
Eur. Phys. J. C (2020) 80:265
https://doi.org/10.1140/epjc/s10052-020-7830-0

Regular Article - Theoretical Physics

On the hypotheses of Penrose’s singularity theorem under
disformal transformations

Eduardo Bittencourt1,a, Gabriel G. Carvalho2,b, Iarley P. Lobo3,4,c, Leandro Santana1,d

1 Federal University of Itajubá, Itajubá, Minas Gerais 37500-903, Brazil
2 Centro de Informática, Federal University of Pernambuco, Recife, Pernambuco 50740-560, Brazil
3 Federal University of Paraíba, João Pessoa, Paraíba 58059-900, Brazil
4 Present Address: Federal University of Lavras, Lavras, Minas Gerais 37200-000, Brazil

Received: 15 January 2020 / Accepted: 11 March 2020 / Published online: 24 March 2020
© The Author(s) 2020

Abstract We analyze how the hypotheses of Penrose’s sin-
gularity theorem (1965) are modified by the action of disfor-
mal transformations (defined in terms of light-like vectors)
upon a given space-time metric. In particular, we investigate
the transformation of the null energy condition and the exis-
tence of closed trapped surfaces in such scenario, in order to
derive conditions upon the background metric and the disfor-
mal vector that guarantee the validity of Penrose’s theorem
for disformal metrics. Then, we explain how to apply this
technique for static and spherically symmetric space-times
in general.

1 Introduction

Black holes and big bangs are examples of singularities that
inspire curiosity even in the realm of popular science. Com-
monly, they are depicted as “catastrophic” events such that
time and space behave in a counter-intuitive manner near
their boundaries: the matter content increases enormously
the gravitational field and the curvature diverges. Indeed,
they represent what is called a space-time singularity. In the
sixties, there was a deep discussion about the limits of pre-
dictability in general relativity due to the appearance of such
singularities. Initially, physicists analyzed the vicinities of a
space-time singularity by searching for generic analytic solu-
tions (see [1] and references therein) wondering whether sin-
gularities would appear only in very special cases with high
degree of symmetry. But, soon after, Penrose and Hawk-
ing published a few papers demonstrating that under cer-
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tain circumstances space-time singularities are unavoidable
[2]. Their singularity theorems are based upon the geodesic
incompleteness of a given space-time, indicating that a given
manifold has a singularity if there exists at least one incom-
plete geodesic curve parameterized by an affine parameter.
Usually, such theorems are interpreted as an indicative of the
invalidity of general relativity near singularities, suggesting
the need for a more sophisticated theory of gravitation.

In this paper, we study how the hypotheses of the sin-
gularity theorems can be modified by some transformation
acting on the space-time metric. In fact, we shall analyze the
original Penrose’s theorem (1965) which will be used along
the text [2,3]: “Space-time cannot be null geodesically com-
plete if: (i) Rμνkμkν ≥ 0 for all light-like vector kμ; (ii)
there is a non-compact Cauchy surface; (iii) there is a closed
trapped surface”. We should emphasize that the singularity
theorems obey a general structure described in Ref. [4], in
which the hypotheses concern: (i) an energy condition; (ii)
a causality condition; and (iii) a boundary or initial condi-
tion. All these ingredients are present in any formulation of
the singularity theorems. Notwithstanding, the way causality
conditions are modified when we perform a transformation
on the space-time metric cannot be predicted unless we know
the topology change caused by the transformation a priori.
Of course, any singularity in the elements involved by the
mapping itself will play a crucial role in the determination
of the global aspects of the resulting space-time. However,
it would require a sort of a topological classification of the
space-times, which is out of our scope. Furthermore, there
are well-known theorems in topology demonstrating that a
complete classification of manifolds for dim M ≥ 4 is not
possible. For the sake of comparison, there are recent papers
looking for it in special classes of space-times (for instance,
see [5] and references therein). Therefore, we shall deal with
a restricted class of metrics that preserves the condition (ii),
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which is a fairly reasonable assumption from the physical
point of view. As we shall see, the tools we develop here can
be naturally used to investigate the energy and boundary con-
ditions in the context of Penrose’s 1965 singularity theorem
[3] and a similar examination can be done for other cases
with more or less restrictive conditions on the space-time.

