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Abstract In this paper, we study the one-loop induced pho-
ton’s effective action in the very special relativity electro-
dynamics in (2 + 1) spacetime (VSR–QED3). Due to the
presence of new nonlocal couplings resulting from the VSR
gauge symmetry, we have additional graphs contributing to
the 〈AA〉 and 〈AAA〉 amplitudes. From these contributions,
we discuss the VSR generalization of the Abelian Maxwell–
Chern–Simons Lagrangian, consisting in the dynamical part
and the Chern–Simons-like self-couplings, respectively. We
use the VSR–Chern–Simons electrodynamics to discuss
some non-Ohmic behavior on topological materials, in par-
ticular VSR effects on Hall’s conductivity. In the dynamical
part of the effective action, we observe the presence of a
UV/IR mixing, due to the entanglement of the VSR nonlo-
cal effects to the quantum higher-derivative terms. Further-
more, in the self-coupling aspect, we verify the validity of
the Furry’s theorem in the VSR–QED3 explicitly.

1 Introduction

Over the past decades, we have seen great progress on the
experimental and theoretical understanding of the standard
model of particle physics and also cosmology, where high
precision data have established tight bounds in search of man-
ifestations of physics beyond the standard model [1–3]. Many
minimal modifications of the standard model have been pro-
posed and explored in order to understand the fundamental
origin of some of the problems of physical phenomena that
are not adequately explained by the known theories, e.g., neu-
trino masses, matter-antimatter asymmetry, quantum gravity,
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etc. In general, a very reliable way to describe such phenom-
ena involves the addition of new(global and/or local) degrees
of freedom. However, instead of adding new fields, an appeal-
ing way to incorporate new degrees of freedom in this context
is by enforcing a symmetry principle.

Among the enormous class of models that try to cope
with physics beyond of the standard model, models present-
ing Lorentz symmetry violation have received considerable
attention because they are usually related to physics at the
Planck energy scale EPl [1,4]. On the other hand, Lorentz
violating effects are not necessarily related to Planck scale
physics, it is also possible to formulate such class of models
from a phenomenological group theory point of view. In par-
ticular, the most interesting proposals are those that preserve
the basic elements of special relativity, because they are in
agreement with well-established physics. A framework sat-
isfying the above criteria is the Cohen and Glashow very
special relativity (VSR) [5,6]. The main aspect of the VSR
proposal is that the laws of physics are invariant under the
(kinematical) subgroups of the Poincaré group, preserving
the basic elements of special relativity. Many interesting the-
oretical and phenomenological aspects of VSR effects have
been extensively discussed [7–13].

The kinematics of the VSR framework, when it is defined
in (3 + 1)-dims, have two subgroups satisfying the prior
requirements, namely, the HOM(2) (with three parameters)
and the SIM(2) (with four parameters). These symmetry
groups SIM(2) and HOM(2) have the property of preserv-
ing the direction of a lightlike four-vector nμ by scaling,
transforming as n → eϕn under boost in the z direction.
This feature implies that theories, which are invariant under
either of these two subgroups, have a preferred direction in
the Minkowski spacetime, where Lorentz violating terms can
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be constructed as ratios of contractions of the vector nμ with
other kinematical vectors [5].1

Once the formulation of VSR is solely based on the use of
kinematical subgroups of the Poincaré group, it can be nat-
urally extended to different spacetime dimensionality other
than (3 + 1)-dims with proper considerations. In the case
of (2 + 1)-dims spacetime, we have in VSR the kinematical
subgroup SIM(1) subgroup (of the SO(2, 1) Lorentz group)
that preserves all the aforementioned conditions, in particular
the existence of the invariant null-vector by a rescaling, and
hence can be used to formulate a gauge theory in this frame-
work.2 In view of this thought, we are interested in formu-
lating the Maxwell–Chern–Simons theory in the VSR con-
text. Since the proposal of the so-called topologically mas-
sive electrodynamics [15,16], also known as the Maxwell–
Chern–Simons (MCS) electrodynamics, describing a single
massive gauge mode of helicity ±1, a great amount of atten-
tion has been paid into phenomenological application of this
model. From the theoretical point of view, an interesting
aspect of 3D field theories is the UV finiteness in some mod-
els. This feature, when is applied to Lorentz violating models,
provides an ambiguity free description of Lorentz violation,
allowing a close contact of violating effects with planar phe-
nomena. Furthermore, recently 3D versions of fermioniza-
tion/bosonization have been studied [17,18], in which the
duality between nonspin Chern–Simons theory and a spin
Chern–Simons theory was investigated. Accordingly, this
work may be the first step in developing such analysis to
VSR framework.

The dynamics of the gauge fields in the VSR frame-
work has been studied in different applications [12,19–22].
We shall discuss in this paper; however, the gauge fields
dynamics in (2+1)-dims following the approach of effective
action [23]. The approach of effective action allows a clear
understanding of the low-energy dynamics of quantum fields,
where new types of interactions that depend on the spin of
the fields involved as well as the spacetime dimensionality
can be obtained [24,25]. Since VSR effects can be trans-
lated into the propagation of massive modes of the fields, we
want to compare the possible difference of massive modes
generation between the VSR effects and the Chern–Simons
term due to the parity symmetry violation. Furthermore, we
highlight possible applications of the VSR–Chern–Simons
effective action in the topological invariant systems, such as
quantum Hall systems and other topological insulators. We
believe that Lorentz violating effects can be well motivated

1 The simplest example of VSR models is the free scalar field, whose
action is given by S = ∫ dωx ∂̃μφ∂̃μφ = ∫ dωxφ

(−� + m2
)
φ, where

the wiggle derivative operator is defined by ∂̃μ = ∂μ + 1
2
m2

n·∂ nμ. We
observe that the Lorentz violation appears in a nonlocal form and the
parameter m sets the scale for the VSR effects.
2 A detailed account of the SIM(1) subgroup can be found in Ref. [14].

in the context of topological invariant systems in order to
describe anomalous behavior, such as non-Ohmic materials
[26,27].

In this paper, we examine in details the modifications of the
photon’s dynamics within the SIM(1) VSR effective action
framework. Moreover, this analysis also allows us to verify
the validity of Furry’s theorem explicitly at one-loop order.
We start Sect. 2 by reviewing some aspects of the fermionic
electrodynamics in the VSR context. There, we explain the
subtle points related to the nonlocal gauge couplings intro-
duced by VSR effects, and also present the respective vertex
Feynman rules. We also discuss charge-conjugation symme-
try in the Lagrangian level, showing that the C-invariance
is preserved in the VSR setting. In Sect. 3, we compute
the 2-point function 〈AA〉 at one-loop, corresponding to the
dynamical part of the photon’s effective action, and present
the VSR modifications to the photon’s polarization tensor.
In order to make contact with phenomenology, we discuss
the VSR contribution, in terms of the VSR–Chern–Simons
electrodynamics, to Hall’s conductivity, as a possibility to
describe non-Ohmic materials. We analyze whether the VSR
nonlocal couplings are sufficient to generate Chern–Simons-
like self-couplings (in the Abelian VSR theory), and also
check the Furry’s theorem, by computing the 3-point func-
tion 〈AAA〉 in Sect. 4. This discussion is well motivated since
Lorentz invariance is one of the cornerstones of many fun-
damental and classical theorems and features in QFT. It is
important to re-explore these theorems and features in the
absence thereof. The VSR theories are among the few set-
tings where these questions can be formulated and studied.
Furry’s theorem is one such example. Finally, we summarize
the results, and present our final remarks and prospects in
Sect. 5.

