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A B S T R A C T

The geometric potential in quantum mechanics has been attracted attention recently, providing a formalism to
investigate the influence of curvature in the context of low-dimensional systems. In this paper, we study the
consequences of a helicoidal geometry in the Schr€odinger equation dealing with an anisotropic mass tensor. In
particular, we solve the problem of an harmonic oscillator in this scenario. For some specific conditions, we
determine the wavefunction in terms of Confluent Heun Functions and compute the respective energy. The system
exhibit several different behaviors, depending on the adjustment on the mass components.
1. Introduction

Currently, the development of a large number of new materials and
technologies is possible due to the tools provided by Quantum Theory
[1–5]. For example, the study of the Physics of materials such as
Graphene, Carbon Nanotubes, and Topological Insulators [6] is very
interesting. These materials have several physical properties that allow
important applications. In fact, their optical, magnetic, and transport
properties have been an active and wide field of research in
Condensed Matter Physics, experimentally and also at the theoretical
level [7–11].

Graphene is an example of two-dimensional material. Low-
dimensional systems have attracted the interest of the scientific com-
munity because of their possibilities in applications such as more effi-
cient electronic devices [12], medical applications [13] and water
treatment [14], for example. Nowadays, the experimental fabrication of
several types of low-dimensional materials is a reality in laboratories
around the world [15]. Also, the current technology makes possible the
creation of samples in very small scales possessing a single-atom width
[16–19].

On the other hand, the intersection between Physics and Geometry
produces fruitful results. The description of a classical particle motion,
for example, depends on which geometry the particle is immersed [20].
The Geometric Optics is another example of relevance of Geometry in
describing physical phenomena. In the context of modern physics, the
.C.R. Ribeiro), marciomc05@gm
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General Relativity Theory [21] requires geometrical quantities in its
framework. Thus, Geometry plays a fundamental role in research areas
such as Cosmology and Gravitation. Geometrical effects also are relevant
in Quantum Mechanics, and in its applications in the investigation of
systems in the domain of the Solid State Physics. It is possible, for
instance, to investigate the geometrical influence in the dynamics of an
electron in a given space [22–24]. Also, it is possible to study the influ-
ence of topological defects in quantummechanics. In a remarkable work,
Katanaev and Volovich [25] have showed that the same geometric tools
employed in General Relativity could be successful applied to study de-
fects in solids. It allows to establish bridges between quantummechanics,
condensed matter systems and other areas. For example, condensed
matter systems can be used as laboratory for gravitation and cosmology
[26].

In nonrelativistic quantum mechanics, the Schr€odinger equation de-
scribes the dynamics of a particle in the presence of a given potential.
Since this equation can be used in applications, an interesting theoretical
development is related to the inclusion of geometric effects into the
equation, in order to describe a low-dimensional system in the presence
of curvature, for example. In this context, important contributions were
given by Jensen [27] and da Costa [28,29]. More specifically, they
introduced a new approach to describe the dynamics of a
two-dimensional system in a curved surface, immersed in the Euclidean
space R3. Da Costa’s approach initially consider a particle in a
three-dimensional space. Despite of that, if the particle is constrained to
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lie only on a two-dimensional region, it is demonstrated that a new kind
of potential emerges: a geometric potential one presenting dependence
on the mean and Gaussian curvatures of the surface considered [24,28].
This model is suitable in the context of thin-layers. The study of the
geometrical potential and its implications in quantum phenomena are an
active branch of research. The Schr€odinger equation considering the
geometric potential in the presence of electromagnetic potentials was
derived in Ref. [30]. An experimental realization of an optical analog of
the geometric potential was reported in Ref. [31]. We give more details
about Da Costa’s model in section 3. Quantum systems in curved spaces
[32,33] also are explored in the literature under other points of view. For
instance, the problem of a hydrogen atom in a spacetime with a topo-
logical defect was considered in Ref. [34]. In Ref. [35], it is investigated
how some quantum communications protocols are affected when they
are performed in curved spacetime.

An interesting aspect in Condensed Matter systems refers to the idea
of effective mass: It is possible to describe the behavior of an electron in
periodic potentials by employing an effective Schr€odinger equation using
an effective mass M* instead of the usual electron mass [36]. The effec-
tive mass also can be different in different regions, presenting an aniso-
tropic behavior. In this context, a possibility of investigation refers to the
study of the Schr€odinger equation for a particle with a given effective
mass considering a curved space, describing, for instance, electronic
states of curved samples.

Some particular geometries are interesting since they occur in nature.
The helicoidal geometry naturally occurs in Chiral Liquid Crystals [37],
in macromolecules of DNA [38,39] and in fibril structures in animals and
plants [40]. The helicoidal geometry has been studied in several sce-
narios in physics, like in the context of branes and black-hole physics
[41], for example. In Optics, it was demonstrated that linearly polarized
light traveling in a helicoidal optic fiber can acquire a Berry’s geometric
phase [42]. A study dealing with the electronic states near the Dirac
points in helicoidal graphene was reported in Ref. [43]. In Ref. [44], it
was proposed a nanospring consisting of a graphene nanoribbon-based
helicoid structure. Also, an analog of the Hall effect can be induced by
an effective electric field in the helicoidal geometry, making possible a
charge splitting even in the absence of electromagnetic fields [45].
Recently, Souza et al. [46] have studied the behavior of a noninteracting
two-dimensional electron gas with anisotropic mass considering several
geometries, including the helicoidal one.

In this paper, we consider the problem of a quantum harmonic
oscillator in the scenario of a helicoidal geometry and anisotropic mass.
More specifically, we solve the Schr€odinger equation for a particle in a
curved space consisting of a helicoidal ribbon, taking into account the
corresponding geometric potential and also a harmonic oscillator po-
tential. Our interest in studying this subject is due to the fact that the
harmonic oscillator is one of the most fundamental systems in physics
and an essential model in several applications. Thus, a relevant issue
consists in studying this system on different geometries.