In this vein, we shall investigate the appearance of sin-
gularities in a given space-time when we consider another
space-time related to the former via a disformal transforma-
tion. A space-time is a pair (M , g), i.e a smooth manifold
and a metric with Lorentzian signature. Then, by definition,
(M , ĝ) is a different space-time. The relation between g and
ĝ will determine the events (points in M ) that may still be
allowed to happen should such a transformation occur. Con-
sidering M with two metrics is acceptable from the mathe-
matical viewpoint, since a metric is just a tensor field satisfy-
ing an appropriate definition. Nonetheless, from the physical
standpoint, it is worth to consider them as being two different
space-times. Thus, we shall use this kind of transformation
to scrutinize the hypothesis of the singularity theorem quoted
above in order to identify the precise conditions that could
introduce (or remove) a singularity on the space-time when
the transformation is performed. In practice, this analysis can
be applied to understand the fact that there are different solu-
tions of Einstein’s field equations for the same matter con-
tent and related via a disformal transformation where some
of them are singularity-free and the others are singular.

The motivation for dealing with disformal transformations
lays on the increasing literature on the subject as an alterna-
tive to solve current problems of gravity within the frame-
work of general relativity. For instance, at very high energy,
near the Planck energy, the disformal transformations have
been used to introduce an energy dependent space-time met-
ric as it is the case of Rainbow Gravity [6,7] and doubly
special relativity [8], in order to seek for phenomenological
effects of quantum gravity. Aiming at explaining the dark
matter and dark energy issues, the disformal transformations
appear in modified Newtonian dynamics [9], scalar-tensor
theories [10–14], Mimetic gravity [15–18] and Horndeski
theory [19–21]. In field theory, there are also several applica-
tions of the disformal transformations [22–27], with special
attention to the framework introduced to describe geometri-
cally some phenomena in particle physics [28–32].

This paper is summarized as follows. In Sect. 2, we intro-
duce the basic tools concerning disformal transformation that
shall be used along the text. In Sect. 3, we address few com-
ments about the hypotheses of the singularity theorems and
the conformal transformation, once it is a special case of
the disformal one. Then, in Sect. 4, we study how disformal
transformations change the energy condition and lead to the
formation of closed trapped surfaces, showing that it is pos-
sible to decide whether a disformal metric ĝ has a singularity
using conditions strictly defined on the background metric g.

Finally, in Sect. 5, we apply our results to the particular case
of static and spherically symmetric space-times. Along the
text, the conventions will broadly follow Ref. [33]. That is,
the speed of light is set to unit, we use the Lorentz signature
(− + ++), and Einstein’s summation conventions.

2 Disformal transformation definition

Disformal transformations can be regarded as a generaliza-
tion of conformal transformations. As such, they do not repre-
sent a change in coordinates, but a local change in the geom-
etry instead. One might think of a conformal transformation
as a smooth, isotropic and infinitesimal stretch at a point,
whereas a disformal transformation is a smooth, anisotropic
and infinitesimal stretch at a point. Given a space-time
(M , g), a light-like vector V ∈ Γ (TM ), where Γ (TM )

is the set of vector fields tangent to M , and two space-time-
dependent scalars α and β with α > 0, we define a light-like
disformal transformation (M , g, V, α, β) �−→ (M , ĝ) as a
change in geometry when the metric tensor changes accord-
ing to

ĝ(∗, ·) = αg(∗, ·) + βg(V, ∗) ⊗ g(V, ·). (1)

The inverse of ĝ, namely ĥ, is given by

ĥ(∗, ·) = 1

α
h(∗, ·) − β

α2 V (∗) ⊗ V (·), (2)

where h = g−1 and V is regarded as being a linear map from
Γ (T ∗M ) to C∞(M ), where C∞(M ) is the set of smooth
functions defined on M , and ∗ and · represent the place-
ments of arbitrary vector fields on which the tensor fields
involved must act. Since we are now dealing with a man-
ifold endowed with two metric tensors, it is important to
distinguish which metric tensor is being used when raising
and lowering indices. One shall deal with this problem by
explicitly writing the metric in all formulae in which indices
are raised or lowered. It is easy to show that requiring α > 0
is enough to keep the Lorentzian signature of the disformal
metric. Note that this kind of map between space-times can
also be seen as a conformal transformation of the Kerr–Schild
metrics [34], which is an old and well-understood topic in the
context of general relativity.

In terms of a frame assigned by a local observer {xμ}, Eqs.
(1) and (2) are written as

ĝμν = αgμν + βVμVν, (3)

ĝμν = 1

α
gμν − β

α2 V
μV ν. (4)

It is straightforward to verify that the relation ĝμν ĝνσ = δσ
μ

holds true, where δσ
μ is the Kronecker delta.

