneira, considerando o status de ameaça de *C. aurita* (ICMBIO, 2018; MELO et al., 2020) e sua importância como fator determinante do padrão biogeográfico abordado, os esforços conservacionistas devem ser direcionados para a recuperação e manutenção dos habitats da espécie, visando proteger as populações remanescentes deste primata e suas funções ecológicas. Deste modo, sugerimos que estudos em escalas de paisagem e local sejam realizados com o objetivo de compreender os fatores que possibilitam a persistência de *C. aurita* em áreas remanescentes de seu habitat original e qual o grau de distúrbio tolerável pela espécie e de maneira semelhante, entender o que favorece o estabelecimento de *C. penicillata* nas áreas onde a espécie é registrada como invasora. Além de cruciais para a conservação, tais informações podem guiar projetos de reintrodução de *C. aurita* onde a espécie está localmente extinta.

5 CONCLUSÃO

Segundo os modelos de distribuição potencial construídos para cada um dos primatas e a comparação destes com os pontos de ocorrência, conclui-se que os fatores delimitantes são particulares de cada espécie, no que se refere aos limites adjacentes de suas faixas de ocorrência. *C. aurita* limita-se pelas variáveis climáticas, possivelmente associadas à presença, em maior escala, da Mata Atlântica, vegetação na qual a espécie é associada. *C. penicillata*, por sua vez, possui áreas potenciais sobrepostas à sua congênere, mas onde não é verificada sua ocorrência histórica. Deste modo, inferimos que a presença de *C. aurita* delimita a faixa de distribuição de *C. penicillata* nas regiões onde estas espécies se encontram.

REFERÊNCIAS

AIELLO-LAMMENS, M. E.; BORIA, R. A.; RADOSAVLJEVIC, A.; VILELA, B.; ANDERSON, R. P.; BJORNSON, R.; WESTON, S. spThin: Functions for spatial thinning of species occurrence records for use in ecological models. 2019. Disponível em: https://cran.r-project.org/web/packages/spThin/index.html

ALLOUCHE, O.; TSOAR, A.; KADMON, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). **Journal of Applied Ecology**, v. 43, n. 6, p. 1223-1232, 2006.

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Köppen's climate classification map for Brazil. **Meteorologische Zeitschrift**, v. 22, n. 6, p. 711-728, 2013.

ARAÚJO, M. B.; NEW, M. Ensemble forecasting of species distributions. **Trends in Ecology & Evolution**, v. 22, n. 1, p. 42-47, 2007.

BREIMAN, L. Random forests. Machine learning, v. 45, n. 1, p. 5-32, 2001.

BRUNA, E. M.; GUIMARÃES, J. F.; LOPES, C. T.; DUARTE, P.; GOMES, A. C. L.; BELENTANI, S. C. S.; PACHECO, R.; FACURE, K. G.; LEMOS, F. G.; VASCONCELOS, H. L. Mammalia, Estação Ecológica do Panga, a Cerrado protected area in Minas Gerais state, Brazil. **Check List**, v. 6, n. 4, p. 668-675, 2010.

BUCKNER, J. C.; ALFARO, J. W. L.; RYLANDS, A. B.; ALFARO, M. E.. Biogeography of the marmosets and tamarins (Callitrichidae). **Molecular Phylogenetics and Evolution**, v. 82, p. 413-425, 2015.

CERQUEIRA, R.; MARROIG, G.; FINDER, L. Marmosets and lion-tamarins distribution (Callitrichidae, Primates) in Rio de Janeiro state, south-eastern Brazil. **Mammalia**, v. 62, n. 2, p. 213-226, 1998.

CHAMBERLAIN, S. scrubr: Clean biological occurrence records. 2016. Disponível em: https://cran.r-project.org/web/packages/scrubr/index.html

CULOT, L. et al. ATLANTIC-PRIMATES: a dataset of communities and occurrences of primates in the Atlantic Forests of South America. **Ecology**, v. 100, n. 1, p. e02525, 2019.

DE MARCO JÚNIOR, P.; SIQUEIRA, M. F. Como determinar a distribuição potencial de espécies sob uma abordagem conservacionista. **Megadiversidade**, v. 5, n. 1-2, p. 65-76, 2009.

DETOGNE, N.; FERREGUETTI A. C.; MELLO, J. H. F; SANTANA, M. C.; DIAS; A. C.; MOTA, N. C. J.; GONÇALVES, A. E. C.; SOUZA, C. P.; BERGALLO, H. G. Spatial distribution of buffy-tufted-ear (Callithrix aurita) and invasive marmosets (Callithrix spp.) in a tropical rainforest reserve in southeastern Brazil. **American Journal of Primatology**, v. 79, n. 12, p. e22718, 2017.

FIELDING, A. H.; BELL, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. **Environmental Conservation**, v. 24, n. 1, p. 38-49, 1997.

FRIEDMAN, J. H. Greedy function approximation: a gradient boosting machine. **Annals of statistics**, p. 1189-1232, 2001.

GEISE, L.; PEREIRA, L. G.; ASTÚA, D.; AGUIEIRAS, M.; LESSA, L. G.; ASFORA; P. H.; DOURADO, F.; ESBERÁRD, C. E. L. Terrestrial mammals of the Jequitinhinha River basin, Brazil: a transition area between Atlantic Forest and Cerrado. **Mastozoología Neotropical**, v.

24, n. 1, p. 95-119, 2017.

GRELLE, C. E. V.; CERQUEIRA, R. Determinantes da distribuição geográfica de *Callithrix flaviceps* (Thomas) (Primates, Callitrichidae). **Revista Brasileira de Zoologia**, v. 23, n. 2, p. 414-420, 2006.

HERSHKOVITZ, P. Living new world monkeys (Platyrrhini). University of Chicago Press, 1977.

HEWSON, J.; CREMA, S. C.; GONZÁLEZ-ROGLICH, M.; TABOR, K.; HARVEY, C. A. New 1 km resolution datasets of global and regional risks of tree cover loss. **Land**, v. 8, n. 1, p. 14, 2019.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Províncias estruturais, compartimentos do relevo, tipos de solos e regiões fitoecológicas. Rio de Janeiro, RJ, 2019. 179 p.

INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA BIODIVERSIDADE (ICMBio). Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Brasília, DF: ICMBio/MMA, 2018. v. 1, 492 p.

KARGER, D. N.; CONRAD, O.; BÖHNER, J.; KAWOHL, T.; KREFT, H.; SORIA-AUZA, R. W.; ZIMMERMANN, N. E.; LINDER, H. P.; KESSLER, M. Climatologies at high resolution for the earth's land surface areas. **Scientific Data**, v. 4, p. 170122, 2017.

KÖPPEN, W. Das geographische system der klimate. In: KÖPPEN, W.; R. GEIGER (Eds.): **Handbuch der Klimatologie** – Gebrüder Bornträger, Berlin, v. 1, p. 1-44, part C, 1936.

LAURINDO, R. S.; NOVAES R. L. M.; SOUZA, R. F.; SOUZA, V. F.; FELIX, F.; SOUTO, T. M.; CUNHA, R. G. T.; GREGORIN, R. Mammals in forest remnants of an ecotonal Atlantic Forest-Cerrado area from southeastern Brazil. **Neotropical Biology and Conservation**, v. 12, n. 1, p. 19-29, 2017.

LESSA, L. G.; ALVES, H.; GEISE, L.; BARRETO, R. M. F. Mammals of medium and large size in a fragmented cerrado landscape in northeastern Minas Gerais state, Brazil. **Check List**, v. 8, n. 2, p. 192-196, 2012.

MALUKIEWICZ, J. A review of experimental, natural, and anthropogenic hybridization in *Callithrix* marmosets. **International Journal of Primatology**, v. 40, n. 1, p. 72-98, 2019.

MARIA, B.; UDO, S. Why input matters: Selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. **Ecological Modelling**, v. 359, p. 92-102, 2017.

MARTINS, M. M. Foraging over army ants by *Callithrix aurita* (Primates: Callitrichidae): Seasonal occurence? **Revista de Biología Tropical**, v. 48, n. 1, p. 261-262, 2000.

- MARTINS, M. M.; SETZ, E. Z. F. Diet of buffy tufted-eared marmosets (Callithrix aurita) in a forest fragment in southeastern Brazil. **International Journal of Primatology**, v. 21, n. 3, p. 467-476, 2000.
- MELO, F. R.; BICCA-MARQUES, J.; FERRAZ, D. da S.; JERUSALINSKY, L.; Mittermeier, R.A., Oliveira, L.C., Port-Carvalho, M., Ruiz-Miranda, C.R., Valença Montenegro, M., da Cunha, R. & do Valle, R.R. 2020. *Callithrix aurita* (amended version of 2019 assessment). The IUCN Red List of Threatened Species 2020: e.T3570A166617776. Disponível em: https://dx.doi.org/10.2305/IUCN.UK.2020-1.RLTS.T3570A166617776.en. Acesso em 20 de abril de 2020.
- MELO, F. R.; FERRAZ, D. S.; VALENÇA-MONTENEGRO, M. M.; OLIVEIRA, L. C.; PEREIRA, D. G.; PORT-CARVALHO, M. Avaliação do Risco de Extinção de *Callithrix aurita* (É. Geoffroy, 1812) no Brasil. **Processo de avaliação do risco de extinção da fauna brasileira**, Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), 2015. Disponível em: http://www.icmbio.gov.br/portal/biodiversidade/fauna-brasileira/estado-deconservação/7198-mamiferos-callithrix-aurita-sagui-da-serra-escuro.html
- MENDES, S. L. Padrões biogeográficos e vocais em *Callithrix* do grupo jacchus (Primates, Callithrichidae). Tese de Doutorado, Universidade Estadual de Campinas, 1997.
- MOREIRA, J.; MANDUCA, E. G.; GONÇALVES, P. R.; STUMPP, R.; PINTO, C. G. C.; LESSA, G. Mammals, Volta Grande Environmental Unity, Triângulo Mineiro, states of Minas Gerais and São Paulo, Southeastern Brazil. **Check List**, v. 4, p. 349, 2008.
- MUSKIN, A. Field Notes and Geographic Distribution of Callithrix aurita in Eastern Brazil. **American Journal of Primatology**, v. 7, p. 377-380, 1984.
- NAIMI, B. usdm: Uncertainty analysis for species distribution models. 2017. Disponível em: https://cran.r-project.org/web/packages/usdm/index.html
- NAIMI, B.; ARAÚJO, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. **Ecography**, v. 39, n. 4, p. 368-375, 2016.
- NICOLAEVSKY, B. Distribuição geográfica e modelagem de habitat das espécies do gênero *Callithrix* (Primates, Callitrichidae). Dissertação de Mestrado, Universidade Federal doEspírito Santo, 2011.
- OLIVEIRA, J. A.; PESSÔA, L. M. Mamíferos. Em: **Biodiversidade e Conservação da Chapada Diamantina**. Ministério do Meio Ambiente, Brasília, Distrito Federal. Seção III, cap. 18, p. 375-405, 2005.
- PENIDO, G.; ZANZINI, A. C. S. Checklist of large and medium-sized mammals of the Estação Ecológica Mata do Cedro, an Atlantic forest remnant of central Minas Gerais, Brazil. **Check List**, v. 8, n. 4, p. 712-717, 2012.
- PETERSON, A. T.; SOBERÓN, J. Species distribution modeling and ecological niche

