7 JURUn

UNIVERSIDADE FEDERAL DE LAVRAS

THALLITON LUIZ CARVALHO DA SILVA

FENOMICA E INTEGRACAO DE TRANSCRITOMICA E
METABOLOMICA NA ANALISE DAS RESPOSTAS DE
Gliricidia sepium (JACQ.) STEUD. E Portulaca oleracea L. AO
ESTRESSE SALINO

LAVRAS - MG
2021



THALLITON LUIZ CARVALHO DA SILVA

FENQMICA E INTEGRACAO DE TRANSCRITOMICA E METABOLOMICA NA
ANALISE DAS RESPOSTAS DE Gliricidia sepium (JACQ.) STEUD. E Portulaca
oleracea L. AO ESTRESSE SALINO

Disserta¢do apresentada a Universidade Federal
de Lavras, como parte das exigéncias do
Programa de Po6s-Graduagdo em Biotecnologia
Vegetal, area de concentragdo em Biotecnologia
Vegetal, para a obtenc¢ao do titulo de Mestre.

Prof. Dr. Manoel Teixeira Souza Junior
Orientador

Dr. Leonardo Fonseca Valadares
Coorientador

LAVRAS - MG
2021



Ficha catalogrifica elaborada pelo Sistema de Geracao de Ficha Catalografica da
Biblioteca Universitaria da UFLA, com dados informados pelo(a) préprio(a) autor(a).

Silva, Thalliton Luiz Carvalho da.

Fendmica e integrag@o de transcritdmica e metabolomica
na andlise das respostas de Gliricidia sepium (Jacq.) Steud. E
Portulaca oleracea L. ao estresse salino / Thalliton Luiz
Carvalho da Silva. - 2021.

143 p. :il.

Orientador(a): Manoel Teixeira Souza Junior.
Coorientador(a): Leonardo Fonseca Valadares.

Dissertagdo (mestrado académico) - Universidade Federal
de Lavras, 2021.
Bibliografia.

1. Multi-Omica. 2. Salinidade. 3. Estresse Abiotico. 1.
Junior, Manoel Teixeira Souza. II. Valadares, Leonardo
Fonseca.




THALLITON LUIZ CARVALHO DA SILVA

FENQMICA E INTEGRACAO DE TRANSCRITOMICA E METABOLOMICA NA
ANALISE DAS RESPOSTAS DE Gliricidia sepium (JACQ.) STEUD. E Portulaca
oleracea L. AO ESTRESSE SALINO

PHENOMICS AND INTEGRATION OF TRANSCRIPTOMICS AND
METABOLOMICS FOR ANALYSIS OF THE RESPONSES OF Gliricidia sepium
(JACQ.) STEUD. AND Portulaca oleracea L. TO SALINITY STRESS

Dissertagdo apresentada a Universidade Federal
de Lavras, como parte das exigéncias do
Programa de Po6s-Graduagdo em Biotecnologia
Vegetal, area de concentracdo em Biotecnologia
Vegetal, para a obteng¢do do titulo de Mestre.

APROVADA em 04 de agosto de 2021.

Dr. Manoel Teixeira Souza Jinior EMBRAPA - Agroenergia
Dr. Leonardo Fonseca Valadares EMBRAPA - Agroenergia
Dr. Carlos Antonio Ferreira de Sousa EMBRAPA - Meio-Norte
Dra. Vivianny Nayse Belo Silva EMBRAPA - Agroenergia

Prof. Dr. Manoel Teixeira Souza Junior
Orientador

Dr. Leonardo Fonseca Valadares
Coorientador

LAVRAS - MG
2021



Dedico este a todos que, direta ou indiretamente,
participaram de minha vida e trouxeram consigo
confianga, apoio e auxilio.



AGRADECIMENTOS

Agradego primeiramente a Deus, pela vida, satde e capacidade que tem me dado dia

apos dia para seguir meus caminhos € meu sonho.

Aos meus pais, Luiz e Adriana, que tanto tem me auxiliado, me apoiado ¢ dado minha

base de vida, minha educagdo e meus principios.

A minha irma e meu cunhado, Samille e Dailson, que em todos 0s momentos se dispdem

prontamente para auxiliar no que for preciso.

Ao Manoel, por me orientar e por toda a paciéncia que teve comigo ao longo desses

anos. Por me ensinar e me treinar em tudo o que fosse preciso.

Ao Leonardo, por todo o treinamento, paciéncia e por ter me dado oportunidades tinicas

e inesqueciveis (como trabalhar com a impressora 3D).

A toda equipe do grupo “Sal da Terra” pelos ensinamentos, risadas e ajuda em todos os

momentos.

A todos os meus amigos, e todas as demais pessoas, que por descuido ndo lembrei no
momento, mas que estdo e estiveram presentes em minha vida e me ajudaram em algum

momento.

A todos estes acima por toda a paciéncia no qual tiveram comigo, por todos os

conselhos, palavras de carinho e, também, pelos “puxdes de orelha” quando precisei.

A Universidade Federal de Lavras (UFLA) e a EMBRAPA Agroenergia pela

oportunidade de realizagdo deste mestrado.

O presente trabalho foi realizado com apoio da Coordenacdo de Aperfeigoamento de

Pessoal de Nivel Superior — Brasil (CAPES) — Codigo de Financiamento 001

A todos citados, meu mais sincero, muito obrigado!



“Acredite que vocé pode, e ja terd percorrido metade do caminho!”
Theodore Roosevelt



RESUMO GERAL

A salinidade do solo ¢ um dos estresses abidticos que mais ameagam a agricultura. Este estresse
esta presente em mais de 100 paises ao redor do mundo. Devido a estimativa de um aumento
populacional mundial para cerca de 9 bilhdes de pessoas em 2050 e, consequentemente, um
aumento da demanda por produtos agricolas, a pressdo para a utilizagao dessas areas tem
aumentado. O objetivo geral do presente estudo foi aplicar estratégias de andlise individual e
integrada de dados 6micos provenientes de transcritdbmica e metabolomica visando ganhar
conhecimento sobre os mecanismos moleculares responsaveis pela tolerancia a salinidade
observada em Gliricidia sepium e Portulaca oleracea. Para tal, foram utilizados dados do banco
de dados “Sal da Terra”, pertencentes ao programa de PD&I de mesmo nome desenvolvido na
Embrapa Agroenergia, que contempla dados de fendmica, iondmica, gendmica, transcritbmica
(mRNA e microRNA), metabolomica e protedmica caracterizando a resposta de dendé (Elaeis
guineensis), beldroega (Portulaca oleracea) e gliricidia (Gliricidia sepium) ao estresse salino.
As amostras do transcritoma foram submetidas a uma analise de RNA-Seq usando uma
plataforma Illumina HiSeq e a estratégia “paired-end”, a anélise dos dados foi feita com o
software OmicsBox versdo 1.3. As amostras de metaboloma foram analisadas em um sistema
UHPLC equipado com uma coluna de fase reversa. A espectrometria de massa de alta resolucao
(HRMS) foi realizada em um analisador Q-TOF usando fonte de eletrospray em ESI (+) - MS
e ESI (-) - MS. Os dados adquiridos foram pré-processados usando o XCMS Online e
posteriormente exportados para o MetaboAnalyst para analises estatisticas, anotacdo e
observag¢do das vias metabolicas. A plataforma Omics Fusion, foi utilizada para realizar a
analise integrativa entre transcritos e metabolitos. Os resultados alcancados permitiram
correlacionar e diferenciar grupos de plantas submetidas ao estresse salino, revelando genes /
transcritos, metabolitos e vias responsivas a este estresse tanto em gliricidia, quanto em
beldroega.

Palavras-chave: Multi-Omica. Salinidade. Estresse Abiotico



GENERAL ABSTRACT

Soil salinity is one of the abiotic stresses that most threaten agriculture. This stress is present in
over 100 countries around the world. Due to an estimated global population increase to around
9 billion people in 2050, and the consequent increase in the demand for agricultural products,
the pressure to use these areas has increased. The general objective of the present study was to
apply single and integrated analysis strategies of omics data from transcriptomics and
metabolomics to gain knowledge about the molecular mechanisms responsible for the salinity
tolerance observed in Gliricidia sepium and Portulaca oleracea. To this end, data from the "Sal
da Terra" database, belonging to the RD&I program of the same name developed at Embrapa
Agroenergia, was used, which includes phenomic, ionomic, genomic, transcriptomic (mRNA
and microRNA), metabolomic and proteomic data featuring the response of oil palm (Elaeis
guineensis), purslane (Portulaca oleracea) and gliricidia (Gliricidia sepium) to salt stress. The
transcriptome samples were submitted to an RNA-Seq analysis using an Illumina HiSeq
platform using the paired-end strategy and the data analysis with the OmicsBox software
version 1.3. Metabolome samples were analyzed on a UHPLC system equipped with a reversed-
phase column. High-resolution mass spectrometry (HRMS) was performed on a Q-TOF
analyzer using an electrospray source in ESI (+) - MS and ESI (-) - MS. The acquired data was
pre-processed using XCMS Online and later exported to MetaboAnalyst for statistical analysis,
annotation, and observation of metabolic pathways. The Omics Fusion platform was used to
perform the integrative analysis between transcripts and metabolites. The results have allowed
us to correlate and differentiate groups of plants subjected to salt stress, revealing
genes/transcripts, metabolites, and responsive pathways to this stress, both in gliricidia and
purslane.

General Keywords: Multi-omics. Salinity. Abiotic Stress
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CAPITULO 1

1 INTRODUCAO GERAL

Um dos problemas que mais afeta a atividade agricola ¢ a presenca de sal nos solos,
situacdo que aflige diversos paises ao redor do mundo. Quando consideramos um contexto
geral, cerca de 20% das terras agriculturaveis no mundo apresentam solos salinos e/ou sodicos.
Olhando especificamente para as producdes irrigadas, entre 25% e 30% dessas terras sdo

afetadas pelo sal, ndo sendo produtivas em nivel comercial (SHAHID et al., 2018).

Solos salinos, do ponto de vista agricola, sdo descritos como aqueles que contém sais
soliveis neutros em quantidade suficiente para afetar negativamente o crescimento da maioria
das plantas cultivadas. A priori, s3o considerados salinos aqueles solos que apresentam
condutividade elétrica (CE) do extrato de saturagdo do solo >4 dS/m a 25 °C. Porém, devido ao
fato de muitas espécies frutiferas, olericolas e ornamentais sofrerem com os efeitos adversos da
salinidade j4 em um intervalo de 2 dS/m a 4 dS/m, os solos com CE >2 dS/m a 25 °C passaram

a também ser considerados salinos (BRESLER et al., 1982; VARGAS et al., 2018).

Existem dois grandes grupos de plantas, divididos com base em sua tolerancia a
salinidade: glicofitas e halofitas. Sendo que quase a totalidade (aproximadamente 99%) sdo
glicofitas, plantas sensiveis ao sal, inclusive todas as principais culturas agricolas. As haléfitas
sdao minoria (menos de 1%) e sdo capazes de completar seu ciclo de vida em ambiente onde a
condutividade elétrica ¢ maior ou igual a 20 dS/m (FLOWERS et al., 1986; FLOWERS;
COLMER, 2008).

Apesar de ser frequentemente vista como um problema para o setor agricola, suscitando
acoes voltadas a preveng¢do ou a remediacao nas areas afetadas, a salinidade pode ser vista como
uma oportunidade. No ambito da agricultura biossalina, a produ¢do de alimentos, de fibras e de
bioenergia ¢ feita através de plantas tolerantes ao estresse salino, utilizando areas e aguas

marginais para o seu cultivo (FAO, 2009; BORSAI et al., 2018).

No que diz respeito as espécies vegetais a serem utilizadas em um sistema de agricultura
biossalina, existem duas possibilidades a serem exploradas: a) o uso de espécies glicofitas
tolerantes a salinidade; e b) o uso de espécies halofitas. Essas duas possibilidades ndo sao

excludentes.
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O objetivo do presente trabalho foi ganhar conhecimento sobre os mecanismos
moleculares que conferem tolerancia a salinidade em duas espécies previamente estudadas,
beldroega (Portulaca oleracea L.) e gliricidia (Gliricidia sepium (Jacq.) Steud), utilizando
estratégias de analise individuais e integradas (multi-dOmica) de transcritomica e metabolomica.
As analises foram feitas com base no banco de dados “Sal da Terra”, um banco de dados

desenvolvido pelo PD&I de mesmo nome, que retne informagdes de diversas Omicas.
2 REVISAO DE LITERATURA

2.1 Uso de estratégias de “Multi-omics Integration” (MOI) para caracterizar as

respostas de plantas ao estresse salino

O projeto Genoma Humano (SCHMUTZ et al. 2004; NURK et al., 2021), concluido em
2003, pode ser considerado o marco que abriu as portas para o desenvolvimento da Biologia de
Sistemas (IDEKER, 2004; VEENSTRA, 2021) e da Integracdo de Multi-6micas (CAVILL et
al., 2016, RAI et al., 2017). Foi a partir deste projeto que as ci€ncias dmicas experimentaram
um salto de magnitude na reducdo de custos e alavancagem operacional que contribuiu

significativamente para sua popularizacio e consequente refinamento (GREEN et al., 2015).

3

Para bem conceituar o termo “-0mica”, ¢ necessario entender, primeiramente, o
significado do sufixo “-oma”, do qual este se deriva. O sufixo “-oma” pode ser definido como
“conjunto de”. Portanto, o termo genoma tem como significado o conjunto de genes. Tendo isso
em mente, podemos compreender o termo “Omica” como “estudo do” (LEDERBERG;
MCCRAY, 2001). Além da gendmica, as principais dmicas sao a transcritomica, protedmica e
metabolomica, as quais podem ser definidas, respectivamente, como estudo do transcritoma, do
conjunto de RNAs (mRNAs, miRNAs, IncRNAs, etc.) produzidos no organismo; estudo do

proteoma, do conjunto de proteinas formadas no organismo; e estudo do metaboloma, do

conjunto de metabdlitos sintetizados no organismo (FIOCCHI, 2014).

Os investimentos e esforcos em massa feitos de forma global no final do século XX para
alcancar a elucidagdo do genoma humano permitiram que diversas dmicas emergissem € se
aprimorassem cada vez mais, de forma que a partir desse momento histdrico a tecnologia e a
biologia comegaram a andar lado a lado. Avangos tecnologicos permitiram novas descobertas
biologicas e limitagdes biologicas instigaram o aprimoramento da tecnologia, permitindo que
cada vez mais houvesse uma redugdo nos custos de aquisicdo dos diferentes dados 6micos e
que estes fossem robustos e de alto rendimento (VEENSTRA, 2021). Além de que, junto ao elo

“tecnologia-biologia” formando as 0micas, surgiu também o elo “tecnologia da informagao-
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Omicas”, pois os grandes conjuntos de dados gerados ndo eram mais passiveis de serem
analisados manualmente e, portanto, o processamento de computadores e o auxilio de softwares
se tornaram parte fundamental dos estudos subsequentes, proporcionando o surgimento de um

novo campo de estudo denominado bioinformatica (BINNECK, 2004).

As abordagens dmicas individuais sdo utilizadas para avaliar as respostas bioldgicas a
um amplo espectro de estimulos, incluindo a salinidade (KUMAR et al., 2019). Porém, nesse
tipo de estudo ¢ isolado apenas um nivel, de toda a complexidade bioldgica existente, para
verificar sua resposta. Dessa maneira, a genomica pode identificar diversos genes que nao
necessariamente estdo sendo expressos. Ao passo que a transcritbmica pode identificar
multiplos transcritos expressos, mas nao nos da a certeza de quais desses verdadeiramente se
traduzem em proteinas, devido a diversos fatores de silenciamento, modificacdes pOs-

transcricionais e pds-traducionais.

Tendo em vista todas estas questdes, desde a reducao dos custos de aquisicao dos dados
junto ao alto rendimento dos mesmos até o advento da bioinformética para auxilio nas analises,
a ciéncia bioldgica entrou na era da “Biologia de Big Data” (JAMIL et al., 2020). Isso levou a
uma mudanca de paradigma onde ocorreu uma transi¢ao da analise individual (single) para uma
andlise integrada correlacionando diferentes Omicas, como também a uma visdo mais

abrangente e robusta do sistema biologico (CAVILL et al., 2016).

Nessa nova era, um conceito nada novo amadurece e se expande, a “multi-Omica”. Essa
abordagem consiste na combina¢do de dois ou mais dados 6micos durante a analise, com a
proposta de correlacionar os diversos dados e conseguir visualizar a resposta a um determinado
estimulo de varios angulos diferentes, tendo a bioinformatica e trabalhos computacionais como
principais coadjuvantes (CAVILL et al., 2016; JAMIL et al., 2020). Dessa maneira os cientistas

conseguem encontrar novas associagdes entre os niveis biologicos.

Ha diversas variacdes relacionadas ao termo “multi-dmica”, tais como “poli-Omicas”,
“integracdo de Omicas”, “trans-Omicas” e mais recentemente o surgimento do termo
“Pandmica” ou “Pan-Omica” para classificar todas as dmicas em uma mesma categoria (MISRA
etal., 2019). Porém, tendo como base os artigos de revisao publicados nos ultimos anos, o termo
“multi-Omica” parece ser o mais correto e disseminado (CAVILL et al., 2016; JAMIL et al.,

2020; MISRA et al., 2019; RAI et al., 2017; VEENSTRA, 2021).

Quando realizamos uma busca pelo indexador de artigos PubMed, com os termos

“multi-omics” e suas variagdes, sdo retornados cerca de 8.360 artigos, sendo os primeiros
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publicados por volta de 2001 e o ano de 2020 sendo o que mais acumula artigos publicados

com este tema, somando 1772 artigos (Figura 1).

Quando adicionamos o termo “plant” a busca, o montante total cai para
aproximadamente 13% do seu valor, somando 1.071 artigos, com o primeiro sendo publicado
em 2002. Da mesma maneira, o ano de 2020 conta com a maior quantidade de artigos

publicados sobre esse tema em plantas, acumulando 217 artigos (Figura 2).

Isto mostra que a ideia de empregar a analise conjunta de diferentes Omicas para estudar
um determinado fendmeno em plantas, ou em outros organismos, nasceu durante a execu¢ao
do Projeto Genoma Humano, ¢ ndo deixou de crescer desde entdo. No caso das plantas, uma
das primeiras tentativas bem-sucedidas de integragao de diferentes dados 6micos datam de 2003

(URBANCZYK-WOCHNIAK et al., 2003).
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Figura 1 — Ntimero de artigos cientificos publicados no tema Multi-Omica até 2021. Busca pelo
termo“‘multi-omics” e suas derivacdes no indexador de artigos PubMed.

Busca pelos termos: (multi-omics) OR (poly-omics) OR (trans-omics} OR (omics integration) OR (pan-omics)

136
86 84

. s 19 21 22 36 4

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Ano

Fonte: Do autor, 2021

Figura 2 — Numero de artigos cientificos publicados no tema Multi-Omica em plantas. Busca
pelo termo “multi-omics” e suas derivagdes no indexador de artigos PubMed.

Busca pelos termos: {(multi-omics) OR (poly-omics) OR (trans-omics) OR (omics integration) OR {pan-omics) AND (plant)

217

19 19
14 13

2 1 4 3 4

2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Ano

Fonte: Do autor, 2021
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2.2 Fluxo da Informacido Genética e Biologia de Sistemas

Na biologia molecular, o alicerce classico que explica o fluxo da informacao, desde o
DNA até¢ as proteinas, ¢ o dogma central, proposto pela primeira vez por Francis Crick (CRICK,
1970). Este dogma descreve a transferéncia sequencial de informagdes das células desde a
replicagdo do DNA, a transcricio em RNA e a traducdo em cadeias de aminoacidos que
posteriormente formardo proteinas (Figura 3); ao passo que afirma, também, que essa

informacao nao pode fluir a partir da proteina para os outros niveis dmicos anteriores.

O aspecto geral dessas etapas descritas por Crick, ndo informando detalhes regulatorios
complexos em etapas intermediarias entre os niveis 0micos, tém sido questionado e analisado
por diversos autores (BUSTAMANTE et al., 2011; COSTA DOS SANTOS et al., 2021; PIRAS
et al., 2012). Caracteristicas regulatérias, como silenciamentos e modificacdes poOs-
transcricionais (splicing alternativo) e/ou pds-traducionais, eventos envolvendo miRNAs e
modificacdes epigenéticas, possivelmente alteram o fluxo dessa informagdo (LUCO et al.,

2011; KOONIN, 2012; PIRAS et al., 2012).

Mesmo com essas questdes, o carater simplista e macroscopico que o dogma central
traz, em um nivel amplo das diferentes 6micas, tende a continuar sendo um alicerce teodrico

extremamente influente dos sistemas vivos (PIRAS et al., 2012).

Figura 3 — Fluxo da informagao genética sob o aspecto do estresse abiotico.

P Auxilia na descoberta de
Estresse Abidtico mecanismos responsivos
ao estresse

Gendémica

Quais sao os transcritos?

Transcritomica

\7
&

Proteémica

As proteinas
correspondem?

Metabolémica

Existem metabdlitos
responsaveis pelos efeitos
fenotipicos?

Fonte: Traduzido e adaptado de Raza et al. (2021).



18

Em diversos artigos que dissertam sobre multi-Omica e suas estratégias, podemos
também observar a utilizagdo do termo “Biologia de Sistemas” em conjunto com o termo
“Multi-6mica” (CAVILL et al., 2016; FONDI; LIO, 2015; JAMIL et al., 2020; PINU et al.,
2019; RAI et al., 2017; RAI et al.,, 2019; VEENSTRA et al., 2021). Embora ocorram
divergéncias entre os proprios pesquisadores que contribuem ativamente para o avango em
pesquisas no ambito da biologia de sistemas, devido principalmente a juvenilidade do campo e
ao seu carater interdisciplinar (BREITLING, 2010; VEENSTRA, 2021), o conceito mais
simples e purista do termo pode ser atribuido a Dr. Trey Ideker (2004), que considera a biologia
de sistemas um ramo no qual utiliza informagdes e dados adquiridos sistematicamente, a partir
de diversas e diferentes Omicas, de forma a construir modelos preditivos para doencgas e

sistemas bioldgicos complexos.

Dessa maneira, a Biologia de Sistemas tem como objetivo a constru¢do de modelos
matematicos bem projetados que prevejam, in silico, a mudanga de um determinado organismo,
no nivel celular e molecular, quando este € perturbado ou estd em um determinado meio (PINU
et al., 2019). Ja a multi-6mica tem um escopo mais extensivo, no qual o foco ¢ compreender e
correlacionar os diferentes niveis dmicos de forma a proporcionar a comunidade cientifica

avancos no entendimento das regulagdes dmicas.

Conforme veremos adiante, podemos dizer que o ramo da Biologia de Sistemas esta
representado e incluso na integracdo de 6micas (MOI - “Multi-omics Integration”) nivel 3,
proposto por Jamil et al., (2020), enquanto a multi-Omica em si ¢ um campo mais amplo e
engloba ndo somente a modelagem do sistema bioldgico, mas os insights ¢ descobertas

promovidas pela anélise e combinagdo de anélises de diversas 6micas de forma integrada.

A multi-Omica compreende, portanto, uma analise global dos sistemas bioldgicos
visando caracterizar grupos de moléculas em multiplos niveis, sendo que as quatro grandes
Omicas que ancoram estes diversos estudos sdo a genOmica, transcritdmica, protedmica e

metabolomica (CAVILL et al., 2016; JAMIL et al., 2020).

A partir destas, diversos outros campos de estudo surgiram, carregando consigo seus
proprios termos dmicos, alguns exemplos sdo: epigendmica, focada nos estudos das alteracdes
epigenéticas resultantes da metilagdo do genoma (MALDONADO et al., 2021); peptidomica,
caracterizada por estudar particularmente pequenos peptideos como venenos e toxinas
(AMADO et al., 2010); e a interatdmica, que visa estudar as redes de interagdo proteina-

proteina (SEATH et al., 2021).
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2.2.1 GenoOmica

A gendmica ¢ a primeira grande dmica que ancora as principais 6micas estudadas, um
campo que estuda a sequéncia completa de DNA, incluindo tanto os genes quanto as sequéncias
intergénicas (BROWN, 2002). Embora o termo genoma remeta a “conjunto de genes”, a
definicdo mais correta seria “toda a informa¢do que ¢ herdavel codificada no DNA de um
organismo”, dessa maneira ¢ incluido tanto os genes quanto as regides regulatdrias e nao-

codificantes presentes na sequéncia de DNA (AIZAT et al., 2018).