The key differences between conformal and light-like
disformal transformations were studied by some of us in
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Ref. [35], where the reader will find the transformation for-
mulae of some geometric quantities. For the sake of com-
pleteness, below we provide the most important relations
used in this work:

Γ̂ ε
μν = Γ ε

μν + Cε
μν, (5)

R̂μν = Rμν − 2∇[μCγ
γ ]ν + 2Cλ

ν[μC
γ
γ ]λ, (6)

where Γ̂ ε
μν and Γ ε

μν are Christoffel symbols and, R̂μν and Rμν

are Ricci tensors of the metrics ĝμν and gμν , respectively. The
auxiliary tensor Cε

μν is given by

Cε
μν = 1

α

[

δε
(μ∇ν)α + βV ε∇(μVν) + V εV(μ∇ν)β

+βV(μ∇ν)V
ε − βV(μ∇εVν) − 1

2
gμν∇εα

−1

2
VμVν∇εβ

]

+ β V ε

2α2

[

gμνV
λ∇λα − 2V(μ∇ν)α

+βV λ∇λ(VμVν) + VμVνV
λ∇λβ

]

, (7)

where ∇μ means covariant derivative and we denote A[μν] ≡
1
2 (Aμν − Aνμ) and A(μν) ≡ 1

2 (Aμν + Aνμ).

3 Singularity theorems and conformal transformation
revisited

Before approaching the case of disformal transformations,
we would like to address a few comments about the singu-
larity theorems for null congruence of curves and conformal
transformations. Once they are particular cases of the dis-
formal transformations, the results obtained here will also
be true there. Furthermore, the discussion about the validity
of the singularity theorems when different metrics are con-
formally related is sufficiently wide (see [36–38] for more
details) such that it can shed some light to a possible exten-
sion in the context of the disformal transformations.

Let us start with a manifoldM endowed with a metric gμν

and consider an arbitrary positive function α ∈ C∞(M ).
Then, we consider another space-time (M , ĝ) whose metric
is

ĝμν = α gμν. (8)

It is straightforward to show that a null geodesic with tan-
gent vector kμ in gμν still satisfies the geodesic equation in
the metric ĝμν . Thus, after the conformal transformation, we
have

kν∇̂νk
μ = α̇

α
kμ, (9)

where ∇̂μ means covariant derivative with respect to ĝμν and
α̇

.= kμ∇μα. Considering λ as the affine parameter of the null
geodesics with respect to gμν , a redefinition of it like

λ̃(λ) =
∫ λ

0
α(p)dp (10)

puts the geodesic equation in its standard form k̂μ
̂∇μk̂ν = 0

in the metric ĝμν , where now the tangent vector is redefined
as k̂μ = kμ/α. From this, it is worth to recall that causal-
ity (light-cones) is preserved by conformal transformations,
which will not be true for disformal ones.

Notwithstanding, the first hypothesis of Penrose’s singu-
larity theorem for null congruences concerns the full projec-
tion of the Ricci tensor along the tangent vector of any null
curve. So, by a direct computation of the Ricci tensor asso-
ciated to ĝμν doubly contracted with an arbitrary light-like
vector kμ, we obtain

̂Rμνk
μkν = Rμνk

μkν + 3

2

(

α̇

α

)2

− α̈

α
, (11)

or in terms of the auxiliary variable u = 1/
√

α, it becomes

̂Rμνk
μkν = Rμνk

μkν + 2
ü

u
. (12)

Note that the RHS of this equation is similar to the equation
of a harmonic oscillator with time dependent frequency. In
order to satisfy the focusing condition,1 i.e., ̂Rμν k̂μk̂ν ≥ 0,
it is sufficient to require that 2ü/u ≥ −Rμνkμkν is valid for
all null vector kμ. In particular, if (M , g) is Ricci flat, then
u(λ) must be an concave function of the affine parameter.
Although the conformal transformation preserves the null
geodesics of the space-time, note that the focusing condition
gets altered. This allows us to map a singular space-time into
a non-singular one through a suitable choice of the conformal
function α (see further details in Ref. [36]).

In order to verify the existence of closed trapped surfaces
Σ , it can be done through the analysis of the sign of the norm
of the mean curvature vector Hμ on Σ (see Appendix A). In
fact, we need to check whether the following scalar function
(defined by Eq. A.18) is positive

ξ̂ = −ĝab Ĥa Ĥb, (13)

where ĝab are the components of the inverse conformal met-
ric tensor. The lowercase Latin indices (a, b, . . .) denote the
space-time coordinates running from (0, 1) while uppercase
Latin indices (A, B, . . .) denote coordinates for Σ running
from (2, 3), and Ĥa are the conformal components of the
mean curvature tensor calculated from the extrinsic curva-
ture of the closed trapped surface.