2 Gauge fields in VSR

In order to discuss the one-loop photon’s effective action in
VSR, we start by considering Dirac fermions interacting with
an external gauge field as below

L = ψ
[
iγ μ∇μ − me

]
ψ. (2.1)

The gauge and fermion fields are minimally coupled
through the VSR covariant derivative [20]

∇μψ = Dμψ + 1

2

m2

(n · D)
nμψ, (2.2)

which is written in terms of the ordinary covariant derivative
Dμ = ∂μ−ieAμ, and the preferred null direction is chosen as
nμ = (1, 0, 1). We observe that the expression (2.2) recovers

the wiggle derivative ∂̃μ = ∂μ + 1
2
m2

n·∂ nμ in the noninteract-
ing limit when Aμ → 0. This new operator obeys the known
transformation law for a charged field δ

(∇μψ
) = iχ

(∇μψ
)
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Fig. 1 Feynman graphs of VSR–QED up to order e3

and also satisfies the required properties VSR gauge trans-
formation δAμ = ∂̃μχ .

The fermionic propagator can readily be computed as

S(p) = i ( � p̃ + me)

p̃2 − m2
e

, (2.3)

where p̃μ = pμ − 1
2
m2

n·p nμ, and we also have the fermionic

dispersion relation p̃2 = m2
e , or equivalently as p2 = μ2,

where μ2 = m2
e + m2 is the modified fermionic mass.

On the vertex functions, we should analyze the expression
(2.2) for the VSR covariant derivative. About the perturbative
analysis, the presence of the term 1/ (n · D) in (2.2) shows
that there is now an infinite number of nonlocal interactions
(in the coupling e). The Feynman rules for these interac-
tions can be obtained by means of the use of Wilson lines,
which express the respective terms in a convenient form with
n = 1, 2, 3, . . . legs of photon fields [7], making perturba-
tive analysis workable. Since we are interested in computing
the vevs 〈AA〉 and 〈AAA〉 at one-loop order, we should con-
sider the Feynman rules with one, two and three photon legs.
The

〈
ψψ A

〉
vertex already signals minimal deviation from

the usual QED, while the
〈
ψψ AA

〉
and

〈
ψψ AAA

〉
are new

vertices resulting from VSR effects. The 1PI vertex Feynman
rules of interest can readily be obtained from the Lagrangian
Eq. (2.1) [7,22]. We would like to emphasize that the ver-
tex Feynman rules are the same in any dimension, since the
form of the interaction parts are preserved by changing the
spacetime dimension. However, the mass dimension of the
fields and coupling constant depends directly on the space-
time dimension; e.g. the mass dimension of the fields and
coupling constant in d = 2 + 1 is described as [ψ] = 1,
[Aμ] = 1

2 and [e] = 1
2 , respectively.

By considering the three-dimensional Fermionic action
as SF = ∫ d3x L, the relevant vertex Feynman rules, corre-
sponding to the Feynman graphs depicted in Fig. 1, are found
as below

• The 3-point function 〈ψ̄(p)ψ(q)Aμ(k)〉


μ = −ie

[

γ μ + m2

2

�n nμ

(n · p) (n · q)

]

(2.4)

• The 4-point function 〈ψ̄(p)ψ(q)Aμ(k1)Aν(k2)〉

�μν = − ie2m2

2

�n nμnν

(n · p)(n · q)

×
[

1

n · (p + k1)
+ 1

n · (p + k2)

]

(2.5)

• The 5-point function 〈ψ̄(p)ψ(q)Aμ(k1)Aν(k2)Aρ(k3)〉

�μνρ = − ie3m2

2

�n nμnνnρ

(n · p)(n · q)

×
[(

1

n · (p + k1)
+ 1

n · (p + k2)

)

× 1

n · (p + k1 + k2)
+ perm

]

(2.6)

In these vertex functions, we have assumed that all the pho-
ton momenta are inward, implying the energy-momentum
conservation law p − q +∑i ki = 0.

In regard to the discrete symmetries in this Lorentz vio-
lating setting, one should recall that the VSR context does
not permit the inclusion of parity (P) and time-reversal (T)
symmetries, as well as composed symmetries CP and CT,
since these are sufficient to restore the full Lorentz invari-
ance [5]. On the other hand, we can speak about the charge-
conjugation symmetry in regard to the nonlocal VSR cou-
plings, because it does not depend on the structure of the
spacetime. One of the main goals in this paper is investi-
gating the validity of Furry’s theorem in the VSR setting.
And before proceeding to the analysis of the vev 〈AAA〉 at
one-loop order, we shall first study the charge-conjugation
symmetry at the Lagrangian density (classical level). With
this purpose, we first consider the behavior of the free part of
the Lagrangian (2.1) under C transformation which is given
by

Lc
0 = ψ̄c

[
i � ∂ − me + i

m2

2

�n
n · ∂

]
ψc, (2.7)

where ψc = ηψCψ̄T and ψ̄c = −η∗
ψ
ψTC−1. Using the

anticommuting property of the spinor components and the
identity C−1γ μC = −(γ μ)T , it is easy to identify that the
first and second terms are C-invariant, by a total derivative
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term in the action. About the last term, including the VSR
effects, it transforms as

ψ̄cγ μ

(
1

n · ∂
ψc
)

= −
( 1

n · ∂
ψ̄
)
γ μψ. (2.8)

With the help of the identity 1
n·∂ = ∫∞

0 ds e−s(n·∂), it is easy
to show that under the action integral

∫
d3x ψ̄cγ μ

(
1

n · ∂
ψc
)

= −
∫

d3x
( 1

n · ∂
ψ̄
)
γ μψ

=
∫

d3x ψ̄γ μ

(
1

n · ∂
ψ

)

. (2.9)

Finally, with this result, we can conclude that the free part
of the action S0 = ∫ d3x L0 is C-invariant. The remaining
part of the analysis consists of checking the behavior of the
interaction part of the Lagrangian (2.1) under C. It is well
known that the usual QED interaction term, i.e. ψ̄γ μAμψ ,
is explicitly C-invariant. However, the nonlocal interaction
terms, arising from VSR effects, are generated by the pertur-
bative expansion of the term

ψ̄γ μ

(
1

n · Dψ

)

= ψ̄γ μ

(∫ ∞

0
ds e−s(n·D)ψ

)

. (2.10)

Similarly to the analysis of the free part under C, and by
considering Ac

μ = −Aμ, it is straightforward to show that the
whole VSR (nonlocal) couplings will be C-invariant under
the action integral, added by total derivatives. Hence, we can
conclude that C-invariance is preserved in the VSR setting
at the classical level. We shall return to the C-invariance in
Sect. 4 through the explicit verification of the Furry’s theorem
at one-loop order in the VSR context.

3 One-loop 2-point function 〈AμAν〉

In order to compute the dynamical part of the photon’s effec-
tive action, we shall discuss the 2-point function 〈AμAν〉
at one-loop order. The Feynman diagrams of the respective
contributions are depicted in Fig. 2. The first graph (a) cor-
responds to the usual photon polarization of QED, where the
fermion propagator (2.3) and vertex (2.4) are modified by
VSR nonlocal terms, resulting in

�
μν

(a) (p) = −
∫

dωq

(2π)ω
Tr

(

i
( � q̃ + me)

q̃2 − m2
e


μ (q, p + q)

×i
( � ũ + me)

ũ2 − m2
e


ν (p + q, q)

)

, (3.1)

in which u = p + q. There is a second VSR contribution at
this order, graph (b), corresponding to the quartic VSR vertex
(2.5), which gives

(a) (b)

Fig. 2 Relevant graphs for the induced AA-term

�
μν

(b) (p) = −
∫

dωq

(2π)ω

×Tr

(

i
( � q̃ + me)

q̃2 − m2
e

�μν (q,−q, p,−p)

)

. (3.2)

Then, the full contribution to the 〈AμAν〉 part is given by
�μν = �

μν

(a) + �
μν

(b). In the first part of the computation,
we make use of the known algebra for the Dirac’s gamma
matrices in the two-component representation in the (2 + 1)

spacetime,

Tr
(
γ σ γ ρ

) = 2ησρ, Tr
(
γ αγ σ γ ρ

) = −2iεασρ,

Tr
(
γ αγ σ γ λγ ρ

) = 2
(
ηασ ηλρ − ηαλησρ + ηαρηλσ

)
.

