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GENERAL ABSTRACT 

 

Soil, as a synthetic body, is the result of complex environmental interactions occurring across 
time and different geographic scales. Its functions are critical to maintaining ecosystem 
services, such as water redistribution and water storage, nutrient cycling, food production, 
carbon storage and sequestration, and climate regulation. The knowledge of soil geographic 
distribution and its relation with landscape dynamics are of paramount importance to sustaining 
such functions. Digital soil mapping (DSM) methods are intended to solve spatial association 
models that relate geographic occurrence of soil to soil-forming factors, namely: parent 
material, topography, climate, organisms, and time. Remotely sensed data are essential to 
parametrize such models, since they offer measurements of land surface features, both in time 
and geographic frames. However, despite the good performance of the assimilation of data from 
optical remote sensors with laboratory analysis and field data into DSM, accessing soil 
properties under vegetation cover via remote sensing methods still represents a challenging 
task. Therefore, this research intended to evaluate a method to assess the response of vegetation 
greenness (VG) to soil condition based on the following hypotheses: a) Modulation of surface 
reflectance of vegetation is controlled by soil condition and properties related to water 
dynamics, b) this feature can be measured based on remotely sensed data and a time-spectral 
signature of vegetation response associated to mentioned soil properties can, therefore, be 
retrieved, c) elucidation of this relationship can be applied to produce time-synthetic covariates 
for DSM. Although the initial hypothesis was partially verified statistically, VG temporal signal 
may not reflect exclusively the effects of water availability and other factors can act as 
vegetation ‘stressors’ affecting its spectral properties, such as the interaction of soil fertility, 
toxicity, and taxonomic class. Results of this approach demonstrated that the addition of 
seasonal variability of vegetation greenness can be applied to access soil subsurface processes, 
as well as their use as covariates in DSM.  
 
Keywords: Vegetation indices. Soil moisture. Land surface phenology. Rainfall seasonality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESUMO GERAL 

O solo, como um corpo sintético, é o resultado de interações ambientais complexas que ocorrem 
ao longo do tempo e em diferentes escalas geográficas. Suas funções são críticas para manter 
serviços ecossistêmicos, como redistribuição e armazenamento de água, ciclagem de nutrientes, 
produção de alimentos, armazenamento e sequestro de carbono e regulação do clima. O 
conhecimento da distribuição geográfica do solo e sua relação com a dinâmica da paisagem são 
de suma importância para sustentar tais funções. Os métodos de mapeamento digital do solo 
(MDS) visam resolver modelos de associação espacial que relacionam a ocorrência geográfica 
do solo aos fatores formadores do solo, a saber: material de origem, topografia, clima, 
organismos e tempo. Os dados de sensoriamento remoto são essenciais para parametrizar tais 
modelos, uma vez que oferecem medidas das características da superfície da terra, tanto em 
termos de tempo quanto geográficos. No entanto, apesar do bom desempenho da assimilação 
de dados de sensores remotos ópticos com dados obtidos em laboratório e dados de campo no 
MDS, acessar propriedades de solo sob cobertura vegetal por meio de métodos de 
sensoriamento remoto ainda representa uma tarefa desafiadora. Portanto, esta pesquisa 
objetivou avaliar um método para analisar a resposta do verdor da vegetação (VG) à condição 
do solo com base nas seguintes hipóteses: a) A modulação da refletância da superfície da 
vegetação é controlada pela condição do solo e as propriedades relacionadas à dinâmica da 
água, b) esta característica pode ser medida com base em dados detectados remotamente e uma 
assinatura espectro-temporal da resposta da vegetação associada às propriedades do solo 
mencionadas pode, portanto, ser recuperada, c) a elucidação dessa relação pode ser aplicada 
para produzir covariáveis sintéticas no tempo para o MDS. Embora a hipótese inicial tenha sido 
parcialmente verificada estatisticamente, o sinal temporal do VG pode não refletir 
exclusivamente os efeitos da disponibilidade de água e outros fatores podem atuar como 
"estressores" da vegetação afetando suas propriedades espectrais, como a interação entre 
fertilidade do solo, toxicidade e classe taxonômica. Os resultados desta abordagem 
demonstraram que a adição da variabilidade sazonal do verdor da vegetação pode ser aplicada 
para acessar os processos de subsuperfície do solo, bem como seu uso como covariáveis no 
MDS. 

Palavras-chave: Índices de vegetação. Umidade do solo. Fenologia de superfície. Sazonalidade 
da chuva. 



SUMMARY 
 

FIRST PART ............................................................................................................................ 9 

1 GENERAL INTRODUCTION ............................................................................................ 9 

2 THEORETICAL BACKGROUND ................................................................................... 10 

3 FINAL REMARKS ............................................................................................................. 16 

REFERENCES ....................................................................................................................... 17 

SECOND PART ...................................................................................................................... 24 

ARTICLE 1: HYDROPEDOLOGICAL CONFIGURATION OF THE TEMPORAL 
RESPONSE PATTERNS OF SOIL MOISTURE TO RAINFALL IN HILLSLOPE 
CLAY-SOILS .......................................................................................................................... 24 

ARTICLE 2: EVALUATION OF SYNTHETIC-TEMPORAL IMAGERY AS 
COVARIATES FOR DIGITAL SOIL MAPPING: A CASE STUDY IN SOILS UNDER 
TROPICAL PASTURE ......................................................................................................... 54 

 

 

 

 

 

 

 



9 

FIRST PART 

1 GENERAL INTRODUCTION 

Soil, as a synthetic body, is the result of complex environmental interactions occurring 

across a continuum of geographic and temporal scales. Its functions are critical to maintaining 

ecosystem services, such as water redistribution and storage, nutrient cycling, food production, 

carbon storage and sequestration, and climate regulation. The knowledge of soil geographic 

distribution and its relation with landscape dynamics are of paramount importance for 

sustaining such functions (BOETTINGER et al., 2010; MCBRATNEY; MENDONÇA 

SANTOS; MINASNY, 2003; MCBRATNEY; FIELD; KOCH, 2014; RIZZO et al., 2016). 

Digital soil mapping (DSM) methods are intended to develop spatial association models 

that relate geographic occurrence of soil to soil-forming factors, namely: parent material, 

topography, climate, organisms and vegetation, time, and geographic location (JENNY, 1941; 

MCBRATNEY; MENDONÇA SANTOS; MINASNY, 2003). 

Remotely sensed data (satellite imagery) are essential to parametrize such models since 

they offer spatially exhaustive measurements of land surface features, both in time and 

geographic frames (BEN-DOR, 2002; DEMATTÊ; TERRA, 2014; JENSEN, 2007). However, 

despite the good performance of the assimilation of data from optical remote sensors with 

laboratory analysis and field data into DSM, accessing soil properties under vegetation cover 

via remote sensing methods still constitutes a challenging task (ARAÚJO et al., 2014; 

DEMATTÊ; TERRA, 2014; GENÚ; DEMATTÊ, 2006; MENDES et al., 2019). Additionally, 

studies that relate remotely sensed vegetation responses (via vegetation indices) to water 

dynamics at detailed temporal scales are still scarce, remarkably outside temperate regions. 

Therefore, this research aim to evaluate a method to access subsurface soil under vegetation 

cover based on the following hypotheses: a) Modulation of surface reflectance of vegetation is 

controlled by soil condition and properties related to water dynamics, b) this feature can be 

measured based on remotely sensed data and a time-spectral signature of vegetation response 

associated to mentioned soil properties can, therefore, be retrieved, c) elucidation of this 

relationship can be applied to produce time-synthetic covariates for digital soil mapping. 
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2 THEORETICAL BACKGROUND 

2.1 Remote sensing of soil and vegetation 

 

Optical remote sensing (RS) is a measurement technique applied to collect data on the 

interaction between electromagnetic radiation (EMR) emitted from a natural source (i.e. the 

Sun) and land surface. Data recorded remotely is available in the format of a grid of cells, which 

is termed as 'raster'. Raster data format has the following properties: location, spatial resolution, 

and digital number (JENSEN, 2007; SCULL et al., 2003). In addition to the mentioned 

properties, EMR data obtained by RS is also characterized by its spectral, radiometric, and 

temporal resolutions (JENSEN, 2007). Remote sensing data resolutions and associated metrics 

(e.g. signal-to-noise ratio) are crucial for the accuracy and reliability of RS products (TEILLET; 

STAENZ; WILLIAMS, 1997). 

The increasing availability of RS data has resulted in important developments in the 

study of land surface processes, being among the most used sensors: Thematic Mapper (TM), 

Enhanced Thematic Mapper (ETM+), Operational Land Imager and Thermal Infrared Sensor 

(OLI/TIRS) carried by the Landsat satellites (DWYER et al., 2018), Moderate Resolution 

Imaging Spectroradiometer (MODIS), which is aboard the Terra and Aqua satellites 

(PAGANO; DURHAM, 1993), and MultiSpectral Instrument (MSI) of the Sentinel 2 satellites 

(PAHLEVAN et al., 2017). 

Table 1 – Resolutions of the most used optical remote sensors. 

Satellite - Sensor Resolution 
Spatial Radiometric Temporal 

Landsat 5 - Thematic Mapper 15, 30, 120 m 8 bits 16 days 
Landsat 8 - Operational Land 

Imager 15, 30, 60 m 12 bits 16 days 

Sentinel 2 - Multi Spectral 
Imager 10, 20, 60 m 12 bits 5 days 

Terra & Aqua - Moderate 
Resolution Imaging 
Spectroradiometer 

250 m - 1 km 12 bits 1, 2 days 

Source: Adapted from Jensen (2007) 

 

Remote analysis of land processes related to soil properties is supported, for the most 

part, by the interaction between electromagnetic radiation and the constituent elements of soil, 

which are referred to as chromophores. Soil chromophores can be classified into minerals (clay, 
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iron oxides, soluble salts), organic matter (fresh or decomposed), and water (BEN-DOR, 2002). 