The paper is organized as follows: Section 2 is dedicated to the idea of
anisotropic mass. In addition, we consider the main aspects of the
Schr€odinger equation with a generic geometric potential with anisotropic
mass. Also in section 2, we deal with the problem of a quantum particle on
a helicoid and anisotropic mass. Section 3 is dedicated to the problem of a
quantum particle subjected to a harmonic oscillator potential, in a heli-
coidal geometry and anisotropic mass. We solve the corresponding wave
equation and evaluate the energy for some particular cases involving the
parameters of the system. The solution is given in terms of Confluent Heun
Functions. In section 4, we make our concluding remarks.

2. The anisotropic effective mass and Schr€odinger equation in a
curved space

In this section, we briefly discuss how we can incorporate anisotropic
mass formalism in the Schr€odinger equation. First of all, it is worth noting
there are two possibilities in studying the Schr€odinger equation in the
2

context of anisotropic effective mass. We can consider that the effective
mass is a tensor and their components are constants. The other possible
approach consists of taking it as a position-dependent function [47]. In
this paper, we consider the first one. We are not interested in considering
a position-dependent mass at this point. Instead, we want to describe a
two-dimensional structure considering two different effective masses: the
first one is related to the surface itself, while the second one is related to
the normal degrees of freedom. We will give more details in the next
section. The non-relativistic Hamiltonian describing the dynamics of
electrons in semiconductors structures, considering the approximation of
effective mass, is given by satisfying the eigenvalue equation for the

energy levels bHΨ ¼ EΨ: The quantity ½1=M*�ij is the effective mass
tensor. We will take the following diagonal form [48]:

bH ¼ �ℏ2

2

�
1
M*

�ij
∂i∂j þ V ; (1)

�
1
M*

�ij
¼
�
1
ℏ2

∂2E
∂ki∂kj

�
k¼0

¼

0BB@M�1
11 0 0

0 M�1
22 0

0 0 M�1
33

1CCA: (2)

The elements M11, M22 and M33 can be different from each other.
Hereafter, we specialize in the case M11 ¼ M22 � M1 and M33 � M2:

Now, we can generalize it, by including the information of a curved space
into the Hamiltonian. In three dimensions, the Schr€odinger equation
(without electromagnetic potentials) in a curvilinear coordinate system is
given by

iℏ∂tψ ¼ � ℏ2

2

�
1
M*

�i0 j0 � 1ffiffiffiffi
G

p ∂i
� ffiffiffiffi

G
p

Gij∂j
�
ψ
�
: (3)

Here,G ¼ detðGijÞ, beingGij the metric tensor andGij is its inverse. In this
equation, we are considering the Einstein summation convention whose
index are i0 ; j0 ¼ 1; 2; 3. Then, we are ready to revise the Da Costa’s
approach to describe the dynamics of a quantum particle confined in a
two-dimensional surface. Imagine a two-dimensional surface S. We can
use parametric equations given by r ¼ rðq1; q2Þ to describe S. Here, r is
the vector that indicates the position of any point of S. Imagine the
surface which is immersed in a three-dimensional space. If an arbitrary
point it is in the neighborhood of the surface S, we can localize it by
employing a vector given by rðq1;q2Þþ q3 nðq1;q2Þ, which consists of a
combination of the vector rðq1; q2Þ on the surface and a vector q3 nðq1;
q2Þ, normal to the surface. More specifically, n and q3 are the unit vector
and the corresponding coordinate in the normal direction, respectively.
Thus, in the following, we consider the indexes for the surface assuming
the values 1, 2, while the value 3 will be related to the normal direction.
We can write a relation between the metric tensor Gij in the three-
dimensional space near to the surface S and the two-dimensional
metric tensor of the surface gab ¼ ∂ar � ∂br as

Gab ¼ gab þ ½αgþ ðαgÞT �abq3 þ ðαgαTÞabq23; (4)

where

Ga3 ¼G3a ¼ 0; G33 ¼ 1: (5)

Here, αab corresponds to Weingarten curvature matrix of S [49,50].
equation (4) tells us that it is possible to write the three-dimensional
metric tensor as a sum of the metric tensor of the surface and the term
depending on the normal direction. It is an essential feature in this
approach, having an important implication: The kinetic term in the
Hamiltonian is separable. In other words, we can separate the kinetic part
of the hamiltonian in two contributions, the first one corresponding to
internal variables (in the surface S), and the other one related to the
external variable (normal direction). Explicitly, we have
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bHψ ¼ � ℏ2

△ ψ � ℏ2 � ∂2
2 þ

∂
	
ln

ffiffiffiffi
G

p 

∂
�
ψ : (6)
Fig. 1. Geometry of the helicoid represented by the line element (18).
2M1 2M2 ∂q3 ∂q3 ∂q3

The first term on the right side of (6) corresponds to the kinetic term
on the surface S, which △ indicating the corresponding laplacian in the
coordinates ðq1;q2Þ. The second term corresponds to the laplacian for the
normal coordinate. Since these terms are independent, we can admit the
surface and the normal direction having different effective masses. Also,
we are supposing we just have interest in the study of the dynamics of
electrons on the surface S. Thus, we can imagine that the surface S cor-
responds to a given material with effective mass M1 while the region
perpendicular to S contains a different material with a different effective
M2. An example of a study dealing with two different effective masses can
be accessed in Ref. [51]. In addition, we can justify our interest in
investigate anisotropic mass since some semiconductors materials, like
Ge and Si, present ellipsoidal energy surfaces, related to different effec-
tive masses depending on the direction [52]. Now, we need to confine the
particle on the surface. In order to achieve this, a potential Vλðq3Þ is
introduced, where λ is a parameter to measure the strength of the
confinement [49]. This way, we have