After simplifying the trace part of the polarization tensor, we
obtain

�μν (p) = −2e2
∫

dωq

(2π)ω

q̃σ ũρ − ησρ (q̃.ũ) + q̃ρ ũσ

(q2 − μ2)((p + q)2 − μ2)

× T μ
σ (p, q) T ν

ρ (p, q)

+ 2ie2me

∫
dωq

(2π)ω

εασρ q̃α + εσβρ ũβ

(q2 − μ2)((p + q)2 − μ2)

× T μ
σ (p, q) T ν

ρ (p, q)

− 2e2m2
e

∫
dωq

(2π)ω

1

(q2 − μ2)((p + q)2 − μ2)

× T ρμ(p, q) T ν
ρ (p, q)

− e2m2nμnν

∫
dωq

(2π)ω

1

q2 − μ2

1

(n · q)

×
[

1

n · (q + p)
+ 1

n · (q − p)

]

, (3.3)

where we have defined by notation the nonlocal tensor as

Tαβ(p, q) = ηαβ + m2

2

nαnβ

(n · q)n · (p + q)
. (3.4)

In order to solve the momentum integrals, it is convenient to
use the following property
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1

n · (q + pi ) n · (q + p j
)

= 1

n · (pi − p j
)

(
1

n · (q + p j
) − 1

n · (q + pi )

)

,

(3.5)

and simplify the integrand of equation (3.3). In the case of
infrared divergent integrals, we can use the Mandelstam-
Leibbrandt prescription [28,29]

1

(n · q)
= lim

ε→0

(q · n̄)

(n · q)(q · n̄) + iε
, (3.6)

where n̄ is a new null vector with the property (n · n̄) = 1,
whose explicit form must be provided in the VSR framework
[11]. We discuss the conditions to determine the specific form
of n̄ below. One main result for the momentum integrals
involved with the (n · q)−1 factor is [11,30]

∫
dωq

1

(q2 + 2q · p − m2)a

1

(n · q)b

= (−1)a+biπ
ω
2 (−2)b

�(a + b − ω
2 )

�(a)�(b)
(n̄ · p)b

×
∫ 1

0
dt tb−1 1

�a+b− ω
2
, (3.7)

where � = m2 + p2 − 2(n · p)(n̄ · p)t . Hence, making use
of the identity (3.5) and inserting back the results Eqs. (3.7),
(A.1) and (A.2), into the expression (3.3), it yields

�μν(p) = 4ie2

(4π)
ω
2
�
(

2 − ω

2

) (
pμ pν − ημν p2)

×
∫ 1

0
dx x(1 − x)

(
1

μ2 − x(1 − x)p2

)2− ω
2

+ 2e2me

(4π)
ω
2
�

(

2 − ω

2

)

εαμν pα

×
∫ 1

0
dx

(
1

μ2−x(1−x)p2

)2− ω
2

+4ie2m2

(4π)
ω
2

�
(

3−ω

2

)

×
[

nμ pν + nν pμ − ημν (n · p) − nμnν

(n · p) p
2
]

(n̄ · p)

×
∫ 1

0
dx x

∫ 1

0
dt

1

Θ3− ω
2
+4e2m2me

(4π)
ω
2

�
(

3−ω

2

)

×
[

εασν pα

nσ nμ

n · p + εαμρ pα

nρnν

n · p + εαμνnα

]

× (n̄ · p)
∫ 1

0
dx x

∫ 1

0
dt

1

Θ3− ω
2
, (3.8)

where Θ = μ2 − x(1 − x)p2 − 2x2(n · p)(n̄ · p)t . We can
explicitly observe that the Mandelstam–Leibbrandt prescrip-
tion preserves the VSR gauge invariance, since (3.8) satisfies
the Ward identity pμ�μν = pν�

μν = 0.

Now, in order to fully determine the integrals in (3.8), we
must present an explicit form for the vector n̄. Taking into
account the properties such as reality, right scaling (n, n̄) →
(λn, λ−1n̄) and being dimensionless [11], we find a SIM(1)-

invariant vector n̄μ = a p2nμ

(n·p)2 +b pμ

(n·p) +c
√

q2εμρσ nρ pμ

(n·p)2 , with
a, b, c pure numbers. Notice, however, that this fails to be
real for q2 < 0. Thus, to preserve reality, it is necessary
to consider c = 0. Finally, in our prescription, we have that

n̄μ = − p2

2(n·p)2 nμ+ pμ

n·p , then n̄ · p = p2

2(n·p) . Hence, replacing
this result back into (3.8), solving the integration over the
variable t , we arrive at

�μν(p) = ie2

2π

(
pμ pν − ημν p2)I1 + e2

4π
meε

αμν pαI2

+ ie2m2

4π

[
nμ pν + nν pμ

n · p − ημν − nμnν

(n · p)2 p2
]

I3

+ e2mem2

4π

×
[

εασν pα

nσ nμ

(n · p)2 + εαμσ pα

nσ nν

(n · p)2 + εαμν nα

n · p
]

I3,

(3.9)

where we have considered ω → 3+, since the expression
(3.8) is UV finite in this limit, and we have also defined the
integrals Ii by simplicity in Eqs. (A.3), (A.4) and (A.5).

In order to determine the VSR contributions to the
Maxwell–Chern–Simons kinetic terms for the photon’s
effective action, we consider the low-momentum limit p2 

m2

e of the expression (3.9). In this case, the integrals behave as

I1 � 1

6|μ| , I2 � 1

|μ| , I3 � p2

4|μ|3 , (3.10)

where the higher-derivative corrections to the ordinary
Maxwell–Chern–Simons term have been discarded. Finally,
the polarization tensor, in the low-momentum limit p2 

m2

e , can be written in the form

− i�μν(p)

∣
∣
∣
∣
p2
m2

e

= e2

12π |me| (p
μ pν − ημν p2) − ie2me

4π |me|ε
μνα pα

+ e2

16π |me|
(
m2

m2
e

)

×
[
nμ pν + nν pμ

n · p − ημν − nμnν

(n · p)2 p
2
]

p2

− ie2me

16π |me|
(
m2

m2
e

)

×
[

εμνα nα

n · p + εασν pα

nμnσ

(n · p)2 + εαμσ pα

nνnσ

(n · p)2

]

p2.

(3.11)
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The low-energy VSR photon’s effective action is obtained by
using the result (3.11) into

i�[A] =
∫

d3 p

(2π)3

×
∫

d3x1d
3x2e

ip(x1−x2)Aμ(x1)Aν(x2)�μν(p)

∣
∣
∣
∣
p2
m2

e

.

