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Abstract
In this paper we prove the existence of a nontrivial solution inD1,p(RN)∩D1,q(RN) for
the following (p,q)-Laplacian problem:

{
–�pu –�qu = λg(x)|u|r–1u + |u|p�–2u,
u(x) ≥ 0, x ∈ R

N ,

where 1 < q ≤ p < r +1 < p� := Np
N–p , p < N, λ > 0 is a parameter,�mu := div(|∇u|m–2∇u)

is them-Laplacian operator and g ∈ L
p�

p�–r–1 (RN) is positive in an open set.
MSC: 35J92; 47J30

Keywords: critical exponent; nonnegative solution; (p,q)-Laplacian

1 Introduction
In this paper we prove the existence of a nontrivial solution for the following problem
involving the (p,q)-Laplacian and the p-critical exponent

{
–�pu –�qu = λg(x)|u|r–u + |u|p�–u in R

N ,
u≥ ,

()

where  < q ≤ p < r +  < p� := Np
N–p , p < N , λ >  is a parameter, �mu := div(|∇u|m–∇u) is

them-Laplacian operator and g :RN →R is an integrable function satisfying

g ∈ Lγ
(
R

N)
with γ =

p�

p� – r – 
()

and

g(x) >  for all x ∈ �g , ()

where �g is an open set of RN .
This kind of problem arises, for example, as the stationary version of the reaction-

diffusion equation

ut = div
[
D(u)∇u

]
+ f (x,u),
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where u describes a concentration, D(u) := (|∇u|p– + |∇u|q–) is the diffusion coefficient
and f (x,u) is the reaction term related to source and loss mechanisms (see [–]).
The differential operator �p + �q, known as the (p,q)-Laplacian operator when p �= q,

has deserved special attention in the last decade. It is not homogeneous and this feature
turns out to impose some technical difficulties in applying usual elliptic methods for ob-
taining the existence and regularity of weak solutions of problems involving this operator.
When p = q, we have a single operator p-Laplacian. In this case, problem () can be

reduced to

–�pu = λg(x)|u|r–u + f (x)|u|p�–u, x ∈ R
N ()

with f (x) = .
In the paper [], Gonçalves and Alves showed the existence of a weak nonnegative so-

lution for problem () with λ = f (x) = , p ≥  and g ≥ .
Drábek and Huang in [], proved the existence of two positive solutions for problem ()

in the case where r = p – , g and f change sign, g+ �= , f + �=  (and other conditions).
Regarding specifically the (p,q)-Laplacian (p �= q), Figueiredo proved, as a particular case

of his main result in [] (which was obtained for a problem involving a more general op-
erator), the existence of a nontrivial weak solution for the following problem:

{
–�pu –�qu + |u|p–u + |u|q–u = λf (u) + |u|p�–u in R

N ,
u≥ ,

()

where f satisfies the Ambrosetti-Rabinowitz condition

 < F(t) :=
∫ t


f (s)ds≤ 

p + θ
f (t)t, t > 

for some positive constant θ . In general, this condition not only ensures that the Euler-
Lagrange functional associatedwith () has amountain pass geometry, but also guarantees
the boundedness of Palais-Smale sequences corresponding to the functional. We empha-
size that the positiveness of λg(x)

∫ t
 |s|r–s ds in problem () is not guaranteed since the

function g can be negative in a large part of RN .
When � is a bounded domain of RN , variational methods have been employed for ob-

taining results of existence and multiplicity of solutions for the following problem with
p-critical growth:

{
–�pu –�qu = λg(x)|u|r–u + |u|p�–u + θ f (x,u) in �,
u =  on ∂�.

()

For θ =  and g = , we refer to [], where  < r < q < p < N , and to [], where  < q < p <
r < p�.
In [], Yin and Yang established the existence of multiple weak solutions in W ,p

 (�)
for () where the nonlinearity f (x, t) is of concave-convex type, λ, θ >  are parameters,
g ∈ L∞(�)+ and  < r < q < p < N . They also obtained some results for the case  < q <
N(p–)
N– < p≤ max{p,p� – q

p– } < r < p�.
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The natural space to study (p,q)-Laplacian problems in a bounded domain� isW ,p
 (�),

thus taking advantage of the compact immersionW ,p
 (�) ↪→ Ls(�) for  ≤ s < p�.

