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RESUMO 

 

O uso de imagens na fenotipagem de alta precisão tem se mostrado uma técnica 
promissora para acelerar e aumentar os ganhos genéticos de caracteres qualitativos 
ligados a qualidade das espigas e a produtividade de grãos em programas de 
melhoramento de milho doce. Por isso, o objetivo desse estudo foi estabelecer um 
protocolo eficiente de fenotipagem de espigas, utilizando imagens digitais. A aquisição 
das imagens foi realizada em tempo reduzido em uma plataforma simples e de baixo 
custo. As imagens foram processadas em software gratuito utilizando técnicas de 
segmentação. Após o processamento das imagens, foram extraídas matrizes de píxeis que 
permitiram a caracterização das espigas quanto aos descritores comprimento, largura, 
área total, área sem preenchimento de grãos, número de fileira e número de grãos. 
Medidas de confiabilidade foram empregadas para verificar a eficiência da fenotipagem 
por meio das imagens digitais e sua concordância com a fenotipagem manual. As 
metodologias propostas se mostraram promissoras para caracterização das espigas de 
milho por meio das imagens. Foram observadas correlações elevadas, variando de 0,6 a 
0,95, entre os valores estimados via imagens e os obtidos manualmente. As técnicas de 
segmentação de imagens e a metodologia proposta para determinar o comprimento e 
largura das espigas foi altamente eficiente. O uso de imagens reduziu o tempo e a mão de 
obra dispendidos na caracterização das espigas. O protocolo estabelecido nesse estudo 
pode substituir a fenotipagem manual e ser adotado em larga escala, sem custos elevados, 
em qualquer programa de melhoramento. Os resultados apresentados encorajam novas 
investigações ligadas ao processamento de imagens visando acelerar a fenotipagem de 
características de interesse do melhorista.  
 
Palavras-chave: Fenotipagem. Imagens Digitais. Milho Doce  



 

  

ABSTRACT 
 
The use of digital images in high throughput phenotyping has been shown to be a 
promising technique to speed up and increase the genetic gains of qualitative traits linked 
to the quality of ears and grain productivity in breeding programs for sweet corn. 
Therefore, the goals of this study were to establish an efficient protocol for ear 
phenotyping, using digital images. The acquisition of the images was accomplished in a 
reduced time in a simple and low-cost platform. The images were processed in open 
software using image segmentation techniques. After processing the images, pixel 
matrices were extracted, which allowed the characterization of the ears in terms of length, 
width, total area, tip fill area, number of rows and number of kernels. Index of agreement 
were used to verify the efficiency of phenotyping through digital images when compared 
with manual phenotyping. The proposed methodologies were shown to be promising for 
the characterization of corn ears through digital images. High correlations were observed, 
ranging from 0.6 to 0.95, between the values estimated via images and those obtained 
manually. The techniques of image segmentation and the proposed methodology to 
determine the length and width of the ears were highly efficient. The use of images 
reduced the time and labor spent on characterizing the ears. The protocol established in 
this study can replace manual phenotyping and be adopted on a large scale, without high 
costs, in any breeding program. The results presented encourage further investigations 
related to image processing in order to speed up the phenotyping of characteristics of 
interest to the breeder. 
 
Key-words: Phenotyping. Digital Images. Sweet Corn 
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1 INTRODUCTION 

Consumption of fresh sweet corn (Zea mays var. rugosa) is very popular in the 

United States and Europe. Around the world, a large part of its production is destined for 

consumption processed in cans or frozen. Due to the market to which it is destined, sweet 

corn is classified as an olericulous crop and therefore, in addition to productivity it is 

important that the breeder is focused on qualitative aspects of the ears such as color, size, 

number of kernel rows, number of grains and area without grain filling, since the 

acceptance of ears by consumers is directly linked to their phenotypic quality (STEVENS 

et al., 2003). 

Phenotyping sweet corn ears in breeding programs has been carried out over the 

years manually. Although it often involves simple processes, the characterization of many 

genotypes using traditional phenotyping methods, is considered an expensive process 

because it requires qualified labor, time, being a subjective and often destructive process 

(FURBANK; TESTER, 2011). Additionally, the collection of accurate phenotypic data 

has been considered one of the main bottlenecks in increasing genetic gain in breeding 

programs, especially when studies involve genomic information (DEERY et al., 2016; 

YANG et al., 2020). 

