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ABSTRACT 

 

Soil surveys provide subsidies for several applications, including decision making on the 

management of several crops. Thus, this work had as objectives: i) to define a method by 

means of grouping analysis for the management zones outline based on data from soils and 

coffee plantations, collected in areas with defined land parcels and adapt this method in a 

management of culture already implanted, ii) to characterize the soils, the climate, as well as 

to verify their relation with the composition of the Winter Wines produced in seven 

commercial vineyards of the Syrah cultivar, iii) search for areas similar to the soil mapping 

units that include vineyards of the Southern region of Minas Gerais and verify the relationship 

between the wines and grapes produced in two reference vineyards. In the first part of this 

study, a series of tests were carried out involving selection of variables by Random Forest, 

reduction of dimensionality by principal component analysis (PCA) and factor analysis for 

mixed data (FAMD), ending with the generation of clusters by hierarchical cluster analysis on 

principal components (HCPC). The most important variables to explain coffee yield and thus 

compose the management zones outline, classified by Random Forest, were crop age, crop 

density, silt fraction and soil organic matter content. The PCA explained total variance of 

76.1% in the first two dimensions. Three clusters with a statistically significant difference in 

coffee production were outlined by the HCPC. In general, the following sequence of cluster 

generated (123) was found, increasing the crop age, and the content of the silt fraction, 

and decreasing in the yield and crop density. In the second part of this study, climatic and soil 

characterization was carried out in seven commercial vineyards, including soil classification, 

chemical, physical and mineralogical analyses, as well as the identification of the parent 

material of the vineyard soils. The qualitative profile of wines from the Syrah vine was also 

characterized. Four groups of vineyards were formed from their similarities in terms of 

edaphoclimatic characteristics: a) soils with high levels of sand on the surface, in places with 

high rainfall, originated wines with lower pH; b) Soils with homogeneous clay contents along 

the profile, in vineyards with high thermal amplitude, presented intermediate values for most 

wine compounds; c) shallow and young soils with high sand content, in a vineyard with low 

precipitation and high temperature, produced wine with the highest flavanol content. This 

wine also has high levels of most other evaluated compounds; d) deep soils, with basalt as the 

parent material, is related to wines with the highest levels of most compounds, however, this 

is due to the late harvest carried out in this vineyard. The edaphoclimatic conditions were 

important for the characterization of the typicity of the wines, and such conditions associated 

with the handling of double pruning allowed the production of quality wines, compared to 

wines from world traditional wine-growing regions. The third part of this work involves the 

extraction of climatic, geological and terrain information from soil mapping units that contain 

commercial vineyards in two municipalities in Minas Gerais. Such information was applied, 

using fuzzy logic and similarity vectors in an area of interest (provenance area), in order to 

verify areas with greater similarity in relation to the conditions extracted from the mapping 

units (soil map). Most of the variables of the two mapping units, mainly the mean 

temperature, rainfall and evapotranspiration are very similar. The mapping units differ mainly 

in terms of the higher altitude in Três Corações and by the different parent material of the soil. 

 

Keywords: yield, hierarchical cluster on principal components, principal component analysis, 

wine quality, fuzzy logic 
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1 FIRST PART 

GENERAL INTRODUCTION 

 

Soil surveys provide valuable information for soil management and decision making, 

including agriculture, livestock and silvicultural purposes, as well as or for non-agricultural 

activities (road allocation, waste disposal, mineral resource extraction, and recreation) (LEE; 

GRIFFITHS , 1986). Soil survey encompasses the soil identification based on its physical, 

chemical and morphological characteristics, including its occurrence throughout the 

landscape, and interpretations according to the intended objectives (RESENDE et al. 2014; 

ALPHEN; STOORVOGEL, 2000; IBGE, 2015). Thus, it is notorious the large amount of 

information obtained from a soil survey, which the soil map is one of main products, 

representation of the soil-landscape relationship, from the outline of the mapping units 

containing taxonomic units (soil type), and occasionally, phases of relief, stoniness, rockiness 

or vegetation. 

Two important activities in the southeastern region of Brazil are coffee (ABIC 2017; 

CONAB 2019) and viticulture (AMORIM et al. 2005). The first one is a well consolidated 

activity especially in the southern Minas Gerais, being responsible for approximately 25% of 

national production (CONAB, 2019). The second activity is strongly evolving, made possible 

by a specific management of the vines called “double pruning”. This technique allows grapes 

to mature and harvest in winter, resulting in a higher concentration of solutes in berries, and 

harvests carried out in better phytosanitary conditions (FAVERO et al., 2011). 

Considering the multiple interpretations from soil surveys, management zones 

establishment for assisting precision agriculture has great potential. Management zones are an 

effective and sustainable basis for the management of coffee growing, defined as: sub-regions 

that have relatively homogeneous soil-landscape characteristics (HAGHVERDI et al. 2015); 

or sub-areas with a combination of factors limiting plant yield (VRINDTS et al. 2005), 

generally defined by different variables (GAVIOLI et al. 2019). Although the establishment 

of management zones promotes increases in plant yield and environmental sustainability 

(ADHIKARI et al., 2009), results showing the feasibility of soil survey applications in its 

delineation are scarce in the scientific community. Often, the establishment of management 

zones is carried out from a large number of sampling points for fertility analysis purposes, 

which is quite costly. Thus, soil survey becomes an option for the design of management 

zones in agricultural crops. 



 
 

7 
 

While some worldwide regions have many years of tradition in fine wines production, 

such as the Bordeaux and Champagne region in France, Campania in Italy and Rioja and 

Galicia in Spain, new regions face the challenge in defining their characteristics in terms of 

product development (JONES et al., 2004). In this sense, information from the soil survey is 

of great relevance, since the characterization of soils adds value to the wine produced 

(WHITE, 2015). In addition, soil attributes are strong influencers in the development and 

typicity of wines (MORLAT; BODIN, 2006; PRIORI et al., 2019; VAN LEEUWEN et al., 

2018). Although relatively recent, the wines produced from the Syrah cultivar in the South of 

Minas Gerais and northwest of São Paulo have their quality recognized by consumers and 

specialists, awarded nationally and internationally (BRANT; FIGUEIREDO; MOTA, 2018). 

Regarding the evolution of fine wines production in the Southeast region of Brazil, it 

is also important to search for areas with greater production potential, taking into account soil-

environmental characteristics. In this sense, fuzzy logic provides the integration of different 

layers of digital information, such as satellite images representing climatic or relief data, as 

well as geology and soil information. Also, when combined with similarity vectors (SHI, 

2013), presents great potential to define areas for vine cultivation expansion, by extracting 

geographical information from commercial vineyards (here considered as successful cases), 

formalizing, and finding similar areas with low uncertainties. 

This work aimed to apply the information obtained from soil surveys to assist the 

management of coffee crops, and to verify the relationships between soil characteristics and 

the quality of grape wines. For that, this dissertation is composed by three chapters in 

scientific articles format. The first article is entitled Management zones quantitatively 

established from soil survey and crop management information: a study case in Brazilian 

coffee crops, devoted to the definition of coffee management zones in commercial crops using 

semi-detailed soil survey and crop management information in the south of Minas Gerais, 

using machine learning techniques, cluster analysis, and principal components generated from 

two different methods. The second article entitled Soil-environment and Syrah winter wine 

characterization to assist viticulture in southeastern Brazil presents the characterization of 

soils, climate, and wines produced in the southeastern region of Brazil. The third article is 

entitled Searching for similar terroir conditions for Syrah cv. with fuzzy logic and definition 

of potential new areas for viticulture in Minas Gerais, Brazil aimed to search for similar areas 

to two soil mapping units that surround vineyards intended for the production of Syrah winter 

wines. 
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2. SECOND PART – ARTICLES 
 
 

ARTICLE 1 
 
 

This article was submitted to the Precision Agriculture journal 

 

Management zones quantitatively established from soil survey and crop management 

information: a case study in Brazilian coffee crop 

 

 

Abstract 
 

In Brazil, coffee crop is separated into land parcels, guided by visual analysis of relief and/or 

issues regarding farm logistics, in which the management is homogeneous. Management 

zones can be defined in an automated way, considering soil and crop management 

characteristics that affect coffee yield. Considering the importance of management zones and 

the peculiarity of Brazilian coffee crop, the objective was to define a method for management 

zones outline based on data collected in areas with defined land parcels, and to adapt this 

method in a crop management already implemented. Two initial datasets were used based on 

soil survey and/or coffee crop management information. Eight tests were developed, 

involving: ranking of the most important variables for coffee yield variations by Random 

Forest, reduction of data dimensionality through principal component analysis (PCA) or 

factorial analysis of mixed data (FAMD), generation of clusters with the hierarchical cluster 

on principal component (HCPC) and, evaluation of clusters generated by the statistical 

difference in yield. The most important variables ranked by Random Forest were crop age, 

crop density, silt fraction, and soil organic matter content. The PCA explained variance of 

76.1% in the first two dimensions. Three clusters with statistically significant difference in 

coffee yield were outlined by HCPC, also in accordance with the general knowledge of soil-

landscape and coffee management characteristics of the study region. In general, it was found 

the following sequence of clusters generated (123), increasing in crop age and silt 

fraction content, and decreasing in crop yield and crop density. 

 

Keyword: hierarchical cluster on principal components; factor analysis for mixed data; 

principal component analysis; Random Forest; variables selection 
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Introduction 

 

Brazil is responsible for the largest coffee production in the world, being Minas Gerais 

state responsible for 18% of this total, with almost only Coffea arabica L. (CONAB 2019). 

Considering environment, economic, and social characteristics, Minas Gerais is separated into 

different traditional coffee producer regions (Barbosa et al., 2010), in which the southern one 

has obtained great notoriety due to its highest coffee production (CONAB 2019). Considering 

their peculiarities, the coffee farms are traditionally separated into land parcels, defined   

through visual analysis of relief and/or issues regarding farm logistics. The average yield is 

then measured in each land parcel (one average value assigned for the whole parcel polygon), 

where soil and crop have been homogeneously managed. It is common for the cultivation of 

different coffee varieties in the same farm, containing different crop ages and densities. Thus, 

such variability of characteristics should be taken into consideration in precision agriculture 

implementation, especially for management zones outline. 

 Management zones could serve as a sustainable and effective basis for localizing 

coffee management, defined as subareas with relatively homogenous soil-landscape attributes 

(Haghverdi et al. 2015), or with relatively combination of yield-limiting factors (Vrindts et al. 

2005), generally defined from different variables or attributes (Gavioli et al. 2019). It is 

wholesome that management zones as well as the variables used to define them must be stable 

over time, and correlated to yield. Besides, should also be simple and have a low cost of 

acquisition (Khosla et al. 2010; Li et al. 2013). Although cluster analysis is mostly used for 

delineating management zones (Gavioli et al. 2019), its application in precision coffee 

production is scarce. 

 Considering such practical aspects abovementioned, machine learning tools could 

assist management zones delineation by means of yield prediction. One possibility is the 

Random Forest (Breiman 2001) application, when combined with Recursive Feature 

Elimination (RFE) algorithm, decreasing even more the bias of prediction  (Gregorutti et al. 

2016). They present great potential not only to predict plant yield  (Everingham et al. 2016; 

Smidt et al. 2016), but also to select (redundancy reduction) (Abdel-Rahman et al. 2013) and 

to rank the most important variables of prediction. With respect of dimension or redundancy 

reduction, principal component analysis (PCA)  (Schemberger et al. 2017) has been applied in 

Precision Agriculture, contributing to summarize the main principal sources of variability in 

the datasets (Moral and Serrano 2019) in a new set of uncorrelated variables (King et al. 

2005). Likewise PCA, factorial analysis of mixed data (FAMD) contributes to reduce the 
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redundancy, not only for qualitative data, but also for quantitative ones (Lê et al. 2008). Such 

a technique has not yet been applied in precision agriculture. 

By selecting the most important variables, or by reducing the data dimension, Random 

Forest, PCA, and FAMD contribute to the simplicity of management zones composition and 

data mining effectiveness, helping out the selection of variables related with crop yield. Thus, 

their combinations with cluster methods present great potential to improve even more the 

management zones outline. In addition, testing different cluster methods is important to 

ensure effectiveness, since different methods tend to generate different sizes and formats of 

zones (Gavioli et al. 2019). Keeping in mind the necessity of cluster methods advances, this 

work applied hierarchical cluster on principal component (HCPC) (Husson et al. 2017), a 

technique not yet applied for management zones outline purpose. Considering the most 

common cluster analysis, the strategies are based on hierarchical or partitioning cluster. 

HCPC has as an advantage the combination of three multivariate analysis: principal 

component (including PCA, FAMD), hierarchical clustering, and partition clustering (k-

means method) (Josse and Husson 2016). 

In respect to variables used for management zones delineation, the characteristics and 

crop requirements should be taken into consideration. Coffee is a long term perennial crop in 

which the root system explores greater soil depths (Ronchi et al. 2015), mainly in regions 

with defined dry periods, which is by far the dominant condition in Brazil. Thus, soil 

information in depth is important to understand better not only the fertility status, but also the 

root system development and water availability. The latter is an important characteristic, since 

one of the main risks listed for Brazilian agriculture is drought (Arias et al. 2015). Soil survey 

naturally supplies soil profile information. Subsurface characteristics are the main criteria for 

soil classification (Soil Survey Staff 2014) because they are less altered by the anthropic 

action.  Although very informative, only a few studies applying soil survey information to 

management zones outline are found worldwide   (Nawar et al. 2017). 

Considering the well-recognized role of management zones in terms of agriculture 

sustainability as well as the coffee farms peculiarities, we hypothesize that based on the less 

subjectivity of data mining tool algorithms, not only parameters of soil survey, but also crop 

management could assist management zones outline in coffee crop. Thus, the objective of this 

study was to define a method for management zones outline based on data collected in areas 

with defined land parcels, and to adapt this method in a crop management already 

implemented. Considering coffee crop peculiarities and soil survey information, both were 
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used as source of possible variables to compose management zones. Dimension reduction and 

variables selection were performed by means of Random Forest, PCA and FAMD prior to 

HCPC – a method for generating cluster. A total of 8 different sequences of tests were 

performed, ending with Tukey test performance, since statistical differences on crop yield are 

desirable to check the effectiveness of methods.  

 

Material and methods 

 

Study area 

 

The study was carried out in coffee production farms in the municipalities of Alfenas, 

Alterosa, and Fama, Southern Minas Gerais State, Brazil (Fig. 1). According to Koppen’s 

classification system, the climate is classified as Cwa, characterized by rainy and warm 

summers, and cold and dry winters (Alvares et al. 2013). The mean annual precipitation is 

1,400 mm, the mean temperature in the coldest months (from May to July) is 18°C, while in 

the warmer months the average is 22°C (from December to February) (ANA, 2018). During 

the rainy season, short periods of drought are very common. The soils were formed mainly 

from gneiss (Zogheib et al. 2015), with soil texture varying from loam to clay, with slopes 

ranging from gentle undulated (slope of 3-8%) to strongly undulated (> 45% of slope). The 

total area includes six farms, totalizing 1,408.1 ha of coffee crop (Coffea arabica).  
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Fig. 1 Study area location and respective soil type maps of coffee farms, Minas Gerais State, 

Brazil. 

 

In order to achieve the most suitable management zones outline, different tests 

regarding data input and the type of statistical method were developed. The complete 

flowchart as well as the statistical analysis assessment are presented in Fig. 2. The whole 

statistical analysis was developed in a freely available R software (R Core Team 2018). 
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Fig. 2 Complete flowchart of the study: from data acquisition to final management zones 

assessment. FAMD: factor analysis for mixed data; PCA: principal component analysis; 

HCPC: hierarchical cluster on principal component; MAE: mean absolute error; RMSE: root 

mean square error; R²: determination coefficient. 

 

Explanatory variables acquisition 

 

The explanatory variables or measurement methods considered in this study were those 

that potentially aid information for management zones establishment, influencing on coffee 

yield: a) soil survey; b) crop management. Details about the dataset are presented further. 

 

a) Soil survey 

 With the aid of terrain attributes layers, an intensive field work generated a semi-

detailed soil survey at a 1:25,000 scale (IBGE 2015). One of the main products of a soil 
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survey is the soil map in a polygon-format, which in turn is composed of map units with 

taxonomical classes assigned. For such purpose, a total of 39 locations were: i) described in 

situ (morphological characterization) and sampled at the depths of 0-0.2 m, 0.4-0.7 m and 1.0-

1.5 m (when possible) (Santos et al. 2015); ii) analyzed in a laboratory for chemical and 

physical characterization according to Embrapa (1997) and; iii) classified up to the great 

group taxonomic level, according to US Soil Taxonomy (Soil Survey Staff  2014). After the 

soils were classified, their spatial variability was delineated (soil mapping units) based on 

Brazilian technical reports (IBGE 2015) and Geographical Information System (GIS), and 

overlaid with slope maps to compose soil phases (additional information in soil taxa name), 

establishing a sound soil-landscape relationship. The slope was calculated from the satellite 

Alos1-Palsar Digital Elevation Model in a GIS software SAGA-GIS 7.1.0 (Conrad et al. 

2015). 

 The following chemical analyses were carried out: pH in water; available P and K, 

extracted with Mehlich-1; exchangeable Ca2+, Mg 2+ and Al3+, extracted with 1.0 mol L-1 KCl 

; potential acidity (H+ + Al3+), extracted with 0.5 mol L-1 calcium acetate at pH 7.0; and soil 

organic matter (SOM)  determined by Walkley and Black (1934) method; Remaining 

phosphorus (Alvarez et al. (2000); Cation exchange capacity at soil pH (effective CEC), 

cation exchange capacity at pH 7.0 (CEC pH 7.0), base saturation (BS), and aluminum 

saturation (AS) were then calculated.  

Soil texture analysis was carried out by the pipette method (Gee and Bauder, 1986). The 

average of the quantitative soil properties was calculated considering all the depths collected, 

aiming to express general soil properties at greater depths, which is especially advantageous 

for long term perennial plants as coffee crop. 

 

b) Crop management 

  Considering the crop management adopted in the study areas, information about plant 

density, crop age, coffee variety, and irrigation or no irrigation areas were also considered as 

explanatory variables, since they influence crop yield. These analyses considered the coffee 

yield of the 2016/2017 harvest. The inclusion of this information could also guide the next 

cultivations because, except for irrigation, the other crop management could be considered 

immutable throughout coffee growth stages. All the information was overlaid in GIS. Liming 

was applied in whole area. Fertilization was carried out following applications of phosphorus 

and slow release organic mineral compost to the planting furrow at a depth of 0.9 m and 0.6m, 
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respectively. Phosphorus cover fertilizations were carried out between August and September. 