When the domain is the whole R
N , Sobolev’s immersion is not compact. In order to

overcome this issue, the concentration-compactness principle or constrained minimiza-
tion methods (see [, , ] and [], respectively) have been used to find weak solutions in
W ,p(RN )∩W ,q(RN ).
In this paper we prove an existence result for () in the reflexive Banach space

W :=D,p(
R

N) ∩D,q(
R

N)
,

where D,m(RN ) denotes the closure of C∞
 (RN ) with respect to the norm of W ,m(RN ).

More precisely, our main result is stated as follows.

Theorem  Let g satisfy () and (). There exists λ∗ >  such that for any λ > λ∗ problem
() has at least one nontrivial weak solution inW.

Our nontrivial solution is obtained from the mountain pass theorem. We prove that Iλ,
the Euler-Lagrange functional associated with nonnegative solutions of () inW, satisfies
a mountain pass geometry, circumventing the difficulties due to the fact that the (p,q)-
Laplacian operator is not homogeneous. We also adapt standard arguments to prove the
boundedness of Palais-Smale sequences. In order to overcome the lack of compactness of
Sobolev’s immersion, we apply the concentration-compactness principle by making use
of a suitable bounded measure and adapting arguments from [], where a p-Laplacian
problem involving critical exponents is considered. By following [] and [] we get a strict
upper bound for cλ, the level of the Palais-Smale sequence, valid for all λ large enough.
Then, we use this fact and arguments derived from [] to conclude that the nonnegative
critical point for Iλ, obtained from the mountain pass theorem, is not the trivial one.

2 Preliminaries
In this section, we state some known results and notations that will be used to prove The-
orem .
First, let us introduce the following version of the mountain pass theorem (see []

or []).

Lemma  Let X be a real Banach space and
 ∈ C(X,R). Suppose that
() =  and that
there exist α,ρ >  and x ∈ X \ Bρ() such that
• 
(u) ≥ α for all u ∈ X with ‖u‖X = ρ ;
• 
(x) < α.
There exists a sequence {un} ⊂ X satisfying


(un) → c and 
′(un) → ,

where c is the minimax level, defined by

c := inf
{

max
t∈[,]



(
γ (t)

)
: γ ∈ C

(
[, ],X

)
,γ () =  and γ () = x

}
.
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Let  <m <N and denote by D,m(RN ) the closure of C∞
 (RN ) with respect to the norm

ofW ,m(RN ). We recall thatD,m(RN ) is a reflexive Banach space that is also characterized
by (see [])

D,m(
R

N)
=

{
u ∈ Lm

�(
R

N)
:
∂u
∂xj

∈ Lm
(
R

N)
, j = , , . . . ,N

}
,

wherem� := Nm
N–m , and that its original norm is equivalent to the gradient norm ‖∇ ·‖Lm(RN ).

Moreover,W ,m(RN )�D,m(RN ) ↪→ Lm� (RN ).
The next result is a version of the concentration-compactness principle of Lions (see

[] and []).

Lemma  Let vn ∈ D,p(RN ) be a bounded sequence such that vn ⇀ v in Lp� (RN ). If vn is
a subsequence such that |vn|p� dx ⇀ ν for some measure ν , then there exist xi ∈ R

N and
νi > , i = , , , . . . , such that

∞∑
i=

ν

p
p�
i < ∞ and vp

�

n ⇀ |v|p�
+

∞∑
i=

νiδxi = ν,

where δxi denotes the Dirac measure concentrated at xi.

The next result follows from Theorem  of [] combined with the Banach-Alaoglu the-
orem (see Remark (iii) of []).

Lemma  Let  < p < ∞ and let {un} ⊂ Lp(RN ) be a bounded sequence converging to u
almost everywhere. Then un ⇀ u (weakly) in Lp(RN ).

The following lemma can be found in [, Lemma .].

Lemma  Let s > , � an open set in R
N and un,u ∈ W ,s(�), n = , , , . . . . Let a(x, ξ ) ∈

C(� ×R
N ,RN ) satisfy, for positive numbers α,β > , the following properties:

• α|ξ |s ≤ a(x, ξ )ξ for all ξ ∈R
N ,

• |a(x, ξ )| ≤ β|ξ |s– for all (x, ξ ) ∈ � ×R
N ,

• [a(x, ξ ) – a(x,η)][ξ – η] >  for all (x, ξ ) ∈ � ×R
N with ξ �= η.