(3.12)

yielding the following induced Lagrangian density

Lind. = −1

4
FμνFμν + 3me

4
εμναAμFνα

− 3m2

8

(
nνF

μν
) 1

(n · ∂)2

( �
m2

e

)
(
nαFμα

)

− 3m2me

16

[

2εμνλAλ

nνnα

(n · ∂)2

( �
m2

e

)

Fμα

+ εμαν Aλ

nνnλ

(n · ∂)2

( �
m2

e

)

Fμα

]

. (3.13)

where, �[A] =
(

e2

6π |me|
) ∫

d3x Lind. and Fμν = ∂μAν −
∂ν Aμ. As an illustration, we can compare the tensor structure
of the induced Lagrangian density Eq. (3.13), to the classical
Lagrangian, which is a VSR gauge invariant generalization
of the ordinary Maxwell–Chern–Simons Lagrangian density

L2+1 = −1

4
FμνFμν − m2

2

(
nνF

μν
) 1

(n · ∂)2

(
nαFμα

)

+ me

4
εμνλFμν Aλ + m2me

4
εμνλ nνnα

(n · ∂)2 FμαAλ

+ m2me

8
εμαν nνnλ

(n · ∂)2 FμαAλ. (3.14)

Furthermore, we can cast the Lagrangian (3.14) as L2+1 =
1
2 AλOλαAα , where Oλα in the momentum space is given by

Õλα = kλkα − ηλαk2 + imeε
μαλkμ

+ m2
(
nλnαk2

(n · k)2 − nλkα + nαkλ

(n · k) + ηαλ

)

+ ime
m2

2

[
εανλnν

(n · k) − εμνλkμnνnα

(n · k)2 + εμναkμnνnλ

(n · k)2

]

.

(3.15)

We can easily observe that the quantum effective action (3.11)
and the classical action (3.15) have the same tensor structure
in the VSR framework, showing that both VSR and gauge
symmetry are preserved. However, there is a major differ-
ence between the results, the VSR effects in the quantum
counterpart (3.11) all come as higher-derivative terms.

It is well known that the infrared fluctuations can generate
nonlocal terms in the quantum effective action. This genera-
tion of the nonlocal terms can be traced back to the presence
of massless particles in the fundamental theory, this is the
case for example of QED and gravity [31]. On the other hand,
higher derivative terms can also be related to quantum effects
[32]. Hence, from this point of view, we understand that in
the VSR framework, the nonlocal and higher-derivative terms
are intermingled in the quantum effective action (3.11).

It is important to emphasize that this statement is not valid
in the (2+1) VSR electrodynamics only. In fact, if we analyze
the generation of VSR gauge terms in the (3 + 1) spacetime
[11] and (1+1) spacetime [33], we observe that all of the non-
local effects are entangled to higher-derivative terms. Hence,
this mixture of nonlocal effects and higher-derivative terms in
VSR, in the gauge sector of quantum effective action, seems
to be a common feature. Thus, we can signal that we have
the presence of UV/IR mixing in the VSR quantum effective
action.

3.1 Topological insulators in VSR

Chern–Simons theories are known to capture the response
of the quantum Hall ground state to low-energy perturba-
tions, more precisely it captures the basic physical content
of the integer quantum Hall effect [34]. Moreover, systems
exhibiting the quantum Hall effect were the first topological
insulators as being characterized by a nonzero Chern num-
ber. Within this class of systems, there are some cases that
present a non-Ohmic behavior at high-temperature [26,27].
From this point of view, one can use generalizations of the
Chern–Simons theory in order to describe this anomalous
behavior. Hence, we wish to explore these rich environments
in order to highlight the VSR effects, for this matter we con-
sider the VSR–Chern–Simons electrodynamics (3.14).

Let us consider the Chern–Simons part of the Eq. (3.14),
and applying the scaling eAμ → Aμ, we have

LVSR–CS = κ

4
εμνλFμνAλ + m2κ

4
εμνλ nνnα

(n · ∂)2 FμαAλ

+ m2κ

8
εμαν nνnλ

(n · ∂)2 FμαAλ, (3.16)

and we define the effective action SVSR–CS = ∫ d3x LVSR–CS ,
with the parameter κ = me

e2 , which is a dimensionless quan-
tity.

Hence, in order to study the non-Ohmic effects in the
Hall’s conductivity, we compute the mean current density,
subject to the presence of an external field, as below

〈
Jσ (x)

〉 = δSVSR–CS [A]

δAσ (x)
. (3.17)

123
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Then, substituting (3.16) into (3.17) yields us the expression

〈
Jσ (x)

〉 = κ

2
εσμνFμν + m2κ

4

× (εμλνnσ + 2εσμνnλ
) nν

(n · ∂)2 Fμλ. (3.18)

Let us consider separately the cases σ = 0 and σ = i , cor-
responding to the charge density and vector current density
respectively. Thus, we find that

〈
J 0 (x)

〉
= κ

2
εi jFi j + m2κ

4

1

(n · ∂)2 G
(0), (3.19)

and

〈
J i (x)

〉
= κ

2
εiμνFμν + m2κ

4

1

(n · ∂)2 G
(i), (3.20)

where we have defined by simplicity

G(0) = εμλνn0nνFμλ + 2ε0μνnλnνFμλ,

G(i) = εμλνninνFμλ + 2εiμνnλnνFμλ. (3.21)

Finally, using explicitly the definition of nμ = (1, 0, 1),
it is straightforward to show that the VSR contributions to
the mean current vanish, G(0) = G(i) = 0. It shows that
the Hall’s conductivity σ does not receive any VSR correc-
tions. Therefore, we are left with the usual relation among
the charge and current densities in terms of the electric and
magnetic fields

〈
J 0 (x)

〉
= κB,

〈
J i (x)

〉
= κεi jE j , (3.22)

with B = 1
2εi jFi j ,E i = F i0. By comparison, (3.22) cor-

responds to the expected Ohmic behavior described by the
Chern–Simons theory for the Hall’s conductivity with the
identification κ = e2n/h̄, where n is the occupancy number
of the Landau levels. Although it was shown that the VSR
effects vanishes, in this particular class of Hall’s systems,
there are still a considerable amount of topological invariant
physical systems where VSR could be formulated in order
to describe anomalous behavior. As discussed above, there
are several different physical systems (topological insulators)
characterized not only by the Chern number, but also by the
Chern parity. Hence, we believe that Lorentz violating effects
could also be applied to these physical systems in order to
discuss non-Ohmic behavior, or any other anomalous behav-
ior, experimentally observed in some materials.

4 One-loop 3-point function 〈AμAν Aσ 〉

A strong result in the standard QED is the C invariance
known as the Furry’s theorem. This theorem states that the
total amplitude of the graphs containing a closed fermion
loop with an odd number of external photon legs vanishes.
Although the VSR electrodynamics (2.1) is also invari-
ant under charge conjugation, there are a number of addi-
tional couplings in comparison to QED, making necessary
a detailed analysis of the contribution of these couplings.
Hence, in this section, we shall verify explicitly whether
Furry’s theorem is valid at one-loop order in the presence
of the nonlocal VSR couplings. This analysis is also moti-
vated by the fact that not necessarily such cornerstones of
QFT are valid in a Lorentz violating setting, because such
violating effects may result into an anomaly. The four con-
tributing graphs are depicted in Fig. 3. We observe that the
triangle graphs (a) and (b) have the same structure as ordinary
QED, whereas graphs (c) and (d) include purely VSR effects,
coming from the new vertices (2.5) and (2.6), respectively.