Nitrogen and potassium were applied in two or three installments from October to December.  

 

Data analyses and statistical methods 

In order to establish more accurate management zones and to make the methodology 

adaptable to different environmental conditions and crop management, different statistical 

methods and paths of analysis were explored, promoting variable selection, a rank of variables 

importance and reduction of dimension prior to cluster analysis. A total of eight different 

model inputs and sequences of statistical analyses were tested (model inputs I, II, III, IV, V, 

VI, VII, and VIII). More details are provided further. 

 

Variables selection and rank of importance from Recursive Feature Elimination and 

Random Forest analysis 

 

Many variables obtained from soil survey or crop management an influence crop yield 

(Rena et al. 2002; Tisdale et al. 1993; Chlingaryan et al. 2018). However, using all these 

variables in the definition of management zones would make their interpretation very 

complex or bring error or noise to the analysis. Thus, in order to select important variables 

that contribute most on crop yield, Random Forest analysis was performed with Recursive 

Feature Elimination (RFE) via R package caret (Classification and Regression Training) 

(Kuhn 2018) in R software 3.4.4. 

Random Forest is an algorithm capable of handling multivariate data containing 

numeric and categorical variables, developed for both classification and regression analyses 

(Breiman 2001). The use of Random Forest associated with RFE is efficient in variables 

selection, presenting models suitable accuracy (Gomes et al. 2019; Menezes et al. 2020). RFE 

is an algorithm that iteratively eliminates the combinations of the least promising variables for 

the prediction model (Kuhn and Johnson 2013). To optimize the model for selecting the most 

important variables, 10-fold cross-validation was implemented. Its accuracy performance was 

assessed through the coefficient of determination (R2), root mean square error (RMSE), and 

mean absolute error (MAE), according to the equations 1, 2 and 3:  

 

𝑅2 = 1 −
∑ (𝑚𝑖−𝑒𝑖)2𝑛

𝑖=1

∑ (𝑚𝑖−𝑚𝑖´ )2𝑛
𝑖=1

     (1) 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑒𝑖 − 𝑚𝑖)2𝑛

𝑖=1      (2) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑒𝑖 − 𝑚𝑖|𝑛

𝑖=1      (3) 

where: n is the number of crossings originated between soil maps and land parcels, mi is the 

yield corresponding to each crossing, 𝑚𝑖´  is the average of the measured value, and 𝑒𝑖 is the 

estimated yield value. RMSE measures the spread of the error distribution: the smaller, the 

better the model (Isaaks and Srivastava 1989); MAE refers to the prediction bias: the lower 

this index, the better the model (Willmott 1982). 

 

Dimension reduction 

 

Dimension reduction is the first step of HCPC and it was obtained by two different 

methods of factorial analysis (Pagès 2015): (i) principal component analysis (PCA), and (ii) 

factor analysis for mixed data (FAMD) (FactoMineR package; Husson et al. 2007; Husson et 

al. 2017). This factorial analysis performs linear combinations between initial variables that 

are strongly related, generating synthetic variables called principal components or dimensions 

(Hou et al. 2017; Pagès 2015). The principal components hold the variables responsible for 

the maximum variance of the original data (Kassambara 2017a). It reduces database noise and 

therefore makes the clustering more stable than using the original variables (Husson et al. 

2010; Praene et al. 2019).  

For the calculation of the principal components, FAMD takes into account both 

quantitative variables, such as PCA, and qualitative variables such as multiple correspondence 

analysis (MCA) (Pagès 2004; Feuillet et al. 2012). According to Pagès (2004), FAMD is 

suitable when there are fewer qualitative variables than quantitative ones, as is the case of the 

present study. More details about FAMD can be found in Pagès (2015). To calculate linear 

combinations and thus generate the synthetic variables that summarize the variability of the 

data, the PCA only considers quantitative variables. Thus, the qualitative variables are 

illustrative only, being called supplementary variables (Feuillet et al. 2012; Husson et al. 

2007; Husson et al. 2017; Husson et al. 2010). Both methods were tested to verify the effect 

of qualitative variables on the performance of the next step in the classification by HCPC 

(Fig. 2). 
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Hierarchical clustering on principal components (HCPC) 

 

To define the homogeneous management zones as a function of the variables related to 

soil and crop management, HCPC was performed from FactoMineR package (Lê et al. 2008), 

following three standard steps in multivariate analysis (Kassambara 2017a): (i) computing 

principal components (as above-mentioned); (ii) computing hierarchical cluster using Ward's 

method (Ward, 1963) and; (iii) performing partitional clustering by k-means. After defining 

the number of dimensions (principal components), a hierarchical tree is formed using Ward's 

minimum variance method, which in turn consists of an agglomerative and hierarchical 

method widely used (Husson et al. 2017). In the agglomerative method, the algorithm begins 

by treating each object as an individual cluster, and then, pairs of clusters are merged until all 

clusters have been merged into a single cluster, containing all individuals with similar 

characteristics (Kassambara 2017b). Finally, the k-means algorithm starts from the separation 

performed by the hierarchical tree with Ward’s method, based on Euclidian distance (Husson 

et al. 2010), and performs several iterations with the aggregation of clusters around a moving 

center. This latter procedure increases the robustness of Ward's classification and does not 

affect the number of clusters, but their final constitution (Husson et al. 2010; Kassambara 

2017b). 

The split criterion to define the number of clusters resulting from HCPC is based on 

inertia gain (Husson et al. 2010). The final goal is that the inertia between-clusters must be 

maximum, and within-cluster must be minimum as possible. The inertia inside characterizes 

the homogeneity of the cluster. The best number of Q clusters is one in which the increase in 

inertia between Q-1 and Q clusters is much greater than that increase between Q and Q + 1. 

For example, the gain in inertia when going from 2 to 3 clusters must be much greater than 

when going from 3 to 4 clusters. When the algorithm identifies this value, the partition is 

automatically concluded (Husson et al. 2010; Husson et al. 2017).  

The HCPC also classifies, in general, the most important variables for each model input. 

Thus, concerning quantitative variables, the most important ones are those with the highest 

R². The p-value associated with R² corresponds to the test of the following null hypothesis: 

“the average of the variable is equal to the general average”. The lower the p-value, the 

greater the significance, which indicates that the null hypothesis was denied (Husson et al. 

2010). The X² test is performed between the cluster and the categorical variables. A p-value < 

0.05 means that the categorical variable is related to the cluster. The lower this value, the 
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greater the association between them. 

The v-test was applied to characterize the formed clusters and to assist in the 

management zones interpretation (Escofier and Pagès 2008). From the v-test, the clusters are 

described by qualitative and quantitative variables. The higher the v-test value for a given 

variable, more important it is to characterize the given cluster. The values of the v-test with 

negative signs indicate that the average of the variable in a given cluster is less than the 

general average (Husson et al. 2010). The v-test is calculated according to the following 

equation 4:  

 

𝑣 − 𝑡𝑒𝑠𝑡 =
(𝑥́𝑞−𝑥́)

√
𝑠²

𝐼𝑞
(

𝐼−𝐼𝑞

𝐼−1
)

      (4) 

where: 𝑥́𝑞 represents the mean of variable x for individuals in cluster q, 𝑥́ is the mean of x for 

all individuals, s² is the variance, and  𝐼𝑞 is the number of individuals within-cluster q. The v-

test is used to test the following null hypothesis: “variable x does not characterize the cluster” 

(Husson et al. 2017).  

 

Tukey test 

 

Tukey test was performed at 10% significance to test the statistical difference of coffee 

yield of the 2016/2017 harvest (bags ha-1) between clusters (agricolae package in R software 

version 3.4.4). Statistical differences are desirable, attesting the effectiveness of statistical 

methods in delineating management zones effectively different from each other. Besides that, 

a smaller number of clusters is sought in the establishment of the management zones, since 

more than three clusters would not be manageable (Moral and Serrano 2019). 

 

Model input and a complete sequence of statistical analyses 

 

In summary, by overlaying soil and crop management information, the following model 

inputs were taken to form the clusters, as shown in Fig. 2: (I) soil survey variables were 

submitted before the FAMD and then to HCPC; (II) soil survey variables were submitted 

prior to the Random Forest, and the selected variables were submitted to the FAMD and the 

HCPC; (III) soil survey variables were submitted prior to the PCA, and then to HCPC; (IV) 

soil survey variables were submitted to the PCA and then to HCPC; (V) soil survey and crop 
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management variables dataset was submitted to a prior to the FAMD, and then to HCPC; (VI) 

soil survey and crop management variables were submitted to Random Forest, and the 

selected variables were submitted to FAMD and HCPC; (VII) soil survey and crop 

management variables dataset was submitted to prior to the PCA, and then to HCPC; (VIII) 

corresponds to test VI with PCA instead of FAMD, once Random Forest selected only 

quantitative variables 

 

 

Results and discussion 

 

Soil types, properties and crop management information 

 

Six soil types were found in the farmlands: Haplustept (4.6%), Rhodudult1 (36.5%), 

Rhodudult2 (2.5%), Hapludult (4.7%), Hapludox (5.6%), and Acrudox (46.2%). Fig. 3 

displays soil profile and morphological characteristics that better characterize soil types found 

in the farmlands. Fig. 3a is a Haplustept soil profile, with blocky structure in Bw horizon 

(moderate grade), with stoniness throughout the soil and the C horizon is closer to the surface. 

Fig. 3b is a blocky structure in Bt horizon surrounded clay skins, peculiar of Rhodudult1, 

Rhodudult2, and Hapludult. Rhodudults1 and 2 present clay content increasing in depth, and 

Hapludult presents clayey texture along the entire soil profile. Fig. 3a shows a Hapludox, a 

deeper soil with homogenous color, presenting B horizon structure intermediate between 

blocky and granules. 

 

 

Fig. 3. Soil types found in farmlands: a) Haplustept soil profile; b) blocky structure with 

strong grade, and clay skins commonly found in the Bt horizon of Rhodudult1, Rhodudult2, 

and Hapludult; and c) Hapludox soil profile. 
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Fig. 3 also represents a soil weathering degree or chronological sequence, which is 

quite common under tropical conditions: Inceptisol (Haplustept) (Fig. 3a)  Ultisol 

(Rhodudult1, Rhodudult2, and Hapludult) (Fig. 3b)  Oxisol (Hapludox) (Fig. 3c). Such 

different development degrees (least weathered  intermediate weather degree  highly 

weathered, respectively) implying in contrasting characteristics of soils regarding 

morphology, water dynamics and natural fertility. While the weathering degree advances 

(arrow sequence), there is an occurrence of: soil thickness increasing; soil water storage 

capacity increasing; B horizon structure shifting from blocky to granular; permeability 

increasing; natural soil fertility decreasing (especially CEC and BS decreasing); erosion 

susceptibility decreasing (keeping all the erosion conditioners constant for comparing soils 

properly); silt/clay ratio decreasing (Resende et al. 2014); bulk density decreasing (Ajayi et al. 

2009). Regarding soil texture, there is a general trend of clay increasing as soils evolve. Silt 

content tends to be lower in tropical conditions, however, its relation with clay content is used 

as a soil classification criterion (SiBCS 2018): the higher the silt content, the younger tends to 

be a given soil.  

Keeping in mind that soil types information will be applied as environmental 

explanatory variables of models, Table 1 shows how such categorical information will be 

used as input model data.  The term strong means that soil aggregates are more resistant to 

disaggregation, in turn, moderate means less resistance to disaggregation (Santos et al. 2015). 

The epipedon type represents a superficial diagnostic horizon used for soil identification and 

is mostly related to the color given by organic matter to this horizon, soil structure and depth 

(Weil and Brady 2017). Other categorical variables used in soil surveys and addressed here 

were the fertility class, stoniness, soil depth and soil type. 
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Table 1 Soil properties and types identified on the farms  

Soil properties 

Shape and  

grade of structure1  

Type and depth of 

epipedon 
Fertility2 Soil Depth3 Stoniness Soil type 

Moderate blocky Ochric (0 - 0.05 m) Eutrophic Shallow Stony Hp 

Strong blocky Ochric (> 0.05 m) Dystrophic Deep Not stony Ax 

Between blocky and granules   Too deep  Hx 

    Rh1 

     Rh2 

          Ht 

1 B horizon information; 2 fertility in the first 1.0 m of depth; Hp: Haplustept; Ax: Acrudox; 

Hx: Hapludox; Rh1: Rhodudult 1; Rh2: Rhodudult 2; Ht: Hapludult; 3 Shallow (≤ 0.5 m); 

Deep (> 1 and < or equal to 2 m); Too deep (> 2 m). 

 

The quantitative mean values of soil chemical and physical properties, as well as the 

quantitative characteristics of crops, are shown in Table 2. Concerning the chemical 

characteristics, the mean pH was 5.6 and, compared to other soil properties, exhibits the lower 

CV (10.7%). The mean P content is 15.5 mg kg-1 (CV = 99.4%). The average effective CEC is 

3.8 cmolc kg-1. The mean BS is 47.7% (CV = 30.0%). The clay content ranged from 12.3 to 

73.0% (CV = 25.7%) and, the lower values were determined in the Haplustept, the soil with 

lower pedogenic development. The high coefficients of variation in physical and chemical 

properties  corroborate with the higher spatial variability and different weathering degrees of 

farmland soils, indicating the applicability of management zones separation (Moral et al. 

2010; Caires et al. 2014; Moral and Serrano 2019).  

 In relation to the crop characteristics, the mean crop density is 4.746 plants ha-1 (CV = 

23.0%), which is framed as a semi-dense crop. The mean crop age is 14.3 years (CV = 42.7%) 

and the average yield is 50.5 bags ha-1 (bags of 60 kg) , which is framed as very high (CV = 

42.5%). According to Ribeiro et al. (1999), there are three systems of production-related to 

crop density in coffee plantations in Brazil: traditional (< 2,500 plants ha-1), semi-dense 

(2,500 – 5,000 plants ha-1), and dense (> 5,000 plants ha-1). This is a relevant crop 

characteristic that influences the coffee yield per ha. 

As for qualitative variables, four varieties of coffee plants were grown in crop areas: 

Rubi, Mundo Novo, Catuaí and Acaiá. Each one varieties has different yields potential, 

resistance to water deficit and different types of stress (Fazuoli et al. 2002). Among crops, 

there are areas that are irrigated and others that are not irrigated. There were two stages of 
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development: areas in formation and areas in the production stage. 

 

Table 2 Quantitative soil properties, terrain attributes, and crop management 

characteristics  

 Mean Sd CV (%) Minimum Maximum 

pH 5.6 0.6 10.7 4.7 7.2 

K (mg kg-1) 100.9 53.2 52.7 38.2 346.7 

P (mg kg-1) 15.5 15.4 99.4 1.0 55.0 

Ca2+ (cmolc kg-1) 2.5 1.3 52.0 0.5 7.3 

Mg2+ (cmolc kg-1) 0.8 0.4 50.0 0.2 2.0 

Al3+ (cmolc kg-1) 0.3 0.4 133.3 0.0 1.5 

H+ +Al3+ (cmolc kg-1) 3.1 1.6 51.6 1.3 8.1 

SB (cmolc kg-1) 3.5 1.7 48.6 0.9 10.2 

Effective CEC (cmolc kg-1) 3.8 1.8 47.4 1.2 10.2 

CEC pH 7.0 (cmolc kg-1) 6.6 2.4 36.4 3.4 13.6 

BS (%)  47.7 14.3 30.0 15.8 78.2 

AS (%) 12.0 14.0 116.7 0.6 50.5 

SOM (dag kg-1) 1.7 0.5 29.4 0.7 3.0 

Clay (%) 52.9 13.6 25.7 12.3 73.0 

Silt (%) 21.1 9.3 44.1 8.3 37.0 

Sand (%) 25.9 15.7 60.6 6.3 60.3 

TR 1.1 0.1 9.1 0.8 1.4 

Slope (%) 10.5 2.4 22.9 5.3 21.6 

Crop density (plants ha-1) 4,746 1,091 23.0 1,667 11,126 

Crop age (year) 14.3 6.1 42.7 3.0 32.0 

Yield (bags ha-1) 50.5 21.5 42.5 6.5 106.0 

Sd: standard deviation; CV: coefficient of variation; SB – sum of bases; CEC: cation 

exchange capacity; BS:  base saturation; SOM: soil organic matter; TR: textural 

relationship (clay content in A horizon/clay content in B horizon); AS: Aluminum 

saturation. 

 

Variables selection by Random Forest 

 

Through Random Forest with RFE, the most important variables that explain crop yield 

were ranked, based on variables importance score (Fig. 4) (Kuhn 2012). In the soil dataset, the 

most important variables ranked by importance order were silt content, slope, epipedon type, 

SOM, and effective CEC, respectively (Fig. Fig. 4a) (R² of 0.16, MAE of 16.86 bags ha-1 and, 

RMSE of 21.63 bags ha-1). For soil and crop management dataset the most important 

variables were crop age (years), crop density, silt content, and SOM (Figure 3b) (R² of 0.43, 
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MAE of 12.44 bags ha-1, and RMSE of 16.63 bags ha-1). Based on statistical indexes, the 

combination of soil and crop management variables better explains yield variability, since the 

higher accuracy of models was found. 

    

Fig. 4 Variables importance defined by Random Forest with Recursive Feature Elimination 

applied to verify the relationship between coffee yield and soil survey dataset, referent to 

model inputs II and IV (a); and between coffee yield and soil survey and crop management 

dataset referent to model inputs VI and VIII (b); effective CEC: effective cation exchange 

capacity; SOM: soil organic matter. 

 

Economic and climatic factors, as well as the general crop management characteristics, 

are the  main factors that influence not only coffee yield in Brazil (Rena et al. 2002), but also 

other crops in general (Chlingaryan et al. 2018; Tisdale et al. 1993). Since yield is an 

important parameter for management zones establishment, we incorporated crop management 

characteristics that govern yield by their intrinsic characteristics, such as age and crop density. 

Dissociating those characteristics that could lead to an incorrect management zones 

establishment, the application of this methodology created for established coffee farms sounds 

realistic. 

In tropical regions, with ample predominance of clays that have low CEC (Fontes and 

Weed 1991), SOM assumes a great importance on generating negative superficial charges 

(Novais and Mello 2007). In addition to acting as a cementing agent, SOM promotes the 

stabilization of soil aggregates (Silva and Mendonça 2007) and substantially improves the 

water retention capacity of the soils (Dexter 2004). In addition, SOM has a great influence on 
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soil porosity and therefore, affects water availability for plants (Dexter 2004). 