Carrying out the phenotyping of corn ears accurately, quickly and efficiently is a 

major challenge for breeding programs, because characteristics directly related to grain 

yield such as length, width, number of rows and grains per ear, are activities costly and 

difficult to measure when many genotypes are being evaluated during the selection stages. 

Concomitantly, one must take into account the low precision associated with manual 

phenotyping due to the qualification discrepancy between the evaluators, calibration of 

the equipment used in the process and, above all, due to the physical and mental fatigue 

of the evaluators. 

In the last decade, high-performance phenotyping has been identified as an 

alternative tool to accelerate the process and increase accuracy in identifying 

characteristics of interest to the breeder. The popularization, quality development and 

reduction in the cost of equipment such as cameras, drones, sensors and robotic platforms 

associated with the ease of storage and database processing, has doubled the number of 

works related to high-yield phenotyping in plants compared to other areas of research 



 

 

10  
 

 

such as genomics, proteomics and precision agriculture (COSTA et al, 2019; YANG et 

al., 2020). 

 Another factor that contributed to increase research on automated phenotyping 

was the evolution of studies in the field of genomics. While the use of molecular markers 

has become accessible for genotyping many individuals in breeding programs, the 

selective accuracy of the prediction models has been limited due to the difficulty and low 

precision in obtaining the phenotypic data that validate these models. 

 Ear phenotyping using images has been highlighted as an advantageous tool as it 

is a non-destructive, low-cost, easy-to-execute process highly correlated with information 

obtained manually. Studies show that automated phenotyping can replace manual ear 

phenotyping, improve the accuracy and speed of processing field data and assist the 

breeder in identifying characteristics of interest for the selection of superior genotypes 

(ZHAO et al, 2015; LIANG et al., 2016; MILLER et al., 2017; MAKANZA et al., 2018; 

WARMAN; Fowler, 2019). 

Much of the work is using image segmentation algorithms to extract information. 

This technique has shown competitive results in efficacy and speed compared to manual 

phenotyping (ZHAO et al., 2015; MAKANZA et al., 2018; WARMAN; FOWLER, 

2019). Associated with this, low-cost tools that enable phenotyping hundreds of ears and 

benefit breeding programs with limited resources, have been presented in the literature 

(MAKANZA et al., 2018; WARMAN; FOWLER, 2019; WU et al., 2020). 

It is a fact that the use of digital images is an accurate, fast and low-cost option 

for phenotyping traits related to ears. However, most studies found in the literature use 

few ears, with low variability between them and with high phenotypic pattern, not 

reflecting the reality of many corn breeding programs. This fact associated with some 

crucial steps in the use of images for ear phenotyping, such as: background definition, 

processing, image segmentation and noise elimination, demonstrate that the best 

methodology for the characterization of ears is not yet well defined. 

In this context, the goal of this study was to develop an efficient, fast, low-cost 

methodology, with high agreement with traditional protocols, to extract information 

related to the production and quality components of sweet corn ears, using digital images. 
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2 REFERENCIAL TEÓRICO  

 

2.1 Fenotipagem por imagem 

 

A fenotipagem consiste na determinação dos valores quantitativos ou qualitativos 

das características de um genótipo (DHONDT; WUYTS; INZE, 2013). A fenotipagem 

tradicional de plantas para os melhoristas inclui caminhar pelos campos experimentais e 

marcar parcelas com base na maioria das vezes na aparência das plantas. Melhorias nos 

métodos de fenotipagem são altamente desejáveis e devem adicionar equilíbrio entre 

precisão, acurácia, velocidade e custo. A fenotipagem de alto rendimento pode aumentar 

o que os melhoristas podem avaliar e oferecer melhores escolhas baseadas no fenótipo 

(ARAUS et al., 2018).  