Due to that relationship, it is verified that the data obtained by optical remote sensing (RS) in 

the spectral region of 400 to 2500 nm displays characteristic responses to different soil types 

and attributes in specific regions of the electromagnetic spectrum (ALEXANDRE et al., 2010; 

BEN-DOR, 2002; BEN‐DOR et al., 2008; DEMATTÊ et al., 2015), constituting what is called 

as ‘spectral signature’ (Figure 1). Underpinned by that fact, an important quantity of research 

has reported the possibility of inferring soil properties such as granulometric composition, water 

content, electromagnetic properties, organic matter, and presence of minerals in the clay 

fraction (ALVES; DEMATTÊ; BARROS, 2015; BEN-DOR et al., 2009; DEMATTÊ; TERRA, 

2014; DEMATTÊ et al., 2016a; GENÚ; DEMATTÊ, 2006; MULDER et al., 2011; RIZZO et 

al., 2016). 

Vegetation interaction with EMR is driven by green leaf constituents: photosynthetic 

pigments, water, and intercellular air spaces (JENSEN, 2007), having its spectral signal 

conditioned by their variations, which are responses to genetic constitution and environmental 

conditions (Figure 2).  

Figure 1 – Spectrum representing the major soil chromophores. 

 

Source: Adapted from Ben-Dor et al. (2008) 

 

Remote sensing of vegetation has been used extensively to assess the state of different 

types of vegetation and soil covers. Remarkably through vegetation indices (VIs), for instance, 

the normalized difference vegetation index (NDVI, HUETE; JACKSON, 1987) and enhanced 

vegetation index (EVI, HUETE et al., 2002). NDVI is based on the relationship between red 

(640 - 670 nm) and near-infrared (850 - 880 nm) spectral bands (Equation 1), which have been 
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reported of great importance for the study of vegetation; being that chlorophyll is absorbed in 

the visible region (red band) and that the effects of plant structure are observable in the near-

infrared band (JENSEN, 2007). Similarly to NDVI, EVI (Equation 2) also makes use of the 

red-near-infrared relationship, but it adds information of the blue band (450-510 nm); by doing 

this, the EVI intends to maintain sensitivity over dense vegetation regions as well as the 

attenuation of some atmospheric effects (HUETE et al., 2002). On account of its simplicity and 

early availability, NDVI is the most used proxy of vegetation greenness. 

NIR R

NIR R

NDVI ρ ρ
ρ ρ

−
=

+
 

(1) 

1 2

NIR R

NIR R B

EVI G
C C L
ρ ρ

ρ ρ ρ
−

= ×
+ − +

 
(2) 

Where: ρ are surface reflectances for its corresponding spectral bands (NIR: near-

infrared, R: red, B: blue), G is a gain factor, L is an adjustment factor related to canopy effects, 

and C1 and C2 are the coefficients for aerosol resistance. Ideally, vegetation indices are 

calculated from atmospherically-corrected surface reflectance.  

Figure 2 – Typical spectral signature of green vegetation. 

 

VIS: Visible, NIR: near infrared, SWIR: small-wave infrared. 
Source: Adapted from Gholizadeh and Kopačková (2019). 

 

Regarding the relation between temporal variability of VIs and soil-water dynamics, 

Santos et al. (2014) observed strong lagged correlations between soil water content and spectral 

vegetation-response at management scale, as a function of rainfall, soil depth, and water 
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absorption in the root-zone. Also strong lagged correlations between soil water content and 

greenness-based indices, i.e. NDVI, are reported by Liu et al. (2012); who discussed the 

evidence of phenology-seasonal relations in a water-limited environment. Furthermore, the 

same study remarked the necessity of additional soil properties and topography to refine the 

analysis. Ahmed et al. (2017) also demonstrated that time-series of satellite imagery can be 

used to analyze soil-vegetation interactions at broad scales. The mentioned studies used coarse 

spatial resolutions (between 250 and 1000 m). 

At broader scales (> 1000 m), evidence of soil control on vegetation productivity 

assessed by the NDVI has been verified by Nicholson and Farrar (1994) and Farrar, Nicholson 

and Lare (1994). These authors analyzed the interaction among rainfall, soil type, soil moisture, 

and NDVI, and found that Vertisols are associated with higher vegetation productivities, 

evaluated as the ratio of NDVI to rainfall, in contrast to Arenosols and Solonchaks.  

 

2.2 Time-series of vegetation indices 

 

Availability of time-series of remotely sensed data has enabled the analysis of temporal 

variability of vegetation indices and its association with the life-cycles of plants, i.e. 

phenological patterns. When such analysis is based on optical remote sensing data it is termed 

as land surface phenology - LSP (HELMAN, 2018). 

Figure 3 – Array of vegetation index data for the extraction of time-series. 

 

Source: Jönsson and Eklundh (2004) 
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To extract information related to the temporal variability of a VI, time-series are 

constructed following the scheme in Figure 3, where (j, k) is the spatial position for a particular 

VI measurement, that is extracted consecutive times (i = 1, 2, ..., N) from an image I, 

constituting a time-series (ti, Ii).  

LSP metrics aim to measure and synthesize the seasonal variation of vegetation when 

assessed by a vegetation index (e.g. NDVI or EVI). Decadal databases of satellite imagery are 

currently available from websites such as Application for Extracting and Exploring Analysis 

Ready Samples (AρρEEARS) at https://lpdaacsvc.cr.usgs.gov/appeears/ or Google Earth 

Engine (earth.egnine.com). The Landsat program, for example, offers nearly 40 years of 

observations, and as the result of cloud-based computation tools, preprocessing steps that used 

to consume high computational resources, such as co-registration, geometric, radiometric, and 

atmospheric corrections, have led to the availability of ‘analysis-ready data’, which is critical 

for analyses that include the temporal dimension (WULDER et al., 2012). 

Monitoring NDVI or EVI in a temporal frame can reveal seasonal changes, natural or 

human-driven, in vegetation. Studies exploiting this feature showed important developments in 

the study of land surface phenology, drought monitoring, ecosystemic disturbances, and 

deforestation (COHEN; YANG; KENNEDY, 2010; CUNHA et al., 2015; HELMAN, 2018; 

LIU et al., 2017; VERBESSELT et al., 2010a, 2010b; VERBESSELT; ZEILEIS; HEROLD, 

2012). 

Figure 4 – Phenological metrics produced by the TIMESAT algorithm.

 

Where: a: beginning of season, b: end of season, c: length of season, d: base value, e: time of 

middle of season, f: maximum value, g: amplitude, h: small integrated value, h + i: large integrated 

value. 

Source: Eklundh and Jönsson (2017). 
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2.3 Digital soil mapping 

Knowledge of the geographic distribution of soil at detailed scales is a global concern, 

especially in the current scenario of human-driven environmental threats related to the 

sustainability of soil ecosystem services, such as water scarcity, soil carbon emission to the 

atmosphere, and accelerated soil degradation and erosion (GUO et al., 2019; MCBRATNEY; 

FIELD; KOCH, 2014; MONTANARELLA et al., 2016).  

Digital soil mapping (DSM) techniques are underpinned by a well-known and widely 

accepted model in soil science: the factors of soil formation; which serve as a link between soil 

formation processes and five recognized drivers: climate (c), organisms and vegetation (o), 

relief (r), parent material (p) and time (t). Early efforts to bring a quantitative solution to the 

factor model can be traced back to the work of Jenny (1941). Currently, as a result of the 

development of geographic information technology and data science, a comprehensive digital 

framework can be applied for the production of digital soil maps (BREVIK et al., 2016; 

MCBRATNEY; MENDONÇA SANTOS; MINASNY, 2003; MILLER; SCHAETZL, 2014). 

Currently, the scorpan model, as formalized by McBratney et al. (2003), serves as a pipeline 

for the production of digital soil maps. 

The mentioned approach has shown good performances when integrating remotely 

sensed data into DSM. Outstandingly, the use of digital elevation models (DEM) and its derived 

terrain attributes, The most used DEM data was retrieved based on radar interferometry from 

the shuttle radar topography mission - SRTM (FARR et al., 2007). SRTM DEMs have been 

included into the DSM production line successfully, as is observed in different studies 

(BISHOP; MINASNY; MCBRATNEY, 2006; HENGL et al., 2017; HENGL; HEUVELINK; 

ROSSITER, 2007; MOURA-BUENO et al., 2016; PADARIAN; MINASNY; MCBRATNEY, 

2015; TENG et al., 2016), where DEM and terrain attributes are interpreted as the relief factor 

(r). 

Optical remote sensing (RS) data have also been integrated into the DSM methodology 

(HENGL et al., 2017b; MCBRATNEY; MENDONÇA SANTOS; MINASNY, 2003), where it 

has followed two approaches. The first one is when RS and VIs data are interpreted as a proxy 

for the organisms and vegetation factor (o), as is the case in Chagas et al. (2016), Padarian et 

al. (2015), Silva et al. (2019), and Taghizadeh-Mehrjardi et al. (2015). The second approach is 

when remotely sensed imagery is compared quantitatively to the reflectance of soil samples 

measured in the laboratory and associated with its corresponding geographic locations. The 
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advantage of this approach over the first one is that allows physical interpretations, enabling 

the possibility to infer other soil properties (ALEXANDRE et al., 2010; DEMATTÊ; TERRA, 

2014; DEMATTÊ et al., 2016b, 2016a; NANNI et al., 2011; NANNI; DEMATTÊ, 2006; 

RAMIREZ-LOPEZ et al., 2013a, 2013b; VASQUES et al., 2014). Such an approach became 

of such importance that local and global efforts are being carried out into developing soil 

spectral libraries (ARAÚJO et al., 2014; BELLINASO; DEMATTÊ; ROMEIRO, 2010; 

TERRA; DEMATTÊ; VISCARRA ROSSEL, 2015; VISCARRA ROSSEL et al., 2016). 