� ℏ2

2M1
△ ψ � ℏ2

2M2

�
∂2

∂q23
þ ∂
	
ln

ffiffiffiffi
G

p 

∂q3

∂
∂q3

�
ψ þVλðq3Þψ ¼ iℏ

∂ψ
∂t : (7)

The wave function can be written as

ψðq1; q2; q3Þ¼
�
1þ TrðαÞq3 þ detðαÞq23

��1
2χðq1; q2; q3Þ : (8)

In addition, it is possible to separate the wavefunction in the
following way:

χðq1; q2; q3Þ¼ χSðq1; q2Þχnðq3Þ; (9)

where χSðq1; q2Þ is the wavefunction corresponding to the surface and
χnðq3Þ is the wavefunction for the normal coordinate. Now, we will see
the effect of the confining potential. When λ → ∞, the potential confines
the particle on S, in such way that we can consider q3 → 0 in all the terms
of the Hamiltonian, except in the term involving the confining potential
itself. Effectively, the particle is subjected to step potential barriers on
both sides of S. As a result, the Schr€odinger equation gets [53–56]

� ℏ2

2M1

�
1ffiffiffi
g

p ∂a
	 ffiffiffi

g
p

gab∂bχ

�� ℏ2

2M2

��
1
2
TrðαÞ

�2
� detðαÞ

�
χ

� ℏ2

2M2
ð∂3Þ2χþVλðq3Þχ¼ iℏ∂tχ: (10)

This expression contains the geometric potential

VSðq1; q2Þ ¼ � ℏ2

2M2

 �
1
2
TrðαÞ

�2
� detðαÞ

!
; (11)

and g indicates the determinant of gab. The term 1
2 TrðαÞ in (11) is the

mean curvature, which can be written in terms of the principal curvatures
κ1 and κ2 as

M ¼ 1
2
TrðαÞ¼ 1

2
ðκ1 þ κ2Þ: (12)

The term detðαÞ corresponds to the Gaussian curvature

K G ¼ detðαÞ ¼ κ1κ2: (13)

These equations show how the geometric potential depends on the
curvature of the surface. In addition, it is worth noting that Vs depends on
the effective massM2 in the normal direction. It is due to the fact that the
geometric potential arises when we confine the particle on the surface S
and take the limit q3 → 0. This way, the potential Vs contains information
about the normal direction, in such way the mass M2 affects the particle
3

dynamics on the surface S. It is a consequence of considering a two-
dimensional region immersed in a three-dimensional one. If we start
considering a purely two-dimensional region, the geometric potential
does not manifests, since it is not possible taking into account the in-
fluence of its neighborhood. Now, we can reach the main goal of this
section. From the discussion above, it is possible to write a Schr€odinger
equation for the normal coordinate and another one for the surface

iℏ∂tχn ¼ � ℏ2

2M2
ð∂3Þ2χn þ Vλðq3Þ χn;

iℏ∂tχS ¼ � ℏ2

2M1

�
1ffiffiffi
g

p ∂a
	 ffiffiffi

g
p

gab∂bχS

�� ℏ2

2M2

�
1
4
M 2 �K G

�
χS;

(14)

where the indexes a; b ¼ 1; 2 corresponds to the surface S. We have
considered a metric tensor such that

Gij ¼
8<:

gab if i; j ¼ a; b ¼ 1; 2;
G33 ¼ 1;

Gi3 ¼ G3j 8 i; j ¼ 1; 2:
(15)

3. Quantum harmonic oscillator on a helicoid

In this section, we consider the problem of a quantum particle con-
strained to a helicoidal surface. We can use the following equations to
parametrize a helicoid [57]:8<: x ¼ ρ cosðωzÞ;

y ¼ ρ sinðωzÞ;
z ¼ z;

(16)

with ω ¼ 2πS. The number of complete twists per unit length of the
helicoid is given by S. In Eq. (16), ρmeasures the radial distance from the
z-axis. The corresponding metric tensor is

gab ¼
�
1 0
0 1þ ω2ρ2

�
; (17)

and the infinitesimal line element is

ds2 ¼ dρ2 þ 	1þω2ρ2


dz2 : (18)

Fig. 1 shows a helicoid. The geometric potential in this case is since
the principal curvatures are given by
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VS ¼ � ℏ2

2M

	
M 2 �K G


¼ � ℏ2

2M
ω2

2 2 2 ; (19)

2 2 ð1þ ω ρ Þ

κ1 ¼ ω
1þ ω2ρ2

; κ2 ¼ �κ1: (20)

Our goal consists in considering an harmonic oscillator in a helicoid.
This way, the particle will be subjected to an effective potential
composed of a geometrical potential for the helicoidal surface and also to
an harmonic oscillator potential. Let us construct the hamiltonian. We
start by considering the hamiltonian for a particle on a helicoid in the
context of anisotropic mass. The corresponding Schr€odinger equation in
the coordinates ρ and z is :

iℏ∂tχS ¼ � ℏ2

2M1

�
1
a

�
∂z
�
1
a
∂zχS

�
þ ∂ρða∂ρχSÞ

��
� ℏ2

2M2

ω2

ð1þ ω2ρ2Þ2χs ; (21)

with a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2ρ2

p
. Following [46], we make the separation of the

variables χS ¼ expðimωzÞf ðρÞ, where m 2 N. In addition, the wave-
function normalization demands the transformation [58] χS →

1ffiffi
a

p χS in

Eq. (21).
After these steps, we obtain the Schr€odinger equation in the helicoi-

dal geometry

Hcurvχs ¼ � ℏ2

2M1

d2χs
dρ2

þ ℏ2

2M1

�
m2ω2

1þ ω2ρ2

� ω2

2
	
1þ ω2ρ2


2 �ω2ρ2

2
þ 2M1

M2
� 1
��

χs :

(22)

