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ABSTRACT 

The dynamic speckle is a non-destructive optical technique that has been used as a tool for the characterization of the 
biological activity and several studies are conducted to obtain for more information about the correspondence of the 
observed phenomena and their expressions in the interference images. Analysis in the frequency domain has been con- 
sidered as powerful alternative, and although there are works using Fourier transform in the frequency analysis of the 
biospeckle signals, the majority presents the wavelet transform as tool for spectral analysis. In turn, there are still doubts 
if the Fourier transform is not enough for the analysis of the biospeckle, which would enable the reduction of processing 
time since an operation is computationally simpler. In this context, the present study aims to compare the constituents’ 
parts of the speckle signal according to Fourier and wavelet transforms for numerical analysis. The comparative analy- 
sis based on the absolute values of the differences technique (AVD) was carried out for performance evaluation of the 
Fourier and wavelet transforms, in which the speckle signals were decomposed spectrally and subsequently recon- 
structed with the elimination of specific frequency bands. Results showed that the wavelet transform allowed more in- 
formation about signals constituents of the dynamic speckle, emphasizing its use instead of the Fourier transform, 
which in turn was restricted the situations in which the only interest is to know the spectral content of the data. 
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1. Introduction 

When a coherent light, such as laser, illuminates a rough 
surface, compared the wavelength of laser, it occurs a 
phenomenon of optical interference with the formation of 
light and dark regions, called speckle [1].  

After applying the dynamic surface, there is a conti- 
nuous formation of new and different speckles, and these 
random and dynamic interference patterns is called dyna- 
mic speckle or biospeckle, if the area concerned is biolo- 
gical. This technique allows extracting information about 
the structures movement of the illuminated material, ma- 
king it an interesting tool in several knowledge areas [2]. 

The biospeckle has been used as a technique to meas- 
ure detailed extensions of pine roots [3] or even the bio- 
logical activity of roots in tissue culture [4], in assessing 
the water activity in maize and beans seeds [5], to studies 
of the relationship between chlorophyll pigments present 
in apples and their respective biological activity [6], and  

several other papers. 
The biological activity expressed in the context of 

speckle does not present a clear definition of what pheno- 
menon is creating, however can be understood as structu- 
ral and molecular motions occurring in the material ana- 
lysis [4], Doppler effect, Brownian motion, variations of 
the refractive index [7], among others. It is a complex sig- 
nal and with causes still investigated [8], which is a chal- 
lenge, and at the same time, a motivation.  

In this context, the use of image processing techniques 
and signal analysis tools can be used in the biospeckle 
signal to understand better this optical phenomenon. 

The interference patterns analysis can use graphical me- 
thods, which generate maps indicating the spatial variabi- 
lity of the biological activity, or a numerical interpreta- 
tion of the temporal variation of patterns formed. An al- 
ternative of the graphical and numerical classifications is 
a signal analysis in the time domain or in the frequency 
domain [5]. 
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The analysis of biospeckle signals in the frequency 
domain has been an alternative for many applications, al- 
lowing the filter and images contrast, beyond search of 
frequency markers of phenomena that contribute to the 
formation of the interference patterns in time, as describ- 
ed by [5]. Thereby, Fourier and wavelet transforms can 
be a good choice to make such analysis in the frequency 
domain. 

Several studies have been conducted using the spectral 
analysis in the biospeckle signal, such as [9] that used the 
Fourier transform to analysis bean seeds contaminated by 
two kinds of fungi and managed to differentiate them us- 
ing the harmonics amplitude; [10] assessed damage in 
apples and seed germination using wavelet transform and 
defined frequency markers for biological phenomena, as 
well as [5] who studied maize and beans, and cancer iso- 
lation and others. 

Although there are many papers applying spectral ana- 
lysis in the biospeckle signal, the most journals use wave- 
let transform and there is no works evaluating if Fourier 
transform, which is simpler than wavelet transform. It’s 
enough in the frequency analysis of the dynamic speckle. 
In this context, the present study aims to compare the 
Fourier and wavelet transform in the spectral analysis of 
biospeckle signal. 