Neste contexto a possibilidade de fenotipagem de milhares de indivíduos, mais 

rápido e com alta precisão (DAVEY et al., 2011), essa tecnologia promete reduzir custos 

e agilizar o desenvolvimento de culturas mais bem adaptadas para os produtores em um 

ritmo mais rápido. As seleções baseadas em campo estão sujeitas a recursos e precisão 

limitados, mas ainda são altamente eficazes para caracterizar as respostas da cultura ao 

ambiente para muitas características que são mais complexas do que aquelas detectadas 

em um laboratório (KIM, 2020). 

Uma série de componentes e etapas deve ser considerada para o desenvolvimento 

de um sistema de fenotipagem de alto rendimento, que inclui sensores, plataformas, 

análises e gerenciamento de dados (CRAIN et al., 2016).  

 O emprego de imagens digitais para fenotipagem pode trazer muitos benefícios. 

As técnicas para captura das imagens geralmente são rápidas, não invasivas, precisas, de 

baixo custo, livres de resíduos, com boa resolução espacial e temporal, permitem explorar 

áreas relativamente grandes, proporcionam grande número de repetições e segurança ao 

operador (SOUSA et al., 2015). A automação do processo de obtenção das imagens, 

dependendo da espécie vegetal, das condições de cultivo e das variáveis, viabiliza estudos 

comparativos e seleção fenotípica em larga-escala (GEBREMEDHIN et al., 2019). Por 

fim, a utilização dessas técnicas possibilita avaliar o impacto dos diferentes tipos de 

estresses sobre as plantas e parâmetros bioquímicos, sem a necessidade de destruí-las 

(SOUSA et al., 2015).  
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Há cinco tipos de sensores disponíveis para a captura de imagens em diferentes 

regiões do espectro eletromagnético: 1) sensores digitais para captura de imagens RGB; 

2) sensores no visível para a captura de imagens de pigmentos; 3) sensores no 

infravermelho próximo para a captura de imagens relacionadas aos índices de água; 4) 

sensores no infravermelho longo para a captura de imagens térmicas; e 5) sensores para 

a captura de fluorescência, especialmente de clorofilas (ZHAO et al., 2019).  

Esses sensores permitem o estudo de diversas características como: análise do 

crescimento; determinação de pigmentos, como clorofilas e carotenoides; avaliação do 

aparato fotoquímico; temperatura da copa, para identificação de estresse hídrico e salino 

(SOUSA et al., 2015, ZHAO et al, 2019). Apesar do potencial dessas ferramentas para 

fenotipagem em larga escala e vários trabalhos de fenotipagem em espigas de milho 

(VALIENTE-GONZÁLEZ et al., 2014; MILLER et al., 2017; MAKANZA et al., 2018; 

ZHAO et al., 2019; WU et al., 2020), nenhum trabalho realizou uma abordagem que 

utilizava software gratuito e proporcionasse os mesmo resultados com custo de execução 

e aplicação baixo.  

 

2.3 Milho Doce 

 

O milho doce (Zea mays L.), considerado uma olerícola, tem características 

particulares, como sabor doce, pericarpo fino e endosperma de textura delicada e alto 

valor nutritivo (KWIATKOWSKI; CLEMENTE, 2007). É destinado exclusivamente ao 

consumo humano, na forma in natura ou em alimentos processados, enquanto a palha 

pode ser utilizada para silagem após a colheita (TEIXEIRA et al., 2001).  

 A diferença entre o milho doce e o milho comum está no teor de açúcares e amido 

presentes no endosperma (ARAGÃO, 2002), resultantes da ação de genes recessivos 

individuais ou em associações. Assim, enquanto o milho comum tem em torno de 3% de 

açúcar e entre 60 e 70% de amido, o milho doce tem de 9 a 14% de açúcar e de 30 a 35% 

de amido (CAMILO, 2015). 

Além do milho doce fresco para consumo humano, ele pode ser posteriormente 

processado em outros produtos alimentícios, adoçantes, amidos, óleos, álcool e 

combustível à base de etanol. O milho também é o principal grão de ração nos Estados 

Unidos e deve responder por cerca de 95% dos grãos de ração em 2015-2016. Em 2010, 
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os americanos consumiam em média 11.8 kg de milho doce por pessoa. Desse montante 

total, 4.3 kg eram de milho doce congelado, 4,1 kg eram milho doce fresco e as 3.3 kg 

restantes eram produtos de milho doce enlatado (USDA, 2010). 