As plantas precisam se adaptar e tolerar as distintas mudangas no ambiente, que geram
estresses bidticos e abidticos, para garantir sua sobrevivéncia e perpetuagdo. Essa capacidade
de se moldar a diferentes condi¢cdes ¢ denominada plasticidade fenotipica e estd intimamente
relacionada ao genoma do organismo, que através da ativacdo de genes especificos permite a
regulacdo fisiologica e adaptagdo as diversas condi¢des atipicas que sobrevém (STOTZ et al.,
2021). Dessa maneira, o genoma do organismo ¢ quem dita a resposta aos diferentes tratamentos

€ estresses.

Portanto, a gendmica visa ndo so verificar quais genes ou inferir quais proteinas estdo
presentes no organismo, mas verificar suas inter-relagdes e a influéncia no organismo, bem
como descobrir e explorar a estrutura, fun¢do e a evolugdo dos diferentes genomas ja
sequenciados, além de realizar o sequenciamento de novas espécies (GUPPY et al., 2018;

MISRA et al., 2019; SHENDURE et al., 2017).
2.2.2 Transcritomica

A segunda grande Omica ¢ a transcritdmica. O termo transcritoma pode ser entendido
como o conjunto completo de todas as moléculas de RNA expressas em um organismo (WOLF,
2013). A transcritdmica se caracteriza, entdo, pelo estudo tanto qualitativo, quanto quantitativo,
dos diversos transcritos de um organismo (MILWARD et al., 2016; LIANG, 2013). Os mais
conhecidos sao os mRNAs, tRNAs e rRNAs. Porém, diversos outros transcritos ja foram
identificados e estdo sendo cada vez mais estudados, alguns exemplos s@o os microRNAs e

IncRNAs (long non-coding RNAs) (NAGANO; FRASER, 2011).

A transcritomica ¢ fundamental devido ao seu papel como intermediario entre as
informagdes contidas no DNA do organismo (genoma) e o proteoma, além das diversas fungdes
regulatorias que os ncRNAs promovem (URANO et al., 2010). Da quantidade total de RNAs

presentes em um organismo, cerca de 4% sdo traduzidos em proteinas, reafirmando a
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importancia desses RNAs nio codantes na regulacdo dos processos fisiolégicos do organismo

(BROWN, 2002).

Outro importante aspecto da transcritomica € o splicing alternativo, onde um mesmo
gene pode dar origem a mRNAs diferentes dependendo da forma com que seus éxons sdo
processados (PUCKER; BROCKINGTON, 2018). Em uma ordem padrdo, os genes contém,
em sua sequéncia, partes denominadas introns (que nao sdo codificantes) e partes denominadas
éxons (codificantes). Primeiramente, toda a sequéncia do gene € transcrita em um pré-mRNA e
apods 1sso ocorre o splicing, em que as regides contendo introns sdo removidas e os €xons sao
unidos de forma sequencial. O splicing alternativo € o evento em que diferentes introns e éxons
(ou parte destes) sdo alternativamente incluidos ou removidos durante o processamento do
mRNA formando, dessa maneira, diferentes mRNAs a partir de um mesmo gene (PUCKER;

BROCKINGTON, 2018; SIBLEY et al., 2016).

De acordo com Wang et al., (2009), podemos definir como principais objetivos da
transcritomica: 1) identificar e catalogar todos os tipos de transcritos; ii) determinar a estrutura
da transcri¢do dos genes, bem como identificar seus padrdes de splicing e outras modificagdes
pOs-transcricionais; iii) quantificar os niveis de expressao dos transcritos sob diferentes
tratamentos e condigdes de crescimento, estadios de desenvolvimento e interferéncia de fatores

bioticos e abidticos.
2.2.3 Protedmica

De forma a compreender, ao todo, um organismo, nao basta somente saber quais sao as
sequéncias de nucleotideos do seu genoma, nem quais sdo 0s transcritos expressos € seus niveis
de expressdo, em um determinado momento. E necessario, além de tudo isso, saber quais sdo

os produtos dessa expressao.

A protedmica se caracteriza pelo estudo das diversas proteinas, incluindo sua
identificagdo em larga escala, localizagdo e compartimentalizagdo, em um organismo
(AEBERSOLD; MANN, 2003). As proteinas sdo moléculas organicas, de massa molecular
elevada e estrutura complexa, formadas a partir de ligacdes covalentes entre os aminoacidos e
tém diversas fungdes, como por exemplo, transporte de substincias, catdlise de reacdes,
controle do metabolismo e componentes estruturais (ROBERTS, 2002). Diversas proteinas tém
modificacdes pods-traducionais, como fosforilacdo, acetilagdo e glicosilagdo. Essas
modificagdes regulam e realizam a manutencdo da estrutura e fung¢do das proteinas

(AEBERSOLD; MANN, 2016).
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Tendo em vista esses aspectos, a protedmica nos permite visualizar o que ocorre no
organismo provendo informagdes de eventos pods-transcricionais e pds-traducionais, além de
que ¢ o proteoma que especifica a natureza das reagdes bioquimicas que um organismo esta
capacitado a realizar. Dessa maneira, oferece a oportunidade de examinar as mudancas que

ocorrem na producdo e acumulo das proteinas em processos complexos de desenvolvimento

(BROWN, 2002).
2.2.4 Metabolomica

Visando compreender ao méaximo as respostas de um organismo a uma determinada
condicdo, precisamos chegar o mais proximo possivel da avaliagdo do fendtipo daquele
organismo. De todas as 6micas moleculares, a metabolomica € o elo mais proximo ao fenotipo
do organismo (COSTA DOS SANTOS et al., 2021). Esta compreende o produto final da
expressdao de um gene e dos processos fisiologicos; e as mudancas em suas concentragdes
podem descrever melhor o estado bioquimico do organismo do que alteragdes visualizadas em

niveis transcritdmicos ou protedmicos (PALSSON, 2009).

Como tultimo nivel, das quatro grandes dmicas, temos a metaboldmica, que consiste no
estudo quantitativo e qualitativo de todos os metabolitos presentes em um organismo, em um
determinado tempo e sob uma condicao especifica (FIEHN, 2001). Os metabdlitos consistem

em pequenas moléculas, com menos de 1.500 Da (DUNN et al., 2011).

Estes metabolitos podem ser classificados em dois tipos principais: os metabdlitos
primarios e secundarios (KABERA et al., 2014). Os metabolitos primarios se caracterizam por
moléculas envolvidas nos processos e funcdes basicas de uma célula para sua sobrevivéncia,
sendo estes compartilhados por basicamente todos os organismos vivos. Estes metabolitos estao
envolvidos nas principais vias metabolicas de uma célula, desempenhando fung¢des como

respiracao celular e biossintese de aminoacidos (KABERA et al., 2014).

Outro grupo bastante importante de metabolitos sdo os metabdlitos secundarios, estes
sdo especificos para cada espécie (ou grupos proximos) e desempenham fungdes ndo vitais para
a célula, mais ainda extremamente importantes para o organismo, como atrair polinizadores ou
se defender contra pragas e doencas. De forma geral, nas plantas os metabolitos primarios estao
ligados ao seu crescimento e producdo, enquanto os secundarios estdo ligados a caracteristicas
organolépticas (como sabor e cor) e de resisténcia a danos bioticos e abidticos (KABERA et al.,

2014).
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Os métodos de andlise dos metabolitos (sejam eles primarios ou secundarios) se
diferenciam em dois grupos: a metabolomica direcionada (do inglés, targeted metabolomics)
(DUDLEY et al., 2010) e a metabolomica ndo-direcionada (do inglés, untargeted
metabolomics) (DE VOS et al., 2007). A metabolomica direcionada se concentra na selecdo a
priori dos metabolitos a serem estudados e posterior aquisi¢do e analise desses dados, com o
objetivo principal de quantificacdo dos metabolitos de interesse, podendo ser selecionados

alguns metabolitos especificos ou uma via metabodlica alvo (DUDLEY et al., 2010).

Ja a metabolomica ndo-direcionada consiste na aquisicao de dados globais do perfil
metabolomico, isto ¢, na aquisi¢do da maior quantidade de dados possivel referente ao
metaboloma daquele organismo, realizando posteriormente a andlise desses dados visando a
classificagdo de amostras e a determinacao de cada metabolito, ndo sendo necessario o prévio
conhecimento dos compostos analisados (DE VOS et al., 2007). A escolha entre esses dois tipos
de técnicas ¢ determinada majoritariamente pelo foco do estudo, de forma que a metaboldmica
nao-direcionada ¢ utilizada normalmente para novas descobertas e geracao de novas hipoteses

e a metabolomica direcionada foca em testar estas hipoteses (DUNN; ELLIS, 2005).
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2.3  Integracio Multi-6mica (MOI)

Diversas revisoes sobre o tema ‘“Multi-Omica” foram escritas nos ultimos anos,
principalmente devido ao seu alto potencial de produzir novas ideias e observagdes sobre
aspectos antes analisados somente sob uma perspectiva 6mica (CAVILL et al., 2016; JAMIL et
al., 2020; MISRA et al., 2019; RAI et al., 2017; VEENSTRA, 2021). Dentre elas, podemos

destacar trés revisdes que fundamentam a pesquisa multi-dmica.

Cavill et al. (2016) trouxeram uma discussao sobre os diferentes aspectos da integracao
de dados entre metabolomica e transcritdmica e os métodos de integracao existentes. Mas o real
impacto dessa revisdo foi deixar bem elucidado a importancia que o desenho experimental tem
sob o aspecto de uma analise multi-omica, descrevendo e exemplificando a diferenga entre os
desenhos experimentais ¢ os vieses que cada desenho experimental pode causar durante as

analises e no tratamento e processamento dos dados obtidos.

Um pouco mais a frente, Jamil et al. (2020) desenvolveram uma trilha de métodos para
a integracdo de dados multi-dmicos, definindo essa integracdo em diferentes niveis, e guiando
os pesquisadores, principalmente os novos nessa area, a como realizar suas analises, indicando

ferramentas, softwares e fluxos de trabalho para uma integracdo bem-sucedida e precisa.

Com a importancia que esse tema tem nos diversos campos da biologia e com a ampla
adesdo dos cientistas em embarcar nessa “nova” jornada, a revista PROTEOMICS fez uma
edigdo especial, em fevereiro de 2021, com o tema “System Biology and Multi-omics”. Nessa
edi¢do, Veenstra (2021) trouxe uma revisdo em que ele ndo so detalha a ascensdo das Omicas e
consequentemente da multi-Omica, mas discute, sobretudo, uma questdo historica na ciéncia: a

pesquisa definida por hipoteses.

Veenstra (2021) discorreu sobre a pesquisa tradicional, relatando que esta ¢ baseada em
hipoteses e para estas hipoteses serem validadas ou rejeitadas, estudos sdo cuidadosamente
desenhados e executados. Porém, com o advento da multi-dmica, as novas pesquisas que
tenham como escopo a utilizagdo dessas técnicas multi-Omicas e de biologia de sistemas, nao
necessariamente seguem a tradicional pesquisa baseada em hipdteses. Essa ordem se altera, €
as hipdteses passam a ser geradas apds as analises dos dados sob a oOtica da multi-Omica. Isso
muda a perspectiva cientifica de “pesquisas definidas por hipoteses” para uma “pesquisa
dirigida por dados”. Reafirmando ainda mais a necessidade da realizacdo cuidadosa e bem

desenhada dos estudos, para que as novas hipdteses geradas possam ser robustas € bem

definidas.
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Como vimos anteriormente (Topico 1.2), cada Omica individual tem seu proprio
universo extremamente amplo de estudos. Porém, um nivel dmico, por si s, ndo ¢é capaz de
responder e elucidar todas as questdes referentes a resposta de um organismo a uma
determinada perturbacdo. Cada dmica ¢ uma peca primordial, fundamental e indispensavel de
um grande quebra-cabega bioldgico, mas a visao global e sistematica desse quebra-cabeca so6 ¢

possivel quando juntamos essas pe¢as (VEENSTRA et al., 2021).

Quando analisamos a protedmica e a metabolomica em conjunto, podemos ter uma visao
ampla das reagdes presentes sob uma determinada condi¢do. Podemos inferir, por meio da
protedmica, quais sdo as vias metabdlicas que estdo sendo expressas naquele determinado
momento e comparar essa inferéncia com as concentracdes observadas dos metabolitos
presentes, dando uma visdo da regulacdo fisioldgica do organismo e permitindo novas

descobertas de supressdo das atividades proteicas (CRAMER et al., 2011).

O mesmo vale para as analises conjuntas de transcritdmica e protedmica, permitindo
entender quais sdo as modificagdes e regulagdes pds-transcricionais (silenciamento,
degradacdo, entre outros) que nao seriam visiveis apenas no nivel de transcritobmica, bem como
elucidar qual o resultado de uma superexpressao génica na ampla gama de proteinas de um
organismo (DALDOUL et al., 2014). Se associarmos a metabolomica junto as analises,
conseguimos visualizar a resposta do organismo desde o nivel de expressdo génica até o
fenétipo, assimilando o quao complexo € o sistema bioldgico e verificando se uma observagao

ao nivel transcritbmico € realmente corroborada pelo nivel metabolomico.

Integrando a gendmica nesse complexo sistema, temos uma compreensao que parte
desde o nivel das sequéncias de nucleotideos (mutagdes, modificagdes epigenéticas), quais as
consequéncias dessas modificagdes a nivel dos transcritos, as regulagdes sofridas e os produtos
proteicos gerados e, por fim, o desfecho dessa complexidade nas moléculas constituidas, as vias
metabolicas alteradas e a resposta final do organismo, no nivel fenotipico, a um determinado

estresse ou condi¢ao (DALDOUL et al., 2014).

Dessa maneira, temos claramente a compreensao de que uma estratégia multi-Omica
permite avancos na elucidacao da complexidade biologica e dos sistemas bioldgicos inter-
relacionados, permitindo novas descobertas e a utilizagdo desse conhecimento no

melhoramento de culturas frente a diferentes pragas e estresses abiodticos (DAS et al., 2015).
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Esforgos para propor maneiras de agrupar e dividir as anélises de integracao de dados
omicos de maneira a ficar mais compreensivel para os novos pesquisadores que estdo entrando

nesse “mundo” foram feitas e alguns exemplos sdo expostos a seguir.

Ebbels e Cavill (2009) sugeriram trés niveis de integracdo de dados: integracdo
conceitual, integracdo estatistica e integracdo baseada em modelo. A integracdo conceitual
remete a analise separada de cada conjunto de dados 6micos e, posteriormente, os resultados e
conclusdes provenientes dessa analise sdo comparadas e sintetizadas pelo proprio autor. A
integragdo estatistica, como o proprio nome sugere, se caracteriza por encontrar associagdoes
estatisticas entre os dados. A integragcdo baseada em modelo propde uma descri¢do matematica
do sistema, que pode modelar e prever cada nivel de organizacao biologica separadamente, por

exemplo, uma via metabolica parametrizada para um determinado organismo.

Wanichthanarak, Fahrmann e Grapov (2015) classificaram a integragao entre diferentes
Omicas em trés grandes grupos: Integracdo baseada em vias metabdlicas ou ontologia
bioquimica, integrag¢ao baseada em redes e integracdo baseada em correlagdo. O primeiro grupo
se baseia em classificar os diferentes dados dmicos nas vias metabolicas ja conhecidas. O
segundo grupo visa construir uma rede de interacdo entre os diferentes tipos de dados dmicos,
para possivelmente observar interacdes entre dados dmicos que ndo estdo presentes em uma
mesma via metabdlica. O terceiro grupo tem como objetivo correlacionar os diferentes dados
Omicos estatisticamente, principalmente em dados que possuem uma lacuna de conhecimento

bioquimico prévio.

Bersanelli et al. (2016), classificaram e organizaram os métodos de integracao de dmicas
em quatro grandes classes: ndo bayesiano livre de rede (NF-NBY), bayesiano livre de rede (NF-
BY), ndo bayesiano baseado em rede (NB-NBY) e bayesiano baseado em rede (NB-BY). Os
autores explicaram e descreveram os fundamentos matematicos das andlises feitas sob o aspecto

da multi-6mica, sendo importante para o desenvolvimento de novas ferramentas.

Cavill et al. (2016) além de explicar a importancia do desenho experimental em uma
analise multi-Omica, como ja dito anteriormente, também descreveram diferentes formas de
analisar os dados a partir de uma perspectiva multi-6mica. Eles separaram os dados em trés
grandes grupos, seguindo a linha de raciocinio do primeiro artigo publicado (EBBELS;
CAVILL, 2009): integragdo conceitual, integracdo estatistica e integracao baseada em modelo.
A integracdo conceitual e a integracdo baseada em modelo foram descritas anteriormente e

mantém o significado, mas a integracao estatistica foi subdividida em quatro grupos: integragao
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baseada em correlacdo, integracdo baseada em concatenagdo de dados, integracdo baseada em

analises multivariadas e, por fim, integracdo baseada em vias metabdlicas.

A integragdo baseada em correlagdo visa encontrar correlagdes entre dois grupos de
dados 6micos distintos. Os métodos baseados na concatenacdo dos dados tém como objetivo
agrupar as medi¢des provenientes de diferentes Omicas em uma unica tabela e, posteriormente,
realizar uma analise integrada. A integracao baseada em analises multivariadas utiliza técnicas
padrao, como minimos quadrados parciais (PLS) e anélise de componentes principais (PCA)
para encontrar relagdes entre varidveis e/ou amostras. Por fim, o Gltimo grupo consiste na
utilizagdo de conhecimento bioldgico para mapear os dados Omicos, com uma mudanga
estatistica observada, em vias metabodlicas conhecidas e presentes em banco de dados como

KEGG e Wikipathways.

Uma das mais recentes publicagdes que visa classificar e direcionar as analises multi-
omicas foi redigida por Jamil et al. (2020), que teve como objetivo proporcionar diretrizes
construtivas e metodologicas para uma realizagdo bem-sucedida das andlises multi-Omicas.
Dessa maneira, os autores propuseram que um esquema metodologico bem definido, que
permita a extragdo, combinagdo e associagdo critica entre os diferentes dados Omicos, ¢
necessario. De forma a garantir tudo que foi proposto, o fluxo de trabalho para estratégias de
integracdo multi-omica (MOI) foi redefinido em trés niveis (Figura 4), com base na
classifica¢do anterior feita por Cavill et al. (2016), visando tornar a integracdo multi-Omica
acessivel a todos os pesquisadores, independente se estes sdo novos e nao-treinados ou

experientes.
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Figura 4 — Niveis do fluxo de trabalho da integragdo multi-6mica (MOI).
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Fonte: Traduzido e adaptado de Jamil et al. (2020)

2.3.1 Estratégia legado: A integracio conceitual

A integracdo conceitual, como ja descrita anteriormente, visa a andlise de diferentes
conjuntos de dados Omicos separadamente e, ao final das andlises, os resultados sdo

correlacionados pelo proprio autor de forma descritiva.

Cavill et al. (2016) chamaram a ateng¢do para o fato de que essa abordagem pode
produzir conhecimentos importantes e valiosos, mas também ¢ uma abordagem que pode,
muitas vezes, perder associagdes entre os dados dmicos que sé poderiam ser observadas quando

esses dados fossem analisados em conjunto, sob uma perspectiva estatistica.

Jamil et al. (2020) concluiram, entdo, que esta andlise quando ndo ¢ feita de forma
adequada se torna uma analise arbitraria. Dessa maneira, para a classificagdo proposta por estes

autores, a integracao conceitual ndo ¢ inserida como uma abordagem MOI.

Seguindo as ideias propostas por Cavill et al. (2016), a integragao estatistica foi entdao
reclassificada, a abordagem de integragdo por vias metabdlicas foi separada em um novo grupo,
para distinguir a integracdo imparcial da integracdo baseada em conhecimento prévio. A

integracdo baseada em modelo também foi reformulada para separar a reconstrugao de vias
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metabolicas das abordagens puramente matematicas. Os novos niveis de integracdo sao

descritos a seguir.
2.3.2 Integracao Multi-omica nivel 1 — Baseada em elemento

Os niveis de MOI propostos por Jamil et al., (2020) tem como um dos objetivos serem
complementares e com dificuldade e complexidade crescentes. Dessa maneira, o nivel 1
engloba analises puramente estatisticas e imparciais, tendo como objetivo ser uma abordagem

facil e intuitiva.

Esse nivel ¢ dividido em trés subclasses: correlagdo, agrupamento e analises
multivariadas. A correlacdo ¢ uma analise estatistica que utiliza de coeficientes de correlacao
(Pearson, Spearman ou Kendall) para verificar o grau de correlacdo entre dois ou mais

conjuntos de dados dmicos, sejam estas correlacdes diretas ou inversas.

O agrupamento consiste em deduzir associagdes e padrdes entre os diferentes dados
Omicos com base em atributos semelhantes, como seus niveis de expressdo. O agrupamento ¢
feito principalmente por meio de técnicas de aprendizado de maquina, como o agrupamento k-
means ¢ a analise por floresta aleatoria, que permitem uma diferenciagdo por padrdes de

expressao e uma classifica¢do para uma determinada caracteristica, respectivamente.

A analise multivariada permite que o pesquisador consiga observar diferentes tendéncias
nos conjuntos de dados dmicos, bem como investigar as relagdes entre esses dados. As técnicas
mais comuns sdo o PCA, PLS e OPLS-DA (do inglés, Orthogonal Partial Least Squares
Discriminant Analysis), bem como as variagdes dessas técnicas, como OnPLS (do inglés,
Orthogonal Projections to Latent Structures in Multiblock). A analise multivariada ¢ um pouco

mais complexa e requer um estudo mais profundo para sua aprendizagem.
2.3.3 Integracio Multi-6mica nivel 2 — Baseada em vias metaboélicas

A MOI nivel 2 se baseia no conhecimento biologico prévio ja estabelecido. Para
pesquisadores com uma base bioldgica, tende a ser o modo de integragdo mais intuitivo. Esse

nivel ¢ dividido em duas subclasses: mapeamento de via e analise de coexpressao.

O mapeamento de via consiste basicamente em mapear os diferentes conjuntos de dados
omicos, em banco de dados de vias metabdlicas ja existentes. O banco de dados mais comum e
disseminado para este fim ¢ o KEGG (Enciclopédia de Genes e Genomas de Kyoto) que
engloba diversos organismos em todos os reinos. Porém, diversos bancos de dados com foco

em organismos especificos ja existem. Alguns exemplos sdo: Solcyc, com foco em espécies de
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Solanaceae; AraCyc, com foco em Arabidopsis e CitrusCyc focado em diversas espécies de

Citrus.

As andlises de coexpressao tem como foco utilizar o resultado da correlagdo do MOI
nivel 1 para produzir redes de interagdo e avaliar a forca das relacdes entre diferentes moléculas
expressas. Essa andlise permite revelar agrupamentos e modulos de interacdo importantes que

contribuem para o avango do conhecimento biologico.
2.3.4 Integracao Multi-omica nivel 3 — Com base matematica

O ultimo nivel MOI consiste na aplicagdo matematica para produzir, com base nos dados
omicos, uma equacdo diferencial ¢ um modelo bem definido de um determinado sistema
biolégico ou organismo. E a integragdo mais complexa e requer uma ampla cobertura de
diferentes dmicas, bem como um organismo alvo bem caracterizado. Este nivel ¢, também,

dividido em duas subclasses: andlise diferencial e andlise em escala do genoma.

A analise diferencial consiste na aquisi¢cao de dados 6micos em diferentes tempos, para
prever, por meio de uma equagdo estequiométrica, algum fator do organismo, como a taxa de
traducdo de um determinado mRNA ou o fluxo metabolico em uma determinada via metabolica

j& conhecida e bem caracterizada.

A andlise em escala do genoma difere no fato de que o modelo matematico € construido
primeiramente com base no genoma do organismo, considerando toda e qualquer reacdo que
seja possivel, para posteriormente, validar de maneira experimental os dados. E um processo
complexo, principalmente para plantas e outros organismos eucariotos devido a alta
compartimentalizacdo e diversas vias metabdlicas secundarias, bem como a poliploidia e o

tamanho extenso de seus genomas.