2. Theory 

2.1. Time History of the Speckle Patterns  
(THSP) 

The biospeckle is a nondestructive optical technique bas- 
ed on the analysis of the variations of the laser light scat- 
tered from material, and the biological activity presented 
reflects the state of the investigated object [11]. 

Follow a set of pixels of the images speckles in the 
time is a method of monitoring their time variations and 
consequently the biological activity of the studied object, 
and, in this context, [12] proposed the Time History of 
the Speckle Patterns (THSP). 

The THSP is a two dimensional image that record a 
certain line or column of pixels in successive moments 
and arrange them vertically side by side. The x axis show 
information about the time evolution of the selected pix- 
els and the y axis is the spatial distribution of the inter- 
ference patterns [12]. 

2.2. Co-Occurrence Matrix 

The co-occurrence matrix was presented by [13], and ex- 
presses the number of the transitions of each THSP pixel 
with respect to its immediate neighbor. Equation (1) de- 
scribes mathematically the co-occurrence matrix. 

CO ijM N                   (1) 

which: 

CO  is the co-occurrence matrix, ij  correspond 
the number of occurrences of an intensity value i, fol- 
lowed by an intensity value j to move through rows or 
columns of the time history. 

M N

Phenomenon that show low biological activities, their 
time variations of the speckle patterns are slow and pre- 
sent a THSP horizontally in the elongated shape and the 
co-occurrence matrix is characterized by small changes 
of the pixels intensity to i and j, as illustrated in the Fig- 
ure 1(a). However, materials that exhibit high biological 
activity shows fast intensity variations in the THSP that 
resemble an ordinary spatial speckle patterns and their 
co-occurrence matrix has nonzero elements near the main 
diagonal (Figure 1(b)) [14]. 

2.3. Absolute Values of the Differences (AVD) 

One of the methods for analyzing of the speckle patterns 
is the technique of the absolute values of the differences 
(AVD), proposed by [15] as an alternative the inertial 
moment technique. 

The AVD method is a statistics moment of first order 
which it is applied on the co-occurrence matrix and gen- 
erates a number [11] which allow quantify the biological 
activity of the studied material. Equation (2) presents ma- 
thematically the AVD technique 

 

THSP                   MOC 
 

 
(a) 

THSP                  MOC  
(b) 

Figure 1. Time history of the speckle patterns and their 
respective co-occurrence matrix. Materials with low (a) and 
high (b) biological activity. 
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 AVD = ij
ij

M i j            (2) 

which: 
AVD is a dimensionless value, i and j are coordinates 

of the row and column respectively, and Mij is called of 
modified co-occurrence matrix and that is presented in 
Equation (3). 

ij
i

j
j

i

N
M

N



               (3) 

According [15], the inertial moment showed to be more 
sensitive than AVD on analyzing processes that involve 
high biological activities, although when this variation is 
not so intense, this method is less efficient. 

2.4. Fourier Transform 

Information of the biospeckle data in the frequency do- 
main has been an alternative to the interpretation of the 
interference patterns [5], with the possibility of improve 
the visualization of some phenomena of the studied ma- 
terial and to know their spectral signatures. In this con- 
text, the Fourier transform is one of the tools that can be 
used to spectral analysis of the biospeckle. 

Fourier transform can be understood as the mathema- 
tical technique that transforms a signal from the time do- 
main to the frequency domain, and it is formed by a set 

 of orthogonal functions, of pe- 
riod 2π [16]. Equation (4) described mathematically the 
Fourier transform. 

  e , 0,1,int
nW t n  

    e di tf f t t
 


             (4) 

which: 
2 f  

 
 

f   = amplitude of each component ω of the sig-
nal. 

There is also the inverse Fourier transform, which is 
used to transform the signal from frequency domain to 
time domain with the reconstruction of the original func- 
tion. Equation (5) presents the mathematical expression 
of the inverse Fourier transform. 

    e di tf t f  
 


            (5) 

The Fourier transform indicates the spectral informa- 
tion of the signal without providing the instant which 
these components happen, and in situations that to know 
when the frequencies occur are interesting precludes the 
use of Fourier transforms, unless if the series is station- 
ary [17]. In this context, the wavelet transform is an al- 
ternative that provides the instant the frequency compo- 
nents occur. 