In order to verify whether the total amplitude, consisting
of the diagrams in Fig. 3, vanishes, we start by discussing
the triangle graphs (a) and (b). Following the set of Feynman
rules for the model, we have

�
μνρ

(a) = (−1)

∫
dωq

(2π)ω
Tr

[
i( � k̃ + me)

k2 − μ2 
ν (k, q)

× i ( � q̃ + me)

q2 − μ2 
ρ (q, s)
i ( � s̃ + me)

s2 − μ2 
μ (s, k)

]

(4.1)

where, the external legs are denoted by the inward momenta
(pμ

1 , pν
2 , pρ

3 ), and k = q − p2, s = q + p3. Moreover, the
second graph (b) is given by

�
μρν

(b) = (−1)

∫
dωq

(2π)ω
Tr

[
i (−� s̃ + me)

s2 − μ2 
ρ (−s,−q)

× i (−� q̃ + me)

q2 − μ2 
ν (−q,−k)
i(−� k̃ + me)

k2 − μ2 
μ (−k,−s)

]

(4.2)

We can add these two contributions and then separate the
trace parts conveniently as

�
μνρ
(a+b) = −e3

∫
dωq

(2π)ω

1

(k2 − μ2)(q2 − μ2)(s2 − μ2)

×
(

δν
α + m2

2

nαnν

(n · k)(n · q)

)

×
(

δ
ρ
β + m2

2

nβn
ρ

(n · q)(n · s)

)(

δ
μ
λ + m2

2

nλn
μ

(n · s)(n · k)

)

×
(
Aαβλ + Bβαλ

)
(4.3)
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(a) (b) (c) (d)

Fig. 3 Relevant graphs for the induced AAA-term

where we have defined

Aαβλ = Tr
[
( � k̃ + me)γ

α ( � q̃ + me) γ β ( � s̃ + me) γ λ
]
,

Bβαλ = −Tr
[
( � s̃ − me) γ β ( � q̃ − me) γ α( � k̃ − me)γ

λ
]
.

(4.4)

We can show that every term, arising from these contri-
butions, cancel mutually by straightforward manipulations
using

Tr
(
γ μ1γ μ2 . . . γ μn−1γ μn

)

= (−1)nTr
(
γ μnγ μn−1 . . . γ μ2γ μ1

)
(4.5)

that follows from the charge conjugation invariance,C−1γ μC
= −(γ μ)T , and it is valid for any number of gamma matri-
ces. Hence, after some manipulations, we can show that

Bβαλ = −Aαβλ (4.6)

which implies that the triangle graphs (a) and (b) (4.3) sum
to zero

�
μνρ

(a+b) = 0 (4.7)

This result for VSR electrodynamics is the same as in the
ordinary QED, and the nonlocal VSR contributions, in the
fermionic propagator and couplings, do not change the out-
come for the triangle graphs. However, we have two addi-
tional graphs due to the VSR couplings for the one-loop
vev 〈AAA〉, which must be explicitly evaluated to verify the
validity of Furry’s theorem at this order. Next, we shall show
that each one of these two contributions vanishes indepen-
dently.

We start from the graph (c), consisting of a diagram with
the cubic and quartic vertex, which can be written as

�
μνρ
(c) = (−1)

∫
dωq

(2π)ω
Tr

[

i
(� q̃ + me)

q2 − μ2 �μν

× (q, u, p1, p2) i
( � ũ + me)

u2 − μ2 
ρ (q, u)

]

(4.8)

This expression can be simplified by computing the trace
over the gamma matrices, by making use of the identity (3.5)
and Feynman parametrization. Thus, after performing these
manipulations, we are left with an expression that can be cast
in a general form as below

�
μνρ

(c) (p1, p2, p3) = aμνρ
1

(
m2, pi

) (
J (+)

1 + J (−)
1

)

+ aμνρ
2

(
m2, pi

) (
J (+)

2 + J (−)
2

)

+ (a3)
μνρ
λ

(
m2, pi

) (
J λ(+)

3 − J λ(−)
3

)

+ (a4)
μνρ
λ

(
m2, pi

) (
J λ(+)

4 − J λ(−)
4

)

− aμνρ
5

(
m2, pi

) (
J (+)

5 + J (−)
5

)

+ aμνρ
5

(
m2, pi

) (
J (+)

6 + J (−)
6

)

(4.9)

where we have defined the quantities aμνρ
i in the Appendix B,

and also introduced the integrals Ji conveniently as

(
J (±)

1 ,J λ(±)
3 ,J (±)

5

)

=
∫

dx
∫

dωq

(2π)ω

(
1, qλ, q2

)

(
q2 ± 2xq.p1 − �2

)2
1

n · q (4.10)

(
J (±)

2 ,J λ(±)
4 ,J (±)

6

)

=
∫

dx
∫

dωq

(2π)ω

(
1, qλ, q2

)

(
q2 ± 2q · (xp1 + p2) − �2

)2
1

n · q
(4.11)

in terms of

�2 = μ2 − xp2
1 (4.12)

�2 = μ2 − xp2
1 − 2xp1.p2 − p2

2 (4.13)
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Making use of the Mandelstam-Leibbrandt prescription,
Eqs. (3.7), (A.1) and (A.2), one can show that

(
J (+)

1 ,J μ(+)
3 ,J (+)

5

)
=
(
−J (−)

1 ,J μ(−)
3 ,−J (−)

5

)

(4.14)
(
J (+)

2 ,J μ(+)
4 ,J (+)

6

)
=
(
−J (−)

2 ,J μ(−)
4 ,−J (−)

6

)

(4.15)

Hence, this development shows that the whole contribution
(c) vanishes, since every pair of termsJ (±)

i in the expression
(4.9) cancels itself exactly, implying that

�
μνρ

(c) = 0 (4.16)

The last piece that we shall discuss is the contribution
arising from the graph (d), which is written as

�
μνρ

(d) = −
∫

dωq

(2π)ω

×Tr

[

i
( � q̃ + me)

q2 − μ2 �μνρ (q, q, p1, p2, p3)

]

. (4.17)

After computing the trace of gamma matrices, we are left
with

�
μνρ

(d) = e3m2nμnνnρ

∫
dωq

(2π)ω

1

(q2 − μ2)(n · q)

×
(

1

n · (q + p1) n · (q − p3)

+ 1

n · (q + p1) n · (q − p2)

+ 1

n · (q + p2) n · (q − p3)

+ 1

n · (q + p2) n · (q − p1)

+ 1

n · (q + p3) n · (q − p2)

+ 1

n · (q + p3) n · (q − p1)

)

. (4.18)

In order to solve the momentum integrals, it is convenient to
use again the identity (3.5) to simplify the expression. In this
process, we make use of the result

∫
dωq

(2π)ω

1

(q2 − μ2)(n · q)
= 0, (4.19)

that follows from (3.7). Thus, after some manipulations with
(3.5) and further simplifications, we finally arrive at the
expression

�
μνρ

(d) = e3m2nμnνnρ

n · (p3 + p1) n · (p3 + p2)

(
K(−)

3 + K(+)
3

)

+ e3m2nμnνnρ

n · (p2 + p1) n · (p2 + p3)

(
K(−)

2 + K(+)
2

)

+ e3m2nμnνnρ

n · (p1 + p2) n · (p1 + p3)

(
K(−)

1 + K(+)
1

)
,

(4.20)

where we have introduced by simplicity the notation

K(±)
i =

∫
dωq

(2π)ω

1
(
(q ± pi )2 − μ2

)
(n · q)

, i = 1, 2, 3

(4.21)

However, making use of the identity (3.7), we can show that

K(−)
i = −K(+)

i . (4.22)

This result, ultimately, implies that the contribution of the
graph (d) (4.20) vanishes

�
μνρ

(d) = 0. (4.23)

In summary, from the results Eqs. (4.7), (4.16) and (4.23),
we can conclude that the whole one-loop amplitude 〈AAA〉
is equal to zero

�μνρ = �
μνρ

(a+b) + �
μνρ

(c) + �
μνρ

(d) = 0. (4.24)

This final result shows that, similarly to the ordinary QED,
the VSR electrodynamics also satisfies Furry’s theorem (at
least in the one-loop order) and that no Chern–Simons-
like self-coupling term is dynamically generated. Although
VSR changed the photon’s dynamics in the free part of the
Maxwell–Chern–Simons action, its Abelian structure and
additional couplings are not sufficient to engender new self-
couplings. Of course, if we increase the number of external
photon legs to four, i.e. the vev 〈AAAA〉, we could check the
VSR contribution to the Euler-Heisenberg effective action in
(2 + 1)-dim., similarly to the SIM(2) invariant analysis for a
(3 + 1) spacetime [22].