In particular, if M1 ¼ M2 ¼ m* > 0 and ρ ¼ ξ, we get the potential
Fig. 2. (Color online) The behavior of the effective potential (Eq. (26)) as a function o
In (c), M1 ¼ 0:2 and M2 ¼ 0:01. In (d), M1 ¼ 0:1 and M2 ¼ 0:02. We use ℏ ¼ 1, ω ¼
the reader is referred to the Web version of this article.)
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investigated in Ref. [58]. We already have the Hamiltonian for a particle
in a helicoid in the context of anisotropic mass. The next ingredient we
need is to include the harmonic oscillator potential to construct an
effective potential and write the corresponding differential equation. In
Cartesian coordinates, the harmonic potential is given by

Vðx; yÞ¼ 1
2
M1Ω2

xx
2 þ 1

2
M1Ω2

yy
2: (23)

We are interested in the motion of an harmonic oscillator with a
single frequencyΩx ¼Ωy ¼Ω > 0, so that the potential (23) written in
the coordinates (16) reads as

VðρÞ¼ 1
2
M1Ω2ρ2; (24)

which can be included into Eq. (21) by means of the substitution E → E�
VðρÞ, resulting in the radial equation

� ℏ2

2M1

d2f ðρÞ
dρ2

þ Veff ðρÞf ðρÞ ¼ Ef ðρÞ; (25)

where

Veff ðρÞ ¼ ℏ2

2M1

�
ω2m2

1þ ω2ρ2
� 1
2

ω2	
ω2ρ2 þ 1


2
�
�
1
2
ω2ρ2 þ 2M1

M2
� 1
��

þ 1
2
M1Ω2ρ2

� (26)

is the effective potential. Fig. 2 shows plots of Veff , taking some specific
values for the effective masses. We consider M1 always being positive,
while M2 can be either positive or negative. When M1 ¼ M2 ¼ 1, the
resulting potential is parabolic for m ¼ 0 and m ¼ 1 while for m ¼ 2; 3
and 4 it exhibits a narrow binding region (Fig. 2-(a)). These two
f ρ. In panel (a) we consider M1 ¼M2 ¼ 1. In (b), M1 ¼ 0:1 and M2 ¼ � 0:01.
1 and Ω ¼ 1. (For interpretation of the references to color in this figure legend,



Table 1
Values of (M1, M2) used in the sketches in Figs. 3 and 4.
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characteristics have important applications in mesoscopic physics. For
example, the former can be considered as a model of a quantum dot while
the last one describes a narrow ring. The appearance of these localization
regions is a consequence of the helicoidal geometry. However, this
characteristic is also manifested when M1 6¼ M2. Fig. 2-(b)–(d) clearly
show that the presence of anisotropic mass reveals new exotic charac-
teristics for the effective potential. For example, in the particular case
when M1 ¼ 0:1 and M2 ¼ � 0:01, a localized wide binding region ap-
pears (Fig. 2-(b)). This situation can be interpreted as the analog of a
mesoscopic wide ring. Depending on the given anisotropy, more than one
binding region may appear. This is exemplified when we have M1 ¼ 0:2
and M2 ¼ 0:01, which has two binding regions (Fig. 2-(c)). The first
located region (near the origin) describes a potential well and the second
a wide ring. This model also presents mixed characteristics, such as those
present in previous cases. An example of this occurs when M1 ¼ 0:1 and
M2 ¼ 0:02, where we can observe the potential profile present in Fig. 2-
(b) and 2-(c).

Particularly, the case in which M2 < 0 consists of a quantum me-
chanical analog of a hyperbolic metamaterial, as discussed in Ref. [46].
Metamaterials [59] are quite interesting because of their unique possi-
bilities of investigations involving negative refractive indexes and tech-
nological developments [60]. Also, metamaterials allow the emulation of
theoretical cosmology scenarios in the context of electrodynamics [61].
Thus, basically, it is possible to analyze the harmonic oscillator taking
into account three different possibilities: i) an isotropic sample, where
the helicoid is surrounded by the same material of the helicoidal surface,
ii) an anisotropic material, and iii) an electronic analogue of a hyperbolic
material. The effective potential is an even function. This way, the
Hamiltonian commutes with the Parity Operator. Then, these operators
can share a mutual basis of eigenstates. As a consequence, we expect that
the solution can accommodate either symmetric or antisymmetric solu-
tions, like in the case of the usual quantum harmonic oscillator.

Equation (25) can be written as

d2f ðρÞ
dρ2

þ
�

3ω4ρ2

4
	
1þ ω2ρ2


2 � ω2

2ð1þ ω2ρ2Þ �
ω2m2

1þ ω2ρ2

�
f ðρÞ

þ
�
M1

M2

ω2	
1þ ω2ρ2


2 �ϖ2ρ2 þ k2
�
f ðρÞ ¼ 0;

(27)

where k2 ¼ 2M1E=ℏ2, ϖ2 ¼ M2
1Ω

2=ℏ2. Equation (27) is of the Heun’s
confluent differential equation type [62,63].

Φ00ðzÞþ
�
αþ β þ 1

z
þ γ þ 1
z� 1

�
Φ’ðzÞ� 1

2

�
μ
z
þ ν
z� 1

�
ΦðzÞ¼ 0; (28)

with

μ ¼ 1
2
ðα� β� γþ αβ� βγÞ � η; (29)

ν ¼ 1
2
ðαþ βþ γþαγþ βγÞþ δþ η; (30)

The solution to Eq. (28) is computed as a power series expansion
around the origin z ¼ 0, a regular singular point with a radius of
convergence jzj < 1, given by

ΦðzÞ¼
X∞
s¼0

υsðα; β; γ; δ; η; zÞzs ¼HeunCðα; β; γ; δ; η; zÞ; (31)

where the coefficients υs satisfy a three-term recurrence relation

Asυs ¼Bsυs�1 þ Csυs�2; (32)

with initial conditions

υ�1 ¼ 0; (33)
5

υ0 ¼ 1; (34)

where

As ¼ 1þ β

s
; (35)

Bs ¼ 1þ 1
s
ðβþ γ�α� 1Þ

þ 1
n2

�
η� 1

2
ðβþ γ� αÞ� αβ

2
þ βγ

2

�
; (36)

Cs ¼ α
s2

�δ
α
þ β þ γ

2
þ n� 1

�
: (37)

In Table 1, the columns (a)–(d) refer to Figs. 3–4 (a)-(d), respectively.
In the order in which the columns are presented, each value pair corre-
sponds to (M1, M2). The colors blue, red, green and orange refer to the
energy levels as a function ofm, following the order in which they appear
in the figures.