Recently, analysis of the temporal variability of VIs has been assessed specifically for 

DSM applications (DEMATTÊ et al., 2017; MAYNARD; LEVI, 2017). The dimension of the 

temporal databases analyzed ranged from bi-temporal (two images) to hyper-temporal 

approaches (> 100 images). 

3 FINAL REMARKS 

Optical remote sensing has become an essential tool for analyzing land surface 

processes, notably when combined with temporal criteria. Despite showing good performances 

when assimilated into DSM, soil remote sensing still have as the main constraint to its 

application to the occurrence of soils under permanent vegetation cover, which hampers direct 

comparisons with reflectance obtained in the laboratory. Such a fact calls for the development 

of techniques that can extract information suitable for the production of digital soil maps in 

inaccessible areas by the current methods. Since soil and water interactions support directly the 

development of plants by affecting its spectral properties, its monitoring and analysis by remote 

methods can reveal subsurface soil conditions, especially those related to water content and 

nutrient availability. By doing this, it can be possible to elucidate time-response signatures of 

vegetation to soil conditions and bringing out new insights about soil subsurface processes and 

the plant-soil system. 
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HYDROPEDOLOGICAL CONFIGURATION OF THE TEMPORAL RESPONSE 

PATTERNS OF SOIL MOISTURE TO RAINFALL IN HILLSLOPE CLAY-SOILS 

 
ABSTRACT 

 
Temporal variability of soil water content is an important indicator of the state of hydrologic 
systems, assisting in prediction and modeling of hydrological processes. Studies involving 
long-daily time series of moisture in the soil profile are still scarce in tropical environments. 
Temporal pattern of soil moisture response to rainfall of clay-soils and its relationship with its 
hydropedological setting was investigated. Six profile-probe capacitive sensors were set up at 
different landscape positions and soil depths in Typic Rhododult and Typic Hapludult soils 
under pasture and reforestation covers. Rainfall and soil moisture time series were constructed 
with daily data of the period from 08/2014 to 03/2018. Soil samples were collected from the 
soil profile at each analyzed location to provide support to the interpretation of the soil moisture 
time series, and, in conjunction with topographic variables, for the definition of hydropedologic 
units (HPUs). Temporal cross-correlation analysis between rainfall and soil moisture time 
series was applied for each soil depth and HPU. Surficial soil layers showed higher soil moisture 
variability among the analyzed sites. Taxonomic similarity of HPUs is reflected in a global 
pattern of soil moisture: higher water retention and decreasing variability in depth. Despite such 
similarity, response patterns of soil moisture to rainfall at the daily scale were found to be 
variable. Cross-correlations between soil moisture and rainfall were weak but significant in the 
majority of HPUs and soil depths (P < 0.05), having its temporal signature conditioned by the 
hydropedologic context, i.e. the conjunction of land surface and soil hydro-physical properties 
related to water accumulation, lateral flux, and water retention. 

 
Keywords: Time series analysis. Soil water content. Soil hydro-physical properties. 
Precipitation.  
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1 INTRODUCTION 

Soil moisture exerts an important role in many hydrological and ecological processes, 

as water infiltration, percolation, and runoff (CORRADINI, 2014), plant growth, and 

ecosystems dynamics (SANDVIG; PHILLIPS, 2006), reflecting on climate and meteorological 

conditions (SENEVIRATNE et al., 2010). Understanding the response patterns of soil moisture 

is of great importance for a wide range of disciplines and practical applications (VEREECKEN 

et al., 2008). 

Analyzing the response of moisture and its variability in the soil profile through “in 

situ” monitoring of the balance of water input and output assists in understanding processes 

connected with water balance on large scales. Such information is fundamental for hydrological 

modeling and prediction, restoration of vegetation, and sustainability of soil use (WANG et al., 

2014; LI et al., 2015). Non-destructive methods, based on the dielectric constant of the soil, 

such as time-domain reflectometry (TDR) or frequency domain reflectometry (FDR), have been 

extensively used for continuous monitoring of “in situ” soil moisture and to measure and model 

its evolution in geographic and time frames (ROMANO, 2014).  

Many factors control the variability of soil moisture, remarkably: soil properties, 

climate, vegetation cover, and topography (GEROY et al., 2011; ROSENBAUM et al., 2012; 

ROMANO, 2014). Recent studies have been performed on the geographic-time variability of 

soil moisture and the factors that affect it throughout the world, which has shown contrasting 

results. The soil moisture response pattern and the effects of soil properties, vegetation, and 

topography on water content in the soil seems to be dependent on the climate conditions and 

the seasonality of meteorological events (JAMES et al., 2003; LAWRENCE; HORNBERGER, 

2007; LI; RODELL, 2013). In arid and semi-arid regions, the geographic-time variation of soil 

moisture seems to be controlled mainly by soil properties and vegetation (CANTON; SOLE-

BENET; DOMINGO, 2004; COSH et al., 2008; LI et al., 2015, MELO; MONTENEGRO, 

2015). However, Li et al. (2017) observed that dynamic factors as rainfall exerted greater 

control on soil moisture variation in the time dimension in a humid climate region. Kim and 

Barros (2002), and Oldak, Jackson and Pachepsky (2002) reported that the spatial variability of 

soil moisture was predominantly controlled by rainfall patterns under moist conditions and by 

the soil texture and vegetation under dry conditions.  

Soil moisture variability is also regulated by the mean moisture content in the soil 

(FAMIGLIETTI et al., 2008; ROSENBAUM et al., 2012). Many studies have shown an inverse 

relationship between soil moisture variability and mean soil water content (FAMIGLIETTI et 
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al.,1999; LAWRENCE; HORNBERGER, 2007), while there are also reports of greater 

variability as the mean moisture content increases (e.g. LAWRENCE; HORNBERGER, 2007; 

MARTÍNEZ-FERNÁNDEZ; CEBALLOS, 2003), such facts highlight the complexity of 

analyzing soil moisture in a temporal frame. A range of contrasting information regarding the 

effects of vegetation cover (WANG et al., 2014; WANG et al., 2015), climate (TEULING et 

al., 2007), soil properties (MARTINEZ; PACHEPSKY; VEREECKEN, 2014), and topography 

(HAWLEY; JACKSON; McCUEN, 1983) on the dynamics of soil moisture is available in the 

literature. 

Given that the information on soil moisture from specific sites can be extrapolated 

across the landscape, observations must be linked to soil properties (PAN et al., 2012). 

Hydropedologic attributes, i.e., those related to water storage and redistribution processes in 

the soil, such as soil texture and particle size distribution (BHARALI, 2019), and those 

attributes related to water retention (GEROY et al., 2011), hydraulic conductivity (OJHA et al., 

2017), and soil depth (MENEZES et al., 2009) have proven to be fundamental in the 

interpretation of the response of water content in the soil profile; as well as its application in 

mathematical models that attempt to describe and understand water dynamics in the soil-plant-

atmosphere system (PREVEDELLO et al., 2007). Such a complex interaction among the 

diverse factors in the geographic-time frame of soil moisture reinforces the importance of the 

analysis of soil moisture patterns under different hydropedological configurations. 

While a considerable advance in the field of monitoring soil moisture in tropical 

environments, counting in studies developed on multiple geographic and time scales has been 

made (ÁVILA et al., 2010a, 2010b, 2011; LEITE et al., 1997; MELO; MONTENEGRO, 2015; 

PREVEDELLO et al., 2007; SENA et al., 2017) research involving daily time series analysis 

of soil moisture at different depths is still scarce (BRUNO et al., 2006; JUHÁSZ et al., 2006). 

Furthermore, there are no reports of studies involving daily time series of soil water content in 

tropical mountain clay-soil profiles in Brazil, such as those occurring in the Serra da 

Mantiqueira region. In this sense, this study aimed to investigate the hydropedologic 

configuration that influences the temporal variation of soil moisture as a response to rainfall in 

a tropical hillslope. 

 

2 MATERIAL AND METHODS 

2.1 Study area 
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The study sites are located in the Posses watershed which belongs to the Cantareira 

Water Supply System, located in the Extrema municipality, Minas Gerais, southern Brazil 

(FIGURE 1). This area is part of the Serra da Mantiqueira range, presenting steep slopes and 

complex topography, in which the altitude ranges from 945 to 1435 m. According to the Köppen 

classification system, the climate is classified as Cfb: mesothermal without a dry season, and a 

hot summer (ALVARES et al., 2013). The mean annual temperature is 18 °C, the hottest and 

coldest months presents average temperatures of 25.6 °C and 13.1 °C, respectively. The average 

annual rainfall is 1,447 mm. The wettest three months span from December to February, while 

driest months are from June to August (ALVARES et al., 2013).  

Figure 1 – A) Location of the study area, B) soil moisture (SM) monitoring sites, and digital 
elevation model in the Posses watershed. Coordinate system UTM-23 K, Datum 
WGS84. 

 
Source: From the author. 

 

The soil parent material is granite (CPRM, 2003), with a predominance of Typic 

Rhododult (56 %) and Typic Hapludult (22 %) soils, which corresponds to the Red Argisol and 

Red-Yellow Argisol classes in the Brazilian Soil Classification System, respectively (SILVA 

et al., 2019). Extensive dairy farming is the predominant activity since hilly topography hinders 

other agricultural activities. Extensive pastures occupied around 88% of the area (LIMA et al. 