5 Final remarks

In this paper, we have discussed the photon’s effective action
in the context of VSR electrodynamics in the (2 + 1) space-
time, with a special interest in analyzing the validity of
Furry’s theorem in the context of VSR. Initially, we revised
the main aspects regarding the VSR gauge symmetry, and
how this invariance introduced a new covariant derivative,
which implies an infinite series of nonlocal couplings among

123
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the fermionic and gauge fields. After deriving the respective
Feynman rules for the new VSR couplings, we proceeded
to the evaluation of the respective graphs contributing to the
one-loop amplitudes 〈AA〉 and 〈AAA〉, corresponding to the
free and self-coupling parts of the photon’s effective action.

In the analysis of the two-point function 〈AA〉, in addition
to the usual polarization graph, there is a second diagram
coming solely from the new VSR quartic coupling. In order
to solve the momentum integration, we used the Mandelstam-
Leibbrant prescription extended to the VSR invariant case,
where a new vector n̄ is introduced [11]. Additionally, to
complete the analysis, it is necessary to determine an explicit
form for this vector, where some properties are considered:
reality, symmetry, etc, which ultimately implied in a form
preserving all of these features.

Finally, we considered the low-momentum limit in order
to determine the dynamical part of the effective action. There,
we have obtained the usual Maxwell–Chern–Simons terms,
added by VSR contributions both to the parity even and parity
odd sectors. However, the VSR effects are different in the
classical and quantum realm, since the nonlocal and higher-
derivative terms are intermingled in the quantum effective
action. This entanglement of nonlocal effects and higher-
derivative terms, in the gauge sector, signals that we have
the presence of UV/IR mixing in the VSR quantum effective
action. Furthermore, we have discussed possible applications
of the VSR–Chern–Simons effective action in topological
invariant systems, such as quantum Hall systems and other
topological insulators. In particular, we have analyzed the
VSR contribution to Hall’s conductivity, and showed that
it vanishes. However, Lorentz violating effects can be well
motivated in the context of topological invariant systems in
order to describe anomalous behavior, such as non-Ohmic
materials.

The last piece of the effective action that we have analyzed
was the three-point function 〈AAA〉. In this case, we had the
same triangle graphs from ordinary QED, but due to the VSR
couplings, two new graphs contributed to the complete one-
loop amplitude. On one side, the two triangle graphs canceled
mutually by using simply properties of the gamma matrices
trace, which are based in the charge conjugation symmetry.
Actually, this result for the triangle graphs is independent of
the VSR coupling, i.e. the parameter m2, since �

μνρ

(a+b) has
the same matrix structure of the ordinary QED. In regard
to the two additional graphs, due to the presence of the VSR
couplings, we explicitly showed that these contributions van-
ish individually. Hence, based on the fact that the amplitude
〈AAA〉 vanished, we verified that Furry’s theorem is satisfied
(at least in the one-loop order), and that no Chern–Simons-
like self-coupling term is dynamically generated. Although
VSR changed the photon’s dynamics in the Maxwell–Chern–
Simons action, its Abelian structure and additional couplings
are not sufficient to engender new self-couplings.

Since the induced one-loop effective action for the non-
Abelian gauge fields interacting with Dirac fermions in
d = 3 leads to the known Yang–Mills (even-parity) and non-
Abelian Chern–Simons (odd-parity) terms, it would be inter-
esting to generalize our analysis to the case of a non-Abelian
VSR gauge theory [8,20]. This analysis would allow us to
observe, in particular, how the odd-parity terms change under
VSR effects, possibly resulting in a different type of self-
coupling terms [35]. Another point of interest is the study
of the general tensorial structure of the photon self-energy
in different spacetime dimensions (d = 3, 4) at any order
of perturbation, leading to the full photon propagator. This
study permits us to investigate the physical pole structure of
the photon propagator and also to analyze possible VSR cor-
rections to the topological mass in the Chern–Simons theory
[36].
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A Useful integrals

In order to cope with the momentum integral in VSR, we use
the Mandelstam-Leibbrant prescription, and further useful
results can be obtained from (3.7) by taking a derivative in
relation to pμ

∫
dωq

qμ

(q2 + 2q · p − m2)a+1

1

(n · q)b

= (−1)a+biπ
ω
2 (−2)b−1 �(a + b − ω

2 )

�(a + 1)�(b)
(n̄ · p)b−1bn̄μ

×
∫ 1

0
dttb−1 1

�a+b− ω
2
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+ (−1)a+biπ
ω
2 (−2)b

�(a + b + 1 − ω
2 )

�(a + 1)�(b)
(n̄ · p)b

×
∫ 1

0
dttb−1 pμ − t (n · pn̄μ + n̄ · pnμ)

�a+b+1− ω
2

(A.1)

where � = m2 + p2 − 2(n · p)(n̄ · p)t , another useful result
is found by taking a derivative of (A.1) in relation to pν and
contracting with the metric, implying

∫
dωq

q2

(q2 + 2q · p − m2)a+2

1

(n · q)b

= (−1)a+biπ
ω
2 (−2)b−2

×
{

− 4
�(a + b + 1 − ω

2 )

�(a + 2)�(b)
(n̄ · p)bb

×
∫ 1

0
dttb−1 (1 − t)

�a+b+1− ω
2

+ 4
�(a + b + 2 − ω

2 )

�(a + 2)�(b)
(n̄ · p)b

×
∫ 1

0
dttb−1 [p2 − 4t (n · pn̄ · p) + 2t2(n · pn̄ · p)]

�a+b+2− ω
2

− 2
�(a + b + 1 − ω

2 )

�(a + 2)�(b)
(n̄ · p)b

×
∫ 1

0
dttb−1

ω
2 − 2t

�a+b+1− ω
2

}

(A.2)

Furthermore, in the evaluation of vev 〈AA〉 in Sect. 3 we
have defined some integrals by simplicity of notation

I1 =
∫ 1

0
dx

x(1 − x)
√

μ2 − x(1 − x)p2

= −
√

μ2

2p2 + (4μ2 + p2)

(p2)3/2 ln

(
2
√

μ2 p2 + p2

2
√

μ2 p2 − p2

)

(A.3)

I2 =
∫ 1

0
dx

1
√

μ2 − x(1 − x)p2

= 1
√
p2

ln

(
2
√

μ2 p2 + p2

2
√

μ2 p2 − p2

)

(A.4)

I3 =
∫ 1

0
dx

1

x

(
1

√
μ2 − xp2

− 1
√

μ2 − x(1 − x)p2

)

= 1
√

μ2

⎡

⎣ln

(
4μ2

p2 − 1

)

− ln

⎛

⎝
1 +

√
1 − p2

μ2

1 −
√

1 − p2

μ2

⎞

⎠

⎤

⎦

(A.5)

Afterwards, we have considered the low-momentum limit of
these expressions in (3.10) to determine the dynamical part
of the photon’s effective action.