 E pensando no consumo in-natura do milho algumas características são 

importantes para o processo de melhoramento como o número de grãos por espiga, o 

tamanho e largura das espigas que são indicadores chave para a avaliação da qualidade 

do milho (CAIRNS et al., 2013). Os métodos tradicionais para estimar essas 

características baseiam-se em observações manuais (MILLER et al., 2017), esses 

métodos são trabalhosos, demorados e pouco eficientes, muitas vezes sujeitos a erros.  

A utilização de sistemas que utilização “machine vision” podem adquirir 

informações fenotípicas de uma maneira rápida e eficiente (VALIENTE-GONZÁLEZ et 

al, 2014). Este tipo de tecnologia está sendo cada vez mais utilizado na extração de 

informações de características de cereais (NARENDRA et al., 2010; MAKANZA et al., 

2018), incluindo milho. Alguns trabalhos obterão as informações sobre as espigas como 

numero/grãos, número de fileiras, tamanho e largura, basicamente utilizando duas 

diferentes abordagens uma utilizando um mecanismo rotativo que captura imagens de 

toda a superfície da espiga (SONG et al., 2011), neste caso o sistema de rotação da espiga 

aumenta o custo e também torna este método de baixo rendimento e a segunda abordagem 

é a simples obtenção de uma única imagem da espiga (WU et al., 2020). 

A qualidade da estimativa dos descritores de produtividade utilizando imagens 

depende de vários fatores, no entanto a utilização de apenas uma imagem é muito mais 

barato e pode ser adaptado para programas de melhoramento (WU et al., 2020; YAN et 

al., 2010; BELAN et al., 2018).  
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3 MATERIAL AND METHODS 

 
3.1. Experiment 

 
 This study used 210 ears of sweet corn from the germplasm bank of the University 

of Florida. These ears came from a diverse population with wide genetic variability, 

introduced from different locations in the world (Figure 1). The experiment to obtain the 

phenotyped ears was carried out in the spring harvest, in 2019, at the “Everglades 

Research and Education Center” located in South Florida, in the city of Belle Glade (26° 

41' 6.95" N de latitude and -80° 40' 16.59" W longitude).   

 

 

 
Source: Ricardo Andrade (2020). 

 

The harvested ears were processed, husked and then taken to a dryer, for 

approximately 5 days, with an average temperature of 36°C, to moisture close to 13%. 

 

3.2. Manual Evaluation 

 
 In the laboratory, ears were manually evaluated with the aid of a millimeter caliper 

for some traits directly related to grain yield and important visual requirements for the 

commercialization of fresh sweet corn. The descriptors measured were: length: obtained 

by the vertical distance from the base to the tip of the ear and width: obtained by the 

horizontal distance between the rows of grains at the midpoint of the ear. Additionally, 

traits such as number of grains and rows of a side of the ear, were determined by manual 

counting by viewing the images on a computer screen. 

Figure 1: Sweet corn ears that represent the studied population. 
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Figure 2: Cabin with attached camera that was used to capture the images. 

 

3.3. Obtaining digital images 

 
 After the phenotypic manual evaluation, digital images of the ears were captured 

using a professional Nikon D750 camera, equipped with a 35mm DX lens, with a built-

in autofocus motor, 1.8f aperture and ISO setting (camera sensor’s sensitivity to light) set 

to 1,200. Images were obtained in compression format JPG, RGB (red, green and blue) 

color system and resolution of 2,944 x 1,968 pixels. 

In order for the images to be obtained with better quality, the camera was attached 

to a wooden structure, with three sides covered with white fabric, which avoided shading, 

and a base covered with black fabric, which provided greater background uniformity and 

contrast with the ears. No artificial light was used to obtain the images, only the natural 

incidence of light (Figure 2).  