Esse nivel de integracdo permite que perturbagdes possam ser prevista in silico, porém
o nivel de conhecimento prévio exigido, tanto na questdo bioldgica quanto no nivel de
programacio e matematica, torna esta estratégia quase que uma utopia. E possivel atualmente
modelar amostras homogéneas e com um estado metabolico estacionario por um longo periodo

de tempo.
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2.4  Importancia da salinidade e seus efeitos nas plantas

A salinidade do solo ¢ um problema presente em mais de 100 paises, espalhados em
todos os continentes. Trata-se de um dos estresses abidticos que impde as maiores limitagdes
ao setor agricola. Aproximadamente 20% das terras agriculturaveis no mundo apresentam solos
salinos e/ou sodicos, entre 25% e 30% das terras irrigadas sdo afetadas pelo sal, sendo

essencialmente improdutivas comercialmente (SHAHID et al., 2018).

Normalmente, a salinidade ¢ vista como um problema para o setor agricola, sendo
constantemente realizadas acdes voltadas para a prevencao ou a remediacao nas areas afetadas.
Mas, sob a 6tica da agricultura biossalina, os solos salinos sdo vistos como uma oportunidade
para a producao de alimentos, de fibras, de bioenergia, como também para a recuperacao de
areas degradadas e uso de areas marginais, utilizando espécies tolerantes a essa condi¢do (FAO,

2009; BORSAI et al., 2018).

Em geral, as espécies vegetais terrestres sao divididas em dois grupos, de acordo com
sua resposta ao estresse salino: glicofitas e halofitas. Aproximadamente 99% das plantas sdo
glicofitas, plantas que sdo sensiveis ao sal e ndo conseguem completar seu ciclo de vida em um
ambiente salino, estando neste grupo todas as principais culturas agricolas. As halofitas
correspondem a cerca de 1% das espécies vegetais terrestres. Sao plantas capazes de completar
seu ciclo de vida em ambientes onde a concentragdo salina supera os 200 mM de NaCl —

aproximadamente 20 dS/m (FLOWERS; COLMER, 2008; SCHOSSLER et al., 2012).

A salinidade causa estresses nas plantas de trés maneiras principais: estresse osmotico;
estresse 10nico e estresse oxidativo. O estresse osmotico se caracteriza por um atraso no
crescimento da planta, principalmente por efeito de estresse hidrico. O idnico se caracteriza por
um processo dependente de ions, de forma que o acimulo excessivo de ions na célula atinge
niveis toxicos, levando a atenuagdo dos processos metabodlicos e, em alguns casos, a morte
celular. Por fim, o estresse oxidativo se caracteriza pela formagdo das espécies reativas de
oxigeénio (ROS — do inglés, Reactive Oxygen Species), que em concentracdes elevadas causam
danos a todas as macromoléculas bioldgicas da célula (IBRAHIMOVA et al., 2021). Dessa
maneira, o estresse salino afeta todos os principais processos vegetais, como a germinagao e
crescimento, fotossintese, absor¢do de agua, desequilibrio de nutrientes e, portanto, o

rendimento (PARIHAR et al., 2015).

Para lidar com as condi¢des adversas, as plantas halofitas possuem mecanismos de

adaptacao aos ions e sais. Trés mecanismos principais sao conhecidos: absorc¢ao de ions de alta
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concentragdo e seu acumulo em vacuolos; liberagdo de sais absorvidos por células especiais nas

folhas e restri¢do da absorc¢ao de sal por células da raiz (IBRAHIMOVA et al., 2021).
2.4.1 O uso de MOI visando entender as respostas das plantas ao estresse salino

Diversos estudos utilizando abordagens multi-Omicas de diferentes niveis e em
diferentes organismos vém sendo realizados nos ultimos anos (Figura 1 e 2). Tais estudos visam
melhor caracterizar a resposta dos organismos a uma determinada condi¢do e, dessa forma,
auxiliar no avanco do conhecimento cientifico (CAVILL et al., 2016). No que concerne a
salinidade, as pesquisas em sua grande maioria visam descobrir novas informagdes que
permitam auxiliar no aumento da tolerancia ao estresse salino de espécies de interesse
econdmico, tendo em vista a necessidade de garantir a seguranga alimentar em todo o mundo

(DALDOUL et al., 2014; DAS et al., 2015; HO et al., 2020).

Esse auxilio no aumento da tolerancia pode se dar por meio de técnicas de transgenia,
inserindo genes ja conhecidos sob o aspecto de tolerancia a salinidade em plantas ndo tolerantes,
visando caracterizar a resposta desse gene na planta de interesse, ou por meio de analises e
comparagoes de cultivares tolerantes em espécies naturalmente nao tolerantes, para descobrir
novas regulagdes génicas e novos insights para posterior utilizagdo de técnicas de silenciamento

ou outras alternativas para conferir tolerancia (DAS et al., 2015).

Shen et al. (2016) estudaram por meio da multi-Omica dois acessos de cevada que
diferiam na tolerancia ao sal, o acesso XZ26 e XZ169. A integracdo utilizada foi a conceitual,
comparando dados de metabolomica, protedmica e iondmica. Foi visto que o acesso XZ26
apresentou um maior crescimento € um menor acumulo de sodio apds 7 dias de tratamento
salino quando comparado com o cultivar XZ169. Ja o cultivar XZ169 apresentou uma reducdo
significativa em concentragdes de sacarose e metabdlitos que estdo envolvidos na via da
glicolise, além de um elevado acumulo de acido citrico, dcido aconitico e &cido succinico,
resultando em um elevado nivel do ciclo do é4cido tricarboxilico (TCA). A andlise protedmica
corroborou os resultados obtidos pela metabolomica. O acesso XZ26 apresentou proteinas
menos afetadas nos processos metabolicos e atividades cataliticas, além de uma fotossintese

mais estavel, mostrando uma otimizagao dos processos que consomem energia.

Wanichthanarak et al. (2020) utilizaram uma abordagem integrativa entre Omicas,
utilizando dados de transcritdmica, metabolomica e fendmica, para observar as vias metabodlicas
perturbadas, os metabdlitos alterados e os modulos mais importantes das redes metabodlicas de

arroz sob condicdes de estresse salino comparados com o controle. Foi verificado uma
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reprogramagdo em vias metabdlicas primadrias, respiracdo celular, vias biossintéticas de
antioxidantes e vias biossintéticas de fito-hormonios. Além dessa analise MOI nivel 2, os
autores, também, realizaram uma analise MOI nivel 3, utilizando a abordagem em escala do
genoma para modelar as respostas das vias metabolicas quando a planta estd sob estresse salino.
Os autores concluiram que a modelagem foi bem-sucedida, prevendo estados metabolicos que
corroboram com os resultados da transcritdmica e metabolomica, bem como das analises de

fendmica, para algumas vias metabolicas.

Ho et al. (2020) utilizaram diversas abordagens MOI para estudar as respostas das raizes
de dois cultivares de cevada (Clipper e Sahara) sob estresse salino. O estudo englobou dados
transcritomicos, metabolomicos, lipidomicos e de microscopia, utilizando a estratégia MOI
nivel 1. Para correlacdo dos dados 6micos, as duas estratégias MOI nivel 2 foram utilizadas,
mapeamento de vias e analise de co-expressao, bem como a utilizagao dos dados de microscopia
para corroborar com os resultados provenientes das 0micas. A via metabolica mais perturbada
foi a via dos fenilpropandides entre todas as respostas salinas observadas. Foi descrita uma
intensa impregnacdo de lignina na parede celular da zona de alongamento Z2 do cultivar
Clipper, em contraste com uma deposi¢cdo de suberina na mesma zona Z2 do cultivar Sahara.
Foi observado também que o fluxo simplastico que potencialmente ajusta a deposi¢ao de calose,
no cultivar Clipper era praticamente constitutivo, independente do estresse por sal, enquanto

esse fluxo diminuiu acentuadamente no cultivar Sahara quando exposta a salinidade.

Moreno et al. (2021) utilizaram uma abordagem multi-Omica, estudando a
transcritomica, protedmica e metabolomica, para verificar quais alteragdes eram produzidas
pela inser¢do do gene DcLCYBI1 de cenoura (Daucus carota) em tabaco (Nicotiana tabacum
cultivar Xanthi NN). Em contraste com o que se imaginava, a inser¢ao de um gene que codifica
uma enzima conversora do licopeno em beta-caroteno ndo somente alterou a quantidade de
beta-caroteno produzido nas plantas transgénicas de tabaco, mas também, resultou em uma
remodelagem nos niveis de transcritoma, proteoma e metaboloma na planta. Isso permitiu com
que essa planta ndo somente fosse tolerante a estresses abiodticos (como o sal), mas que o
rendimento em termos de biomassa nessas condi¢des adversas fosse maior do que o tipo
selvagem, melhorando o crescimento e o desenvolvimento dessas plantas. A analise integrada
dessas diferentes dmicas permitiu que os autores sugerissem novos processos € vias envolvidos

nesse fendmeno de alta tolerancia.
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3 Uso da estratégia de moi para caracterizacio das respostas de Gliricidia sepium

(Jacq.) Steud. E Portulaca oleracea L. ao estresse salino

Esta dissertacao de Mestrado foi desenvolvida no ambito do Programa de PD&I “Sal da
Terra”, desenvolvido na Embrapa Agroenergia. Este programa desenvolveu o Banco de Dados
“Sal da Terra”, que ¢ constituido de dados de fenomica, iondmica, gendmica, transcritdmica
(mRNA e microRNA), metabolomica e protedmica caracterizando a resposta de dendé (Elaeis
guineenses Jacq.), beldroega (Portulaca oleracea L.) e gliricidia (Gliricidia sepium (Jacq.)

Steud.) ao estresse salino.

Estudos visando a caracterizacdo morfofisioldgica da resposta destas espécies vegetais
ao estresse salino, desenvolvidos no escopo deste programa, mostraram que tanto a beldroega

quanto a gliricidia sdo altamente tolerantes a este estresse.

4 OBJETIVOS

O objetivo geral deste estudo ¢ ganhar conhecimento sobre 0os mecanismos moleculares
responsaveis pela tolerancia a salinidade observada em Gliricidia sepium (Jacq.) Steud. e
Portulaca oleracea L. através de estratégias de andlise individual e integrativa de transcritomica

e metabolomica.

5 ORGANIZACAO DA DISSERTACAO

A dissertagdo esta organizada em quatro partes:
e Parte 1: Capitulo 1 - Revisdo sobre o tema Multi-Omics Integration (MOI)

e Parte 2: Capitulo 2 — Artigo: “Integration of metabolomics and transcriptomics data to

futher characterize Gliricidia sepium (Jacq.) Steud. under high salinity stress”

e Parte 3: Capitulo 3 — Artigo: “Multi-Omics analysis of young Portulaca oleracea L.
plants’ responses to high NaCl doses reveal insights on pathways and genes responsives

to salinity stress in this halophyte species”

e Parte 4: Consideragdes finais
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CAPITULO 2

Integracio de dados metabolomicos e transcritomicos para melhor caracterizar Gliricidia

sepium (Jacq.) Walp. sob estresse de alta salinidade

A versao apresentada do presente artigo foi submetida a revista “The Plant Genome”, sendo

uma versao preliminar e o conselho editorial do periddico podera sugerir alteracdes.
RESUMO

Um dos estresses abioticos que mais ameagam a agricultura ¢ a salinidade do solo, um problema
presente em mais de 100 paises espalhados por todos os continentes. Devido ao aumento da
demanda por produtos agricolas, a pressao para o cultivo nesses solos tem aumentado.
Gliricidia sepium (Jacq.) Walp. € uma arvore polivalente, cultivada para melhorar a fertilidade
do solo, para fins medicinais, como madeira / lenha, como carvao e como sombra de plantagdes.
Também ¢é conhecido por sua capacidade de se adaptar a uma ampla variedade de solos, desde
solos acidos erodidos, solos arenosos, argila pesada, calcario e solos alcalinos. Os limites de
tolerancia a salinidade da gliricidia, bem como suas respostas ao estresse salino, ainda ndo sao
bem compreendidos. Os perfis de transcritoma e metaboloma da parte aérea de G. sepium foram
realizados em plantas controle e com estresse salino em um delineamento inteiramente
casualizado. As amostras do transcritoma foram submetidas ao RNA-Seq usando uma
plataforma Illumina HiSeq e a estratégia “paired end”, e a analise dos dados foi feita com o
OmicsBox versdao 1.3. As amostras de metaboloma foram analisadas em um sistema UHPLC
equipado com uma coluna de fase reversa. A espectrometria de massa de alta resolu¢ao (HRMS)
foi realizada em um analisador Q-TOF usando fonte de eletrospray em ESI (+) - MS e ESI (-)
- MS. Os dados adquiridos foram pré-processados usando o XCMS Online e posteriormente
exportados para o MetaboAnalyst 4.0 para andlise multivariada, anotagdo metabodlica e
observacao da atividade da via. Omics Fusion, uma plataforma web para anélise integrativa de
dados 6micos, foi empregada para realizar a analise integrativa de transcritos e metabolitos. A
andlise dos conjuntos de dados do transcritoma e do metaboloma caracterizou a resposta da
planta em trés cenarios: Efeito idade (plantas controle aos 2 e 45 dias sob estresse - DAT),
estresse de curto prazo (plantas controle e estressadas aos 2 DAT) e estresse de longo prazo
(plantas estressadas aos 2 € 45 DAT). Um grupo de 5.672 transcritos e 107 metabolitos foram
submetidos a andlise integrativa para integrar transcritos e metabolitos diferencialmente
expressos na parte aérea de gliricidia sob estresse salino; a biossintese do fenilpropanoide

apareceu em primeiro lugar entre as vias mais afetadas, com 15 metabolitos e cinco transcritos
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(trés genes) diferencialmente expressos. A analise Unica e integrada dos perfis de transcritoma
e metaboloma gerados neste estudo foi eficiente para correlacionar e diferenciar grupos de
plantas de G. sepium submetidas ao estresse salino, revelando genes / transcritos, metabolitos
e vias responsivas a este estresse. A analise dos metabdlitos e genes diferencialmente expressos
na via de biossintese dos fenilpropandides revelou que ele desempenha um papel no estresse de
curto prazo. A analise do transcritoma identificou dois genes que codificam proteinas que
podem desempenhar um papel na resposta da gliricidia tanto no estresse salino de curto quanto

no de longo prazo.

Palavras-chave: RNA-Seq, Quimiometria, Espectometria de Massa de Alta Resolugao,

Estresse Abiotico, Integratdmica, Integracdo Multi-Omica.
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ABSTRACT

One of the abiotic stresses that threaten agriculture the most is soil salinity, a problem present
in more than 100 countries spread across all continents. Due to the increase in demand for
agricultural products, the pressure for cultivation in these soils has increased. Gliricidia sepium
(Jacq.) Walp. is a multipurpose tree, cultivated for improvement of soil fertility, for medicinal
purposes, as wood/firewood, as charcoal, and as a shade of plantations. It is also known for its
ability to adapt to a wide range of soils ranging from eroded acidic soils, sandy soils, heavy
clay, limestone, and alkaline soils. Gliricidia salinity tolerance limits, alongside its responses to
salt stress, are not yet well understood. The transcriptome and metabolome profiles of G. sepium
shoots were performed on control and salt-stressed plants in a completely randomized design.
Transcriptome samples were subjected to RNA-Seq using an [llumina HiSeq platform and the
paired-end strategy, and data analysis was done with OmicsBox version 1.3. Metabolome
samples were analyzed on a UHPLC system equipped with a reversed-phase column. High-
resolution mass spectrometry (HRMS) was performed on a Q-TOF analyzer using electrospray
source in ESI(+)-MS and ESI(-)-MS. Acquired data were pre-processed using XCMS Online
and further exported to MetaboAnalyst 4.0 for multivariate analysis, metabolic annotation, and
pathway activity observation. Omics Fusion, the web platform for integrative analysis of Omics
data, was employed for carrying out the integrative analysis of transcripts and metabolites. The
analysis on transcriptome and metabolome data sets characterized the plant response under
three scenarios: Age effect (control plants at 2 and 45 days under stress - DAT), short-term
(control and stressed plants at 2 DAT), and long-term stress (stressed plants at 2 and 45 DAT).
A group of 5,672 transcripts and 107 metabolites were submitted to integrative analysis to
integrate transcripts and metabolites differentially expressed in gliricidia shoots under salt
stress; the phenylpropanoid biosynthesis came in first among the most affected pathways with
15 metabolites as well as five transcripts (three genes) differentially expressed. The single and
integrated analysis of the transcriptome and the metabolome profiles generated in this study
were efficient to correlate and differentiate groups of G. sepium plants submitted to salinity
stress, revealing genes/transcripts, metabolites, and pathways responsive to this stress. The
analysis of the metabolites and genes differentially expressed in the phenylpropanoid
biosynthesis pathway revealed that it plays a role in short-term stress. The single analysis of
the transcriptome identified two genes coding for proteins that might play a role in gliricidia

response at both the short- and long-term salt stress.



42

Keywords: RNA-Seq, Chemometrics, High Resolution Mass Spectrometry, Abiotic Stress,

Integratomics, Multi-Omics Integration.



43

Integration of metabolomics and transcriptomics data to futher characterize Gliricidia sepium

(Jacq.) Walp. under high salinity stress

Thalliton Luiz Carvalho da Silva'®
Vivianny Nayse Belo Silva'®

ftalo de Oliveira Braga!

Jorge Candido Rodrigues Neto?
André Pereira Ledo*

José Antonio de Aquino Ribeiro*
Leonardo Fonseca Valadares*
Patricia Verardi Abdelnur?*
Carlos Antdnio Ferreira de Sousa®

Manoel Teixeira Souza Janior'**

! — Graduate Program of Plant Biotechnology, Federal University of Lavras, CP 3037, Lavras,
MG, Zip Code 37200-000, Brazil

2 _ Institute of Chemistry, Federal University of Goids, Campus Samambaia, Goiania, GO, Zip
Code 74690-900, Brazil

3 — Brazilian Agricultural Research Corporation, Embrapa Mid-North, Teresina, PI, Zip Code
64008-780, Brazil

* _ Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasilia, DF, Zip Code
70770-901, Brazil

§ - These authors contributed equally to this study

* - Corresponding author

Keywords: RNA-Seq, Chemometrics, High Resolution Mass Spectrometry, Abiotic Stress,

Integratomics, Multi-Omics Integration.



44

Abstract

Introduction: One of the abiotic stresses that threaten agriculture the most is soil salinity, a
problem present in more than 100 countries spread across all continents. Due to the increase in
demand for agricultural products, the pressure for cultivation in these soils has increased.
Gliricidia sepium (Jacq.) Walp. is a multipurpose tree, cultivated for improvement of soil
fertility, for medicinal purposes, as wood/firewood, as charcoal, and as a shade of plantations.
It is also known for its ability to adapt to a wide range of soils ranging from eroded acidic soils,
sandy soils, heavy clay, limestone, and alkaline soils. Gliricidia salinity tolerance limits,
alongside its responses to salt stress, are not yet well understood.

Method: The transcriptome and metabolome profiles of G. sepium shoots were performed on
control and salt-stressed plants in a completely randomized design. Transcriptome samples
were subjected to RNA-Seq using an Illumina HiSeq platform and the paired-end strategy, and
data analysis was done with OmicsBox version 1.3. Metabolome samples were analyzed on a
UHPLC system equipped with a reversed-phase column. High-resolution mass spectrometry
(HRMS) was performed on a Q-TOF analyzer using electrospray source in ESI(+)-MS and
ESI(-)-MS. Acquired data were pre-processed using XCMS Online and further exported to
MetaboAnalyst 4.0 for multivariate analysis, metabolic annotation, and pathway activity
observation. Omics Fusion, the web platform for integrative analysis of Omics data, was
employed for carrying out the integrative analysis of transcripts and metabolites.

Results: The analysis on transcriptome and metabolome data sets characterized the plant
response under three scenarios: Age effect (control plants at 2 and 45 days under stress - DAT),
short-term (control and stressed plants at 2 DAT), and long-term stress (stressed plants at 2 and
45 DAT). A group of 5,672 transcripts and 107 metabolites were submitted to integrative
analysis to integrate transcripts and metabolites differentially expressed in gliricidia shoots
under salt stress; the phenylpropanoid biosynthesis came in first among the most affected
pathways with 15 metabolites as well as five transcripts (three genes) differentially expressed.
Conclusion: The single and integrated analysis of the transcriptome and the metabolome
profiles generated in this study were efficient to correlate and differentiate groups of G.
sepium plants submitted to salinity stress, revealing genes/transcripts, metabolites, and
pathways responsive to this stress. The analysis of the metabolites and genes differentially
expressed in the phenylpropanoid biosynthesis pathway revealed that it plays a role in short-
term stress. The single analysis of the transcriptome identified two genes coding for proteins

that might play a role in gliricidia response at both the short- and long-term salt stress.
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1. Introduction:

The world population is on track to reach between nine and ten billion persons by 2050,
resulting from an increase of more than three billion individuals in the first half of the 21st
century. This scenario has challenged the biomass production system to produce more food,
feed, fiber, bioenergy, and ornamentals, among other bioproducts derived from plants, in a
sustainable way. The increase in biomass production must occur while plants are affected by
several more intense abiotic and biotic stresses resulted from changes in climatic conditions
(FAO, 2011). One of the abiotic stresses that threaten agriculture the most is soil salinity, a
problem present in more than 100 countries spread across all continents. Approximately 20%
of all agricultural land in the world has either saline or sodic soils, and between 25% and 30%
of the irrigated land area is affected by salt (Shahid et al., 2018).

Gliricidia sepium (Jacq.) Walp., a medium-sized legume (10-15 m) that belongs to the
Fabaceae family, is originated from Central America. It shows rapid growth and is one of the
most well-known multipurpose trees. It is cultivated for improvement of soil fertility, for
medicinal purposes, as wood/firewood, as charcoal, and as a shade of plantations (Rahman et
al., 2019). At the economic level, the gliricidia role in improving water infiltration and
increasing water retention capability of the soil, reducing soil erosion, and restoring and
improving the soil quality, leading to a higher crop yield, is highlighted (Diouf et al., 2017). It
is also known for its ability to adapt very well to a wide range of soils, from eroded acidic soils,
sandy soils, heavy clay, limestone, and alkaline soils (Rahman et al., 2019).

Gliricidia salinity tolerance limits, alongside its responses to salt stress, are not yet well
understood (Rahman et al., 2019). Rahman and colleagues showed that seawater-induced
salinity negatively affected several growth-related attributes in one-month-old gliricidia
seedlings; postulating that proline, which showed enhanced accumulation under salinity stress,
might help gliricidia plants to adjust to water deficit conditions. Proline participates in
metabolic signaling and is known to be metabolized by its own family of enzymes responding
to stress (Phang et al., 2010).

Several studies are available about transcriptomics and metabolomics analysis in plants
(Cavill et al., 2016; Jamil et al., 2020). Transcriptomics is a technology applied to characterize
the transcriptome in a cell, tissue, or organism at any given time. Unlike the genome that tends
to be static information, the transcriptome is variable; and is one of the links between the
genome and the phenotype of an organism (Wang et al., 2009; Zhang et al., 2010).

Metabolomics is a technology applied to characterize the complete set of small-molecule
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chemicals found within a biological sample. Metabolites are functional products of
metabolism, and their concentration levels vary according to genetic or physiological changes.
Since it provides a better representation of an organism's phenotype than any other omic,
metabolomics emerges as an efficient tool to fill the phenotype-genotype gap (Zampieri and
Sauer, 2017).

Due to the rise in accessibility to high throughput biological data from different omics,
efforts to analyze these data separately have given rise to a more comprehensive view and with
a focus on integrating different omics to obtain more robust knowledge of biological systems
(Cavill et al., 2016; Jamil et al., 2020). The first successful integrative attempts using these two
omics in fungi and plants date almost two decades (Askenazi et al. 2003; Urbanczyk-
Wochniaket al. 2003; Hoefgen & Nikiforova, 2008). Since then, many groups have used
distinct integrative approaches to gain insights into many different plant traits. Transcript and
metabolite are not directly associated; however, the process of integrating them provides
information that allows us to base the phenotypic data and measures provided by the
metabolomics on the genetic data from the transcriptome (Cavill et al., 2016; Jamil et al., 2020).
Yan and colleagues identified new target genes and metabolites by integrating data from these
two omics in Tetrastigma hemsleyanum. These molecules led to a gain of efficiency of the
anthocyanin metabolic pathway (Yan et al., 2020). Rai et al. (2020) also did it to identify genes
involved in the biosynthetic pathways of the dominant groups of bioactive metabolites
in Cornus officinalis, an important medicinal plant.