- modeling: getting the concepts right. Natureza & Conservação, v. 10, n. 2, p. 102-107, 2012.
- R Core Team. R: A language and environment for statistical computing. R Foudation for Statistical Computing, Viena, Áustria, 2020. Disponível em: www.r-project.org.
- ROYLE, J. A.; CHANDLER R. B.; YACKULIC C.; NICHOLS J. D. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. **Methods in Ecology and Evolution**, v. 3, n. 3, p. 545-554, 2012.
- RYLANDS, A. B.; COIMBRA-FILHO, A. F.; MITTERMEIER, R. A. The systematics and distributions of the marmosets (*Callithrix*, *Callibella*, *Cebuella*, and *Mico*) and callimico (*Callimico*) (Callitrichidae, Primates). In: **The smallest anthropoids**. Springer, Boston, MA, 2009. p. 25-61.
- SANTOS, C. V.; MARTINS, M. M. Parental care in the buffy-tufted-ear marmoset (*Callithrix aurita*) in wild and captive groups. **Revista Brasileira de Biologia**, v. 60, n. 4, p. 667-672.
- SIMARD, M.; PINTO, N.; FISHER, J. B.; BACCINI, A. Mapping forest canopy height globally with spaceborne lidar. **Journal of Geophysical Research**, v. 116, G04021, 2011.
- SILVA, F. F. R.; MALUKIEWICZ, J.; SILVA, L. C.; CARVALAHO R. S.; RUIZ-MIRANDA, C. R.; COELHO, F. A. S.; FIGUEIRA, M. P.; BOERE, V.; SILVA, I. O. A survey of wild and introduced marmosets (*Callithrix*: Callitrichidae) in the southern and eastern portions of the state of Minas Gerais, Brazil. **Primate Conservation**, v. 32, p. 1-18, 2018.
- SOBERÓN, J.; ARROYO-PEÑA, B. Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. **PloS one**, v. 12, n. 4, p. e0175138, 2017.
- TALAMONI, S. A.; AMARO, B. D.; CORDEIRO-JÚNIOR, D. A.; MACIEL, E. M. A. Mammals of Reserva Particular do Patrimônio Natural Santuário do Caraça, state of Minas Gerais, Brazil. **Check List**, v. 10, n. 5, p. 1005-1013, 2014.
- TEIXEIRA, B; HIRSCH, A; GOULART, V. D. L. R.; PASSOS, L.; TEIXEIRA, C. P.; JAMES, P.; YOUNG, R. Good neighbours: distribution of black-tufted marmoset (*Callithrix penicillata*) in an urban environment. **Wildlife Research**, v. 42, n. 7, p. 579-589, 2015.
- TROLLE, M.; BISSARO, M. C.; PRADO, H. M. Mammal survey at a ranch of the Brazilian Cerrado. **Biodiversity and Conservation**, v. 16, n. 4, p. 1205-1211, 2007.
- VILELA, A. A.; DEL-CLARO, K. Feeding behavior of the black-tufted-ear marmoset (*Callithrix penicillata*) (Primata, Callitrichidae) in a tropical cerrado savanna. **Sociobiology**, v. 58, n. 2, p. 1-6, 2011.
- WAHBA, G.; WENDELBERGER, J. Some new mathematical methods for variational objective analysis using splines and cross validation. **Monthly Weather Review**, v. 108, n. 8,

p. 1122-1143, 1980.

WEIGAND, A; BÖHNER, J.; CONRAD, O.; KESSLER, M.; KREFT, H.; LINDER, H.; PRADO, J.; SORIA-AUZA, R. W.; ZIMMERMAN, N.; KARGER, D. N. Performance of a new climate model (CHELSA) in tropical mountains. In: EUROPEAN CONFERENCE OF TROPICAL ECOLOGY, 2016a, Göttingen, Alemanha.

WEIGAND, A; BÖHNER, J.; CONRAD, O.; KESSLER, M.; KREFT, H.; LINDER, H.; PRADO, J.; SORIA-AUZA, R. W.; ZIMMERMAN, N.; KARGER, D. N. Testing a new climate model (CHELSA) in Brazil. In: CONGRESSO NACIONAL DE BOTÂNICA, 67, 2016b, Vitória, Espírito Santo, Brasil.

ANEXO

Anexo 1. Pontos de ocorrência compilados para ambas as espécies do estudo por meio de todos os métodos de levantamento empregados.

Espécie	Latitude	Longitude
Callithrix aurita	-21.8637	-42.6689
Callithrix aurita	-21.3667	-45.9333
Callithrix aurita	-20.7211	-42.4792
Callithrix aurita	-20.7333	-42.0167
Callithrix aurita	-20.7167	-42.0333
Callithrix aurita	-19.7167	-42.5500
Callithrix aurita	-21.3833	-46.2500
Callithrix aurita	-21.3361	-46.3694
Callithrix aurita	-20.0647	-42.7350
Callithrix aurita	-21.4861	-43.1361
Callithrix aurita	-21.9344	-43.1952
Callithrix aurita	-20.75	-42.8667
Callithrix aurita	-20.7000	-42.8667
Callithrix aurita	-21.7708	-42.5392
Callithrix aurita	-22.9760	-44.3000
Callithrix aurita	-21.4500	-41.9333
Callithrix aurita	-21.9167	-42.4333
Callithrix aurita	-21.9333	-42.6167
Callithrix aurita	-22.4194	-44.6361
Callithrix aurita	-22.4233	-44.5950
Callithrix aurita	-22.4267	-44.5831
Callithrix aurita	-22.3833	-44.6667
Callithrix aurita	-22.5000	-44.5667
Callithrix aurita	-21.0500	-42.0400
Callithrix aurita	-23.2595	-44.6553
Callithrix aurita	-22.4505	-43.2827
Callithrix aurita	-22.5000	-43.1833
Callithrix aurita	-22.6167	-43.8833
Callithrix aurita	-22.1667	-42.6833
Callithrix aurita	-22.4494	-42.9858
Callithrix aurita	-22.6750	-48.1750
Callithrix aurita	-22.3667	-47.4667
Callithrix aurita	-23.1667	-46.6530
Callithrix aurita	-22.8000	-44.3667
Callithrix aurita	-22.9000	-47.0833
Callithrix aurita	-23.7269	-46.9700
Callithrix aurita	-23.2500	-45.0667
Callithrix aurita	-23.0068	-46.8387