 

 

 

Source: Ricardo Andrade (2020). 
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3.4. Ear evaluation using digital images 

C) Estimation of length and width of the ears 

Images were processed with a view to standardizing the background, converting to a 

binary image and extracting the pixel matrix, in an automated way, aiming at phenotyping 

the ears in terms of length and width. For this, some steps were taken (Figure 3): 

1- Loading the digital image in a Cartesian plane. The location of each pixel was 

represented by the perpendicular X and Y axes (Figure 3A); 

2- Resizing the image to reduce the number of pixels and optimizing the 

computational process (Figure 3B); 

3- Conversion of the image in the RGB color system (RED, GREEN, BLUE) to a 

gray scale (Figure 3C); 

4 - Grayscale image thresholding. This process aims to segment the image into two 

groups based on the different gray level values (0 to 1). From the histogram of the 

grayscale image, a threshold of 50% was established (Figure 3D). Thus, all pixels 

with values above 0.5 were converted to 1 (white color) and all pixels below the 

threshold of 0.5 were set to 0 (black color), resulting in a binary image (0 and 1) 

(Figure 3E); 

3- Finally, the pixels were uniformized and filled, eliminating noise present in the 

image and extracting the binary matrix (Figure 3F and 3G). 
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Figure 3: Image processing. A) Original image (dimension: 2,944 x 1,968); B) Image cut 

(dimension: 844 x 1,968); C) Gray scale; D) Gray-scale image histogram; E) Image 

thresholding; F) Elimination of image noise; G)Binary matrix 

 

 

 

 

 

Source: Ricardo Andrade (2020). 

The binary matrix generated after processing each image was used to obtain the length 

and width estimates in pixels. For that, only the elements equal to 1 that represented the 

ear area were extracted from the matrix. Subsequently, considering the Cartesian 

coordinates (x, y), the length of each ear (EA) was estimated by the following expression: 

!" = 	%('()!)" + ('()#)", 

where: '()! corresponds to the difference between the maximum and minimum points 

on the Y axis. Considering only the maximum and minimum points of Y, there are many 

corresponding pixels on the X axis, so we obtained the average of the pixels in X for 

maximum Y and minimum Y. The estimate of '()# corresponds to the difference 

between the average of the X pixels corresponding to the maximum Y and the average of 

the X pixels corresponding to the minimum Y. In this expression, '()# was used to 

correct possible errors associated with ear slope. In cases where the ear did not show 

inclination, '()# was considered equal to zero and the height was given by the difference 

between the maximum and minimum points on the Y axis (Figure 4). 
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Source: Ricardo Andrade (2020). 

 

The width estimate (EL) in pixels was given by the length of the straight line 

perpendicular to the height of each ear. To measure the ear width, it was previously 

necessary to find the value corresponding to the length midpoint on the Y axis and the 

angular coefficient of the perpendicular line (-), from the reduced equation of the line y 

. = -/ + 0, where x and y are the points belonging to the line and 0 is the linear 

coefficient that represents the numerical value through which the line passes through the 

ordinate (Y) axis. Thus, ear width was determined by the following expression: 

 

!1 = 	%(23420'56	(73')" + (8))8(76'	(73')", 

 

where: adjacent side corresponds to the difference between the maximum pixel and the 

minimum pixel in X considering the length midpoint in Y; opposite side corresponds to 

the tangent of the angle - multiplied by the adjacent side. As for height, the value of the 

opposite side was used to correct possible errors associated with the slope of the ears 

(Figure 5). 

 

Figure 4: Estimated height of ears in pixels. A) Ear height without slope, without 

correction. B) Ear height with inclination, with slope, calculated by the straight line 

perpendicular to the points of maximum Y and minimum Y. 
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Figure 5: Estimated pixel width. A) Ear width, without slope determined only by the 

estimate of the adjacent side; B) Ear width, with slope, determined by the equation 

presented above that takes into account the correction by the opposite side. 

 

 

 

 
Source: Ricardo AndradeDo autor (2020). 