In this study, we first carried out a morphophysiological characterization of the response
of Gliricidia sepium to salinity stress, in both the short and long-term and at five different doses
of NaCl. Then, used samples from the shoots of gliricidia plants to characterize the
metabolomic profile in all these treatments. At third, generated the transcriptome profile in the
short and long-term stress at 0.0 and 0.8 g of NaCl per 100 g of the substrate. At last, applied
conceptual, element- and pathway-based strategies to integrate metabolome and transcriptome

data.

2. Materials & Methods:
2.1. Plant material and growth conditions
The accession of gliricidia [Gliricidia sepium (Jacq.) Steud.] used in this study belongs

to the Gliricidia Collection at Embrapa Tabuleiros Costeiros (www.embrapa.br/en/tabuleiros-

costeiros). After soaking the seeds in 2% sodium hypochlorite and Tween® 20 for 5 min under

slow agitation, we washed them with sterile water and dried them on sterilized filter paper.
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Then they were placed in a Petri dish with filter paper moistened with sterilized water until the
radicle emission. Subsequently, each germinated seed was transferred individually to a 5 L
plastic pot containing 4 kg of substrate previously prepared by mixing sterile soil, vermiculite,
and a commercial substrate (Bioplant®), in the ratio 2:1:1 (v:v:v); and kept in a greenhouse for
three months.

2.2. Experimental design and Saline stress

Groups of three-month-old gliricidia plants were kept under control conditions or
subjected to saline stress (0.4, 0.6, 0.8, and 1.0 g of NaCl per 100 g of substrate) for 2 (short-
term stress) or 45 (long-term stress) days. The experimental design was completely randomized
with 5 replicates (plants) per treatment.

The NaCl was dissolved in deionized water to salinize the substrate. The amount of
deionized water used corresponded to the difference between the amount of water previously
present in the substrate and the amount of water necessary for the substrate to reach field
capacity. Applying the right amount of water — up to the substrate field capacity — was a
means of ensuring no leakage of the solution out of the pot and no loss of Na* or CI". For details
about moisture content, field capacity, and electric conductivity in the substrate, which were
determined preliminarily, details are in Silva (2019).

We replaced the water lost by evapotranspiration with deionized water in a daily basis,
and monitored electric conductivity and water potential in the substrate solution at zero, 6, 35,
and 45 days after imposing the treatments (DAT) for all replicates.

2.3. Biomass and mineral analysis

After taking fresh weight (FW), the root and shoot were dried in an oven for 72 hours at
65°C to a constant weight (dry weight — DW). The mineral analysis of samples (roots, shoot,
and soil), collected at the end of the experiment, was done by Soloquimica

(www.soloquimica.com.br). The data from the mineral analysis was initially analyzed using

bidirectional analysis of variance (ANOVA). To compare the treatments with significant
differences, we used the Tukey test (p <0.05).
2.4. Metabolomics analysis

Shoots (leaves and stem) for metabolomics analysis were collected from all replicates at
2 and 45 DAT, immediately immersed in liquid nitrogen, and then stored at -80 °C until
extraction of metabolites. Based on the results of the morphophysiological characterization,
we selected the following treatments for metabolomics analysis: control plants at 2 and 45 DAT,
stressed plants (0.4 and 0.8 g of NaCl per 100 g of substrate) at 2 and 45 DAT.

2.4.1. Chemicals and metabolites extraction


http://www.soloquimica.com.br/
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Samples were grounded in liquid nitrogen before solvent extraction. The solvents
methanol grade UHPLC, acetonitrile grade LC-MS, formic acid grade LC-MS and sodium
hydroxide ACS grade LC-MS were from Sigma-Aldrich (St. Louis, MO, USA); and the water
treated in a Milli-Q system (Millipore, Bedford, MA, USA).

We employed a protocol adapted from the Max Planck Institute (Vargas et al., 2016;
Rodrigues-Neto et al., 2018), known as All-in-One Extraction, to extract the metabolites. After
transferring aliquots of 50 mg of grounded sample to 2 mL microtubes, added 1 ml of 1:3 (v:v)
methanol: methyl tert-butyl ether at -20 °C, and then left for homogenization at 4 °C on an
orbital shaker for 10 min, followed by an ultrasound treatment in an ice bath for another 10
min. Next, added 500 pL of 1:3 (v:v) methanol: water mixture (1:3) to each microtube before
centrifugation (12,000 rpm, 4 °C for 5 min). After centrifugation, it generated three phases: an
upper nonpolar (green), a lower polar (brown), and a remaining protein pellet. The apolar and
polar fractions were transferred separately to 1.5 mL microtubes and vacuum dried in a Speed
vac (Centrivap, Labconco, Kansa, MO, USA).

2.4.2. UHPLC-MS and UHPLC-MS/MS

After resuspending the dry polar fraction by adding 500 pL of 1:3 (v:v) methanol: water
mixture, it was transferred to a vial and analyzed by UHPLC-MS/MS. We used a UHPLC
chromatographic system (Nexera X2, Shimadzu Corporation, Japan) equipped with an Acquity
UPLC HSS T3 (1.8 um, 2.1 x 150 mm) reverse phase column (Waters Technologies, Milford,
MA), maintained at 35 °C. Solvent A was 0.1% (v/v) formic acid in water and solvent B was
0.1% (v/v) formic acid in acetonitrile / methanol (70/30, v/v). The gradient elution used, with
a flow rate of 0.4 mL/min, was as follows: isocratic from 0 to 1 min (0% B), linear gradient
from 1 to 3 min (5% B), from 3 to 10 min (50% B), and 10 to 13 min (100% B), isocratic from
13 to 15 min (100% B), followed by rebalancing in the initial conditions for 5 min. The rate of
acquisition spectra was 3.00 Hz, monitoring a mass range from m/z 70-1200 (polar fraction)
and m/z 300-1600 (lipidic fraction).

Detection was performed by high-resolution mass spectrometry (HRMS) (MaXis 4G Q-
TOF MS, Bruker Daltonics, Germany) using electrospray source in positive (ESI (+) - MS) and
negative (ESI (-) - MS). The settings of the MS instrument were: final plate offset, 500 V;
capillary voltage, 3800 V; nebulizer pressure, 4 bar; dry gas flow, 9 L/min, dry temperature,
200 °C. The rate of acquisition spectra was 3.00 Hz, monitoring a mass range of 70 to 1200
m/z. A sodium formate solution (10 mM HCOONa solution in 50/50 v/v isopropanol/water
containing 0.2% formic acid) was injected directly through a 6-way valve at the beginning of

each chromatographic run for external calibration. Ampicillin ((M+H] + m/z 350.11867 and
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[M-H] - m/z 348.10288) was added to each sample and was used as an internal standard for
peak normalization.

Tandem mass spectrometry (MS/MS) parameters have been adjusted to improve mass
fragmentation, with collision energy ranging from 20 to 50 eV, using a step method. Precursor
ions were acquired using the 3.0 s cycle time. The general AutoMS settings were: mass range,
m/z 70-1000 (polar fraction) and m/z 300-1600 (lipidic fraction); spectrum rate, 3 Hz; ionic,
positive polarity; pre-pulse storage, 8 us; funnel 1 RF, 250.0 Vpp. The UHPLC-MS and
UHPLC-MS/MS data were acquired by HyStar Application version 3.2 (BrukerDatonics,
Germany).

2.4.3. Metabolomics data analysis

The raw data from UHPLC-MS were exported as mzMXL files, using DataAnalysis 4.2
software (Bruker Daltonics, Germany) and pre-processed using XCMS Online (Gowda et al.,
2014; Tautenhahn et al., 2012), for peak detection, retention time correction and alignment of
the metabolites detected in the UHPLC-MS analysis. Peak detection was performed using
centWave peak detection (Am / z = 10 ppm; minimum peak width, 5 s; maximum peak width,
20 s) and mzwid = 0.015, minfrac = 0.5, bw =5 for alignment of retention time. The unpaired
parametric t-test (Welch t-test) was used for statistical analysis.

The processed data (csv file) were exported to MetaboAnalyst 4.0, and submitted to
analysis in the Statistical Analysis module (Chong et al., 2019; Chong & Xia, 2020). Before
the chemometric analysis, all data variables from the polar fraction were normalized by internal
standard (ampicillin-rT = 7.9 min; [M+H], m/z =350.11711, [M-H], m/z = 348.10212); and, all
data variables from the lipidic fraction were normalized by internal standard (1,2-
diheptadecanoyl-sn-glycero-3-phosphocholine = 4.85 min; [M+H] + m/z = 762.60063). All
three sets of data were scaled using the pareto method.

The differentially expressed peaks (DEP) were selected according to the following
criteria: Variable Importance in Projection - VIP values > 1, obtained from the PLS-DA model;
adjusted P-value (FDR) < 0.05, of the Welch t-test; and Log, (Fold Change) # 1. The selected
DEPs were then submitted to analysis in the MS Peaks to Pathway module (Chong et al., 2019;
Chong & Xia, 2020) and analyzed using the following parameters: molecular weight tolerance
of 5 ppm; mixed 1on mode; joint analysis using the mummichog algorithm (Li et al., 2013) with
a P-value cutoff of 1.0 [J 107 and Gene Set Enrichment Analysis - GSEA (Subramanian et al.,
2005) algorithms, and the latest KEGG version of the Arabidopsis thaliana pathway library.

In the case of a DEP with two or more matched forms (isotopes) and later a matched

compound with two or more DEPs, the initial criterion of metabolite selection applied was the
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mass difference comparing to the metabolite database — choosing the smallest one. The second
criterion was the adduct study of each candidate back in its mass spectra. Then, we applied the
formula and exact mass data from KEGG; and, finally, performed the putative annotation of the
metabolites of interest, with one or two candidates on each detected ion.

The KEGG IDs of the matched compounds were then submitted to pathway analysis
(integrating enrichment analysis and pathway topology analysis) and visualization in the
Pathway Analysis module (Chong et al., 2019; Chong & Xia, 2020) and analyzed using the
Hypergeometric Test and the latest KEGG version of the Arabidopsis thaliana pathway library.
2.5. Transcriptomics

Shoots (leaves and stem) for transcriptomics analysis were collected from all replicates
at 2 and 45 DAT, immediately immersed in liquid nitrogen and then stored at -80 °C until RNA
extraction. Based on the results of the morphophysiological and metabolomics
characterization, we selected the following treatments for transcriptomics analysis: control
plants at 2 and 45 DAT, stressed plants (0.8 g of NaCl per 100 g of substrate) at 2 and 45 DAT.
Three replicates per treatment were randomly selected for total RNA extraction, library
preparation, and sequencing.

2.5.1. Total RNA extraction and quality analysis, library preparation and sequencing

Total RNA was isolated from gliricidia shoots using the Qiagen RNeasy® Plant Mini kit
(QIAGEN, CA, USA) following the manufacturer’s protocol. RNA quantity was measured
using a Nanodrop Qubit 2.0 Fluorometer (Life Technologies, CA, USA), and RNA quality was
evaluated with an Agilent Bioanalyzer Model 2100 (Agilent Technologies, Palo Alto, CA).
Samples were subjected to RNA-Seq using an Illumina HiSeq platform at the GenOne
Company (Rio de Janeiro, Brazil), using the paired-end strategy. The raw sequence data (24
fastq files) have been uploaded in the Sequence Read Archive (SRA) database of the National
Center for Biotechnology Information under the BioProject number of PRINA634354.

2.5.2. Transcriptomics data analysis

All the transcriptomics analysis was performed with OmicsBox version 1.3 (OmicsBox,
2019). We used FastQC (Andrews, 2010) and Trimmomatic (Bolger et al., 2014) to perform
the quality control, to filter reads and remove low-quality bases. The minimum average quality
of reads kept was 30, and the minimum length of reads was 75. The default parameters from
OmicsBox version 1.3 were used to create a “de novo” transcriptome without a reference
genome through the softwares Trinity version 2.8.5 (Grabherr et al., 2011) and Bowtie2 version
2.3.5.1 (Langmead and Salzberg, 2012). The RNA-Seq data were aligned to the reference

transcriptome using default parameters from OmicsBox version 1.3 through software STAR
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(Dobin et al., 2013); and, to quantify expression at gene or transcript level we used the default
parameters from OmicsBox version 1.3 through HTSeq version 0.9.0 (Anders et al., 2015).
The pairwise differential expression analysis between different experimental conditions
was performed through edgeR version 3.28.0 (Robinson et al., 2010), applying a simple design
and an exact statistical test, without the use of filter for low counts genes. The functional
analysis of the differentially expressed genes was performed combining differential expression
results with functional annotations from the high-throughput functional annotation and data
mining pipeline in OmicsBox version 1.3 (G6tz et al., 2008).
2.6. Integratomics analysis
Omics Fusion (Brink et al., 2016), the web platform for integrative analysis of Omics data

(https://fusion.cebitec.uni-bielefeld.de/), was employed for carrying out the integrative analysis

of transcripts and metabolites. The input data used was the Log, (Fold Change) data of
differentially expressed transcripts and metabolites. First, to check the data distribution, we
used the Data Overview module and then the Scatter Plot one for the correlation analysis
between the two sets of data — a pairwise combination of the different scenarios evaluated.

For subsequent analysis, we used the modules KEGG feature distribution and Map data
on the KEGG pathway. The former module employed to verify which metabolic pathways had
more transcripts and metabolites differentially expressed, and the latter to map these data
differentially expressed in the metabolic paths in question. For the KEGG feature distribution
module, we applied the joint analysis of transcripts and metabolites with a threshold of 10, and
for the Map data on the KEGG pathways, the organism code gmx (G/ycine max) was used for
mapping.

3. Results
3.1.  Gliricidia sepium response to salt stress

As expected, the addition of increasing levels of NaCl to the substrate led to an increase
in electrical conductivity (EC) and a reduction in the water potential (Ww) of the saturation
extract. The saline level of 0.0 g of NaCl, which did not receive the addition of NaCl, presented
EC greater than zero dS/m and reduced Wy; this was probably due to the ionic effect of the salts
that are present in the chemical fertilizers that were added to the substrate. All saline levels
used provided electrical conductivity higher than that of a soil considered as saline (Figure 1).

The doses of salt in the substrate and the weather and climatic conditions influenced the
evapotranspiration rates (data not shown). It was observed that the evapotranspiration rate
values showed a negative correlation to the NaCl dose applied to the plant substrate. Thus, the

saline level that showed the highest value of real evapotranspiration rate was the control. As
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the saline levels were increased, a proportional reduction in the actual evapotranspiration rate
was observed. However, at 45 DAT, the evapotranspiration rate in all saline levels were
practically equal to the control.

The methodology established for the application and monitoring of salinity stress in G.
sepium, by means of a substrate salinization protocol, allowed the identification of two distinct
responses of these gliricidia plants to salt stress, depending on the amount of NaCl used. First,
plants grown for 45 days on a substrate with approximately 15 dS/m (0.4 g of NaCl per 100 g
of substrate) or less, did not show any visual symptoms of stress on the aerial parts, such as leaf
wilt, yellowing, burning or falling; although, they experienced a reduction in shoot and root
biomass (Figure 2).

However, plants grown on a substrate with approximately 30 dS/m (0.6 g of NaCl per 100
g of substrate) or more lost all their leaves in the first week after the stress onset (Figure 3A-
H). In the third DAT, the leaves in these plants started to show a strong wilt symptom (Figure
3B), and in the fourth DAT they started to fall (Figure 3C). Some plants even presented a
symptom os burning in the leaves (Figure 3D). At the end of the first week of stress, the stressed
plants — at >30 dS/m — lost almost all leaves (Figure 3E). However, about three weeks after the
beginning of the stress, it was possible to see some new leaves starting to emerge from the
lateral meristems (Figure 3F); and their growth continue throughout the rest of the experiment
(Figure 3G and 3H). As the amount of salt on the substrate increased (1.0, 1.5, and 2.0 g of
NaCl per 100 g of substrate), the emergency of new leaves took longer to happen, up to a point
where it did not happen at all (data not shown, from additional experiments).

As expected, the addition of increasing levels of NaCl led to an increase in the
concentration of ions Na" and CI" in the substrate, and a consequent increase in the index of
saturation by sodium as well (Supplementary Table 1). Plants under salt stress accumulated
more Na' in the shoots than in the roots; at the two highest doses of salt used it was close to
twice the amount. Indeed, under salt stress, most halophytes accumulate more sodium in their
shoots than in their roots (van Zelm et al., 2020). There was a four fold increase of ion Cl™ in
the roots compared to shoots in the control plants; however, a different pattern was seen in the
stress plants, where most of it accumulated in the shoots.

The addition of NaCl also led to an increase in the availability of potassium in the soil
solution. Approximately 2/3 of the accumulated K" in the plant was present in the shoots
(Supplementary Table 1). Halophyte plants maintain a higher level of potassium than
glycophytes and a more optimal K/Na; the cellular balance between sodium and potassium is

important for plant survival in saline soils (van Zelm et al., 2020). The K/Na" in the shoots
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and roots of gliricidia plants decreased directly proportional to the increase of NaCl in the
substrate; and, at 0.8 g of NaCl per 100 g of the substrate, it was approximately 0.4 in either
case (Supplementary Table 1). The ion Ca®" did not alter its availability in the solution due to
the increasing level of NaCl added, and there was no significant difference in the amount of
Ca?" accumulated in the plant roots — independently of the NaCl dose applied. However, in the
shoots, one can see a decrease in Ca®" as the NaCl increases.

Plants commonly respond to salt stress with a reduction in N assimilation (Ashraf et al.,
2018). In gliricidia, salt stress reduced the nitrogen content in the shoots and roots as the
concentration of NaCl in the substrate increased (Supplementary Table 1). Mg** concentrations
in the substrate and the plants do not change due to the increase in NaCl levels. The amount of
boron in the shoots significantly reduced as the levels of NaCl increased. Zinc in the substrate
did not change due to the increase in NaCl levels, except for the highest concentration. The
increasing levels of NaCl added did not significantly alter the concentrations of zinc in the
shoots; however, in the roots, one can see a drop of about 40% compared to the control.

Shoots from plants under short-term salt stress had approximately 12 times more Na* and
four times more CI" than the control plants, while the roots showed close to eight times more
Na" and about half the amount of CI" than the control plants. On the other hand, the shoots
from plants under long-term salt stress had approximately 36 times more Na* and five more CI°
than the control plants; while the roots showed close to eleven times more Na* and 70% the
amount of CI” of the control plants (Supplementary Table 1).

Both shoot and root-dry biomass decreased directly proportional to the increase of NaCl
in the substrate (Figure 2). Those plants under short-term salt stress, subjected to 0.4 g of NaCl
per 100 g of substrate, had close to 58% less shoot biomass than the control plants. These plants
did not lose the leaves during the 45 days of stress. As plants under stress at NaCl doses of >0.6
g per 100 g of substrate lost all leaves in the first week after the onset of salinity stress, regaining
new leaves two weeks after that, one can not establish a comparison between shoot biomass
from control and stressed plants. The addition of increasing levels of NaCl led to a linear
decrease in the amount of root dry biomass, with the dose of 0.8 g per 100 g of the substrate
leading to a 63% loss of biomass (Figure 2).

3.2.  Gliricidia metabolome under salinity stress

To analyze the metabolome data, the following four data sets were used: all treatments —
AT [control plants at 2 and 45 DAT, and stressed plants (0.4 and 0.8 g of NaCl per 100 g of
substrate) at 2 and 45 DAT]; age effect — AE (samples from the control plants at two and 45
DAT); short-term stress — STS (samples from the control and the stressed plants (0.8 g of NaCl
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per 100 g of substrate) at 2 DAT); and long-term stress — LTS (samples from the stressed plants
(0.8 g of NaCl per 100 g of substrate) at 2 and 45 DAT); all with five biological replicates.

PLS-DA (partial least squares discriminant analysis) permutations tests were performed
using the AT data set to validate the model, applying permutation number = 2,000. When
evaluated by group separation distance, the probability that the model was created by chance
was less than 0.0005%, independent of the fraction — polar-positive, polar-negative, and lipidic-
positive (Figure 4); and the evaluation by prediction accuracy showed that it was less than
0.0065% for the polar-positive fraction, and less than 0.0005% for the other two fractions
(Figure 4).

First, the AE data set was employed to measure the degree of a possible age effect in the
changes of the metabolome profiles of gliricidia, considering that there is a 43 day gap between
the two assessments. Then, the short-term stress data set was employed to evaluate how distinct
are the metabolome profiles of the control and stressed plants at 2 DAT, just one day before the
leaves started to wilt. At last, the long-term stress data set was used to evaluate how distinct
are the metabolome profiles of the stressed plants at two different moments (2 and 45 DAT).

The accumulated variance explained by the first three out of five principal components
tested using the supervised multivariate method PLS-DA in the polar-positive fraction was
53.1%, 72.5%, 69.8%, and 69.5% for AT, AE, STS, and LTS, respectively. In the polar-negative
fraction, the accumulated variance was 64%, 73.4%, 74.2%, and 86.5%; and in the lipidic-
positive fraction, they were 46%, 69.4%, 75.1%, and 76.1%, respectively (data not shown).

The cross-validation analysis determines the optimal number of components necessary to
build the PLS-DA model by measuring three criteria. These criteria are R? (the sum of squares
captured by the model), Q? (the predictive ability of the model estimated by cross-validation),
and Accuracy (Chong et al., 2019). When choosing the three-component model based on Q?,
the Q? values obtained in the polar-positive fraction were: 80%, 95%, 87%, and 89% for AT,
AE, STS, and LTS, respectively. In the polar-negative fraction, the Q? values obtained were
77%, 90%, 94%, and 86%; and in the lipidic positive one, they were 79%, 90%, 90%, and 81%,
respectively (data not shown).

The samples applied to estimate the AE scenario contained 1,368, 1,798, and 4,190 peaks,
respectively, in the polar-positive, polar-negative, and lipidic-positive fractions (Table 1). On
average, 90.50% did not show a difference in expression between two and 45 DAT, while 1.90%
up-regulated at 45 DAT, and 7.61% down-regulated. Three, 39, and 112 peaks up-regulated in
the polar-negative, polar-positive, and lipidic-positive fractions, much less than the number of

down-regulated, which were 123, 135, and 256, respectively (Table 1).
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In the case of the samples applied to estimate the change in the STS scenario, they
contained 1,380, 1,815, and 4,190 peaks, respectively, in the polar-positive, polar-negative, and
lipidic-positive fractions (Table 1). On average, 93.03% did not show a difference in expression
between control and stressed plants at 2 DAT, while 3.94% up-regulated in the stressed plants,
and 3.04% down-regulated. A total of 37,93, and 127 peaks up-regulated in the polar-negative,
polar-positive, and lipidic-positive fractions, while 29, 46, and 175 down-regulated,
respectively (Table 1).

At last, the samples applied to estimate the changes in the LTS scenario, in comparison
with the STS one, contained 1,370, 1,817, and 4,190 peaks, respectively, in the polar-positive,
polar-negative, and lipidic-positive fractions (Table 1). On average, 90,75% did not show any
difference in expression between the stressed plants at two and 45 DAT, while 0.55% up-
regulated in the stressed plants at 45 DAT, and 8.73% down-regulated. Zero, nine, and 41 peaks
up-regulated in the polar-negative, polar-positive, and lipidic-positive fractions, while 139, 166,
and 269 down-regulated, respectively (Table 1).

As already stated in the Materials & Methods section, a differentially expressed peak
(DEP) is a peak with a VIP value > 1, an adjusted P-value (FDR) < 0.05, and Log> (Fold
Change) > 1 (up-regulated) or Log> (Fold Change) < -1 (down-regulated). Once it was clear
that the amount of DEPs was less than 10% in all scenarios tested (Table 1), a new question
emerged: What would happens to the peaks differentially expressed in the STS scenario once
the stressed plants reached the LTS scenario?

Out of the 257 DEPs up-regulated in STS, only two up-regulated again 45 DAT — in the
LTS scenario (Table 2). On the other hand, 114 remained at the same level of expression as
before, and 141 down-regulated. In the case of the 250 DEPs down-regulated in STS, five up-
regulated, 238 maintained the same level of expression as before, and seven down-regulated
further in the LTS scenario. At last, out of the 6,880 peaks not differently expressed in STS, 43
up-regulated, and 426 down-regulated in LTS, while 6,401 remained at the same level of
expression as before. Ten polar-positive peaks that did not differentially expressed in STS,
were deleted in the data integrity check stage due to a constant or single value across samples.