This confluent Heun function HeunCðα; β; γ; δ; η; zÞ must reduce to a
polynomial, since otherwise it would increase exponentially as ρ → ∞.
To reduce a confluent Heun function to a confluent Heun polynomial of
degree n, we need two successive terms in the three-term recurrence
relation (32) to vanish, halting the infinite series in Eq. (31). This
requirement results in two termination conditions, both needed to be
satisfied simultaneously [64–67]

δ

α
þ β þ γ

2
þ nþ 1 ¼ 0; n ¼ 0; 1; 2;… (38)

Δnþ1ðμÞ¼ 0: (39)

The solution to Eq. (27) is given by

f ðρÞ¼ cm
	
ω2ρ2 þ 1


 1
2 ðγþ1Þ

e�
1
2ϖρ2HeunC

	
α; β; γ; δ; η; �ω2ρ2



þ dm

	
ω2ρ2 þ 1


 1
2 ðγþ1Þ

ρ e�
1
2ϖρ2HeunC

	
α; � β; γ; δ; η; �ω2ρ2



; (40)

where

α¼ ϖ

ω2
; β ¼ �1

2
; γ ¼ x

2
; δ ¼ � k2

4ω2
;

x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M1

M2
þ 1

r
; η ¼ 1

8

	
3� 2 m2


þ M1

4M2
þ k2

4ω2
;

ϖ ¼ M1Ω
ℏ

; k2 ¼ 2M1E
ℏ2 : (41)

We are not interested in situations with M1 � 0. As expected, the
solution given by Eq. (40) accommodates both symmetric and anti-
ssymmetric states. In order to obtain the energies, we need to make use of
the relations (38) and (39). However, we can see that such relations are
given in terms of the energy E. This means that the expression for the
energies we shall obtain here will not represent the full energy spectrum
of the particle. The energy we shall obtain will be a particular energy



Fig. 3. (Color online) Sketch of the energy levels E0m as a function of the quantum number m. We use ℏ ¼ 1, ω ¼ 1 and Ω ¼ 1. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. (Color online) Sketch of the energies
with n ¼ 1 considering some specific values
of M1 and M2. In panel (a) we consider ðM1;

M2Þ ¼ fð1;1Þ;ð2;2Þ;ð3; 3Þ;ð4;4Þg. In (b), ðM1;

M2Þ ¼ fð1;2:1Þ; ð1; 2:2Þ; ð1;2:3Þ; ð1; 2:4Þg. In
(c), ðM1;M2Þ ¼ fð1; � 4Þ; ð1; � 5Þ; ð1; � 6Þ;
ð1; � 7Þg. In (d), ðM1;M2Þ ¼ fð0:1; � 1Þ;ð0:1;
� 2Þ; ð0:1; � 3Þ; ð0:1; � 4Þg. The solid lines
correspond to energies E1 (Eq. (52)) while
dotted lines correspond to energies E2 (Eq.
(53)). We use ℏ ¼ 1, ω ¼ 1 and Ω ¼ 1. (For
interpretation of the references to color in
this figure legend, the reader is referred to
the Web version of this article.)

M.C.R. Ribeiro Jr. et al. Physics Open 5 (2020) 100045
corresponding to the choice of a system parameter to be fixed from
condition (39). Moreover, for certain values of n, the relation (39) be-
comes more complex, leading to polynomials of a higher order than two
in the parameter we wish to fix. In this way, after we have solve this
condition, not all the values found are real quantities. For this reason, we
6

consider only the cases n ¼ 0 and n ¼ 1. From condition (38), we obtain

E¼ℏΩ
�
2nþ 1

2
xþ 3

2

�
: (42)

The second termination condition (Eq. (39)) for n ¼ 0, provides
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Ω¼ℏω2

M1

�
x
2
�m2 þ 2M1E

ℏ2ω2
þM1

M2
þ 1
2

�
: (43)
Substituting Eq. (43) in Eq. (42) and then solving for E, we find

E0m ¼ℏ2ω2

4M1

xþ 3
xþ 2

�
2m2 � x� 2M1

M2
� 1
�
: (44)

The energy E0m has its minimum shifted asM1 andM2 are varied. The
spacing between the levels increases as m is increased. (Fig. 3 (a)). When
M2 assumes ever lower positive values andM1 is kept fixed (column (b) in
Table 1), the minimum energy state is not shifted. (Fig. 3 (b)). WhenM1 is
kept fixed and M2 assumes negative values (column (c) in Table 1),
different from Fig. 3 (a), there is no inversion between levels and,
furthermore, the state with m ¼ 4 is not allowed (Fig. 3 (c)). This char-
acteristic is a consequence of the anisotropic mass. On the other hand,
when M1 ¼ 0:1 is fixed and M2 assumes negative values (column (d) in
Table 1), the inversion between levels is absent. However, only the en-
ergy with m ¼ 1 is allowed (Fig. 3 (d)).