Besides being a reliable soil weathering degree indicator, higher contents of silt may 

also promote soil susceptibility to water erosion (Weil and Brady 2017) by surface crusting 

and permeability decreasing. Regarding the variables chosen for the definition of management 

zones, it is interesting to note that silt, a stable variable, was selected as important for the 

definition of management zones. The choice of silt as a variable for defining management 

zones is in agreement with the desirable characteristic that these variables are stable (Ping et 

al. 2005). 

  

Principal component analysis and Factor analysis of mixed data  

 

The HCPC requires a reduction in the dimensionality of the data (Kassambara 2017b) 

that can be performed by different types of factor analysis. In this sense, FAMD must be 

performed in situations where at least one categorical variable is present (Pagès 2015). In 

those models that Random Forest selected only quantitative variables (Fig. 4b), FAMD 

performance of models VI and VIII was not possible.  

In this study, PCA and FAMD were used to derive a small number of linear 

combinations with synthetic variables, called principal components (Pagès 2015), capable of 

explaining most of the data variability. The analysis of PCA or FAMD can be considered a 

pre-processing on the analysis of the HCPC, performing a reduction of the data into a few 

variables, containing the most important information (Kassambara 2017a). This makes the 

cluster division more robust, according to the number of dimensions considered, which must 

be the one that presents the most explained variance (Husson et al. 2017). Thus, as most of the 

variance was retained in the first 5 dimensions (Fig. 5), these were considered for the 

execution of the HCPC. 

According to Fig. 5, which brings more details about cumulative variance explained by 

each model input, the models IV, VI and VIII enabled the explanation of 100% of the data 

variance in the first 4 principal components (the best performances among models), and the 

model input II presented 100% of the variance explained in the first 5 ones. Combining data 

on yield and soil and terrain attributes, Ping et al. (2005) also found a high percentage of 

variance explained in the first five components for management zones delineation, as the 

obtained in input models VI and VIII from soil and crop management variables dataset. It 

seems that the similarity in the nature of the soil and yield data used in the present study and 
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in that one developed by Ping et al. (2005), promoted the explanation of most of the 

variability of the data in the same number of dimensions. Regarding HCPC, the use of 5 

components is adequate for greater stability of the clustering, since it removed disregarded 

data that do not bring relevant information (noise) (Husson et al. 2010). 

The model inputs III and VII were responsible for the second major variability 

explained by the PCA, in which Random Forest was not performed a prior. The lowest 

percentages of explained variability in first 5 dimension were found in the model inputs I 

(73.8%) and V (64.4%), in which the complete set of variables (soil and crop management 

variables dataset) were tested, without Random Forest selection and using FAMD. Similarly, 

Moral et al. (2010) also performed the PCA to summarize the variability of soil data before 

classification with the fuzzy c-means algorithm, in order to establish management zones. 

Unlike what was found in this study, and in accordance to Ping et al. (2005), only two 

dimensions were necessary to summarize most of the variability.  

 

 

Fig. 5 Cumulative variance explained by principal components with different datasets inputs 

and variables selection. Dim – Dimension (principal component). 
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 Hierarchical cluster on principal components (HCPC) 

 

The best number of clusters is defined according to the inertia gain while the number of 

cluster increases (Husson et al. 2017). The inertia gain of each model input is presented in 

Fig. 6. These graphs were generated from the divisions of clusters produced with the different 

input models. The numbers in roman algorism indicate the model input. The size difference of 

the first bar of the graphs relative to the second one indicates the inertia gain by increasing the 

number of two clusters (first bar, q=1) to three (q=2) and so on. The change of color between 

dark blue and light blue bars indicates up to which cluster the number of the divisions remains 

significant and promotes differences between clusters. The dark blue columns become clear 

when the HCPC identifies the number of clusters (Q) that minimizes the gain of inertia when 

increasing a cluster. The number of clusters maintained is the one that enhances the inertia 

gain, or gain of variance between successive cluster numbers (Husson et al. 2010; 

Kassambara 2017b). Due to the characteristics of the data, different cluster numbers were 

generated by the HCPC in the input model tested. Models I and V resulted into 6 clusters: the 

highest number obtained among models. These two model inputs have in common the use of 

FAMD, as well as the least variability explained by PCA.  It is noteworthy that models 

pairwise by similar statistical sequence of analysis I and V; II and VI, III and VII, IV and VIII 

presented the same scale of variation of inertia gain. Except for II and VI, the others presented 

similar number of clusters.  
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Fig. 6 Inertia gain obtained in the division of clusters.  

 

The HCPC classifier ranks variables that most influence clusters generation, expressed 

by different quantitative (R2) and qualitative (p-value of chi-square test) parameters (Table 3). 

For the quantitative ones, the higher the R², the greater the influence of a given variable on the 

division of clusters, as it was observed for soil fertility variables. Despite this, it is important 

to remind that soil fertility variables were not chosen neither by Random Forest as the most 

important ones nor in cluster separation. 

With respect to qualitative variables, the lower the p-value, the more the categorical 

variable characterizes a given cluster (Husson et al. 2017). Thus, the soil type was  the most 

important categorical variable (model inputs I, III, V, VII) due to its well-known importance 

on productive systems (Cavalli et al. 2020). Conversely, as already presented in the previous 

section, Random Forest did not select soil type variable in importance rank. Although very 
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accurate (Biau and Scornet 2016), it has been reported that Random Forest (Breiman 2001) 

could present bias in variables importance if categorical predictors have different numbers of 

levels or if predictors are mixed categorical and continuous (Strobl et al. 2007; Boulesteix et 

al. 2012). In the soil survey and crop management variables dataset, the Random Forest 

selected only quantitative variables, so the PCA was performed and, consequently, the model 

inputs VI and VIII included the same variables and promoted the formation of equal 

management zones, from the delimitation by the HCPC. If some qualitative variables had 

been selected, it would be possible to compare the differences in size reduction and generation 

of management zones when PCA and when FAMD were applied (Pagès 2004).  
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Table 3 Variables that most influenced the divisions of the clusters formed 

Model 

input*  

Quantitative variables  Qualitative variables 

 R² p-value   p-value df 

I SB (cmolc kg-1) 0.79 <0.01  Soil type 4.4e-71 25 
(6) Ca2+ (cmolc kg-1) 0.78 <0.01  Depth 1.3e-43 10 
 CEC (cmolc kg-1) 0.78 <0.01  Structure 7.9e-34 10 

 CEC pH 7.0 (cmolc kg-1) 0.78 <0.01  Stoniness 2.6e-32 5 
 Clay (%) 0.71 <0.01  Fertility 1.8e-17 5 

 H+Al3+ (cmolc kg-1) 0.71 <0.01  Type and depth of epipedon 8.2e-17 5 

II CEC (cmolc kg-1) 0.68 <0.01  Type and depth of epipedon 3.5e-31 3 
(4) SOM (dag kg-1) 0.57 <0.01     

 Silt (%) 0.57 <0.01     
 Slope (%) 0.10 <0.01     

III Al3+ (cmolc kg-1) 0.79 <0.01  Soil type 6.0e-20 10 

(3) H+Al3+ (cmolc kg-1) 0.78 <0.01  Fertility 9.7e-16 2 
 AS (%) 0.65 <0.01  Structure 7.6e-08 4 

 BS (%) 0.64 <0.01  Depth 9.7e-07 4 

 CEC pH 7.0 (cmolc kg-1) 0.63 <0.01  Type and depth of epipedon 2.2e-04 2 
 Mg2+ (cmolc kg-1) 0.63 <0.01  Stoniness 9.1e-03 2 

IV Silt (%) 0.66 <0.01  Type and depth of epipedon 1.3e-09 2 
(3) CEC (cmolc kg-1) 0.66 <0.01     

 SOM (dag kg-1) 0.55 <0.01     
 Slope (%) 0.06 <0.05     

V SB (cmolc kg-1) 0.77 <0.01  Soil type 3.6e-58 25 
(6) CEC (cmolc kg-1) 0.77 <0.01  Depth 6.8e-38 10 
 CEC pH 7.0 (cmolc kg-1) 0.76 <0.01  Stoniness 2.6e-32 5 

 Ca2+ (cmolc kg-1) 0.76 <0.01  Type and depth of epipedon 1.8e-28 5 
 H+Al3+ (cmolc kg-1) 0.70 <0.01  Structure 2.2e-21 10 

 Mg2+ (cmolc kg-1) 0.69 <0.01  Stage of crop development 5.2e-20 5 

     Irrigation area 7.8e-19 5 
     Fertility 2.6e-16 5 

     Variety 3.5e-12 20 

VI Crop age (years) 0.57 <0.01     
(3) Silt (%) 0.53 <0.01     

 SOM (dag kg-1) 0.52 <0.01     
 Crop density (plants ha-1) 0.49 <0.01     

VII CEC pH 7.0 (cmolc kg-1) 0.82 <0.01  Soil type 2.5e-15 10 
(3) CEC (cmolc kg-1) 0.72 <0.01  Stoniness 1.2e-08 2 

 BS (% ) 0.62 <0.01  Fertility 1.5e-08 2 
 Ca2+ (cmolc kg-1) 0.62 <0.01  Irrigation area 1.6e-08 2 

 Mg2+ (cmolc kg-1) 0.59 <0.01  Epipedon 2.3e-06 2 

 Al3+ (cmolc kg-1) 0.55 <0.01  Depth 3.3e-04 4 
     Structure 4.1e-04 4 

     Variety 3.4e-03 8 
     Stage of crop development 6.9e-03 2 

VIII Crop age (years) 0.57 <0.01     
(3) Silt (%) 0.53 <0.01     
 SOM (dag kg-1) 0.52 <0.01     

 Crop density (plants ha-1) 0.49 <0.01     

*number of clusters between paranthesis; df: degree of freedom of the chi-square test between 

qualitative variables and the test; AS: aluminum saturation; SB: sum of bases; BS:  base 

saturation; SOM: soil organic matter ; CEC: effective soil exchange capacity; CEC pH 7.0: 

cation exchange capacity at pH 7.0; ( ) the numbers in parentheses represent the number of 

clusters formed from each model input tested. 
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From the establishment of management zones by the models, the statistical differences 

of mean coffee yield within each HCPC cluster domain were calculated and are presented in 

Table 4. The purpose of this test was to choose model inputs with statistical differences 

among clusters, which was promoted by the models VI and VIII, totalizing 3 clusters. It is 

important to highlight that they presented the same mean values since they became equal 

models, because Random Forest did not ranked any categorical variable making impossible 

FAMD application. As already mentioned, both models are formed by 4 variables (crop age, 

crop density, silt content, SOM) that were responsible for the explanation of 43% of coffee 

yield variability.  

 

Table 4 Mean coffee yield (2016/2017 harvest) within clusters formed by different models 

Model input 
Clusters 

1 2 3 4 5 6 

I 56.0 a  51.9 ab  47.6 ab 45.9 ab 44.2 b 43.6 b 

II 58.6 a 47.0 b 45.2 b 45.2 b - - 

III 53.0 a 46.9 a 46.4 a - - - 

IV 54.7 a 45.2 ab 44.3 b - - - 

V 63.6 a 59.2 a   45.9 ab 44.5 b 44.2 b 43.6 b 

VI 56.6 a 46.4 b 34.3 c - - - 

VII 55.2 a 46.1 b 46.0 b - - - 

VIII 56.6 a 46.4 b 34.3 c  - -  -  

Means in the same row followed by different letters indicate significant differences according 

to Tukey’s test (p <0.1) 

 

The best model input and the case study of coffee crop   

 

Based on the whole statistical framework, the set of explanatory variables and the 

sequence of statistical models that best outlined management zones for the study area were 

the models VI and VIII. Thus, as already mentioned, they can be considered equals. Based on 

statistical performance, both models outperformed the others, since:  

a) The models applied the combination of soil and crop management explanatory 

variables, which according to Random Forest variables selection, were those with 

higher accuracy and capability to explain coffee yield; 

b) They were included in the group of PCA with higher % of variables explanation  by 

the first 4 dimensions, suggesting consistency of analysis; 

c) They presented higher inertia gain provided by 3 clusters composition; 
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d) They promoted statistical differences of mean coffee yield among all clusters created 

from HCPC, suggesting effectiveness of generating management homogenous zones 

that also differ from each other. 

 

Although the explained variance of models were already presented in previous section 

(Fig. 5), in order to better understand the main drivers of coffee yield of this study case and 

specifically for models VI and VIII, Fig. 7 shows the first (Dim 1) and second (Dim 2) 

principal components of soil and crop management information, which  account for  most of 

the total variance (Kassambara 2017b). Based on silt content, SOM, crop density, and crop 

age information, the first principal component was able to explain 52.8% of total variance 

and, the second one 23.3%, totalizing  76.1%. The PCA shows that silt content and crop age 

are positively correlated, however, there is no cause and effect relationship between them. 

Conversely, crop age presented a negative correlation with crop density, due to the adoption 

of plantings with higher crop density.  

 

 

Fig. 7 Principal components analysis performed with four variables selected. SOM: soil 

organic matter. 

Table 5 presents the final results of the HCPC, corresponding to the partitioning 
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performed by Ward’s method on the five dimensions considered in conjunction with the k-

means partitioning. The description of the variables that are significantly (p <0.01) correlated 

with the clusters is presented, starting with those that best characterize the partitioning 

(Husson et al. 2017). Based on that, Fig. 8 represents the spatial arrangement of the clusters 

formed, and Table 6, shows the soil types geographical expression within each cluster. Table 

7 presents quantitative contents of soil properties for each depth of soil survey, as well as the 

coffee yield for three harvest years, providing support for the subsequent analyses of each 

cluster delineated. All together contributes to better comprehend the different scenarios or 

environments defined by the clusters created, as   follows: 

- Cluster 1: it is composed by the best combination of crop features for achieving higher 

yields – lower age of coffee plants (10.84 years) and higher crop density (5,174.05 plants ha-1) 

(Table 5). The higher the plant density, the better use of water and nutrients occurs due to the 

greater density of roots in the soil (when water is not a limiting factor). Thus, higher coffee 

yields, especially in 2014/2015 and 2016/2017 years (51.81 and 56.58 bags ha-1, respectively) 

were obtained (Table 7), representing values much above national Coffee Arabica yield 

average for such years (24 and 26 bags ha-1, respectively) (Conab, 2019). Considering the 

most important soil characteristics ranked by Random Forest, the silt content was the lowest 

among clusters, corroborating the predominance of very highly weathered soils (Oxisols) 

(Table 5). Furthermore, another trace characteristic is the lower SOM among clusters. 

- Cluster 2: although still above the national yield average, this cluster presents a slight 

decreasing of yield when compared with Cluster 1, outperforming crop yield only in 

2012/1013 year (51.44 bags ha-1) (Table 6). It is noteworthy that such highest coffee yield was 

obtained in a severe drought period in Brazil (Getirana 2016). Considering Random Forest 

variables ranked, the crop age is within average (16.24 years), as well as the silt content 

(Table 5). The latter, is in accordance with mature soils (Ultisols), along with the least 

proportion of young soils (Inceptisols) was found (Table 6). Higher clay content and SOM 

values among clusters were found (Table 7), which could be responsible for higher water 

retention during such drought periods.  

- Cluster 3: this cluster presents the lowest plant yield for all vintages (values around 33 bags 

ha-1). When we consider the standard deviation of values, some land parcels were below 

national average. Regarding Random Forest variables ranked, this cluster presents the higher 

age of crops (24.05 years) and lower crop density (2,904.09 plants ha-1), an opposite trend of 

Cluster 1. The highest silt content was found, where there is predominance of young soils 
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(Inceptisols) among clusters.    

 

Table 5 Correlation between three clusters and environmental variables related to soil and 

crop, obtained by the hierarchical cluster applied in land parcels from coffee plantations of 

southern Minas Gerais state, Brazil 

Variables v.test Mean in category Overall mean Sd in category Overall Sd p-value 

 Cluster 1 

Crop density   5.67     5,174.05     4,746.00          784.65      1,087.85 <0.01 

SOM -7.28            1.43            1.69              0.30             0.52 <0.01 

Crop age  -8.07          10.84          14.25              3.21             6.09 <0.01 

Silt content -9.10          15.29          21.12              5.65             9.25 <0.01 

 Cluster 2 

SOM 9.03           2.27            1.69              0.43             0.52 <0.01 

Silt content 6.33         28.41          21.12              7.80             9.25 <0.01 

Crop age  2.62         16.24          14.25              4.44             6.09 <0.01 

 Cluster 3 

Crop age  8.10         24.05          14.25              5.60             6.09 <0.01 

Silt content 4.72         29.77          21.12              5.55             9.25 <0.01 

Crop density -8.53    2,904.09     4,746.00          676.52       1087.85 <0.01 

Sd: standard deviation; p-value <0.01 confirms the statistically significant correlation between 

variable and clusters. 

 

Fig. 8 Clusters obtained by hierarchical cluster on principal components, using soil properties 

(SOM and silt content) and crop characteristics (crop age and crop density). 