Callithrix aurita	-23.5114	-46.2431
Callithrix aurita	-23.5000	-46.1667
Callithrix aurita	-22.3000	-47.0000
Callithrix aurita	-22.3333	-47.0000
Callithrix aurita	-22.2793	-47.1740
Callithrix aurita	-24.3117	-47.0040
Callithrix aurita	-23.3164	-46.2235
Callithrix aurita	-23.2500	-45.3333
Callithrix aurita	-23.4286	-46.6400
Callithrix aurita	-23.5000	-46.5000
Callithrix aurita	-23.3950	-46.5908
Callithrix aurita	-23.5500	-47.0200
Callithrix aurita	-23.4361	-45.0694
Callithrix aurita	-23.4167	-45.0833
Callithrix aurita	-22.14864722	-45.42023889
Callithrix aurita	-21.97329722	-45.19838333
Callithrix aurita	-22.40499167	-45.27804722
Callithrix aurita	-22.00606111	-45.50170278
Callithrix aurita	-21.5819	-42.5013
Callithrix aurita	-21.5957	-42.486
Callithrix aurita	-22.21351389	-44.976425
Callithrix aurita	-21.98063333	-45.54823611
Callithrix aurita	-22.19097778	-45.03021667
Callithrix aurita	-22.20091389	-45.01484167
Callithrix aurita	-22.06	-42.4823
Callithrix aurita	-22.0124	-42.4806
Callithrix aurita	-22.021	-42.4716
Callithrix aurita	-22.0134	-42.4659
Callithrix aurita	-22.049	-42.4632
Callithrix aurita	-22.488981	-43.008863
Callithrix aurita	-22.048	-42.2728
Callithrix aurita	-22.584586	-43.458457
Callithrix aurita	-22.25	-43.35
Callithrix aurita	-23.197644	-44.832525
Callithrix aurita	-23.035497	-44.562108
Callithrix aurita	-22.544251	-43.190797
Callithrix aurita	-22.43	-43.25
Callithrix aurita	-22.031451	-42.777837
Callithrix aurita	-22.288604	-42.931274
Callithrix aurita	-22.279714	-42.928008
Callithrix aurita	-22.337696	-42.734777
Callithrix aurita	-23.153755	-46.568179
Callithrix aurita	-23.131581	-46.547019
Callithrix aurita	-23.233605	-46.52611
Callithrix aurita	-23.2859993	-47.02099991

Callitlania annita	-23.29000092	47,006,00052
Callithrix aurita Callithrix aurita		-47.00600052 -46.99300003
	-23.29400063	
Callithrix aurita	-23.2840004	-46.98799896
Callithrix aurita	-23.658064	-46.962627
Callithrix aurita	-22.52	-45.06
Callithrix aurita	-23.0761641	-44.958944
Callithrix aurita	-23.24900055	-47.02000046
Callithrix aurita	-23.23600006	-47.02000046
Callithrix aurita	-23.25499916	-46.99399948
Callithrix aurita	-23.23399925	-46.99200058
Callithrix aurita	-23.24500084	-46.98300171
Callithrix aurita	-23.23399925	-46.97900009
Callithrix aurita	-23.26099968	-46.96900177
Callithrix aurita	-23.3029995	-46.96699905
Callithrix aurita	-23.23900032	-46.95899963
Callithrix aurita	-23.25099945	-46.95500183
Callithrix aurita	-23.22699928	-46.95399857
Callithrix aurita	-23.29599953	-46.94800186
Callithrix aurita	-23.23900032	-46.94400024
Callithrix aurita	-23.24200058	-46.93199921
Callithrix aurita	-23.29000092	-46.92599869
Callithrix aurita	-23.23800087	-46.91799927
Callithrix aurita	-23.29500008	-46.91600037
Callithrix aurita	-23.25300026	-46.91500092
Callithrix aurita	-23.28899956	-46.9620018
Callithrix aurita	-23.450862	-46.244984
Callithrix aurita	-23.600831	-46.207556
Callithrix aurita	-23.582684	-46.207314
Callithrix aurita	-23.575968	-46.203237
Callithrix aurita	-23.582758	-46.197539
Callithrix aurita	-23.610893	-46.196157
Callithrix aurita	-23.593153	-46.189632
Callithrix aurita	-23.570424	-46.182978
Callithrix aurita	-23.556236	-46.179667
Callithrix aurita	-23.577093	-46.171301
Callithrix aurita	-23.574533	-46.169764
Callithrix aurita	-23.602052	-46.162951
Callithrix aurita	-23.580579	-46.154517
Callithrix aurita	-23.594218	-46.148747
Callithrix aurita	-23.570745	-46.146366
Callithrix aurita	-23.566004	-46.144203
Callithrix aurita	-23.565041	-46.143367
Callithrix aurita	-23.564264	-46.138848
Callithrix aurita	-23.46544	-46.24218
Callithrix aurita	-23.46294	-46.23215

Callithrix aurita	-23.601018	-46.18141
Callithrix aurita	-23.594762	-46.17635
Callithrix aurita	-23.207825	-46.356539
Callithrix aurita	-23.199591	-46.355214
Callithrix aurita	-23.204436	-46.334054
Callithrix aurita	-23.279264	-46.281841
Callithrix aurita	-21.88	-42.69
Callithrix aurita	-21.98333333	-42.9
Callithrix aurita	-21.36666667	-45.93333333
Callithrix aurita	-21.45	-45.93333333
Callithrix aurita	-20.71666667	-42.48333333
Callithrix aurita	-20.606475	-42.402325
Callithrix aurita	-21.3	-42.26666667
Callithrix aurita	-20.5	-42
Callithrix aurita	-20.71666667	-42.03333333
Callithrix aurita	-20.73333333	-42.01666667
Callithrix aurita	-19.83333333	-42.55
Callithrix aurita	-19.78916667	-42.7
Callithrix aurita	-21.55	-46.25
Callithrix aurita	-21.68333333	-42.55
Callithrix aurita	-22.36666667	-44.66666667
Callithrix aurita	-20.48333333	-42.71666667
Callithrix aurita	-21.9412	-45.3144
Callithrix aurita	-21.86666667	-43
Callithrix aurita	-19.71666667	-42.55
Callithrix aurita	-21.33333333	-46.36666667
Callithrix aurita	-21.405708	-46.265419
Callithrix aurita	-21.387511	-46.241808
Callithrix aurita	-21.373128	-46.239578
Callithrix aurita	-21.384522	-46.237625
Callithrix aurita	-21.38333333	-46.25
Callithrix aurita	-22.391667	-44.941111
Callithrix aurita	-20.81666667	-42.95
Callithrix aurita	-21.88398889	-46.64862306
Callithrix aurita	-21.77473611	-46.63379389
Callithrix aurita	-21.904722	-46.5375
Callithrix aurita	-22.2225	-45.967222
Callithrix aurita	-20.07111111	-42.74305556
Callithrix aurita	-20.07111111	-42.73944444
Callithrix aurita	-20.05583333	-42.73611111
Callithrix aurita	-20.06472222	-42.735
Callithrix aurita	-21.48611111	-43.13611111
Callithrix aurita	-20.26666667	-42.9
Callithrix aurita	-22.167222	-44.183056
Callithrix aurita	-22.1118	-45.0568