All 976 peaks differentially expressed in STS or in LTS, or in both (Table 2), were then
submitted to functional interpretation via analysis in the MS Peaks to Pathway module (Chong
et al., 2019; Chong & Xia, 2020), as described in the Materials and Methods section. The
combined mummichog and GSEA pathway meta-analysis resulted in a list of 61 ranked
pathways that are enriched in this group of DEPs. Five pathways were significantly perturbed

in both algorithms — galactose metabolism, starch and sucrose metabolism, biosynthesis of
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unsturated fatty acids, aminoacyl-tRNA biosynthesis, and arginine and proline metabolism
pathways (Figure 5A).

After applying the initial criteria of metabolite selection, as described in the Materials and
Methods section, 107 DEPs with a hit to just one known compound, 19 with hits to two
compounds, two with hits to three, two with hits to four, one with hits to six, and one with hits
to seven compounds were selected (Supplementary Table 2). The group of 107 DEPs with a hit
to just one known compound was chosen to be submitted to the pathway topology analysis
module, resulting in a list of 64 ranked pathways. The phenylpropanoid biosynthesis pathway,
with a FDR (False Discovery Rate) of 0.00081712 and a pathway impact of 0.31153, came out
in the top of this rank (Figure 5B). This pathway had 13 differentially expressed metabolites
with the highest level of significance in the set of matched metabolites submitted to analysis.
3.3.  Gliricidia transcriptome under salinity stress

The 24 fastq files (raw sequence data) generated using the 12 samples collected had
319,889,065 reads pairs or approximately 48 Gbases; 150 nucleotides per read (Supplementary
Table 2). A total of 305,588,306 high-quality-pairs of reads - with an average quality of reads
>30, and the minimum length of 75 nucleotides — remained after pre-processing the raw
sequence data, or 95.53% of it. To assemble the Reference Transcriptome (RT), as well as to
perform the mapping, counting, and differential expression, we used these high-quality
sequences. The RT assembled has 53,735 features — longest ORFs per gene — ranging from 297
to 16,323 nucleotides in length. Previously to the submission to the functional annotation in
OmicsBox, a BlastX analysis against the genome of Glycine max (L.) Merrill — available at
NCBI (Glycine max_v2.1, BioProject PRINA19861, BioSample SAMNO00002965) — was
performed in May 2020 (data not shown).

The differential expression analysis was performed in order to measure the degree of a
possible age effect using the AE data set, the differences in the short-term stress using the STS
data set, and the differences in the long-term stress using the LTS data set. Differentially
expressed transcripts (DET) are those with a FDR < 0.05, and Log> (Fold Change) > 1 (up-
regulated) or Log> (Fold Change) < -1 (down-regulated). Out of the 53,735 features in the RT,
1,347 (2.51%) up-regulated and 1,397 (2.60%) down-regulated in the control plants at 45 DAT
comparing to 2 DAT (AE scenario). In the STS scenario, 824 (1.53%) up-regulated and 487
(0.91%) down-regulated in the stressed plants comparing to the control plants at 2 DAT. At
last, in the LTS scenario, 1,920 (3.57%) up-regulated and 2,229 (4.15%) down-regulated (Table

1.
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Once it was clear that the amount of DETs was also less than 10% — as it was seen before
for DEPs (Table 1) — the same question made for DEPs emerged for DETs: What is the fate in
LTS of the DETs from STS? Out of the 824 DETs up-regulated in STS, only two up-regulated
again in LTS, while 158 remained at the same level of expression as before and 664 down-
regulated (Table 2). In the case of the DETs down-regulated in STS, 264 up-regulated, 213
maintained the same level of expression as before, and ten down-regulated further in LTS.

A set of 12 DETs, being two that up-regulated twice — in STS and LTS as well — and ten
that down-regulated twice was chosen to further characterization (Figure 6). First, the two
DETs that up-regulated twice also up-regulated in AE scenario; however, in the STS+LTS
cumulative scenario, one DET experienced a >260-fold increase, while in the AE scenario it
had an approximately 51-fold increase. The second DET experienced a 40-fold increase in the
STS+LTS cumulative scenario and an approximately 21-fold increase in the AE one. All ten
DETs that down-regulated twice showed a level of expression lower than when in the AE
scenario, showing that the stress did also contribute to the reduction in the expression level.
For the rest of them, the decrease in expression was higher in the LTS scenario comparing to
the AE (Figure 6).

Three out of these 12 DETs got positive hits in BlastX to uncharacterized proteins in
soybean, including one of the two DETs that up-regulated twice and the one that down-regulated
in STS but did not change the level of expression in the adaptation phase. The remaining DETs
are homologs to genes coding for: a WAT1-related protein At4g28040, a bidirectional sugar
transporter SWEET14-like protein, a G-type lectin S-receptor-like serine/threonine-protein
kinase At4g27290, a protein NIM1-INTERACTING 1-like, a protein SAR DEFICIENT 1
1soform X1, a F-box protein At2g27310, a probable WRKY transcription factor 50, a VQ motif-
containing protein 22, and a lysosomal Pro-X carboxypeptidase-like isoform X1 (Table 3).
3.4.) Integrating gliricidia metabolome and transcriptome data

A group of 5,672 DET (up and down-regulated from all three scenarios — AE, STS, and
LTS) and 107 DEP (only those with a hit to just one known compound) were submitted to the
Omics Fusion (Brink et al., 2016) platform for integrative analysis to integrate transcripts and
metabolites differentially expressed in gliricidia under salt stress. The distribution of DETs and
DEPs, in all three scenarios, obeyed a normal distribution (Figure 7). Due to the number of
compounds employed in the analysis, the histograms for metabolites showed only one normal
curve; however, in the case of transcripts, it is possible to see two well defined normal curves

in the STS and LTS scenarios, representing both the down and up-regulated DETs (Figure 7).
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The average Logz (Fold Change) of the down-regulated DETs in the STS scenario is bigger than
the one in the LTS scenario, while the opposite is true for the up-regulated DETs.

The correlation analysis between the three different scenarios showed no correlation
between AE and LTS, a negative correlation between STS and LTS, and a positive correlation
between AE and STS for the metabolites (Figure 8). Regarding the transcripts, the correlation
analysis showed no correlation between AE and STS, a negative correlation between STS and
LTS, and a positive correlation between AE and LTS for the transcripts (Figure 8).

The phenylpropanoid pathway also came first in the rank of affected pathways when using
the Omics Fusion (Brink et al., 2016) platform, with 15 metabolites and six transcripts (three
genes). Eleven out of the 15 differentially expressed metabolites from this pathway were down-
regulated in LTS when compared to their amounts in the STS (Figure 9). The four remaining
metabolites were down-regulated in STS and slightly up-regulated in LTS compared to control
plants and STS, respectively.

The expression profiles of these 15 differentially expressed metabolites were analyzed
in the AT (all treatments) data set. A one-way parametric ANOVA — with an adjusted p-value
(FDR) cutoff of 0.05 — and the Fisher’s Least Significant Difference (Williams and Abdi, 2010)
posthoc test was applied. All 15 metabolites had FDR < 0.05 (data not shown).

Based on the expression profile in the AT data set, the metabolites were separated into
different groups (Figure 10). The first group, up-regulated under salt stress (0.4 and 0.8 g of
NaCl per 100 g of substrate) at 2 DAT, had L-phenylalanine (C00079), L-tyrosine (C00082),
and spermidine (C00315) in it; however, independent of the NaCl level, they had at 45 DAT an
average peak intensity statistically similar to the control plant at two and 45 DAT. Figure 10.A
shows the expression profile of L-phenylalanine an example of this group.

Five metabolites from the phenylpropanoid biosynthesis pathway were down-regulated
in LTS, being two coniferyl alcohol derivates (C02666 and C05619), two paracoumaryl alcohol
derivates (C02646 and C05608), and one sinapate derivate (C00482). Three of them (C02646,
C02666, and C05608) showed strong up-regulation under the highest level of salt (0.8 g of
NaCl per 100 g of substrate) at 2 DAT, getting at 45 DAT to a level of expression similar or
lower than the one in the control plants at two and 45 DAT. Figure 10.B shows the expression
profile of coniferyl aldehyde as an example of the group. C00482 and C05619 did show a small
up-regulation at 0.4 g of NaCl per 100 g of substrate at 2 DAT, dropping to a level similar or
inferior to the control plants at 45 DAT (data not shown).

Another group of metabolites, composed of C05838 (2-Coumarinate), C05839 (beta-D-

glucosyl-2-coumarinate), and C10434 (5-O-caffeoylshikimic acid), showed a reduction in
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expression under salt stress (0.4 and 0.8 g of NaCl per 100 g of substrate) at two and 45 DAT,;
while C18069 (N1,N5,N10-tricoumaroyl spermidine) showed a reduction in expression under
salt stress (0.4 and 0.8 g of NaCl per 100 g of substrate) only at 45 DAT. These four metabolites
had expression levels under the highest NaCl dose at 45 DAT lower than the control plants. The
expression profiles of NI,N5,N10-tricoumaroyl spermidine, and cis-beta-D-glucosyl-2-
hydroxycinnamate are shown in Figure 10 (C and D), respectively, as examples of the group.
At last, C00852 (chlorogenate) showed a reduction of expression under salt stress (0.4
and 0.8 g of NaCl per 100 g of substrate) at two and 45 DAT; and C00761 (coniferin) and
C02887 (sinapoyl malate) down-regulation at 45 DAT seems more a question of age effect (data
not shown).
4. Discussion
4.1.  Gliricidia sepium response to a long-term, and extremely high salt concentration,

stress

According to their response to salt stress, plants are classified as glycophytes or
halophytes. Halophytes can complete their life cycle in an environment where the salt
concentration is equal or greater than 200 mM NaCl - approximately 20 dS/m at 25 °C, and
glycophytes can not do so (Flowers et al., 1986; Flowers & Colmer, 2008). So far, there is no
report showing that G. sepium is indeed a halophyte species. Although, based on the results of
this study, it is probably the case. Here gliricidia plants grown under approximately 30 dS/m
or more lost all their leaves in the first week after the stress onset; however, they started
developing new leaves about three weeks after the beginning of the stress and continued to
produce more new leaves for additional four weeks until the experiment ended. Once the salt
stress level (=30 dS/m) was the same throughout the entire experiment, this phenotype is not an
example of recovery from the stress. It is likely a case of adaptation to the stress condition
(Acosta-Motos et al., 2017) that started with a very drastic measure taken by the plant (loss of
all leaves) and followed by a transition to a state that allowed the plant to resume developing

new leaves.

Plants developed high phenotypic plasticity, such as rapid responses to aggressive
environmental factors and adaptations to changing environments (Ashapkin et al., 2020). Plants
tolerant to NaCl respond to this stress by implement a series of adaptations to acclimate to
salinity, including morphological, physiological and biochemical changes; and increase in the
root/canopy ratio is one of these changes (Acosta-Motos et al., 2017). In the present study, it

was possible to see an increase in the root/canopy ratio on gliricidia plants grown for 45 days
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under approximately 15 dS/m (Figure 2). Gliricidia plants grown under 30 dS/m or more for

45 days also showed an increase in the root/canopy ratio.

Adaptation to various abiotic stresses is critical for the survival and biomass accumulation
of sessile plants, particularly those perennial tree species with a relatively long-life cycle (Liu
et al., 2019), such as G. sepium. Acosta-Motos and colleagues also point out that changes in
the leaf anatomy is one of these changes that ultimately lead to preventing leaf ion toxicity, thus
maintaining the water status in order to limit water loss and protect the photosynthesis process
(Acosta-Motos et al., 2017). In this study, the evapotranspiration rate measured in gliricidia
plants at 45 DAT in all saline levels were practically equal to the control, and plants under stress
from the two highest doses of salt used accumulated almost twice the amount of Na" in the

shoots comparing to the roots.

Understanding plant responses and adaptation mechanisms to severe salt stress
conditions, such as the one from gliricidia reported in this study, is the key to improve crops
economically important that could then serve biosaline agriculture. As a relatively new way of
dealing with salinity in agriculture, biosaline agriculture uses cultivation systems for saline
environments developed taking advantage of the ability of halophytes and/or salt-tolerant
glycophytes plants to grow under saline conditions in combination with the use of saline soils
and water resources, and better soil and water management (Ventura et al., 2015; Duarte &
Cagador, 2021). To further boost biosaline agriculture initiatives wherever possible, it is vital
to understand the physiological, metabolic, and biochemical responses of plants to salt stress

and to mine the salt tolerance-associated genetic resource in nature (Zhao et al., 2020).

Collecting, characterizing, and domesticating halophyte and/or salt-tolerant glycophytes
species are the front runners to develop salt-tolerant crops. Besides that, there is the strategy to
promote — whenever possible — the vertical or horizontal transference of this trait to crops
economically important (e.g., soybean, wheat, corn, rice, sugarcane, to mention a few). The
novel CRISPR—Cas genome editing system will be a factor key to achieve horizontal transfer
(Zhu et al., 2020). Powered mainly by transcriptomics, proteomics, and metabolomics data
sets, the era of multi-omics systems biology research (Jamil et al., 2020) will contribute
significantly to expand the existing knowledge and facilitate either conventional and
biotechnological breeding efforts to develop salt-tolerant crops. Besides reporting for the first
time the ability of gliricidia plants to adapt to a severe salt stress condition, the present study is
also the first one to integrate metabolomics and transcriptomics data to gain a better

understanding of this species short- and long-term responses to such an abiotic condition.
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4.2. The integration of the metabolome and transcriptome profiles of Gliricidia sepium
suggests a role for the phenylpropanoid biosynthesis pathway in the response to salinity

stress

In the present study, the phenylpropanoid pathway came as the first ranked pathway in
two distinct analyses. In the first, using the integrating enrichment and pathway topology
analysis — from the pathway analysis module in MetaboAnalyst 4.0 (Chong et al., 2019; Chong
& Xia, 2020) - 13 out of the 46 metabolites of this pathway were among the metabolites in the
list of 107 differentially expressed compounds submitted to analysis. In the second, using the
Omics Fusion (Brink et al., 2016) platform for integrative analysis to integrate transcripts and
metabolites differentially expressed in gliricidia under salt stress, this pathway also came first
with 15 metabolites and five transcripts (three genes). These results put this pathway - and the
metabolites and genes in it - in the center of interest to further learn about the role it plays in
the response of G. sepium to salinity stress. The gliricidia adaptation phenomena to salinity
stress described in this study is a model interesting for further understanding the flux control in
this complex biosynthetic pathway, as well as to the identification of targets for

biotechnological manipulation.

There are three principal kinds of secondary metabolites biosynthesized by plants:
phenolic compounds, terpenoids/isoprenoids, and alkaloids and glucosinolates; and the former
represents the largest group of secondary metabolites in plants (Sharma et al., 2019; Santos-
Sanchez et al., 2019). Phenylpropanoids are phenolics compounds derived from phenylalanine
and/or tyrosine; and are involved in plant defense, structural support, and survival (Deng and

Lu, 2017; Sharma et al., 2019; Santos-Sanchez et al., 2019).

According to Sharma et al. (2019), abiotic stresses disturb the balance between ROS
generation and scavenge and accelerate ROS propagation that damages nucleic acids, proteins,
carbohydrates, and lipids; and eventually leads to cell death. Plants growing under stressful
environments can biosynthesize more phenolic compounds in comparison to plants growing
under normal conditions; and these compounds have antioxidative properties and are capable
of scavenging free radicals, resulting in a reduction of cell membrane peroxidation, hence

protecting plant cells from ill effects of oxidative stress (Sharma et al., 2019).

Phenylpropanoid metabolism is at the interface of primary and secondary metabolism,
and the phenylpropanoid pathway, also known as the phenylalanine/hydroxycinnamate
pathway, is likely the most studied secondary metabolism pathway in plants. Plants exhibiting

increased polyphenols synthesis under abiotic stresses usually show better adaptability to
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limiting environments (Kumar et al., 2019; Sharma et al., 2019). Based on chemical structures,
there are five phenylpropanoid groups: flavonoids, monolignols, phenolic acids, stilbenes, and
coumarins (Deng and Lu, 2017). Flavonoids, monolignols, coumarins, and stilbenes can act as
defensive components in plants against various biotic and abiotic stresses, and salicylic acid is
a phenolic phytohormone that acts as a signaling molecule in plant response to diverse biotic

and abiotic stresses (Deng and Lu, 2017).

All 15 metabolites from the phenylpropanoid biosynthesis pathway differentially
expressed in the shoots of gliricidia plants under salt stress (approximately 35 dS/m) at 45 DAT
show an average peak intensity similar or lower than the one in the control plants. These results
show that it is likely that these 15 metabolites have no role in maintaining the status of salt
stress-adapted plants described above for G. sepium. However, as several of them were
differentially expressed — either up or down-regulated - in the short-term stress phase (2 DAT),
it signals a possible role of the metabolites from the phenylpropanoid biosynthesis pathway in
this initial stage of salt stress. It is necessary to state that this present study has focused on the
metabolome and transcriptome of the shoots of gliricidia plants under salt stress, and did so
trying to understand what was different in the new leaves produced during the adaptation
phenomena after losing all of them just one week after the stress onset. A similar or broader
multi-omics study of the roots certainly will add additional insights into the process of

understanding the adaptation phenomena seen in these gliricidia plants.

Phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-
coumarate—CoA ligase (4CL) are the enzymes that catalyze the first three steps in the reaction
sequence of the phenylpropanoid pathway; and genetic inhibition of PAL, C4H, and 4CL genes
significantly reduces the phenolic compounds content in several plant species (Feduraev et al.,
2020). The Omics Fusion (Brink et al., 2016) platform showed via a transcriptome and
metabolome integrative analysis that five transcripts (three genes) coding for proteins that are
part of the phenylpropanoid pathway were differentially expressed in gliricidia shoots under
salt stress. The transcriptomic analysis revealed that two of these genes (PAL and 4CL) were
differentially expressed in plants under salt stress at 45SDAT. The homolog of the PAL gene in
gliricidia had its normalized counts per million (CPM) reduced approximately six-folds due to
the age effect (data not shown); however, it underwent an additional three folds reduction due
to the salt stress. No significant reduction was seen for the PAL gene in gliricidia at 2 DAT.
The 4CL gene showed a four-fold fall in CPM due to the age effect and an additional two-fold

reduction due to the salt stress (data not shown). These results show that the low amount of L-
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phenylalanine in the shoots of salt stress-adapted G. sepium plants is not due to an

overexpression of the PAL gene and the consequent production of trans-cinnamate (C00423).

The remaining three transcripts coded for homologs of peroxidase genes in Glycine
max, the PERI, the PRX2, and the LOC100817540 gene. The PERI and the PRX2 genes
encode proteins with peroxidase activity that respond to oxidative stress. In plants, the cellular
regulation through a complex network involving redox input elements, transmitters, targets, and
sensory proteins, such as peroxiredoxins (Prx or Prdx), is part of the antioxidant defenses
(Tovar-Méndez et al., 2011; Perkins et al., 2015; Rhee, 2016). Prx constitutes a large and highly
conserved family of peroxidases that catalyze the reduction of H>O», alkyl hydroperoxides, and
peroxynitrite to water, alcohols, or nitrite, respectively; and contain one or two Cys residues at
the active site and usually function as monomers or dimers (Perkins et al., 2015; Rhee, 2016).
There are four types of Prxs in plants (1CPrx, 2CPrx, PrxII, and PrxQ), which protect the nuclei,
plastids, cytosol, and the mitochondria against excess ROS in stressful conditions, besides being

implicated in redox signaling (Tovar-Méndez et al., 2011).

In the present study, the homolog of the PERI gene in gliricidia had its normalized CPM
increased approximately six-fold due to the age effect, and decreased approximately three-fold
due to osmotic stress. At 45 DAT, its CPM in the stressed plants was about 75% of that in the
control plants at the same age. On the other hand, the homolog of the PRX2 gene in gliricidia
had its CPM increased approximately four-fold due to the age effect, and decreased
approximately four-fold due to osmotic stress. At 45 DAT, its CPM in the stressed plants was
about 10% higher than the one in the control plants at the same age. At last, the homolog of the
LOC100817540 gene in gliricidia had its CPM increased approximately 45% due to the age
effect, and approximately five-fold due to osmotic stress. At 45 DAT, its CPM in the stressed
plants was about the same as in the control plants at the same age. The PRX2 and the
LOC100817540 homolog genes were approximately 34 and 18-fold higher in the control
gliricidia plants at 2 DAT, respectively, when compared to the PERI homolog gene (data not
shown). These results show that whether any of these three peroxidases would play a role in
the response of gliricidia plants to the salt stress, it would be probably the protein coded by the
homolog of the LOC100817540 gene, and it would be in the STS scenario. In the LTS scenario,
on the other hand, it seems that none of them has any role in maintaining the status of salt stress-

adapted plants described above for G. sepium.

4.3. Genes up- or down-regulated twice — in the short- and long-term stress — give

additional insights on the response of Gliricidia sepium to salinity stress
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GENE ORF DN2854 c0 g2 and GENE ORF DNI1810 c0 gl, the only two genes that
up-regulated at the STS and at the LTS scenarios (Table 2), code for an uncharacterized protein
and a bidirectional sugar transporter SWEET 14-like protein, respectively. Sugars transporters
perform an important role in development, metabolism, growth, and homeostasis in plants; and
there are three distinct superfamilies of sugars transporters: the glucose transporters (GLUTs),
the sodium solute symporter family, such as sodium glucose cotransporters (SGLTs) and Sugar
Will Eventually be Exported Transporter (SWEET) proteins (Jeena et al., 2019). The proteins
from the SWEET family contains seven predicted transmembrane domains with two internal
triple-helix bundles; and plant genome normally contains about 20 SWEET paralogs which are
found to be differentially expressed in tissues and are involved in the transport of different sugar
molecules (Jeena et al., 2019). Salinity stress (150 mM of NaCl) up-regulated SWEET14 gene
in the stem of Arabidopsis thaliana plants and down-regulated in the leaves of rice (Chen et al.,
2019; Sellami et al., 2019). The gene coding for the bidirectional sugar transporter SWEET 14-
like protein in gliricidia had its expression level increased of 51.21-fold at AE, 47.06-fold at
STS, and 5.59-fold at LTS, resulting in an increase of 216 times in the level of expresion,
already discounted the age effect. These results show that this protein might play a role in
gliricidia response at both the short- and long-term salt stress. The same is true for the gene
coding for an uncharacterized protein, which had its expression level increased almost 20 times

only due to the salt stress, already discounted the age effect.

Among the ten genes that down-regulated twice, at the STS and at the LTS scenarios
(Table 2), two code for uncharacterized proteins. The remaining eight genes code for a probable
WRKY transcription factor 50, a WATI1-related protein, a G-type lectin S-receptor-like
serine/threonine-protein kinase, a NIM1-INTERACTING 1-like protein, a SAR Deficient 1
protein, a F-box protein, a VQ motif-containing protein, and a lysosomal Pro-X
carboxypeptidase-like. For all of them, most of the decrease in the level of expression at 45

DAT was a result of the age effect, with a minor contribution of the salt stress (data not shown).

S. Conclusion

Two distinct phenotypes were seen when applying salinity stress in G. sepium by means
of a substrate salinization protocol, depending on the amount of NaCl used:

a) Plants grown under salinity stress up to 25 dS/m for 45 days did not show any visual
symptoms of stress on the aerial parts, such as leaf wilt, yellowing, burning or falling; although,

they experienced a reduction in shoot and root biomass yield; and
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b) Plants grown on a substrate with >30 dS/m lost all their leaves in the first week after
the stress onset; however, about three weeks after the beginning of the stress they started to
develop new leaves from the lateral meristems that continue throughout the rest of the
experiment.

The transcriptome and metabolome data sets were analyzed under three distinct scenarios:
age effect, short-time stress, and long-time stress; and the integration of these two omics profiles
pointed a central role of the phenylpropanoid biosynthesis pathway in the short-term response
of Gliricidia sepium to salinity stress, but not in the long-term response.