®
Coordinate system: WGS84 UTM zone 23 S

Datum: WGS 84

Units: meters

Management zones 1 2 3
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Table 6 Soil types geographical expression (%) within different clusters 

Clusters 
% of soil types occurrence 

Ax Hx Hp Rh1 Ht Rh2 

1 36.5 1.3 1.8 23.7 - - 

2 5.5 3.9 0.3 6.5 2.3 2.2 

3 4.2 0.4 2.5 6.3 2.4 0.3 

Total 46.2 5.6 4.6 36.5 4.7 2.5 

Ax - Acrudox; Hx- Hapludox  ; Hp - Haplustept; Rh1 - Rhodudult 1; Ht – Hapludult; Rh2- 

Rhodudult 2. 
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Table 7 Quantitative properties (mean ± standard deviation) of soils at different depths, slope and coffee yield in management zones formed with 

hierarchical cluster analysis 

  cluster 1 (n = 90)   cluster 2 (n = 46)   Cluster 3 (n = 22) 

  Epipedon 0.4-0.7 m 1.0-1.5 m   Epipedon 0.4-0.7 m 1.0-1.5 m   Epipedon 0.4-0.7 m 1.0-1.5 m 

pH 5.91 ±0.89 5.41 ±0.83 5.28 ±2.91  6.46 ±0.65 5.49 ±0.74 4.94 ±1.25  6.1 ±0.97 5.71 ±0.72 5.04 ±1.91 

K (mg kg-1) 184.2 ±76.91 51.6 ±37.5 30.59 ±27.96  215.89 ±71.8 69.82 ±51.66 43.07 ±36.77  196.13 ±82.19 80.71 ±49.59 50.44 ±34.33 

P (mg kg-1) 31.06 ±37.78 1.32 ±3.26 0.39 ±0.26  59.63 ±36.13 1.07 ±0.73 0.6 ±0.53  48.46 ±51.05 0.82 ±0.22 0.3 ±0.14 

Ca2+ (cmolc kg-1) 3.82 ±2.24 1.09 ±0.63 0.71 ±0.5  7.71 ±2.28 1.41 ±0.86 0.95 ±0.44  4.95 ±2.61 1.53 ±0.89 0.95 ±0.59 

Mg2+ (cmolc kg-1) 1.14 ±0.74 0.46 ±0.43 0.25 ±0.18  2.21 ±0.89 0.46 ±0.13 0.36 ±0.14  1.45 ±0.84 0.57 ±0.46 0.35 ±0.23 

Al3+ (cmolc kg-1) 0.22 ±0.35 0.28 ±0.43 0.19 ±0.3  0.06 ±0.02 0.56 ±0.87 0.55 ±0.9  0.29 ±0.56 0.22 ±0.37 0.16 ±0.36 

H+ +Al3+ (cmolc kg-1) 3.45 ±1.66 3 ±1.92 2.1 ±1.2  2.95 ±1.35 4.36 ±3.97 3.81 ±3.58  3.1 ±1.56 2.49 ±1.79 1.89 ±1.45 

SB (cmolc kg-1) 5.44 ±3.06 1.68 ±0.91 1.06 ±0.69  10.48 ±3.11 2.05 ±1.07 1.42 ±0.63  6.91 ±3.48 2.32 ±1.17 1.43 ±0.9 

Effective CEC (cmolc kg-1) 5.66 ±2.87 1.96 ±0.88 1.24 ±0.72  10.54 ±3.09 2.61 ±0.92 1.97 ±0.65  7.19 ±3.09 2.53 ±1.08 1.58 ±0.89 

CEC pH 7.0 (cmolc kg-1) 8.89 ±2.23 4.67 ±1.76 4.62 ±7.78  13.42 ±2.3 6.41 ±3.45 5.23 ±3.23  10.01 ±2.7 4.81 ±1.71 3.31 ±1.6 

BS (%)  57.95 ±22 38.74 ±18.75 30.28 ±18.18  76.65 ±12.56 40.47 ±20.79 35.25 ±20.01  65.22 ±24.34 49.39 ±18.73 40.26 ±23.58 

AS (%) 7.69 ±14.94 15.49 ±18.29 12.38 ±16.68  0.71 ±0.44 19.19 ±27.55 20.7 ±30.91  10.23 ±22.76 10.09 ±13.79 9.78 ±16.43 

SOM (dag kg-1) 2.89 ±0.76 0.95 ±0.42 0.67 ±1.1  4.82 ±1.29 1.27 ±0.23 0.65 ±0.21  3.11 ±1 0.96 ±0.38 0.43 ±0.22 

Rem-P 31.79 ±9.96 16.57 ±10.21 9.03 ±8.34  34.1 ±6.17 11.24 ±4.54 6.21 ±4.14  34.02 ±10.6 16.72 ±12.13 7.26 ±9.8 

Clay (%) 49.16 ±14.82 53.79 ±15.56 50.86 ±19.1  53.43 ±6.87 60.2 ±7.35 57.83 ±14.03  45.36 ±15.44 50.68 ±17.26 46.64 ±19.91 

Silt (%) 16.89 ±6.96 15.49 ±6.57 14.78 ±9.01  32.2 ±6.58 26.39 ±8.38 25.67 ±11.21  31.82 ±5.36 27.91 ±6.06 27.68 ±12.89 

Sand (%) 33.96 ±14.79 30.72 ±14.43 25.5 ±13.1  14.37 ±9.66 13.41 ±8.16 12.15 ±5.93  22.82 ±19.38 21.41 ±18.8 16.59 ±16.77 

Crop density (years) 5,174.0    4,789.0    2,904.0   

Yield (2012/2013) (bags ha-1) 40.02 ±21.68    51.44 ±20.41    30.35 ±11.04   

Yield (2014/2015) (bags ha-1) 51.81 ±33.62       46.84 ±13.52       33.08 ±13.35     

Yield (2016/2017) (bags ha-1) 56.58 ±21.34    46.40 ±19.78    34.33 ±14.59   

SB: Sum of bases; CEC: cation exchange capacity; BS:  base saturation; SOM: soil organic matter; TR: textural relationship (clay content in 

epipedon /clay content in B horizon); AS: Aluminum saturation; Rem- P: remaining P;   n: number of polygons obtained from the crossing 

between plots and soil maps.
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Conclusions 

 

The design of quantitatively established management zones varied deferentially  

according to the model input and statistical analysis, in which the knowledge of the model 

metrics as well as the yield data were important to guide the choice of the most suitable ones. 

Soil and crop management variables selected by Random Forest, along with HCPC, were able 

to delineate clusters with contrasting crop yields. Such contrasts were also in accordance with 

the general knowledge of soil-landscape relations and coffee management characteristics of 

the study region. Summarizing the three clusters outlined (best method performance) 

(123), it was found a decreasing in values of coffee yield harvested in 2016/2017 

(reference values for statistical analyses) as well as crop density. Following the sequence, it 

was also noticed the increasing values of crop age and of the silt content of the soils. 

Although the models with best performance had as soil attributes ranked as the most 

important ones those normally acquired from routine soil fertility analyses (normally 

performed at 0-20 and 20-40 cm depths), it is important to highlight that the soil survey 

allowed the obtaining of soil unique information in depth (subsurface morphological, 

physical, and chemical constraints). In addition, soil survey provided management zones 

contours, whose soil mapping units represent different environments. Such environments 

could also guide in the decision making regarding water deficit, since it is frequent to occur 

short periods of drought during the rainy season in the study region. The support from field 

knowledge together with modern statistical approach provided secure and accurate coffee 

crop information. 
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ARTICLE 2 
 
 

Article prepared according to the rules of Geoderma Regional 

 

Soil-environment and Syrah winter wine characterization to assist viticulture in 

southeastern Brazil 

 

1. Introduction 

 

Southeastern Brazil has emerged as an important region for production of high quality 

fine wines (Favero et al., 2011). This evolution is closely related to a new approach of 

vineyard management, called double pruning that allows fruits to be harvested during the 

winter season (Regina et al. 2011). Two annual pruning are performed: the first at the end of 

the winter season (August or September), allowing the vegetative development of the shoot; 

and the second, called yield pruning, in January, performed to induce the grape harvest during 

the winter period. The climatic conditions of this period enable a greater accumulation of 

phenolic compounds and sugars compared to summer harvests, which is the traditional time 

of harvesting vines in Brazil (Amorim et al., 2005; Dias et al., 2012, 2017; Favero et al., 

2011; Mota et al., 2011). Wines from this region are known as “Winter Wines” due to the 

season when the grapes are harvested (Brant et al., 2018). The Syrah variety has been the 

most suitable for these conditions (Amorim et al., 2005; Favero et al., 2011). 

In wine terminology, the well-known term terroir is traditionally used to provide the 

notion of agricultural sites in the same geographic area that share a similar climate, soil, and 

management, and their association contributes to unique characteristics in the products  (van 

Leeuwen and Seguin, 2006). The effect of soil and climate on grapevine development and the 
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composition of grapes or wines has been demonstrated in important viticultural regions of the 

world, such as in Italy (Ferretti, 2019; Priori et al., 2019), Canada (Kotsaki et al., 2020a, 

2020b), Spain (Perez-Alvarez et al., 2015), Portugal (Prata-Sena et al., 2018), and China 

(Wang et al., 2015). While some regions have hundreds of years of defining, developing, and 

understanding their terroirs, e.g. Bordeaux and Champagne in France, Campania in Italy and 

Rioja and Galicia in Spain, new regions still face the challenge of finding the most adapted 

varieties and better management to define their typicity (Jones et al., 2004).  

Macroclimate (regional) and microclimate (local climate at fruit zone) conditions exert 

great influence on vine growth, yield, grape and wine quality attributes (Van Leeuwen & 

Seguin, 2006; Souza et al., 2019). Soil characteristics are important drivers of microclimate 

conditions, driving local water availability for vines. Along with its role of providing nutrients 

to plants, soils directly affect the vigor of the grapevines (Leeuwen et al., 2018; Morlat and 

Bodin, 2006), which in turn is directly related to the composition of the berries and wines 

(Cortell et al., 2008). Soils without any water restrictions might result in wine production with 

lower added value (Renouf et al., 2010). Also, it has been reported that clayey soils were 

more correlated to wines with higher pH (detrimental to wines) and lower levels of 

anthocyanins, alcohol, color intensity, and phenolics (Wang et al., 2015). Comparing soils 

with different degree of weathering, Morlat and Bodin (2006) found positive characteristics of 

wine quality for the lesser weathered ones: berries with smaller size, with higher anthocyanin 

content, and lower total acidity, which are good for wine quality. 

Several studies regarding agronomic and physiological evaluations to confirm the 

suitability of double pruning (Amorim et al., 2005; Favero et al., 2011), influence of different 

rootstocks (Dias et al., 2012), as well as to compare the effect of the growing seasons (Favero 

et al., 2011), the maintenance of the quality of grape (Favero etal., 2008) and the aromatic 

profile of the wines (Mota et al., 2021) have been conducted. However, there is a lack of  
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edaphoclimatic characterization in the vineyards studied to assist wine typicity 

characterization. Thus, the objectives of this study were to characterize at local scale the soils 

and the climate, as well as to verify their relationship with the Winter Wines composition 

produced in seven commercial vineyards of the Syrah cultivar in southeastern Brazil. 

 

2. Material and methods 

2.1. Study areas  

The study areas comprises seven commercial vineyards of the Syrah cultivars located in 

areas traditionally cultivated with coffee in the southeast region (Fig. 1): Três Corações – MG 

(TC), Cordislândia – MG (COR), Andradas – MG (AND), São Sebastião do Paraíso – MG 

(SSP), Três Pontas – MG (TP), Espírito Santo do Pinhal – SP (PIN), and Itobí – SP (ITO). A 

soil profile sampling was carried out in each vineyard, at the depths of 0-20, 40-70 and 100-

120, when possible, in the central part of crop areas, where the experiment was also carried 

out to evaluate plant breeding practices and from where the grapes were harvested for the 

wine production. The vineyards are between 10 and 15 years old, grown in vertical shoot 

position with bilateral cordons, with 4000 plant ha-1. The management of double pruning was 

carried out as described in Favero et al. (2011). All the cultural practices of the vineyards, 

including fertilization and harvesting were carried out according to each viticulturist. 
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Fig. 1. The geographic location of the vineyards in Minas Gerais and São Paulo states and 

their respective local altitudes in parentheses. 

 

2.2. Soil and climate characterization 

  

The morphological description of the soil profiles was performed according to Santos et 

al. (2015), and soils were classified according to the Soil Survey Staff (2014). Physical, 

chemical, and mineralogical analysis were carried out in each soil profile following soil 

horizon depth. The following physical analyses were performed, according to Embrapa 

(1997): quantification of the gravel proportion; particle-size distribution with physical 

(vertical shaking) and chemical (NaOH 0,1 mol L-1) dispersion on the air-dried fine earth 

(ADFE) (≤ 2.0 mm). The particle size determination was performed by pipette method, 

enabling the silt/clay ratio calculation: an important value for tropical conditions that express 

the degree of soil weathering (the higher, the less weathered).  

The following chemical analyses were carried out: pH in water; pH in KCL 1.0 mol L-1; 

available P and K+ exchangeable extracted by Mehlich-1; exchangeable Ca2+, Mg2+ and Al3+ 

extracted with KCl 1.0 mol L-1; potential acidity (H+ + Al3+) was extracted by 0.5 mol L-1 

calcium acetate at pH 7.0; soil organic matter (SOM) was obtained by Walkley and Black 

(1934) method; remaining P (Rem-P) was obtained according Alvarez et al. (2000). Effective 
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cation exchange capacity at soil pH (ECEC), cation exchange capacity at pH 7.0 (CEC pH 

7.0), base saturation (BS) and aluminum saturation (AS) were then calculated. The 

determination of the well-crystallized Fe oxides (Fed) (Mehra and Jackson, 1960), and of low 

crystallinity (FeO) (McKeague and Day, 1966) was performed in order to characterize the 

degree of pedogenetic development of the studied soils, as well as the weathering intensity 

(Inda Junior and Kämpf, 2003).  

Soil parent material information was assessed by the indication contained in geological 

map of the Minas Gerais State at the scale of 1: 1.000.000 (CPRM, 2003) and of the São 

Paulo State (Peixoto, 2010). The refinement of the geological map was carried out using 

information from the literature (Mancini et al., 2019a; Mancini, et al., 2019b; Grotzinger and 

Jordan, 2014), comparing with the levels of elements and oxides determined by portable x-ray 

fluorescence and the mineralogy of the soil fractions, as described below. The soil elemental 

and oxides contents in the soil samples determined by portable X-ray fluorescence (pXRF) 

(Bruker S1 Titan LE model). These samples were scanned in triplicate for 60 seconds using 

the Trace mode of Geochem software. The calibration of the pXRF was made by scanning 

standard reference materials 2710a and 2710b and check sample (CS). The minerals present 

in the clay, silt, and fine sand fractions of B horizons were identified with X-ray 

diffractometry, according to Embrapa (1997). For mineral identification it was used an X-ray 

Powder Diffraction with CuKα radiation (Ni filter and a current of 20 mA).  

The climatic characterization of the grapes' maturation period (May to July) was 

performed based on average historical data (1982 to 2012) obtained from Climate.Data.org 

(https://pt.climate-data.org/).  

 

2.3. Wine laboratory analysis 
 

The grapes harvested from vineyards were vinified and their composition was evaluated in 

https://pt.climate-data.org/
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three harvests: 2016, 2017 and 2018. The total phenolics were analyzed by the Folin-

Ciocalteau method based on a standard curve of gallic acid (Bergqvist et al., 2001). The ashes 

were determined by the gravimetric method and ashes alkalinity by the titrimetric method 

(Blouin 1992). The anthocyanin content was obtained by the differential pH method (Giusti 

and Wrolstad, 2001), and the result expressed in mg malvidin-3-glycoside per liter of wine. 

The dry extract was determined according to the AOAC method 920.62 (AOAC, 1995). 

Phenolics were quantified according to Amerine and Ough (1980), and flavanols content 

following Ribéreau-Gayon et al. (2006a). The color intensity was determined by the sum of 

the absorbance at 420, 520, and 620 nm (Curvelo-Garcia, 1988). The total polyphenols index 

(TPI) was determined at 280 nm in an UV/VIS spectrophotometer (Shimadzu UV-1800). The 

fixed acidity was determined according to OIV (2009) and the pH by a digital potentiometer 

(Micronal model B 474). The alcohol content by volume in a hydrostatic balance (Super 

Alcomat, Gibertini) after wine distillation (Super DEE Gibertini digital distilling unit) and 

sugars were determined by the Fehling method (Brasil, 1986). 

 

 2.4 Principal component analysis  

 

The relationship among edaphoclimatic characteristics and the average composition of 

wines in three vintages (2016, 2017, and 2018) was assessed by the principal component 

analyses (PCA). The PCA was performed on two data sets: i) for A horizon soil attributes and 

climate data, and B horizons soil attributes and climate data.  A horizon is chemically 

corrected, while B horizon expresses pedogenetic processes and is generally not corrected. 

Both are important to understand the influence of soils on wine composition. In the two data 

sets, soil information was used as active variables and the wine composition was plotted as 

supplementary variables (FactoMineR package, version 1.42) in R software (R Core Team 

2018). Supplementary variables do not contribute to the construction of the principal 
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components, they are also called illustrative variables and help in the interpretation of the plot 

(Husson et al., 2017). 

 

3. Results and discussion 

3.1. Soil types and physical properties 

The availability of soil water is one of the most important soil characteristics that 

might influence terroir (Deloire et al., 2004; Van Leeuwen et al., 2018). In addition to soil 

texture, soil water retention depends on mineralogy (due to soil charge generation), soil depth, 

structure, and relief (Van Leeuwen et al., 2004; Resende et al., 2014). Some of those attributes 

are also criteria for soil types characterization (Santos et al., 2014; Soil Survey Staff, 2014), 

favoring interpretations on water availability and the behavior of plant roots. Thus, four soil 

types were found in the vineyards: Acrudox and Hapludox (differed by moisture regime, 

which in turn influence color)  Hapludult  Eutrudept. Following this chronological 

sequence, there is a decrease in soil depth, water storage, root penetration, and reduction of 

degree of weathering. 

The variation in soil texture is due to differences in the parent material and, mainly, 

the degree of weathering of the soil (Resende et al., 2014). Soil texture classes varied between 

clay and sandy clay loam (Table 1). The most weathered soils (Acrudox and Hapludox), 

regardless of the parent material, presented homogeneous classes of texture throughout the 

soil profile. The Hapludult, less weathered in relation to Acrudox and Hapludox, showed a 

difference in textural class between the superficial and subsurface horizon. Eutrudept, 

however, despite the difference in textural class, has a very similar texture in the evaluated 

profiles. 

The highest clay contents in the A horizon occur in TC and TP soils. The highest 

levels of sand on the surface occur in the soils of AND, PIN, and ITO which in turn are also 
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one of those with the lowest levels of clay in the A horizon. Besides, these soils have gravel at 

all depths, contributing to reduce water storage. This is an important characteristic in 

vineyards, as it can reduce water storage at greater depths (Resende et al., 2014), and thus 

promote a certain water deficit to plants. In fact, evaluations carried out on plants in these 

vineyards showed moderate water stress in AND and weak water stress in PIN and ITO 

vineyards (Brant et al., 2021). Similarly, gravely soils of the viticultural region of Bordeaux 

region traditionally produces high-quality wines (cru classé), since this characteristics 

promote greater soil drainage (Seguin, 1986). TC, COR, AND, PIN, and TP presented higher 

levels of clay in depth. The SSP textural class is clay loam throughout the soil profile. 

 

Table 1 Physical and morphological properties of the studied soils. 