For the energy with n ¼ 1, condition (39) requires that

det
 μ� q1 1þ β

α μ� q2 þ α

¼ 0; (45)

with

q1 ¼ 0; (46)

q2 ¼ 2þ β þ γ: (47)

The solution of (45) by using Eqs. (29), (30) and (41) provides two
values for Ω

Ω1 ¼ 1
M1ℏ

�
ℏ2ω2 Xþ 6

5
M1Eþ 2

5

ffiffiffiffi
Y

p �
; (48)

Ω2 ¼ 1
M1ℏ

�
ℏ2ω2 Xþ 6

5
M1E� 2

5

ffiffiffiffi
Y

p �
; (49)

with

X¼ 1
2
x� 3

5
m2 þ 3M1

5M2
þ 17
10
; (50)

and

Y ¼ℏ4m4ω4 � 2
M1

M2
ℏ4m2ω4 þ

�
M1

M2

�2

ℏ4ω4 � 4 ℏ4m2ω4

þ4
M1

M2
ℏ4ω4 þ 5 ℏ4ω4x� 4 Eℏ2m2ω2M1 þ 14 ℏ4ω4

þ4 E
M2

1

M2
ℏ2ω2 þ 8 Eℏ2ω2M1 þ 4 E2M2

1 : (51)

We replace (48) and (49) in (42) and solve the resulting equation for
E. For each Ω, we obtain two values for E. However, we verify that each
pair has equal values. Thus, instead of four different relations, we get
only two

E1 ¼ ℏ2ω2ð3þ xÞ
4M1ð4� x2Þ

�
Q� 2

ffiffiffiffiffi
W

p �
; (52)

E2 ¼ ℏ2ω2ð3þ xÞ
4M1ð4� x2Þ

�
Qþ 2

ffiffiffiffiffi
W

p �
; (53)

with

Q¼ 3 x2 � 2 m2xþ 2 x
M1

M2
þ 11 xþ 4; (54)
7

W ¼ 4 m4 � 4 m2x2 þ x4 � 8
M1

M2
m2 þ 4

M1

M2
x2
þ12 x3 � 16 m2xþ 4
�
M1

M2

�2

þ 16
M1

M2
x

þ38 x2 � 28 m2 þ 28
M1

M2
þ 40 xþ 17: (55)

Energies (52) and (53) present some exotic characteristics manifested
by both isotropy and anisotropy in the masses. In the isotropic case, all
quantum numbers m are allowed (Fig. 4 (a)). The energies (52) are
responsible for the largest number of negative states while (53) repre-
sents only positive states (Fig. 4 (b)–(d)). The isotropic mass also reveals
that energy states withm ¼ 3 are nearer when compared to others. In the
isotropic case, the relation (52) holds the largest number of states with
negative energy while (53) exhibits only positive energy values. This
situation is just the opposite of what occurs in the isotropic case. Inde-
pendent of the values of M1 and M2, the anisotropic mass affects the full
energy states, so that some values of m are not allowed (Fig. 4 (b)–(d)).
This characteristic is typical one of the so-called localized energy states.
The appearing of these states is also a consequence of the limitation
imposed by the relation x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M1=M2 þ 1
p

(defined in Eq. (41)), which
imposes restrictions on the values of M1 and M2 to guarantee that 4M1=

M2 þ 1 � 0. Besides, we can note that by making some particular choices
for the effective masses, we can change how the energy levels are filled. It
means, in principle, that these choices could be used to obtain a specific
energy profile, filtering the states by their angular momentum m. Thus,
the geometry and the anisotropy can produce a combined effect in
changing the form of the occupation levels.

4. Conclusions

In the present manuscript, we have addressed the motion of a
quantum particle on a helicoidal geometry. We have considered the
well-established formalism of the geometric potential in the context of
anisotropic masses. From the equation for a quantum particle on a
helicoid, we have inserted an harmonic oscillator potential into the
effective potential through the vector coupling. We have shown that
wave functions of the particle are given in terms of Confluent Heun
Functions and the energies are obtained from non-trivial relations. We
calculated the energies for the case in which conditions (38) and (39)
are satisfied simultaneously. We have calculated only the energies
corresponding to n ¼ 0 and n ¼ 1. For the energies found, we have
argued that they are only particular values. The reason for this is the
fact that we have fixed the parameter Ω from the relation (39), which
implies only the determination of a specific energy for the particle. In
our case, the form of the solution does not allow a negative effective
mass M1, while M2 can be either positive or negative. Despite that, it
was possible to consider different configurations with respect to the
values of the effective masses. In the case in which both masses are
positive, configurations with arbitrary values for M1 and M2 are
possible. However, in the case withM2 < 0, it is necessary to be careful:
the solution requires x � 0. Thus, in the case of an electronic analog of a
hyperbolic material in the presence of an harmonic oscillator potential,
the anisotropy tends to be larger than in the case of a positive mass M2.
The system can exhibit several different behaviors, depending on the
adjustment between the values of the masses. For instance, we have
noted that the effective potential can be totally modified by making
particular choices for effective masses. In addition, states with different
values of angular momentum m can be affected differently when sub-
jected to the same type of effective potential. The characteristics
observed in the sketch of the effective potential as well as in the en-
ergies allow us to apply this model to others systems in the domain of
nanoscale physics, as for example, rings and quantum dots.



M.C.R. Ribeiro Jr. et al. Physics Open 5 (2020) 100045
CRediT authorship contribution statement

Marcos C.R. Ribeiro: Conceptualization, Methodology, Software,
Visualization, Investigation. M�arcio M. Cunha: Writing - original draft,
preparation, Writing - review & editing. Cleverson Filgueiras: Super-
vision, Writing - review & editing. Edilberto O. Silva: Conceptualiza-
tion, Methodology, Software, Writing - original draft, preparation,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work was partially supported by the Brazilian agencies CAPES,
CNPq and FAPEMA. EOS acknowledges CNPq Grants 427214/2016-5
and 303774/2016-9, and FAPEMA Grants 01852/14 and 01202/16.
MMC acknowledges CAPES Grant 88887.358036/2019–00.