The de novo transcriptomics analysis led to the identification of 5,672 differentially
expressed transcripts (up and down-regulated), but only 12 of them were differentially
expressed in both the short- and long-term stress scenarios. Among them, two code for proteins

that might play a role in gliricidia response at both the short- and long-term salt stress.
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Figure 3. Symptoms of salt stress in gliricidia plants shoots. A — control plants, and B-H
— stressed plants at 0.8 g of NaCl per 100 g of substrate. In the third days at treatment (DAT),

the leaves started to show a strong wilt symptom (B), and in the fourth DAT they started to fall

(C). Some plants presented a kind of burning symptoms in some leaves (D). At the end of the

first week of stress, the stressed plants had lost almost all leaves (E), and about three weeks

after the beginning of the stress, new leaves started to emerge (F), and kept growing

continuously throughout the rest of the experiment (G and H).
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Change) (x-axis) — of 107 differentially expressed metabolites (A, B, C) and 5,672 differentially
expressed transcripts (D, E, F) in three scenarios: age effect - AE (control plants at two and 45
days under salinity stress — DAT) — A and D; short-term stress — STS (control and the stress
plants at 2 DAT) — B and E; and long-term stress — LTS (stressed plants at two and 45 DAT) —
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Figure 8. Correlation analysis of the Log> (Fold Change) of 107 differentially expressed
metabolites (A, B, C) and 5,672 differentially expressed transcripts (D, E, F) by pairwise
comparison of three scenarios: age effect - AE (control plants at two and 45 days under salinity
stress — DAT); short-term stress — STS (control and the stress plants at 2 DAT); and long-term
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stress — LTS (stressed plants at two and 45 DAT). STS x AE (A, D), STS x LTS (B, E), and
AE X LTS (C, F).

5 = AE STS LTS
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Figure 9. Cluster heat map of 15 metabolites (A) and six transcripts (B) from the
phenylpropanoid pathway differentially expressed under salinity stress in the leaves of gliricidia
plants. Hierarchical clustering of metabolites and transcripts with altered expression levels in
three scenarios: age effect - AE (control plants at two and 45 days under salinity stress — DAT);
short-term stress — STS (control and the stress plants at 2 DAT); and long-term stress — LTS
(stressed plants at two and 45 DAT). Metabolites identified by the KEGG id, and transcripts

by Protein id. Log2 (Fold change) is presented in the center of each box.
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Figure 10.  Box plot showing original and normalized concentration of metabolites from the
phenylpropanoid pathway differentially expressed under salinity stress in the leaves of gliricidia
plants. The expression profiles of L-phenylalanine (A), coniferyl aldehyde (B), N1,N5,N10-
tricoumaroyl spermidine (C), and cis-beta-D-glucosyl-2-hydroxycinnamate (D). The values
represent the average of five replicates, and the bars represent the standard error of the mean.
Treatments (x-axis): 2D (2 days under salinity stress) or 45D (45 days under salinity stress), at
0, 04, or 0.8 g of NaCl per 100 g of substrate. Number on the top of the boxes: m.z.
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Supplementary Figure 1. PLS-DA 3D score plots. PLS-DA 3D score plots in polar-
positive mode (A, B, C), in polar-negative mode (D, E, F), and in lipidic-positive mode (G, H,
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1), under three scenarios: age effect (control plants at two and 45 days under salinity stress —
DAT) — A, D, and G; short-term stress (control and the stress plants at 2 DAT) — B, E, and H;
and long-term stress (stressed plants at 2 and 45 DAT) — C, F, and I. Red dots: control plants
at 2 DAT in A, B, C, D, E, and F; and stressed plants at 2 DAT in G, H, and I. Green dots:
Control plants at 45 DAT in A, B, and C; stressed plants at 2 DAT in D, E, and F; and stressed
plants at 45 DAT in G, H, and I.
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CAPITULO 3

Analise Multi-6mica das respostas de plantas jovens de Portulaca oleracea L. a altas doses
de NaCl revelam percepcdes sobre as vias metabolicas e genes que respondem ao estresse

salino nesta espécie haléfita

A versdo apresentada do presente artigo foi submetida a revista “The Plant Genome”, sendo

uma versao preliminar e o conselho editorial do periddico podera sugerir alteracdes.
RESUMO

A salinidade do solo esta entre os estresses abidticos que mais ameagam a agricultura.
Beldroega (Portulaca oleracea L.) ¢ uma espécie de dicotiledonea adaptada ao deserto salino
e habitats salinos e ¢ uma planta hiperacumuladora de sal com alto potencial de fitorremediagao.
E considerada uma espécie modelo adequada para estudar os mecanismos de tolerancia das
plantas a seca e ao estresse salino. Este estudo aplicou diferentes técnicas dmicas para obter
mais informagdes sobre a tolerancia de plantas jovens de beldroegas ao estresse salino muito
alto. Um protocolo robusto de estresse salino foi desenvolvido e usado para caracterizar as
respostas morfofisiologicas de beldroegas jovens ao estresse salino. Uma andlise, em larga
escala, abrangente e integrada de metaboloma e transcritoma foi entdo empregada usando
amostras de folhas. O protocolo de estresse salino gerou diferentes niveis de estresse por
gradientes de condutividade elétrica e potencial hidrico no extrato de satura¢do do substrato, e
as evidéncias mostraram que um mecanismo de exclusdo de sal opera nas folhas desta espécie
halofita. Trés vias metabodlicas e 20 metabdlitos foram identificados por andlises Omicas
simples, além de milhares de genes expressos diferencialmente. A multi-Omica levou a um
conjunto de dados de 51 vias metabdlicas que tinham, pelo menos, uma enzima e um metabélito
diferencialmente expressos devido ao estresse salino. Os conjuntos de dados gerados sdo
valiosos para estudos futuros com o objetivo de aprofundar nosso conhecimento sobre os

mecanismos por tras da alta tolerancia de beldroegas jovens ao estresse salino.

Palavras-chave: Beldroega, RNA-Seq, Quimiometria, Espectometria de Massa de Alta

Resolugdo, Estresse Abiotico, Integratdmica, Integracdo Multi-Omica.
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ABSTRACT

Soil salinity is among the abiotic stressors that threaten agriculture the most. Purslane (Portulaca
oleracea L.) is a dicot species adapted to inland salt desert and saline habitats, and it is a salt
hyperaccumulator plant with high phytoremediation potential. It is considered a suitable model
species to study the mechanisms of plant tolerance to drought and salt stresses. This study
applied different omics technics to gain further insights on young purslane plants' tolerance to
very high salinity stress. A robust salinity stress protocol was developed and used to characterize
the morphophysiological responses of young purslane plants to salinity stress. A
comprehensive, large-scale metabolome and transcriptome single and integrated analysis was
then employed using leaf samples. The salinity stress protocol did generate different levels of
stress by gradients of electrical conductivity and water potential in the saturation extract of the
substrate, and evidence showed that a mechanism of salt exclusion operates on the leaves of
this halophyte species. Three metabolic pathways, and 20 metabolites, were identified by
single-omics analyses, besides thousands of differentially expressed genes. The multi-omics led
to a dataset of 51 metabolic pathways that had at least one enzyme and one metabolite
differentially expressed due to salinity stress. The datasets generated are valuable for future
studies aiming to deepen our knowledge on the mechanisms behind the high tolerance of young

purslane plants to salinity stress.

Keywords: Purslane, RNA-Seq, Chemometrics, High Resolution Mass Spectrometry, Abiotic

Stress, Integratomics, Multi-Omics Integration.
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Abstract

Soil salinity is among the abiotic stressors that threaten agriculture the most. Purslane
(Portulaca oleracea L.) is a dicot species adapted to inland salt desert and saline habitats, and
it is a salt hyperaccumulator plant with high phytoremediation potential. It is considered a
suitable model species to study the mechanisms of plant tolerance to drought and salt stresses.
This study applied different omics technics to gain further insights on young purslane plants'
tolerance to very high salinity stress. A robust salinity stress protocol was developed and used
to characterize the morphophysiological responses of young purslane plants to salinity stress.
A comprehensive, large-scale metabolome and transcriptome single and integrated analysis was
then employed using leaf samples. The salinity stress protocol did generate different levels of
stress by gradients of electrical conductivity and water potential in the saturation extract of the
substrate, and evidence showed that a mechanism of salt exclusion operates on the leaves of
this halophyte species. Three metabolic pathways, and 20 metabolites, were identified by
single-omics analyses, besides thousands of differentially expressed genes. The multi-omics led
to a dataset of 51 metabolic pathways that had at least one enzyme and one metabolite
differentially expressed due to salinity stress. The datasets generated are valuable for future
studies aiming to deepen our knowledge on the mechanisms behind the high tolerance of young

purslane plants to salinity stress.
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1. Introduction

There are many abiotic stressors affecting the plant life cycle, and interfering with
growth and productivity (Sunkar et al. 2007). Soil salinity is among the abiotic stressors that
threaten agriculture the most, and it is a growing problem in several parts of the world,
predominantly in arid and semi-arid regions (Allbed and Kumar, 2013), resulting in a
considerable restriction on crop productivity (Mahajan and Tuteja, 2005). Approximately 20%
of the agricultural land in the world has saline or sodic soils, and between 25% and 30% of the
irrigated land area is affected by salt (Shahid et al., 2018). Soil salinity spreads over 100
countries (Kumari et al., 2015; Zhang et al., 2012), resulting in an annual cost of U$ 27.3 billion
due to the loss of agricultural production (Qadir et al., 2014).

Approximately 99% of all plant species are glycophytes or salt-sensitive, including all
major crops. Halophytes account for the remaining 1% and can complete their life cycle in an
environment where the salt concentration is >200 mM NaCl or >20 dS m™! (Flowers & Colmer,
2008; Shabala and Mackay, 2011). Purslane (Portulaca oleracea L.) is the most well-known
and studied species of this single genus from the Portulacaceae family. It is a dicot species
adapted to inland salt desert and saline habitats - xerohalophyte, and it is a salt
hyperaccumulator plant with a high phytoremediation potential (Devi et al., 2016; Santos et al.,
2016; Ozturk et al., 2020). It also produces many bioactive allelopathic compounds — such as
growth regulators and natural herbicides, which makes it suitable to be used as an allelopathic
plant (El-Shora and El-Gawad, 2015; Petropoulos et al., 2016).

Petropoulos et al. (2015), after studying the chemical composition and yield of six
genotypes of common purslane, reported that the yield (fresh weight) was affected by genotype,
with the highest yield of the tested genotypes being of 33 tons/hectare, and the lowest one being
11.5; with an average of about 22.5 among those genotypes. On the top of this high biomass

productivity seen under a controlled agricultural environment, portulaca is know as a plant with
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a nutritional quality higher than many other leafy vegetables, as it possesses a large spectrum
of pharmacological properties, such as neuroprotective, antimicrobial, antidiabetic, antioxidant,
anti-inflammatory, antiulcerogenic, and anticancer activities; and flavonoids, alkaloids,
polysaccharides, fatty acids, terpenoids, sterols, proteins vitamins, and minerals (Zhou et al.,
2015; Ozturk et al., 2020).

Due to its well-known tolerance to several abiotic stresses, as well as short growth cycle
— completes its life cycle in 2 to 4 months, Borsai et al. (2018) presented the idea of using P.
oleracea as a suitable model to study the mechanisms of plant tolerance to drought and salt
stresses. Furthemore, it is a C4 plant that can develop the crassulacean acid metabolism (CAM)
when subjected to water stress and short photoperiod, making the idea of using it as a model
plant even more interesting (D'andrea et al., 2014; Koch and Kennedy, 1980).

Studies conducted by different researchers have shown that there are differences
between the P, oleracea genotypes in terms of defense mechanisms against high salinity (Ozturk
et al., 2020). Some studies have suggested an initial view of some of these mechanisms
triggered in purslane plants under saline stress, such as the ability to avoid chlorine ion toxicity,
the activation of the ethylene signaling pathway, the carriers' ability to discriminate cations, and
increased antioxidant activity, the synthesis of osmoprotectant proline, and the synthesis of
several other metabolites involved with many biochemical pathways (Sdouga et al., 2019; Xing
etal., 2019; Xing et al., 2020; Zaman et al., 2020).

Metabolomics and transcriptomics are techniques intensively used to assist in the
systemic understanding of plant responses to salinity, envisioning the use of genetic engineering
in sensitive plants of economic importance. The transcriptome and metabolome are the
complete set of RNA and metabolites (primary and secondary), respectively, produced under
specific circumstances or in a cell, tissue, organ, or an entire organism, in a given moment of

its development (Villate et al., 2021). In recent years, due to the technological advances and
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cost reduction achieved with the RNA-seq technique, as well as Mass spectrometry and NMR
spectroscopy, we have witnessed an explosion in the amount of transcriptome and metabolome
data generated and made public (Lowe et al., 2017; Villate et al., 2021).

Salinity stress is known to alter the metabolic and transcriptomic profile of several plant
species (Tada et al., 2019; Arif et al., 2020; Wang et al., 2021). There are many reports on the
tolerance of purslane plants to salt stress, but not many reporting the use of the so-called
multiomics integration (MOI) strategy (Cavill et al., 2016; Jamil et al., 2020). Xing et al.
(2020), who performed an integrative analysis of the transcriptome and metabolome profiles of
purslane, showed that resisting saline stress it reduces the expression levels of chloride channel
proteins to avoid the toxicity of chloride, activates the signaling pathway of ethylene, and
accumulates pyrophosphate and unsaturated fatty acid to regulate energy supply and minimize
oxidative effects on cell structure.

A first step in pursuing a multiomics approach to gain additional insights on purslane's
response to salinity stress is to set up and validate a bioassay to evaluate its
morphophysiological changes due to this stress. This study reports on a robust salinity stress
protocol and the characterization of the morphophysiological responses of young purslane
plants to salinity stress using such protocol. Furthermore, it reports a comprehensive, large-
scale metabolome and transcriptome single and integrated analyses to gain further insights on

the salt-tolerance shown by this halophyte species.



89
2. Materials and Methods
2.1.  Plant material, growth conditions, experimental design and saline stress

Seeds of the B1 accession of purslane, from the Purslane Collection at Embrapa
Agroenergia, were disinfected by soaking in 2% sodium hypochlorite and Tween® 20 for 5
minutes, under slow agitation, then washed with sterile water and dried on sterile filter paper.
After seeded on a culture medium (MS 1/2 strength, Phytagel 0.2%, and pH 5.8) (Murashige
and Skoog, 1962), it was kept for germination in a growth chamber Conviron mod. Adaptis
1000TC (Controlled Environments Ltd, Winnipeg, Canada) at 150 umol m? s of light and
30°C. After 13 days, plantlets were individually transferred to 200 ml plastic cups containing
100g of sterilized substrate - clay soil, vermiculite, and a commercial substrate (Bioplant®),
2:1:1 (v:v:v) ratio — and transferred to another Conviron® growth chamber mod. PGW40 at
25+2°C, 500+20 pmol m s of light, 65+5% air relative humidity, and photoperiod of 16/8h
(light/dark), and kept there until the end of the experiments. The plants were allowed to
acclimatize for three days before starting the experiment.

Young purslane plants (13 days after sowing, plus three days of acclimatization in the
growth chamber) were submitted to and kept under stress for five days. The treatments used
consisted of control (no added salt) and four salinity levels (0.5, 1.0, 1.5, and 2.0 g of NaCl per
100 g of substrate), with ten replicates per treatment in a completely randomized design. NaCl
was dissolved in deionized water to salinize the substrate. The amount of deionized water used
corresponded to the difference between the amount of water previously present in the substrate
and the amount of water necessary for the substrate to reach field capacity. Applying the right
amount of water — up to the substrate field capacity — was a mean of ensuring no leakage of the
solution out of the pot and no loss of Na* or CI". The water lost by evapotranspiration was
replaced with deionized water in a daily basis, and the electric conductivity and water potential

in the substrate solution measured daily, for all replicates.
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2.2.  Phenomic data
2.2.1. Gas exchange measurements

The parameters of leaf gas exchange [net CO; assimilation rate (A4), transpiration rate
(E), stomatal conductance to water vapor (gs), and intercellular CO> concentration (Ci)] were
measured by a portable infrared gas analyzer LI-COR Mod. 6400XT (LI-COR, Lincoln, NE,
USA) equipped with a measuring chamber (2x3 cm) with artificial light system LI-COR Mod.
6400-02B. The extracted data was provided by the OPEN software version 6.3. Measurements
were performed daily, between 9 am to 11 am, on the first fully expanded leaf. The block
temperature was 25°C, PAR was 1500 pumol m? s™!, the relative humidity of the air inside the
measuring chamber was kept between 50 and 60%, the airflow index was 400 pmol s™!, and the
CO:> concentration was 400 ppm in the reference cell, using the CO> mixer model 6400-01.
2.2.2. Chlorophyll fluorescence measurements

The parameters evaluated using the chlorophyll fluorescence technique (Saturation
Pulse Method) via a Walz image fluorimeter model IMAGING-PAM Maxi version (Heinz
Walz GmbH, Effeltrich, Germany), controlled by the ImaginWin software version 2.40b, were:
Fm, Fo, Y(I), Fv/Fm, Y(NPQ), and Y(NO). The IMAG-MAX/L LED lighting head and the
CCD camera were mounted on a 15 mm diameter metal bar on the optional support at a standard

distance of 18.5 cm for all plants. We used the following settings: measurement light = 1,

saturation pulse = 10 (2800 pmol m? s1), pulse amplification factor = 1, damping = 2,

amplification factor in red = 25, Fm factor = 1.055, Factor = 0.999, and actinic light = 280 pmol

251 Plants were kept in the dark for 30 min before measurement, performed in the dark,

m
and on the same leaf used for gas exchange measurements. The induction curve approach was
used with a 40 s delay from the initial saturation pulse until the start of the actinic illumination,

and, from then on, a saturation pulse was emitted every 20 s until completing 315 s. After
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measuring the initial parameters, the software calculated all derivatives parameters. For this,
an area of interest (AOI) that did not include the midrib was demarcated on the leaf surface.
2.2.3. Pigment content measurements

We used a hyperspectral camera Resonon Mod Pika XC (Resonon, Bozeman,
Massachusetts, USA), controlled by software Spectronon version 2.1, to obtain the spectral
signature of the samples and to estimate the levels of pigments. The calculated parameters
were: chlorophyll index [Cl = (Reso-Re30) X Rozo] (Gitelson et al., 2005), photochemical
reflectance index [PRI = (Rs31- Rs70) / (Rs31 + Rs70)] (Gamon et al., 1992), carotenoid index
[CRI = (Rs10) - (Rss0) X Rsoo] (Gitelson et al., 2002). The system consisted of a hyperspectral
camera, a linear translation phase, and a fixed lighting system in the assembly tower.
Hyperspectral images generated by maintaining the same distance for all plants and the
configurations applied according to the manufacturer's recommendations. Five regions of
interest for the average reflectance spectrum were marked on each plant.

2.3.  Scanning electron microscopy analysis

We collected samples of purslane leaves and immediately immersed them in liquid
nitrogen and then stored them at -80°C until lyophilization in a freeze dryer LIOTOP® model
K120 for 48 hours. Lyophilized samples were stored in a desiccator until use. Leaf samples
were coated with a gold layer, 12.3 mm thick, using a Quorum Technologies® model Q 150T
ES with the QT GOLD program. High-resolution images of the regions of interest were
obtained employing a scanning electron microscope (SEM) with detectors of energy dispersive
spectroscopy (EDS). The composition of the sample was identified, qualitatively, in specific
points of the image.

2.4. Metabolomics analysis



92

Leaves from all treatments — five replicates per treatment — were collected at one and
four days after treatment (DAT), immediately immersed in liquid nitrogen, and then stored at -
80 °C until extraction of metabolites.

2.4.1. Chemicals and metabolites extraction

The solvents methanol grade UHPLC, acetonitrile grade LC-MS, formic acid grade LC-
MS and sodium hydroxide ACS grade LC-MS were from Sigma-Aldrich (St. Louis, MO, USA);
and the water treated in a Milli-Q system (Millipore, Bedford, MA, USA).

Based on previous works, the analytical protocol employed was optimized for a fast and
efficient metabolite extraction method. Aliquots of 50 mg of grounded sample were transferred
to 2 mL microtubes, then 1 ml of a solvent mixture (1:3 (v:v) methanol: methyl tert-butyl ether)
was added, and left for homogenization at 4 °C on an orbital shaker for 10 min, followed by an
ultrasound treatment in an ice bath for another 10 min. Next, 500 pL of a 1:3 (v:v) methanol:
water mixture (1:3) was added to each microtube before centrifugation (12,000 rpm, 4 °C for 5
min) in order to promote a phase separation. After centrifugation, three phases were generated:
an upper nonpolar, a lower polar, and a protein pellet. The apolar and polar fractions were
transferred separately to 1.5 mL microtubes and vacuum dried in a Speed vac overnight in room
temperature (Centrivap, Labconco, Kansa, MO, USA).

2.4.2. UHPLC-MS and UHPLC-MS/MS

After resuspending the dry polar fraction by adding 500 pL of 1:3 (v:v) methanol: water
mixture, samples were transferred to vials and analyzed by UHPLC-MS/MS. We used a
UHPLC chromatographic system (Nexera X2, Shimadzu Corporation, Japan) equipped with an
Acquity UPLC HSS T3 (1.8 pum, 2.1 x 150 mm) reverse phase column (Waters Technologies,
Milford, MA), maintained at 35 °C. A polar mobile phase was used, where solvent A was 0.1%
(v/v) formic acid in water and solvent B was 0.1% (v/v) formic acid in acetonitrile/methanol

(70/30, v/v). The gradient elution used, with a flow rate of 0.4 mL min’!, was the following:
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isocratic from 0 to 1 min (0% B), linear gradient from 1 to 3 min (5% B), from 3 to 10 min
(50% B), and 10 to 13 min (100% B), isocratic from 13 to 15 min (100% B), followed by re-
balancing in the initial conditions for 5 min. The rate of acquisition spectra was 3.00 Hz,
monitoring a mass range from m/z 70-1200 (polar fraction) and m/z 300-1600 (lipidic fraction).

A high resolution mass spectrometer was used after the UHPLC separation (MaXis 4G
Q-TOF MS, Bruker Daltonics, Germany) using electrospray source in positive (ESI(+)-MS)
and negative modes (ESI(-)-MS). The settings used on the MS method were: final plate offset,
500 V; capillary voltage, 3800 V; nebulizer pressure, 4 bar; dry gas flow, 9 L min’!, dry
temperature, 200 °C. The rate of acquisition spectra was 3.00 Hz. A sodium formate solution
(10 mM HCOONa solution in 50/50 v/v isopropanol/water containing 0.2% formic acid) was
injected directly through a 6-way valve at the beginning of each chromatographic run for
external calibration. Ampicillin ((M+H] 350.11867 and [M-H] 348.10288) was added to each
sample and was used as an internal standard for peak normalization.

Tandem mass spectrometry (MS/MS) parameters have been adjusted to improve mass
fragmentation, with collision energy ranging from 20 to 50 eV, using a step method. Precursor
ions were acquired using the 3.0 s cycle time. The general AutoMS settings were: mass range,
m/z 70-1000 (polar fraction) and m/z 300-1600 (lipidic fraction); spectrum rate, 3 Hz; ionic,
positive polarity; pre-pulse storage, 8 ps; funnel 1 RF, 250.0 Vpp. The UHPLC-MS and
UHPLC-MS/MS data were acquired by HyStar Application version 3.2 (BrukerDatonics,
Germany).

2.4.3. Metabolomics data analysis

The raw data from UHPLC-MS were exported as mzMXL files, using DataAnalysis 4.2
software (Bruker Daltonics, Germany) and pre-processed using XCMS Online (Gowda et al.,
2014; Tautenhahn et al., 2012), for peak detection, retention time correction and alignment of

the metabolites detected in the UHPLC-MS analysis. Peak detection was performed using
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centWave peak detection (Am/z = 10 ppm; minimum peak width, 5 s; maximum peak width, 20
s) and mzwid = 0.015, minfrac = 0.5, bw = 5 for alignment of retention time. The unpaired
parametric t-test (Welch t-test) was used for statistical analysis.

The processed data (csv file) were exported to MetaboAnalyst 5.0, and submitted to
analysis in the Statistical Analysis module (Chong et al., 2019; Chong & Xia, 2020). Before
the chemometric analysis, all data variables from the polar fraction were normalized by internal
standard (ampicillin-rT = 7.9 min; [M+H], m/z = 350.11867, [M-H], m/z = 348.10288); and, all
data variables from the lipidic fraction were normalized by internal standard (1,2-
diheptadecanoyl-sn-glycero-3-phosphocholine = 4.85 min; [M+H] + m/z = 762.60125). All
three sets of data were scaled using the pareto method.