B Tensor quantities

We present here some tensor quantities we have introduced
in the evaluation of one-loop contribution for the vev 〈AAA〉
in Sect. 4. In particular, we have the tensor quantities present
in the graph (c) expression

aμνρ
1

(
m2, pi

)

= m2e3μ2nμnνnρ

(n · p2) n · (p1 + p2)
+ im2mee3εμαβ p1αnβn

νnρ

(n · p2) n · (p1 + p2)
(B.1)

aμνρ
2

(
m2, pi

)

= − m2e3μ2nμnνnρ

(n · p2) n · (p1 + p2)
+ im2mee3εμαβ p1αnβn

νnρ

(n · p2) n · (p1 + p2)

− m2e3nνnρ

(n · p2) n · (p1 + p2)

×
(
n · (2p2 + p1) pμ

2 − p2. (p1 + p2) nμ + (n · p2) pμ
1

)

(B.2)

(a3)
μνρ
λ

(
m2, pi

)
= m2e3nνnρ

(
(n · p1) δ

μ
λ − (p1)λ n

μ
)

(n · p2) n · (p1 + p2)
(B.3)

(a4)
μνρ
λ

(
m2, pi

)
= m2e3nνnρ

(n · p2) n · (p1 + p2)

×
(

(2p2+p1)λ n
μ−n · (2p2+p1) δ

μ
λ

)
(B.4)

aμνρ
5

(
m2, pi

)
= m2e3nμnνnρ

(n · p2) n · (p1 + p2)
(B.5)

References

1. D. Mattingly, Modern tests of Lorentz invariance. Living
Rev. Relativ. 8, 5 (2005). https://doi.org/10.12942/lrr-2005-5.
arXiv:gr-qc/0502097

2. T. Jacobson, S. Liberati, D. Mattingly, Lorentz violation at high
energy: concepts, phenomena and astrophysical constraints. Ann.
Phys. 321, 150 (2006). https://doi.org/10.1016/j.aop.2005.06.004.
arXiv:astro-ph/0505267

3. R. Bluhm, Overview of the SME: implications and phenomenology
of Lorentz violation. Lect. Notes Phys. 702, 191 (2006). https://doi.
org/10.1007/3-540-34523-X_8. arXiv:hep-ph/0506054

4. G. Amelino-Camelia, Quantum-spacetime phenomenology. Liv-
ing Rev. Relativ. 16, 5 (2013). https://doi.org/10.12942/lrr-2013-5.
arXiv:0806.0339 [gr-qc]

5. A.G. Cohen, S.L. Glashow, Very special relativity. Phys. Rev.
Lett. 97, 021601 (2006). https://doi.org/10.1103/PhysRevLett.97.
021601. arXiv:hep-ph/0601236

6. A.G. Cohen, S.L. Glashow, A Lorentz-violating origin of neutrino
mass? arXiv:hep-ph/0605036

7. A. Dunn, T. Mehen, Implications of SU(2)(L) x U(1) symmetry for
SIM(2) invariant neutrino masses. arXiv:hep-ph/0610202

8. J. Alfaro, P. Gonzalez, R. Avila, Electroweak standard model with
very special relativity. Phys. Rev. D 91, 105007 (2015). https://doi.
org/10.1103/PhysRevD.91.105007. arXiv:1504.04222 [hep-ph]

9. C.Y. Lee, Quantum field theory with a preferred direction: the very
special relativity framework. Phys. Rev. D 93(4), 045011 (2016).
https://doi.org/10.1103/PhysRevD.93.045011. arXiv:1512.09175
[hep-th]

123

https://doi.org/10.12942/lrr-2005-5
http://arxiv.org/abs/gr-qc/0502097
https://doi.org/10.1016/j.aop.2005.06.004
http://arxiv.org/abs/astro-ph/0505267
https://doi.org/10.1007/3-540-34523-X_8
https://doi.org/10.1007/3-540-34523-X_8
http://arxiv.org/abs/hep-ph/0506054
https://doi.org/10.12942/lrr-2013-5
http://arxiv.org/abs/0806.0339
https://doi.org/10.1103/PhysRevLett.97.021601
https://doi.org/10.1103/PhysRevLett.97.021601
http://arxiv.org/abs/hep-ph/0601236
http://arxiv.org/abs/hep-ph/0605036
http://arxiv.org/abs/hep-ph/0610202
https://doi.org/10.1103/PhysRevD.91.105007
https://doi.org/10.1103/PhysRevD.91.105007
http://arxiv.org/abs/1504.04222
https://doi.org/10.1103/PhysRevD.93.045011
http://arxiv.org/abs/1512.09175


1129 Page 12 of 12 Eur. Phys. J. C (2020) 80 :1129

10. A.C. Nayak, P. Jain, Phenomenological implications of very special
relativity. Phys. Rev. D 96(7), 075020 (2017). https://doi.org/10.
1103/PhysRevD.96.075020. arXiv:1610.01826 [hep-ph]

11. J. Alfaro, A Sim(2) invariant dimensional regularization. Phys.
Lett. B 772, 100 (2017). https://doi.org/10.1016/j.physletb.2017.
06.018. arXiv:1704.02299 [hep-th]

12. J. Alfaro, A. Soto, On the photon mass in very special relativ-
ity. Phys. Rev. D 100(5), 055029 (2019). https://doi.org/10.1103/
PhysRevD.100.055029. arXiv:1901.08011 [hep-th]

13. R. Bufalo, M. Ghasemkhani, Thermal effects of very spe-
cial relativity quantum electrodynamics. Phys. Rev. D 100(6),
065024 (2019). https://doi.org/10.1103/PhysRevD.100.065024.
arXiv:1909.06466 [hep-th]

14. J. Vohánka, M. Faizal, Super–Yang–Mills theory in SIM(1) super-
space. Phys. Rev. D 91(4), 045015 (2015). https://doi.org/10.1103/
PhysRevD.91.045015. arXiv:1409.6334 [hep-th]

15. S. Deser, R. Jackiw, S. Templeton, Topologically massive Gauge
theories. Ann. Phys. 140, 372 (1982). https://doi.org/10.1016/
0003-4916(82)90164-6

16. S. Deser, R. Jackiw, S. Templeton, Topologically massive Gauge
theories. Ann. Phys. 281, 409 (2000). https://doi.org/10.1006/aphy.
2000.6013

17. P.S. Hsin, N. Seiberg, Level/rank duality and Chern–Simons–
Matter theories. JHEP 1609, 095 (2016). https://doi.org/10.1007/
JHEP09(2016)095. arXiv:1607.07457 [hep-th]

18. F. Benini, P.S. Hsin, N. Seiberg, Comments on global
symmetries, anomalies, and duality in (2 + 1)d. JHEP
1704, 135 (2017). https://doi.org/10.1007/JHEP04(2017)135.
arXiv:1702.07035 [cond-mat.str-el]

19. S. Cheon, C. Lee, S.J. Lee, SIM(2)-invariant Modifications of Elec-
trodynamic Theory. Phys. Lett. B 679, 73 (2009). https://doi.org/
10.1016/j.physletb.2009.07.007. arXiv:0904.2065 [hep-th]

20. J. Alfaro, V.O. Rivelles, Non Abelian fields in very special rel-
ativity. Phys. Rev. D 88, 085023 (2013). https://doi.org/10.1103/
PhysRevD.88.085023. arXiv:1305.1577 [hep-th]