 
B) Estimation of ear area (EA) 

To isolate the representative area of the ear from the background, we used the 

image segmentation technique called K-nearest neighbors (KNN) proposed by Fukunaga 

and Narendra (1975). This technique consists of dividing the digital image into multiple 

regions or segments (set of pixels) that are similar, using a calculation algorithm that 

models the segmentation task in a semi-interactive manner. This study aimed to eliminate 

the background of the images and, therefore, it was necessary to provide the coordinates 

of the pixels that represented this region. 

After identifying the area of interest, the image was converted from the RGB color 

system to a grayscale, consequently the image was segmented by means of thresholding, 

and later converted to a binary image. Thus, the pixels representing the ear were converted 

to a value of 1. They were used to estimate the proportionality of the ear area in relation 

to the total number of pixels observed in the image. To determine the ear area in square 

millimeters (mm), the number of pixels was converted to mm, with each 9.14 pixels 

corresponding to 1 mm. 
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Figure 6: Estimation of area without grain filing using the KNN image segmentation 

technique. 

 

C) Estimation of area without grain filling (ASEG) 

 

Of the 212 ears that were phenotyped, 37 had a failure in grain filling. The 

determination of the ear area without grain filling followed the same steps performed to 

determine the total ear area, involving the thresholding techniques (50% threshold) and 

the KNN segmentation technique. By color difference, a representative point of ASEG 

was identified in each image. Subsequently, this portion was isolated, thresholded and 

converted to a binary matrix (Figure 6). From the binary pixel matrix, ASEG was 

estimated. To determine the proportion of ASEG in each ear, the ratio of ASEG to its 

total area was performed. 

 

 

 

 
Source: Ricardo Andrade (2020). 

 

D) Prediction of the number of grains 
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After processing the images, it was found that some of them were obtained with 

low quality in relation to focus, sharpness and color saturation. In addition, some ears did 

not have a well-defined number of rows and grains and are considered difficult to measure 

both manually and through image phenotyping. Therefore, a group of 91 images was 

selected. 

In order to estimate the number of grains per ear, a reduction in the image size 

around the ear limits was previously performed, in order to proceed with a faster analysis. 

Subsequently, the following steps were followed: 

1- Image rotation in case of ear slope. For this, a straight theta angle was determined 

based on the line between two points parallel to the ear length (Figure 7A). 

2- Image segmentation based on the KNN technique. For that, an index that involves 

operations between RGB matrices was used, allowing the elimination of the image 

background. In the present study, the index used was the SHP (table 1). 

Subsequently a binary mask was created, which returned an image in shades of 

gray. Then, this grayscale image was interpreted as a topographic map, in which 

the limits between the hydrographic basins (segmentation) are considered the 

limits between the grains present in the ear (Matias et al., 2020) (Figure 7B). 

3- Identification of the ear area, followed by counting the number of grains. For each 

ear, a new image was plotted with red dots on the grains that were identified 

(Figure 7C and 7 D). 
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Source: Ricardo Andrade (2020). 

 
E) Prediction of the number of rows 

To predict the number of rows per ear, the same group of images selected was 

used to estimate the number of grains. Image processing for estimating the number of 

grains was based on the following criteria: 

a. Resizing the image and extracting the matrix of pixels in the RGB 

channels. These matrices were used in a second moment to predict the number of 

rows (Figure 8). 

b. Conversion of the image in the RGB color system (red, green, blue) to a 

gray scale and later to a binary image (0 and 1) or black and white; 

c. Image segmentation using a 75% threshold and noise elimination. 

 

 

 

Figure 7: Grain number count. A) Ear rotation; B) Image segmentation; C) Ear area 

identification; D) Number grain identification and count. 
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Figure 8: Images from RGB matrices, used to predict the number of rows. 

 

Figure 9: Segmentation techniques used A) Threshold 75% and B) Threshold 75% 

combined with the EROD technique, to identify the number of rows per ear. 

 

 

 

 

 
Source: Ricardo Andrade (2020). 

1- Binary erosion: this technique allowed to eliminate sets of small pixels and/or to 

reduce areas of large sets of similar pixels. This technique allowed to individualize 

and quantify the grains and the rows of ears, when they were very close (Figure 9). 