Then ∇un → ∇u in Ls(�) if and only if

lim
n→∞

∫
�

[
a
(
x,∇un(x)

)
– a

(
x,∇u(x)

)][∇un(x) –∇u(x)
]
dx = .

We denote by S the best Sobolev constant defined by

S := inf

{‖∇u‖pp
‖u‖pp�

: u ∈W ,p(
R

N) \ {}
}
. ()

3 The existence theorem
We deal with problem () in the reflexive Banach space

W :=D,p(
R

N) ∩D,q(
R

N)
,
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endowed with the norm

‖u‖W := ‖u‖Ep + ‖u‖Eq ,

where

‖u‖Em :=
(∫

RN
|∇u|m dx

) 
m
.

The Euler-Lagrange functional associated with () is

Iλ(u) :=

p

∫
RN

|∇u|p dx + 
q

∫
RN

|∇u|q dx – λ

r + 

∫
RN

gur++ dx

–

p�

∫
RN

up
�

+ dx for all u ∈ W, ()

where u+ := max{,u}. It is well defined inW and of class C (as a consequence of hypoth-
esis ()).
In order to obtain a critical point for Iλ, we will find a Palais-Smale sequence for this

functional, that is, a sequence {un} ⊂W satisfying

Iλ(un) → c and
∥∥I ′λ(un)∥∥W∗ → . ()

In the sequel we show that Iλ satisfies a mountain pass geometry. In order to simplify
the presentation, we denote, from now on, the norm ofW by ‖ · ‖ instead of ‖ · ‖W.

Lemma  There exist η,ρ >  and u ∈ W satisfying: ‖u‖ > ρ , Iλ(u) <  and Iλ(u) ≥ η

for any u ∈W such that ‖u‖ = ρ .

Proof The Hölder inequality implies that

λ

r + 

∫
RN

gur++ dx ≤ λ

S
r+
p (r + )

‖g‖γ ‖u‖r+
Ep

≤ λ

S
r+
p (r + )

‖g‖γ

[‖u‖Ep + ‖u‖Eq

]r+

=: C‖u‖r+,

and () yields


p�

∫
RN

up
�

+ dx ≤
‖u‖p�

Ep

S
p�
p p�

≤ (‖u‖Ep + ‖u‖Eq )p
�

S
p�
p p�

=: C‖u‖p�
.

Let us suppose ‖u‖ ≤ . Then ‖u‖Eq ≤ ‖u‖ ≤  and

Iλ(u) =

p
‖u‖p

Ep
+

q
‖u‖q

Eq
–

λ

r + 

∫
RN

gur++ dx –

p�

∫
RN

up
�

+ dx

≥ 
p
(‖u‖p

Ep
+ ‖u‖q

Eq

)
–C‖u‖r+ –C‖u‖p�

http://www.boundaryvalueproblems.com/content/2014/1/236
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≥ 
p
(‖u‖p

Ep
+ ‖u‖p

Eq

)
–C‖u‖r+ –C‖u‖p�

≥ 
p–

(‖u‖Ep + ‖u‖Eq

)p –C‖u‖r+ –C‖u‖p�
=

‖u‖p
pp–

–C‖u‖r+ –C‖u‖p�
.

We have concluded that

Iλ(u) ≥ ‖u‖p
(


pp–

–C‖u‖r+–p –C‖u‖p�–p
)
, whenever ‖u‖ ≤ . ()

Let us define φ(t) := tp( 
pp– –Ctr+–p –Ctp

�–p), t ≥ . It is easy to see that there exists
 < t <  such that φ(t) >  for all t ∈ (, t]. Therefore, there exist η >  and  < ρ <  such
that Iλ(u) ≥ η >  whenever ‖u‖ = ρ .
Now, let v ∈W \ {} such that v ≥ . Then, for any t > , one has

Iλ(tv) =
tp

p
‖v‖pEp

+
tq

q
‖v‖qEq

–
tr+λ
r + 

∫
RN

gvr+ dx –
tp�

p�

∫
RN

vp
�

 dx.