21. R. Bufalo, SIM(1)-VSR Maxwell–Chern–Simons electrodynam-
ics. Phys. Lett. B 757, 216 (2016). https://doi.org/10.1016/j.
physletb.2016.03.079. arXiv:1604.00213 [hep-th]

22. J. Alfaro, A. Soto, Photon–photon scattering in very special rela-
tivity. arXiv:2001.12003 [hep-th]

23. A.J. Niemi, G.W. Semenoff, Axial anomaly induced fermion frac-
tionization and effective gauge theory actions in odd dimensional
space-times. Phys. Rev. Lett. 51, 2077 (1983). https://doi.org/10.
1103/PhysRevLett.51.2077

24. L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari, B.
Lima de Souza, T. Štemberga, One-loop effective actions and
higher spins. JHEP 1612, 084 (2016). https://doi.org/10.1007/
JHEP12(2016)084. arXiv:1609.02088 [hep-th]

25. L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari, T. Štem-
berga, One-loop effective actions and higher spins. Part II. JHEP
1801, 080 (2018). https://doi.org/10.1007/JHEP01(2018)080.
arXiv:1709.01738 [hep-th]

26. I. Puica, W. Lang, Non-Ohmic critical fluctuation Hall conductivity
of layered superconductors in strong electric fields. Phys. Rev. B
70, 092507 (2004). https://doi.org/10.1103/PhysRevB.70.092507

27. C. Shun-Tsung Lo, R.K. Chuang, T.-M. Puddy, C.G.Smith Chen,
C.-T. Liang, Non-Ohmic behavior of carrier transport in highly dis-
ordered graphene. Nanotechnology 24, 165201 (2013). https://doi.
org/10.1088/0957-4484/24/16/165201. arXiv:1310.6086 [cond-
mat.mes-hall]

28. S. Mandelstam, Light cone superspace and the ultraviolet finiteness
of the N=4 model. Nucl. Phys. B 213, 149 (1983). https://doi.org/
10.1016/0550-3213(83)90179-7

29. G. Leibbrandt, The light cone Gauge in Yang–Mills theory. Phys.
Rev. D 29, 1699 (1984). https://doi.org/10.1103/PhysRevD.29.
1699

30. J. Alfaro, Mandelstam-Leibbrandt prescription. Phys. Rev.
D 93(6), 065033 (2016). https://doi.org/10.1103/PhysRevD.93.
065033. Erratum: [Phys. Rev. D 94(4), 049901 (2016). https://doi.
org/10.1103/PhysRevD.94.049901]. arXiv:1603.06453 [hep-th]

31. E. Belgacem, Y. Dirian, S. Foffa, M. Maggiore, Nonlocal grav-
ity. Conceptual aspects and cosmological predictions. JCAP
1803, 002 (2018). https://doi.org/10.1088/1475-7516/2018/03/
002. arXiv:1712.07066 [hep-th]

32. L.H.C. Borges, F.A. Barone, C.A.M. de Melo, F.E. Barone, Higher
order derivative operators as quantum corrections. Nucl. Phys.
B 944, 114634 (2019). https://doi.org/10.1016/j.nuclphysb.2019.
114634. arXiv:1906.02741 [hep-th]

33. J. Alfaro, A. Soto, Schwinger model a la very special relativ-
ity. Phys. Lett. B 797, 134923 (2019). https://doi.org/10.1016/j.
physletb.2019.134923. arXiv:1907.06273 [hep-th]

34. D. Tong, Lectures on the quantum hall effect. arXiv:1606.06687
[hep-th]

35. R. Bufalo, M. Ghasemkhani, Z. Haghgouyan, A. Soto, In prepara-
tion

36. R. Bufalo, M. Ghasemkhani, M. Noorbakhsh, A. Soto, In prepara-
tion

123

https://doi.org/10.1103/PhysRevD.96.075020
https://doi.org/10.1103/PhysRevD.96.075020
http://arxiv.org/abs/1610.01826
https://doi.org/10.1016/j.physletb.2017.06.018
https://doi.org/10.1016/j.physletb.2017.06.018
http://arxiv.org/abs/1704.02299
https://doi.org/10.1103/PhysRevD.100.055029
https://doi.org/10.1103/PhysRevD.100.055029
http://arxiv.org/abs/1901.08011
https://doi.org/10.1103/PhysRevD.100.065024
http://arxiv.org/abs/1909.06466
https://doi.org/10.1103/PhysRevD.91.045015
https://doi.org/10.1103/PhysRevD.91.045015
http://arxiv.org/abs/1409.6334
https://doi.org/10.1016/0003-4916(82)90164-6
https://doi.org/10.1016/0003-4916(82)90164-6
https://doi.org/10.1006/aphy.2000.6013
https://doi.org/10.1006/aphy.2000.6013
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1007/JHEP09(2016)095
http://arxiv.org/abs/1607.07457
https://doi.org/10.1007/JHEP04(2017)135
http://arxiv.org/abs/1702.07035
https://doi.org/10.1016/j.physletb.2009.07.007
https://doi.org/10.1016/j.physletb.2009.07.007
http://arxiv.org/abs/0904.2065
https://doi.org/10.1103/PhysRevD.88.085023
https://doi.org/10.1103/PhysRevD.88.085023
http://arxiv.org/abs/1305.1577
https://doi.org/10.1016/j.physletb.2016.03.079
https://doi.org/10.1016/j.physletb.2016.03.079
http://arxiv.org/abs/1604.00213
http://arxiv.org/abs/2001.12003
https://doi.org/10.1103/PhysRevLett.51.2077
https://doi.org/10.1103/PhysRevLett.51.2077
https://doi.org/10.1007/JHEP12(2016)084
https://doi.org/10.1007/JHEP12(2016)084
http://arxiv.org/abs/1609.02088
https://doi.org/10.1007/JHEP01(2018)080
http://arxiv.org/abs/1709.01738
https://doi.org/10.1103/PhysRevB.70.092507
https://doi.org/10.1088/0957-4484/24/16/165201
https://doi.org/10.1088/0957-4484/24/16/165201
http://arxiv.org/abs/1310.6086
https://doi.org/10.1016/0550-3213(83)90179-7
https://doi.org/10.1016/0550-3213(83)90179-7
https://doi.org/10.1103/PhysRevD.29.1699
https://doi.org/10.1103/PhysRevD.29.1699
https://doi.org/10.1103/PhysRevD.93.065033
https://doi.org/10.1103/PhysRevD.93.065033
https://doi.org/10.1103/PhysRevD.94.049901
https://doi.org/10.1103/PhysRevD.94.049901
http://arxiv.org/abs/1603.06453
https://doi.org/10.1088/1475-7516/2018/03/002
https://doi.org/10.1088/1475-7516/2018/03/002
http://arxiv.org/abs/1712.07066
https://doi.org/10.1016/j.nuclphysb.2019.114634
https://doi.org/10.1016/j.nuclphysb.2019.114634
http://arxiv.org/abs/1906.02741
https://doi.org/10.1016/j.physletb.2019.134923
https://doi.org/10.1016/j.physletb.2019.134923
http://arxiv.org/abs/1907.06273
http://arxiv.org/abs/1606.06687

	Induced Maxwell–Chern–Simons effective action in very special relativity
	Abstract 
	1 Introduction
	2 Gauge fields in VSR
	3 One-loop 2-point function langleAµAνrangle
	3.1 Topological insulators in VSR

	4 One-loop 3-point function langleAµAνAσrangle
	5 Final remarks
	Acknowledgements
	A Useful integrals
	B Tensor quantities
	References