2016; SAAD et al., 2018). However, since 2013, pasture has gradually been replaced by 
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reforestation patches of native species. This watershed is also a pilot project in the “Water 

Conservation” initiative that has been established in 2006 to implement the payment for 

ecosystem services in Brazil (PEREIRA et al., 2010), aiming to ensure fresh-water resources 

for Cantareira Water Supply System, the main water provision basin of the metropolitan region 

of São Paulo. It is also a strategy for increasing the forest cover of the Rio Jaguari drainage 

basin (AVANZI et al., 2011).  

2.2 Soil moisture and rainfall monitoring systems 

Rainfall time series (R-TS) were built based on averaged daily records of seven rain 

gauges located across the study watershed, for the period from August - 2014 to March - 2018. 

Six capacitive sensors of the PR2/6 profile-probe type (Delta T Devices, UK) associated 

with data loggers were installed in Typic Rhododult and Typic Hapludult soils (Figure 1B). The 

sensors registered soil moisture in every 5 minutes at the following soil depths: -10, -20, -30, -

40, -60, and -100 cm. The sensors were previously calibrated in the laboratory for the specific 

conditions of the soils monitored from undisturbed samples collected in the study area; the 

detailed procedure and calibration equations can be found in Silva (2019). Five sensors were 

set up in extensive pasture areas, and one sensor was set up in a reforestation area, established 

in 2013 with native species. Averaged daily values of soil moisture were used for creating soil 

moisture time series (SM-TS).  

2.3 Hydropedological characterization of the monitoring sites 

Each monitoring site was interpreted as a hydropedologic unit (HPU). HPU 

characterization involved the collection of disturbed and undisturbed soil samples from the 0 - 

20, 20 - 40, 40 - 60, and 60 - 100 cm layers, making up three subsamples per layer. Soils 

collected were analyzed to determine the following hydropedologic attributes: textural 

fractions, soil bulk density, organic matter, macro- and micro-porosity, total porosity, and soil 

water retention parameters.  

To determine the soil moisture at field capacity (10 kPa) and permanent wilting point 

(1500 kPa), the undisturbed samples were initially saturated and subjected to matric potentials 

of 10 kPa, using the Buchner funnel suction units, and of 1500 kPa in the Richards extractor. 

After stabilization, the samples were weighed wet and then placed in a laboratory oven at 105 

ºC for 24 hours. The moisture obtained on a gravimetric basis was converted to a volumetric 

basis from the soil bulk density obtained for each soil layer.  
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The topographic characterization of each HPU was based on a set of terrain attributes 

derived from an ALOS - PALSAR digital elevation model (DEM) of 12.5 m of spatial 

resolution. From DEM, other terrain attributes were generated: topographic wetness index, 

topographic position index, slope, direct isolation, and diffuse isolation; which were obtained 

in the SAGA-GIS software (CONRAD et al., 2015). Subsequently, a buffer of two nearest 

pixels around each monitored location was used, generating a total of nine pixel-values per each 

HPU. 

2.4 Principal component analysis 

Hydropedologic attributes were submitted to principal component analysis (PCA), 

having each soil layer as an individual, with HPU as a supplementary categorical variable. 

Logarithmic transformation was performed, since the variables are ratio data. Terrain attributes 

were also submitted to PCA, but with the nearest pixel-values as individuals in addition to its 

location sites, and HPU as a supplementary categorical variable. Both datasets were scaled to 

unit variance, and PCA was based on its correlation matrices. 

2.5 Rainfall time series analysis 

R-TS was submitted to a ‘pre-whitening’ process before cross-correlation analysis

between soil moisture and rainfall. This procedure aimed to remove the trend and seasonal 

components from the R-TS, by assuming the model in Equation 1. Once removed, temporal 

cross-correlation was analyzed between SM-TS segments, and residual R-TS (et) at each soil 

depth and HPU: ccf (𝜃𝜃Rt+k, Rt)ij; being that ccf is the cross-correlation function, 𝜃𝜃Rt and Rt are the 

soil moisture segments and rainfall residual time series, k is the time lag, and i and j are indices 

for soil depth and hydropedologic unit, respectively. 

𝑌𝑌𝑡𝑡 =  𝑇𝑇𝑡𝑡 + 𝑆𝑆𝑡𝑡 + 𝑒𝑒𝑡𝑡 (1) 

Where, Yt: observed data at time t, Tt: trend component, St: seasonal component, and et: 

residual component. 

2.5.1 Data filtering 
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Due to the presence of large gaps in SM-TS, a selection of the longest continuous 

segments was necessary for each HPU. Subsequently, overlapping segments between SM-TS 

and R-TS were generated and analyzed. 

PCA, pre-whitening, and cross-correlation analysis were performed by R software (R-

CORE-TEAM, 2019) packages ‘FactoMineR’ (LÊ; JOSSE; HUSSON, 2008), ‘BFAST’ 

(VERBESSELT et al., 2010a, 2010b), ‘astsa’ (STOFFER, 2019), and ‘MASS’ (VENABLES; 

RIPLEY, 2002) . 

 

3 RESULTS 

 

3.1 Soil moisture variability 

 

Figure 2 displays the boxplot analysis of soil moisture by depth in each HPU. In general, 

the variability of the analyzed SM-TS segments was higher in the surface layers and decreased 

down the soil profile, at the same time that median soil moisture increased (Figure 2), which is 

frequently observed in similar studies (JIA et al., 2013; LI et al., 2017; NEVES et al., 2017; 

ROSENBAUM et al., 2012; TAKAGI; LIN, 2011).  

In both Figures 2 and 3, it is possible to notice high SM variations at the depths of 10 

and 20 cm in the majority of HPUs. The data of the H24 station shown many atypical values, 

notably in the -60 cm layer, which can be artifacts in the dataset. 
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Figure 2 – Boxplots of extracted segments of volumetric soil moisture by depth and monitoring 

hydropedologic unit in the Posses watershed. 

 
Source: From the author. 
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Figure 3 – Extracted segments of rainfall and soil moisture used for cross-correlation analysis 
at each hydropedologic unit in the Posses watershed. X-axis units are in decimal 
years. 

Source: From the author. 
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Continuous and overlapping time series segments of rainfall and soil moisture are 

displayed in Figure 3, from which can be verified that temporal soil moisture patterns, in all the 

analyzed depths and HPUs, exhibited a very similar temporal signature following a vertical 

variation down the analyzed profiles, where the soil moisture signals exhibit a decrease in 

amplitude with no observable phase delay, particularly in depths higher than 20 cm. At the 

depth of 100 cm, soil moisture was practically constant in all HPUs (Figure 3). At such depth, 

soil moisture remained high throughout the analyzed time series segments and remained near 

or above the water contents at field capacity (FC), which has an average soil moisture value of 

35 % (Table 1).  

3.2 Hydropedologic configuration 

Hydropedologic configuration was defined and interpreted based on two contexts: soil 

and landscape. The soil context accounted for physical and hydric attributes related to surface 

and subsurface water dynamics, while the landscape context consisted of terrain attributes 

linked to water dynamics. 

According to Figure 4A, strong relationships among soil properties were found, 

expressing 76% of total inertia in the dataset. This could be considered a significant synthesis 

of data variability, accounting for 49% for the 0.95 quantile of an equivalent random dataset 

(HUSSON; LÊ; PAGÈS, 2017). Figure 4B shows that the first axis of PCA (Dim 1) strongly 

opposes H4, H10, H8, and H6 (to the right of the graph, characterized by a strongly positive 

coordinate) to H7 and H24 (to the left of the graph, characterized by a strongly negative 

coordinate). As a group characterized by a positive coordinate on the PC 1 axis, the HPUs H8 

and H4 shared higher values of total porosity, clay content, and microporosity (variables are 

sorted from the strongest correlation), and low values of soil bulk density. H10 and H6 shared 

higher values for the variables permanent wilting point, field capacity, and microporosity 

(variables are sorted from the strongest correlation) and lower values of macroporosity. Finally, 

H24 and H7 presented higher values of soil bulk density, and lower values of microporosity, 

PWP, FC, and clay content (variables are sorted from the weakest correlation). 

The second biplot axis in Figure 4B (Dim 2) opposes H8 and H4 (to the top of the graph, 

characterized by a strongly positive coordinate on the axis) to H10 and H6 (to the bottom of the 

graph, characterized by a strongly negative coordinate on the axis). The group of H8 and H4 

(characterized by a positive coordinate on the axis) is sharing higher values for the variables 

TP, clay content, macroporosity (variables are sorted from the strongest), and low values for 
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the variable SBD. The group of H10 and H6 (characterized by a negative coordinate on the 

axis) is sharing high values for the variables PWP, FC, and microporosity (variables are sorted 

from the strongest), and low values for the variable macroporosity. 

Table 1 – Characterization of analyzed hydropedologic units. 