Since Iλ(tv) → –∞ as t → ∞, there exists u = tv ∈ W such that ‖u‖ > ρ and
Iλ(u) < . �

Lemma  Let {un} ⊂W be a Palais-Smale sequence. Then {un} is bounded inW.

Proof By hypothesis, {un} satisfies (). It follows that there exist positive constants k and
k such that Iλ(un) ≤ k and ‖I ′λ(un)‖W∗ ≤ k for all n large. Thus,

k + k‖un‖ ≥ Iλ(un) –


r + 
〈
I ′λ(un),un

〉

=
(

p
–


r + 

)
‖un‖pEp

+
(

q
–


r + 

)
‖un‖qEq

+
(


r + 

–

p�

)∫
RN

up
�

n+ dx

≥
(

p
–


r + 

)
‖un‖pEp

+
(

q
–


r + 

)
‖un‖qEq

.

That is, for all n large, we have

c
(
 + ‖un‖

) ≥ c‖un‖pEp
+ c‖un‖qEq

,

where c, c and c are positive constants that do not depend on n.
Suppose ‖un‖ → ∞. Then we have the three following cases to consider:
. ‖un‖Ep → ∞ and ‖un‖Eq → ∞;
. ‖un‖Ep → ∞ and ‖un‖Eq is bounded;
. ‖un‖Ep is bounded and ‖un‖Eq → ∞.
The first case cannot occur. Indeed, it implies that ‖un‖pEp

> ‖un‖qEp
for all n large, and

thus

c
(
 + ‖un‖

) ≥ c‖un‖qEp
+ c‖un‖qEq

≥ c
(‖un‖qEp

+ ‖un‖qEq

)

≥ c
q–

(‖un‖Ep + ‖un‖Eq

)q = c‖un‖q,

which contradicts the fact that ‖un‖ → ∞.

http://www.boundaryvalueproblems.com/content/2014/1/236
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If the second case occurs, we have, for all n large,

c
(
 + ‖un‖Ep + ‖un‖Eq

) ≥ c‖un‖pEp
+ c‖un‖qEq

≥ c‖un‖pEp
,

and hence we arrive at the absurd

 <
c
c

≤ lim
n

(


‖un‖pEp

+


‖un‖p–Ep

+
‖un‖Eq

‖un‖pEp

)
= .

Proceeding as in the second case, one can check that the third case cannot also hap-
pen. �

Lemma  Let {un} ⊂ W be a Palais-Smale sequence. There exists a nonnegative function
u ∈ W such that, up to a subsequence,

∂un
∂xj

→ ∂u
∂xj

a.e. RN , j ∈ {, , . . . ,N}.

Proof We have

(∫
RN

|ϕv|p�
dx

) 
p�

S

p ≤

(∫
RN

∣∣∇(ϕv)
∣∣p dx

) 
p

≤
(∫

RN
|∇ϕ|p|v|p dx

) 
p
+

(∫
RN

|ϕ|p|∇v|p dx
) 

p

for all ϕ ∈ C∞
 (RN ) and v ∈D,p(RN ), where the first inequality comes from (). Hence,

(∫
RN

|ϕ|p� |v|p�
dx

) 
p�

S

p ≤

(∫
RN

|∇ϕ|p|v|p dx
) 

p

+
(∫

RN
|ϕ|p(|∇v|p + |∇v|q)dx

) 
p

()

for all ϕ ∈ C∞
 (RN ) and v ∈D,p(RN )∩D,q(RN ).

As a consequence of the boundedness of {un}, given by Lemma , there exists u ∈ W

such that, up to a subsequence, un ⇀ u inW. Since I ′λ(un)un– → , it follows that un– → 
inW, so un+ → u a.e. in R

N .
Let 
 ∈ C∞

 (RN ) satisfy  ≤ 
 ≤  and


(x) =

{
 if x ∈ B 


,

 if x ∈R
N \ B,

where Bτ denotes the ball of RN centered at the origin and with radius τ .
By applying Lemma  with vn = un+ and v = u, we have

up
�

n+ ⇀ up
�
+

∞∑
i=

νiδxi .

http://www.boundaryvalueproblems.com/content/2014/1/236
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Define the measure (|∇un+|p + |∇un+|q)dx. Since it is bounded, we have
(|∇un+|p + |∇un+|q

)
dx ⇀ μ

for some measure μ. For each index i and each ε > , define

ϕε(x) :=


(
x – xi

ε

)
.