2.5. Wavelets Transform 

The wavelets are simply waves of duration adjusted with 

energy concentrated in variables intervals [18], which 
makes it a great useful method for time series analysis, 
that exhibit characteristics that can change in the time 
and in frequency.  

The continuous wavelet transform is defined as the 
convolution of  f t  with a scaled and translated ver-
sion of   [19], called wavelet mother. Equation (6) de- 
scribes mathematically the continuous wavelet transform. 

 ,, da b

t b
f f t t

a
 





   
          (6) 

which: 
 f t  is the studied signal 

a scale parameter 
b translation value 

 ,a b t  is the mother function of wavelets 

,,f  a b

The scale is related to the frequency, in which high 
scales correspond to low frequencies and low scales cor- 
respond to high frequencies, whereas the translation is 
the displacement of the mother function about the studied 
signal [20]. 

 is the spectrum wavelets. 

The return of the signal from frequency domain to 
time domain, inverse wavelets transform, allows observe 
the behavior of the signal in specifics frequencies bands 
and also the reconstruction of the original function  f t . 
According [19], the inverse wavelet transform can be 
realized by the sum of real part of wavelet spectrum on 
all scales (Equation (7)). 

 
 0.50

0.50
00

,,

0
t

J
a

j j

bj
n

R f

C s
x



 



          (7) 

which: 
0.50
js  is a factor that convert the wavelets transform in 

energy density, 

j ; 0.50
t ; C ;  0 0  are specific constants of the 

base function used. 
One of the major difficulties in wavelet analysis is the 

identification of the scales set used in the wavelet trans- 
form. Orthogonal wavelet, there is a limit and a discrete 
set of scales, as given by [21], however, for analysis of 
non-orthogonal wavelet, can use an arbitrary scales set to 
build a more complete signal [19]. 

In this context, [19] suggested Equations (8) and (9) to 
calculate the scales interval to be used in the wavelet 
transform, in which sj is the lowest and J is the highest 
scale. 

0 2 0,1,2,j j
j j ,s s J            (8) 

1

0

LOG
N t

J j
S

   
  

 


The s0 should be chosen so that the Fourier period is 

           (9) 
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conds (sampling frequency of 12.5 Hz). 2 t , and to the Morlet wavelet the largest value that 
djust the scale is jcan a   of 0.5. For other wavelet 

functions can be used a larger value. 
The lines of the THSPs were concatenated creating a 

new signal that was decomposed into frequency spectra 
using Fourier and wavelet transforms with application 
posterior of the inverse transform. Some frequency bands 
were eliminated before the reconstruction of the signal in 
order to analyze the results of the speckle signal using a 
numerical method to measure the speckle activity. The 
selective filtering was conducted as well in order to cre- 
ate some frequency markers linked to the physical phe- 
nomena under monitoring.  

2.6. Sampling Theorem 

ibes the relationship between The sampling theorem descr
sampling frequency of a signal and the frequency maxi- 
mum of the reconstructed signal. Below is transcript the 
sampling theorem as presented by [22]. 

“Theorem 1: If a function  f t  contains no frequen- 
ci

e theorem, the number of samples per 
un

this work to define 
th

3. Materials and Methods 

 between Fourier and 

ed by 8 THSP’s collected each 
20

es higher than W cps, it is letely determined by 
giving its ordinates at a series of points spaced 1/2 sec- 
onds W apart”. 

According to th

 comp According the sampling theorem the highest frequency 
that can be seen in the reconstruction process is 6.25 Hz, 
and using Equations (8) and (9) were calculated the num- 
ber of frequency bands used in the transform. In addition, 
in the continuous wavelet transform was used mother 
function of Morlet, a damped complex exponential with a 
set of oscillation parameter that preserves an approximate 
relationship between the scale of the wavelet analysis 
and the frequency in a Fourier analysis, as described by 
[24]. 

it time of a signal is called rate or frequency sampling 
(W), and half the sampling frequency corresponds to the 
frequency maximum of the signal which can be repro- 
duced in full without aliasing error.  

The sampling theorem is used in 
e highest frequently during the decomposition of sig- 

nals. The signal resulting of the inverse transform was con- 
verted to THSP format again and numerically analyzed 
using the technique of the absolute values of the differ- 
ences (AVD) [15], and their values compared to the gra- 
vimetrical measurement. 