HPU Soil type Vegetation
cover 

Soil 
layer 
(cm) 

Texture 
class 

SBD 
(g cm-3) 

SOM 
(dag kg-1) 

TP 
(%) 

FC 
(%) 

PWP 
(%) 

H7 Typic 
Rhododult Pasture 

0 - 20 Clay 
loam 1.23 40.2 49.0 30.7 24.6 

20 - 40 Clay 
loam 1.39 16.7 49.6 31.7 25.2 

40 - 60 Clay 
loam 1.31 8.9 50.3 32.6 25.8 

60 - 100 Clay 1.22 7.4 50.3 32.6 25.8 

H6 Typic 
Rhododult Pasture 

0 - 20 Clay 1.22 27.7 52.3 36.6 29.7 
20 - 40 Clay 1.20 14.4 53.8 35.7 29.2 
40 - 60 Clay 1.32 9.8 55.2 34.8 28.6 

60 - 100 Clay 1.38 5.7 55.2 34.8 28.6 

H4 Typic
Hapludult  Reforestation

0 - 20 Clay 1.07 98.7 67.1 40.8 31.8 
20 - 40 Clay 1.14 7.9 62.0 39.2 32.2 
40 - 60 Clay 0.96 5.4 56.9 37.5 32.5 

60 - 100 Clay 0.99 2.6 56.9 37.5 32.5 

H10 Typic 
Rhododult Pasture 

0 - 20 Clay 
loam 1.30 23.6 55.6 39.6 31.1 

20 - 40 Clay 
loam 1.24 11.5 54.2 40.2 32.5 

40 - 60 Clay 1.24 8.2 52.8 40.8 33.8 
60 - 100 Clay 1.16 6.8 52.8 40.8 33.8 

H8 Typic 
Rhododult Pasture 

0 - 20 Clay 1.03 19.8 55.2 - - 
20 - 40 Clay 1.00 12.3 60.1 - - 
40 - 60 Clay 0.96 10.5 65.1 - - 

60 - 100 Clay 0.95 5.7 65.1 - - 

H24 Typic 
Rhododult Pasture 

0 - 20 Clay 
loam 1.26 28.5 56.8 30.5 22.5 

20 - 40 Clay 1.28 18.2 55.3 28.6 21.6 
40 - 60 Clay 1.32 12.0 53.8 26.7 20.7 

60 - 100 Clay 1.27 9.8 53.8 26.7 20.7 
HPU: hydropedologic unit, SBD: soil bulk density, SOM: soil organic matter, TP: total porosity, FC: 
field capacity, PWP: permanent wilting point. Source: From the author. 
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Figure 4 – A) Correlation between soil hydric attributes and the first two principal components 
after logarithmic transformation. B) Scatter of the hydric attributes of each 
hydropedologic unit on the biplot. 

sbd: soil bulk density, som: soil organic matter, fc: soil moisture at field capacity (10 kPa), pwp: soil 
moisture at permanent wilting point (1500 kPa), micro: microporosity, tp: total porosity, macro: 
macroporosity. Each point represents a soil layer and ellipses show the 95 % confidence interval for 
each HPU centroid. Source: From the author. 

Figure 5 - A) Correlation between terrain attributes and the first two principal components. B) 
Scatter of the hydric attributes of each hydrologic unic (HPU) on the.biplot. 

TWI: topographic wetness index, TPI: topographic position index. Ellipses show the 95 % confidence 
interval for each HPU centroid. Source: From the author. 

Regarding topographic attributes, the first dimension inertia shows strong relationships 

among variables analyzed, suggesting that two dimensions should be enough in this case. The 



37 
 
first two dimensions express 82% of the total dataset inertia (82 % of the total variability is 

explained by the plane) (Figure 5). This percentage is high and thus the first plane represents 

an important part of the data variability. Furthermore, this value is greater than the reference 

value of 49%, thus, the variability explained is considered highly significant (the reference 

value is the 0.95-quantile of the inertia percentages distribution obtained by simulating 2248 

data tables of equivalent size, based on a normal distribution).  

An estimation of the right number of the axis to interpret suggests restricting the analysis 

to the description of the first two axes. These axes present an amount of inertia greater than 

those obtained by the 0.95-quantile of random distributions (82% against 49%). This 

observation suggests that only these axes are carrying significant information. Consequently, 

only these axes were described.  

The first principal component (Dim 1) opposes H7 (to the right of the graph, 

characterized by a strongly positive coordinate on the axis) to H8 (to the left of the graph, 

characterized by a strongly negative coordinate on the axis). The H7 group, characterized by a 

positive coordinate on the axis, is sharing: higher values for the variables elevation, topographic 

position index, and direct insolation (variables are sorted from the strongest), and low values 

for the variables diffuse insolation (Diff-I and topographic wetness index (TWI; variables are 

sorted from the weakest). The group of H8, characterized by a negative coordinate on the axis, 

is sharing: higher values for the variables Diff-I, TWI, and Dir-I (variables are sorted from the 

strongest), and low values for the slope and elevation variables (sorted from the weakest). It is 

worth to note that the variable Diff-I is highly correlated with this dimension (correlation of 

0.91). This variable could, therefore, summarize itself in dimension 1 (Figure 5B). 

The second principal component (Dim 2) opposes H7 and H8 (to the top of the graph, 

characterized by a strongly positive coordinate on the axis) to H24 (to the bottom of the graph, 

characterized by a strongly negative coordinate on the axis). The H8 group, characterized by a 

positive coordinate on the axis, is sharing: higher values for the variables Diff-I, TWI, and Dir-

I (variables are sorted from the strongest), and lower values for the slope and elevation variables 

(sorted from the weakest). 

The group H7, characterized by a positive coordinate on the axis, is sharing: higher 

values for the variables elevation, TPI, and Dir-I (variables are sorted from the strongest); lower 

values of Diff-I and TWI (variables are sorted from the weakest). The group in which H24 

stand, characterized by a negative coordinate on the axis, is sharing: higher values of slope, and 

lower values of Dir-I, TPI, TWI, and elevation (variables are sorted from the weakest). Note 
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that H24 is highly correlated with this dimension (correlation of 0.05). This variable could 

summarize itself in dimension 2 (Figure 5B). 

 

3.3 Soil moisture response to rainfall 

 

It was observed for the majority of soil depths a direct and statistically significance (P 

< 0.05), but with week response to rainfall (Figure 6). H24 showed no significant correlation at 

any evaluated level (Figure 6), preventing to draw any conclusive interaction. HPUs that 

registered significant and positive correlations showed different response delay of soil moisture 

to rainfall, conditioned by soil depth mainly. H4 and H8 presented the most similar response 

pattern (Figure 6). 

From Figure 6 it is possible to observe a weak similarity response among H7, H10, and 

H6, where the soil moisture tends to correlate with rainfall in depth. Notably, in H10 (-100 cm) 

and H6 (-60 cm) that presented significant correlations until the fourth lag, and after a large 

gap, significant correlations were recorded between the 15 to 18 lags after a rainfall input. H7 

(-100 cm) also shown significant correlations in the lowest analyzed soil layer, having a 

continuous response from 5 to 13 days after rainfall inputs. 
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Figure 6 – Temporal cross-correlation between deseasonalized rainfall and soil moisture at each 

depth and hydropedologic unit (HPU). 

Segmented horizontal lines show 95 % confidence intervals for correlation. Source: From the author. 
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4 DISCUSSION 

4.1 Soil moisture variability and the hydropedologic setting 

The monitoring system was able to register a characteristic pattern in temporal studies 

of soil moisture, as a rapid increase of soil moisture due to a high matric potential in soils with 

low water content. It could be observed in surficial layers, due to greater exposure to 

atmospheric and topographic processes, controlling soil water dynamics, such as higher 

exposure to evapotranspiration and the direct effect of rainfall (MELO; MONTENEGRO, 

2015). 

Although the patterns of temporal variation among layers presented some similarity, 

quicker response to rainfall events and the soil drying rate collaborate to accentuated temporal 

variation in the soil surface layers (MELO; MONTENEGRO, 2015; ROSENBAUM et al., 

2012). At the depth of 100 cm, the soil moisture time series are practically stable and similar 

among the six monitored locations, due to lower dependence on climatic, biological, and 

hydrological factors that determine soil moisture dynamics. 

The signal similarity of soil moisture reflects in strong dependence on precedent soil 

moisture among the soil depths in the majority of monitored locations (Supplementary Figure 

2), despite the differences that exist among the hydro-physical attributes of the profiles 

(FIGURE 4). Soils with fine texture are less prone to undergo what is called “physical 

decoupling of the adjacent soil layers” (CAPEHART; CARLSON, 1997). It occurs when the 

drying rates of the surface and under the surface diverge, controlled by the soil hydraulic 

properties because the changes in the moisture contents are milder in the dry seasons 

(VEREECKEN et al., 2008). Additionally, under conditions of higher soil moisture contents, 

water distribution through soil profile acts in a more homogenous way (JOST et al., 2004).  

Soil moisture is higher at the surficial layers of HPU under reforestation (H4) when 

compared to pasture areas. Higher clay and soil organic matter contents at 0 – 20 cm depth are 

attributes that might strongly contribute to soil water retention (COSTA et al., 2013). Such 

higher organic matter content is the result of plant litter accumulation of topsoil, improving its 

physical conditions and soil structure (BISWAS; SI, 2011) and, consequently, promotes high 

soil water retention (Supplementary Figure 1). 

The higher soil moisture content in the reforested area, when compared to pasture, is 

more evident at lower rainfall periods, where a lower decrease in moisture is observed 

(Supplementary Figure 2). From July to October, all the monitored sites reached lower moisture 

values, attaining values below its wilting point, especially in pasture areas. James et al. (2003) 
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also observed lower moisture values in soils under pasture when compared to those under forest 

and shrub vegetation in dry conditions. Similar studies also suggested that the faster drying rate 

of moisture in pasture areas may be related to greater demand of this vegetation for soil moisture 

in the surface layers (KÖCHY; WILSON 2000; MELO; MONTENEGRO, 2015; WANG et al., 

2014). However, in the wettest periods, when the soil water content is higher, soil moisture 

tends to be less affected by vegetation, and moisture does not act as a limiting factor on 

evapotranspiration (ÁVILA et al., 2011; JAMES et al., 2003; MELO; MONTENEGRO, 2015; 

ROSENBAUN et al., 2012). 