Hz. Clay Silt Sand CS FS TR S/C Gravel Textural class Structure* 

 
--------------------- dag kg-1 ---------------- 

  
g kg-1 

 
 

P1 - ACRUDOX (TC)  

Ap 50 26 24 8 16 1.86 0.52 - Clay  
Bo1 52 28 20 7 13 

 
0.54 - Clay granular 

Bo2 58 21 21 7 14 
 

0.36 - Clay  

P2 - ACRUDOX (COR)  
Ap 36 35 29 14 15 1.92 0.97 - Clay loam  

Bo1 69 9 22 11 11 
 

0.13 - Clay granular 
Bo2 69 11 20 9 11 

 
0.16 - Clay  

P3 - HAPLUDULT (AND)  
Ap 30 20 50 35 15 1.77 0.67 52 Sandy clay loam  

Bt1 53 11 36 26 10 
 

0.21 25 Clay block 

Bt2 53 13 34 25 9 
 

0.25 163 Clay  
P4 -HAPLUDULT (PIN)  

A 40 9 51 38 13 1.25 0.23 36 Sandy clay  
Bt1 44 12 44 33 11 

 
0.27 58 Clay  block 

Bt2 50 12 38 28 10 
 

0.24 96 Clay   

BC 49 12 39 30 9 
 

0.24 131 Clay   
P5 - EUTRUDEPT (ITO)  

A 40 18 42 27 15 0.95 0.45 78 Clay  
Bw 38 21 41 26 15 

 
0.55 109 Clay loam block 

P6 - ACRUDOX (SSP)  
Ap 38 24 38 7 31 1.00 0.63 1 Clay loam  

Bo1 38 26 36 7 29 
 

0.68 - Clay loam granular 

Bo2 40 27 33 6 27 
 

0.68 - Clay loam  
P7 - HAPLUDOX (TP)  

Ap 49 29 22 6 16 1.02 0.59 - Clay  
Bo1 50 28 22 7 15 

 
0.56 - Clay granular 

Bo2 50 30 20 5 15   0.60 - Clay  

Hz.: Soil horizon; CS: coarse sand; FS: fine sand; TR: textural relationship: clay content of B 

horizon/clay content of A horizon; S/C: relationship between silt and clay content; * B 

horizon structure. 
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3.2. Soil fertility analysis 

 

 

It was found a wide variation of pH and fertility attributes between depths and 

vineyards, being in general a much greater suitability found in A horizon when compared with 

B horizon (higher pH, SOM, K, P, Ca2+, and Mg2+) (Table 2). It is important to highlight that 

previous soil use in TP (horticulture) might be responsible for the higher K content due to 

higher crop nutrients requirement. The COR presented the highest CEC for all horizons. The 

soil pH in H2O ranged from 4.5 in the Bt1 horizon of the PIN soil to 7.60 in the Ap soil 

horizon in COR. In general, the acidity is lower in the A horizons than in B horizons, which is 

corroborated by both the low values of Al3+ and the high values of soil base saturation (BS). 

This is due to the practice of liming held in areas of vineyards without incorporation, since 

vines are perennial crop. In addition, TC and SSP presented low adequacy of base saturation 

for all depths, since 80% is considered ideal for grapevine crops (Ribeiro et al., 1999). 

Since SOM is the largest reservoir of N for plants, and is even used as a basis for 

recommending nitrogen fertilization in some states in Brazil (Cantarella, 2007), as the present 

work seeks to perform a more general characterization with variables that are more consistent 

over time, we considered here that the SOM content reflects the N content. In this sense, the 

TC and COR soils have the highest N levels in the A and Bo horizons.  
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Table 2 Soil fertility analysis of the studied vineyards 
Hz pH (KCl) pH (H2O) ΔpH K P Na Ca Mg Al H+Al3+ SB ECEC CEC BS AS SOM Rem P Zn Fe Mn Cu B S 

    

------- mg kg-1 ------- --------------------- cmolc kg-1 --------------------- --- % --- dag kg-1 mg L-1 --------------------- mg kg-1 ------------------ 

P1 - ACRUDOX (TC) 

Ap 4.8 5.6 -0.8 262.8 22.2 11.3 2.9 0.5 0.1 4.9 4.1 4.3 9.1 45.5 3.1 3.2 25.1 11.6 39.8 17.2 13.8 0.52 12.1 

Bo1 5.4 5.3 0.0 14.8 1.4 5.1 0.8 0.3 0.1 2.6 1.1 1.2 3.7 30.5 5.8 1.7 3.7 0.3 25.0 1.3 1.8 0.12 43.8 

Bo2 6.2 6.1 0.1 27.7 0.5 5.1 0.8 0.2 0.0 1.8 1.0 1.0 2.8 36.2 0.0 1.0 2.9 0.1 15.0 0.8 1.3 0.12 38.7 

P2 - ACRUDOX (COR) 

Ap 6.8 7.6 -0.8 247.0 44.1 10.3 7.7 2.8 0.1 1.4 11.1 11.2 12.5 89.1 0.5 3.6 20.9 16.1 25.8 20.8 10.8 0.15 5.7 

Bo1 4.6 5.1 -0.5 52.4 0.8 6.1 1.3 0.6 0.2 4.9 2.0 2.2 7.0 29.2 8.1 1.5 9.8 0.1 36.0 3.6 1.5 0.14 49.5 

Bo2 4.8 5.4 -0.6 21.7 0.7 8.2 1.3 0.9 0.1 4.2 2.2 2.3 6.5 34.5 4.3 1.2 9.5 0.1 20.7 3.0 1.3 0.10 52.8 

P3 - HAPLUDULT (AND) 

Ap 6.7 7.5 -0.9 188.7 158.8 32.0 7.8 1.7 0.0 1.3 9.9 10.0 11.2 88.3 0.3 2.6 35.2 13.6 39.0 110.8 6.4 0.31 6.2 

Bt1 4.3 4.9 -0.6 60.3 0.9 6.1 1.3 0.5 0.4 3.9 2.0 2.4 5.9 33.5 16.6 0.6 11.0 0.2 50.5 3.7 2.5 0.08 44.4 

Bt2 4.8 5.1 -0.3 56.3 0.9 7.2 0.9 0.4 0.1 2.9 1.4 1.5 4.3 32.1 9.2 0.4 6.2 0.2 34.2 4.3 2.1 0.08 48.4 

P4 -HAPLUDULT (PIN) 

A 6.1 6.8 -0.7 165.0 4.0 5.1 3.6 1.7 0.1 1.6 5.7 5.8 7.3 77.8 0.9 2.1 33.2 2.1 174.6 16.2 1.8 0.15 4.0 

Bt1 4.2 4.6 -0.4 22.7 0.8 4.1 0.6 0.4 0.7 3.9 1.0 1.7 4.9 20.5 41.3 0.9 25.1 0.1 87.2 1.6 0.7 0.06 36.6 

Bt2 4.2 4.5 -0.4 38.5 0.9 6.1 0.5 0.4 0.7 3.8 1.1 1.7 4.8 21.9 39.1 0.7 15.7 0.1 24.9 1.3 0.7 0.08 45.9 

BC 4.9 4.8 0.1 49.4 0.5 11.3 0.4 0.3 0.1 2.1 0.9 1.0 3.0 29.4 8.4 0.3 14.2 0.1 15.4 2.8 0.3 0.07 44.9 

P5 - EUTRUDEPT (ITO) 

A 5.0 6.2 -1.2 168.0 156.3 11.3 3.7 1.2 0.0 3.3 5.3 5.4 8.6 62.0 0.7 1.5 39.6 10.2 43.8 30.2 3.5 0.20 3.3 

Bw 5.6 6.4 -0.8 69.2 1.8 11.3 2.6 0.8 0.0 1.7 3.6 3.6 5.3 67.3 0.8 0.4 18.8 1.3 50.7 13.9 0.6 0.08 15.7 

P6 - ACRUDOX (SSP) 

Ap 4.5 5.6 -1.2 126.5 20.9 6.1 1.5 0.4 0.2 4.5 2.2 2.4 6.7 32.8 7.6 2.3 26.5 9.9 38.9 20.7 7.2 0.10 15.4 

Bo1 6.6 7.4 -0.9 43.5 0.3 5.1 1.6 0.5 0.0 1.6 2.2 2.2 3.7 57.8 0.9 1.4 6.6 0.1 53.1 10.4 5.7 0.08 13.5 

Bo2 6.3 6.7 -0.4 27.7 0.1 5.1 1.1 0.4 0.0 1.7 1.6 1.6 3.3 48.7 2.5 1.0 4.4 0.1 54.0 7.5 5.2 0.06 42.2 

P7 -HAPLUDOX (TP) 

Ap 5.9 6.5 -0.6 288.5 540.2 21.7 5.3 1.1 0.0 2.3 7.1 7.2 9.5 75.5 0.6 2.3 35.9 17.1 35.2 23.8 6.1 0.29 9.4 

Bo1 4.7 5.0 -0.3 140.3 0.4 8.2 1.1 0.3 0.2 3.2 1.7 1.9 4.9 35.3 8.0 1.4 11.1 0.1 26.5 2.9 1.4 0.21 51.7 

Bo2 5.9 6.1 -0.2 115.6 0.1 10.3 1.3 0.2 0.0 1.8 1.8 1.8 3.7 49.5 1.6 0.6 3.0 0.1 25.2 3.3 1.4 0.23 50.8 

Hz - Soil Horizon; SB: sum of bases; ECEC - effective cation exchange capacity; CEC - cation exchange capacity at pH 7.0; BS - base 

saturation; AS - aluminum saturation; SOM - soil organic matter; Rem P - remaining phosphorus   
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3.3. Soil mineralogical composition 

The mineral identification by means of X-ray diffraction (XRD) was performed in 

natural (Fig. 2) and treated clay particles for the concentration of oxides (Fig. 3) of B horizon 

and natural clay. The only soils with presence of primary minerals other than quartz in the silt 

and sand fractions are ITO and AND (Fig. 2). The sand fraction of ITO presents orthoclase 

(Fig. 2e), a primary mineral of feldspar group, whose presence denotes reserve of soil K+ 

(Melo et al., 2009). The silt fraction of AND, in turn, presented peaks related to micas, which 

also denotes K+ reserve (Fig. 2c). 

The treatment enabled better oxide identification, a mineral group that tends to remain 

stable in soils under tropical conditions. It was found a marked presence of hematite (Hm) and 

goethite (Gt) in all of the soils. In addition to those Fe oxides, well-formed peaks of 

maghemite (Mh) were found in SSP, COR and TP (Fig. 3). It was not enough sample to 

perform this analysis on the clay fraction of TC, but from the natural clay analysis, it was 

possible to notice Hm and Gt. In addition to the occurrence of these Fe oxides, the occurrence 

of gibbsite (Gb) and kaolinite (Kt) was observed in all soils (Fig.2).  
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Fig. 2. Mineralogical composition of the B horizon of soils. a) TC-Acrudox; b) COR – 

Acrudox; c) AND – Hapludult; d) PIN – Hapludult; e) ITO – Eutrudept; f)SSP – Acrudox; g) 

TP – Hapludox. Kt: kaolinite; Gb: gibbsite; Gt: goethite; Hm: hematite; Mh: maghemite; Qz: 

quartz; Ot: orthoclase; Mc: mica. 
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Fig. 3. X-ray diffractograms of iron oxides concentrated of clay from B horizons of the 

studied soils. COR – Acrudox; AND – Hapludult; PIN – Hapludult; ITO – Eutrudept; SSP – 

Acrudox; TP – Hapludox. Gt: goethite; Hm: Hematite; Mh: Maghemite. 

 
 

3.4. Soil parent material and oxides as indicator of soil weathering degree 

The soils of this study were formed in situ, in which the geology can also be considered 

the soil parent material. This information is important for viticulture, considering: a) it exerts 

influence on soil characteristics that govern water dynamics as well as nutrient availability, 

especially in soils less weathered whose characteristics still remain similar to those of their 

parent material (Bodin and Morlat, 2006; Huggett, 2006; Morlat and Bodin, 2006); b) wine 

market is traditionally ruled on geological/soil parent material, whose information is often 

found in wine bottle as a guide for consumers (Huggett, 2006). 

Soils with different characteristics could be formed over the same parent material 

(Resende et al., 2014; Silva et al., 2019). Since soils are an open system, in which different 

pedogenic processes occurs, in order to better characterize soils by means of chemical 

elements that work as parent material tracers, pXRF spectrometry was applied. Also, such 
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analysis could assist the terroir characterization. pXRF analysis has been successfully applied 

in Brazilian soils to tell soil parent materials apart with adequate accuracy (Mancini et al., 

2019a; Mancini et al., 2019b). Figs. 4, 5, and 6 show the total chemical composition of soils 

obtained from pXRF.  

Five different parent materials were found in the vineyard soils. The parent material of 

TC is biotite schist/gneiss, rich in biotite that is a primary mineral constituted by K, Mg, Fe, 

Cu, Mn, among other elements (Melo et al., 2009). However, the signs of occurrence of this 

easily weathered mineral and the reserve of nutrients that it can represent are not remarkable 

on the soil. This is due to the intense degree of weathering-leaching, corroborated by the 

lowest Feo (Inda Junior and Kämpf, 2003) (Table 4). The same effect of weathering on the 

parent material occurs in COR, AND, PIN, and TP (Melo et al., 2009). 

Pyroxene Granulite, the soil parent material of the COR vineyard, consists of a 

metamorphic rock containing mainly felsic minerals such as quartz and feldspars, and the 

ferromagnesian mineral pyroxene (Haldar and Tišljar, 2014). Pyroxene is a mineral that is not 

very resistant to weathering, so much so that it was not observed in the mineralogical 

composition of the sand fraction of this soil (Fig. 2b). The pXRF results showed low levels of 

most trace elements and other elements originating from ferromagnesian minerals (Melo et 

al., 2009). It was found a predominance of SiO2 and Al2O3.  

The soils of AND and TP have gneiss as their parent materials. In these soils, in relation 

to the other elements, SiO2 mostly constitutes this felsic rock. High levels of this oxide were 

found in both soils (Fig. 4). The AND soil presented higher levels of Sr and K2O, while TP is 

among the highest levels of Al2O3. All of these elements and oxides are typical of gneiss rock 

(Grotzinger and Jordan, 2014; Mancini et al., 2019b).  

The highest contents of K2O, Ba, Ce, Mo, Nb, Rb, Y, Zn, and Zr were found in ITO, 

likely due to the low degree of soil weathering-leaching. Although PIN and ITO soils were 
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formed by the same type of parent material (granite) they presented a quite different chemical 

composition and physical characteristics, due to greater pedogenetically development of PIN. 

The SSP soil has as its parent material, a mixture of basalt and sandstone, with the 

predominance of the first rock. Basalt consists of ferromagnesian minerals such as pyroxene, 

hornblende, olivines, and Ca-plagioclases (Grotzinger and Jordan, 2014). The total content of 

Fe2O3, Cu, and Pb was higher in this soil. Also, the soil of SSP presented Fe content higher 

than the others (determined by pXRF and extracted by sodium dithionite (Fed) and 

ammonium oxalate (Feo) (Table 4). 
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Table 4 Fe content extracted by dithionite (Fed) and oxalate (Feo) in the clay fraction of the 

studied soils 

Horizon Fed (g kg-1) Feo (g kg-1) Feo/Fed 

P1 - ACRUDOX (TC) 

Ap 125.8 1.3 0.01 

Bo1 101.8 1.1 0.01 

Bo2 109.8 1.0 0.01 

P2 - ACRUDOX (COR) 

Ap 113.8 2.7 0.02 

Bo1 120.5 2.6 0.02 

Bo2 121.4 3.1 0.03 

P3 - HAPLUDULT (AND) 

Ap 84.8 4.1 0.05 

Bt1 96.0 2.6 0.03 

Bt2 95.3 2.5 0.03 

P4 -HAPLUDULT (PIN) 

Ap 70.2 2.6 0.04 

Bt1 62.3 0.9 0.01 

Bt2 54.1 0.8 0.01 

BC 77.2 1.0 0.01 

P5 - EUTRUDEPT (ITO) 

Ap 82.6 3.1 0.04 

Bw 106.4 1.5 0.01 

P6 - ACRUDOX (SSP) 

Ap 273.1 4.0 0.01 

Bo1 238.6 3.8 0.02 

Bo2 242.4 3.7 0.02 

P7 -HAPLUDOX (TP) 

Ap 78.2 2.1 0.03 

Bo1 77.6 1.3 0.02 

Bo2 76.3 1.0 0.01 
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Fig. 4. Boxplot comparing elemental and oxides contents determined via portable X-ray fluorescence (pXRF) spectrometry in air-dried fine earth 

of the horizons of the soils of the vineyards in the southeastern region, Brazil. TC-Acrudox; COR – Acrudox; AND – Hapludult; PIN – 

Hapludult; ITO – Eutrudept; SSP – Acrudox; TP – Hapludox. 
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Fig. 5. Boxplot comparing elemental and oxides contents determined via portable X-ray fluorescence (pXRF) spectrometry in air-dried fine earth 

of the horizons of the soils of the vineyards in the southeastern region, Brazil. TC-Acrudox; COR – Acrudox; AND – Hapludult; PIN – 

Hapludult; ITO – Eutrudept; SSP – Acrudox; TP – Hapludox. 
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Fig. 6. Boxplot comparing elemental and oxides contents determined via portable X-ray fluorescence (pXRF) spectrometry in air-dried fine earth 

of the horizons of the soils of the vineyards in the southeastern region, Brazil. TC-Acrudox; COR – Acrudox; AND – Hapludult; PIN – 

Hapludult; ITO – Eutrudept; SSP – Acrudox; TP – Hapludox. 
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3.5. Climatic characterization 

The climate influences the development of the vine, this in turn will affect the quality of 

the grapes and wines (Van Leeuwen et al., 2004). The low rainfall during the ripening period 

of the grapes is positive for the accumulation of sugars and phenolic compounds in the grapes 

(Amorim et al., 2005). In turn, high thermal amplitudes are favorable to the accumulation of 

phenolic compounds, directly related to the composition and quality of wines (Conde et al., 

2007). Up to certain limits, higher temperatures during the maturation period can result in an 

increase in the pH of wines (Brant et al., 2021; Conde et al., 2007), favoring their 

susceptibility to oxidation and damage caused by microorganisms (Van Leeuwen et al., 2018). 

The accumulated rainfall during the maturation period of vines grown under double 

pruning varies between 72 and 115 mm (Fig. 7a). The COR, AND, and PIN vineyards have 

the highest accumulated volume during the period considered. The thermal amplitude varies 

between 12.6 and 15.4 °C, with the highest thermal amplitudes for TC, COR, and TP (Fig. 