From the definition of the scalar function U = U (x) as
eU (x) = √

det γ , a straightforward calculation yields

Ĥμ = Hμ + 1

α
δaμ(α,a − γ ABα,BgaA), (14)

1 From now on, we shall use this terminology to refer to the quantity
Rμνkμkν ≥ 0 in order to avoid allusion to any theory of gravitation.
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where γAB is the induced metric of the closed surface can-
didate as a trapped surface. Note that Ĥμ can be written in
terms of quantities defined in gμν and the conformal function
α. Therefore, the hypotheses (i) and (iii) of Penrose’s singu-
larity theorem applied for ĝμν can be reformulated standing
conditions over the space-time (M , g) exclusively, as we
state in the following

Theorem 1 Let (M , g) �→ (M , ĝ) be a conformal trans-
formation with ĝ given by Eq. (8), such that the space-
time (M , ĝ) admits a non-compact Cauchy surface. Let Rμν

denote the Ricci tensor of (M , g) and λ be the parameter
along the light-like curves whose tangent vector is kμ. If

1. 2
√

α d2

dλ2 (α)− 1
2 ≥ −Rμνkμkν , for all kμ;

2. There exists a closed surface Σ such that ξ̂ > 0,

then (M , ĝ) is null geodesically incomplete.

It should be emphasized that this formulation of Penrose’s
singularity theorem as applied here for (M , ĝ) allows one
to test the first and third hypothesis of the theorem without
knowledge of any geometrical property of such space-time.

4 Singularity theorem and disformal transformation

Recently, some of us have shown [7] that a disformal transfor-
mation of the kind (3) can be seen as the action of an operator
on vector fields over M , i.e.

−→
D : Γ (TM ) → Γ (TM ),

such that its action can be split into two parts: the conformal
and the purely disformal ones. Once the action of the con-
formal group on the hypothesis of the singularity theorems
has been discussed previously, we can focus on the disfor-
mal component of the full transformation. Fortunately, such
purely disformal transformation was widely studied in the
literature under the terminology of Kerr–Schild transforma-
tion in the context of general relativity (some reviews on this
topic can be found in [34,39,40]).

In a coordinate system, we can represent a purely disfor-
mal transformation as

ĝμν = gμν + εdμdν, (15)

whose inverse metric is

ĝμν = gμν − εdμdν, (16)

where dμ denotes the light-like disformal vectorwith respect
to both metrics and ε = ±1. While ε = +1 provides the Kerr-
Schild metrics as we find in the literature, the case ε = −1 is
also interesting because a given null vector kμ with respect
to the background metric gμν can be either time-like or light-
like with respect to the disformal metric ĝμν , lying within the
light-cone of the background metric. Whatever the case, the

choice of ε can be done without loss of generality.2 However,
the class of vectors we must deal with are here those whose
the norm is zero with respect to ĝμν , that is, we are interested
in the light-like vectors kμ tangent to the light-like curves in
the space-time (M , ĝ):

ĝμνk
μkν = 0 �⇒ gμνk

μkν = −εφ2, (17)

where φ
.= dμkμ. Thus, for φ �= 0, kμ will be time-like if

ε = +1 or space-like if ε = −1. For φ = 0, kμ is light-like
in both metrics.

Using the disformal metric (15), the focusing term can be
straightforwardly calculated and expressed in terms of the
background metric, yielding

̂Rμνk
μkν =

[

Rμν + 1

2
d

′
μd

′
ν + εDα

α Dμν + εD′
μν

−2εD[να]Dμ
α

]

kμkν + 2φ kμ
(

dνD′[μν]

+Dν [νd ′
μ] − ε∇νD[μν]

)

+φ2

2

(

2DμνD[μν] − εgμνd
′
νd

′
μ

)

, (18)

where we use that ε2 = 1 and we define Dμν
.= ∇νdμ,

d
′
μ

.= dαDμα and D′
μν

.= dα∇αDμν . In particular, if φ = 0
(kμ is parallel to dμ) then Eq. (18) reduces a lot, but still the
focusing condition may be satisfied in only one of the space-
times, for instance, Rμνkμkν ≥ 0 in gμν cannot ensure that
R̂μνkμkν ≥ 0 will be valid in ĝμν .

Now, we analyze the appearance of marginally closed
trapped surfaces, which might indicate the existence of a
trapped region in this space-time. Let us consider a two-
dimensional compact hypersurface Σ and a pair of null con-
gruences l±μ with respect to ĝμν orthogonal to Σ satisfying

l±μ l̂±μ = 0 and l±μ l̂∓μ = −1, where l̂±μ .= ĝμνl±ν . The

expansion coefficient θ̂± of these congruences can be writ-
ten in terms of the corresponding expansion coefficient θ±
in the metric gμν as

θ̂± = θ± + κ± + εdνl±ν ∇μd
μ + εdμ∇μ(dνl±ν ). (19)