It follows from inequality () that

(∫
RN

|ϕε|p�
up

�

+ dx
) 

p�

S

p ≤

(∫
RN

|∇ϕε|pupn+ dx
) 

p

+
(∫

RN
|ϕε|p

(|∇un+|p + |∇un+|q
)
dx

) 
p
.

By making n→ ∞, we obtain

(∫
RN

|ϕε|p�
dν

) 
p�

S

p ≤

(∫
RN

|∇ϕε|p|u|p dx
) 

p
+

(∫
RN

|ϕε|pdμ

) 
p
,

and then, by making ε → , we find

(∫
{xi}

dν

) 
p�

S

p ≤

(∫
{xi}

dμ

) 
p
,

yielding

Sν
p
p�
i ≤ μi :=

∫
{xi}

dμ. ()

On the other hand, from the fact that I ′λ(un)ϕεun+ →  we have

∫
RN

|∇un|p–un+∇ϕε∇un dx +
∫
RN

|∇un|q–un+∇ϕε∇un dx

=
∫
RN

λgur+n+ ϕε dx +
∫
RN

up
�

n+ϕε dx –
∫
RN

(|∇un+|p + |∇un+|q
)
ϕε dx + o(),

and hence

lim
n

∫
RN

|∇un|p–un+∇ϕε∇un dx + lim
n

∫
RN

|∇un|q–un+∇ϕε∇un dx

=
∫
RN

λgur++ ϕε dx +
∫
RN

ϕε dν –
∫
RN

ϕε dμ. ()

By Claim  in [] and by the same argument replacing p with q, we obtain

lim
n

∫
RN

|∇un|p–un+∇ϕε∇un dx = lim
n

∫
RN

|∇un|q–un+∇ϕε∇un dx = o(ε).

http://www.boundaryvalueproblems.com/content/2014/1/236
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Making ε →  in (), we arrive at

∫
{xi}

dν =
∫

{xi}
dμ,

that is, νi = μi. By combining this equality with (), we obtain

νi ≥ S
N
p .

Since
∑∞

i=(νi)p/p
� < ∞, there exist at most a finite number s of indices i with νi > . Let

us first consider the case where s > . In this case we take ε >  such that

{x, . . . ,xs} ⊂ B 
ε

() and Bε (xi)∩ Bε (xj) = ∅ for i �= j.

We also define

�ε(x) :=
(εx) –
s∑
i=




(
x – xi

ε

)

for all  < ε < ε. Thus,

�ε(x) =

{
 if x ∈ ⋃s

i= B ε

(xi),

 if x ∈ Aε := B 
ε
() \ ⋃s

i= Bε(xi).

Now, let us define

Pn :=
(|∇un|p–∇un – |∇u|p–∇u + |∇un|q–∇un – |∇u|q–∇u

)
(∇un –∇u).

We claim that Pn ≥ . Indeed, this is a consequence of the well-known fact: there exists
C(s) >  such that

〈|x|s–x – |y|s–y,x – y
〉 ≥ C(s)

{ |x–y|
(|x|+|y|)–s if  ≤ s < ,
|x – y|s if s≥ 

for all x, y ∈R
N . ()

Fix ρ, ε >  with  < ε < ρ < ε. Then

∫
Aρ

Pn dx ≤
∫
Aρ

Pn�ε dx ≤
∫
RN

Pn�ε dx,

and thus
∫
Aρ

Pn dx ≤
∫
RN

|∇un|p�ε – |∇un|p–�ε∇un∇u

– |∇u|p–�ε∇u∇un + |∇u|p�ε dx

+
∫
RN

|∇un|q�ε – |∇un|q–�ε∇un∇u

– |∇u|q–�ε∇u∇un + |∇u|q�ε dx

http://www.boundaryvalueproblems.com/content/2014/1/236
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= I ′λ(un)(un�ε) –
∫
RN

|∇un|p–∇un∇�εun dx

–
∫
RN

|∇un|q–∇un∇�εun dx

– I ′λ(un)(u�ε) +
∫
RN

|∇un|p–∇un∇�εudx

+
∫
RN

|∇un|q–∇un∇�εudx

–
∫
RN

λgurn+u�ε dx –
∫
RN

up
�–

n+ u�ε dx +
∫
RN

|∇u|p�ε dx

+
∫
RN

|∇u|q�ε dx –
∫
RN

|∇u|p–�ε∇un∇udx

–
∫
RN

|∇u|q–�ε∇un∇udx

+
∫
RN

λgur+n+ �ε dx +
∫
RN

up
�

n+�ε dx

–
∫
RN

λgurn+u�ε dx –
∫
RN

up
�–

n+ u�ε dx.