 

 

 

 
Source: Ricardo Andrade (2020). 
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To estimate the number of rows per ear, a prediction model was used. In addition, 

five different types of pixel matrices (red, green, blue, Threshold 75% (binary matrix) 

and Threshold 75% + EROD (binary matrix) were tested. The pixel matrix had an n x p 

dimension, where n is the number of images (or phenotyped ears) and p is the number of 

pixels of each image. The line of pixels that characterized each ear was obtained in two 

ways: 

1) Line corresponding to the midpoint of each ear. The midpoint was obtained by 

the difference between the maximum pixel and the minimum pixel divided by two. 

2) Average of 100 center pixels on each ear. 

After obtaining the pixel matrix, the following prediction model was adopted: 

 

9̂ = Xβ;+ Zα + e, 

 

where .̂ is the phenotypic value n × 1 where n is the number of rows in each ear; X is the 

incidence matrix of the fixed effects vector (β	<); Z is the incidence matrix of the ears; α 

is the vector of pixels; e is the vector of residuals. Given the assumption of independence 

and normality for the random effects α and e, we have: α~N(0, =$">), where G is the pixel 

matrix of the ears e ~ N (0, =%"R). 

The predictive ability of the model was based on the results provided by the BGLR 

program, following the cross-validation technique. For this, images were randomly 

divided into five mutually exclusive groups, allowing the assessment of prediction skills 

under a 5-fold cross-validation scheme. The prediction quality measure was attributed 

based on the average performance of the five validations. The training population 

consisted of 73 images and the validation population was represented by 18 images. In 

each fold, 40,000 interactions were made, considering a burn-in of 10,000. The predictive 

ability of the model was verified by estimating the correlation between the predicted 

values and their corresponding phenotypic values evaluated manually. 
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3.5. Evaluation of the phenotyping efficiency  

 

 In order to check the phenotyping efficiency by means of digital images and its 

agreement with manual phenotyping, some reliability measures described in the literature 

were estimated for the traits length, width, number of rows and number of grains.  

 

Reliability measures used: 

 

a) slope (β) and coefficient of determination (R2) of simple linear regression 

without i intercept (model: Y = βX + e, where Y is the value obtained from the image 

analysis, β is the slope and X the value obtained with manual measurement. The value of 

β was tested by the t-test, with α ≤ 0.05, whose hypotheses were: Ho: β = 1 and H1: β ≠ 

1); 

b) Bias (Bias = ?@  – 1); 

c) Person correlation (r) (Eq. 1), according to classification proposed by Hopkins 

(2000) 

A = 	
∑ (C& − CE) ∗ (G& − GE)
'
&()

H∑ (C& − CE)"'
&() ∗ H∑ (G& − GE)"'

&()

 

 

d) agreement index (d) proposed by Willmont et al. (1985); 

3 = 1 −	
∑ (C& − G&)"
'
&()

∑ (|G& − CE| + |C& − CE|)"'
&()

 

e) performance index (c) proposed by Camargo; Sentelhas (1997); 

0 = A ∗ 3 

f) Method efficiency (EF) proposed by Zacharias et al. (1996); 

!K =
∑ (C& − CE)"
'
&() − ∑ (C& − G&)"

'
&()

∑ (C& − CE)"'
&()

 

g) mean absolute error (MAE); 

L"! =	
1
5
M |G& − G&|

'

&()
 

h) absolute maximum error (AMEX). 

"L!C = L"C(|C& − G&|)&()
'  
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Figure 10: Automated processing for ear phenotyping using computational resources. 

Where C& corresponds to the i-th value obtained with manual measurement, G& 

represents the i-th value observed from the image analysis, G& the average of the values 

obtained by manual measurement and GE the average of the values observed from the 

analysis of images. 

All image processing and statistical analysis were performed using the softwares 

R (R DEVELOPMENT CORE TEAM, 2019) and GENES (CRUZ, 2013). 

 

4 RESULTS AND DISCUSSION 

 
In the present study, methods for phenotyping of corn ears were presented through 

the analysis of digital images using computational resources. All images were processed 

using segmentation techniques. Subsequently, matrices with information that helped to 

characterize the evaluated genotypes were extracted from the images (Figure 10). This 

process proved to be very efficient, in relation to the time spent when compared to manual 

evaluation. To measure length, width, number of rows and grains, it took approximately 

30 hours of work and three evaluators. On the other hand, the computational process to 

estimate the same traits in all ears was performed by a single person in approximately 4 

hours. 