Since l±μ is not necessarily mapped into an affinely parame-
terized curve, we introduce the parameter κ± to account for
it. In order that Σ be a closed trapped surface with respect
to the disformal metric, the RHS of Eq. (19) should vanish.
Then, identifying dμ∇μ as the absolute derivative along the
integral curve of dμ, we can solve Eq. (19) for ψ± .= dνl±ν ,
as follows

ψ± = C − ε
∫ [θ± + κ±](u)e

∫

u ∇μdμ(ũ)dũdu

e
∫ ∇μdμ(v)dv

, (20)

2 For more details concerning the causality issue in disformal metrics
see [7], paying attention to the different signature convention employed
there.
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where C is an integration constant. We emphasize that the
integrals are calculated along the integral curves of dμ. Con-
sidering that the expansion factor θ is a scalar that describes
the change in volume of a sphere of test particles centered on
a given curve of the null congruence, the argument within the
integral on the numerator of Eq. (20) might be regarded as an
overall measure change in the manifold when considering ĝ
instead of g. This is the sort of study performed in the realm of
geometric analysis and geometric measure theory. For now,
we abstain ourselves from delving into this problem.

Another way to study how the closed trapped surfaces are
modified by a disformal transformation is again through the
formalism presented in Appendix A. There, we only need to
verify how the scalar (A.18) is altered by such transformation
and try to solve a specific equation for it. Thus, we start by
making a 2 + 2 decomposition of the space-time associated
to the disformal metric ĝμν writing the squared line element
in the following form

ds2 = (gab + ε dadb)dx
adxb + 2(gaA + ε dadA)dxadx A

+(gAB + ε dAdB)dx Adx B , (21)

where da and dA are, respectively, the (0, 1)-components
and the (2, 3)-components of the disformal vector dμ and
the coordinates

{

x A
}

label the closed space-like surface Σ

candidate as a trapped surface. This decomposition allows
us to identify the disformal components of the space-time
metric as

ĝab = gab + ε dadb,

ĝaA = gaA + ε dadA,

ĝAB = gAB + ε dAdB . (22)

With this decomposition, we can write the mean curvature
covector using Eq. (A.17) and then we can construct a scalar
given by Eq. (A.18) which indicates the formation of a closed
trapped surface when it assumes positive values at some
space-time region. Now, we describe the procedure to do
so.

From a straightforward calculation, we first find the deter-
minant of the disformal components of γ̂AB as

det γ̂ = (1 + ε d AdA)det γ. (23)

where we define the symbol d A .= γ ABdB , with γAB as the
induced metric on Σ . Then, we define an auxiliary function
F(x)

.=
√

1 + ε d AdA, such that the derivative of U (x) in
the disformal metric can be written down as

Û,a = U,a + F,a

F
. (24)

Now, we need to transform the term div ga . Defining ̂div ga
.=

(
√

det γ̂ γ̂ AB ĝaA),B/
√

det γ̂ , a direct computation yields

γ̂ AB ĝaA = γ ABgaA + ε

F2 d
B

(

da − d AgaA
)

, (25)

and, thus, we find

̂div ga = div ga + γ ABgaA
F,B

F
+ ε

F
div Ia, (26)

where we have introduced the auxiliary covector Ia
.=

IaCdxC , with

IaC = dC
F

(da − d AgaA). (27)

Finally, the mean curvature covector defined in the disformal
metric is

Ĥμ = δaμ(Û,a − ̂div ga), (28)

which allows us to compute its corresponding norm as being

ξ̂ = −ĝab Ĥa Ĥb. (29)

Thus, a marginally trapped surface is formed when this scalar
vanishes and, with the help of Eqs. (23)–(28), this can be
verified using solely the background metric and the disformal
vector, without mention to the disformal metric. This means
that the appearance of a closed trapped surface in this case
would be due to the presence of a preferred direction provided
by the disformal vector.

In summary, the restriction of Penrose’s singularity theo-
rem to disformal transformations that map a given space-time
to another one preserving the causality condition leads to the
following:

Theorem 2 Let (M , g) �→ (M , ĝ) be a disformal transfor-
mation given by Eq. (15), such that the space-time (M , ĝ)
has a non-compact Cauchy surface. Let Rμν denote the Ricci
tensor of (M , g). If

1. For all vector kμ satisfying gμνkμkν = −ε φ2, we have

Rμνk
μkν

≥ −
(

1

2
d

′
μd

′
ν + εDα

α Dμν + εD′
μν

−2εD[να]Dμ
α

)

kμkν − 2kμφ
(

dνD′[μν] + Dν [νd ′
μ]

−ε∇νD[μν]
) − φ2

2

(

2DμνD[μν] − εgμνd
′
νd

′
μ

)

,

(30)

where φ = dμkμ;
2. There exists a closed surface Σ in (M , ĝ) such that ξ̂ >

0,

then (M , ĝ) is null geodesically incomplete.