7b). AND, PIN, and SSP vineyards have milder atmospheric temperatures with the maximum 

that do not reach 24 °C. ITO presents a warmer climate from May to July, with higher values 

of both the maximum temperature and the minimum temperature. 
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Fig. 7. Climatic characteristics of the vineyards studied during the maturation period (May to 

July). 

 

3.6.  Principal component analysis and the relationship between soil, climate and wine 

characteristics 

 

As the combinations of physical, chemical, and mineralogical properties of soil and 

climate influence the quality of wines in different ways, PCA analysis was carried out to 

group the vineyards according to soil-environmental similarities. PCA analyses were 

performed from information of A and B horizon separately (Fig. 8 and 9, respectively), in 

order to best characterize soil-environment scenarios, since: a) soil chemical-physical 

characteristics markedly differ in depth, due to human (amendments application) and 

environmental factors (soil pedogenesis promote differentiation on soil structure, SOM, clay 

accumulation in depth, and others); b) most of the fine roots are found in the first 60 cm of 
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depth, reaching A and B horizon (Smart et al., 2006); c) soil classification was an important 

source of information, and considering the soil types found, information from the subsurface 

horizons govern the classification in the first categorical level (order) (Soil Survey Staff, 

2014); d) soil air is different from the air of the atmosphere. Even under the same atmospheric 

conditions, soil behave differently due its characteristics as color, water and coarse fragments 

content (govern soil temperature variations), or shape of structure, texture, charges or depth 

(govern water movement). Thus, we expected different relation and interaction between soil x 

climate on PCA analysis at either horizon. In order to facilitate understanding and, mainly, 

considering that B horizon govern the classification in the first categorical level (order) (Soil 

Survey Staff, 2014), the discussion of the groups of vineyards was carried out based on the 

groups formed by PCA with the data from this horizon.  

Both climatic and physical and chemical characteristics of the soil were important for 

grouping the vineyards, as will be discussed below. The definition of the groups was based on 

the proximity of the vineyard principal components in the plots, represented by different 

formats (Fig. 8 and Fig. 9). It is possible to notice a differentiation of wine composition 

among groups formed from soil-environment characteristics (Fig. 10), pointing out a good 

performance of PCA on determined typical combination of soil-environment, that also tell 

apart wine tipicity. 
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Fig. 8. Biplot of first principal component 1 (Dim1) and second principal component 

(Dim 2). A horizon data and climatic data as active variables and wine composition as 

supplementary variables. 

 

 
Fig. 9. Biplot of first principal component 1 (Dim1) and second principal component 

(Dim 2). B horizon data and climatic data as active variables and wine composition as 

supplementary variables.  

A)
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Group A) Vineyards in COR, AND, and PIN: the soil characteristics of A horizons are 

quite different (Fig. 9), mainly due to differences in management. The B horizon presented 

greater correlation with elements related to Al3+ and AS, with higher content values observed 

in PIN. The climatic variable most related to this group was the accumulated rainfall, which is 

highest when compared with other groups (Fig. 8). Fig. 10 shows that the wines produced 

presented the lowest ashes alkalinity, and the lowest total polyphenols index (TPI), differing 

from other groups formed. In addition, the wines presented lower pH values and higher fixed 

acidity, which might be due to higher sand surface content leading to the less water retention 

in AND and PIN. Malic acid synthesis is higher when there is a limitation of water supply 

(Morlat and Bodin, 2006).  

Group B) TP and TC vineyards: PCA shows that these vineyards have in common the 

higher levels of SOM and B in the subsurface. Higher SOM levels may have guaranteed 

greater vine yield, as demonstrated by phytotechnical work carried out in this area (Brant et 

al., 2021). Another similarity of soils belonging to this group is the clay textural class 

throughout the soil profile. These vineyards have a similar higher thermal amplitude (15.4 °C 

in TC and 15.2 ° C in TP) (Fig. 7b). Most parameters of wine composition showed great 

variation and intermediate values in relation to the other groups. The most similar parameters 

for TC and TP respectively are alcohol (13.85 and 14.20%), TPI (58.14 and 57.56), and 

sugars (2.94 and 3.31 g L-1). TC wine has a fixed acidity of 6.07 and TP of 5.04 g L-1, 

whereas the pH is 3.73 and 4.17 respectively. The lower acidity of TP wine is a result of the 

high levels of soil K+ (Van Leeuwen et al., 2018), since it tends to decrease the concentration 

of free acids in wines (Kodur, 2011). The color intensity is also lower in soils with high levels 

of such nutrient, as was verified in TP (Mpelasoka et al., 2003). 

Group C) Vineyard in ITO: from PCA is possible to notice a clear differentiation of this 

vineyard soil, in which the marked differences of morphological attributes is the lesser 



 
 

69 

 

thickness and the lesser pedogenetic development. This soil has high levels of subsurface 

sand, higher CEC (effective), higher Ca2+, Mg2+, and higher total K2O content determined by 

pXRF. Contrary to the parent material of the other soils, the field work allowed the 

visualization of the altered granite in 70 cm of deep. The wine from this vineyard presented 

the highest flavanols content. Also, it was found high values of dry extract, color intensity, 

TPI, alcohol content, and sugars (Fig. 10). The high wine pH might be due to the high average 

atmospheric temperatures during the maturation period that favor the degradation of malic 

acid (Brant et al., 2021; Conde et al., 2007). The high residual sugar content, in addition to the 

high temperatures, can occur both due to the low precipitation (Amorim et al., 2005) and due 

to the lower soil water retention (Van Leeuwen et al., 2009). In addition, the high alcohol 

formation in this case inhibits the activity of the yeasts and a higher residual sugar content 

remains. Similar to this vineyard, grapes with high oenological potential also have showed 

high levels of TPI, produced in soils with less weathered material in France (Morlat and 

Bodin, 2006). 

Group D) Vineyard in SSP: despite being an Acrudox, a soil type that was also found in 

other vineyards, it has a different parent material (mixture of basalt and sandstone). The 

subsurface horizons of this soil were correlated with higher pH values in water. Since the 

harvest was late in this vineyard, it cannot be said that the greatest correlation of wine 

compounds with this vineyard occurs due to edaphoclimatic factors. (Fig. 8 and Fig. 9). This 

is because the late harvest in this vineyard caused greater dehydration of the grapes and the 

consequent concentration of most of these compounds (Brant et al., 2021). 

Comparatively, the winter wine composition related to wine quality is within the 

variation of the composition of wines produced in important viticultural regions of the world. 

Especially considering the alcohol content and pH similar to those found in California 

(Brillante et al., 2018); alcohol content, anthocyanins and TPI that occur in wines from 
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Greece (Koundouras et al., 2006); anthocyanins (Ristic et al., 2007) and alcohol and pH 

determined in wines from Italy (Priori et al., 2019). 
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Fig.10. Boxplot with the composition of winter wines separated by groups of soils, according to the separation carried out by the PCA in the 

attributes of the subsurface horizons. A) Cordislândia (COR), Andradas (AND) and Espírito Santo do Pinhal (PIN); B) Três Corações (TC) and 

Três Pontas (TP); C) Itobí (ITO); D) São Sebastião do Paraíso (SSP).
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4. Conclusions 

 

The soil parent material of vineyards is quite diverse. AND and TP vineyards have 

gneiss as their parent material and PIN and ITO originate from granite. In such cases, the 

different degrees of weathering to which the parent material was submitted promoted the 

chemical, physical, morphological and mineralogical differences between the soils. 

The ITO vineyard has a shallower soil, with less water storage capacity and also, it has 

the highest atmospheric temperature, which benefits the synthesis of anthocyanins, Flavanols, 

TPI, and alcohol. The soil and climate conditions of this vineyard are the most different from 

the others, which allowed clear visualization of the effect of the environment on the 

composition of the wines. A similar tendency was verified for the vineyard group formed by 

COR, AND and PIN, which have water conditions in the soil that allowed the formation of 

wines with less acidity. 

The different types of soil, the climatic variations, and the management of double 

pruning, allowed the production of wines with high added value and quality when compared 

with the main viticultural regions in the world. 
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ARTICLE 3 

This article was prepared according to the rules of Applied Geography journal 

 

Viticulture areas with similar terroir for Syrah cv. in Minas Gerais, Brazil with fuzzy 

logic approach 

 

1. INTRODUCTION 

 

Brazil had a total of 76,000 ha of vine production in 2018 (Mello, 2019), including the 

main producer states of Rio Grande do Sul, Pernambuco, Paraná, Santa Catarina, Bahia, 

Minas Gerais, and São Paulo (Mello, 2019). Although Rio Grande do Sul is the most 

consolidated producer state, Minas Gerais in southeastern Brazil presented the higher recent 

increase in cultivated areas (Mello, 2019). The Brazilian wine industry still has low 

competitiveness, since most of the fine wines consumed in Brazil are imported from Chile, 

Argentina, and European countries. In order to mitigate such effect, it is necessary to improve 

wine competitiveness, which could be reached with quality, price, and tipicity (Miele et al., 

2010).  

Typicity is a term in wine tasting, related to terroir concept (Regina et al., 2009), 

describing the degree to which the wine reflects its origins, as well as the signature 

characteristics of the vines from which it was produced. Terroir is a French term that 

expresses the relationship among wines, environmental, and human characteristics that are 

directly related to their origin (Vaudour, 2002). Regarding origin and typicity, our main focus 

in this study is related to a provenance area located in southern Minas Gerais state. The fine 

wines produced in this region were leveraged by a recent technique, called double pruning, 

which allows grapes development and ripening in the autumn-winter period. It results in the 

harvesting of grapes with higher quality and phytosanitary indices (Amorim et al., 2005; 

Favero et al., 2008, Favero et al., 2011; Mota et al., 2011; Dias et al., 2012). Because the 
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grapes are harvested in winter, the name Winter Wines has been used. Currently, there are 

more than 152 ha of vineyards applying double pruning technique, widespread in 10 counties 

in the Southeast region of the country, with an average production of 740 t of wine per year 

(Brant et al., 2018). The cultivar Syrah showed the best agronomic and quality performance, 

compared to other evaluated cultivars (Amorim et al., 2005; Favero et al., 2011). 

Thus, besides the success of this management on wine quality, the provenance study 

region is composed by counties with geographical similarities, in which Três Corações and 

Cordislândia counties have commercial vineyards (Regina et al.,2009), and several 

experiments with the Syrah vine and the management of double pruning (Amorim et al., 

2005; Favero et al., 2011; Favero et al., 2008).  

Keeping in mind the importance of typicity to assist wine terroir information, and that 

both characterizations are important to assist the expansion of vitiviniculture frontier in the 

provenance area, typical environmental variables in a geographical context that drive terroir 

should be analyzed and better understood. Besides soil, wine terroir is also influenced by 

environmental variables such as climate, relief, and geology (Vaudour, 2002). Since terroir 

has a spatial dimension (OIV, 2012), recent researches have seek for land classification in 

homogeneous land units considering different spatial information and tools for such purpose 

(Bonfante et al., 2011; Cardoso et al., 2019; Nowlin et al., 2019; Priori et al., 2019; Vianna et 

al., 2019).  

Soil-environmental variables are mostly distributed in a continuous pattern (most are 

grid-based maps in this study case). Thus, such geographical phenomena, when combined to 

assist wine-terroir interpretations, imply in ambiguities and uncertainty. Furthermore, keeping 

in mind our goal to find areas with higher suitability for vine and wine production to assist 

vitiviniculture expansion, we applied fuzzy logics concepts (Zadeh, 1965). This method along 

with derived tools (Shi, 2013) generates statistical values of the environmental properties 
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within a given soil mapping unit, working as a data mining tool, allowing: to explore the 

similarity between terroir-driven environmental variables and soil mapping units containing 

well-established vineyards (reference vineyards), by exploring Geographical Information 

System basis; to extract the core environmental concept by creating typical membership 

curves, which is in accordance to wine terroir concepts; to create fuzzy membership maps, 

where the more similar a local is to a prescribed soil mapping unit, the higher its similarity 

value (fuzzy membership). 

In this sense, we hypothesize that fuzzy logics is a suitable tool to stratify the 

environment and define areas with greater pertinence of the production of fine Winter Wines 

according to environmental characteristics of soil mapping units that include commercial 

vineyards already established. The objective of this work was to search for soil mapping unit-

like areas that encompass two commercial vineyards in the southern region of Minas Gerais 

and, to verify the differences and similarities of wines and grape produced in two reference 

vineyards. Therefore, attributes related to the terrain, climate, soil and geology of the soil 

mapping units were considered. The methodology of this work presented three main steps: i) 

obtaining the attribute layers and harmonization of the database; ii) extracting information 

from soil mapping units; iii) application, in the provenance area, of the information that was 

extracted from the soil mapping units. 

 

2. MATERIALS AND METHODS 

 

 

2.1. Study areas and analysis 

 

2.1.1.  Provenance area 

 

The provenance area is located in southern region of Minas Gerais State (Fig. 1), 

encompassing 2,075 km² of area chosen based on environmental characteristics required for 

grape-growing and wine-production with high quality (Regina et al., 2006; Tonietto et al., 
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2006): a) average temperature between 18 and 10 °C in the coldest months, and the hottest 

month with a maximum of 22°C (Tonietto et al., 2006); b) driest season lasting three to four 

months and at least one month with a rainfall average of less than 60 mm; c) annual period of 

sunshine ranging from 1949 to 2050 hours. This area encompasses reference vineyards and its 

surrounded areas, which are characterized as local and regional approaches of this study. 

 

Fig. 1. Framework, different scales and study areas.  

 

2.1.2.  Local scale: reference vineyards 

 

Besides the previous development of several scientific experiments for characterizing 

phytotechnica aspects,  analysis of two commercial vineyards (reference vineyards) located in 

Três Corações and Cordislândia counties were performed for this study, including soil 

classification, soil mineralogy analysis, vineyards management information acquisition, 

grape, and wine composition analyses. 

Soils classification: soil samples were collected and classified according to Soil Survey 

Staff (2014), based on morphological and physical-chemical characterizations and analysis 
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(data not shown). Soil classification was carried out to refine the information of current soil 

map available for the State, which presents a small scale (1: 650,000) (more information will 

be discussed below). Soil associations occur within the mapping unit polygons due to scale 

characteristics, and there may be some divergence between the soil verified in the field and 

that contained in the map.  

Soil mineralogy: X-ray diffraction (XRD) analysis was performed in samples collected 

at a depth of 40-70 cm on the sand, silt and clay fractions of the soils of the two reference 

vineyards. For mineral identification an X-ray Powder Diffraction with CuKα radiation (Ni 

filter and a current of 20 mA) was conducted. XRD indicates degree of soil weathering, and in 

the sand fraction works as a proxy for soil parent material allowing infer about nutrient 

reserves, soil water retention and physical stability of soil aggregates (Melo & Alleoni, 2009; 

Kämpf et al., 2012). Also, mineralogy exerts great influence on soil structure formation of the 

study area, since some minerals tend to arrange (forming mainly blocky structure in the B 

horizon) and others tends to disarrange (forming granular structure in the B horizon) soil 

particles. The latter causes an increasing of soil porosity as well as water permeability 

(Ferreira et al., 1999; Carducci et al., 2011). 

Management details: the Syrah cultivar was managed with double pruning according to 

Favero et al. (2011), grafted onto the Paulsen 1103 rootstock. The first pruning was carried 

out in August for the formation of latent buds and constitutes the vegetative cycle, and the 

second pruning was carried out in January for the production of grapes and constituted the 

reproductive cycle. The spacing of 2.5 m x 1.0 m (4,000 plants ha-1) was adopted and the two 

prunings maintained 20 latent buds per plant on average.  

Grape quality: grape average compositions from the vintages of 2014, 2015, 2017, and 

2018 for Três Corações, and vintages of 2016, 2017 and 2018 for Cordislândia were analyzed. 

For the grape composition, the following analyses were carried out in ten repetitions: pH, by 
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means of digital potentiometer in the fresh grape juice (must); total soluble solids (°Brix) in 

reading on portable digital refractometer (model Pal 1, Atago); total titratable acidity 

(expressed in g L-1 of tartaric acid) by titration with NaOH 0.1mol L-1 using phenolphthalein 

as an indicator, and berry weight at harvest; anthocyanin content in skins by the differential 

pH method (Giusti and Wrolstad, 2000); total phenolics using the Folin-Ciocalteau method 

based on a standard curve of gallic acid (Amerine & Ough, 1980). 

Concerning wine quality, analyses in triplicate following the same vintages 

abovementioned for grape quality were carried out: ash content obtained by gravimetric 

method, and ash alkalinity by titrimetric method (Amerine & Ough, 1980); dry extract 

obtained by evaporation of the wine according to the AOAC method (AOAC 1995); flavanols 

were determined by a colorimetric method (Blouin, 1992); intensity, shade, and total 

polyphenol index were determined according to Curvelo-Garcia (1988). Similarly, to grape, 

anthocyanin and total phenolics content were carried out.   

In order to verify the relationship between the two reference vineyards regarding the 

composition of the grapes and the wines produced, the multivariate Principal Component 

Analysis (PCA) was performed (FactoMineR package, version 1.42) in R software (R Core 

Team, 2018). In addition, the averages of vintage of each reference vineyard were compared 

by means of Tukey test (p <0.05) in Sisvar (Ferreira, 2011) software. 

 

2.1.3.  Regional scale: soil mapping units   

 

Soil mapping units from a soil survey (1:650.000 scale; FEAM-CETEC-UFV-UFLA, 

2010) that circumvent the vineyards were used in order to bring regional scale of analysis. 

Technically, a soil mapping unit is a collection of areas defined and named the same in terms 

of their soil components or miscellaneous areas, differing from the others by its uniquely 

characteristics in a soil map (Soil Science Division Staff, 2017). It is traditionally delineated 
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based on the relation of the knowledge about the soil-landscape relationships recognized as a 

spatial entity, in which a given soil is mainly related to topography, geology or organisms 

(Hudson, 1992; Jenny, 1941; Hewitt, 1993; Cook et al., 1996). Considering the environmental 

aspects behind the soil mapping unit delineation and its significance under terroir state-of-art, 

it was explored as a case in a reasoning system. Case-based reasoning systems are based on 

previous experiences (soil mapping unit in this case) to solve new problems (find similar 

conditions within provenance area), supported by computer and GIS task to overlay and 

extract optimal values from the environmental data, based on soil mapping unit location 

(Begum et al., 2009; Shi et al., 2009). Since there are two commercial vineyards with 

production of high-quality wines in Cordislândia and Três Corações, their soil mapping units 

could be used as a basis for wine expansion in the provenance area. The matching of soil 

information between Local and Regional scales provides a suitable link of information still 

needed.  