 

 

 
Source: Ricardo Andrade (2020). 

 

Several studies found in the literature in recent years, also point out the advantages 

of adopting high yield phenotyping for traits of interest to the breeder, especially when 

phenotyping involves many individuals, resulting in an expensive and low precision 

process. The use of images in plant breeding programs has made the characterization of 
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individuals more efficient, reducing labor and time spent (MOREIRA et al., 2019; 

MAKANZA et al., 2018; MILLER et al., 2017; KOMYSHEV et al., 2017).  

The 210 ears of sweet corn showed large phenotypic variation for all evaluated 

descriptors. This was indispensable to validate the proposed methodologies because 

different patterns of ears were tested. Ear length varied from 6.9 to 19.8 centimeters, while 

the width varied from 1.9 to 4.7 centimeters. The estimate of the regression coefficient 

(R2) for length and width was approximately 0.88 for both traits, indicating a high 

association between the values obtained by manual phenotyping and the values extracted 

via image. On the other hand, when the slope of the line (β) was tested by the t-test, a 

significant difference of 1 (α ≤ 0.05) was found for both length and height, indicating the 

absence of a 1: 1 ratio between the values observed and estimated via image (Figure 11). 

 

 

 

 
Source: Ricardo Andrade (2020). 

 

From the results it is clear that manual phenotyping of ears for length and width, 

can be replaced by the characterization through images. The results observed in this study 

are consistent with those presented by Makanza et al. (2018). These authors verified 

correlation estimates above 0.9 for both traits and demonstrated that the length and width 

can be determined by the longest distance between two points along the longest and 

shortest axis of the ear. 

A) B) 

Figure 11: Scatter plot of the manual evaluations (x) versus (y) analysis by digital images 

for evaluating corn ears in terms of A) length and B) width. 
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The methodology proposed in this study for phenotyping the length and width of 

the ears, can also be extrapolated to infer grain yield. According to Greveniotis et al., 

(2019), both traits are directly correlated with productivity and, therefore, the variation in 

the length and width of the ears in different years and conditions, can provide information 

to the breeder on the productive performance of the genotypes evaluated. Despite this, it 

is important that these measures are associated with other descriptors as they are highly 

influenced by the effect of years, planting density and spacing between rows in the field. 

The number of rows and grains per ear are also traits highly associated with yield 

and, therefore, there is a great interest on the part of researchers in obtaining these 

estimates. In spite of this, the information associated with these descriptors is usually 

obtained manually, requiring time and most of the time they are not accurate, because 

depending on the number and the arrangement of the grains on the ear, there may be a 

mistake by the evaluators at the time of counting. 

To characterize the ears in terms of the number of grains and rows, only 91 images 

were used. Despite this, the phenotypic variation for these traits was also large, ranging 

from 66 to 188 for number of grains and from 10 to 18 for number of rows. To determine 

the number of grains per ears, several indices available in the literature were tested for 

image segmentation. The index that allowed for better isolation and consequently more 

accurate results in the grain count was the “Shape index” or SHP (Table 1). 

For this descriptor, there was a variation between the number of grains determined 

by manual counting and by image processing of up to 99 grains more or less. In this case, 

the correlation between the observed and the estimated value was 0.59. Within this group 

of images, 40 images were verified with a maximum difference of 30 grains between the 

observed and estimated number, in these cases, the correlation was 0.95. When a 

maximum difference of 10 grains between the observed and estimated number was 

considered, 13 images were identified and the correlation value increased to 0.99. 

The absence of a 1: 1 ratio between the observed and estimated values, for the 

number of grains considering the 91 images, was verified by the t-test (α ≤ 0.05) of the 

slope of the line (β). For this descriptor, the R2 estimate was 0.35, showing a median 

association between the values obtained by manual phenotyping and those extracted by 

image processing (Figure 12). 