References

[1] Gage Hills, Christian Lau, Andrew Wright, Samuel Fuller, Mindy D. Bishop,
Tathagata Srimani, Pritpal Kanhaiya, Rebecca Ho, Aya Amer, Yosi Stein, et al.,
Nature 572 (2019) 595–602.

[2] Zhuang Liu, Scott Tabakman, Kevin Welsher, Hongjie Dai, Nano research 2 (2009)
85–120.

[3] Kshitij Chaudhary, Int. J. Sci. Res. 4 (2013) 741–744.
[4] Joel E. Moore, Nature 464 (2010) 194.
[5] Swatantra Kushwaha Kumar Singh, Saurav Ghoshal, Awani Kumar Rai,

Satyawan Singh, Brazilian Journal of Pharmaceutical Sciences 49 (2013) 629–643.
[6] Xiao-Liang Qi, Shou-Cheng Zhang, Rev. Mod. Phys. 83 (2011) 1057–1110.
[7] Edward A. Laird, Ferdinand Kuemmeth, Gary A. Steele, Kasper Grove-Rasmussen,

Jesper Nygård, Karsten Flensberg, Leo P. Kouwenhoven, Rev. Mod. Phys. 87 (2015)
703.

[8] Austin Cheng, Takashi Taniguchi, Kenji Watanabe, Philip Kim, Jean-Damien Pillet,
arXiv preprint arXiv:1910 (2019) 13307.

[9] Z.Z. Zhang, Kai Chang, F.M. Peeters, Phys. Rev. B 77 (2008) 235411.
[10] H. Sevinçli, Mehmet Topsakal, E. Durgun, S. Ciraci, Phys. Rev. B 77 (2008) 195434.
[11] Charles Kane, Leon Balents, M.P.A. Fisher, Phys. Rev. Lett. 79 (1997) 5086–5089.
[12] Jie Yang, PingAn Hu, Gui Yu, Apl. Mater. 7 (2019), 020901.
[13] M. Reza Rezapour, Chang Woo Myung, Jeonghun Yun, Amirreza Ghassami,

Nannan Li, Seong Uk Yu, Amir Hajibabaei, Youngsin Park, Kwang S. Kim, ACS Appl.
Mater. Interfaces 9 (2017) 24393–24406.

[14] Xitong Liu, Mengshu Wang, Shujuan Zhang, Bingcai Pan, J. Environ. Sci. 25 (2013)
1263–1280.

[15] Minko Balkanski, Ivan Yanchev, Fabrication, Properties and Applications of Low-
Dimensional Semiconductors, vol. 3, Springer Science & Business Media, 2012.

[16] Thomas Olsen, Erik Andersen, Takuya Okugawa, Daniele Torelli,
Thorsten Deilmann, Kristian S. Thygesen, Discovering two-dimensional topological
insulators from high-throughput computations, Phys. Rev. Mater. 3 (2) (2019 Feb)
024005, https://doi.org/10.1103/PhysRevMaterials.3.024005. American Physical
Society.

[17] Andrea C. Ferrari, Francesco Bonaccorso, Vladimir Fal’Ko, Konstantin S. Novoselov,
Stephan Roche, Peter Bøggild, Stefano Borini, Frank H.L. Koppens,
Vincenzo Palermo, Nicola Pugno, et al., Nanoscale 7 (2015) 4598–4810.

[18] Liangzhi Kou, Yandong Ma, Ziqi Sun, Thomas Heine, Changfeng Chen, J. Phys.
Chem. Lett. 8 (2017) 1905–1919.
8

[19] F.H.L. Koppens, T. Mueller, Ph Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Nat.
Nanotechnol. 9 (2014) 780.

[20] J.C. D’Olivo, M. Torres, J. Phys. Math. Gen. 21 (1988) 3355.
[21] Ray D’Inverno, Introducing Einstein’s Relativity, Clarendon Press, 1992.
[22] R. Dandoloff, A. Saxena, B. Jensen, Phys. Rev. A 81 (2010), 014102.
[23] Rossen Dandoloff, Phys. Lett. 373 (2009) 2667–2669.
[24] Victor Atanasov, Rossen Dandoloff, Phys. Lett. 372 (2008) 6141–6144.
[25] M.O. Katanaev, I.V. Volovich, Ann. Phys. 216 (1992) 1–28.
[26] Fernando Moraes, Braz. J. Phys. 30 (2000) 304–308.
[27] H. Jensen, H. Koppe, Ann. Phys. 63 (1971) 586–591.
[28] R.C.T. da Costa, Phys. Rev. A 23 (1981) 1982–1987.
[29] R.C.T. da Costa, Phys. Rev. A 25 (1982) 2893–2900.
[30] Giulio Ferrari, Giampaolo Cuoghi, Phys. Rev. Lett. 100 (2008) 230403.
[31] A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, S. Longhi,

Phys. Rev. Lett. 104 (2010) 150403.
[32] B.S. DeWitt, Rev. Mod. Phys. 29 (1957) 377–397.
[33] Jurgen Audretsch, V. de Sabbata, Quantum Mechanics in Curved Space-Time, vol.