It was conducted a comparison
wavelet transforms using the time history of speckle pat- 
terns (THSP) relative to a paint drying process and pre- 
sented by [23].  

The database was form

Figure 2 illustrated all the methodology used. 

4. Results and Discussion 

Figure 3 presents the absolute value of the differences 
for the THSP’s of the paint drying process with decom- 
position and reconstruction of some frequency bands us- 
ing Fourier transform. 

 minutes during the paint drying using the back-scat- 
tering experimental setup. Each time history was made 
by a set of 128 images, resolution of 512 by 640 pixels, 
whose time acquisition between images was of 0.08 se-  
 

 

Figure 2. Methodology used to the data analysis, in which 1 represents the concatenation, 2 is the Fourie wavelets spec- r or 
trum and 3 corresponds to the inverse process of the concatenation. 
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Figure 3. AVD values of the THSP’s of the paint drying using Fourier transform for spectral analysis. 
 

The data reconstructed in the frequency band from 0 to 
6.

le signals reconstructed in frequen- 
ci

onstructed with 
co

the paint drying process, the paint volatility stabilize and 

 in the 
A

  (10) 

which: 
x is the TSHP number, 

e normalized AVD value. 
el adjusted showed a correla- 

tio e error of 0.0048 with 
re

THSP is a minimum local, and this means that the AVD

 

25 Hz (Figure 3), here called of total reconstruction, 
correspond to highest reconstruction possible in accor- 
dance with the sampling theorem, and the original data 
are the AVD values of the time history of the paint dry- 
ing without filtering. 

The dynamic speck
es bands 5.74 - 6.25 and 5.23 - 6.25 Hz presented grad- 

ual reduction of AVD values along of the paint drying 
process, closer to the behavior of the original data, total 
reconstruction and to the weight of the paint drying. 
However, the addition of low frequencies components in 
the reconstruction process resulted in the oscillation of the 
AVD values in the fifth time history, as observed in Fig- 
ure 3. We attribute those oscillations to the influence of 
the atmospheric conditions that occur in experiment of 
paint drying as the realized by [23], which did not inter- 
fered in the first moments since the paint volatility was 
higher and thus undermined the presence of the modula- 
tion of the signal in low frequencies linked to the atmos- 
pheric conditions such as temperature and humidity, and 
Figure 4 illustrates these information’s. 

Figure 4 presents that the signals rec
mponents of low frequencies (associated the tempera- 

ture and humidity variables) are mixed with the data re- 
constructed using components of high frequencies (link- 
ed the volatility) in the first moments, and which along 

make possible to observe the high oscillations of the data 
reconstructed using low frequencies component. 

In order to clarify the spectral information found in the 
fifth THSP, a mathematical model was adjusted

VD values of the original data, using the least squares 
method, to describe the process of paint drying. Equation 
(10) presents the mathematical model adjusted and Fig- 
ure 5 illustrates the regression curve. 

4 3 20.003624 0.06257 0.340004y x x x   
0.450417 0.889444x 

y is th
The mathematical mod
n index of 0.98 and mean squar

spect to the original. 
The first derivative of the adjusted model, 

3' 0.014496 0.1y x   288869 0.680007 0.450417x x   
wh on the fifth en equaled to zero, showed that the regi

 
values reaches a minimum value and then initiates an 
oscillations related to the variations of the temperature 
and humidity. These results are similar to the behavior of 
the paint weight at time presented by [23] (Figure 5), in 
which is possible to observe a stabilization of the weight 
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Figure 4. AVD values of the time history of the paint drying reconstructed with some frequencies band using Fourier trans

 

- 
form. 

 

Figure 5. Regression adjusted to describe the paint drying process. 
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quisition, and leads us to as- observe this transition occurredvalues after the fifth data ac  in paint drying structure. 

an
sume that the drying time of this paint is one hour and 
twenty minutes, approximately. In this context, the dy- 
namic speckle analyzed by Fourier transform allowed to 

In addition, the distance between the original signals 

 

d reconstructed signals were evaluated and the results 
are illustrated in Figure 6. 