The higher water retention capacity of the Typic Rhododult and Typic Hapludult, and 

the high and well-distributed rainfall throughout the year, resulting in high soil moisture 

contents, especially at depths below 30 cm (FIGURES 2 and 3, and Supplementary Figure 2). 

Notwithstanding, although soil moisture contents are higher over the time series, it was not 

found any soil redoximorphic features that denote saturated conditions. The H7 was the only 

one to draw near such condition in the 100 cm layer, as a result of lower clay contents and lower 

total porosity (Supplementary Figure 1), which are reflected in a lower amount of water stored 

under saturation conditions.  

Analyses in a geographic-time frame of soil moisture in arid and semi-arid regions 

suggest that static factors, such as texture, density, and topography, exercise greater control on 

soil moisture variability (COSH et al., 2008; LI et al., 2015; MELO; MONTENEGRO, 2015). 

However, Li et al. (2017) analyzed moisture time series in a wet climate region and observed 

that dynamic factors, such as rainfall, exert greater control on moisture variation in the temporal 

dimension. Kim and Barros (2002) and Oldak, Jackson and Pachepsky (2002) also reported that 

spatial variability in soil moisture was predominantly controlled by rainfall patterns under wet 

conditions, and by soil texture and the moisture content of vegetation under dry conditions. 

Based on PCA results of land surface and soil hydro-physical attributes in first 

dimensions, (Figures 4 and 5), H8 and H10 showed the highest similarity, having a 

hydropedologic context that promotes more water retention and topographic accumulation 

(ZHAO et al., 2012). H7 and H24, which have higher similarity as well, their hydropedologic 

condition might cause less water accumulation. Finally, despite sharing a comparable 

topographic condition, H4, H6, and H24 are sort in the dimension of soil hydro-physical 

attributes, with H4 exhibiting the highest water retention capacity, H6 with a global average, 

and H24 with the lowest.  

For most of the year, soil moisture remained near or above field capacity in the layers 

below 30 cm in the six monitored HPUs (Supplementary Figure 2). It is important to emphasize 
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that, despite the hydro-physical differences suggested by the PCA, all HPUs are expected to 

have high water retention capacity, which can be confirmed by the higher moisture contents at 

1500 kPa tension (PWP, TABLE 1). The soil texture and specific surface of the soils exerts 

primary control on soil water retention capacity (HILLEL, 2003). Since the soil texture ranged 

from clay loam to clay and, the greater the clay content, the greater the water retention capacity 

(LUZ; LIMA, 2008).  

Regarding the temporal interaction between soil moisture and rainfall, the expected 

pattern was strong and short-lag responses of soil moisture to rainfall in the topmost soil layer, 

reflecting in cross-correlation peaks after rainfall events, which should transfer successively 

down the profile as the response lag increases (MAHMOOD et al., 2011). Additionally, 

temporal correlation scales of soil moisture can be divided into two components: a short (event-

related), which prevails in upper soil layers (-10 cm); and a long (monthly scale), prevailing in 

the deep layers (-100 cm) where higher scales processes (ENTIN et al., 2000). That pattern can 

be verified only in the H4 and H8, and partially in H6 (Figure 6). The soil surface moisture-

rainfall association corroborates the coupling of near-surface atmospheric processes 

(MAHMOOD et al., 2011). 

Soils that presented greater water retention capacity (H4, H10, and H8) should report 

higher cross-correlations with rainfall, as they do in coarser temporal scales (NASH et al., 

1991). However, on a daily scale, the expected patterns are heavily hindered by the effects of 

antecedent soil moisture. Remarkably, when antecedent soil moisture has its values near to the 

field capacity (Table 1 and Supplementary Figure 2), the observation of a clear and direct 

relationship with rainfall was not possible (MONTENEGRO et al., 2018). 

Additionally, Western et al., (2002) exposes that seasonal variation in soil moisture is 

caused by changes in the balance between potential evapotranspiration (PET) and rainfall, i.e. 

dry and wet seasons changes, which are part of a larger-scale process, which is followed by the 

changes related to the duration and intensity of discrete rainfall events. This seasonal shift 

between wet and dry conditions makes soil moisture consistently high or low. The balance 

between PET and rainfall dictates the dominant process of soil moisture dynamics in the 

landscape: in a less water state, local vertical fluxes predominate, which is observed in H6 and 

H10, with analyzed rainfall segments registered in predominantly dry conditions (Figure 3), 

explaining its similar response to rainfall, and lateral fluxes on the opposite state (wet), as is the 

case of H7, which in addition to a condition that that does not retain water, was analyzed in a 

wet dominating state.  
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Early studies carried out by Yu and Cruise (1982), and Nash et al. (1991), regarding the 

relationship between rainfall and soil moisture in a temporal frame, report that despite a 

mechanistic process of water input in the soil from rainfall exists, its evaluation by cross-

correlation produces nonhomogeneous results, which is mostly caused by a significant 

difference in their autocorrelation structure, being higher for soil moisture than for rainfall, at 

a daily scale. Higher soil water retention tends to produce higher soil moisture temporal-

autocorrelation, explaining a major part of the temporal variability of soil moisture, which is 

reflected in low values of cross-correlation with rainfall (ZHU et al., 2014). 

The temporal signatures of soil moisture certainly do not reflect isolated effects of 

rainfall, but also other processes such as the input of exogenic soil water sourced as lateral flow 

and runoff from upslope areas, which in addition to the effects of antecedent soil moisture, led 

to the record of low to null cross-correlations. However, when registered, such signatures 

exhibited a clear pattern that was conditioned, at different degrees, with the hydropedologic 

conditions. 

 

5 CONCLUSIONS 

 

This study investigated the response of moisture time series to rainfall in the profile of 

Typic Rhododult and Typic Hapludult soils in pasture and reforested areas. Soil moisture was 

superior in the 10 and 20 cm soil layers in the reforested area, reflecting the better physical 

structure of its surficial layer, given the greater clay and organic matter contents. The variability 

of soil moisture was higher in the periods of lower occurrence of rains when the pasture areas 

reached the wilting point more frequently than the reforested area. In the layers below 30 cm, 

moisture remained high throughout all the time series, reflecting the high capacity of water 

retention and microporosity of the Typic Rhododult and Typic Hapludult soils, as well as a 

well-distributed rainfall. It can also be inferred a high predictability of depth soil moisture from 

the surface layer (-10 cm), whose pattern preserved the signal of the top-most layer with a 

decrease in amplitude and variability as a function of soil depth, regardless of the vegetation 

cover. In general, signal detection of rainfall-soil moisture relationship was hindered by its 

natural complexity, however despite complex interactions, a clear signal in which rainfall has 

a direct relationship with soil moisture was retrieved, in which the response pattern of soil 

moisture of the Typic Rhododult and Typic Hapludult soils is modulated by the hydropedologic 

setting with a variable degree, being conditioned mainly by topographic and hydro-physical 

variables related to water accumulation, lateral flux, and water retention.  
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Supplementary Figure 1 – Soil profile hydro-physical attributes of the analyzed 

hydropedological units. 

 
SBD: soil bulk density, SOM: soil organic matter, TP: total porosity, FC: soil moisture at field 
capacity (10 kPa), PWP: soil moisture at permanent wilting point (1500 kPa), FC and PWP values 
were not measured for H8. Source: From the author. 



52 
 
Supplementary Figure 2 - Complete time series of soil moisture and rainfall at each 

hydropedologic unit (HPU). 
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FC: average soil moisture at field capacity (10kPa), PWP: average soil moisture at permanent wilting 
point (1500 kPa). FC and PWP values were not measured for H8. Source: From the author. 
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Evaluation of synthetic-temporal imagery as covariates for digital soil 

mapping: A case study in soils under tropical pastures 

Geographic distribution of soil is related to crucial earth processes, its mapping supports 

modeling and planning for the conservation of ecosystems and the sustainability of 

agriculture. Current availability of dense time-series of surface reflectance data (SR) 

offers an interesting source of information for digital soil mapping (DSM), notably in 

regions under permanent vegetation cover. A detailed soil survey, a stack of Landsat 8 

SR data, and rainfall time-series were analyzed to evaluate the influence of soil on the 

response of temporal patterns of vegetation greenness, assessed by the normalized 

difference vegetation index (NDVI). Based on such relationships, imagery depicting 

metrics of land surface phenology (LSP), obtained by the TIMESAT algorithm, in 

conjunction with other soil-forming factor proxies, were evaluated as covariates for the 

production of a digital soil map by applying the random forest algorithm. Four soil 

classes, typical of tropical regions, under pasture cover were analyzed. Covariates 

depicting parent material and topography recorded similar importance to LSP metrics, 

notably, those LSP images related to the seasonal availability of water to plants (large 

integrated NDVI and base NDVI value), which registered significant contributions to 

the random forest model (both with ~10 % of mean decrease in accuracy). Effects of 

rainfall seasonality on LSP were verified stronger for the Red Latosol class (Rhodic 

Hapludox). Results of this approach demonstrated that the addition of temporal 

variability of vegetation greenness can be applied to access soil subsurface processes 

and assists DSM. 

Keywords: Vegetation greenness; NDVI; Random Forest; Land surface phenology 

1. Introduction 

Geographic distribution of soil is the result of a complex interaction of soil-forming factors 

across a continuum of spatiotemporal domains. Digital soil mapping (DSM) aims to integrate 

the relationships occurring over a geomorphological setting, at the landscape level, between 

climate and vegetation patterns into a soil map (McBratney, Mendonça Santos, and Minasny 

2003; Ma et al. 2019). Vegetation, a dynamic soil-forming factor, has a strong relationship 

with climate and soil properties, remarkably with those that constrain plant growth and vigor, 

i.e. water availability and fertility (Araya et al. 2016; Fujii et al. 2018; Li et al. 2012; Berry 
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and Mackey 2018). As a result, spatial distribution and temporal dynamics of vegetation are 

indicators of the interaction between underlying soil conditions and climate regimes. 