 

 

2.1.3.1. Spatial environmental variables 

 

Environmental variations that are notoriously wine terroir-driver, as terrain, geology, 

and climate were obtained: 

a) Soil type: information obtained from soil map of Minas Gerais state (1:650.000 scale) 

(FEAM, CETEC, UFV, UFLA, 2010) in a polygon format. There is a total of 13 mapping 

units, consisting of six soil types at the suborder level (according to Soil Survey Staff, 

2014), and one mapping unit that corresponds to stone outcrops. Soil is one of the key 

components of the wine terroir, since it governs not only nutrients availability, but also 

root growth and  water dynamics that vine plants depends on (Fayolle et al., 2019; Morlat 

& Bodin, 2006). Since the soils in the vineyards were described and sampled in situ, this 

fact ensures that the soil observed corresponded to the soil mapping polygon.  
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b) Geology: information taken from a geological map in a polygon format (CPRM, 2003), 

(1:1,000,000 scale). Geology, as indicative of the parent material, influences the soil type, 

as well as physical, chemical, mineralogical characteristics (Resende et al., 2014). These in 

turn will govern soil nutrients and water supply, as well as the development of the root 

system of grapevines (Huggett, 2006). 

c) Relief: a digital elevation model (DEM) with a spatial resolution of 12.5 m was obtained 

from Alos 1-Palsar satellite image (download at https://www.asf.alaska.edu/, accessed in 

November 15, 2018). DEM quantitatively represents the continuous variation of relief 

through the landscape (Moore et al., 1993). From this raster map, the following terrain 

attributes were generated using SAGA GIS 6.4.0 (Conrad et al. 2015): slope, aspect, and 

vertical distance to channel network. Slope surface information is related with nutrient, 

sediments, and water movement (Weill & Brady, 2017; White, 2003).  The aspect 

identifies the downslope direction, and according to Regina et al. (2006), the exposure 

facing north is preferred since the greater exposure of fruits to sunlight improves the 

quality of grapes and wines (Bergqvist et al., 2001), where the south face is less 

recommended. Jones et al. (2004) considered the proximity of the vineyard to water bodies 

as an important influencer on quality of the grapes, consisting of an information that is 

expressed by vertical distance above the channel network map. In addition, such proxies of 

relief are strongly related with soil spatial distribution (Milne, 1935), due to their 

conceptual relation with soils and less generalized level of detail (Costa et al., 2018). 

d) Climate: rainfall and annual mean temperatures raster maps were acquired from 

WorldClim Version 2.0 (Hijmans et al., 2005) (1 km² resolution), one of the main global 

information database about the climate. The potential daily evapotranspiration was 

calculated in SAGA GIS 6.4.0 (Conrad et al., 2015) from minimum, mean and maximum 

temperature raster maps acquired from WorldClim as well. Since Wordclim spatial 

https://www.asf.alaska.edu/
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resolution is coarse considering the characteristics of this study, in order to downscale the 

spatial data bank taken into account the scale of analysis, ordinary kriging was performed 

in annual rainfall, and daily evapotranspiration dataset. For this was used Geostatistical 

Analyst tool within ArcGIS. Kriging follows the adjustment of the semivariograms, a 

function that describes the spatial relationship of a data set (Isaaks and Srivastava, 1989), 

according to the following equation: 

𝛾(ℎ) =  
1

2𝑁(ℎ)
 ∑ [𝑧(𝑥𝑖 ) − 𝑧(𝑥𝑖  + ℎ)]²

𝑁(ℎ)

𝑖=1

 

where γ (h) is the estimated semivariance value at distance interval ℎ; 𝑁(ℎ) is the number of 

experimental pairs within a distance ℎ; 𝑧(𝑥𝑖 ) and 𝑧(𝑥𝑖  + ℎ) are the measured values of the 

variable z (evapotranspiration or precipitation) separated by the distance ℎ.  

Since altitude is strongly related with climate (Priori et al., 2019), the cokriging was 

performed for spatial interpolation of annual mean temperature using DEM, in order to take 

the advantage of using an auxiliary information, constituted by mean Worldclim temperature, 

to increase resolution and accuracy (Khosravi & Balyani, 2019). In this case, such 

downscaling is possible when there is a spatial correlation between the primary attribute 

(mean temperature) and auxiliary information (DEM) (Pardo-Igúzquiza et al., 2006). This 

spatial correlation was analyzed by the adjustment of parameters of the experimental cross 

variogram when cokriging was performed, according to the following equation: 

𝛾12(ℎ) =  
1

2𝑁(ℎ)
 ∑ {𝑧1(𝑥𝑖 ) − 𝑧1(𝑥𝑖  + ℎ)} ∗  {𝑧2(𝑥𝑖 ) − 𝑧2(𝑥𝑖  + ℎ)} 

𝑁(ℎ)

𝑖=1

 

where, 𝑁(ℎ) is the number of observation pairs within distance h; 𝑧1(𝑥𝑖 ), 𝑧1(𝑥𝑖  + ℎ) e 

𝑧2(𝑥𝑖 ), 𝑧2(𝑥𝑖  + ℎ) are the mean temperature and DEM values (Goovaerts, 1998).  
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The accuracy of kriging and cokriging was assessed by cross-validation, allowing the 

calculation of two statistical indices: the mean error (ME) and the root mean square error 

(RMSE), calculated as follows: 

 

𝑀𝐸 =  
1

𝑛
 Σ𝑖=1

𝑛  (𝑒𝑖 −  𝑚𝑖)     

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 Σ𝑖=1

𝑛  (𝑒𝑖 −  𝑚𝑖)2     

 

where, n: number of observation points, ei: estimated value of the attribute (climatic variables 

or evapotranspiration) and, mi: measured values (pixels of the layers). The ME measures the 

bias of the prediction, and the best case is to have ME as close to zero as possible. The RMSE 

indicates the accuracy of the prediction and, the closer to zero, the greater the accuracy of the 

prediction.  

 

2.1.3.1. Fuzzy logics and similarity vectors  

 

In order to seek for areas with a higher similarity of the Reference Vineyards throughout 

provenance area, the fuzzy logic and similarity vectors concepts were applied by means of the 

software ArcSIE (Soil Inference Engine) version 10.1.002 (Shi et al., 2009). For that, the 

module Knowledge Discoverer was used to uncover the typical patterns of occurrence and 

creation of membership maps. In addition, such module is capable to convert case-based into 

rule-based reasoning (Shi, 2013), as a part of the process to extract and formalize information 

by means of optimality curves, as detailed below. 

In the first step of Knowledge Discoverer, by the overlay of the soil mapping unit that 

circumvents Reference Vineyards on the environmental variables, information extraction was 

performed by means of mathematic functions or optimality curves built for each 
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environmental variable. Thus, both soil mapping units are conceptually considered as a case, 

in which the curves represents the extraction and formalization of typical environmental 

covariates conditions within soil mapping units. Two types of optimality curves were built 

according to the environmental characteristics: 

a) Gaussian curves – applied for numerical raster maps: all raster cell values were 

associated with soil mapping units contour to automatically generate optimality 

curves, to build Gaussian curves (bell-shapped) (Fig. 2a). The top of curve value (most 

optimal range) is represented by the median of pixel values, represented by the values 

v1 and v2 that are the lower and upper limits of a given environmental variable. In this 

case, the bell shape curve was used, where v1 = v2. The w1 and w2 values, in turn, 

define how optimal values will change as environmental characteristics deviate from 

typical characteristics. They correspond to which attribute value represents 50% of the 

optimal value for this attribute (generally speaking, it is equal to the standard 

deviation). The values of r1 and r2 control the flatness of the top and the steepness of 

the side parts of the curve (Zhu et al., 2010). 

b) Nominal function – applied for categorical polygon map: the nominal information is 

numerically represented by a numerical code that is meaningful (e.g. number 4 

represents a given soil type). In this case, v1 = v2 since the most optimal value is the 

labelling only one type of information (Fig. 2b). 
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Fig. 2. a) Gaussian curve - continuous bell shape, and b) Nominal curve (for geology). 

 

In the second step, after extracted and formalized information by means of optimality 

curves for each environmental variables, fuzzy membership maps were created for each soil 

mapping unit case. For this, the membership function was derived by Rule Based-Reasoning 

(RBR). The RBR sets similar values for each pixel, ranging from 0 (low similarity) to 1 (high 

similarity) (McKay et al., 2010), and the initial output from inferences is a fuzzy membership 

map in raster format. As two soil mapping units polygons were considered, two fuzzy 

membership maps were generated considering the two soil mapping units (Cordislândia and 

Três Corações) of Syrah in Southern Minas Gerais state. Thus, continuous fuzzy membership 

maps can represent a continuous variation of the typical values of the environmental variables 

of each soil mapping unit, according to the following formula (Zhu et al., 1997a):  

 

𝑉𝑖,𝑗 =
∑  𝑆𝑖𝑗    

𝑘 ∗  𝑉𝑘𝑛
𝑘=1

∑  𝑆𝑖𝑗    
𝑘𝑛

𝑘=1

 

 

where 𝑉𝑖,𝑗 represents the estimated similarity to soil mapping unit at a given location (i, 

j), 𝑉𝑘 is a typical value of the considered soil mapping unit (Cordislândia or Três Corações) 

and n is the total number of soil mapping units. The higher the membership value (closer to 

a

b
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1), the closer is a given location to the core or typical concept, the higher is the membership 

value assigned for that pixel (Shi, 2013). 

The exaggeration index was calculated in order to access the uncertainty associated with 

the deviation from the definitions of a given soil mapping unit. Exaggeration is calculated 

according to the following equation: 

𝐸𝑖𝑗 = 1 − 𝑆𝑖𝑗
𝑎  

where 𝐸𝑖𝑗 is the exaggeration uncertainty measure and 𝑆𝑖𝑗
𝑎  is the similarity measured between 

the pixel (i,j) for a given soil mapping unit assigned (Zhu, 1997b). The higher the membership 

assigned for a given soil mapping unit (case), the less the exaggeration. 

 

3. RESULTS AND DISCUSSION 

 

3.1.  Climate information downscaling from kriging and cokriging 

 

The fitting parameters of semivariograms and cross-variogram, as well as the cross-

validation accuracy indexes are presented in Table 1. Those models with lower ME and 

RMSE values were chosen for the spatial interpolation by means of kriging and cokriging 

(exponential model for cokriging annual mean temperature x DEM and evapotranspiration 

ordinary kriging, and spherical model for annual precipitation ordinary kriging). In general, 

values of ME as close to zero as possible, and RMSE as small as possible denoted suitable 

accuracy, supporting the application of such methods for downscale purposes, similarly to 

Pardo-Igúzquiza et al. (2006). It should also be emphasized that several viticulture zoning 

scientific works deal with spatial data in different scales or resolutions (Madruga et al., 2015; 

Nowlin et al., 2019; Vianna et al., 2019), according to the occurrence of environmental 

variables. Annual mean temperature cokriged with altitude, and rainfall and 
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evapotranspiration kriging allowed the reduction of the layers from1 km² to a resolution of 

250 m² through the ArcGIS default of Geostatistical Analyst. 

 

Table 1. Models and adjusted parameters set for the semivariograms and cross variogram 

modeled for the downscaling of climatic variables. 

Variable Model Adjustment parameters 

    ME RMSE Nugget Range (m)  Partial sill 

    Variogram   

Evapotranspiration (mm dia-1) Exponential -0.0000132  0.03 (mm dia-1) 0.004 147,461 0.02 

Anual rainfall (mm) Spherical  0.0060000 10.2 (mm) 227,384 44,491 1,093 

    

Cross variogram 

  
Mean temperature x altitude Exponential -0.00003 0.74 0.01; 2,109 47,342 0.2; 8,182.0 

Mean temperature (°C) Exponential    0.10000 0.67 (°C) 0.01 59,217.90 0.2 

Altitude (m) Exponential    2.83000 0.06 (m) 2,109.00 47,542.80 8,182.0 

ME: mean error; RMSE: root mean square standardized 

 

3.2. Environmental characterization of provenance area 

 

The environmental characterization of provenance area is presented in Fig. 3, in which 

the soil mapping unit circumventing the Reference Vineyards is also displayed. The altitude is 

an important parameter for viticulture development (Oliveira et al., 2019) and it has averages 

924 m with CV of 10%. This demonstrates that there are no major variations in altitude in the 

total area, with higher locations occupying only parts of the provenance area (Fig. 3). For the 

aspect map, the following intervals were considered: north (0-22.5  and 337.5 - 360°; 

northeast (22.5- 67.5°); east (67.5-112.5°); southeast (112.5-157.5 °); south (157.5-202.5°); 

southweast (202.5-247.5°); west (247.5-292.5); northwest (292.5-337.5°). The 62% CV 

indicates that there is a wide variation of exposure faces in the area. 

The slope ranges from 0 to 95%, with an average of 15% and a standard deviation of 10 

and CV = 67%. This high CV indicates that there is a great variation of this characteristic in 

the provenance area. Slope affects water storage dynamics vineyard management, as well as 
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govern erosion susceptibility (steeper slopes are more likely to erode than gentle ones). 

Moreover, slope affects air movement, particularly cold air (Badr et al., 2018). Moderate 

slopes, between 5 and 15% are referred to as optimal for viticulture (Jones et al., 2004); 

however, as crops such as cereals and grains depend on flatter areas as well as with higher 

nutrient and water supplies, generally, farmers can also grow vines in regions with steeper 

slopes (Van Leeuwen & Seguin, 2006).  

The mean temperature ranges from 16.95 to 20 °C, with a CV= 1.94%. The annual 

rainfall ranges from 1451 mm to 1678 mm, with a variation of 2% in the area and, 

evapotranspiration has too a small variation in the provenance area (3.56 to 4.00 mm day-1, 

CV = 2.3%). In addition to demonstrating that there are no major climatic variations in the 

area, these low CVs are in accordance with the low altitude variation. Temperature, however, 

is a climatic factor very influenced by the topography and tends to decrease with increasing 

altitude (Van Leeuwen, 2010). 
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Fig. 3. Environmental continuous variables in the provenance area as well as soil mapping 

units (cases) in Cordislândia and Três Corações Reference vineyards. Vdcn: vertical distance 

to the channel network; m ± sd: mean ± standard deviation; CV: coefficient of variation. 
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Considering the whole provenance area, there are nine types of lithologies according to 

CPRM (2003) including biotite schist-gneiss, cyanite grenade, gneiss, metagrauwacke, 

orthogneiss, biotite-gneiss, pyroxene granulite, quartzite and unconsolidated sediments (Fig. 

4).  

The soils of Reference vineyards were classified as Oxisols (Soil Survey Staff, 2014),  a 

predominant soil type in the whole provenance area (Acrudox and Hapludox) (Fig. 4). In 

general, Oxisols are thicker soils, with a little differentiation among horizons (considering soil 

texture or colors), finer-texture with little increase of clay content in depth, and are somewhat 

excessively drained (Soil Survey Staff, 2014; Santos et al., 2018).  

 

Fig. 4. Environmental nominal variables in the provenance area as well as soil mapping units 

(cases) in Cordislândia and Três Corações Reference vineyards 

 

Considering the mineralogical aspects of Oxisols, the soil X-ray diffraction (Fig. 5) 

pointed out the presence of minerals that resulted from intense weathering-leaching of tropical 

conditions: goethite (iron oxide), hematite (iron oxide), gibbsite (aluminum oxide), and 

kaolinite (Resende et al., 2014). The soil mineral constitution exerts great influence on 
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chemical and physical characteristics of soils (Ker, 1997), affecting the development of the 

vines, which in turn will be related to the quality of the wines produced (Van Leeuwen et al., 

2018; Renouf et al., 2010). 

Considering the chemical aspects, it is well-known that such minerals in clay fractions 

are responsible for the low cation exchange capacity of soils and low base saturation in the 

subsurface. Considering the coarser soil fraction, the predominance of quartz (SiO2) was 

found, indicating the absence of easily weatherable minerals (Soil Survey Staff, 2014; Santos 

et al., 2018), as well as poor reserve of nutrients (Melo & Alleoni, 2009). However, the 

management of fertilization allows adequate nutrition of the vines. In addition, studies carried 

out in these same areas by Brant et al. (2021) showed that the management of double pruning, 

associated with the soil attributes and climatic conditions allowed a good agronomic 

performance in Syrah vines. 

Regarding physical aspects, the higher the iron and aluminum oxides, the stronger and 

more stable tend to be soil micro-aggregates in the granular shape in B horizon (Wambeke, 

1992), as it was found in the field campaign analysis. This shape of structure increases the 

macroporosity and soil hydraulic conductivity, much greater than normally predicted from 

clay content (Ker, 1997; Buol et al., 2011). It is important to highlight that granular structure 

shape in the B horizon is only reported in Brazilian Oxisols (Santos et al., 2018; Soil Survey 

Staff, 2014; FAO, 2015; Resende et al., 2014), and is therefore a distinctive characteristic of  

the provenance area and this characteristic can even be included as a differential in terms of 

requesting a geographical indication of wines. The suitability for viticulture of soils with 

higher macroporosity is well-recognized, for instance, in the traditional viticulture region of 

Burgundy (Seguin, 1986). 

 

 

  



 
 

97 

 

  

Fig. 5. Mineralogy of the sand, silt and clay fractions of the studied vineyard soils in the depth 

of 40-70 cm of the soils; a) Cordislândia; b) Três Corações; Kt: kaolinite, Gb: gibbsite; Hm: 

hematite; Gt: goethite; Qz: Quartz. 

 

3.3.  Optimality curves  

 

From the overlay of environmental variables over soil mapping unit polygon, the 

optimality or inference curves were extracted by the Knowledge Discoverer module and 

statistics of the raster cells are calculated. The parameters of adjusting curves, which 

represents the core or central concepts of each area are shown in Table 2. For those with 

numerical variations, the top of curves (v1) refers to the median values of all the cell values 

that are enclosed by a soil mapping unit polygon, given the central tendency or the most 

optimal conditions. 