Callithrix aurita	-21.99416667	-44.96277778
Callithrix aurita	-20.73333333	-42.91666667
Callithrix aurita	-20.7	-42.86666667
Callithrix aurita	-20.75	-42.86666667
Callithrix aurita	-20.71666667	-42.8
Callithrix aurita	-22.321111	-45.1625
Callithrix aurita	-21.77083333	-42.53916667
Callithrix aurita	-22.95	-44.26666667
Callithrix aurita	-22.2	-42.48333333
Callithrix aurita	-21.45	-41.93333333
Callithrix aurita	-21.91666667	-42.43333333
Callithrix aurita	-21.93333333	-42.61666667
Callithrix aurita	-22.53722222	-42.98194444
Callithrix aurita	-21.05	-42.05
Callithrix aurita	-22.41666667	-44.63333333
Callithrix aurita	-22.5	-44.56666667
Callithrix aurita	-21.4045	-42.1619
Callithrix aurita	-22.26666667	-42.53333333
Callithrix aurita	-23.23333333	-44.73333333
Callithrix aurita	-23.21666667	-44.73333333
Callithrix aurita	-22.5	-43.18333333
Callithrix aurita	-22.3989	-43.146
Callithrix aurita	-22.61666667	-43.88333333
Callithrix aurita	-22.1	-43.56666667
Callithrix aurita	-21.93333333	-41.8
Callithrix aurita	-22.16666667	-42.68333333
Callithrix aurita	-22.45627778	-42.99713889
Callithrix aurita	-22.45111111	-42.98416667
Callithrix aurita	-22.33333333	-42.91666667
Callithrix aurita	-22.45	-42.95
Callithrix aurita	-22.15	-43.11666667
Callithrix aurita	-22	-47.06666667
Callithrix aurita	-22.67777778	-48.18611111
Callithrix aurita	-22.66666667	-48.16666667
Callithrix aurita	-22.68333333	-48.1
Callithrix aurita	-22.3576	-47.3752
Callithrix aurita	-22.75277778	-44.66944444
Callithrix aurita	-23.11666667	-46.55
Callithrix aurita	-22.8	-44.3666667
Callithrix aurita	-22.8065	-44.3678
Callithrix aurita	-23.1967	-46.5231
Callithrix aurita	-22.9	-47.08333333
Callithrix aurita	-22.6666667	-45.5
Callithrix aurita	-23.3	-45.08333333
Callithrix aurita	-23.25	-45.06666667

Callithrix aurita	-23.26666667	-45.06666667
Callithrix aurita	-23.24166667	-45.05833333
Callithrix aurita	-22.9	-44.91666667
Callithrix aurita	-23.2364	-45.0483
Callithrix aurita	-22.91666667	-44.75
Callithrix aurita	-23.205	-46.1566
Callithrix aurita	-24.45	-47.33333333
Callithrix aurita	-23	-46.83333333
Callithrix aurita	-23	-46.85
Callithrix aurita	-23.2853	-47.203
Callithrix aurita	-23.16666667	-46.66666667
Callithrix aurita	-22.894722	-46.323611
Callithrix aurita	-23.25	-47
Callithrix aurita	-23.23333333	-46.95
Callithrix aurita	-23.31666667	-46.58333333
Callithrix aurita	-23.36666667	-46.6
Callithrix aurita	-23.5	-46.16666667
Callithrix aurita	-22.2051	-47.1555
Callithrix aurita	-22.33333333	-47
Callithrix aurita	-22.3	-47
Callithrix aurita	-22.33333333	-47
Callithrix aurita	-22.25	-47.2
Callithrix aurita	-23.41666667	-45.23333333
Callithrix aurita	-23.86666667	-47.75
Callithrix aurita	-23.076	-46.2102
Callithrix aurita	-22.358066	-47.482286
Callithrix aurita	-23.3	-46.21666667
Callithrix aurita	-23.78333333	-46.31666667
Callithrix aurita	-23.78333333	-46.28333333
Callithrix aurita	-22.73333333	-44.61666667
Callithrix aurita	-22.75	-44.61666667
Callithrix aurita	-23.25	-45.33333333
Callithrix aurita	-23.43333333	-46.63333333
Callithrix aurita	-23.6	-46.6166667
Callithrix aurita	-23.4	-46.58333333
Callithrix aurita	-23.5	-46.5
Callithrix aurita	-23.55	-47.01666667
Callithrix aurita	-23.40833333	-45.11666667
Callithrix aurita	-23.37	-45.0507
Callithrix aurita	-22.93333333	-46.98333333
Callithrix aurita	-22.119273	-42.952023
Callithrix aurita	-21.969928	-42.742054
Callithrix aurita	-22.355577	-42.810157
Callithrix aurita	-20.733056	-42.029444
Callithrix aurita	-23.032046	-46.375152