The extension of Theorem 2 to the class of disformal met-
rics given by Eq. (3) can be achieved by making a conformal
transformation of the Kerr–Schild metric (15) with ε = 1
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and a replacement of dμ by
√

β
α
dμ everywhere along this

section.

5 Applications to static and spherically symmetric
space-times

Now, we shall apply the previous results to spherically
symmetric space-times that are disformally related, without
assuming any theory of gravitation a priori. The idea for deal-
ing with this family of space-times lies on the fact that the
spherically symmetric space-times are widely studied in the
context of gravitational collapse and black hole formation
which are the most common issues where the Penrose sin-
gularity theorem is applied, besides it is very enlightening to
work with as an example of the framework developed here.
In this vein, one may have a better understanding about the
features that one should expect from the dynamics of the
metric in order to achieve a desired behaviour (singular or
not) in a gravitational collapse scenario.

According to Theorem 2, we are capable to decide, for a
Kerr–Schild metric like Eq. (15) satisfying the causality con-
dition, if a singularity can emerge through an operational test
of the focusing condition and controlling the trapped surface
formation. Again, it should be noticed that this can be done
by using the tools defined strictly in the background geome-
try.3 Thus, the only assumptions will be that the background
metric is the flat Minkowski space (gμν = ημν) and that the
disformal vector preserves both the time-like Killing vector
and the spherical symmetry.

For late convenience, we start with the Minkowski metric
in spherical coordinates (v, r, θ, ϕ), where v is a light-like
coordinate. Then, we apply the disformal transformation to it,
such that the line element with the disformal metric becomes

̂ds2 = [−1 + f 2(r)]dv2 + 2 dv dr + r2 sin2 θ dϕ2 + r2 dθ2.

(31)

Note that the light-like disformal vector is given by dμ =
f (r)δμ

r while its corresponding covector is dμ = f (r)δv
μ, as

required by the symmetries.
In this case, it is straightforward to show that dμ satisfy

the geodesic equation in ημν and its covariant derivative in
this metric admits a simple matrix representation given by

[Dμ
ν] = diag

(

0,
d f

dr
,
f

r
,
f

r

)

. (32)

In order to calculate the RHS of the focusing term
expressed by Eq. (18), without entering into the details about

3 Again, the only condition that concerns the disformal metric is the
existence of a global Cauchy surface. Otherwise, the singularity can be
avoided even if there are trapped surfaces and a Cauchy horizon with
the null focusing condition being satisfied (see details in [42,43]).

the geometrical properties of the disformal metric (31), we
shall calculate the covariant derivative of Dμ

ν with respect
to the Minkowski metric, and then, project it along the dis-
formal vector. This also has a simple matrix form as

[D′μ
ν] = f (r) diag

(

0,
d2 f

dr2 ,
r d f
dr − f

r2 ,
r d f
dr − f

r2

)

. (33)

Finally, we need the divergence of Dμ
ν with respect to its

contravariant index, which is

∇μD
μ

ν =
⎛

⎝0,
r2 d2 f

dr2 + 2r d f
dr − 2 f

r2 , 0, 0

⎞

⎠ . (34)

Recall that ∇μ is calculated according to the Minkowski met-
ric. With these quantities, we can compute all terms involving
the disformal vector and its covariant derivative in the RHS
of Eq. (18), yielding

R̂μνk
μkν = φ2

[

f
d2 f

dr2 +
(

d f

dr

)2

+ 2 f

r

d f

dr

]

, (35)

where we have used that the class of vectors kμ satisfying Eq.
(17) always admits adapted coordinates such that its angu-
lar components kθ and kϕ vanish in virtue of the spherical
symmetry.

If we impose that R̂μνkμkν = 0 (the lower bound for the
focusing condition), then we get a second-order differential
equation for f (r), which can be solved, leading to

f ±
0 (r) = ±

√

C0 + C1

r
, (36)

where C0 and C1 are integration constants. It is curious that
the family of functions given by f ±

0 (r), for each choice of
C0 and C1, has integration constants with physical meaning:
C0 �= 0 yields a class of asymptotically non-flat metrics with
non-vanishing curvature tensor which has no correspondence
in the realm of general relativity; while C1 is related to the
mass of the compact object source of the gravitational field.

If one takes small deviation δ± of each branch of f ±
0 (r),

for instance, f ±(r) = f ±
0 (r)+ δ±, with f ±

0 (r) given by Eq.
(36), then the focusing condition will be satisfied only for a
certain combination of f ±

0 and the sign of δ±. This sets a
range in the domain of the radial coordinate. In Fig. (1), we
depicted the behaviour of f ±

0 (r) for some illustrative values
of the constants C0 and C1, shading the region where the
focusing condition is satisfied.