Remote sensing (RS) of vegetation greenness, a spectral feature correlated with 

vegetation biomass, productivity, health, and vigor, has been proved as a reliable tool for the 

detection and mapping of temporal and spatial dynamics of plants; being the most used 

technique the normalized difference vegetation index – NDVI (Helman 2018; Mulder et al. 

2011; Rouse et al. 1974). As a result of the growing availability of RS data and cloud-

computing, continuous collections of satellite imagery has been used to add the temporal 

dimension into studies using spectral vegetation indices (Padarian, Minasny, and McBratney 

2015; Dwyer et al. 2018). Research on the use of temporal variability of vegetation indices 

(VIs) in DSM has followed different approaches, from single-season analysis, based on the 

comparison of wet to dry conditions (Demattê et al. 2017), to the analysis of dense time series 

of VIs (Maynard and Levi 2017; Li et al. 2012). 

Analysis of seasonal variability of vegetation greenness retrieved by remote sensing, 

which is referred to as land surface phenology – LSP (Helman 2018), can also produce 

covariates for DSM. Using LSP metrics imagery related to vegetation growing seasons, e.g. 

beginning and end of seasons, integrated NDVI, and seasonal amplitudes, enable the synthesis 

of information depicting climate-driving cycles of vegetation greenness (Jönsson and Eklundh 

2004). Nevertheless, although the feasibility of the use of LSP metrics for DSM of soil 

properties such as organic carbon, sand, and calcium content, was demonstrated (Yang et al. 

2020; Fathololoumi et al. 2020), little attention was paid to the effects of soil taxonomic class 

and the interaction with rainfall seasonality, notably in tropical regions. Consequently, the 

objective of this study was to assess the use of LSP metrics in the production of digital soil 

maps. The evaluated hypothesis was that temporal variability of vegetation greenness is 
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conditioned by the interaction of soil taxonomic class and rainfall seasonality, which 

generates a ‘temporal signature’ susceptible to be retrieved by remote observation. 

2. Material and methods 

2.1. Study area and soil survey 

A detailed soil survey was carried out based on a regularly spaced grid (~130 m of nearest 

neighbor distance) over an area of ~314 ha located on the Campus of Federal University of 

Lavras, Southern Minas Gerais state, Brazil (Figure 1), from which, soil samples from A and 

B horizons were collected and analyzed to determine their soil taxonomic class in agreement 

with the Brazilian soil classification system (Santos et al. 2018). According to Köppen's 

classification criteria, the climate of the region is Cwb, i.e. humid tropical with dry winter and 

temperate summer (Alvares et al. 2013). Based on data from the MapBiomas project, it was 

verified that vegetation cover is a mosaic of pasture, forest formation, forest plantation, and 

agriculture and it has no suffer significant land cover change between the period of 2012 - 

2019 (Souza et al. 2020). 
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Figure 1. Study area location and land cover on the Campus of Federal University of Lavras, 

Southern Minas Gerais state, Brazil. Topographic contours interval is 10 m. 

 
2.2. Vegetation greenness time-series and land surface phenology 

All 168 scenes between 19-04-2013 and 12-08-2020 from the Landsat 8 OLI/TIRS sensors, 

path 218 row 75, of surface-reflectance imagery were queried in the earth engine database 

(“LANDSAT/LC08/C01/T1_SR” at code.earthengine.google.com), nevertheless, 17 scenes 

were not available. This image collection has been already atmospherically corrected and 

orthorectified, which improves its suitability for temporal analysis. Subsequently, the selected 

collection was cropped to the extent of the study area and the normalized difference 

vegetation index (NDVI), a proxy for vegetation greenness, was calculated and scaled by 

applying equation 1. Image cropping and NDVI calculation were realized using the raster 

package (Hijmans 2020) in the R platform (R-Core-team 2019). 



59 
 

Land surface phenology (LSP) metrics were derived by applying TIMESAT (Eklundh 

and Jönsson 2017), which is an algorithm developed for the extraction of seasonal parameters 

based on vegetation indices retrieved from optical remote sensing. Selection and fitting of 

seasonal models, chosen from asymmetric Gaussian functions, double logistic, and the 

Savitzky-Golay filter, was an iterative process involving visual interpretation and checking 

for reference values of NDVI in the literature (Jönsson and Eklundh 2004; Eklundh and 

Jönsson 2017). For that, the temporal stack of NDVI images was analyzed in TIMESAT.  

 410NIR RNDVI
NIR R

−
= ×

+
  (1) 

Where NIR is near-infrared surface reflectance (band 5), and R is red surface reflectance 

(band 4). The 104 factor was applied for more efficient use of memory since a large quantity 

of image data was processed. 

 The main source of noise in the temporal signal of NDVI is caused by the occurrence 

of clouds and shadows, which generate a negatively biased noise (Hird and McDermid 2009). 

To coup with that, a weighted least-squares procedure is implemented sequentially in 

TIMESAT, giving more importance to high NDVI values in the time-series, building, as a 

result, a data ‘upper envelope’ upon the seasonal model is fitted model (Jönsson and Eklundh 

2004; Eklundsh and Jönsson 2017). Landsat 8 scenes fully covered with clouds were treated 

as ‘no data’ when ingested into TIMESAT, as well as those corresponding with not available 

dates. 

Thirteen LSP maps were derived for each season (Eklundh and Jönsson 2017; Jönsson 

and Eklundh 2004): time of the start of the season, time of the end of the season, length of the 

season, NDVI base level, time of the mid of the season, largest NDVI value for the fitted 

function, seasonal amplitude, rate of increase at the beginning of the season, rate of decrease 
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at the end of the season, large seasonal integral, small seasonal integral, NDVI value for the 

start of the season, and NDVI value for the end of the season. All LSP metrics were evaluated 

as soil covariates for the DSM. 

2.3 Additional covariates 
 

Soil forming-factor proxies depicting topography and soil parent material were also evaluated. 

For that, SAGA-GIS (Conrad et al. 2015) was used to derive terrain attributes commonly used 

in DSM applications based on a detailed digital elevation model (DEM) with a spatial 

resolution of 5 m, which was interpolated by the ANUDEM method from topographic 

contours of 1 m of vertical distance (Zheng et al. 2016). Besides elevation, terrain attributes 

included: slope, diffuse insolation, direct insolation, saga wetness index (SWI), stream power 

index (SPI), topographic position index (TPI), multiresolution valley bottom flatness 

(MRVBF), and multiresolution ridge top flatness index (MRRTF). 

Parent material was interpreted from a magnetic susceptibility map obtained by Silva 

et al. (2016), which was derived from the analysis of B and C soil horizons of the same area 

(Curi et al. 2017). Subsequently, all soil covariates were aggregated to match the spatial 

resolution of the Landsat 8 data (30 m). 

2.4 Rainfall seasonality 

A rainfall time series was built from daily precipitation data from the 83687 BDMEP - 

INMET station, available at portal.inmet.gov.br. Daily data were aggregated to match the 

temporal resolution and the dates of the NDVI time-series, i.e. daily rainfall data was 

accumulated over 16-days periods (Figure 2). Analysis of the time-series of rainfall in 

TIMESAT allowed the definition of seven seasons, consequently, the initial image collection 

was filtered to match such periods. 
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Figure 2. Time-series of aggregated 16-days rainfall for the study area: Campus of Federal 

University of Lavras, Southern Minas Gerais state, Brazil (date format: year-month-day). 

 
Spearman’s rank correlation analysis was performed between the large integrated 

NDVI (LI-NDVI) and the accumulated seasonal rainfall at each soil taxonomic class based on 

median values.  

2.5 Digital soil mapping 

Random forest (Breiman 2001; Liaw and Wiener 2002) was applied to associate spatial 

covariates to the occurrence of taxonomic soil classes. Soil survey revealed the occurrence of 

infrequent soil classes, given that modeling requires a minimum number of data, only soil 

classes with at least six records and under the same vegetation cover (pasture) were analyzed: 

Haplic Cambisol (HC), Red Latosol (RL), Red-Yellow Latosol (RYL), and Red-Yellow 

Argisol (RYA), which, in the Soil Taxonomy, corresponds to Typic Dystrudept, Rhodic 

Hapludox, Typic Hapludox, and Typic Hapludult, respectively (Soil Survey Staff 2014). 

Accuracy assessment was evaluated on repeated 5-fold cross-validation, and random 

forest’s variable importance, measured by the mean decrease in classification accuracy, was 

calculated globally and for each soil taxonomic class. 
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3. Results 

3.1. Relationships between rainfall and vegetation greenness at each soil class 

Spearman’s rank correlation analysis between median values of the large integrated NDVI (LI 

- NDVI) and the accumulated seasonal rainfall is displayed in Table 1. The soil class that 

recorded the highest correlation between rainfall and LI – NDVI was the RL class (Rho = 0.7, 

P < 0.05). 

Similar responses to rainfall are observed in the seasonal variation of RYL and RYA 

(Figure 3), which may be an effect of parent material, gneiss in both cases, differentiating 

from gabbro in the RL case (Curi et al. 2017). Soils developed from the same parent material 

usually present similar properties, as can be verified by their texture and soil organic matter 

(SOM) content (Figures 4 and 5), such a fact explains the similar behavior of these soils when 

evaluating the relationship between pasture productivity, interpreted as the large integrated 

NDVI metric (LI_NDVI), and rainfall. 