The knowledge discoverer accessed the maximum, minimum and standard deviation 

values. Higher similarity between soil mapping units was found for the following variables, 

(minimum - maximum - standard deviation): slope (1 – 41 – 6% Cordislândia and 1.2 – 70 - 

7.0% for Três Corações); aspect (-1 – 345- 79° Cordislândia and 4 – 352 - 80 ° for Três 

Corações); temperature (19.8 – 20.1 – 0.07 Cordislândia and 19.3 - 19.9 - 0.12 for Três 

Corações); rainfall (1503 – 1513 – 2 mm Cordislândia; 1472 – 1546 - 10 mm for Três 
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Corações); evapotranspiration (3.95 – 4.00 – 0.012 mm dia-1 Cordislândia and 3.76 - 4.03 - 

0.07 mm day-1 for Três Corações), and soil type (Oxisols).  

Also, higher similarity could be observed by the similarity median values (v1) of top of 

curves as well as their deviance (w1). Some of the characteristics abovementioned falls within 

the suitable conditions for production grapes or wine with quality: i) more gentle slopes are in 

accordance with the range of 5 to 15% that is considered as excellent for viticulture (Jones et 

al., 2004); ii) mean temperature is within the appropriate range for obtaining ideal levels of 

anthocyanins in grapes (Van Leeuwen, 2010) and in general, for obtaining adequate levels of 

TSS for ripening grapes (Van Leeuwen & Seguin, 2006). The wide variation in aspect does 

not constitute a limitation for viticulture. This is because, even though the north face is 

preferable in relation to the others (Regina et al., 2006), within a small area it is possible to 

choose slopes with the highest sun exposure side (north face) (Regina et al., 2006).  

The areas differ from such features: i) altitude: Cordislândia presented lower altitudes 

(792-911-28 m) and v1= 843 when compared with Três Corações (849 - 1182 - 49) and v1= 

931 m; ii) geology type. Regarding the influence of geological factors in the composition of 

the wines, where there are very deep soils, the influence of geology is minimal (Huggett, 

2006). Thus, as a large part of the study area consists of deep and well-developed soils, to be 

inferred from the type of soil indicated in the soil map (Acrudox and Hapludox, Rhodudult 

and Hapludult) it is likely that the parent material does not have a direct effect on the 

composition of wines and grapes. However, according to Hugget (2006) in this situation, the 

parent material indirectly controls the composition of grapes, in terms of relief, soil 

composition, geomorphology, and water retention. There are many hypotheses about the 

influence of geology on wine typicity, however, some authors believe that little scientific 

evidence exists to establish how specifically geological parameters are actually involved in 

the typicity of wines (Priori et al., 2019). 
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Table 2. Parameters of inference curves for Cordislândia and Três Corações soil mapping 

units. Altitude, Slope, Aspect, Vdcn, Mean temperature, Evapotranspiration, Rainfall are 

numeric variables; Soil type and geology are categorical 

    E function   

Environmental variable Instance v1 w1 

Cordislândia       

Altitude (m) 843 28 

Slope (%) 

 

10.5 6.1 

Aspect (°) 

 

174.9 79 

Vdcn (m) 

 

10.6 14 

Mean temperature (°C) 19.9 0.073 

Evapotranspiration (mm day-1) 4 0.012 

Rainfall (mm year-1) 1508 1.8 

Soil type e1 Oxisol 

 Geology e1 Pyroxene granulite 

 Três Corações       

Altitude (m) 931.1 48.9 

Slope (%) 

 

12.7 7 

Aspect (degree) 179.6 79.7 

Vdcn (m) 

 

12.7 15.5 

Mean temperature (°C) 19.7 0.12 

Evapotranspiration (mm day-1) 4 0.07 

Rainfall (mm year-1) 1498 10.08 

Soil type e1 Oxisol 

 Geology e1 Biotite schist-gneiss 
 

 
e2 Metagrauwaca 

 
  e3 Quartzite   

Vdcn: vertical distance to channel network. v: top of the curve (most optimal value, 

represented by median); w1: value referring to 50% of the optimal value 

 

3.4. Classification of similarity of areas according to typical characteristics of each soil 

mapping unit polygons 

 

Two fuzzy membership maps was generated from the information of two soil mapping 

unit polygons and their respective optimality curves (Fig. 6). In addition, three different 

ranges of similarities were proposed: low similarity (from 0 to 30% of membership); medium 

similarity (from 30 to 60%; of membership); and high similarity (from 60% to 100% of 

membership). 
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Fig. 6. Fuzzy membership obtained from Cordislândia and Três Corações reference soil 

mapping unit polygons.  

 

Areas with highest similar conditions to Cordislândia were found geographically within 

the reference soil mapping unit polygon, since it is the only location with the typical 

combination of Acrudox with pyroxene granulite and gneiss. This is due to the fact that 

nominal functions assign total membership for the whole polygon. Thus, from a total of 46.5 

km2 reference area, 124 ha were found with higher similarities. Table 3 shows the mean ± 

standard deviation of each continuous environmental maps for Cordislândia. Overall, those 

areas classified as higher similarity presented intermediate altitudes (832 ± 7.0 m), the highest 

slope values (12.0 ± 2.0%), the highest aspect values (192 ± 46.0 degree), the lowest values of 

VDCN (6 ± 2.0 m). Regarding the climatic variables of mean temperature, evapotranspiration, 

and rainfall, no outstanding differences were found between the classes. These values are 

quite similar to those observed in Três Corações. 
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Regarding Três Corações, from Fig. 6 it is possible to notice that areas with higher 

similarities (higher membership values) are geographically dispersed throughout provenance 

area. This occurs since the combination of Hapludox and biotite schist-gneiss, metagrauwacke 

and quartzite, also occurs outside the mapping unit that contains the Três Corações vineyard. 

From 168.45 km2, 1508 ha were found with higher similarities. Table 4 shows the mean ± 

standard deviation of each continuous environmental maps for Três Corações, where the areas 

that constitute higher similarity, similarly to Cordislândia showed intermediate altitudes 

(918.0 ± 18.0 m) compared to the low similarity (924 ± 26.0 m) and medium similarity (911 ± 

28.0 m). The higher slopes were found in the higher similarity class (14.0 ± 3.0%). This class, 

as well as those defined according to Cordislândia soil mapping unit polygon, also had the 

smallest VDCN. The average annual temperature and precipitation also showed no 

differences in relation to the other classes.  

The results of exaggeration, calculated for access the uncertainty of the procedure, are 

shown in Tables 3 and 4. Overall values of exaggeration are around 0.72 ± 0.19, suggesting 

lower conflict of cells with higher membership values for the same location. Mean values of 

exaggeration decrease from low  medium  higher similarity classes, decreasing the 

uncertainty of a class assignment of each cell. 
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Table 3. Topographic and climatic characteristics in similarity classes verified in the search 

for areas similar to Cordislândia soil mapping unit in the southern region of Minas Gerais. 

Mean ± standard deviation 

  Similarity class 

  Low Medium High Overall average 

Altitude (m) 827.0 ± 18 848.0 ± 18.0 832.0 ± 7.0 839.0 ± 18.0 

Slope (%) 11.0 ± 7.0 11.0 ± 4.0 12.0 ± 2.0 11.0 ± 4.0 

Aspect (°) 154.0 ± 47.0 156.0 ± 76 192 ± 46.0 165 ± 65.0 

VDCN (m) 7.0 ± 8.0 16 ± 8.0 6.0 ± 2.0 11.4 ± 8.68 

Mean temperature (°C) 19.91 ± 0.02 19.9 ± 0.03 19.9 ± 0.03 19.9 ± 0.03 

Evapotranspiration (mm daily-1) 3.99 ± 0.01 3.99 ± 0.01 3.99 ± 0.01 3.99 ± 0.01 

Rainfall (mm) 1508.47 ± 0.83 1508.6 ± 1.31 1508.98 ± 0.83 1508.66 ± 1.12 

Exaggeration  0.89 ± 0.05 0.73 ± 0.04 0.49 ± 0.06 0.71 ± 0.15 

Area (ha) 103.0 1015.0 124.0 1241.0 

VDNC: vertical distance to channel network; low: similarity between 0-30%; medium:30-

60%; high: >60%. Mean ± standard deviation. 

 

Table 4. Topographic and climatic characteristics in the similarities classes verified in the 

search for areas similar to Três Corações soil mapping unit in the southern region of Minas 

Gerais. Mean ± standard deviation 

  Similarity  class 

  Low Medium High Overall average 

Altitude (m) 924.0 ± 26.0 911.0 ± 28.0 918.0 ± 18.0 919.0 ± 24.0 

Slope (%) 13.0 ± 5.0 12.0 ± 4.0 14.0 ± 3.0 13.0 ± 4.00 

Aspect (°) 174.0 ± 79.0 174.0 ± 73.0 180.0 ± 45.0 176.0 ± 67.0 

Vdcn (m) 16.0 ± 10.0 14.0 ± 8.0 11.0 ± 4.0 14.0 ± 8.0 

Mean temperature (°C) 19.7 ± 0.07 19.7 ± 0.09 19.70 ± 0.06 19.71 ± 0.07 

Evapotranspiration (mm daily-1) 3.97 ± 0.03 3.96 ± 0.05 3.98 ± 0.03 3.97 ± 0.03 

Rainfall (mm) 1,497 ± 4.4 1,495 ± 7 1,497.69 ± 3.79 1,496.99 ± 4.91 

Exaggeration  0.89 ± 0.04 0.73 ± 0.06 0.5 ± 0.08 0.72 ± 0.19 

Area (ha) 1,634.0 8,296.0 1,583.0 11,514.0 

VDCN: vertical distance to channel network; low: similarity between 0-30%; medium:30-

60%; high: >60%; Mean ± standard deviation. 

 

 

3.5. Linking environmental variables grape and wine composition 

 

Environmental characteristics obtained on a local scale, from spatial information, 

extracted from the reference vineyards are shown in Table 5. Some environmental features of 
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the reference vineyards follow the same pattern as those extracted by the Knowledge 

Discoverer in the two soil mapping units. However, unlike that observed in the soil mapping, 

Cordislândia’s reference vineyard presented higher slope, and Vdcn than Três Corações.  

Contrary to what was verified in the soil mapping unit, here in the reference vineyard, 

the aspects of the reference vineyards is different. Whereas in the Cordislândia vineyard the 

aspect of 224 ° indicates the southeast exposure face, that is, more facing South and in Três 

Corações, the aspect of 4.0 ° indicates the face of exposure facing North, resulting in greater 

insolation (Regina et al., 2006).  

 

Table 5. Environmental characteristics of the Cordislândia and Três Corações 

Syrah reference vineyards in southeastern Minas Gerais 

Vineyard Cordislândia Três Corações 

Altitude (m) 869.00 987.00 

Slope (%) 5.0 3.0 

Aspect (°) 224.0 4.0 

Vdcn (m) 40.0 25.0 

Mean temperature (°C) 19.9 19.6 

Evapotranspiration (mm day-1) 3.99 3.93 

Rainfall (mm year-1) 1508 1501 

Soil type Acrudox Acrudox 

Geology Pyroxene granulite Biotite schist-gneiss 

These parameters were taken from the layers used in spatial modeling with fuzzy 

 logic. Vdcn: vertical distance to chanel network.  

 

 

In addition to verifying the general behavior of the composition of the grapes and wines, 

the PCA was performed to understand the correlation between the variables and how 

important and remarkable they are for the typicity of each vineyard. PCA biplot showing both 

PC scores (triangles and circles) and PC loadings (vectors) on the grape and wine composition 

are shown in Figs. 8 and 9, respectively. To corroborate the results of the PCA, grapes and 

wines composition produced in the two vineyards addressing physic-chemical and agronomic, 
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mean characteristics in three vintages (2016, 2017 and 2018) for Cordislândia and four 

vintages (2014, 2015, 2016 and 2017) for Três Corações are shown in Table 6. 

The variance explained by the variables of the composition of the grapes was 83.6% 

(Fig. 8). The difference in the position of the grapes composition data in different quadrants 

shows that the PCA performed the separation of the two vineyards, based on these variables. 

The arrows in the PCA indicate that the composition of the grapes in Três Corações is more 

related to the TSS contents, in accordance with the higher values showed by Tukey test (Table 

6). Moreover, the grapes produced in these vineyards have slightly higher values of total 

anthocyanin, pH and weight of the grapes compared to Cordislândia. The lower TSS in grapes 

from Cordislândia is due to the early harvest, which directly affects the composition of the 

wines, since it is more common for the grapes to be harvested with a higher TSS that indicate 

a higher level of ripeness (Ojeda et al., 2002; Ristic et al., 2007). 

Anthocyanin and flavanols are phenolic compounds in the group of flavonoids. 

Flavonoids are important quality indicators due to their contribution to the appearance of 

wines (color), taste (bitterness) and mouthfeel (Tarara et al., 2008; Ristic et al., 2007). In 

general, phenolic compounds also contribute to the aging capacity of wines (Mota et al., 

2021). Although there was no statistically significant difference in the levels of anthocyanins, 

the greater insolation, made possible by the north exposure face (aspect = 4 °) in Três 

Corações, may be responsible for the higher average content of this pigment in both grapes 

and wines (Table 6) (Bergqvist et al., 2001; Van Leeuwen, 2010). The same applies to 

phenolic content (Bergqvist et al., 2001) and flavanols (Oliveira et al., 2019; Ristic et al., 

2007).  

The PCA with the composition of the wines had an explained variance of 80.3% (Fig. 

9). Cordislândia wines were related to higher values of fixed acidity. In addition to greater 

acidity, Cordislândia wine has a lower alcohol content (Table 6). This is also a consequence 
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of the early harvest since the lower TSS results in lower alcohol content in wines (Mota et al., 

2011; Conde et al., 2007; Koundouras et al., 2006). Even so, the alcohol content of the two 

wines evaluated are in line with the range recommended by Brazilian beverage legislation 

(between 8.6 and 14%) (MAPA, 2018). 

The composition of grapes, including pH, TSS, anthocyanins, total phenolics and total 

acidity found in this study are suitable for the production of fine wines since they are similar 

to those from important wine regions in the world (Keller et al., 2012; Koundouras et al., 

2006; Morlat & Bodin, 2006; Priori et al., 2019), the same pattern occurs for most parameters 

related to wine composition (Priori et al., 2019; Koundouras et al., 2006). 

 

 

 

Fig. 8. Principal component analysis on grapes characteristics, produced in 2016, 2017 and 

2018 vintages in the Cordislândia and 2014, 2015, 2017 and 2018 for Três Corações; Dim – 

dimension.  
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Fig. 9. Principal component analysis on wine composition produced in 2016, 2017 and 2018 

vintages in the Cordislândia and 2014, 2015, 2017 and 2018 for Três Corações; Dim – 

dimension.  
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Table 6. Grape and wine mean features from two reference vineyards 

     Cordislândia   Três Corações 

Grape 

  Berry Weight (g)      1.23 ± 0.13 a      1.35 ± 0.10 a 

pH      3.31 ± 0.15 a      3.53 ± 0.10 a 

TSS (°Brix)      18.7 ± 0.61 b    20.88 ± 0.68 a 

Total acidity (g L-1)      7.19 ± 0.80 a      6.27 ± 0.36 a 

Total anthocyanins  (mg g berry-1)       1.08 ± 0.12 a      1.21 ± 0.09 a 

Total phenolics (mg g berry-1)      3.43 ± 0.73 a      3.06 ± 0.24 a 

Wine 

  Alcalinity (g L-1)    28.44 ± 6.94 a    38.98 ± 4.67 a 

Anthocyanins (mg L-1)  332.08 ± 71.83 a   400.28 ± 181.97 a 

Ashes (g L-1)      3.02 ± 0.53 a      3.36 ± 0.54 a 

Dry Extract (g L-1)    27.43 ± 1.18 a         31 ± 2.42 a 

Phenolics (mg mL-1)      1.85 ± 0.20 a      2.01 ± 0.33 a 

Flavanols (g L-1)      2.16 ± 0.29 a      2.27 ± 0.36 a 

Color intensity (OD420+OD520+OD620)      9.87 ± 2.29 a    12.67 ± 2.64 a 

TPI    48.24 ± 9.25 a    55.63 ± 3.91 a 

Fixed acidity (g L-1)      6.28 ± 1.34 a      5.64 ± 0.62 a 

Alcohol (%)    11.62 ± 0.45 b    14.38 ± 1.02 a 

pH      3.72 ± 0.21 a      3.86 ± 0.18 a 

Sugar (g L-1)      2.53 ± 0.58 a      3.17 ± 0.39 a 

TSS: total soluble solids. TPI – total phenolic index; Different letters in the same line indicate 

statistical difference (Tukey test, p <0.05) between the characteristics of the grapes or wines, 

produced in the 2016, 2017 and 2018 vintages in the Cordislândia, and in 2014, 2015, 2017 

and 2018 for Três Corações.  
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4. CONCLUSIONS 

 

Environmental conditions, including climate, soil and relief and the composition of 

grapes and wines, indicate that the southern region of Minas Gerais has a high suitability for 

producing wine. Especially if we consider that these wines produced there have a similar 

composition to quality wines produced in important wine-growing regions of the world. 

The fuzzy logics was an adequate tool for the search for similar environmental 

conditions, since the areas with the highest values of similarity with the soil mapping unit 

were exactly where the uncertainty was lower. Lower uncertainty along higher membership 

values or similarities is an important metric for decision makers. In addition, the fuzzy logic 

tool provided an overview of the potential for the expansion of viticulture in the coffee region 

of southern Minas Gerais.  

In Cordislândia, thicker soils, with high permeability, with an average altitude of 832 m, 

with undulated relief with 12.0% slope, whose geology is predominantly constituted by 

pyroxene granulite, with annual precipitation of 1508 mm, are more likely (greater than 60% 

probability) for the wine to have 332.08 ± 71.83 g L-1 of anthocyanins and phenolic between 

1.85 ± 0.20 mg mL-1 making up the total 124.0 ha in the provenance area. 

For Três Corações, thicker soils with high permeability developed from biotite schist-

gneiss as parent material were found; however, in areas with altitudes of 917.56 m, slopes of 

14.15%, average temperatures of 19.7 ° C, and annual precipitation of 1497.69 mm are more 

likely to produce wines with anthocyanin contents of 400.28 ± 181.97 mg L-1 and total 

phenolic of 2.01 ± 0.33 mg mL-1, totaling an area of 1,583.0 ha in the provenance area. 

Grape and wine characteristics were quite similar in the two reference vineyards. 

Considering environmental factors only and excluding human factors (related to the 

management of the vineyards and harvest decision), this may indicate the existence of one 

homogeneous wine terroir in the provenance area. 
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