Callithrix aurita	-22.433332	-42.983334
Callithrix aurita	-22.521470	-45.473763
Callithrix aurita	-22.552460	-45.549137
Callithrix aurita	-22.192268	-45.694584
Callithrix aurita	-22.584172	-45.532564
Callithrix aurita	-22.202388	-45.729257
Callithrix aurita	-22.413754	-45.765196
Callithrix aurita	-21.894207	-45.252425
Callithrix aurita	-21.888022	-45.186936
Callithrix aurita	-21.886127	-45.151972
Callithrix aurita	-21.900116	-45.050457
Callithrix aurita	-22.140002	-45.001919
Callithrix aurita	-23.1675	-46.866699
Callithrix aurita	-22.65	-48.1833
Callithrix aurita	-22.65	-48.116699
Callithrix aurita	-21.6	-46.733299
Callithrix aurita	-21.7167	-46.700001
Callithrix aurita	-23.633301	-45.833301
Callithrix aurita	-23.5333	-47.016701
Callithrix aurita	-23.550301	-46.6339
Callithrix aurita	-23.433901	-45.070801
Callithrix aurita	-23.674499	-46.942001
Callithrix aurita	-23.714899	-46.9454
Callithrix aurita	-23.2833	-45.083301
Callithrix aurita	-20.733056	-42.029444
Callithrix aurita	-22.372200012207	-46.9421997070312
Callithrix aurita	-22.9027996063232	-43.2075004577637
Callithrix aurita	-22.7800006866455	-48.1199989318848
Callithrix aurita	-22.372200012207	-46.9421997070312
Callithrix aurita	-22.7800006866455	-48.1199989318848
Callithrix penicillata	-12.1300	-45.0000
Callithrix penicillata	-13.2500	-43.4200
Callithrix penicillata	-12.9800	-41.1200
Callithrix penicillata	-14.3000	-43.7333
Callithrix penicillata	-10.7694	-40.3528
Callithrix penicillata	-11.8000	-44.7300
Callithrix penicillata	-12.4500	-38.9500
Callithrix penicillata	-10.4700	-40.1800
Callithrix penicillata	-15.9447	-47.8853
Callithrix penicillata	-15.9167	-48.0333
Callithrix penicillata	-15.9397	-47.9392
Callithrix penicillata	-15.8744	-47.8411
Callithrix penicillata	-15.7167	-47.9500
Callithrix penicillata	-15.9328	-47.8506

Callithrix penicillata	-15.8000	-47.8800
Callithrix penicillata	-15.9583	-52.1981
Callithrix penicillata	-17.7500	-48.6300
Callithrix penicillata	-15.4500	-49.7300
Callithrix penicillata	-18.1700	-47.9500
Callithrix penicillata	-16.7339	-49.2161
Callithrix penicillata	-16.6799	-49.2550
Callithrix penicillata	-16.9700	-49.2200
Callithrix penicillata	-14.6800	-49.4500
Callithrix penicillata	-16.3700	-49.5000
Callithrix penicillata	-18.4200	-49.2200
Callithrix penicillata	-15.7500	-49.3300
Callithrix penicillata	-16.4200	-49.2300
Callithrix penicillata	-16.6700	-49.5000
Callithrix penicillata	-16.0167	-40.8500
Callithrix penicillata	-18.6509	-48.1854
Callithrix penicillata	-18.6300	-48.1800
Callithrix penicillata	-19.9333	-43.9000
Callithrix penicillata	-19.9208	-43.9044
Callithrix penicillata	-19.7820	-43.9780
Callithrix penicillata	-19.8540	-43.9390
Callithrix penicillata	-19.9231	-44.0086
Callithrix penicillata	-19.9106	-43.8798
Callithrix penicillata	-19.9600	-44.1900
Callithrix penicillata	-17.9000	-44.1833
Callithrix penicillata	-15.5540	-46.2720
Callithrix penicillata	-19.6700	-43.9700
Callithrix penicillata	-19.9333	-44.0667
Callithrix penicillata	-16.5250	-42.2167
Callithrix penicillata	-16.6220	-42.2194
Callithrix penicillata	-16.8002	-42.8622
Callithrix penicillata	-16.7500	-42.8700
Callithrix penicillata	-18.7500	-44.4200
Callithrix penicillata	-18.4383	-44.3200
Callithrix penicillata	-16.5000	-41.7719
Callithrix penicillata	-15.3355	-44.2461
Callithrix penicillata	-17.7500	-46.1700
Callithrix penicillata	-16.5830	-42.6333
Callithrix penicillata	-18.7788	-46.4078
Callithrix penicillata	-17.9000	-44.5700
Callithrix penicillata	-18.830661	-45.200997
Callithrix penicillata	-18.5469	-44.6027
Callithrix penicillata	-15.5000	-44.3500
Callithrix penicillata	-19.3500	-47.2917
Callithrix penicillata	-17.3500	-44.9300

Callithrix penicillata	-19.2167	-44.9333
Callithrix penicillata	-22	-43.90000
Callithrix penicillata	-18.8837	-47.5637
Callithrix penicillata	-20.6300	-46.5000
Callithrix penicillata	-19.7500	-47.9200
Callithrix penicillata	-18.9231	-48.3108
Callithrix penicillata	-19.7000	-48.3000
Callithrix penicillata	-16.5500	-42.3428
Callithrix penicillata	-20.5500	-48.5500
Callithrix penicillata	-20.5572	-48.5678
Callithrix penicillata	-21.5833	-47.8667
Callithrix penicillata	-20.2569	-47.4766
Callithrix penicillata	-21.9833	-47.8583
Callithrix penicillata	-9.8300	-48.7300
Callithrix penicillata	-12.5500	-47.7000
Callithrix penicillata	-9.2300	-48.2000
Callithrix penicillata	-10.7000	-48.4200
Callithrix penicillata	-13.04294053	-39.58082886
Callithrix penicillata	-12.18205696	-39.16459681
Callithrix penicillata	-12.469821	-41.585827
Callithrix penicillata	-16.62629176	-49.32609628
Callithrix penicillata	-20.510096	-41.939714
Callithrix penicillata	-21.98406111	-44.77059167
Callithrix penicillata	-22.00069167	-44.83042222
Callithrix penicillata	-19.8862	-43.9735
Callithrix penicillata	-21.19266898	-45.52980869
Callithrix penicillata	-21.17261925	-45.55261509
Callithrix penicillata	-21.107642	-44.937797
Callithrix penicillata	-21.133945	-44.807013
Callithrix penicillata	-21.148385	-44.833856
Callithrix penicillata	-21.175385	-44.836138
Callithrix penicillata	-21.153675	-44.847297
Callithrix penicillata	-21.166063	-44.858997
Callithrix penicillata	-21.160222	-44.865023
Callithrix penicillata	-21.178348	-44.87832
Callithrix penicillata	-21.212146	-44.899375
Callithrix penicillata	-21.209092	-44.899493
Callithrix penicillata	-21.20577	-44.904573
Callithrix penicillata	-21.173374	-44.914727
Callithrix penicillata	-21.15677101	-44.91696338
Callithrix penicillata	-21.193997	-44.922606
Callithrix penicillata	-21.222226	-44.928489
Callithrix penicillata	-21.114349	-44.946394
Callithrix penicillata	-21.163666	-44.948996
Callithrix penicillata	-21.186492	-44.957196