230, Springer Science & Business Media, 2012.
[34] Geusa de A. Marques, Valdir B. Bezerra, Phys. Rev. D 66 (2002) 105011.
[35] D.E. Bruschi, T.C. Ralph, I. Fuentes, T. Jennewein, M. Razavi, Phys. Rev. D 90

(2014), 045041.
[36] M.G. Burt, J. Phys. Condens. Matter 4 (1992) 6651.
[37] G. De Matteis, L. Martina, C. Naya, V. Turco, Phys. Rev. E 100 (2019), 052703.
[38] Ludmila V. Yakushevich, Nonlinear Physics of DNA, John Wiley & Sons, 2006.
[39] Maria Barbi, Simona Cocco, Michel Peyrard, Phys. Lett. 253 (1999) 358–369.
[40] Brian Ribbans, Yujie Li, Ting Tan, Journal of the mechanical behavior of biomedical

materials 56 (2016) 57–67.
[41] Jay Armas, Matthias Blau, J. High Energy Phys. 2015 (2015) 48.
[42] Frank Wassmann, Adrian Ankiewicz, Appl. Optic. 37 (1998) 3902–3911.
[43] Masataka Watanabe, Hisato Komatsu, Naoto Tsuji, Hideo Aoki, Phys. Rev. B 92

(2015) 205425.
[44] Haifei Zhan, Yingyan Zhang, Chunhui Yang, Gang Zhang, Yuantong Gu, Carbon 120

(2017) 258–264.
[45] Victor Atanasov, Rossen Dandoloff, Avadh Saxena, Phys. Rev. B 79 (2009), 033404.
[46] Pedro H. Souza, Edilberto O. Silva, Moises Rojas, Cleverson Filgueiras, Ann. Phys.

530 (2018) 1800112.
[47] M. Sebawe Abdalla, Hichem Eleuch, AIP Adv. 6 (2016), 055011.
[48] R. Yukawa, K. Ozawa, S. Yamamoto, R.-Y. Liu, I. Matsuda, Surf. Sci. 641 (2015)

224–230.
[49] R.C.T. da Costa, Phys. Rev. A 23 (1981) 1982–1987.
[50] J. Holland, A.N. University, Weingarten Curvature Equations, Australian National

University, 2013.
[51] J.A. Vinasco, A. Radu, E. Kasapoglu, R.L. Restrepo, A.L. Morales, E. Feddi,

M.E. Mora-Ramos, C.A. Duque, Sci. Rep. 8 (2018) 13299.
[52] Robert F. Pierret, Gerold W. Neudeck, Advanced Semiconductor Fundamentals, vol.

6, Addison-Wesley, Reading, MA, 1987.
[53] E.O. Silva, S.C. Ulhoa, F.M. Andrade, C. Filgueiras, R. Amorim, Ann. Phys. 362

(2015) 739–751.
[54] C. Filgueiras, F. Moraes, Ann. Phys. 323 (2008) 3150–3157.
[55] C. Filgueiras, E.O. Silva, F.M. Andrade, J. Math. Phys. 53 (2012) 122106.
[56] L.F.C. Pereira, F.M. Andrade, C. Filgueiras, E.O. Silva, Ann. Phys. 531 (2019)

1900254.
[57] A. Gray, Modern Differential Geometry of Curves and Surfaces, CRC Press, Boca

Raton, 1993.
[58] V. Atanasov, R. Dandoloff, A. Saxena, Phys. Rev. B 79 (2009), 033404.
[59] D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305 (2004) 788–792.
[60] Ruopeng Liu, Chunlin Ji, Zhiya Zhao, Tian Zhou, Engineering 1 (2015) 179–184.
[61] David Figueiredo, Fernando Moraes, S�ebastien Fumeron, Bertrand Berche, Phys.

Rev. D 96 (2017) 105012.
[62] F.M. Arscott, S. Yu Slavyanov, D. Schmidt, G. Wolf, P. Maroni, A. Duval, Heun’s

Differential Equations, Oxford science publications, Oxford University Press, 1995.
[63] Sergei Yu Slavyanov, Wolfgang Lay, Special Functions: A Unified Theory Based on

Singularities, Oxford Mathematical Monographs, Oxford University Press, 2000.
[64] C.A. Downing, M.E. Portnoi, Phys. Rev. B 94 (2016) 165407.
[65] C.A. Downing, J. Math. Phys. 54 (2013), 072101.
[66] Plamen P. Fiziev, Phys. Rev. D 80 (2009) 124001.
[67] Plamen P. Fiziev, J. Phys. Math. Theor. 43 (2009), 035203.

http://refhub.elsevier.com/S2666-0326(20)30032-6/sref1
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref1
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref1
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref1
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref2
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref2
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref2
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref3
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref3
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref4
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref5
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref5
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref5
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref6
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref6
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref7
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref7
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref7
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref8
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref8
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref9
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref10
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref11
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref11
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref12
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref13
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref13
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref13
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref13
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref14
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref14
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref14
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref15
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref15
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref15
https://doi.org/10.1103/PhysRevMaterials.3.024005
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref17
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref17
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref17
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref17
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref18
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref18
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref18
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref19
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref19
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref20
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref21
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref22
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref23
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref23
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref24
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref24
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref25
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref25
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref26
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref26
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref27
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref27
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref28
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref28
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref29
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref29
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref30
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref31
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref31
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref32
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref32
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref33
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref33
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref33
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref34
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref35
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref35
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref36
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref37
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref38
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref38
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref39
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref39
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref40
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref40
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref40
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref41
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref42
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref42
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref43
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref43
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref44
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref44
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref44
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref45
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref46
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref46
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref47
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref48
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref48
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref48
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref49
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref49
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref50
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref50
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref51
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref51
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref52
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref52
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref53
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref53
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref53
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref54
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref54
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref55
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref56
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref56
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref57
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref57
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref58
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref59
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref59
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref60
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref60
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref61
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref61
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref61
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref62
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref62
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref63
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref63
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref64
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref65
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref66
http://refhub.elsevier.com/S2666-0326(20)30032-6/sref67

	Quantum particle motion on the surface of a helicoid in the presence of an harmonic oscillator
	1. Introduction
	2. The anisotropic effective mass and Schrödinger equation in a curved space
	3. Quantum harmonic oscillator on a helicoid
	4. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