In order to apply Senovilla’s approach for spherically sym-
metric space-times, it is convenient the matrix representation
of the Minkowski metric split into 2 × 2 blocks as

[ημν] =
( [ηab] O2

O2 [ηAB]
)

, (37)
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Fig. 1 Plots of f ±
0 (r). The shaded region indicates where the focusing condition is valid. On left, it is obtained for C0 > 0 and C1 < 0. On center,

it was chosen C0,C1 > 0. On right, it was set C0 < 0 and C1 > 0. For both C0,C1 < 0, f (r) is purely imaginary

where O2 is a 2 × 2 zero matrix and

[ηab] =
(−1 1

1 0

)

, and [ηAB ] = [γAB ] =
(

r2 0
0 r2 sin2 θ

)

,

(38)

whose the inverse matrix is

[ημν ] =

⎛

⎜

⎜

⎝

0 1 0 0
1 1 0 0
0 0 1/r2 0
0 0 0 1/r2 sin2 θ

⎞

⎟

⎟

⎠

. (39)

In this case, the derivative of the function U (x), given by
Eq. (A.13), reads U,a = (2/r)δra , while ηaA = 0, implying
that div ga = 0 and, therefore, the scalar (A.18) is given by

ξ = −ηrrU,rU,r = − 4

r2 < 0, (40)

which is non-positive. Therefore, there are no closed trapped
surfaces in the Minkowski space-time, as already expected.

Now, let us check the validity of our expression for the
disformal scalar ξ̂ given by Eq. (29), with the help of Eqs.
(24) and (26). First, we notice that the disformal vector has
A-components equal to zero, that is, dA = 0. This implies
that the RHS of Eq. (26) is also zero, and then, ̂div ga ≡ 0.
Since F = 1, the remaining term is the derivative of the
function Û that is written as Û,a = U,a . Therefore,

ξ̂ = ξ + (drU,r )
2, (41)

with dr = ημr dμ = ηvr dv = − f (r), which is explicitly
given by

ξ̂ = −4[1 − f 2(r)]
r2 . (42)

Note that ξ̂ is non-negative only for f 2(r) ≥ 1 and the exis-
tence of such trapped region was possible only due to the
disformal transformation of the scalar ξ .

6 Concluding remarks

The issue of the geodesic completeness under the conformal
transformations has been debated in the literature since the
appearance of the first singularity theorem and it has been
demonstrated that an appropriate choice of the conformal
function can map any strongly causal space-time into a null
geodesic complete one [36,38]. When trying to extend these
results to the realm of the disformal transformation, the situ-
ation becomes more complicated once one has more degrees
of freedom to deal with.

Notwithstanding, we have shown that if one applies a dis-
formal transformation to a non-singular space-time (M , g)
satisfying the focusing condition and without trapped sur-
faces, the presence of singularities in the resulting space-time
(M , ĝ) can be verified only through the disformal transfor-
mation of the focusing condition and of Senovilla’s scalar ξ ,
assuming that (M , ĝ) admits a non-compact Cauchy surface,
as we argued before.

The implications of our results for alternative theories of
gravity are many. In special, we have shown in the previous
section that the focusing condition of a static and spherically
symmetric disformal metric can be tested straightforwardly
using Eq. (35) and the formation of closed trapped surface
occurs if f 2(r) − 1 admit real roots for positive r . These
conditions made testable two out of the three hypotheses
of the Penrose singularity theorem. If one try to extend the
procedure presented here to axially symmetric space-times,
this should be done carefully since metrics of this kind may
not admit a Cauchy surface (as it is the case of the Kerr
metric).

In conclusion, it is worth to mention that the violation of
the focusing condition seems to be crucial for the avoidance
of singularities, as far as we could see. In this vein, it suggests
a classification of the space-time singularities according to
the satisfaction (or not) of the hypotheses of the singularity
theorems, but this demands a further investigation.
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Appendix A: Characterization of trapped surfaces

In this section, we revisit the approach developed by Sen-
ovilla in [40,41], in order to define an equation that char-
acterizes a (marginally) trapped surface in such a way that
it could be easily modified when the space-time metric is
affected by a disformal transformation.