The differentially expressed peaks (DEP) were selected according to the following
criteria: Variable Importance in Projection — VIP values > 0.99, obtained from the PLS-DA
model; adjusted p.value (FDR — False Discovery Rate) < 0.05, of the Welch t-test; and Log»
(FC — Fold Change) # 1. The selected DEPs were then submitted to analysis in the MS Peaks
to Pathway module (Chong et al., 2019; Chong & Xia, 2020) and analyzed using the following
parameters: molecular weight tolerance of 5 ppm; mixed ion mode; joint analysis using the
mummichog algorithm (Li et al., 2013) with a P-value cutoff of 1.0x10” and Gene Set
Enrichment Analysis — GSEA (Subramanian et al., 2005) algorithms, and the latest KEGG
version of the Arabidopsis thaliana pathway library.

In the case of a DEP with two or more matched forms (isotopes) and later a matched
compound with two or more DEPs, the initial criterion of metabolite selection applied was the
mass difference comparing to the metabolite database — choosing the smallest one. The second
criterion was the adduct study of each candidate back in its mass spectra. Then, we applied the
formula and exact mass data from KEGG; and, finally, performed the putative annotation of the

metabolites of interest, with one or two candidates on each detected ion.
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The KEGG IDs of the matched compounds were then submitted to pathway analysis
(integrating enrichment analysis and pathway topology analysis) and visualization in the
Pathway Analysis module (Chong et al., 2019; Chong & Xia, 2020) and analyzed using the
Hypergeometric Test and the latest KEGG version of the 4. thaliana pathway library.
2.5. Transcriptomics analysis

Based on the results of the morphophysiological characterization, we selected the
following treatments for transcriptomics analysis: control and stressed plants — 0.0 and 1.5 g of
NaCl per 100 g of substrate, respectively — at one and four days after treatment (DAT). Leaves
for transcriptomics analysis were collected from five replicates, immediately immersed in
liquid nitrogen, and then stored at -80 °C until RNA extraction. Three replicates per treatment
were randomly selected for total RNA extraction, library preparation, and sequencing.
2.5.1. Total RNA extraction and quality analysis, library preparation and sequencing

Total RNA was isolated from purslane shoots using the Qiagen RNeasy® Plant Mini kit
(QIAGEN, CA, USA) following the manufacturer’s protocol. RNA quantity was measured
using a Nanodrop Qubit 2.0 Fluorometer (Life Technologies, CA, USA), and RNA quality was
evaluated with an Agilent Bioanalyzer Model 2100 (Agilent Technologies, Palo Alto, CA,
USA). Samples were subjected to RNA-Seq using an Illumina HiSeq platform at the GenOne
Company (Rio de Janeiro, Brazil), using the paired-end strategy. The raw sequence data (24
fastq files) have been uploaded in the Sequence Read Archive (SRA) database of the National
Center for Biotechnology Information under the BioProject PRINA575830 and BioSample
SAMNI12911623 (Portulaca oleracea B1 — TaxID: 46147).
2.5.2. Transcriptomics data analysis

All the transcriptomics analysis was performed with OmicsBox version 1.3 (OmicsBox,
2019). We used FastQC (Andrews, 2010) and Trimmomatic (Bolger et al., 2014) to perform the

quality control, to filter reads and remove low-quality bases. The minimum average quality of
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reads kept was 30, and the minimum length of reads was 75. The default parameters from
OmicsBox version 1.3 were used to create a “de novo” transcriptome without a reference
genome through the softwares Trinity version 2.8.5 (Grabherr et al., 2011) and Bowtie2 version
2.3.5.1 (Langmead and Salzberg, 2012). The RNA-Seq data were aligned to the reference
transcriptome using default parameters from OmicsBox version 1.3 through software STAR
(Dobin et al., 2013); and, to quantify expression at gene or transcript level we used the default
parameters from OmicsBox version 1.3 through HTSeq version 0.9.0 (Anders et al., 2015).

The pairwise differential expression analysis between different experimental conditions
was performed through edgeR version 3.28.0 (Robinson et al., 2010), applying a simple design
and an exact statistical test, without the use of filter for low counts genes. The functional
analysis of the differentially expressed genes (DEGs) was performed combining differential
expression results with functional annotations from the high-throughput functional annotation
and data mining pipeline in OmicsBox version 1.3 (Go6tz et al., 2008).

2.6. Integratomics analysis

Previously to the integration of metabolome and transcriptome data, a fasta file
containing all 97,613 ORFs from the reference transcriptome was submitted to analysis in the
GhostKOALA annotation tool for K number assignment of KEGG genes (Kanehisa et al.,
2016).

Omics Fusion (Brink et al., 2016), the web platform for integrative analysis of Omics

data (https:/fusion.cebitec.uni-bielefeld.de/), was employed for carrying out the integrative

analysis of transcripts and metabolites. The input data used was the Logz (FC) data of
differentially expressed transcripts and metabolites. First, to check the data distribution, we
used the Data Overview module and then the Scatter Plot one for the correlation analysis

between the two sets of data — a pairwise combination of the different scenarios evaluated.


https://fusion.cebitec.uni-bielefeld.de/
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For subsequent analysis, we used the modules KEGG feature distribution and Map data

on the KEGG pathway. The former module employed to verify which metabolic pathways had
more transcripts and metabolites differentially expressed, and the latter to map these data
differentially expressed in the metabolic paths in question. For the KEGG feature distribution
module, we applied the joint analysis of transcripts and metabolites with a threshold of 8, and
for the Map data on the KEGG pathways, the organism code bvg (Beta vulgaris — sugar beet)

was used for mapping.
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3. Results
3.1. The addition of salt led to changes in the electrical conductivity and water potential
of the substrate, and promoted changes in biomass production and visual aspect of the
plants

As the amount of NaCl added to the substrate rose, it led to a dose-dependent rise in
electrical conductivity — EC (Figure 1A) and a fall in water potential (Figure 1B) of the
saturation extract. The control (no added salt) showed an EC lower than the minimal set to
consider the soil to be saline (4 dS m™), as expected. The three highest amounts of NaCl used
resulted in ECs higher than 20 dS m!; the 2.0 g of NaCl/ 100 g of the substrate resulted in an
EC a little over 50 dS m™!. The water potential in the substrate decreased as the NaCl amount
rose, and the treatment that received the highest amount of NaCl showed water potential of
almost -1.8 MPa.

As the amount of NaCl in the substrate increased, the shoot (Figure 1C) and root (Figure
1D) biomass of young purslane plants decreased about 50% and 90%, respectively, in the stress
treatments with >1.5 g of NaCl/ 100 g of the substrate. The visual aspect of the purslane plants
observed at the end of the experiment was recorded (Figure 2). When comparing to the control
(Figure 2A), except for the smallest amounts of NaCl used (Figure 2B and 2C), changes in
appearance and color of the leaves and stem were evident in the stress treatments with >1.5 g
of NaCl / 100 g of the substrate (Figure 2D and 2E).

3.2.  Salt stress affected gas exchange, and pigment content in purslane plants

All purslane plants showed similar values for all the gas exchange variables before
adding NaCl — day zero (Figure 3). One day after adding NaCl to the substrate, one already
can see a reduction in the rates of CO assimilation (A), transpiration (E), and stomatal
conductance to water vapor (gs), which correlated with the amount of NaCl used (Figure 3A,

3B, and 3C). Thereafter, those variables remained reasonably constant throughout the
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experiment. On the other hand, there was an increase in intercellular CO. concentration (Ci) in
the two treatments with the highest amount of NaCl (Figure 3D). The reductions in A and E
were proportional to gs at the intermediate salt stress levels, indicating a stomatal limitation to
gas exchange. The increase in Ci at the highest levels of salt stress pointed to a difficulty in
CO; assimilation, which intensified over time.

The chlorophyll fluorescence variables remained relatively stable in control plants
throughout the experiment (Figure 4). However, changes occurred as the saline concentration
in the substrate increased. In general, from the addition of 1.0 g of NaCl to the substrate, the
leaves of purslane plants began to show a reduction in the maximum fluorescence in the dark
(Fm), the effective quantum yield of photosystem Il [Y(I1)], and maximum quantum yield of
photosystem Il (Fv/Fm). On the other hand, there was an increase in initial fluorescence in the
dark (Fo), in the quantum yield of regulated [Y(NPQ)], and unregulated [Y(NO)] dissipation
of the energy of the light. Such responses accentuate throughout the stress period, mainly in
the treatments with >1.5 g of NaCl / 100 g of the substrate.

There were practically no differences between the pigment content before the onset of
the saline stress (day zero). As the period of stress went on, there was a downward trend in the
chlorophyll and carotenoid indices in a dose-dependent manner. At the same time, PRI values
were also reduced in a dose-dependent way, indicating that the plants kept the xanthophylls
cycle functioning, despite the degradation of photosynthetic pigments. In general, as higher
was the NaCl level applied, the lower the values of chlorophyll, carotenoid, and photochemical
reflectance indexes were on day 5 (Figure 5).

3.3.  Appearance of salt crystals on the edges of purslane leaves

As some white crystals appeared on the margin of leaves in some young purslane plants

under saline stress (data not shown), leaf samples were collected for microscopy analysis.

Scanning electron microscopy (SEM) images showed the formation of wrinkles on the leaf
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surface, probably due to dehydration (Supplementary Figure 1). In general, the stomata on the
leaves of salt-stressed purslane plants started to close already in the lowest NaCl level used, and
were completely closed on the highest levels of NaCl used. It was possible to see the white
crystals in the surrounding and on top of the stomata (Supplementary Figure 1).

To identify the chemical composition of these crystals, we obtained SEM images with
detectors of energy dispersive spectroscopy (EDS) (Figure 6A and 6B). The compositional map
allowed identifying the crystals' main constituents as Na“, CI', and K" (Figure 6B). These
results indicate that P. oleracea has a mechanism of salt exclusion operating on the leaves,
which has its role in salt tolerance.

3.4. Purslane metabolome under salinity stress — single analysis

PLS-DA (partial least squares discriminant analysis) permutations tests were performed
using the all treatments data set (control and stressed plants at 1 and 4 DAT) to validate the
model, applying permutation number = 2,000. When evaluated by group separation distance,
the probability that the model was created by chance was less than 0.0005, independent of the
fraction — polar-positive, polar-negative, and lipidic-positive; and the evaluation by prediction
accuracy also showed a probability less than 0.0005, independent of the fraction. The cross-
validation analysis determines the optimal number of components necessary to build the PLS-
DA model by measuring three criteria. These criteria are R? (the sum of squares captured by
the model), Q? (the predictive ability of the model estimated by cross-validation), and Accuracy
(Chong et al., 2019). When choosing the three-component model based on Q?, the Q? value
obtained for the all treatments data set was 89.98%, 80.55%, and 85.82%, for the polar-positive,
polar-negative, and lipidic-positive fraction, respectively (data not shown).

Before submitting the data for analysis in the statistics module, they were organized as
follows: age effect — AE (samples from the control plants at 1 and 4 days after treatment - DAT);

short-term stress — STS (the control and the stressed plants at 1 DAT); long-term stress 1 —LTS1
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(the control and the stressed plants at 4 DAT); and long-term stress 2 — LTS2 (the stressed plants
at 1 and 4 DAT). Each data set had three biological replicates per treatment.

The AE data set contained 1,003, 2,008, and 1,113 peaks, respectively, in the polar-
positive, polar-negative, and lipidic-positive fractions (Table 1). The accumulated variances
explained by the first three principal components tested were 88.70%, 85.70%, and 50.80% for
the fractions above-mentioned, respectively (data not shown). All but two peaks did not show
a difference in expression between 1 and 4 DAT (Table 1). These results clearly show that there
is no age effect modifying the metabolome profile of purslane plants between 1 and 4 DAT. As
already stated in the Materials and Methods section, a differentially expressed peak (DEP) is a
peak with a VIP > 0.99, a FDR < 0.05, and Log> (FC) > 0 (upregulated) or Log> (FC) <0
(downregulated).

The short-term stress data set was employed to evaluate how distinct are the metabolome
profiles of the control and stressed plants at 1 DAT. The samples applied to evaluate the STS
scenario contained 1,034, 2,046, and 1,114 peaks, respectively (Table 1). The accumulated
variances explained by the first three principal components tested were 96.10%, 95.10%, and
88.90% for the fractions above-mentioned, respectively (data not shown). On average, 90.38%
of the peaks did not show a difference in expression between control and stressed plants at 1
DAT, while 141, 198, and 10 peaks upregulated, and 18, 52, and 4 downregulated, respectively
(Table 1).

The long-term stress 1 data set was employed to evaluate how distinct are the
metabolome profiles of the control and stressed plants at 4 DAT. The samples applied to
evaluate the LTSI scenario contained 1,034, 2,046, and 1,114 peaks, respectively (Table 1).
The accumulated variances explained by the first three principal components tested were
98.40%, 91.80%, and 91.80% for the fractions above-mentioned, respectively (data not shown).

On average, 92.95% of the peaks did not show a difference in expression between control and
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stressed plants at 4 DAT, while 46, 182, and 5 peaks upregulated, and 33, 67, and 10
downregulated, respectively (Table 1).

At last, the long-term stress 2 data set was employed to evaluate how distinct are the
metabolome profiles of the stressed plants at 1 and 4 DAT. The samples applied to evaluate the
LTS2 scenario also contained 1,034, 2,046, and 1,114 peaks, respectively (Table 1). The
accumulated variances explained by the first three principal components tested were 91.50%,
92.40%, and 90.80% for the fractions above-mentioned, respectively (data not shown). On
average, 92.11% of the peaks did not show a difference in expression between the stressed
plants at 1 and 4 DAT, while 2, 15, and 4 peaks upregulated, and 53, 127, and 123
downregulated, respectively (Table 1).

Taken together, the metabolome profiles obtained from the analysis of the STS, LTSI,
and LTS2 data sets in the Statistical Analysis module of MetaboAnalyst 5.0 revealed 748 DEPs
— those peaks differentially expressed in STS, plus those DEPs in LTS2 but not in STS, and
plus those DEPs in LTS1 but not in STS or LTS2. This group of 748 DEPs was submitted to
functional interpretation via analysis in the MS Peaks to Pathway module (Chong et al., 2019;
Chong and Xia, 2020), as described in the Materials and Methods section. The combined
mummichog and GSEA pathway meta-analysis resulted in a list of 68 ranked pathways enriched
in this group of DEPs. Six had combined p.value <0.05 — Alanine, aspartate and glutamate
metabolism, Monobactam biosynthesis, Tryptophan metabolism, Lysine biosynthesis,
Aminoacyl-tRNA biosynthesis, and C5-Branched dibasic acid metabolism pathways (Figure
7A).

After applying the initial criteria of metabolite selection, as described in the Materials
and Methods section, 109 DEPs (Supplementary Table 1) with a hit to just one known
compound were submitted to the pathway topology analysis module, resulting in a list of 63

ranked pathways (Figure 7B). The Nicotinate and nicotinamide metabolism, C5-Branched
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dibasic acid metabolism, and Phenylpropanoid biosynthesis pathways, with an FDR (False
Discovery Rate) of 0.014831, 0.017755, and 0.041788, came out at the top of this rank,
respectively; and an impact of 0.4, 1.0, and 0.2, respectively. These three pathways had 20
differentially expressed metabolites with the highest level of significance in the set of 109
matched metabolites submitted to analysis; being 6 out of its 13 metabolites in the Nicotinate
and nicotinamide metabolism pathway, 4 out of its 6 in the C5-Branched dibasic acid
metabolism, and 10 out of its 46 in Phenylpropanoid biosynthesis (Supplementary Table 1).

All the 109 DEPs with a hit to just one known compound were also submitted to
correlation analysis by means of pairwise comparison of three out of the four scenarios tested
(AE, STS, LTS1, and LTS2), using Log2(FC) values. As there was not an age effect detected
in the metabolomic analysis (Table 1), the AE scenario was not used for correlation analysis.
The correlation analysis revealed strong positive correlations between STS and LTS1, and
LTS1 and LTS2 (Figure 8A and 8C), and a weak positive correlation between STS and LTS2
(Figure 8B). As STS compares control and stressed plants at 1 DAT, and LTS2 compares
control and stressed plants at 4 DAT, this weak positive correlation implies that the behavior
seen for most of the 109 DEPs at short-term stress does not repeat at the long-term stress.
Meanwhile, the behavior seen in most of the 109 DEPs in STS repeats itself in LTS1; the same
is true when comparing LTS1 and LTS2. When comparing STS and LTS1, the Log2(FC) value
at LTS1 is already the result of the differential expressed changes seen at 1 and 4 DAT; but
when comparing STS and LTS2, the Logz(FC) value in LTS2 must be added to the value found
in STS to reflect the final change in expression level. In the case of comparing LTS1 and LTS2,
the Logz(FC) value at LTSI reflects the final change in expression level due to the stress.

Taken together, the results from this large-scale metabolome single analysis reveal three

pathways affected by salt stress in the leaves of young purslane plants, as well as several
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metabolites — from these and other pathways — that should be the focus of further
characterization of the role of metabolites in the tolerance of this halophyte species to salt stress.
3.5. Purslane transcriptome under salinity stress — single analysis

The raw sequence data (26 fastq files) generated in this study have been uploaded in the
Sequence Read Archive (SRA) database of the National Center for Biotechnology Information
under Portulaca oleracea B1 - BioProject number of PRINAS575830, BioSample
SAMNI12911623. A total of 296,493,969 high-quality-pairs of reads - with an average quality
of reads >30, and the minimum length of 75 nucleotides — remained after pre-processing the
raw sequence data (data not shown). These high-quality sequences were used to assemble the
Reference Transcriptome (RT), as well as to perform the mapping, counting, and differential
expression analysis. The RT assembled has 365,297,960 total assembled bases that resulted in
415,379 transcripts, 252,197 genes, and 49,412 complete ORFs (data not shown). The RT
presented a 42.09% GC content, 879.43 bases as average size of transcripts, and a N50 equal
to 1,493 bases per transcript.

The differential expression analysis was performed in order to measure the a possible
age effect — AE (samples from the control plants at 1 and 4 days after treatment — DAT), as well
as to measure the short-term stress — STS (the control and the stressed plants at 1 DAT) the
long-term stress 1 — LTS1 (the control and the stressed plants at 4 DAT), and long-term stress
2 — LTS2 (the stressed plants at 1 and 4 DAT). Out of the 252,197 genes from the RT, 29,737
remained for differential expression analysis after applying the following criteria: CPM filter
equals to 1.0, number of samples reaching CPM filter equals to 3, normalization method TMM
(Trimmed mean of M values). Differentially expressed genes (DEGs) are those with a FDR <
0.05, and FC > 1 (upregulated) or FC < -1 (downregulated).

Differential expression analysis of the AE data set revealed 3,512 (11.81%) upregulated

and 2,868 (9.64%) downregulated genes in the control plants at 4 DAT when comparing to 1
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DAT (Table 1). In the STS scenario, a total of 8,430 (28.35%) upregulated and 8,280 (27.84%)
downregulated in the stressed plants comparing to the control plants at 1 DAT. In the LTS1
scenario, a total of 11,005 (37.01%) upregulated and 11,550 (38.84%) downregulated in the
stressed plants comparing to the control plants at 4 DAT. At last, in the LTS2 scenario, 8,693
(29.23%) upregulated and 8,994 (30.25%) downregulated in the stressed plants at 4 DAT
comparing to the stressed ones at 1 DAT.

The 29,737 genes submitted to differential expression analysis in all four scenarios (AE,
STS, LTSI, and LTS2) were separated accordingly to the combined profiles in 15 groups
(Figure 9). A total of 442 genes (1,49%) were upregulated in all four scenarios (Figure 9A),
while 2,755 (9,26%) did not differentially expressed in all scenarios (Figure 9B), and 524
(1,76%) were downregulated in all scenarios (Figure 9C). When considering those genes that
up- or downregulated twice in STS and LTS2, but not in AE, a total of 3,053 (10,27%) and
2,864 (9,63%) genes were selected, respectively (Figure 9A and 9C). No genes were found up-
or downregulated only in AE and STS, or in AE and LTS1, but not in the other scenarios (Figure
9A and 9C).

All 29,737 genes were also submitted to correlation analysis by means of pairwise
comparison of the four scenarios tested (AE, STS, LTS1, and LTS2), using Log>(FC) values.
As there was an age effect detected in the transcriptomic analysis (Table 1), the AE scenario
was also used for correlation analysis. The genes not differentially expressed in STS were not
used in the correlation analysis against AE, LTS1 and LTS2; the same is true for LTS1 against
AE and LTS2, and for LTS2 against AE (Figure 10). The correlation analysis revealed strong
positive correlations between STS and LTS1, and LTS1 and LTS2 (Figure 10D and 10F), weak
positive correlations between AE and STS, AE and LTS2, and STS and LTS2 (Figure 10A,

10C, and 10E), and weak negative correlation between AE and LTS1 (Figure 10B).
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A weak positive or negative correlation implies that the behavior seen for most of the
genes in one scenario does not repeat the second scenario evaluated. Even in such a case, it is
possible to identify gene(s) with a behavior of interest for further studies. As an example, one
can see in the fourth quadrant in Figure 10B the existence of a group of genes that the level of
upregulation in AE is exactly the same of downregulation in LTS1; meaning that the saline
stress affected the expression of these genes in a way that let their expression level to what it
was in the control plants at 1 DAT. Another example is found in Figure 10C, on the line
separating the first and the second quadrants, near the Log2(FC) value of 10, where genes not
differentially expressed in AE experienced an increase in expression of about 1,000 fold
between 1 and 4 DAT.
In the case of the strong positive correlation seen when comparing STS and LTS1, and
LTS1 and LTS2, the behavior seen for most of the genes in one scenario does repeat itself in
the second scenario evaluated. When comparing STS and LTSI, the Log2(FC) value at LTS1
is already the result of the differential expressed changes seen at 1 and 4 DAT; but when
comparing LTS1 and LTS2, it is the Log2(FC) value at LTS1 that reflects the final change in
expression level due to the stress. It can be infer that genes upregulated twice - in STS and
LTS2 — are among those most important to further characterization regarding their role in the
response of this halophyte species to salinity stress. Even though there is a weak positive
correlation when comparing STS and LTS2, it was possible to identify several genes that
upregulated twice (Figure 10E).
Taken together, the results from this large-scale transcriptome single analysis reveal
many opportunities for further characterization of salt-responsive genes aiming either the
identification of candidate genes for salt tolerance or the prospection of promoter sequence for

biotechnological application — salt stress-dependent expression of genes of interest.
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3.6. Purslane transcriptome and metabolome under salinity stress — integrative
analysis

The annotation of the fasta file containing all 97,613 ORFs from the purslane RT in
GhostKOALA, against the genus prokaryotes + family eukaryotes databases, resulted in
38,700 entries annotated under functional categories (data not shown). The KEGG Mapper
reconstruction analysis allowed the identification of 1,802 enzymes from eudicots (data not
shown).

Out of the 415,379 isoform features from the purslane RT, 72,830 remained for
differential expression analysis after applying the following criteria: CPM filter equals to 1.0,
number of samples reaching CPM filter equals to 3, normalization method TMM (Trimmed
mean of M values). Out of these 72,830 isoform features, 23,834 did not differentially
expressed in any of the four scenarios tested (AE, STS, LTS1, and LTS2), and 48,996 did in at
least one of these scenarios (data not shown). Differentially expressed isoforms (DEIs) are
those with a FDR < 0.05, and FC > 1 (upregulated) or FC < -1 (downregulated). A search for
the 1,802 enzymes among the 48,996 DEIs led to a list of 5,883 DEIs with KO number and
E.C. number.