Callithrix penicillata	-21.148022	-44.974505
Callithrix penicillata	-21.229525	-44.780388
Callithrix penicillata	-21.21827	-44.812868
Callithrix penicillata	-21.232974	-44.823816
Callithrix penicillata	-21.178117	-44.848813
Callithrix penicillata	-21.28246409	-44.8543385
Callithrix penicillata	-21.258612	-44.869608
Callithrix penicillata	-21.257696	-44.876597
Callithrix penicillata	-21.267375	-44.87976
Callithrix penicillata	-21.262009	-44.880786
Callithrix penicillata	-21.307125	-44.967719
Callithrix penicillata	-21.328982	-44.969653
Callithrix penicillata	-21.213366	-44.973984
Callithrix penicillata	-21.22717523	-44.98105528
Callithrix penicillata	-21.22930626	-44.98566049
Callithrix penicillata	-21.297415	-44.986059
Callithrix penicillata	-21.292238	-44.987072
Callithrix penicillata	-21.22860555	-44.98707572
Callithrix penicillata	-21.303143	-44.987321
Callithrix penicillata	-21.228436	-44.987501
Callithrix penicillata	-21.301192	-44.995796
Callithrix penicillata	-21.56651111	-44.79458333
Callithrix penicillata	-21.565384	-44.363146
Callithrix penicillata	-20.225	-42.01472222
Callithrix penicillata	-20.275	-42.02
Callithrix penicillata	-20.24138889	-42.02638889
Callithrix penicillata	-19.47369453	-45.29731991
Callithrix penicillata	-21.69473855	-44.62865386
Callithrix penicillata	-21.69474428	-44.6286555
Callithrix penicillata	-21.230745	-44.466918
Callithrix penicillata	-20.49311	-43.59679
Callithrix penicillata	-20.55605945	-43.71334353
Callithrix penicillata	-21.18	-44.39
Callithrix penicillata	-21.23361875	-44.46242251
Callithrix penicillata	-22.00680278	-45.03021667
Callithrix penicillata	-21.10538333	-44.17781944
Callithrix penicillata	-18.89410266	-48.12730304
Callithrix penicillata	-18.8640111	-48.14989031
Callithrix penicillata	-18.7869469	-48.240276
Callithrix penicillata	-22.31101	-48.979481
Callithrix penicillata	-22.305152	-49.02412
Callithrix penicillata	-22.388282	-49.065844
Callithrix penicillata	-21.395914	-47.826781
Callithrix penicillata	-20.300815	-50.280171
Callithrix penicillata	-20.2672	-50.5871

Callithrix penicillata	-21.09090043	-47.74441215
Callithrix penicillata	-21.18893	-47.71035
Callithrix penicillata	-21.18912	-47.71401
Callithrix penicillata	-21.1776	-47.73382
Callithrix penicillata	-21.16199	-47.7341
Callithrix penicillata	-21.18853	-47.73511
Callithrix penicillata	-21.13044	-47.75167
Callithrix penicillata	-21.19068	-47.75837
Callithrix penicillata	-21.19524	-47.76304
Callithrix penicillata	-21.12377	-47.78172
Callithrix penicillata	-21.17273	-47.78816
Callithrix penicillata	-21.19052	-47.78953
Callithrix penicillata	-21.1208	-47.79253
Callithrix penicillata	-21.23687	-47.80192
Callithrix penicillata	-21.21523	-47.80652
Callithrix penicillata	-21.11831	-47.80978
Callithrix penicillata	-21.26741	-47.81255
Callithrix penicillata	-21.26387	-47.81907
Callithrix penicillata	-21.18141	-47.83335
Callithrix penicillata	-21.27154	-47.83345
Callithrix penicillata	-21.17976	-47.85611
Callithrix penicillata	-21.19914	-47.85733
Callithrix penicillata	-20.2239439	-50.9065756
Callithrix penicillata	-20.209828	-50.957513
Callithrix penicillata	-20.246443	-50.803472
Callithrix penicillata	-21.981744	-47.833528
Callithrix penicillata	-20.945624	-49.214748
Callithrix penicillata	-20.267	-50.6086
Callithrix penicillata	-20.438681	-49.994359
Callithrix penicillata	-10.76666667	-40.35
Callithrix penicillata	-15.26666667	-40.96666667
Callithrix penicillata	-15.910575	-47.95295556
Callithrix penicillata	-15.91666667	-47.91666667
Callithrix penicillata	-15.70929167	-47.91244444
Callithrix penicillata	-15.94472222	-47.88527778
Callithrix penicillata	-15.95	-47.88333333
Callithrix penicillata	-15.93277778	-47.85055556
Callithrix penicillata	-15.75031944	-47.84280556
Callithrix penicillata	-15.86115278	-47.82874167
Callithrix penicillata	-15.80306389	-47.79930278
Callithrix penicillata	-15.874625	-47.77081667
Callithrix penicillata	-15.90875278	-47.75729444
Callithrix penicillata	-15.92	-48.03
Callithrix penicillata	-14.77025	-47.83328611
Callithrix penicillata	-16.735	-49.0466667