Table 1. Spearman’s rank correlation (Rho) between seasonal rainfall and large integrated 

NDVI for each soil taxonomic class. 

STC Rho p-value 

RYL 0.4 0.05 

RYA 0.5 0.03 

RL 0.7 0.02 

HC 0.4 0.04 

STC: Brazilian soil taxonomic class, RYL: Red-Yellow Latosol, RYA: Red-Yellow Argisol, 
RL: Red Latosol, HC: Haplic Cambisol. 
  

High levels of SOM promote the retention and maintenance of water in the soil profile 

since it has a high association with chemical behavior and physical conditioning. Likewise, 

high clay content keeps water in the profile more easily, since the charges on the surface of 

the clays interact with the soil water. Although the clay content in the RL class is high when 
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compared to other soil classes (Figure 5), clay in this class is usually found in flocculated 

form, presenting microstructures that, due to their size, have a sandy behavior making 

infiltration efficient. Therefore, vegetation greenness on these soils may be more dependent 

on rainfall seasonality, as can be seen in Figure (3), in which the LI_NDVI curve of RL 

followed the rainfall seasonal pattern, which was corroborated by its highest correlation 

coefficient (Table 1). 

Data obtained in previous studies using the integrated NDVI, interpreted as a proxy of 

seasonal productivity, indicated that there is an association among soil moisture, clay content, 

and natural fertility (Nicholson and Farrar 1994; Farrar, Nicholson, and Lare 1994). 

According to Araya et al. (2016), the vegetation productivity has a direct and proportional 

relationship with rainfall until it reaches a saturated condition; Figure 3 shows that there is a 

pattern depicting similar processes, notably for the class RL, which is characterized by a 

significant high clay content in the profile (Santos et al. 2018), enabling a differential 

response in plant water availability. It can be also observed that vegetation response depends 

on the accumulated seasonal rainfall on a yearly scale, notably for the season period 2017-

2018 (Figure 3), which is the result of decreasing water input producing the expected 

theoretical pattern, i.e. the plant water availability conditioned by soil taxonomic class 

reached their maximum expression in the less water condition, this was also verified by 

Méndez-Barroso et al. (2009). 
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Figure 3. Rainfall seasonality and its relation with large integrated NDVI for each soil 

taxonomic class. RYL: Red-Yellow Latosol, RYA: Red-Yellow Argisol, RL: Red Latosol, 

HC: Haplic Cambisol. 

 
Figure 4. Soil organic matter (SOM) by soil taxonomic class and soil horizon. RYL: Red-

Yellow Latosol, RYA: Red-Yellow Argisol, RL: Red Latosol, HC: Haplic Cambisol. 
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Figure 5. Soil texture class distribution (dots) and center confidence regions (90 % 

confidence) around centroids (squares) by soil horizon for each taxonomic class. RYA: Red-

Yellow Argisol, HC: Haplic Cambisol RYL: Red-Yellow Latosol, RL: Red Latosol. Cl: clay, 

SiCl: silty clay, SaCl: sandy clay, ClLo: clay loam, SiClLo: silty clay loam, SaClLo: sandy 

clay loam, Lo: loam, SiLo: silty loam, SaLo: sandy loam, Si: silt, LoSa: loamy sand, Sa: sand. 

3.2 Accuracy assessment and DSM  

Performance of the use of LSP metrics in DSM recorded a median global accuracy of 61.1 % 

and a kappa value of 0.43, i.e. fair agreement (Landis and Koch 1977). Error rate was 

proportional to the occurrence frequency of the analyzed soil taxonomic classes, being lesser 

for the dominant classes: RL (12.1 %) and RYL (25.2 %), and higher for the less frequent 

classes: RYA (47.3 %) HC (87.3 %), imbalance in the dataset is still a challenging task in 
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DSM applications and the considerably low quantity of observations impeded the use of 

balancing techniques (Sharififar et al. 2019). The digital soil map in Figure 6 was filtered to 

show only the pasture vegetation cover (164.74 ha) and the geographic distribution of the 

analyzed soil taxonomic classes, which recorded the following area proportions: HC 10.09 ha 

(6.12 %), RL 83.95 ha (50.96 %), RYL 58.55 ha (35.54 %), and RYA 12.16 ha (7.38 %).  

 
Figure 6. Digital soil map of soil taxonomic classes under pasture cover.on the Campus of 

Federal University of Lavras, Southern Minas Gerais state, Brazil. RYL: Red-Yellow Latosol, 

RYA: Red-Yellow Argisol, RL: Red Latosol, HC: Haplic Cambisol. Blank areas within the 

study area are vegetation covers dissimilar to pasture. 

 
3.3. Covariates importance for DSM  

Variable importance rank of the covariates evaluated for DSM is displayed in Figure 7 and the 

most important covariate maps in Figure 8. LSP metrics, notably LI - NDVI and base NDVI 

value of the seasons 2014 – 2015 and 2015 – 2016, recorded similar importance to those 

depicting parent material (magnetic susceptibility) and topography (CNBL). LI – NDVI, 
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which is the integral of the function spanning from start to the end of each season (Eklundh 

and Jönsson 2017), fitted by an asymmetric Gaussian function, is associated with seasonal 

vegetation productivity (Li et al. 2012; Araya et al. 2016; Nicholson and Farrar 1994). The 

base level, defined as the averaged fitted minimum values of NDVI has been already reported 

as an efficient DSM covariate (Yang et al. 2020) and reflects the soil condition over which 

vegetation cycles are driven. 

 

Figure 7. Random forest variable importance of the covariates assessed for the digital soil 

map. MS_B: Magnetic susceptibility of B horizons, CNBL: channel network base level, SPI: 

stream power index, SWI: saga wetness index, TPI: topographic position index, MRVBF: 

multiresolution valley bottom flatness, SOS_t: time for the start of the season, EOS_t: time 

for the end of the season, LOS_t: length of the season, BV_NDVI: base level value, TMS_t: 

time for the mid of the season, MV_NDVI: maximum value for the fitted function during the 

season, Amp_NDVI: seasonal amplitude, LeftD: rate of increase at the beginning of the 
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season (left derivative), RightD: rate of decrease at the end of the season (absolute value of 

right derivative), LI_NDVI: large seasonal integral, SI_NDVI: small seasonal integral, 

SOS_NDVI: value for the start of the season, EOS_NDVI: value for the end of the season. 

 
Figure 8. Random forest most important covariate maps: MS: Magnetic susceptibility of B 

horizons, CNBL: channel network base level, LI_NDVI: large seasonal integral, BV_NDVI: 

base level value. Black spots in LI and BV maps (below zero values) have insufficient data to 

fit a seasonal function. 

4. Discussion 

4.1. Soil control on the response of vegetation greenness to rainfall 

Previous research has documented the effectiveness of temporal variability of vegetation 

greenness as a covariate for DSM of soil classes; Dematte et al. (2017), for example, reports 

that the analysis of NDVI seasonal difference can capture the control that soil exerts on 

vegetation greenness since soil pedological class reflect the water dynamics along the profile. 

Maynard and Levi (2017) also verified that soil acts as the main connector of vegetation and 

climate feedback. Those relationships support the use of vegetation temporal variability as a 
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DSM covariate. However, those studies have not included the temporal dimension of 

vegetation in an explicitly phenological sense, as is the case of this research, where the 

performance of time-synthetic images of NDVI phenological metrics and its relationship with 

seasonal rainfall as conditioned by soil taxonomic class was analyzed. 

It was found that in all analyzed soil taxonomic classes, LSP metrics of NDVI of high 

importance for the discrimination of soil classes are related to the availability of water, 

remarkably in seasons with contrasting seasonal rainfall. These findings extend those of 

Maynard and Levi (2017), Araya et al. (2016), and Dematte et al. (2017), confirming that the 

vegetation greenness signal retrieved by remote sensing, is linked to water availability 

produced by the interaction of rainfall and soil condition on a phenological level and is also 

associated to preceding seasons. Additionally, the analysis of the effects of rainfall seasonality 

on the LI-NDVI metric validated their use in DSM, showing that rainfall acts as a ‘trigger' of 

the interactions of the soil-plant system. 

4.2. Suitability of LSP data for DSM 

Phenological synthetic imagery used as DSM covariate recorded similar importance than 

customary soil covariates and results provide interesting evidence for their application in 

digital mapping of soil taxonomic classes. However, some limitations are worth noting. 

Although the initial hypothesis was partially verified statistically, NDVI temporal signal may 

not reflect exclusively the effects of water availability, as indicated by Gholizadeh and 

Kopačková (2019), other factors, such as toxicity can act as vegetation ‘stressors’ and affect 

its spectral properties, as well as the interaction of soil fertility and taxonomic class (Demattê 

et al. 2017). Future work should therefore address the issue of functional signal filtering 

aiming at the elucidation of stronger temporal signatures.  
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5. Conclusions 

The effects of soil taxonomic class on the response of vegetation greenness to rainfall were 

evaluated in a seasonal frame. It was verified that the temporal variability of vegetation 

greenness is conditioned by the soil in conjunction with rainfall seasonality. Seasonal 

dynamics of rainfall act as a ‘trigger’ for the soil-plant interaction, causing the most 

responsive temporal signature when transiting from a steady to a low-water input condition. 

While soil-forming factors depicting parent material and topography showed high importance 

for the classification and mapping of soil classes, LSP metrics related to the seasonal 

availability of water to plants, large integrated NDVI and NDVI base level, were also 

significantly important, remarkably for the Red Latosol class (Rhodic Hapludox). Results of 

the map production process support the use of vegetation seasonal metrics derived from 

remote sensing, in addition to other soil-forming factors, as a reliable source of information 

for the production of digital soil maps.  
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