Only two out the four scenarios studied underwent transcriptome and metabolome
integration analysis; short-term stress - STS (control vs stressed plants at 1 DAT), and long-
term stress 1 — LTS1 (control and stressed plants at 4 DAT). In order to do that, the list of 109
DEPs was first filtered to select only those differentially expressed in STS or LTS1; and the
same was done with the list of 5,883 DEIs. The filtered lists from DETs and DEIs were then
combined for the integration analysis. In the STS scenario, the Glycerophospholipid
metabolism pathway came first in the rank of combined enzymes and compounds occurrency,
with 6 enzymes and 5 compounds; while in the LTS1 scenario the Purine metabolism pathway

came first with 4 enzymes and 7 compounds (Table 2). When considering both scenarios
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studied, the Glycerophospholipid metabolism pathway comes first as the most affected pathway
in young purslane plants under high salinity stress, followed by Cysteine and methionine

metabolism (Table 2).
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4. Discussion
4.1.  Morphophysiological responses of young purslane plants to saline stress

When adding NaCl to a solution or wet substrate, this salt dissociates into its component
ions - Na* and CI'. These ions enable the conduction of electric current (Visconti and de Paz,
2016). The higher the concentration of such ions in the solution, the greater its electrical
conductivity (EC) (Polle and Chen, 2015; Rhoades et al., 1999), as as seen in the Figure 1A.
On the other hand, the dissociation of the component ions of the salt in solution reduces the
osmotic potential (Figure 1B), as water molecules are needed to dissolve the ions (Cordeiro,
2001; Ramoliya et al., 2004). Both increase in EC and reduction in water potential affect plant
metabolism (Ali et al., 2019; Maksimovic and Ilin, 2012; Munns, 2002; Parida and Das, 2005;
Duarte and Souza, 2016; Mane et al., 2011).

The drop in leaf gas exchange rates is a plant common response to salt and its intensity
depends on the level of plant tolerance to salinity stress (Everard et al., 1994; Gale, 1975;
Koyro, 2006; Parihar et al., 2015; Alam et al., 2015; Xing et al., 2019). At the lowest doses of
salt, that is, up to 1.0 g of NaCl / 100 g of soil, the drop in gas exchange rates for young purslane
plants seems to be due to stomatal closure, as net CO assimilation, transpiration rate and
stomatal conductance fell in the same proportion (Figure 3). This is basically due to the
reduction of water potential, which makes difficult for the plants to absorb water and results in
partial or total closure of stomata, depending on the severity of the salt stress (Flowers et al.,
2015; Gale, 1975; Qiu et al. , 2003). At higher doses, probably, the activities of CO,-fixing
enzymes decreased during stress, as the intercellular CO2 concentration increased. Such
increase was intensified over time (Figure 3D). Similar results were previously observed in
purslane (Alam et al., 2015; Xing et al., 2019). According to Van Zelm et al. (2020), this finding
suggests that there may also be an ionic effect, or at least a stomatal closure-independent effect,

of sodium on photosynthesis.
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In purslane plants under saline stress of 0.5 g of NaCl, or approximately 8 dS m™, gas
exchange rates did not differ much from the control plants, mainly at the end of the stress period
(Figure 3). These plants managed to lose only a small percentage (13.27%) of shoot biomass
(Figure 1C), while they lost almost 50% of the root biomass (Figure 1D). Under saline stress
of 20 dS m™ or more, stomatal closure was more pronounced. As for the intercellular CO;
concentration, the results suggest that the mesophyll's resistance to carboxylation occurred from
the 1.5 g NaCl level (Figure 3D). Insummary, as a consequence of the changes in gas exchange
rates at salt stress up to 50 dS m™, purslane plants got smaller (shoots and roots), but did not
die (Figure 2).
In general, the aerial part of the plant is more affected than roots by salt stress (Acosta-
Motos et al., 2017; Munns and Tester, 2008). In some cases, biomass production is stimulated
by salinity depending on the salt concentration, as in Atriplex nummularia L. that is stimulated
at 300 mM but inhibited at 600 mM NaCl (de Aradjo et al., 2006). In Chloris gayana and
Salvadora persica, root growth was more affected than shoot (Céccoli et al., 2011; Rao et al.,
2004), as observed in young purslane plants (Figure 1). Due to their direct contact with the
soil, roots are considered the first damage sites (Rewald et al., 2013). In another study, purslane
plants showed reductions in the aerial part and roots as a function of salinity (150 mM and 200
mM NaCl) (Xing et al., 2019).
Recently, Xing et al. (2019) reported that, under saline stress between 100 and 200 mM
NaCl, purslane plants significantly decreased the net photosynthetic rate, increased the
intercellular concentration of CO3, the content of malondialdehyde, the production rate of O2’,
and the activity of the enzymes SOD, POD, and CAT. Such results suggest the inhibition of
photosynthesis and the occurrence of oxidative stress. Taking into consideration the changes

in the net photosynthetic rate and the intercellular concentration of CO2, our results correlate to
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the one found by Xing et al. (2019), even though the NaCl concentrations and plant ages used
were different.

Chlorophyll fluorescence variables showed a differential effect of the level of saline
stress on the photochemical apparatus (Figure 4). The addition of salt to the substrate,
regardless of the level, caused damage to the chloroplast membrane system, which became
more pronounced throughout the stress period, as can be inferred from the increase in minimum
fluorescence yield on dark-adapted plants (Fo), the drop in maximum fluorescence yield on the
dark-adapted plants (Fm), and, consequently, in maximum PSII quantum yield (Fv/Fm). The
electron flow in the Z scheme of photosynthesis fell over time. After five days, such drop was
directly proportional to the level of NaCl added to the substrate, as can be inferred from the
PSII effective quantum yield [Y(I1)] data. The light energy not used to flow the electrons in
the Z scheme was directed towards the generation of heat, as seen in the regulated energy
dissipation quantum yield [Y(NPQ)], but up to a certain limit of saline stress. This limit was
up to 1.0 g of NaCl in the substrate, whose fluorescence emission in the light, despite the initial
increase, was practically the same as the control at the end of the stress period (Figure 4).
Purslane plants continued to increase the emission of fluorescence in the light with the increase
of the level of salt in the substrate, as seen in the unregulated energy dissipation quantum yield
[Y(NO)]; meaning that plants no longer had the means to regulate the extinction of fluorescence
by their photochemical apparatus.

The drop in the levels of Cl and CRI (Figure 5) was an expected result for purslane
plants under salt stress, considering that it is recurrently reported for several plant species, such
as Salicornia persica and S. europaea (Aghaleh et al., 2009), Ricinus communis L. (Li et al.,
2010) and Cakile maritime (Megdiche et al., 2008). In the case of purslane, the effect was
observed especially from 1.0 g of NaCl in the substrate, and more sharply at higher levels of

NaCl. It is interesting to note that at the end of the stress period, the decrease in PRI was
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proportional to the salt stress (Figure 5C), which indicates that the plants probably kept the
xanthophyll cycle in full operation at all salt levels. The activation of the xanthophyll cycle is
a response observed in some halophyte species under salt stress (Qiu et al., 2003; Rabhi et al.,
2012) and is related to the protection of the photosynthetic apparatus against photoinhibition
damage (Qiu et al., 2003).

The effect of salt stress on biomass accumulation in purslane plants was most likely
related to the osmotic effect, which resulted in stomatal closure and restricted the entry of CO>
into the leaf mesophyll. So much so that the drop in biomass accumulation was proportional to
the drop in net CO2 assimilation rates. Evidently, throughout stress, additional mechanisms
contributed to the effect of saline stress being more pronounced in the roots than in the aerial
part. The reduction of biomass due to high salinity is a common response from several species
such as Atriplex griffithii var. stocksii (Khan et al., 2000b), Suaeda fruticosa L. (Khan et al.,
2000a), Mentha piperita L. (Khorasaninejad et al., 2010), Vetiveria zizanioides (L.) Nash (Mane
etal., 2011), and even for Portulaca oleracea (Alam et al., 2015; Alam et al., 2014).

Some purslane plants under salt stress showed structures resembling salt crystals on the
leaf surface, which was confirmed to be constituted mainly of Na*, Cl-and K* (Figure 6). This
salt found there could only have been excluded by the leaves. The ability to exclude salt thought
roots and leaves is a characteristic observed in several halophyte species, such as Limonium
bicolor, Reaumuria hirtella, Spartina anglica, Limonium vulgare, Armeria maritima, Glaux
maritime, and others (Rozema et al., 1981; Ramadan, 1998; Flowers et al., 2010; Yuan et al.,
2016). Such ability represents a self-regulating behavior, and the secretion can occur through
epidermal pores and glands located in roots, shoots, and leaves. The intracellular transport
mechanisms are responsible for moving excess salt from the surface cells to the outside of
leaves or stem, and as the water evaporates, it is possible to observe salt crystals (Arora and

Rao, 2017). In the present study, the salt crystal-like structures seen on and around closed
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stomata on the leaves of young purslane plants had its composition mapped, indicating that
sodium, chlorine, and potassium ions were excluded probably though salt glands, and

accumulated on the leaf surface.
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4.2.  Single and integrated changes in the transcriptome and metabolome profiles of
young purslane plants in response to saline stress
4.2.1. Insights from the transcriptome and metabolome profiles as a result of single-omics
analyses

The conceptual integration strategy analyses the different omics data sets separately
(single analysis), and the connection of the resulting conclusions results arbitrarily without
further analysis of the data sets (Cavil et al., 2016; Rai et al., 2017; Jamil et al., 2020). This
approach to connect conclusions from the single-omic analysis can produce valuable insights;
however, it may miss reproducible associations when multiple omics data sets are analyzed
together (Cavil et al., 2016; Rai et al., 2017). Jamil et al. (2020) state that this approach should
not be considered a part of the MOI approach.

The single-metabolomic analysis done in the present study led to the identification of
three pathways - Nicotinate and nicotinamide metabolism, C5-Branched dibasic acid
metabolism, and Phenylpropanoid biosynthesis - at the top of a rank of 63 generated when using
the integrating enrichment and pathway topology analysis protocol from the pathway analysis
module in MetaboAnalyst 5.0 (Chong et al., 2019; Chong and Xia, 2020). Together, these three
pathways had 20 differentially expressed metabolites out of 109 identified in the MS Peaks to
Pathway module (Supplementary Table 1).

The (single) analysis of the changes in the transcriptome profile of young purslane plants
in response to saline stress led to the identification of several different groups of genes,
accordingly to the response seen in four distinct scenarios analyzed — AE, STS, LTS1, and LTS2
(Figure 9). A group of 5,917 genes — out of the 29,737 genes from the purslane reference
transcriptome — were up or downregulated twice, respectively, in STS and LTS2 but not in AE.
The set of genes that upregulated in the STS scenario, as a consequence of the osmotic stress,

and again in the LTSI, as a consequence of the ionic and oxidative stresses, is a database
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valuable for further studies aiming the selection and deep structural/functional characterization
of genes that may play a role in purslane high tolerance to salinity stress.

This present study did not attempt to connect conclusions from these two single-omic
analyses. It has focused on getting insights on candidate genes and metabolites for further
characterization — via structural/functional characterization of genes and proteins or targetted
metabolomics. The strategy applied in this study to perform this element-based correlation
analysis, comparing different scenarios in a pairwise manner, turned out to be a powerful tool
to select candidate salt-responsive genes for future work aiming for functional genomics
studies.

4.2.2. Insights from the transcriptome and metabolome profiles as a result of MOI
analyses

The Multi-Omics Integration (MOI) System presented by Jamill et al. (2020) has
classified the integration strategies in three levels with increasing degrees of complexity:
element- (level 1), pathway- (level 2), and mathematical-based approach (level 3). Here, a level
2 approach integrated transcriptome and metabolome data sets resulted from single—omics
analysis. The differently expressed enzymes selected from the transcriptomics dataset are the
central factor needed to perform the level 2 integration strategy in the Omics Fusion (Brink et
al.,2016). They allow to link genes and metabolites from a metabolic pathway and consequently
point out the ones most affected by the salt stress.

The transcriptome-single analysis using the Omics Fusion platform (Brink et al., 2016)
led to 75 pathways in the STS scenario, and the same was true to metabolome-single one (data
not shown). The MOI (transcriptome and metabolome) analysis of the STS scenario led to 44
pathways having differentially expressed transcripts and metabolites. Meanwhile, the single
analysis revealed 76 and 63 affected ones in the LTSI scenario. The MOI analysis led to 42

pathways having differentially expressed transcripts and metabolites. When combining the
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results of the MOI analysis — STS and LTS 1 — it showed that 35 were common to both scenarios,
while nine were present only in STS, and seven only in LTS1 (Table 2).

The glycerophospholipid metabolism pathway was the one with the highest number of
combined enzymes and metabolites differentially expressed in STS, followed by the cysteine
and methionine metabolism (Table 2). Previously, these pathways were linked to plant response
to abiotic stress, including salt stress (Hou et al., 2016; Zhang et al., 2017; Sui et al., 2017; Xia
et al., 2019; He and Ding, 2020), and the overexpression of genes from these pathways have
shown to be effective in conferring tolerance to salt stress (Sui et al., 2017; Ma et al., 2017).

Taken together, the results from the MOI analysis reveals a set of pathways with
enzymes and metabolites differentially expressed due to salinity stress at 1 DAT (STS) and 4
DAT (LTS), which is also a database valuable for new studies aiming to further characterize the
mechanisms behind the strong tolerance seen in young purslane plants to saline stress.

This present study did not explore the changes in the metabolome and transcriptome
profiles in the roots of young purslane plants. The main reason for that was the small amount
of root tissue available at the end of the experiments (Figure 1D). We performed new studies
where new omics data - transcriptomic, metabolomic, ionomic, and proteomic - were gathered
from adult purslane plants under salinity stress to circumvent this problem seen in young

purslane plants (Salgado et al., unpublished).
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5. Conclusion
- The protocol developed in this study for assessing purslane (Portulaca oleracea) responses to
saline stress is successful in generating different levels of stress by gradients of electrical
conductivity and water potential in the saturation extract of the substrate, according to the added
NaCl;
- As expected from a halophyte species, young purslane plants remained alive under very high
levels of salinity stress (> 20 dS m™"). The salt crystal-like structures seen on and around closed
stomata on the leaves of these plants are constituted mainly by Na*, CI', and K", indicating that
P, oleracea has a mechanism of salt exclusion operating on the leaves, which has its role in salt
tolerance;
- The correlation analysis strategy applied in this study produced a list of salt-responsive
metabolites and genes valuable for future studies aiming at prospecting genes conferring high
tolerance to salinity stress; and
- The MOI strategy applied in this study led to a group of 51 pathways that had at least one
enzyme and one metabolite differentially expressed due to salinity stress. This pathways list is
a valuable tool for future targetted-metabolomics and transcriptomics studies aiming to deepen
our knowledge on the mechanisms behind the high tolerance of young purslane plants to salinity

stress.
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Figure 1. Electrical conductivity (A) and water potential (B) of the substrate used for
growing purslane plants to which different levels of NaCl have been added.. Biomass
accumulation in shoots (C) and roots (D) of young purslane plants grown for five days under
different concentrations of NaCl. The values represent the average of five replicates, and the
bars represent the standard error of the mean. Red dashed line: EC =4 dS/m (above that level
is considered saline soil); Blue dashed line: EC =20 dS/m (plant completing its life cycle above

this EC is considered as halophyte); and Gray dashed line: EC = 50 dS/m (seawater salinity).
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Figure 2. Young purslane plants grown for five days under different concentrations of

NacCl.
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Leaf gas exchange in young purslane plants grown under increasing

concentrations of NaCl in the substrate: (A) Net CO> assimilation rate (4); (B) stomatal

conductance rate to water vapor (gs); (C) transpiration rate (E); (D) intercellular CO>

concentration (Ci). The values represent the average of five replicates, and the bars represent

the standard error of the mean.
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Figure 4. Representative images (1) of the mean of variables derived from the chlorophyll
fluorescence technique (saturation pulse method) in purslane plants after 1 and 4 days of
submission to increasing levels of NaCl in the growing substrate. The images of Fo, Fv/Fm,
and Fm' were obtained in plants adapted to the dark for 30 minutes, while the images of Y (II),
Y(NO) and Y(NPQ) were captured after 5 minutes of actinic illumination at 280 pumol of light
m2 s™!. The values of the chlorophyll fluorescence parameters in the images can be compared
with the color scale in the right bar. Changes over time in chlorophyll fluorescence parameters
(2) for control and salinity stressed young purslane plants. The values represent an average of
five replicates, and bars represent the standard error of the mean. Fo: minimum fluorescence
yield on dark-adapted plants; Fm: maximum fluorescence yield on the dark-adapted plants; and
Fv/Fm: maximum PSII quantum yield; Y (II): PSII effective quantum yield; Y(NPQ): regulated
energy dissipation quantum yield; Y(NO): unregulated energy dissipation quantum yield. The
images of Fo, Fv/Fm, and Fm were obtained in plants adapted to the dark, while the images of

Y (II), Y(NO) and Y(NPQ) were captured after 5 minutes of actinic illumination at 280 pmol of

light/m?/s.
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Figure S. Chlorophyll index (CI) - A, carotenoid index (CRI) — B, and photochemical
reflectance index (PRI) — C, for control and salinity stressed young purslane plants (0.0, 0.5,
1.0, 1.5, 2.0 g NaCl / 100 g of the substrate) throughout the period of 5 days of stress. The

values represent an average of five replicates, and bars represent the standard error of the mean.
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Figure 6. Compositional map of the elements and image obtained by scanning electron
microscope (SEM) with detectors of energy dispersive spectroscopy (EDS) of a stoma on the
leaf of a salt-stressed purslane plant. Formation of salt crystals above and around a closed
stoma in salt-stressed plants (A). Compositional map of the elements showing that the crystals

are made of CI', K", and Na" (B).
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Figure 7. Summary of Pathway Analysis using the MS Peaks to Pathway and the Pathway
Topology Analysis modules of MetaboAnalyst 5.0. The Integrated MS Peaks to Paths plot (A)
summarizes the results of the Fisher’s method for combining mummichog (y-axis) and Gene
Set Enrichment Analysis - GSEA (x-axis) p-values. The metabolome view (B) resulted from
the analysis in the Pathway Topology Analysis module using the Hypergeometric test, the
relative betweenness centrality node importance measure, and the latest KEGG version of the

A. thaliana pathway library.
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Figure 8. Histogram and correlation analysis of the Log. (Fold Change) of 109
differentially expressed metabolites by pairwise comparison of three scenarios: short-term
stress — STS (control vs stress plants at 1 DAT); long-term stress 1 — LTS1 (control vs stress
plants at 4 DAT); and long-term stress 2 — LTS2 (stressed plants at 1 and 4 DAT). A—STSvs

LTS1,B—-STSvsLTS2,and C—LTS1vs LTS2.
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Figure 9. Venn Diagram of genes from Portulaca oleracea differentially expressed in the
leaves of young purslane plants submitted to salt stress, under four distinct scenarios: age effect
- AE (control plants at 1 and 4 days under salinity stress — DAT); short-term stress — STS
(control vs stress plants at 1 DAT); long-term stress 1 — LTS1 (control vs stress plants at 4
DAT); and long-term stress 2 — LTS2 (stressed plants at 1 and 4 DAT). A — upregulated genes,

B — non-differentially expressed genes, and C — downregulated genes.
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Figure 10. Histogram and correlation analysis of the Log. (Fold Change) of differentially
expressed genes by pairwise comparison of four scenarios: age effect - AE (control plants at 1
and 4 days under salinity stress — DAT); short-term stress — STS (control vs stress plants at 1
DAT); long-term stress 1 — LTS1 (control vs stress plants at 4 DAT); and long-term stress 2 —
LTS2 (stressed plants at 1 and 4 DAT). A—STSvs AE,B—-LTS1vs AE,C—-LTS2vs AE, D

—STSvsLTS1, E-STSvsLTS2, F—LTS1vsLTS2.
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Supplementary Figure 1. Scanning electron microscope (SEM) images of the leaf surface
of purslane plants. A) Control; B) stressed plant (2.0 g NaCl) showing wrinkle due to
dehydration; (C) degree of stomata opening in control compared to (D) stressed (0.5 g NaCl).

Formation of salt crystals around (E) and above (F) a closed stomata in stressed plants.
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Table 1. Differentially expressed peaks and genes in the leaves of young purslane plants
submitted to salinity stress in four distinct scenarios: age effect - AE (control plants at 1 and 4
days under salinity stress — DAT); short-term stress — STS (control vs stress plants at 1 DAT);
long-term stress 1 — LTS1 (control vs stress plants at 4 DAT); and long-term stress 2 — LTS2
(stressed plants at 1 and 4 DAT). The differentially expressed peaks are those with a Variable
Importance in Projection (VIP) value > 0.99, obtained from the PLS-DA model; adjusted P-
value (FDR) < 0.05, of the Welch t-test; and Log (FC) # 1 (FC = Fold Change). Differentially
expressed transcripts are those with a FDR < 0.05, and Log> (FC) >1 (up-regulated) or Log>
(FC) <-1 (down-regulated).

Table 2. List of metabolic pathways in the leaves of young purslane plants affected by
salinity stress, obtained after metabolome and transcriptome integration using the Omics Fusion
platform. STS —short-term stress — (control vs stress plants at 1 DAT); LTS1 — long-term stress
1 (control vs stress plants at 4 DAT). MOI — Multi-Omics Integration. NA — Not Applicable.

Supplementary Table 1.  List of differentially expressed peaks (m.z) resulted from the
Pathway Analysis using the MS Peaks to Pathway module of MetaboAnalyst 5.0. Data set
showing the pathway code, KEGG id of the matched compound, matched form, mass
difference, name of the compound, correlation, t.score, p.value, FDR (False Discovery Rate),
fold change - FC, Log> (FC), and profile, in each one of the three scenarios evaluated: short-
term stress — STS (control vs stress plants at 1 DAT); long-term stress 1 — LTS1 (control vs

stress plants at 4 DAT); and long-term stress 2 — LTS2 (stressed plants at 1 and 4 DAT).
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Consideracoes Finais

Com base nos estudos realizados no Programa de PD&I “Sal da Terra”, foi observado
que as espécies vegetais G. sepium e P. oleracea sao altamente tolerantes a salinidade e que
possuem mecanismos de tolerancia distintos e notaveis (fenotipo de adaptagcdo em gliricidia e
liberagdo de cristais de sal nas folhas em beldroega). Dessa maneira, com base no robusto banco
de dados gerado, uma andlise mais profunda desses dados se mostrou crucial para tentar
compreender os mecanismos que tornam a gliricidia e a beldroega tolerantes ao sal, sendo o

objetivo principal deste trabalho.

Os resultados obtidos permitiram alcangar esse objetivo, revelando genes/transcritos,
metabolitos e vias metabolicas diferencialmente expressas e com importancia para a tolerancia
das espécies estudadas a condigao salina. Neste estudo foi possivel observar as diferengas entre
analisar somente uma Omica e aplicar a estratégia MOI; novas vias metabdlicas emergiram
quando se aplicou a estratégia MOI e, também, foi possivel verificar a diferenca entre os

cenarios analisados (AE, STS e LTS).

Mas, ndo foi somente a estratégia de integracdo entre as Omicas que proporcionou
conhecimentos interessantes; devido ao fato de que a estratégia de integracao utilizada, visando
mapear as vias metabolicas, leva em consideracdo apenas as enzimas e metabdlitos, outros
transcritos (ndo enzimaticos) que poderiam ter um papel importante no aspecto da tolerancia
destas espécies ndo sdo analisados. Dessa maneira, quando analisamos individualmente a
transcritomica, foram observados transcritos que ndo codificavam enzimas e que tiveram sua
expressao diferenciada, significativamente, duas vezes para cima (up regulated) ou duas vezes
para baixo (down regulated); mostrando que a analise individual das 6micas continua sendo

importante.

Durante o exercicio de integracao, viu-se que a estratégia MOI nivel 2, de mapeamento
em vias, se mostrou ser realmente mais facil de realizar e analisar, conforme discutido
anteriormente (Capitulo 1, Topico 1.3.3), sendo uma porta de entrada para a aplicagdo de
estratégias MOI neste grupo de pesquisa. Outro ponto importante foi que, conforme apresentado
no topico 1.3 (Capitulo 1), as estratégias MOI tém como caracteristicas gerar hipdteses € nao
testd-las; sendo que, no presente estudo, as listas de transcritos e metabolitos que possuem
relacio com a tolerdncia a salinidade, geradas para ambas as espécies estudadas, sdo
ferramentas valiosas para gerar hipoteses e aprofundar o conhecimento sobre os mecanismos

de tolerancia ao sal.
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Por fim, durante a execucdo do trabalho, notou-se que a estratégia empregada no estudo
da transcritbmica de beldroega, utilizando a anotagdo GhostKOALA, parece ser mais
apropriada para o estudo de espécies nao-modelo, devido ao extenso grupo de plantas presentes

na base de dados, caracterizando melhor os transcritos estudados.