In a four dimensional manifold M , a hypersurface Σ can
be represented by an embedding Φ : Σ �→ M with para-
metric equations

xμ = Φμ(λ), (A.1)

where {xμ} are local coordinates inM (μ = 0, 1, 2, 3), and λ

represents the set of local coordinates {λA} for Σ (A = 2, 3).
We can find the metric on Σ by restricting the line element

to displacements confined to the hypersurface, i.e., by finding
the first fundamental form of the surface Σ induced by the
geometry of the manifold M . In fact, the vectors

eA = ∂Φμ

∂λA
∂μ, (A.2)

are tangent to curves contained in Σ . If we define eμ
A =

∂Φμ/∂λA, the first fundamental form of Σ in (M , g) is
simply the pull-back of g given by γ = Φ∗g, which in coor-
dinates {λA} is

γAB = gμνe
μ
Ae

ν
B . (A.3)

Using Eq.(A.1), the line element of the surface reads

ds2
Σ = gμνdx

μdxν |Σ = gμν

∂Φμ

∂λA

∂Φν

∂λB
dλAdλB

= γABdλAdλB . (A.4)

It is always possible to decompose the tangent space at a
point x ∈ M as TxM = TxΣ ⊕ TxΣ⊥, such that

∇eAeB = Γ̃ C
ABeC − KAB, (A.5)

where ∇ is the Riemannian connection of the manifold M ,
Γ̃ C
AB are the Christoffel symbols associated with the induced

metric on Σ , i.e., ∇̃CγAB = 0, and KAB is called shape
tensor or second fundamental form vector of Σ in M . In
fact, we can project the covariant derivative of a 1-form field
v onto the vectors eA, which gives

eμ
Be

ν
A∇νvμ = ∇̃AṽB + vμK

μ
AB, (A.6)

where ṽA
.= vμe

μ
A. The usual second fundamental form rel-

ative to a 1-form n normal to the surface Σ is simply

KAB[n] = nμK
μ
AB . (A.7)

Since Σ is a two-dimensional, compact, space-like sur-
face in a four-dimensional manifold, we can always find two
vectors that are linearly independent and choose them to be
future-directed and light-like everywhere on Σ . These vec-
tors will characterize the trapped surface, once the region that
is confined by this surface has the property of confining light
rays (and also massive particles).

Let us denote these null vectors as k±, satisfying k+
μk

−μ =
−1 and k±

μe
μ
A = 0. With these vectors, we can decompose

the shape tensor as

KAB = − (

Kμ
ABk

−
μ

)

k+ − (

Kμ
ABk

+
μ

)

k− , (A.8)

and define the mean curvature vector of Σ as the trace of the
shape tensor using the induced metric:

H = γ ABKAB . (A.9)

Since H still carries the index of the shape tensor, it is
orthogonal to Σ , i.e., Hμe

μ
A ≡ 0. The decomposition (A.8)

allows us to define the expansion coefficients of the future-
directed light-like vectors through the mean curvature vector
by

H = −θ−k+ − θ+k−, (A.10)

where

θ± .= γ ABKμ
ABk

±
μ. (A.11)

The mean curvature vector is of fundamental importance for
our purposes, since the sign of its norm will furnish a neces-
sary and sufficient condition for Σ to be a trapped surface.
So, now we shall focus in expressing HμHμ in a useful way
for our disformal analysis.

Thus, let us assume without loss of generality that our
space-like surface Σ is described by the conditions xa =
constant , where a = 0, 1. Locally, the squared line element
can be written as
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ds2 = gabdx
adxb + 2gaAdx

adx A + gABdx
Adx B ,

(A.12)

where det gAB > 0. In this case, the embedding Φ is xa =
Φa = Xa = const. and x A = Φ A = λA. From these
definitions, we see that the first fundamental form of Σ is
simply γAB = gAB(X, λ) and the future-directed null 1-
forms k± become k± = k±

b dx
b|Σ , which only have indices

(0, 1) due to the space-time decomposition.
Consider an auxiliary scalar function defined in terms of

the determinant of the first fundamental form as

eU (x) .= √

detγ . (A.13)

and define the 1-form

ga = gaAdx
A. (A.14)

From Eq. (A.5) we can describe the shape tensor from deriva-
tives of the metric, deriving then from Eq.(A.11) an expres-
sion for θ± as follows (see [41] for more details)

θ± = k± a
[

U,a − e−U (eU γ ABgaA),B

]

. (A.15)

From the identity

div ga = γ AB∇̃BgaA = 1√
det γ

(
√

det γ γ AB gaA),B,(A.16)

we express the mean curvature vector as

Hμ = δaμ(U,a − div ga). (A.17)

Finally, we have that Σ is a trapped surface if and only if

ξ = −gbcHbHc|Σ (A.18)

is positive. A necessary condition for it to be a marginally
trapped surface is that ξ vanishes. This expression is very
useful for our purposes, since it just depends on the metric
tensor, which is the geometrical object that if affected by a
disformal transformation.
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