Since both {u�ε} and {un�ε} are bounded inW, we have

I ′λ(un)u�ε , I ′λ(un)un�ε → . ()

By Claim  in [] and by the same argument replacing p by q, we have

lim
n

∫
RN

|∇un|p–∇un∇�εun dx = lim
n

∫
RN

|∇un|q–∇un∇�εun dx = o(ε)

and

lim
n

∫
RN

|∇un|p–∇un∇�εudx = lim
n

∫
RN

|∇un|q–∇un∇�εudx = o(ε). ()

Since the functional

f (v) :=
∫
RN

|∇u|p–∇u�ε∇vdx +
∫
RN

|∇u|q–∇u�ε∇vdx

is bounded inW, we have

lim
n

(∫
RN

|∇u|p–∇u�ε∇un dx +
∫
RN

|∇u|q–∇u�ε∇un dx
)

=
∫
RN

|∇u|p–∇u�ε∇udx +
∫
RN

|∇u|q–∇u�ε∇udx. ()

It follows from Lemma  that
⎧⎪⎪⎨
⎪⎪⎩
up

�–
n+ ⇀ up

�–
+ in L

p�
p�– (RN ),

urn+ ⇀ ur+ in L
p�
r (RN ),

ur+n+ ⇀ ur++ in L
p�
r+ (RN ).
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Since u≥ , we have
∫
RN

gur+n+ �ε dx→
∫
RN

gur++ �ε dx, ()
∫
RN

gurn+u�ε dx →
∫
RN

gur++ �ε dx ()

and
∫
RN

up
�–

n+ u�ε dx →
∫
RN

up
�

+ �ε dx. ()

It follows from Lemma  that
∫
RN

up
�

n+�ε dx →
∫
RN

up
�

+ �ε dx. ()

We then conclude from ()-() that

lim
n

∫
Aρ

Pn dx = .

Note that

Pn =
(|∇un|p–∇un – |∇u|p–∇u

)
(∇un –∇u)

+
(|∇un|q–∇un – |∇u|q–∇u

)
(∇un –∇u)

and that () yields that each term above is nonnegative. Therefore,

lim
n

∫
Aρ

(|∇un|p–∇un – |∇u|p–∇u
)
(∇un –∇u)dx = .

Lemma  with a(x, ξ ) = |ξ |p–ξ then implies that ∇un → ∇u in Lp(Aρ). Thus,

∂un
∂xj

→ ∂u
∂xj

a.e. in Aρ .

Since ρ < ε we have, in fact, that

∂un
∂xj

→ ∂u
∂xj

a.e. in R
N .

At last, in the case where s = , that is, νi =  for all i, we just take �ε(x) := 
(εx) and
Aρ := B 

ρ
and repeat the arguments above. �

From now on we denote, for each λ > ,

c̃λ := inf
u∈W\{}

max
t≥

Iλ(tu). ()

Lemma  There exists λ∗ >  such that

 < c̃λ <
S

N
p

N
for all λ > λ∗.
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Proof It follows from Lemma  that Iλ(u) ≥ η >  whenever ‖u‖ = ρ . Of course, this fact
implies that c̃λ ≥ η > . (We remark that η might depend on λ, but it is always positive.)
We recall that�g denotes the open set where g is positive. Let u ∈W\ {}with support

in �g such that u ≥  and ‖u‖p� = . Since

Iλ(tu) =
tp

p
‖u‖pEp

+
tq

q
‖u‖qEq

–
tr+λ
r + 

∫
RN

gur+ dx –
tp�

p�
, t ≥ ,

we can see that Iλ(tu) → –∞ as t → ∞ and that Iλ(tu) → + as t → +. These facts
imply that there exists tλ >  such that

max
t≥

Iλ(tu) = Iλ(tλu).