Callithrix penicillata	-16.68200556	-49.26196667
Callithrix penicillata	-21.92944444	-44.58166667
Callithrix penicillata	-22.023	-44.676
Callithrix penicillata	-22.014	-44.672
Callithrix penicillata	-22.012	-44.667
Callithrix penicillata	-22.008	-44.663
Callithrix penicillata	-22.088	-44.662
Callithrix penicillata	-22.008	-44.613
Callithrix penicillata	-16.08333333	-40.53333333
Callithrix penicillata	-16.01666667	-40.85
Callithrix penicillata	-19.881378	-43.973157
Callithrix penicillata	-19.925	-43.975
Callithrix penicillata	-22.119581	-44.463545
Callithrix penicillata	-22.15611111	-44.3825
Callithrix penicillata	-21.08916667	-44.9422222
Callithrix penicillata	-17.9	-44.18333333
Callithrix penicillata	-20.09694444	-43.48916667
Callithrix penicillata	-19.93333333	-44.06666667
Callithrix penicillata	-21.335	-46.665
Callithrix penicillata	-16.60833333	-41.94166667
Callithrix penicillata	-16.85	-42.63333333
Callithrix penicillata	-20.98333333	-44.13333333
Callithrix penicillata	-21.33277778	-44.97611111
Callithrix penicillata	-21.22083333	-44.88694444
Callithrix penicillata	-19.73333333	-42.56666667
Callithrix penicillata	-19.96666667	-43.83333333
Callithrix penicillata	-20.45	-43.71666667
Callithrix penicillata	-20.38388889	-43.54333333
Callithrix penicillata	-22.391667	-44.941111
Callithrix penicillata	-19.35	-47.29166667
Callithrix penicillata	-20.01416667	-43.49111111
Callithrix penicillata	-16.35277778	-40.05416667
Callithrix penicillata	-21.55	-43.6
Callithrix penicillata	-21.14	-44.19
Callithrix penicillata	-21.99416667	-44.96277778
Callithrix penicillata	-19.16666667	-48.38333333
Callithrix penicillata	-16.93582222	-46.26828611
Callithrix penicillata	-20.75694444	-42.865
Callithrix penicillata	-16.85	-42.23333333
Callithrix penicillata	-16.83333333	-42.21666667
Callithrix penicillata	-22.31666667	-49.06666667
Callithrix penicillata	-22.33333333	-49.01666667
Callithrix penicillata	-20.4666667	-47.86666667
Callithrix penicillata	-20.5	-47.85
Callithrix penicillata	-21.58333333	-47.86666667

Callithrix penicillata	-21.18624	-47.80579
Callithrix penicillata	-21.15794	-47.80004
Callithrix penicillata	-20.78606111	-49.35880278
Callithrix penicillata	-15.740999	-47.923286
Callithrix penicillata	-15.733063	-47.917685
Callithrix penicillata	-15.873275	-47.838863
Callithrix penicillata	-15.87315	-47.84088
Callithrix penicillata	-15.54512	-48.106884
Callithrix penicillata	-16.007914	-48.084946
Callithrix penicillata	-14.165023	-47.846117
Callithrix penicillata	-14.143492	-47.489616
Callithrix penicillata	-14.143871	-47.483784
Callithrix penicillata	-13.77006	-48.74317
Callithrix penicillata	-15.845937	-48.957375
Callithrix penicillata	-18.46496	-48.3 43061
Callithrix penicillata	-18.46496	-48.3
Callithrix penicillata	-19.611038	-46.915762
Callithrix penicillata	-19.949237	-43.904585
Callithrix penicillata	-15.976106	-47.966878
Callithrix penicillata	-20.648085	-46.226199
Callithrix penicillata	-19.460771	-45.596489
Callithrix penicillata	-21.082107	-47.041427
Callithrix penicillata	-15.121423	-44.256669
Callithrix penicillata	-19.627222	-43.889444
Callithrix penicillata	-19.633333	-43.883335
Callithrix penicillata	-20.386982	-43.581354
Callithrix penicillata	-20.719167	-46.609444
Callithrix penicillata	-20.243732	-46.365288
Callithrix penicillata	-21.742423	-48.17302
Callithrix penicillata	-21.170401	-47.810324
Callithrix penicillata	-21.228969	-44.971360
Callithrix penicillata	-22.217708	-44.539731
Callithrix penicillata	-21.482989	-44.905841
Callithrix penicillata	-21.239372	-43.753342
Callithrix penicillata	-21.401038	-45.466011
Callithrix penicillata	-21.728959	-45.409673
Callithrix penicillata	-21.989912	-44.913120
Callithrix penicillata	-22.152618	-44.618384
Callithrix penicillata	-16.1702995300293	-42.2902984619141
Callithrix penicillata	-19.62722222222	-43.88944444444
Callithrix penicillata	-19.6271991729736	-43.8897018432617
Callithrix penicillata	-19.9207992553711	-43.937801361084
Callithrix penicillata	-17.3449993133545	-44.9418983459473
Callithrix penicillata	-20.719166666667	-46.60944444444
Callithrix penicillata	-15.5371999740601	-47.334400177002

Callithrix penicillata	-20.256901	-47.4767
Callithrix penicillata	-18.1530990600586	-47.5616989135742
Callithrix penicillata	-21.5833	-47.799999
Callithrix penicillata	-19.0386009216309	-47.9169006347656
Callithrix penicillata	-15.7797002792358	-47.9296989440918
Callithrix penicillata	-20.4463888889	-44.610555556
Callithrix penicillata	-16.935822	-46.268286
Callithrix penicillata	-20.014333	-43.491111
Callithrix penicillata	-19.166667	-48.383333
Callithrix penicillata	-20.019551	-48.227911
Callithrix penicillata	-19.483000	-44.016833
Callithrix penicillata	-18.983333	-48.300000
Callithrix penicillata	-17.917222	-43.786389
Callithrix penicillata	-16.816667	-42.683333
Callithrix penicillata	-16.750000	-42.866667
Callithrix penicillata	-16.850000	-42.633333
Callithrix penicillata	-16.566667	-43.033333
Callithrix penicillata	-16.700000	-42.216667
Callithrix penicillata	-16.833333	-42.216667
Callithrix penicillata	-16.666667	-41.983333
Callithrix penicillata	-16.170833	-42.290556
Callithrix penicillata	-16.016667	-40.850000
Callithrix penicillata	-11.008333	-41.435000
Callithrix penicillata	-13.540278	-41.845833
Callithrix penicillata	-13.539167	-41.871944
Callithrix penicillata	-13.268889	-41.910833