 
(a) 

 
(b) 

Figure 6. Signals reconstructed in specific frequency bands b e Fourier transform and the original signal. (a) Addition y invers
of components of low frequencies in the signals reconstruction and (b) increase high frequencies components in the inverse 
transform.  
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he largeT st distances were observed in the signals re- 

co

 the original 
si

als is not stationary [25], unviable to 
us

therwise, the spectral analysis using the wavelet trans- 
fo

iospeckle signal, in the 
fre

ing, with the gradual reduction of the AVD values in the 

ermore, removing the low frequency components 
in

D values of the last time 
hi

ed in 
ps

le to observe in Figure 8 that the pseudo- 
co

nstructed using few spectral components and these di- 
stances between original signals and reconstructed sig- 
nals were reducing to use a larger number of components 
in the inverse Fourier transform, as waited. 

In addition, the correlation index between
gnal and the signals reconstructed in the frequencies 

bands of 5.74 - 6.25, 5.23 - 6.25 and 4.20 - 6.25 Hz were 
of 0.86, 0.94 and 0.98, respectively. The high correlation 
of 0.86 using just a small portion of the frequency band 
can be explained by compact support of the Fourier basis 
functions in the frequency domain, which allows using in 
data compression with minimum loss of information, as 
discussed by [16]. 

The speckle sign
e the Fourier transform. Thus, frequency analysis using 

the Fourier transform is restricted to situations in which 
are interesting to know the spectral information of the da- 
ta. 

O
rm presented different behavior in the high frequencies 

and the signal reconstructed using more components of 
low frequencies made the results closer to the original 
signal, as illustrated in Figure 7. 

The total reconstruction of the b
quency band from 0 to 6.25 Hz, showed behavior si- 

milar to the original data and to the weight of paint dry- 
 

time.  
Furth
 the reconstruction process resulted in oscillations in 

the AVD values, in special, in the signals reconstructed 
within the frequency range from 4.20 to 6.25 Hz, which 
the AVD values decreasing until the fourth time history 
and subsequently increasing.  

In this context, the high AV
story in the frequency bands 4.20 - 6.25 Hz are attrib- 

uted the random oscillations and noise presents in the bi- 
ospeckle signal, without significant information’s about 
the paint volatility, since that the energy of the time his- 
tory in the high frequencies showed was reducing along 
of the paint drying and presented low values after of the 
fourth THSP, as illustrated graphically in Figure 8. 

The energy of the THSP’s (Figure 8) is represent
eudo-colors, the ordinate axis correspond the scales 

and in the abscissas axis is the time. The light pseudo- 
colors indicate high energy while dark shades are associ- 
ated the low energy, and the scales are inversely propor- 
tional to the frequencies, which the low scales are attach- 
ed with high frequencies and high scales with the low 
frequencies. 

It is possib
lors in the high frequencies (low scales) are darkening 

in the time, which means reduce of the energy in high 

 

Figure 7. AVD values of the time history of speckle patterns of paint drying using wavelet transform for spectral analysis. 
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e uency bands along of the paint drying and which In the first moments we see that the signals reconfr

onstruction of the signals using components of 
lo

-
st

 

q
does not justify the high AVD values in the last time 
histories. 

The rec
w frequencies was also analyzed, and Figure 9 shows 

the results. 

ructed using components of low frequency and of high 
frequency mixed, instant in which the paint volatility was 
intense. Over time, the phenomena linked to the high fre- 
quencies stabilized, allow to observe the oscillations of 
the signals reconstructed with components of low fre- 

    
(a)                         (b)                      (c)                        (d)  

    
(e)           

 

               (f)                      (g)                        (h) 

Figure 8. Energy of the 8 THSP’s for different frequencies. 

 

Figure 9. Absolute value of the difference of the THSP’s of the paint drying using wavelet transform for spectral analysis. 
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(a) 

 
(b) 

Figure 10. Signals reconstructed using wavelet transform an  original signal. (a) Addition of components of low frequen- d the
cies in the inverse wavelet transform and (b) increase high frequencies components in the signal reconstruction.  
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correlation 
in

f 5.
6.

he wavelet transform details spectral
in

5. Conclusion 

orm allowed data analysis with com-
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