Since

 =
d
dt

[
Iλ(tu)

]
t=tλ

= tp–λ ‖u‖pEp
+ tq–λ ‖u‖qEq

– λtrλ
∫
RN

gur++ dx – tp
�–

λ ,

we get

λ

∫
RN

gur++ dx =
‖u‖pEp

t+r–pλ

+
‖u‖qEq

t+r–qλ

– tp
�––r

λ for all λ > , ()

where the left-hand side term is positive, since the support of u+ is contained in �g . We
can see from () that tλ →  as λ → ∞. Since Iλ(tλu) → + as tλ → +, there exists
λ∗ >  such that

max
t≥

Iλ(tu) = Iλ(tλu) <
S

N
p

N
for all λ > λ∗.

Since c̃λ ≤ maxt≥ Iλ(tu), we conclude that

c̃λ <
S

N
p

N
for all λ > λ∗. �

Now we are in a position to prove Theorem .

Proof of Theorem  It follows from Lemmas  and  that there exists a sequence {un} ⊂W

such that

Iλ(un) → cλ and I ′λ(un)→ ,

where cλ is the minimax level of the mountain pass theorem associated with Iλ.
Arguing as in Lemma . of [], one can check that

cλ = inf
u∈W\{}

max
t≥

Iλ(tu) := c̃λ.
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By Lemma  there exists λ∗ >  such that  < cλ < S
N
p
N for all λ > λ∗. Moreover, according

to Lemmas  and , there exists a nonnegative function u ∈W such that

⎧⎪⎨
⎪⎩
un ⇀ u inW,
un+ → u a.e. in R

N ,
∂un
∂xi

(x)→ ∂u
∂xi

(x) a.e. in R
N .

It follows from Lemma  that
{

|∇un|p– ∂un
∂xi

⇀ |∇u|p– ∂u
∂xi

(x) in L
p

p– (RN ),
|∇un|q– ∂un

∂xi
⇀ |∇u|q– ∂u

∂xi
(x) in L

q
q– (RN )

and
⎧⎨
⎩
up

�–
n+ ⇀ up

�–
+ in L

p�
p�– (RN ),

urn+ ⇀ ur+ in L
p�
r (RN ).

Now, let φ ∈W. We have
∫
RN

|∇un|p–∇un∇φ dx→
∫
RN

|∇u|p–∇u∇φ dx,
∫
RN

|∇un|q–∇un∇φ dx →
∫
RN

|∇u|q–∇u∇φ dx,
∫
RN

up
�–

n+ φ dx →
∫
RN

up
�–

+ φ dx and
∫
RN

gurn+φ dx→
∫
RN

gur+φ dx.

Thus I ′λ(u)φ = , and we conclude that u is a solution of ().
We know that u≥ . It remains to verify that u �≡ . Let

lim
n→∞

∫
RN

|∇un|p dx =: a ≥  and lim
n→∞

∫
RN

|∇un|q dx =: b≥ 

and suppose that u≡ .
Since I ′λ(un)un → , we also have

‖un‖pEp
+ ‖un‖qEq

=
∫
RN

λgur+n+ dx +
∫
RN

up
�

n+ dx + o().

Since
∫
RN λgur+n+ dx→ , we have

‖un‖pEp
= a + o(), ‖un‖qEp

= b + o() and ‖un+‖p
�

p� = a + b + o().

By taking into account that Iλ(un) → cλ, we have

a
p
+
b
q
–
a + b
p�

= cλ > .

Hence,

cλ =
a
N

+ b
(

q
–


p�

)
≥ a

N
, ()
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and we arrive at

cλN ≥ a. ()

However, the equality in () shows that a + b �= . By () and making n→ ∞, we have

S(a + b)
p
p� ≤ a. ()

It follows that a > . Thus

Sa
p
p� ≤ S(a + b)

p
p� ≤ a,

that is,

a ≥ S
N
p .

Then by () we have

cλN ≥ S
N
p ,

which is a contradiction, because cλ < S
N
p
N . �

Remark  By Theorems  and  of [] it is easy to see that any solution of () is locally
C,α if g ∈ Lγ (RN )∩ L∞(RN ) and  < q < p < r +  < p�.
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